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Abstract

The fact that objects in the world appear in different ways depending on the
scale of observation has important implications if one aims at describing them. It
shows that the notion of scale is of utmost importance when processing unknown
measurement data by automatic methods. In their seminal works, Witkin (1983)
and Koenderink (1984) proposed to approach this problem by representing image
structures at different scales in a so-called scale-space representation. Traditional
scale-space theory building on this work, however, does not address the problem
of how to select local appropriate scales for further analysis.

This article proposes a systematic methodology for dealing with this problem.
A framework is proposed for generating hypotheses about interesting scale levels
in image data, based on a general principle stating that local extrema over scales
of different combinations of γ-normalized derivatives are likely candidates to
correspond to interesting structures. Specifically, it is shown how this idea can
be used as a major mechanism in algorithms for automatic scale selection, which
adapt the local scales of processing to the local image structure.

Support for the proposed approach is given in terms of a general theoretical
investigation of the behaviour of the scale selection method under rescalings of
the input pattern and by experiments on real-world and synthetic data. Support
is also given by a detailed analysis of how different types of feature detectors
perform when integrated with a scale selection mechanism and then applied to
characteristic model patterns. Specifically, it is described in detail how the pro-
posed methodology applies to the problems of blob detection, junction detection,
edge detection, ridge detection and local frequency estimation.

In many computer vision applications, the poor performance of the low-level
vision modules constitutes a major bottle-neck. It will be argued that the inclu-
sion of mechanisms for automatic scale selection is essential if we are to construct
vision systems to analyse complex unknown environments.

Keywords: scale, scale-space, scale selection, normalized derivative, feature detec-
tion, blob detection, corner detection, frequency estimation, Gaussian derivative,
scale-space, multi-scale representation, computer vision
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1 Introduction

One of the very fundamental problems that arises when analysing real-world mea-
surement data originates from the fact that objects in the world may appear in
different ways depending upon the scale of observation. This fact is well-known in
physics, where phenomena are modelled at several levels of scale, ranging from parti-
cle physics and quantum mechanics at fine scales, through thermodynamics and solid
mechanics dealing with every-day phenomena, to astronomy and relativity theory at
scales much larger than those we are usually dealing with. Notably, the type of phys-
ical description that is obtained may be strongly dependent on the scale at which
the world is modelled, and this is in clear contrast to certain idealized mathematical
entities, such as “point” or “line”, which are independent of the scale of observation.

In certain controlled situations, appropriate scales for analysis may be known a
priori . For example, a desirable property of a good physicist is his intuitive ability
to select appropriate scales to model a given situation. Under other circumstances,
however, it may not be obvious at all to determine in advance what are the proper
scales. One such example is a vision system with the task of analysing unknown scenes.
Besides the inherent multi-scale properties of real world objects (which, in general,
are unknown), such a system has to face the problems that the perspective mapping
gives rise to size variations, that noise is introduced in the image formation process,
and that the available data are two-dimensional data sets reflecting only indirect
properties of a three-dimensional world. To be able to cope with these problems, an
image representation that explicitly incorporates the notion of scale is a crucially
important tool whenever we attempt to interpret sensory data, such as images, by
automatic methods.

In computer vision and image processing, these insights have lead to the con-
struction of multi-scale representations of image data, obtained by embedding any
given signal into a one-parameter family of derived signals (Burt 1981; Crowley
1981; Witkin 1983; Koenderink 1984; Yuille and Poggio 1986; Florack et al. 1992; Lin-
deberg 1994d; Haar Romeny 1994). This family should be parameterized by a scale
parameter and be generated in such a way that fine-scale structures are successively
suppressed when the scale parameter is increased. A main intention behind this con-
struction is to obtain a separation of the image structures in the original image,
such that fine scale image structures only exist at the finest scales in the multi-scale
representation. Thereby, the task of operating on the image data will be simplified,
provided that the operations are performed at sufficiently coarse scales where unnec-
essary and irrelevant fine-scale structures have been suppressed. Empirically, this idea
has proved to be extremely useful, and multi-scale representations such as pyramids,
scale-space representation and non-linear diffusion methods are commonly used as
preprocessing steps to a large number of early visual operations, including feature
detection, stereo matching, optic flow, and the computation of shape cues.

A multi-scale representation by itself, however, contains no explicit information
about what image structures should be regarded as significant or what scales are ap-
propriate for treating those. Hence, unless early judgements can be made about what
image structures should be regarded as important, we obtain a substantial expansion
of the amount of data to be interpreted by later stage processes. In most previous
works, this problem has been handled by formulating algorithms which rely on the
information present in the data at a small set of manually chosen scales (or even a
single scale). Alternatively, coarse-to-fine algorithms have been expressed, which start
at a given coarse scale and propagate down to a given finer scale. Determining such
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scales in advance, however, leads to the introduction of free parameters. If one aims at
autonomous algorithms which are to operate in a complex environment without need
for external parameter tuning, we therefore argue that it is essential to complement
traditional multi-scale processing by explicit mechanisms for scale selection. Notably,
image descriptors can be highly unstable if computed at inappropriately chosen scales,
whereas a proper tuning of the scale parameter can improve the quality of an image
descriptor substantially. As will be demonstrated later, local scale information can
also constitute an important to in its own right.

Early work addressing this problem was presented in (Lindeberg 1991, 1993a)
for blob-like image structures. The basic idea was to study the behaviour of image
structures over scales, and to measure the saliency of image structures from the
stability properties and the lifetime of these structures in scale-space. Scale levels
were selected from the scales at which a measure of blob strength assumed local
maxima over scales and significant image structures from the stability of the blob
structures in scale-space. Experimentally, it was shown that this approach could be
used for extracting regions of interest with associated scale levels, which in turn could
serve as to guide various early visual processes.

The subject of this article is to address the problem of automatic scale selection
in a more general setting, for wider classes of image descriptors. We shall be con-
cerned with the problem of extracting image features and computing filter-like image
descriptors, and present a scale selection principle for image descriptors which can be
expressed in terms of Gaussian derivative filters. The general idea for scale selection
that will be proposed is to study the evolution properties over scales of normalized dif-
ferential descriptors. Specifically, it will be suggested that local extrema over scales of
such normalized differential entities, which arise in this way, are likely to correspond
to interesting image structures. By theoretical considerations and experiments it will
be shown that this approach gives rise to intuitively reasonably results in different
situations and that it provides a unified framework for scale selection for detecting
image features such as blobs, corners, edges and ridges.

1.1 Outline of the presentation

The presentation is organized as follows: Section 2 reviews the main concepts from
scale-space theory we build upon. Section 3 introduces the notion of normalized
derivatives and illustrates how maxima over scales of normalized Gaussian deriva-
tives reflect the frequency content in sine wave patterns. This material serves as a
preparation for section 4, which presents the proposed scale selection methodology
and shows how it applies generally to a large class of differential descriptors. Sec-
tion 4 also proposes a general extension of the common idea of defining features as
zero-crossings of spatial differential descriptors. If a scale selection mechanism is inte-
grated into such a feature detector, this corresponds to adding another zero-crossing
requirement over the scale dimension in the differential feature definition.

Then, section 5 and section 6 show in detail how these ideas can be used for for-
mulating blob detectors and corner detectors with automatic scale selection. Section 8
shows an example of how this approach applies to the computation of dense feature
maps. Section 9 describes different ways of interpreting the normalized derivative con-
cept. Finally, section 10 summarizes the main results and ideas of the approach. In a
complementary paper (Lindeberg 1996a) it is developed in detail how this approach
applies to edge detection and ridge detection.

Earlier presentations of different parts of this material have appeared elsewhere
(Lindeberg 1993b, 1994a, 1994d, 1996b) as well as applications of the general ideas to
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various problem domains (Lindeberg and G̊arding 1993, 1997; G̊arding and Lindeberg
1996; Lindeberg and Li 1995, 1997; Bretzner and Lindeberg 1998, 1997; Almansa and
Lindeberg 1996; Wiltschi et al. 1997; Lindeberg 1997). The subject of this paper is to
present a coherent description of the proposed scale selection methodology in journal
form, including the developments and refinements that have been performed since the
earliest presented manuscripts.

2 Scale-space representation: Review

Given any continuous signals f : RD → R, the (linear) scale-space representation
L : RD × R+ → R of f is defined as the solution to the diffusion equation

∂tL =
1
2
∇2L =

1
2

D∑
i=1

∂xixiL (1)

with initial condition L(·; 0) = f(·). Equivalently, this family can be defined by
convolution with Gaussian kernels of various width t

L(·; t) = g(·; t) ∗ f(·), (2)

where g : RD × R+ → R is given by

g(x; t) =
1

(2πt)N/2
e−(x2

1+...+x2
D)/(2t), (3)

and x = (x1, ..., xD)T . There are several mathematical results (Koenderink 1984;
Babaud et al. 1986; Yuille and Poggio 1986; Lindeberg 1990, 1994d, 1994b; Koen-
derink and van Doorn 1990, 1992; Florack et al. 1992; Florack 1993; Florack et al.
1994; Pauwels et al. 1995) stating that within the class of linear transformations the
Gaussian kernel is the unique kernel for generating a scale-space. The conditions that
specify the uniqueness are essentially linearity and shift invariance combined with
different ways of formalizing the notion that new structures should not be created in
the transformation from a finer to a coarser scale.

Interestingly, the results from these theoretical considerations are in qualitative
agreement with the results of biological evolution. Neurophysiological studies by
(Young 1985, 1987) have shown that there are receptive fields in the mammalian
retina and visual cortex, whose measured response profiles can be well modelled by
Gaussian derivatives up to order four. In these respects, the scale-space representa-
tion with its associated Gaussian derivative operators (where α denotes the order of
differentiation)

Lxα(·; t) = (∂xαL)(·, ·; t) = ∂xα(g ∗ f) = (∂xαg) ∗ f = g ∗ (∂xαf), (4)

can be seen as a canonical idealized model of a visual front-end. It is for this multi-
scale representation concept we will develop the scale selection methodology.

3 Normalized derivatives and intuitive idea for scale selection

A well-known property of the scale-space representation is that the amplitude of
spatial derivatives

Lxα(·; t) = ∂xαL(·; t) = ∂xα1
1
. . . ∂xαD

D
L(·; t) (5)
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in general decrease with scale, i.e., if a signal is subject to scale-space smoothing, then
the numerical values of spatial derivatives computed from the smoothed data can be
expected to decrease. This is a direct consequence of the non-enhancement property
of local extrema, which states that the value at a local maximum cannot increase,
and the value at a local minimum cannot decrease. In practice, it means that the
amplitude of the variations in a signal will always decrease with scale.

As a simple example of this, consider a sinusoidal input signal1 of some given
frequency ω0; for simplicity in one dimension,

f(x) = sinω0x. (6)

It is straightforward to show that the solution of the diffusion equation is given by

L(x; t) = e−ω
2
0t/2 sinω0x. (7)

Hence, the amplitude of the scale-space representation, Lmax, as well as the amplitude
of the mth order smoothed derivative, Lxm,max, decrease exponentially with scale

Lmax(t) = e−ω
2
0t/2, Lxm,max(t) = ωm0 e−ω

2
0t/2. (8)

Let us next introduce a γ-normalized derivative operator defined by

∂ξ,γ−norm = tγ/2 ∂x, (9)

which corresponds to the change of variables

ξ =
x

tγ/2
. (10)

In the special case when γ = 1, these ξ-coordinates and their associated normalized
derivative operator are dimensionless. The property of perfect scale invariance has
been used by (Florack et al. 1992) as a main requirement in an axiomatic scale-
space formulation (see also (Pauwels et al. 1995; Lindeberg 1994b)). As we shall see
later, however, values of γ < 1 will be highly useful when formulating scale selection
mechanisms for edge detection and ridge detection.

