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Abstract
A basic functionality of a vision system concerns the ability to compute
deformation fields between different images of the same physical structure.
This article advocates the need for incorporating an explicit mechanism for
scale selection in this context, in algorithms for computing descriptors such
as optic flow and for performing stereo matching . A basic reason why such
a mechanism is essential is the fact that in a coarse-to-fine propagation of
disparity or flow information, it is not necessarily the case that the most
accurate estimates are obtained at the finest scales. The existence of inter-
fering structures at fine scales may make it impossible to accurately match
the image data at fine scales.
A systematic methodology for approaching this problem is proposed,

by estimating the uncertainty in the computed flow estimate at each scale,
and then selecting deformation estimates from the scales that minimize the
(suitably normalized) uncertainty over scales . A specific implementation of
this idea is presented for a region based differential flow estimation scheme.
It is shown that the integrated scale selection and flow estimation algorithm
has the qualitative properties of leading to the selection of coarser scales for
larger size image structures and increasing noise level , whereas it leads to
the selection of finer scales in the neighbourhood of flow field discontinuities .
The latter property may serve as an indicator when detecting flow field
discontinuities and occlusions.

∗I would like to thank D. Betsis and G. Orban for valuable discussions as well as J. Koenderink
and A. van Doorn for providing the torso image in figure 8. This work was partially performed
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1. Introduction

In several computational visual models, the deformations of brightness patterns
constitute an important modelling step. When a camera fixates a surface pat-
tern in the world, the pattern is deformed when mapped onto the camera by the
perspective transformation. Depending on the external conditions under which
the image data are acquired, the following characteristic situations can be distin-
guished:

• For a monocular camera that observes the world over time, the definition of
a point-to-point correspondence between physical points in the world gives
rise to an optic flow field .

• For a binocular vision system observing the world from two directions, the
definition of a point-to-point correspondence between physical points in the
two images gives rise to a disparity field .

• In a monocular image of a textured surface, the perspective mapping affects
the statistical properties of the texture, which gives rise to texture gradients.

The structure of the deformation fields formed in these ways depend on the shape
of the object as well as the position and the orientation of the object relative to
the observer. Hence, these deformations contain essential geometric information,
and a large number of visual modules can be expressed in terms of this framework.
Some examples are motion estimation, structure from motion, stereo matching,
vergence control, shape estimation from binocular data, and shape from texture.

In general, the geometry of these deformation fields can be modelled by pro-
jective transformations. Approximating the projective model by a local first-
order approximation (the derivative) gives rise to an affine transformation. With
respect to a shape-from-X problem, the interpretation of the zero order compo-
nent (the translation) of this transformation will typically be that it reveals local
depth, whereas the first-order component can typically be used for inferring local
surface orientation. To capture higher order shape properties, such as local sur-
face curvature, higher order approximations of the deformation field will usually
be required.

The subject of this article is to consider the problem of measuring such lo-
cal deformations between two-dimensional brightness patterns. Specifically, we
will be concerned with the need for a mechanism for automatic scale selection
that arises in this context. Traditional methods for flow estimation and stereo
matching are usually formulated in a coarse-to-fine hierarchical manner, in which
approximate deformation estimates are first computed at coarse scales, and then
refined iteratively by computations at finer scales. This approach is usually mo-
tivated by the fact that the matching problems are usually simpler at coarse
scales, whereas more accurate estimates can be obtained at fine scales. There
are also strong psychophysical evidence supporting coarse-to-fine processing in
human vision.
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In such a coarse-to-fine propagation, however, it is not necessarily the case
that the most accurate estimates will be obtained at the finest scales. (Who
determines what should be the finest scale?) For example, if we apply a differen-
tial flow algorithm at a fine scale, the computation of derivatives can be highly
sensitive to spurious noise. Similar problems may arise when performing corre-
lation matching using too small window sizes. For this reason, we argue that
it is essential to complement any coarse-to-fine algorithm for estimating image
deformations (such as optic flow and stereo matching algorithms) by an explicit
mechanism for automatic scale selection. A main requirement on this scale se-
lection mechanism should be the ability to suppress deformation estimates that
have been computed at too fine scales and cannot be regarded as reliable.

To approach this problem in a systematic manner, the following methodology
is proposed: In the coarse-to-fine propagation, an appropriately normalized mea-
sure of uncertainty should be computed and accompany the deformation estimate
at each scale. Then, once the coarse-to-fine propagation has been performed, the
algorithm should select the deformation estimate from the scale at which the mea-
sure of uncertainty assumes its minimum over scales and deliver this information
as output. (If motivated by efficiency considerations, this information could also
be used for turning off the coarse-to-fine propagation when the uncertainty starts
to increase.)