For the sinusoidal signal, the amplitude of an mth order normalized derivative as
function of scale is then given by

Lξm,max(t) = tmγ/2 ωm0 e−ω
2
0t/2, (11)

i.e., it first increases and then decreases. Moreover, it assumes a unique maximum at
tmax,Lξm = γ m/ω2

0 . If we define a scale parameter σ of dimension length by σ =
√
t

and introduce the wavelength λ0 of the signal by λ0 = 2π/ω0, we can see that the
scale at which the amplitude of the γ-normalized derivative assumes its maximum
over scales is proportional to the wavelength, λ0, of the signal:

σmax,Lξm =
√
γ m

2π
λ0. (12)

The maximum value over scales is

Lξm,max(tmax,Lξm ) =
(γm)γm/2

eγm/2
ω

(1−γ)m
0 . (13)

1An analysis of scale-space like responses to sine waves corresponding to the case when γ = 1 in
this section has also been performed in wavelet analysis by (Mallat and Hwang 1992); see section 9.3.
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In the case when γ = 1, this maximum value is independent of the frequency of the
signal (see figure 1), and the situation is highly symmetric, i.e., given any scale t0,
the maximally amplified frequency is given by ωmax =

√
m/t0, and for any ω0 the

scale with maximum amplification is tmax = m/ω2
0 . In other words, for normalized

derivatives with γ = 1 it holds that sinusoidal signals are treated in a similar (scale
invariant) way independent of their frequency (see figure 1). The situation is a bit
different when γ 6= 1. We shall return to this subject in section 4.1.

4 Proposed methodology for scale selection

The example above shows that the scale at which a normalized derivative assumes its
maximum over scales is for a sinusoidal signal proportional to the wavelength of the
signal. In this respect, maxima over scales of normalized derivatives reflect the scales
over which spatial variations take place in the signal.

Yhis operation corresponds to an interesting computational structure, since it
constitutes a way of estimating length based on local measurements performed at
only a single spatial point in the scale-space representation, and without explicitly
laying out a ruler. Moreover, compared to a local windowed Fourier transform there
is no need for making any explicit settings of window size for computing the Fourier
transform. Instead, the propagation of length information over space is performed via
the diffusion equation, and the decisions about the contents in the data are made by
studying the output of derivative operators as the diffusion process evolves.

Alternatively, we can view such a measurement procedure as a pattern matcher,
which matches Gaussian derivative kernels of different size to the given image pattern,
based on a specific normalization of the primitive templates. By using the proposed γ-
normalized derivative concept for normalization, we obtain one-to-one correspondence
between the matching response of the Gaussian derivative kernels and the wavelength
of the signal. Selecting the scale at which the maximum over scale is assumed cor-
responds to selecting the pattern (or the scale) for which the operator response is
strongest.

This property is, however, not restricted to sine wave patterns or to image mea-
surements in terms of linear derivative operators of a certain order. Contrary, it applies
to a large class of image descriptors which can be formulated as multi-scale differen-
tial invariants expressed in terms of Gaussian derivatives (this notion will be made
more precise next). A main message of this article is that this property can be used as

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

scale t

Lξ,max(t)

ω3 = 2.0 ω2 = 1.0

ω1 = 0.5

Figure 1: The amplitude of first order normalized derivatives as function of scale for sinu-
soidal input signals of different frequencies (ω1 = 0.5, ω2 = 1.0 and ω3 = 2.0).
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a major mechanism in algorithms for automatic scale selection, which automatically
adapt the local scales of processing to image data. Let us hence generalize the above-
mentioned observation to more complex signals and state the following principle for
scale selection, to be applied in situations when no other information is available. In
its most general form, it can be expressed as follows:

Principle for scale selection:
In the absence of other evidence, assume that a scale level, at which some
(possibly non-linear) combination of normalized derivatives assumes a
local maximum over scales, can be treated as reflecting a characteristic
length of a corresponding structure in the data.

This principle is closely related to although not equivalent to the method for scale
selection in previously proposed in (Lindeberg 1991, 1993a), where interesting scale
levels were determined from maxima over scales of a normalized blob measure. It can
be theoretically justified under a number of different assumptions and for a number of
specific brightness models (see next). Its general usefulness, however, must be verified
empirically, and with respect to the type of problem it is to be applied to.

4.1 General scaling property of local maxima over scales

A basic justification for the abovementioned arguments can be obtained from the fact
that for a large class of (possibly non-linear) combinations of normalized derivatives it
holds that maxima over scales have a nice behaviour under rescalings of the intensity
pattern. If the input image is rescaled by a constant scaling factor s, then the scale at
which the maximum is assumed will be multiplied by the same factor (if measured in
units of σ =

√
t). This is a fundamental requirement on a scale selection mechanism,

since it guarantees that the image operations will commute with size variations.

Transformation properties under rescalings: To give a formal characterization of this
scaling property, consider two signals f and f ′ related by

f(x) = f ′(sx), (14)

and define the scale-space representations of f and f ′ in the two domains by

L(·; t) = g(·; t) ∗ f, (15)

L′(·; t′) = g(·; t′) ∗ f ′, (16)

where the spatial variables and the scale parameters are transformed according to

x′ = sx, (17)

t′ = s2t. (18)

Then, L and L′ are related by

L(x; t) = L′(x′; t′), (19)

and the mth order spatial derivatives satisfy

∂xmL(x; t) = sm ∂x′mL
′(x′; t′). (20)

Finally, for γ-normalized derivatives defined in the two domains by

∂ξ = tγ/2 ∂x, (21)

∂ξ′ = t′γ/2 ∂x′ , (22)
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we have that

∂ξmL(x; t) = sm(1−γ) ∂ξ′mL′(x′; t′). (23)

Perfect scale invariance when γ = 1: From this relation it can be seen that, when
γ = 1 the normalized derivative concept leads to perfect scale invariance. The nor-
malized derivatives are equal in the two domains, provided that the scale parameters
and the spatial positions are matched according to (17) and (18). More specifically,
local maxima over scales are always assumed at corresponding positions, and this
scaling property holds for any differential expression defined from the local N -jet.

Sufficient scale invariance when γ 6= 1: The case when γ 6= 1 leads to a different
type of structure, since we cannot preserve a scaling property for arbitrary combi-
nations of normalized derivatives. Let us hence restrict the analysis to polynomial
differential invariants which are homogeneous in the sense that the sum of the orders
of differentiation is the same for each term in the polynomial. To express this no-
tion compactly, introduce multi-index notation for derivatives by Lxα = Lxα1

1 x
α2
2 ...x

αD
D

where x = (x1, x2, . . . xD), α = (α1, α2, . . . αD) and |α| = α1 + α2 + · · · + αD. Then,
consider a homogeneous polynomial differential invariant DL of the form

DL =
I∑
i=1

ci

J∏
j=1

Lxαij , (24)

where the sum of the orders of differentiation in a certain term

J∑
j=1

|αij | = M (25)

does not depend on the index i of that term. For a differential expression of this form,
the corresponding normalized differential expression in each domain is given by

Dγ−normL = tMγ/2DL, (26)

D′γ−normL′ = t′Mγ/2D′L′. (27)

From (23) it follows that these normalized differential expressions are related by

Dγ−normL = sM(1−γ)D′γ−normL′. (28)

Clearly, by γ-normalization with γ = 1, the magnitude of the derivative is not scale
invariant. Local maxima over scales will, however, still be preserved, since

∂t (Dγ−normL) = 0 ⇔ ∂t′
(D′γ−normL′) = 0 (29)

and the type of critical points are preserved under this transformation. Hence, even
when γ 6= 1, we can achieve sufficient scale invariance to support the proposed scale
selection methodology.

Scale compensated magnitude measures when γ 6= 1: When basing a scale selection
methodology on γ 6= 1, there is, however, a minor complication which needs attention.
When performing feature detection in practice, it is natural to associate a measure
of feature strength with each detected feature. Specifically, the magnitude of the
response at the local maximum over scales constitutes a natural entity to include in
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such a measure. From the the transformation property (23), it is, however, apparent
that this magnitude measure will be strongly dependent on the scale at which the
maximum over scales is assumed. Hence, the magnitude measure will depend on the
feature size. In view of the scale invariant magnitude measure obtained using γ = 1,
it is, however, straightforward to correct for this phenomenon by multiplying the
response by a correction factor and to define a compensated magnitude measure by

Mγ−normL = tM(1−γ)/2Dγ−normL. (30)

Then, the magnitude measures in the two domains will satisfy

Mγ−normL(x; t) = M′
γ−normL

′(x′; t′). (31)

Necessity of the γ-normalization: More generally, one may ask what choices of nor-
malization factors are possible, provided that we would like to state this scaling
property as a fundamental constraint on a scale selection mechanism based on local
maxima over scales of normalized differential entities. Then, in fact, it can be shown
that the γ-normalized derivative concept according to (9) arises by necessity .

In other words, the γ-normalized derivative concept comprises the most general
class of normalization factors for which detection of local maxima over scales com-
mutes with rescalings of the input pattern. A more precise formulation of this state-
ment as well as the details of the necessity proof can be found in appendix A.1.

Summary: Scale selection properties: To conclude, this analysis shows that if a γ-
normalized homogeneous differential expression assumes a maximum over scales at
(x0; t0) in the scale-space representation of f , then there will be a corresponding
maximum over scales in the scale-space representation of f ′ at (s x0; s2t0). Moreover,
although the magnitude of a normalized derivative at a local maximum over scales
is not scale invariant unless γ = 1, it is possible to compensate for this phenomenon
and to define scale invariant magnitude descriptors also when γ 6= 1.

4.2 The scale selection mechanism in practice

So far we have proposed a general methodology for scale selection by detecting local
maxima in feature responses over scales. Whereas this approach constitutes an exten-
sion of the traditional way in which spatial features are detected from spatial maxima
of feature responses, there is a fundamental difference. Since the image operators at
different scales by necessity have to be of different size, the problem of normalizing
the filter responses is of crucial importance. In section 4.1, we analysed this prob-
lem in detail and investigated the feasibility of capturing image structures under size
variations. Specifically, we characterized general classes of differential invariants as
well as normalization approaches, which allow for scale selection within the proposed
computational structure. A fundamental problem that remains to be solved in this
context concerns what differential expressions to use. Is any differential invariant fea-
sible? Here, we shall not attempt to answer this question. Let us instead contend that
the differential expression should at least be determined so as to capture the types of
image structures under consideration.

The general approach to scale selection that will be proposed is to use these
maximal responses over scales in the stage of detecting image features, i.e., when es-
tablishing the existence of different types of image structures. Basically, the scale at
which a maximum over scales is attained will be assumed to give information about
how large a feature is, in analogy with the common approach of taking the spatial
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position at which the maximum operator response is assumed as an estimate of the
spatial location of a feature. In certain situations, and as we shall see more specific
examples of later, this implies that image features may be detected at quite coarse
scales, and the localization properties may not be the best. Therefore, we propose to
complement this framework by a second processing stage, in which more refined pro-
cessing is invoked for computing more accurate localization estimates. In this respect,
the suggested framework naturally gives rise to two-stage algorithms, with feature
detection at coarse scales followed by feature localization at finer scales. Whereas
coarse-to-fine approaches are common practice in several computer vision problems,
a notable aspect of this approach will be that we include explicit mechanisms for
automatic selection of all scale parameters.

In the following, we shall shift attention to the application of the abovementioned
general ideas to specific problems. A series of theoretical and experimental results will
be presented showing how the proposed approach applies to different types of feature
detectors expressed as polynomial combinations of Gaussian derivatives.

4.3 Experiments: Scale-space signatures from real data

Figure 2 shows the variations over scales of two simple differential expressions formu-
lated in terms of normalized derivatives. It shows the result of computing the trace
and the determinant of the normalized Hessian matrix by (with γ = 1)

traceHnormL = tγ∇2L = tγ (Lxx + Lyy), (32)

detHnormL = t2γ (LxxLyy − L2
xy), (33)

for two details in an image of a field of sunflowers. (To avoid the sensitivity to sign of
these entities, and hence the polarity of the signal, traceHnormL and detHnormL have
been squared before presentation.) These graphs are called the scale-space signatures
of (traceHnormL)2 and (detHnormL)2, respectively.

As can be seen, the maximum over scales in the top row of figure 2 is assumed at a
finer scale than in the bottom row. A more detailed examination the ratio between the
scale values2 where the graphs attain their maxima over scales shows that when the
scale parameter is measured in dimension length this scale ratio is roughly equal to the
ratio of the diameters of the sunflowers in the centers of the two images, respectively.
This example illustrates that results in agreement with the proposed scale selection
principle can be obtained also for real-world data (and for signals having a much
richer frequency content than a single sine wave).

The reason why these particular differential expressions have been selected here
is because they constitute differential entities useful for blob detection; see e.g. (Marr
1982; Voorhees and Poggio 1987; Blostein and Ahuja 1989). Before we turn to the
problem of expressing an integrated blob detector with automatic scale selection,
however, let us describe a further extension of the general scale selection idea.

4.4 Simultaneous detection of interesting points and scales

In figure 2, the signatures of the normalized differential entities were computed at
the central point in each image. These points were deliberately chosen to coincide

2 In the graphs in figure 2 the scale parameter (on the horizontal axis) is measured in terms
of effective scale, τ . For continuous signals, this parameter is essentially the logarithm of the scale
parameter τ = C1 log t + C2 for some C1, C2 > 0. To avoid the singularity at zero scale, however,
all experiments are based on an effective scale concept especially developed for discrete signals and
defined such that τ ∼ log t at coarse scales and τ ∼ t at fine scales see (Lindeberg 1994d).
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Figure 2: Scale-space signatures of the trace and the determinant of the normalized Hes-
sian matrix computed for two details of a sunflower image; (left) grey-level image, (middle)
signature of (traceHnormL)2, (right) signature of (det HnormL)2. (The signature have been
computed at the central point in each image. The horizontal axis shows effective scale (essen-
tially the logarithm of the scale parameter), whereas the scaling of the vertical axis is linear
in the normalized operator response.)

with the centers of the sunflowers, where the blob response can be expected to be
maximal under spatial perturbations. In a real-world vision situation, however, we
cannot assume such points to be known a priori . Moreover, we can expect that the
spatial maximum of the operator response is assumed at different positions at different
scales. This is one example of the well-known fact that scale-space smoothing leads
to shape distortions.

Therefore, a more general approach to scale selection from local extrema in the
scale-space signature is by accumulating the signature of any normalized differential
entity DnormL along the path r : R+ → RN that a local extremum inDnormL describes
across scales. The mathematical framework for describing such paths is described in
(Lindeberg 1994d). Formally, an extremum path of a differential entity DnormL is
defined (from the implicit function theorem) as a set of points (r(t); t) ∈ RN × R+

in scale-space such that for any t ∈ R+ the point r(t) is a local extremum of the
mapping x 7→ (DnormL)(x; t),

{(x; t) ∈ RN × R+} = {(r(t); t) ∈ RN ×R+ : (∇(DnormL))(r(t); t) = 0}.

At the point at which an extremum in the signature is assumed, the derivative along
the scale direction is zero as well. Hence, it is natural to define a normalized scale-
space extremum of a differential entity DnormL as a point (x0; t0) ∈ RN × R+ in
scale-space which is simultaneously a local extremum with respect to both the spatial
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coordinates and the scale parameter.3 In terms of derivatives, such points satisfy{
(∇(DnormL))(x0; t0) = 0,
(∂t(DnormL))(x0; t0) = 0.

(34)

These normalized scale-space extrema constitute natural generalizations of extrema
with respect to the spatial coordinates, and can serve as natural interest points for
feature detectors formulated in terms of spatial maxima of differential operators, such
as blob detectors, junction detectors, symmetry detectors, etc. Specific examples of
this idea will be worked out in more detail in the following sections.4

Referring to the invariance properties of local maxima over scales under rescalings
of the input signal, we can observe that they transfer trivially to scale-space maxima.
Hence, if a normalized scale-space maximum is assumed at (x0; t0) in the scale-space
representation of a signal f , then in a rescaled signal f ′ defined by f ′(sx) = f(x),
a corresponding scale-space maximum is assumed at (sx0; s2t0) in the scale-space
representation of f ′.

5 Blob detection with automatic scale selection

Figure 3 shows the result of detecting normalized scale-space extrema of the normal-
ized Laplacian in an image of a sunflower field. Every scale-space maximum has been
graphically illustrated by a circle centered at the point at which the spatial maxi-
mum is assumed, and with the size determined such that the radius (measured in
pixel units) is proportional to the scale at which the maximum is assumed (measured
in dimension length). To reduce the number of blobs, a threshold on the maximum
normalized response has been selected such that the 250 blobs having the maximum
normalized responses according to (30) remain.

The bottom row shows the result of superimposing these circles onto a bright
copy of the original image, as well as corresponding results for the normalized scale-
space extrema of the square of the determinant of the Hessian matrix. Corresponding
experiments for a synthetic pattern (analysed in section 5.1) are given in figure 4.
Observe how these conceptually very simple differential geometric descriptors give
a very reasonable description of the blob-like structures in the image (in particular
concerning the blob size) considering how little information is used in the processing.

Figure 5 shows a three-dimensional illustration of the multi-scale blob descrip-
tors computed from the sunflower image. Here, each scale-space maximum has been
visualized by a sphere centered at the position (x0; t0) in scale-space at which the
maximum was assumed, with the radius proportional to the selected scale, and the
brightness increasing with the significance of the blob. Observe how the size variations
in the image data are reflected in the spatial variations of the image descriptors.

5.1 Analysis of scale-space maxima for idealized model patterns

Whereas the theoretical analysis in section 4.1 applies generally to large classes of
differential invariants and input signals, one may ask how the scale selection method
for blob detection performs in specific situations. In this section, we shall study two

3When detecting scale-space maxima in practice, there is, of course, no need to explicitly track the
extrema along the extremum path in scale-space. It is sufficient to detect three-dimensional maxima
over space and scale (as described in more detail in section A.4.3).

4Further extensions of this idea are also explored in (Lindeberg 1996a), where differential defini-
tions of edges and ridges are expressed in such a way that scale selection constitutes an integrated
part of the feature definition.
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original image scale-space maxima of (∇2
normL)2

(traceHnormL)2 (detHnormL)2

Figure 3: Normalized scale-space maxima computed from an image of a sunflower field: (top
left): Original image. (top right): Circles representing the 250 normalized scale-space maxima
of (traceHnormL)2 having the strongest normalized response. (bottom left): Circles represent-
ing scale-space maxima of (traceHnormL)2 superimposed onto a bright copy of the original
image. (bottom right): Corresponding results for scale-space maxima of (detHnormL)2.

(traceHnormL)2 (detHnormL)2

Figure 4: The 250 most significant normalized scale-space extrema detected from the per-
spective projection of a sine wave of the form (with 10% added Gaussian noise).
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model patterns for which a closed-form solution of diffusion equation can be calculated
and a complete analytical study hence is feasible.

Example 1. Consider first a non-symmetric Gaussian function

f(x1, x2) = g(x1; t1) g(x2; t2) =
1√
2πt1

e−x
2
1/2t1

1√
2πt2

e−x
2
2/2t2

as a model of a two-dimensional blob with characteristic lengths
√
t1 and

√
t2 along the

coordinate directions. From the semi-group property of the Gaussian kernel g(·; tA)∗
g(·; tB) = g(·; tA + tB) it follows that the scale-space representation L of f is

L(x1, x2; t) = g(x1; t1 + t) g(x2; t2 + t). (35)

After a few algebraic manipulations it can be shown that for any t1, t2 > 0 there is a
unique maximum over scales in

|(∇2
normL)(0, 0; t)| = t(t1 + t2 + 2t)

2π(t1 + t)3/2(t2 + t)3/2
. (36)

In the case when t1 = t2 = t0, this maximum over scales is given by

∂t(∇2
normL)(0, 0; t) = 0 ⇐⇒ t = t0. (37)

Figure 5: Three-dimensional view of the 150 strongest scale-space maxima of the square
of the normalized Laplacian of the Gaussian computed from the sunflower image. (A dark
copy of the original grey-level image is shown in the ground plane, and the vertical dimension
represents scale.)
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The closed-form solution for the maximum over scales in

|detHnorm(0, 0; t)| = t2

4π2(t1 + t)2(t2 + t)2
(38)

is simple. It is assumed at

tdetHL =
√
t1t2, (39)

verifying that for both traceHnormL and detHnormL the scale at which the scale-
space maximum is assumed reflects a characteristic size of the blob.

Example 2. Another interesting special case to consider is a periodic signal defined
as the sum of two perpendicular sine waves,

f(x, y) = sinω1x+ sinω2y (ω1 ≤ ω2). (40)

Its scale-space representation is

L(x, y; t) = e−ω
2
1t/2 sinω1x+ e−ω

2
2t/2 sinω2y, (41)

and ∇2
normL and detHnormL assume their spatial maxima at (π/2, π/2). Setting the

derivative ∂t|(∇2
normL)(π2 ,

π
2 ; t)| = ∂t(t (ω2

1e
−ω2

1t/2 + ω2
2e
−ω2

2t/2)) to zero gives

ω2
1(2− ω2

1t) e
−ω2

1t/2 + ω2
2(2− ω2

2t) e
−ω2

2t/2 = 0. (42)

There is a unique solution when the ratio ω2/ω1 is close to one, and three solutions
when the ratio is sufficiently large. Hence, there is a unique maximum over scales
when ω2/ω1 is close to one, and two maxima when the ratio is sufficiently large. (The
bifurcation occurs when ω2/ω1 ≈ 2.4.) In the special case when ω1 = ω2 = ω0, the
maximum over scales is assumed at

ttraceHL =
2
ω2

0

. (43)

Similarly, setting ∂t|(detHnormL)(π/2, π/2; t)| = ∂t(t2 ω2
1e
−ω2

1t/2 ω2
2e
−ω2

2t/2) to zero
gives that the maximum over scales in detHnormL is assumed at

tdetHL =
4

ω2
1 + ω2

2

. (44)

Hence, for both the Gaussian blob model and the periodic sine waves, these specific
results agree with the suggested general scale selection principle. When the scale
parameter is measured in units of σ =

√
t, the scale levels, at which the maxima over

scales are assumed, reflect the characteristic length of the structures in the signal.

5.2 Comparisons with fixed-scale blob detection

In view of the results presented so far, it is interesting to compare this blob detector
with automatic scale selection to a standard multi-scale blob detector operating at a
fixed scale. Figure 6 shows the result of computing spatial maxima at different scales
in the response of the Laplacian operator from the sine wave pattern in figure 4. At
each scale, the 50 strongest responses have been extracted.

As can be seen, small blobs are given the highest relative ranking at fine scales,
whereas large blobs are given the highest relative ranking at coarse scales. Hence, a
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50 strongest maxima at t = 4 50 strongest maxima at t = 16 50 strongest maxima at t = 64

Figure 6: The 50 strongest spatial responses to the Laplacian operator computed at the scale
levels: (a) t = 4.0, (b) t = 16.0, and (c) t = 64.0. Observe how this blob detector leads to a
bias towards image structures of a certain size.

blob detector of this type (operating at a single predetermined scale) induces a bias
towards image structures of a certain size. On the other hand, if we use the proposed
methodology for blob detection based on the detection of scale-space maxima, we
obtain a conceptually clean way of handling image structures of all sizes (between the
inner scale and the outer scale of the analysis) in a similar manner. (As was shown
above, the associated measure of blob strength is strictly scale invariant.)

5.3 Applications of blob detection with automatic scale selection

Following the previously presented arguments, we argue that a scale selection mech-
anism is an essential complement to any blob detector aimed at handling large size
variations in the image structures. In addition, scale information associated with such
adaptively computed image descriptors may serve as an important cue in its own right.

In (Bretzner and Lindeberg 1996, 1998) an application to feature tracking is pre-
sented, where (i) the scale information constitutes a key component in the criterion
for matching image features over time, and (ii) the scale selection mechanism is es-
sential for the vision system to be able to capture objects under large size variations
over time.

In (Lindeberg and G̊arding 1993; G̊arding and Lindeberg 1996) an extension of
this general blob detection idea is presented, where: (i) each scale-space maximum
is used for guiding the computation of a regional image texture descriptor (a second
moment matrix) as a pre-processing stage to shape-from-texture, (ii) the shape of each
blob is represented by an ellipse with its shape determined from the local statistics
of image gradient directions, and (iii) the scale information is used as a cue to three-
dimensional surface shape when it can be assumed that the texture elements on the
surface have the same size.