A specific implementation of this idea will be presented based on the the
class of region based differential flow estimation schemes proposed by (Lukas
and Kanade 1981; Bergen et al. 1992). To simplify the presentation, and to
avoid making distinctions between different types of deformation fields, we shall
throughout this article develop the ideas in the binocular case with two image
domains, and therefore often use the term “disparity” to refer to the translation
component of the image deformation. With appropriate modifications, however,
the general idea presented here, of selecting scale levels for computing image
deformations from the scales that minimize the estimated uncertainty over scales,
applies to a much wider class of algorithms for performing stereo matching and
computing optic flow.

Before starting, let us also point out that because of the generality of this
problem domain, these problems have been extensively studied in the computer
vision literature, and it is impossible to give a complete review here. Besides
the references that will be explicitly cited, the reader is referred to the recent
overview by (Barron et al. 1994) and the references therein. An earlier version
of this manuscript has been presented in (Lindeberg 1994a).

2. Measuring image deformations

A common approach to stereo matching and the computation of three-dimensional
shape cues has been to compute image features, such as points and lines, in an
initial processing step, and then to use these descriptors as primitives for the sub-
sequent processing steps. Whereas a substantial simplification of the subsequent
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processing stages may be the result if reliable image features can be extracted, the
selection of what image features to use crucially determines what results can be
obtained and is often non-trivial. Therefore, it is of interest to consider methods
that operate on the image intensities directly, using only filter-based operations
and architecturally simple combinations of their outputs.

A fundamental problem in this context concerns what image operations to
use. Is any operation feasible? A systematic approach that has been developed
to restrict the class of possibilities is to assume that the first stages of visual
processing should be as uncommitted as possible and have no particular bias.
The essence of the results from scale-space theory (Witkin 1983; Koenderink
1984; Yuille and Poggio 1986; Koenderink and van Doorn 1990; Florack et al.
1992; Lindeberg 1994d) is that within the class of linear operations, convolution
with Gaussian kernels and their derivatives is singled out as a canonical choice.

In this section, we shall use this framework for expressing a hierarchical dif-
ferential flow field estimation algorithm closely related to (Bergen et al. 1992);
see also (Werkhoven and Koenderink 1990; Jones and Malik 1992; Proesmans et
al. 1994; Manmatha 1994; Sato and Cipolla 1994). We start by outlining the
components in a multi-scale disparity estimation framework, which in addition to
iterative corrections comprises bidirectional matching and explicit usage of con-
fidence measures. Then, we turn to the problem of incorporating a mechanism
for scale selection.

2.1. Deformation measurements in scale-space

The linear scale-space representation of a signal f : R
2 �→ R

L(·; t) = g(·; t) ∗ f (1)

is obtained by convolving f with Gaussian kernels g : R
2 × R+ �→ R

g(x; t) =
1
2πt

e−xT x/2t, (2)

of different standard deviations
√
t. From this representation, Gaussian deriva-

tives are then defined by Lxα(·; t) = ∂xαL(·; t) where ∂xα = ∂x
α1
1
∂x

α2
2
.

Transformations in the similarity group. This representation is closed un-
der transformations in the similarity group, i.e., if two signals are related by

fL(ξ) = fR(σRϕξ +∆x), (3)

where Rϕ is a rotation matrix, σ represents a positive scaling factor, and ∆x
represents a translation, then the scale-space representations of fL and fR are
related by

L(ξ; t) = R(σRϕξ +∆x; σ2t). (4)
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Hence, for similarity transformations, the scale-space representations of fL and
fR can always be perfectly matched, and assuming that the brightness variations
in fL and fR are sufficiently rich, such that ambiguities do not occur, it is, in
principle, possible to measure similarity transformations exactly.

Affine image transformations and affine scale-space. To capture higher
order deformation fields without bias introduced by the image operations, some
extensions are required. Concerning affine transformations, a natural general-
ization is to use the affine Gaussian scale-space concept based on convolution
by non-symmetric Gaussian kernels (Lindeberg 1994d; Lindeberg and G̊arding
1994). Alternatively, one could conceive using non-linear affine invariant evo-
lution schemes, such as those proposed by (Sapiro and Tannenbaum 1993; Al-
varez et al. 1993).