6 Junction detection with automatic scale selection

A similar approach as was used for blob detection in previous section can be used
for detecting corners in grey-level images. In this section, it will be shown how a
multi-scale junction detector can be formulated in terms of the scale-space maxima
of a normalized differential invariant.
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6.1 Selection of detection scales from normalized scale-space maxima

A commonly used entity for junction detection is the curvature of level curves in
intensity data multiplied by the gradient magnitude (Kitchen and Rosenfeld 1982;
Dreschler and Nagel 1982; Koenderink and Richards 1988; Noble 1988; Deriche and
Giraudon 1990; Blom 1992; Florack et al. 1992; Lindeberg 1994d). A special choice is
to multiply the level curve curvature by the gradient magnitude raised to the power of
three. This is the smallest value of the exponent that leads to a polynomial expression

κ̃ = L2
vLuu = L2

x2
Lx1x1 − 2Lx1Lx2Lx1x2 + L2

x1
Lx2x2 . (45)

Moreover, the spatial maxima of this operator are invariant under affine transforma-
tions. The corresponding normalized differential expression is obtained by replacing
each derivative operator ∂xi by tγ/2 ∂xi , which gives

κ̃norm = t2γ κ̃. (46)

Figure 7 shows the results of applying this operator to a grey-level image at a number
of different scales. The results are displayed in two ways; (i) in terms of grey-level
images showing the scale-space representation L as well as the junction response κ̃2

computed at each scale, and (ii) in terms of the 50 strongest spatial maxima of κ̃2,
respectively, extracted at the same scale levels. As can be seen, qualitatively different
responses are obtained at different scales. At fine scales, the strongest responses are
obtained for the sharp corners and for a number of spurious fine-scale perturbations
along edges. Then, with increasing values of the scale parameter, the selectivity to
junction-like structures increases. In particular, the diffuse (non-sharp) and strongly
rounded corners only give rise to strong responses at coarse scales. In summary, this
example illustrates the following fundamental aspects of multi-scale corner detection:

• If we are only interested in sharp ideal corners, i.e., corners which can be well
approximated by straight lines and for which the intensity contrast across the
edge is high and corresponds to a step edge, then it is often sufficient to use a
fine scale in the detection stage. The main motivation for using coarser scales
on such data is to reduce the number of false positives.

• If we are interested in capturing rounded corners and corners for which the
intensity variations across the edges around the junction are slow (diffuse cor-
ners), then it is essentially necessary to use a coarse scale if we want to have
strong spatial maxima in the response of κ̃2 at such image structures.

Specifically, this example shows that if no a priori information is available about what
can be expected to be in the scene, then a mechanism for automatic scale selection
is essential to capture corner structures at different scales.
Figure 8 shows the result of including such a scale selection mechanism in the junction
detector. It shows the result of detecting the 50 strongest normalized scale-space
maxima of κ̃2

norm from the same grey-level image. Each scale-space maximum has
been graphically illustrated by a circle centered at the point at which the maximum
is assumed, and with the size determined such that the radius is proportional to
the scale at which the maximum over scales was assumed (measured in dimension
length). To reduce the number of junction candidates, the scale-space maxima have
been sorted with respect to a saliency measure. This measure has been determined as
the magnitude of the normalized response according to (30) multiplied by the scale
parameter measured in dimension area, so as to approximate the area of the spatial
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scale-space representation L junction response κ̃2 50 strongest responses

t = 1.0

t = 4.0

t = 16.0

t = 64.0

Figure 7: Junction responses at different scales computed from a noisy image containing a
number of ideal sharp corners as well as rounded and diffuse corners. As can be seen, different
types of junction structures give rise to different types of responses at different scales. Notably,
certain diffuse junction structures fail to give rise to dominant responses at the finest levels
of scale. (Image size: 320*240 pixels.)
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original grey-level image 50 strongest scale-space maxima of κ̃2

Figure 8: Junction detection with automatic scale selection: The result of computing the 50
most significant normalized scale-space extrema of κ̃2

norm from a grey-level image containing
sharp straight edges as well as diffuse and rounded edges (with γ = 1). Compare with figure 7
and observe how corner structures at different scales are captured by this operation.

support region of each scale-space maximum. Finally, the 50 most significant blobs
according to this ranking have been displayed.

Of course, thresholding on the magnitude of the operator response constitutes a
coarse selective mechanism for feature detection. Nevertheless, note that this opera-
tion gives rise to a set of junction candidates with reasonable interpretations in the
scene. Moreover, observe that the circles representing the scale-space extrema con-
stitute natural regions of interest around the candidate junctions. In particular, the
selected scales reflect the diffuseness and the spatial extent of the corners, such that
coarser scales are, in general, selected for the diffuse corners than for sharp ones.

6.2 Analysis of scale-space maxima for diffuse junction models

To obtain an intuitive understanding of the qualitative behaviour of the scale selection
method in this case, let us analyse a simple junction model for which a closed-form
analysis can be carried out without too much effort.

Diffuse step junction. Consider

f(x1, x2) = Φ(x1; t0)Φ(x2; t0) (47)

as a simple model of a diffuse L-junction, where Φ(·; t0) describes a diffuse step edge

Φ(xi; t0) =
∫ xi

x′=−∞
g(x′; t0) dx′ (48)

with diffuseness t0. From the semi-group property of the Gaussian kernel it follows
that the scale-space representation L of f is

L(x1, x2; t) = Φ(x1; t0 + t)Φ(x2; t0 + t). (49)

After differentiation, and using the fact that Lx1x1 = 0 and Lx2x2 = 0 at the origin,
as well as Φ(0; t) = 1/2, ∀t and g(0; t) = 1/

√
2πt, we obtain

|κ̃norm(0, 0; t)| = |2t2γLx1Lx2Lx1x2 | =
t2γ

8π2(t0 + t)2
. (50)
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When γ = 1, this entity increases monotonically with scale, whereas for γ ∈]0, 1[,
κ̃norm(0, 0; t) assumes a unique maximum over scales at

tκ̃ =
γ

1− γ
t0. (51)

Non-uniform Gaussian blob. A limitation of the abovementioned analysis is that the
signature is computed at a fixed point, whereas the maximum in κ̃2 can be expected
to drift due to scale-space smoothing. Unfortunately, the equation that determines
the position of the spatial maximum in κ̃2 over scales is non-trivial to handle (it
contains a non-linear combination of the Gaussian function, the primitive function
of the Gaussian, and polynomials). Carrying out a closed-form analysis along non-
vertical extremum paths is, however, straightforward for the previously treated non-
uniform Gaussian blob model. This function can be regarded as a coarse model of the
behaviour at so coarse scales in scale-space that the shape distortions are substantial
and the overall shape of a finite-size object is severely affected. From (35) we have
that the scale-space representation of the non-uniform Gaussian blob is

L(x1, x2; t) = g(x1; t1 + t) g(x2; t2 + t). (52)

Differentiation and insertion into (45) shows that the absolute value of the rescaled
level curve curvature assumes assumes its spatial maximum

|κ̃norm|max =
t2γ

12eπ3(t1 + t)5/2(t2 + t)5/2
(53)

on the ellipse 3x2
1

2(t1+t) + 3x2
2

2(t2+t) = 1. In the special case when γ = 1, the maximum over
scales is assumed at

tκ̃ =
(t1 + t2)

12

(√
1 +

96 t1t2
(t1 + t2)2

− 1

)
, (54)

whereas when t1 = t2 = t0

tκ̃ =
2γ

5− 2γ
t0. (55)

Interpretation of the qualitative behaviour. To conclude, the junction response κ̃2
norm

can for γ = 1 be expected to increase with scales when a single corner model of infinite
extent constitutes a reasonable approximation. On the other hand, κ̃2

norm can be
expected to decrease with scales when so much smoothing is applied that the overall
shape of the object is substantially distorted (and neighbouring junctions interfere
with each other or disappear altogether).

Hence, selecting scale levels (and spatial points) where κ̃2
norm assumes maxima

over scales can be expected to give rise to scale levels in the intermediate scale range
(where a finite extent junction model constitutes a reasonable approximation). In
particular, this approach will lead to larger scale values for corners having large
spatial extent, and prevent too fine scales from being selected at rounded junctions.

6.3 Experiments: Scale-space signatures in junction detection

Figure 9 illustrates these effects for synthetic L-junctions with varying degrees of dif-
fuseness. It shows simulation experiments with scale-space signatures of κ̃norm accu-
mulated in two different ways: (i) a vertical signature obtained by computing κ̃norm
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Figure 9: Scale-space signatures of κ̃norm for synthetic L-junctions with different degrees
of diffuseness (top t = 4.0, bottom t = 64.0). (left) original grey-level image, (middle) path
signature of κ̃norm accumulated by tracking a spatial maximum in κ̃norm across scales, (right)
vertical signature of κ̃norm accumulated at the central point.
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Figure 10: Scale-space signatures of κ̃norm for diffuse L-junctions (t0 = 1.0) of different
spatial extent (1/4 and 1/16 of the image size). (left) original grey-level image, (middle) path
signature of κ̃norm accumulated by tracking a spatial maximum in κ̃norm across scales, (right)
vertical signature of κ̃norm accumulated at the central point.
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at the fixed central point at different scales, and (ii) a path signature obtained by
tracking the spatial extremum in κ̃norm across scales. As can be seen, the qualitative
behaviour is in agreement with the approximate analysis in previous section—with
increasing degree of diffuseness the values of κ̃norm become smaller at fine scales.

Figure 10 shows the result of replacing the infinite extent L-junction model by
junction models of finite size. Observe that the peak in the signature is assumed at
finer scales when the spatial extent of the junction is decreased. In other words, the
scale at which the maximum over scales is assumed indicates the spatial extent (the
size) of the region for which a junction model is consistent with the grey-level data
(in agreement with the suggested scale selection principle).

Figure 11 gives a three-dimensional illustration of this junction detector with
automatic scale selection. It shows scale-space maxima of κ̃2

norm computed from a
synthetic image containing corner structures at different scales. The original grey-
level image is shown in the ground plane, and each scale-space maximum has been
graphically visualized by a sphere centered at the position (x0; t0) in scale-space
at which the scale-space maximum was assumed. (Hence, the height over the image
plane reflects the selected scale.) Observe how the large scale corner as a whole gives
rise to a response at coarse scales, whereas the superimposed corner structures of
smaller size give rise to scale-space maxima at finer scales.

More results on corner detection, including a complementary mechanism for ac-
curate corner localization, are presented in section 7.

7 Feature localization with automatic scale selection

The scale selection methodology presented so far applies to the detection of image
features, and the role of the scale selection mechanism is to estimate the approxi-
mate size of the image structures the feature detector responds to. Whereas this ap-
proach provides a conceptually simple way to express various feature detectors, such
as a junction detector, which automatically adapts its scale levels to the local image
structure, it is not guaranteed that the spatial positions of the scale-space maxima
constitute accurate estimates of the corner locations. The local maxima over scales
may be assumed at rather coarse scales, where the drift due to scale-space smoothing
is substantial and adjacent features may interfere with each other. For this reason,
it is natural to complement the initial feature detection step by an explicit feature
localization stage.

The subject of this section is show how mechanism for automatic scale selection
can be formulated in this context, by minimizing normalized measures of inconsistency
over scales.

7.1 Corner localization by local consistency

Second stage computation of localization estimate. Given an approximate estimate
x0 of the location and the size s of a corner (computed according to section 6),
an improved estimate of the corner position can be computed as follows: Following
(Förstner and Gülch 1987), consider at every point x′ ∈ R2 in a neighbourhood of a
junction candidate x0, the line lx′ perpendicular to the gradient vector (∇L)(x′) =
(Lx1 , Lx2)

T (x′) at that point:

Dx′(x) = ((∇L)(x′))T (x− x′) = 0. (56)
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Figure 11: Three-dimensional view of scale-space maxima of κ̃2
norm computed for a large

scale corner with superimposed corner structures at finer scales. Observe that a coarse scale
response is obtained for the large scale corner structure as a whole, whereas the superimposed
corner structures of smaller size give rise to scale-space maxima at finer scales.

Then, minimize the perpendicular distance to all lines lx′ in a neighbourhood of x0,
i.e. determine the point x ∈ R2 that minimizes

min
x∈R2

∫
x′∈R2

(Dx′(x))
2 wx0(x

′) dx′ (57)

for some window function wx0 : R2 → R centered at the candidate junction x0. Mini-
mizing this expression corresponds to finding the point x that minimizes the weighted
integral of the squares of the distances from x to all lx′ in the neighbourhood, see
figure 12. (Dx′(x) is distance from x to lx′ multiplied by the gradient magnitude, and
the window function implies that stronger weights are given to points in a neighbour-
hood of x0.) The overall intention of this formulation is that for an image pattern
containing a junction, the point x that minimizes (57) should constitute a better
estimate of the projection of the physical junction than x0.