3. Establishing correspondence

A fundamental problem that arises when estimating image deformations concerns
how to establish correspondence between different images of the same scene.
Whereas the commonly used constant brightness assumption suffers from inherent
limitations, we shall nevertheless use it for establishing an initial correspondence.
(Then, it can be applied to other differential descriptors, such as the Laplacian.)
Hence, assume

fR(ξ) = fL(ξ +∆ξ) = fL(ξ) + (∇fL)(ξ)∆ξ +O(|∆ξ|2)

and let us consider only the first-order terms in the local Taylor expansion. This
gives rise to (the discrete form of) the well-known motion constraint equation
(Horn and Schunck 1981)

(∇fL)(ξ)T (∆ξ) + (fL(ξ)− fR(ξ)) = O(|∆ξ|2).

Since this analysis is compatible with brightness measurements in scale-space, at
any scale t we also have

(∇L)(ξ; t)T (∆ξ) + (L(ξ; t)−R(ξ; t)) = O(|∆ξ|2).

Least-squares estimation. Assume next that the motion field can be approx-
imated by a constant flow field v over the support region of a window function
w. Then, following (Lukas and Kanade 1981; Bergen et al. 1992; Barron et al.
1994) and several others, integrate the square of this relation using w as window
function. This transforms the problem of determining ∆ξ into the least squares
problem

min
v∈R2

∫
ξ∈R2

((∇L)(ξ; t)T v − (L(ξ; t)−R(ξ; t))2 w(ξ) dξ. (5)
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After expanding the square, exploiting the fact that v is regarded as constant,
and dropping the arguments, this problem can be written

min
v∈R2

vTAv + 2bT v + c, (6)

where A, b, and c are defined by

A =
∫

ξ∈R2
(∇L)(∇L)T w dξ, (7)

b =
∫

ξ∈R2
(R− L) (∇L)w dξ, (8)

c =
∫

ξ∈R2
(R− L)2 w dξ. (9)

Ambiguity. When treated pointwise, the motion constraint equation only de-
termines the normal flow parallel to ∇L. On the other hand, if the support
region of w contains a sufficiently rich distribution of gradient directions, and if
this region moves in a coherent way, which can be approximated by a constant
flow field, the solution to (6) may give an estimate close to the true flow field.
A natural measure of how scattered the gradient directions are is given by the
normalized anisotropy (derived from components aij from the matrix A)

Q̃ =

√
(a11 − a22)2 + 4a2

12

a11 + a22
. (10)

When all gradient directions are parallel, we have Q̃ = 1, whereas Q̃ = 0 for
maximally scattered distributions. Hence, the indeterminacy in the tangential
component of v can be expected to increase with Q̃.

Closed-form solution. Assuming that A according to (7) is non-degenerate,
the explicit solution of (6) is

v = −A−1b (11)

and the residual

r = c− bTA−1b. (12)

If A is singular, or close to singular, it is preferable to use the pseudo inverse.
For a symmetric two-dimensional matrix of rank one, it is given by

A† =
1

(traceA)2
A. (13)

The pseudo inverse is preferred when the singular values are sufficiently different,
or equivalently the normalized anisotropy is sufficiently close to one.

In practice, the window function is chosen as a Gaussian kernel, since then
and only then the components of A satisfy scale-space properties under variations
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of the scale parameter s of w. (These propagate to the distribution of gradient
directions described by A as a composed object.) Concerning the relation between
integration scale s for averaging and the local scale t for computing derivatives,
one should, in principle, consider a two-parameter variation. In the experiments
to be presented, we have throughout used s = s(t) = γ2t with γ = 2.

4. Hierarchical and iterative flow field computations

By using scale-space operators at a certain scale t, it is, in general, only possible
to capture disparities of the same order of magnitude as

√
t.

• If the disparity is much larger than the local scale, then there may be
interfering fine-scale structures between a certain position ξ in one image
and its corresponding point ξ+∆ξ in the other image, which bias the local
linearization.

• If the local scale on the other hand is too large relative to the disparity
update, then the shape distortions may have substantial negative influence
and lead to unnecessarily inaccurate disparity estimates.

This motivates a coarse-to-fine approach, where initial disparity estimates are
computed at coarse scales, propagated to finer scales, and disparity updates then
are computed iteratively at finer scales.