Explicit solution in terms of local image statistics. An attractive property of the for-
mulation in (57) is that it allows for a compact closed-form solution. After expansion,
it can be written

min
x∈R2

∫
x′∈R2

(x− x′)T ((∇L)(x′)) ((∇L)(x′))T (x− x′)wx0(x
′) dx′, (58)
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new estimate, x

candidate junction, x0

n(x′) = ∇L(x′)
x′

Figure 12: Minimizing (57) basically corresponds to finding the point x that minimizes the
distance to all edge tangents in a neighbourhood of the given candidate junction point x0.

and the minimization problem be expressed as a standard least squares problem

min
x∈R2

xTAx− 2xT b+ c ⇐⇒ Ax = b, (59)

where x = (x1, x2)T , and A, b, and c are determined by the local statistics of the
gradient directions in a neighbourhood of x0,

A =
∫
x′∈R2

(∇L)(x′) (∇L)T (x′)wx0(x
′) dx′, (60)

b =
∫
x′∈R2

(∇L)(x′) (∇L)T (x′)x′ wx0(x
′) dx′, (61)

c =
∫
x′∈R2

x′T (∇L)(x′) (∇L)T (x′)x′wx0(x
′) dx′. (62)

Provided that the 2× 2 matrix A is non-singular, the minimum value is given by

dmin = min
x∈R2

xTAx− 2xT b+ c = c− bTA−1b, (63)

and the point x that minimizes (57) is x = A−1b. Hence, an improved localization
estimate can be computed directly from image measurements.

7.2 Automatic selection of localization scales

The formulation in previous section however, leaves two major problems open: How to
choose the window function wx0 , and the scale(s) for computing the gradient vectors.

• The problem of choosing the weighting function is a special case of a common
scale problem in least squares estimation: Over what spatial region should the
fitting be performed? Clearly, it should be large enough such that statistics
of gradient directions is accumulated over a sufficiently large neighbourhood
around the candidate junction. Nevertheless, the region must not be so large
that interfering structures corresponding to other junctions are included.

• The second scale problem, on the other hand, is of a slightly different nature
than the previous ones—it concerns what scales should be used for localizing
image structures. Previously, in this paper, only the problem of detecting image
structures has been treated.

Here, the following solutions are proposed:
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Selection of window function and spatial points from the detection step: When com-
puting A, b, and c above, let the window function wx0 be a Gaussian function centered
at the point x0 at which κ̃2

norm assumed its scale-space maximum. Moreover, let the
scale value of this window function be proportional to the detection scale t0 at which
the maximum over scales in κ̃2

norm was assumed.
The idea behind this approach is that the detection scale should reflect a represen-

tative region around the candidate junction, such that larger regions are selected for
corners with large spatial extent than for corners with small extent. Experimentally,
this has been demonstrated to be the case in a large number of situations (compare
also with the qualitative results in sections 6.2–6.3). (An more general approach for
defining the support region of the junction feature is described in section 7.7.)

Selection of localization scale: Minimize the normalized residual. Clearly, the gradi-
ent estimates used for computing A, b, and c must be computed at a certain scale. To
determine this localization scale, it is natural to select the scale that minimizes the
normalized residual dmin in (65) over scales.

This scale selection criterion corresponds to extending the minimization problem
(59) from a single scale to optimization over multiple scales

min
t∈R+

min
x∈R2

xTAx− 2xT b+ c

norm(t)
=

min
t∈R+

min
x∈R2

c− bTA−1b

traceA
(64)

where the normalization factor norm(t) has been introduce to relate minimizations
at different scales. The particular choice of norm(t) = traceA implies that the nor-
malized residual

d̃ = min
x∈R2

∫
x′∈R2

∣∣((∇L)(x′))T (x− x′)
∣∣2wx0(x

′) dx′∫
x′∈R2 |(∇L)(x′)|2 wx0(x′) dx′

(65)

has dimension [length]2 can be interpreted as a weighted estimate of the localization
error. Specifically, scale selection according by minimizing the normalized residual
r̃ (65) over scales, corresponds to selecting the scale that minimizes the estimated
inaccuracy in the localization estimate.

This principle for selecting localization scales implies that we take as localization
scale the scale that gives the maximum consistency between the distribution of gradient
directions in a neighbourhood of x0 and a local (qualitative) junction model. More
specific motivations behind this choice can also be expressed as follows:

At very fine scales, where a large amount of noise and interfering fine-scale struc-
tures can be expected to be present, the first-order derivative operators will respond
mainly to such structures. Hence, the gradient directions can be expected to be
roughly randomly distributed, and the residual dmin will, in general, be large. At
coarser scales in scale-space, such fine-scale structures will be suppressed and the
locally computed gradient directions will be better aligned to the underlying corner
structure. Thus, when smoothing is necessary, the residual will decrease. On the other
hand, if too much smoothing is applied, then the shape distorting effects of scale-space
smoothing will be dominant and the residual can be expected to increase again. Hence,
selecting the minimum gives a natural trade-off between these two effects.
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Behaviour at ideal sharp junctions of polygon-type. Note, in particular, that for an
ideal (sharp) step junction, the localization scale given by this method will always be
zero in the noise free case. This can be easily understood by observing that for an
ideal polygon-type junction (consisting of regions of uniform grey-level delimited by
straight edges), all edge tangents meet at the junction point, which means that the
residual d̃min is exactly zero. Thus, any amount of smoothing increases the residual,
and the minimum value will be assumed at zero scale.

7.3 Experiments: Choice of localization scale

Figure 13 and figure 14 show the result of applying this scale selection mechanism to
a sharp and a diffuse corner with different amounts of added white Gaussian noise. As
can be seen, the results agree with a the qualitative discussion above. There is a clear
minimum over scales in each scale-space signature, and the minimum over scales is
assumed at coarser scales when the noise level is increased. Moreover, slightly coarser
scales are selected for the diffuse junction than for the sharp one.

Junction localization with automatic scale selection: T-junction
Noise Selected Normalized Absolute Reference Normalized Absolute
level scale residual error scale residual error
0.01 1.2 1.0 0.9 1.0 1.0 0.9
0.03 2.8 2.3 1.4 2.1 2.5 1.4
0.1 8.1 6.7 5.1 6.3 6.8 4.9
0.3 18.8 13.9 16.6 13.4 15.0 14.7
1.0 50.3 28.5 116.0 28.2 39.2 96.3

Table 1: The result of applying the junction localization method to a synthetic T -junction
with different amounts of added white Gaussian noise. For each noise level, this table gives the
scale at which the normalized residual assumes its minimum over scales, as well as the scale
at which the estimate with the minimum absolute error over scales is obtained. Moreover,
numerical values of the two error measures are given at these scales. As can be seen, the
selected scales increase with the noise level, and the scale at which the normalized residual
assumes its minimum over scales serves as a reasonable estimate of a scale at which a near
optimal localization estimate over scales is obtained.

Table 1 gives a numerical illustration of basic properties of this scale selection
method for junction localization. It shows the result of applying one iteration of the
junction localization method to a T junction with 90 degree opening angles, and the
results are shown in terms of the following six measures as function of the noise level:

• the selected scale tdmin
obtained by minimizing the normalized residual over

scales,

• the normalized residual at the selected scale,

• the absolute error in the localization estimate at the selected scale,

• the scale tabs at which the localization estimate with the minimum absolute
error is obtained,

• the normalized residual at tabs,

• the minimum actual error of the localization estimates computed at all scales.
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Figure 13: Scale-space signatures of the normalized residual at a synthetic sharp T -junction
(t0 = 0.0) for different amounts of added white Gaussian noise (ν = 1.0 and 30.0): (left) grey-
level image, (middle) signature of d̃min accumulated at the central point, (right) localization
estimate computed at the scale at which d̃min assumes its minimum over scales (illustrated
by a circle overlayed onto a bright copy of the image smoothed to that scale).
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Figure 14: Corresponding results for a synthetic diffuse T -junction (t0 = 64.0).
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All descriptors have been computed at a position with 10 pixels horizontal and vertical
offset from true corner position.

The results show that the normalized residual serves as an estimate of the inac-
curacy in the corner localization estimate, and specifically that the scale at which
the minimum over scales in d̃min is assumed is a reasonable estimate of the scale at
which we have the localization estimate with the minimum absolute error. Whereas
the correspondence between the two error measures is not perfect, the absolute error
computed at the scale at which the normalized residual assumes its minimum over
scales is only slightly higher than the minimum absolute error over all scales. In this
respect, minimization of d̃norm over scales gives a near optimal localization estimate
(without knowledge about the true junction position).

Moreover, whereas the error estimates assume rather high values for a single appli-
cation of the junction localization scheme when the noise level is high, the localization
erro can be decreased substantially by applying the junction localization scheme it-
eratively.

Figure 15 shows the result of applying the composed junction localization stage
to the junction candidates in figure 8. For each scale-space maximum, an individual
scale selection process has been invoked consisting of the following processing steps:

• The signature of the normalized residual has been accumulated using a win-
dow function with scale value equal to the detection scale of the scale-space
maximum.

• The minimum over scales in the signature of d̃min has been detected, and a new
localization estimate has been computed using x = A−1b.

• This procedure has been repeated iteratively until either the difference between
two successive localization estimates is less than one pixel or the number of
iterations has reached an upper bound (here 3 iterations).

• Junction candidates for which the new localization estimates fall outside the
support region of the original scale-space maximum have been classified as “di-
verged” and been suppressed.

• Each remaining junction candidate has been illustrated by a circle with radius
proportional to the detection scale or the localization scale.

Observe how the localization is improved by this postprocessing step, and moreover,
that the selected localization scales serve as estimates of the spatial localization error.

7.4 Composed scheme for junction detection and localization

To summarize, the composed two-stage scheme for junction detection and junction
localization consists of the following processing steps:5

1. Detection. Detect scale-space maxima in the square of the normalized rescaled
level curve curvature

κ̃norm = t2γ κ̃ = t2γ (L2
x2
Lx1x1 − 2Lx1Lx2Lx1x2 + L2

x1
Lx2x2)

(or some other suitable normalized differential entity). This generates a set of
junction candidates.

5Besides the general descriptions given in previous sections, further details concerning algorithms
and discrete implementation can be found in appendix A.4 and in (Lindeberg 1994c).
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localized junctions (detection scale) localized junctions (localization scale)

Figure 15: Improved localization estimates for the junction candidates in figure 8. Each
junction has been graphically illustrated by a circle centered at the new location estimate.
In the left image, the size reflects the detection scale, whereas in the right image, the size
reflects the localization scale.

2. Localization. For each junction candidate, accumulate the scale-space signature
of the normalized residual

d̃min =
c− bTA−1b

traceA

with A, b, and c computed according to (60)–(62), and using window function
reflecting the support region of the scale-space maximum at the detection scale.

Then, at the scale at which the minimum in d̃min is assumed, compute an
improved localization estimate using

x = A−1b.

3. Iterations. Optionally, repeat step 2 until the increment is sufficiently small.

7.5 Further experiments

Figures 16–17 show the result of applying the composed two-state junction detection
scheme to four indoor images containing different types of junctions. As can be seen,
very reasonable sets of junction candidates are obtained, and the support regions of
the scale-space blobs again serve as natural regions of interest around the features.

Concerning the number of junction candidates to be processed and passed on
to later processing stages, we have not made any attempts in this work to decide
automatically how many of the extracted junction candidates correspond to physical
junctions in the world. We argue that such decisions require integration with higher-
level reasoning and verification processes, and may be extremely hard to make at the
earliest processing stages unless additional information is available about the external
conditions.6 For this reason, this module only aims at computing an early ranking
of image features in order of significance, which can be used by a vision system for
processing features in decreasing order of significance.

6An integrated vision system for analysing junctions by actively zooming in to interesting struc-
tures is presented in (Brunnström et al. 1992; Lindeberg 1993a).
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original image original image

100 strongest junctions 100 strongest junctions

50 strongest junctions 50 strongest junctions

Figure 16: Results of composed two-stage junction detection followed by junction localization
for two different grey-level images. (top row) original grey-level image, (middle and bottom
rows) the N strongest junction candidates for different values of N .
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original image original image

200 strongest junctions 200 strongest junctions

100 strongest junctions 100 strongest junctions

Figure 17: Results of composed two-stage junction detection followed by junction localization
for two different grey-level images. (top row) original grey-level image, (middle and bottom
rows) the N strongest junction candidates for different values of N .
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original (noise 10.0) scale-space maxima localization (det.)

Figure 18: The result of applying the composed junction detection scheme to synthetic
junction models with added Gaussian noise (ν = 10.0).

Localization errors (noise level ν = 10.0)

detection localization iteration

L-junction 3.81 0.78 0.43
Y -junction 2.12 0.35 0.35
4-junction 3.53 0.28 0.07

Figure 19: Localization errors in the different processing stages of the composed junction
detection scheme applied to the synthetic junction models in figure 18: (i) in the detection
stage, (ii) after one localization step, (iii) after convergence of the iterative procedure.
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In line with this idea, the results are shown in terms of the N strongest junction
candidates for different (manually chosen) values of N . In figure 16, which contains
only a few objects, the 50 and the 100 strongest junctions responses are shown. In
figure 17, which shows corresponding examples for more cluttered scenes, the number
of junctions displayed has been increased to 100 and 200. Notably, this number of
junction candidates constitutes the only essential tuning parameter of the composed
algorithm. In particular, no external setting of the scale parameters is needed.

Figure 18 shows two examples of applying the composed method to synthetic
polygon-type junctions with added Gaussian noise. Here, the 10 most significant junc-
tions have been processed. As can be seen, higher order junctions are handled in a
similar way as lower order junctions. The table in figure 19 shows numerical values
exemplifying how large the localization errors can be in the different processing stages.

7.6 Applications of corner detection with automatic scale selection

In (Lindeberg and Li 1995, 1997) it is shown how the support region associated with
each junction allows for conceptually simple matching between junctions and edges
based on spatial overlap only and without any need for providing externally deter-
mined thresholds on e.g. distance. Then, the matching relations between edges and
junction cues that arise in this way are used in a pre-processing stage for classify-
ing edges into straight and curved. More generally, such relations between edges and
junctions are also useful for other problems relating to object recognition (Lindeberg
and Olofsson 1995).

In (Bretzner and Lindeberg 1996) it is demonstrated how these support regions
can be used for simplifying matching of junctions over time in tracking algorithms.
Specifically, it is shown that the scale selection mechanism in the junction detector
is essential to capture junctions that undergo large size changes. Moreover, the scale
information associated with each junction can be used as an important matching cue
in its own right and be included in the matching criterion.

In (Lindeberg 1995a, 1996d) a scale selection principle for stereo matching and
flow estimation is presented, which also involves the extension of a fixed scale least
squares estimation problem to optimization over multiple scales.

7.7 Extensions of the junction detection method

The main purpose of the presentation in this section has been to make explicit how a
scale selection mechanism can be incorporated into a junction detector. When building
a stand-alone junction detector, there are a few additional mechanisms which are
natural to include if the aim is to construct a stand-alone junction detector.

Concerning the ranking on significance, we can conceive linking the maxima of
the junction responses across scales in a similar way as done in the scale-space primal
sketch (Lindeberg 1993a), register scale-space events such as bifurcations, and include
the scale-space lifetime of each junction response into the significance measure.

Concerning the region of interest associated with each junction candidate, we have
throughout this work represented the support region of a scale-space maximum by a
circle with area reflecting the detection scale. A possible limitation of this approach
is that nearby junctions may lead to interference effects in operations such as the
localization stage. If we want to reduce this problem, a natural extension is to define
the support region of a spatial maximum in a differential invariant in the same way
as grey-level blobs are defined from spatial maxima in (Lindeberg 1993a).
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7.8 Extensions to edge detection

Concerning more general applications of the proposed methodology, it should be noted
that the scale selection method for junction localization applies to edge detection as
well. If we compute the scale-space signature of the normalized residual d̃min according
to (63) at an edge point, then we can interpret the scale at which the minimum over
scales in d̃min as the scale for which a local edge (or corner) model is maximally
consistent with data. This means that the fine scale fluctuations of the edge normals
can be expected to be small.

Figure 20 shows the result of applying this approach to different types of edge data.
The columns show from left to right; (i) the local grey-level pattern, (ii) the signature
of d̃min computed at the central point, and (iii) (unthresholded) edges detected at
the scale td = argmin d̃min at which the minimum over scales in d̃min was assumed.

In the first row, we can see that when performing edge detection at argmin d̃min
we obtain coherent edge descriptor corresponding to the dominant edge structure
in this region. In the second row, a large amount of white Gaussian noise has been
added to the grey-level image, and the minimum over scales is assumed at a much
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Figure 20: Illustration of the result of applying minimization over scales of the normalized
residual d̃min to different types of edge structures: (left) grey-level image, (middle) scale-space
signature of d̃min accumulated at the central point, (right) (unthresholded) edges computed
at the scale where d̃min assumes its minimum over scales.
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coarser scale. (Note that a coherent edge descriptor is nevertheless obtained at the
new argmin d̃min, whereas edge detection at the same scale as in the first row gives rise
to severely fragmented edges.) In the third row, where the grey-level image has been
subject to a large amount of presmoothing, no additional smoothing is necessary and
the minimum is assumed at zero scale. Finally, the fourth row shows an interesting
example where the minimization of d̃min over scales leads to the selection of a scale
level suitable for capturing a very faint shadow edge.

Concerning these experiments it should be pointed out that they are mainly in-
tended to demonstrate the potential in applying the proposed method for selecting
localization scales to the problem of edge detection, and that further processing steps
are needed to give a complete algorithm. A complementary scale selection method
applicable in the edge detection stage is presented in (Lindeberg 1996a).

8 Dense frequency estimation

So far, we have seen how the scale selection methodology can be applied to the
detection of sparse feature points. In certain situations, however, one is also interested
in computing dense image descriptors.

An obvious problem that arises if we would base a scale selection mechanism for
computing dense image descriptors on a partial derivative of the intensity function,
such as the Laplacian operator is that there would be large spatial variations in
the operator response. (Hence, the spatial variations in the selected scales could be
large.) A common methodology in signal processing for reducing this so-called phase
dependency is by using quadrature filter pairs defined (from a Hilbert transform) in
such a way that the Euclidean sum of the filter responses will be constant for any
sine wave. Since, however, the Hilbert transform of a Gaussian derivative kernel is
not within the Gaussian derivative family, one may be interested in operators of small
support which can be expressed within the scale-space framework.

Given the normalized derivative concept, there is, a straightforward way of com-
bining Gaussian derivatives into an entity that gives an approximately constant op-
erator response at the scale given by the scale selection mechanism. At any scale t in
the scale-space representation L of a one-dimensional signal f , define the following
quasi quadrature entity in terms of normalized derivatives based on γ = 17 by

QL = L2
ξ + C L2

ξξ = t L2
x + C t2 L2

xx (66)

where C is a free parameter (to be determined later). By differentiating (7), it is
follows that for a signal of the form f(x) = sinω0x the quasi quadrature measure
assumes the form

(QL)(x; t) = t ω2
0 e

−ω2
0t
(
1 + (C tω2

0 − 1) sin2 ω0x
)
. (67)

As can be seen, the spatial variations in QL will be large when t ω2
0 is either much

smaller or much larger than one, whereas the relative oscillations decrease to zero
when t approaches 1/(C ω2

0). (As will be shown below, this scale value is of the same
order of magnitude as the scales that maximize QL over scales; compare also with
section 3.) In this respect, QL serves as an approximate quadrature pair leading to
small relative spatial variations near the scales given by the scale selection procedure.

7Since QL is an inhomogeneous differential expression, γ = 1 is a necessary requirement for the
scale selection procedure to commute with size variations in the input pattern (see section 4.1).
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For this reason, we propose to use QL as an entity to maximize over scales when
computing dense image descriptors. For two-dimensional data, we can instead consider

QL = L2
ξ + L2

η + L2
ξξ + 2L2

ξη + L2
ηη = t (L2

x + L2
y) + C t2 (L2

xx + 2L2
xy + L2

yy)
(68)

defined to be rotationally symmetric and equal to the one-dimensional quadrature
measure in any direction.

Analysis for sine wave patterns. The free parameter C determines the relative weight
between the information in the first- and second-order derivatives, To obtain an intu-
itive understanding of how it affecs the scale selection procedure, it is instructive to
analyse what scales are obtained by maximizing QL over scales for different values
of C. Straightforward differentiation of (67) gives that selected scale as function of
spatial position is given by

tQL(x) =
1
ω2

0

(
1 +

2C sin2(ω0x)

cos2(ω0x) +
√

cos4(ω0x) + 4C2 sin4(ω0x)

)
(69)

and that the extreme values at ω0x = 0 and π
2 are independent of C

tQ,0 = tQL|ω0x=0 =
1
ω2

0

, tQ,π
2

= tQL|ω0x=
π
2

=
2
ω2

0

. (70)

Graphs showing this variation for a few values of C are displayed in figure 21. Given
the form of these curves, a natural symmetry requirement can be stated as

tQL|ω0x=
π
4

=
1
2

(
tQL|ω0x=0 + tQL|ω0x=

π
2

)
⇒ C =

2
3
≈ 0.6667.

(71)

In this respect, C = 2
3 gives the most symmetric variation of selected scale levels with

respect to the information contents in the first-order and second-order derivatives.8

Another interesting factor to analyse is the variation in magnitude at the selected
scales. Insertion of the scale values according to (69) into the quasi quadrature mea-
sure (66) gives spatial variations of as displayed in figure 22. To determine C, a simple
minimum-ripple condition is to require that

QL| ω0x = 0
t = tQ,0

= QL| ω0x = π
2

t = tQ, π
2

⇒ C =
e

4
≈ 0.6796. (72)

In other words, also a determination of C based on small spatial variations in the
magnitude measure computed at the selected scales gives rise to an approximately
similar value of C as the abovementioned symmetry requirement.

Experimental results. Figure 23 gives a three-dimensional illustration of the result of
applying this operation to the perspective image of a sine wave pattern with large size
variations. The results are shown as a surface plot of the magnitude of QL computed
at different positions and scales along a vertical cross-section of the image. Moreover,
the position of the first local maximum over scales has been indicated at each spatial
point. Observe how the size variations in the vertical direction are captured and that
the spatial variations in QL at the selected scales are minor compared to response of
an operator such as the squared Laplacian.

8If we redefine the quasi quadrature measure as QL = (1−α) L2
ξ+α L2

ξξ , then C = 2/3 corresponds
to the relative weights 1− α = 3/5 and α = 2/5.
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Figure 21: Spatial variation of the selected scale levels when maximizing the quasi quadrature
entity (66) over scales for different values of the free parameter C using a one-dimensional
sine wave of unit input frequency as input pattern. Observe that C = 2/3 gives rise to the
most symmetric variations in the selected scale values.
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Figure 22: Spatial variation of the maximum value over scales of the quasi quadrature entity
(66) computed for different values of the free parameter C using a one-dimensional sine wave
of unit input frequency as input pattern. As can be seen, the smallest spatial variations in
the amplitude of the maximum response are obtained for C = e/4.
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Figure 23: Dense scale selection by maximizing the quasi quadrature measure (68) over
scales: (left) Original grey-level image. (right) The variations over scales of the quasi quadra-
ture measureQL computed along a vertical cross-section through the center of the image. The
result is visualized as a surface plot showing the variations over scale of the quasi quadrature
measure as well as the position of the first local maximum over scales.

Extensions and applications. In (Almansa and Lindeberg 1996, 1998) this approach
is applied for estimating the distance between ridges in fingerprint images. For that
specific problem, the following extensions were found to be highly useful:

• The extension of the renormalized one-dimensional quadrature entity in (73) to
two dimensions is done using the ridge strength measure (Lindeberg 1996b)

Aγ2−normL = t2γ2
(
(Lxx − Lyy)2 + 4Lxy

)
.

This second order differential entity is also invariant under rotations, but has
more selective response properties to elongated ridge-like structures than L2

xx+
2L2

xy + L2
yy, which rather constitutes a measure of the total amount of second

order information.

• The quasi quadrature entity (66) is multiplied by a uniform self-similar scaling
factor

Q′L = t−ΓQL
= t−Γ(L2

ξ + L2
η). (73)

=
(
t(1−Γ)/2Lx

)2
+
(
t(1−Γ/2)Lxx

)2
.

This operation does not affect the homogeneity of the general class of differential
expressions (24), and with the special choice Γ = 1

2 , the quasi quadrature entity
can be written

Q′L =
(
tγ1/2Lx

)2
+
(
tγ2Lxx

)2
(74)

= Gγ1−normL+Aγ2−normL.
In view of results presented in a companion paper (Lindeberg 1996c, 1996b), this
scale renormalized quasi quadrature measure can be interpreted as the linear
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combination of an edge strength measure Gγ1−normL with scale normalization
parameter γ1 = 1

2 and a ridge strength measure Aγ2−normL with scale normal-
ization parameter γ2 = 3

4 . In the abovementioned sources, these specific entities
and normalization parameters are shown to be useful for edge detection and
ridge detection with automatic scale selection.

A main motivation for this renormalization is that it gives more pronounced
peaks over scales, and prevents the monotone increase with scale that occurs
for edges if the scale normalization parameter γ is equal to one.

9 Analysis and interpretation of normalized derivatives

9.1 Interpretation of γ-normalized derivatives in terms of Lp-norms

Concerning the interpretation of the γ-normalized derivatives, it is straightforward
to show (see appendix A.2) that in the D-dimensional case, the variation over scales
of the Lp-norm of an mth order normalized Gaussian derivative kernel is given by

‖gξm(·; t)‖p =
√
t
m(γ−1)+D(1/p−1) ‖gξm(·; t)‖p. (75)

In other words, the Lp-norm of the mth order Gaussian derivative kernel is constant
over scales if and only if

p =
1

1 + m
D (1− γ)

. (76)

Hence, the γ-normalized derivative concept be interpreted as an Lp-normalization of
the Gaussian derivative kernels over scales for a specific value of p, which depends
upon γ, the dimension as well as the order m of differentiation.

Notably, the perfectly scale invariant case γ = 1 gives p = 1 for all orders m and
corresponds to L1-normalization of the Gaussian derivative kernels. For orders up to
four, the kernel norms are then in the one-dimensional case given by

N1 =
∫ ∞

−∞
|gξ(u; t)| du =

√
2
π
≈ 0.797885, (77)

N2 =
∫ ∞

−∞
|gξ2(u; t)| du =

√
8
π e

≈ 0.967883, (78)

N3 =
∫ ∞

−∞
|gξ3(u; t)| du =

√
2
π

(
1 +

4
e3/2

)
≈ 1.51003, (79)

N4 =
∫ ∞

−∞
|gξ4(u; t)| du =

4
√

3

e3/2+
√

3/2√π
(
√

3−
√

6 e
√

6 +
√

3 +
√

6) ≈ 2.8006.
(80)

9.2 Interpretation in terms of self-similar Fourier spectrum

Another useful interpretation of normalized derivatives can be obtained in the context
of signals having a self-similar Fourier spectrum.

Consider a D-dimensional signal f : RD → R having a self-similar power spectrum
of the form

Sf (ω) = Sf (ω1, . . . , ωD) = (f̂ f̂∗)(ω)

= |ω|−2β = (ω2
1 + · · · + ω2

D)−β, (81)



Feature detection with automatic scale selection 39

and the following class of energy measures concerning the amount of information in
the mth order γ-normalized Gaussian derivatives

Em =
∫
x∈RD

∑
|α|=m

tmγ |Lxα |2 dx. (82)

where α represents multi-index notation. These differential energy measures are re-
lated to mth order spectral moments by

Em =
tmγ

(2π)D

∫
ω∈RD

|ω|2m |L̂(ω; t)|2 dω. (83)

Specifically, for derivatives up to order three in the two-dimensional case, this class
of energy measures includes the following descriptors

E0 =
∫
x∈R2

L(x; t)2 dx, (84)

E1 =
∫
x∈R2

tγ(L2
ξ + L2

η) dx, (85)

E2 =
∫
x∈R2

t2γ(L2
ξξ + 2L2

ξη + L2
ηη) dx, (86)

E3 =
∫
x∈R2

t3γ(L2
ξξξ + 3L2

ξξη + 3L2
ξηη + L2

ηηη) dx. (87)

It is rather straightforward to show (see appendix A.3) that the variation over scales
of these γ-normalized energy measures are given by

Em(·; t) ∼ tβ−D/2−m(1−γ). (88)

This expression is scale independent if and only if

β =
D

2
+m(1− γ). (89)

In other words, the normalized derivative model is neutral with respect to power
spectra of the form

Sf (ω) = |ω|−D−2m(1−γ). (90)

In the special case when D = 2 and γ = 1, this corresponds to power spectra of the
form |ω|−2.

It is well-known that natural images often show a qualitative behaviour similar to
this (Field 1987). This is in fact a direct consequence of scale invariance; the power
spectrum variation

S(ω) ∼ |ω|−D, (91)

where D is the dimension of the signal, can be easily derived9 directly from the
9To derive the self-similar power spectrum, consider an D-dimensional signal with power spectrum

S(ω), and parameterize the D-dimensional frequency space using the D-dimensional correspondence
to spherical coordinates, (r;ϕ1, . . . , ϕD−1), where r = |ω| ∈ [0,∞] and ϕ1, . . . , ϕD−1 are suitably
selected angles in some domain Ω. To analyse the energy contribution from each range of frequencies,
consider a volume element dV defined by r0 ≤ |ω| ≤ r0(1 + dρ) for some r0. Since the area of an D-
dimensional hypersphere of radius r0 is proportional to rD−1

0 , the volume of a scale-invariant element
can be written dV = CDrD−1

0 r0 dρ for some constant CD. If we want the signal to contain the same
amount of energy for all frequencies (where the total energy is measured by E =

∫
ω∈RD S(ω) dω), it

follows by necessity that dE =
∫

dV
(
∫

ϕ∈Ω
S(r; ϕ) dϕ) dV must be independent of ω, which in turn

implies that (
∫

ϕ∈Ω
S(r; ϕ) dϕ) dV must be proportional to dρ, and the power spectrum must be of

the form S(ω) ∼ |ω|−D.
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assumption that the power spectrum should contain the same amount of energy for
all frequencies.

9.3 Relations to previous work

Such L1-normalized kernels of first order have been used, for example, in edge detec-
tion and edge classification by (Korn 1988), (Mallat and Zhong 1992), and (Zhang
and Bergholm 1993), and in pyramids by (Crowley and Parker 1984). More generally,
evolution properties across scales of wavelet transforms have been used by (Mallat
and Hwang 1992) for characterizing local Lipshitz exponents of singularities. (Mallat
and Hwang 1992) also proposed the notion of “general maxima” of wavelet trans-
forms for estimating the frequency of local oscillations. This idea is closely related to
the notion of scale-space maximum considered here and to the scale selection mecha-
nism in (Lindeberg 1991, 1993a) based on local maxima over scales of blob responses
computed along extremum paths in scale-space. There is also a connection to the
“top point” representation proposed by (Johansen et al. 1986) in the sense that the
points in the scale-space at which bifurcations occur serve as to delimit extremum
paths with different topology. A main difference between the scale selection mech-
anism suggested here and the work in (Lindeberg 1991) and (Mallat and Hwang
1992), however, is that here it is shown how these notions can be applied to large
classes of non-linear differential invariants computed in a scale-space representation.
Moreover, feature detection algorithms have been formulated with integrated scale
selection mechanisms and it has been shown how different derivative normalization
approaches lead to different classes of differential expressions for which the scale se-
lection mechanism commutes with rescalings of the input pattern. Specifically, it has
been shown how L1-normalization is special in terms of scale invariance properties.10

10 Summary and discussion

We have argued that the subject of scale selection is essential to many problems in
computer vision and automated image analysis. Specifically, we have outlined how
the evolution properties over scales of normalized Gaussian derivatives provide im-
portant cues in this context—for generating hypotheses about interesting scales (and
associated spatial points or regions) for further analysis. A general scale selection
principle has been presented stating that in the absence of other evidence, coarse
estimates of the size of image structures can be computed from the scales at which
normalized differential geometric descriptors assume maxima over scales. In partic-
ular, it has been suggested that this approach can be used for adaptively choosing
the scales for feature detection. Support for this idea has been provided in terms of a
theoretical analysis of the general scaling property of local maxima over scales in the
scale-space signature, and by a detailed analysis of the behaviour of the scale selection
method when integrated with feature detection algorithms and applied to characteris-
tic model patterns; see table 2 for an overview. The main support of the methodology
is, however, experimental; it has been demonstrated that intuitively reasonable and
quantitatively accurate results can be obtained by applying the proposed scheme to
the problems of blob detection, junction detection and frequency estimation.11

For a problem such as junction detection, the methodology naturally gives rise
to two-stage feature detection algorithms, where features are first detected at locally

10Applications of scale selection based on Lp-normalization with p < 1 are developed in more detail
in (Lindeberg 1996a).

11See (Lindeberg 1996a) concerning scale selection mechanisms for detecting edges and ridges.
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Feature type Differential entity for scale selection γ-value Lp-norm Fourier β
Edge tγ/2Lv 1/2 4/5 3/2
Ridge t2γ(Lpp − Lqq)2 3/4 4/5 3/2
Corner t2γL2

vLuu 1 1 1
Blob tγ∇2L 1 1 1

Table 2: Measures of feature strength and normalization parameters used for different types
of feature detectors with automatic scale selection (including results from a companion paper
(Lindeberg 1996c, 1996b)). For each feature detector, a preferred γ-value is specified as well as
the p-value for which the Lp-norm of the Gaussian derivatives is constant over scales (76) and
the β-value for which the energy of a self-similar Fourier spectrum is constant over scales (89).

adapted coarse scales, and then localized to finer scales in a second stage process-
ing stage. Whereas the general advantages of such a two-stage approach to feature
detection are well-known in the literature, a major contribution here is that explicit
mechanisms are provided for automatic selection of the detection scales as well as the
localization scales. Moreover, these processing stages are integrated into algorithms
which are essentially free from other tuning parameters that the number of features
of interest.

Of course, the task of selecting “the best scale” for handling real-world image data
(about which usually no or very little a priori information is available) is intractable
if treated as a pure mathematical problem. Therefore, the proposed scale selection
principle should not be interpreted as any “optimal solution”, but rather as a sys-
tematic method for generating initial hypotheses in situations where no or very little
information is available about what can be expected to be in the scene.

10.1 Technical contributions

At a technically more detailed level some of the main contributions are that:

• It is emphasized how the evolution properties over scales of normalized scale-
space derivatives differ from those of traditional spatial derivatives. Whereas the
magnitude of a traditional scale-space derivative always decreases with scale,
peaks over scales can be expected in the scale-signatures of normalized deriva-
tives computed from data containing dominant information at certain scales.

• A general scale selection principle for scale selection has been proposed stating
that extrema over scales in the signature of normalized differential entities are
useful in the stage of detecting image features. In particular, it has been theo-
retically analyzed and experimentally demonstrated how extrema over scales of
the following differential entities can be used in feature detection;

– maxima and minima in the rescaled level curve curvature are highly useful
for junction detection,

– maxima and minima of the trace and the determinant of the Hessian matrix
can serve as qualitative descriptors for blob detection, and

– local maxima over scales of the pseudo quadrature measure can be used
for local frequency estimation.

The problem of junction detection is treated more extensively, and the resulting
method is the first junction detection algorithm with automatic scale selection.
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• It is shown that the γ-normalized derivative concept arises by necessity given
natural scale invariance requirements on a scale selection mechanism.

• It is explained how the localization of junction candidates can be improved by
invoking a modified Förstner operator adapted to the local image structure.
Specifically, it is shown how localization scales can be selected automatically by
minimizing a certain normalized residual across scales.

The same mechanism can be used for selecting localization scales in edge detec-
tion, which constitute a trade-off between the diffuseness of the edge and the
noise level.

• It is shown how the normalized derivative concept can be discretized in a con-
sistent manner (see appendix A.4).

A Appendix

A.1 Necessity of the form of the γ-parameterized derivative operator

In this appendix it is shown that the form of the γ-normalized derivative operator

∂ξ = tγ/2 ∂x (92)

can be derived by necessity, given natural assumptions on a scale selection procedure
based on local maxima over scales. Let us follow the general methodology proposed
in section 4 and state the following requirements on a normalized derivative concept:

• The main idea of introducing a normalized derivative operator should be to com-
pensate for the general decrease in amplitude caused by scale-space smoothing,
and to ensure that image structures are processed by the vision system in such
a way that the results are not critically dependent upon how large the image
structures actually are.

In the absence of further information, the main source of information for nor-
malizing the derivative operator should be the value of the scale parameter.
Moreover, this normalization should allow a differential descriptor to be ex-
pressed in terms of normalized derivatives in a similar way as traditional image
descriptors are expressed in terms of unnormalized derivatives. Thereby, it is
natural to perform the normalization as a multiplicative factor.

Motivated by these qualitative requirements, the mth order normalized deriva-
tive operator ∂ξm at a certain scale t should therefore be defined from the
ordinary spatial derivative operator ∂xm by

∂ξm = ϕ(t) ∂xm (93)

where ϕ : R+ → R is a smooth function.

• To allow for scale selection based on local maxima over scales, the normalized
derivative concept must preserve local maxima over scales. Specifically, if a
normalized differential entity assumes a local maximum over scales at a certain
point (x0, t0) in scale-space, then after a rescaling of the input signal by a factor
of s, the maximum over scales should be assumed at (s x0, s

2t0).
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Given these requirements, it follows that the normalization must be of the form

ϕ(t) = AtB (94)

for some constants A and B.

Proof: Consider two signals f and f ′ related by a scaling factor s such that f(x) =
f ′(sx), and define the normalized mth order derivatives by

Lξm = tγ/2 Lxm, (95)

Lξ′m = t′γ/2 Lx′m . (96)

From (20) we have that these derivatives at corresponding points (x′; t′) = (sx, s2t′)
are related by

Lξm(x; t) = sm
ϕ(t)
ϕ(s2t)

Lξm(sx; s2t). (97)

If a local maximum over scales is to be preserved, we must require that

∂t(Lξm(x; t)) = 0 ⇔ ∂t′(Lξ′m(x′; t′)) = 0. (98)

Differentiating (97) with respect to t gives

∂t(Lξm(x; t)) = sm
(
∂t

(
ϕ(t)
ϕ(s2t)

)
+ ∂t(Lξ′m(sx; s2t))

)
(99)

and application of (98) results in the necessary requirement:

∂t

(
ϕ(t)
ϕ(s2t)

)
= 0. (100)

Rewrite ϕ as

ϕ(t) = eψ(log t) (101)

and introduce u = log t. Moreover, make use of the fact that (100) implies that
the ratio ϕ(t)/ϕ(s2t) cannot depend on t and must be a function of s only. With
v = 2 log s, (100) can hence be rewritten as

eψ(log t)

eψ(log(s2t))
= h̃(s) (102)

for some function h̃, and be reduced to the relation

ψ(u) − ψ(u+ v) = h(v) (103)

for some other (arbitrary) function h. If we differentiate with respect to u and v{
ψ′(u)− ψ′(u+ v) = 0,
ψ′(u+ v) + h′(v) = 0,

(104)

and add up the equations

ψ′(u) + h′(v) = 0, (105)

we find that ψ′ (and h′) must be constant. In other words, ψ(u) = C1u+C2 and

ϕ(t) = eC1 log t+C2 = AtB. (106)
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A.2 Lp-normalization interpretation of γ-normalized derivatives

In this appendix it is shown how the γ-normalized derivative concept can be inter-
preted in terms of Lp-normalization of the Gaussian derivative kernels over scales.
The Lp-norm of the mth order γ-normalized Gaussian derivative kernel is given by

‖gξm(·; t)‖pp =
∫ ∞

x=−∞
|tmγ/2 gxm(x; t)|p dx. (107)

From the well-known relation between the derivatives of the unnormalized Gaussian
kernel and the Hermite polynomials Hn ∂xm(e−x2

) = (−1)mHm(x) e−x2
(Abramowitz

and Stegun 1964) it follows that the mth order Gaussian derivative kernel can be
written

∂xmg(x; t) = (−1)m
1

(2t)m/2
Hm(

x√
2t

) g(x; t). (108)

Insert this expression into (107) and make the substitution x =
√
t u. Then, by

exploiting the fact that g(x; t) = 1√
t
g( x√

t
; 1), we obtain

‖gξm(·; t)‖pp =
∫ ∞

u=−∞

∣∣∣∣∣tm(γ−1)/2

2m/2
Hm(

u√
2
)

1√
t
g(u; 1)

∣∣∣∣∣
p √

t du

= tp(mγ−m−1)/2+1/2

∫ ∞

u=−∞

∣∣∣∣ 1
2m/2

Hm(
u√
2
) g(u; 1)

∣∣∣∣p √t du
= tp(mγ−m−1)/2+1/2 ‖gξm(·; 1)‖pp. (109)

In other words, the Lp-norm of the Gaussian derivative kernel at scale level t is related
to the Lp-norm at unit scale by

‖gξm(·; t)‖p =
√
t
m(γ−1)−1+1/p‖gξm(·; 1)‖p. (110)

Concerning Lp-norms of Gaussian derivatives in higher dimensions, we can make
use of the separability of the normalized Gaussian derivative to separate the D-
dimensional integral in the Lp-norm definition into a product of one-dimensional
integrals of the form (109). Hence, if we let |m| = m1 + · · · + mD denote the total
order of differentiation, it follows that the variation over scales of the Lp-norm of the
D-dimensional normalized Gaussian derivative kernel will be of the form

‖gξm(·; t)‖p =
√
t
|m| (γ−1)+D(1/p−1)‖gξm(·; 1)‖p. (111)

In other words, the Lp-norm of this kernel is constant over scales if and only if
m(γ − 1) +D(1/p − 1) = 0. Specifically, p is independent of m if and only if γ = 1.

A.3 Normalized derivative responses to self-similar power spectra

In this appendix, a closed-form expression is derived for the variation over scales of
the following class of energy measures

Em =
∫
x∈RD

∑
|α|=m

tmγ |Lxα |2 dx. (112)

when computed at different scales t in the scale-space representation L of a two-
dimensional signal f with a self-similar power spectrum of the form

Sf (ω1, . . . , ωD) = (f̂ f̂∗)(ω)

= |ω|−2β = (ω2
1 + ω2

2)
−β . (113)
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Using Plancherel’s relation∫
ω∈RD

ĥ1(ω) ĥ∗2(ω) dω =

(2π)D
∫
x∈R2

h1(x)h∗2(x) dx, (114)

where ĥi(ω) is the Fourier transform of hi(x) and by letting h1 = h2 = Lxα =
Lxα1

1 ...x
αD
D

, we obtain∫
x∈R2

L2
x

α1
1 ...x

αD
D

(·; t) dx =

1
(2π)D

∫
ω∈RD

ω2α1
1 . . . ω2αD

D ĝ2(ω; t) |ω|−2α dω (115)

where ĝ denotes the Fourier transform of the Gaussian kernel. By adding (115) over
all possible multi-indeces α with |α| = α1 + · · ·+αD = m, and by using the definition
(82) we obtain the rotationally invariant descriptor

Em =
tmγ

(2π)D

∫
ω∈RD

|ω|2m ĝ2(ω; t) |ω|−2β dω (116)

Let us next introduce the D-dimensional correspondence to spherical coordinates,
(ρ;ϕ1, . . . , ϕD−1), with the volumetric element dω = CDρ

D−1dρ

Em =
tmγ

(2π)D

∫ ∞

ρ=0
ρ2m−2β+D−1e−ρ

2t dρ (117)

Then, using
∫∞
0 xme−ax2

dx = Γ((m+1)/2)

2a(m+1)/2 , we get

Em =
CD t

mγ

(2π)D
Γ(m− β +D/2)

2 tm−β+D/2
, (118)

and the variation over scales is of the form

Em(t) ∼ tβ−D/2−m(1−γ). (119)

A.4 Discrete implementation of the scale selection mechanisms

Discretizing the normalized derivative operators leads to two discretization problems;
(i) how to discretize the scale-space derivatives such that the scale-space properties
are preserved, and (ii) how to discretize the normalization factor.

A.4.1 Computing discrete derivative approximations

The first problem can be solved by using the scale-space concept for discrete sig-
nals (Lindeberg 1994d), given by L(·, ·; t) = T (·, ·; t) ∗ f(·, ·), where T (m,n; t) =
T1(m; t)T1(n; t) and T1(m; t) = e−tIm(t) is the one-dimensional discrete analogue
of the Gaussian kernel defined from the modified Bessel functions In.

The scale-space properties of L transfer to any discrete derivative approximations
L
xi
1x

j
2

defined as the result of applying difference operators δ
xi
1x

j
2

to L. In the imple-
mentations presented here, the first- and second-order derivatives are approximated
by the operators (δxL)(x; t) = 1

2(L(x + 1; t) − L(x − 1; t)) and (δxxL)(x; t) =
(L(x+ 1; t)− 2L(x; t) + L(x− 1; t)), respectively.
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A.4.2 Normalization in the discrete case

In view of the results presented in section 9.1, it is natural to normalize the discrete
derivative approximation kernels δ

xi
1x

j
2
T such that their discrete l1-norms will be con-

stant over scales. Of course, it is not necessary to construct the normalized derivative
approximation kernels explicitly. Concerning e.g. first order derivatives, discrete ap-
proximations to Lx1 and Lx2 can first be computed according to section A.4.1. Then,
the result can be multiplied by the discrete normalization factor

α1(t) =
√

2√
π (T1(0; t) + T1(1; t))

, (120)

which has been determined such that
0∑

x=−∞
α1(t) (δxT )(x; t) =

∫ 0

x=−∞

√
(t) (∂xg)(x; t) dx =

1√
2π
. (121)

Using an asymptotic expression for the modified Bessel functions of integer order
(Abramowitz and Stegun 1964) In(t) = et√

2πt
(1− 4n2−1

8t +O( 1
t2

)), it can be verified that

α1(t) approaches the continuous normalization factor
√
t when the scale parameter

t increases. Observe, however, that α1(t) assumes a non-zero value when t = 0,
in contrast to the continuous normalization factor

√
t, which forces any normalized

derivative to be zero in unsmoothed data. This property of the Lp-normalization
approach is important if we want to capture peaks at fine scales in the scale-space
signatures. In (Lindeberg 1995b) it is shown that discrete Lp-normalization also has
better performance than variance based normalization when expressing scale selection
mechanisms in subsampled multi-scale representations.

A.4.3 Detection of scale-space maxima in discrete data

Given the abovementioned discretization methods for computing normalized differ-
ential descriptors based on the local N -jet representation, it is straightforward to
express algorithms for detecting scale-space maxima. In summary, the implementa-
tions underlying this work have been performed as follows:

1. Given a discrete image f (here: of size between 128× 128 or 256× 256 pixels),
select a scale range for the analysis (here: tmin = 2 and tmax = 256). Within
this range, distribute a set of scale levels tk (here: 20 or 40 levels) such that the
ratio between successive scale levels tk+1/tk is approximately constant.12

2. For each scale tk, compute the scale-space representation of f according to
section A.4.1. Then, for each point at each scale, compute discrete derivative
approximations according to section A.4.1 and normalize them according to sec-
tion A.4.2. Finally, compute the normalized differential expression by pointwise
combination of these entities.

3. In the three-dimensional volume so generated, detect local maxima (as points
whose values are greater than or equal to the values of their 26 discrete neighbours).13

Optionally, select the N points having the strongest normalized responses.
12Specifically, the scale levels have been determined such that the difference τk+1 − τk in effective

scale between adjacent scales tk+1 and tk is constant (see footnote 2).
13In other words, a point (x0, y0, tk0) is regarded as a discrete scale-space maximum of a normalized

differential entity DnormL if and only if (DnormL)(x0, y0, tk0) ≥ (DnormL)(x0 + i, y0 + j, tk0+k) holds
for all 26 neighbouring points (i, j, k) ∈ {−1, 0, 1}.



Feature detection with automatic scale selection 47

A.4.4 Implementing junction localization

For each scale-space maximum (x0; t0) detected according to the methodology in
section A.4.3, the subsequent junction localization step is performed as follows:

• Compute A, b and c according to the definitions in (60), (61) and (62) using a
Gaussian window function wxo(x′) = g(x′ − x0; t0) with integration scale value
t0 equal to the detection scale t0 of the scale-space maximum and with the
center at the candidate junction x0). At a number of scales (here: 5–10 levels),
uniformly distributed between a lower scale (here: 0.01) and the detection scale
t0, vary the local scale at which derivatives are computed and select the local
scale that minimizes the normalized residual (63) over scales.

• At this scale, the new localization estimate is x̂ = A−1b.

• Iterate the abovementioned steps until either the increment is sufficiently small
(here: within the same pixel) or an upper bound (here: 3 iterations) has been
reached. Suppress all points for which the scheme diverges (here: when the total
update is larger than the detection scale measured in dimension [length]).
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