When computing the iterative updates, the current disparity estimate v(k)

should of course be taken into account when computing the brightness difference
R(ξR; t) − L(ξL; t)) (where ξR and ξL are related by ξR = ξL + vL(ξL; t)
and ξL = ξR + vR(ξR; t)) so as to reduce the approximation error in the local
linearization. Hence, at any point x, disparity estimates are updated according
to

v
(k+1)
L (xL; t) = v

(k)
L (xL; t) + ∆v

(k+1)
L (xL; t) (14)

where

∆v(k+1)
R (xR; t) =

(∫
ξL∈R2

((∇L)(ξL; t))((∇L)(ξL; t))TwxL
(ξL; s(t)) dξL

)∼1

∫
ξL∈R2

(R(ξR; t)− L(ξL; t)) ((∇L)(ξL; t))wxL
(ξL; s(t)) dξL,

(15)

and this updating may, in principle, proceed until a fixed-point has been reached
or the scale-space representations of fL and fR are in sufficient alignment.

If the transformation is not locally a pure translation, a higher order (e.g.,
affine) model is required to reduce the approximation error, and corresponding
compensations are needed when computing the brightness differences. These
iterations can be driven either by the affine Gaussian scale-space representation
and shape adaptation or by performing local warping and solving an extension
of (6) with the locally constant flow model replaced by a local affine.
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4.1. Bidirectional matching and inconsistency measures

The previous matching scheme can be applied in both directions, which gives rise
to independent flow field estimates. A natural inconsistency measure is then

EL(xL; t) = vL(xL; t) + vR(xL + vL(xL; t); t), (16)

ER(xR; t) = vR(xR; t) + vL(xR + vR(xR; t); t), (17)

and a natural measure of the strength of the response

RL(xL; t) = PL(xL; t)PR(xL + vL(xL; t); t), (18)

RR(xR; t) = PR(xR; t)PL(xR + vR(xR; t); t), (19)

where PL = traceAL and PR = traceAR denote the average square gradient
magnitudes computed in the left and right images, respectively.

5. Formulation of a confidence measure

When to formulate a confidence measure for a flow field computed at a certain
scale, it is natural to state the following qualitative requirements:

• Operator strength: The confidence measure should be higher in regions
with large brightness variations than in regions with slowly varying grey-
levels.

• Mutual consistency: The confidence measure should decrease with the
inconsistency between flow fields computed independently in the two im-
ages.

• Matching error: The confidence measure should decrease with the error
in the least-squares alignment.

In addition, to treat all scales in a uniform manner, we may also require the
following:

• Scale invariance: The confidence measure should be invariant under
uniform rescalings of the input images.

Based on these general arguments, we can decide to:

• measure the strength of the operator response by R,
• measure the inconsistency by an exponentially decreasing function of E,
and

• measure the error in the least-squares alignment by the normalized residual
r̃.

Finally, scale invariance can be accomplished by
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• measuring P = traceA in R in terms of normalized derivatives ∂ξi
=

√
t ∂xi ,

where t represents the local scale parameter for differentiation, and

• measuring the inconsistency E and the normalized residual relative to the
current level of scale. Since the latter entities both have dimension [length]2,
scale normalization can be easily achieved by dividing these entities by t.

In summary, these entities can be combined in the following (heuristically chosen)
confidence measures:

WL(xL; t) =
RL,norm(xL; t) e−ωE2

L(xL; t)/t

r̃0 + r̃(xL; t)
, (20)

WR(xL; t) =
RR,norm(xL; t) e−ωE2

R(xL; t)/t

r̃0 + r̃(xR; t)
, (21)

where the following parameters have been introduced:

• ω (here, ≈ 0.1) determines how large disparity inconsistencies are tolerated
relative to the current level of scale, and

• r̃0 (here, ≈ 0.01) is a non-essential threshold to avoid divisions by zero.
Obviously, this confidence measure can be expected to be small for occluded
points. For points whose disparity vectors point outside the available image
data, the confidence measure is set to zero in the current implementation of the
algorithm.

5.1. Flow field correction and flow field smoothing

At spurious points, it may happen that the disparity estimates according to (15)
contain large errors due to noise or the fact the support region of wx does not
contain a sufficiently rich distribution of image structures. To suppress such
errors, only disparity updates satisfying

|v(k+1)(x; t)− v(k)(x; t)| < ν
√
t (22)

are allowed to propagate unaffected (here ν is of the order of 2). Larger updates
are truncated. Moreover, in each iteration, the flow field is smoothed using the
confidence values W as weights

v′(x; t) =

∫
ξ∈R2 v(ξ; t)W (ξ; t)wx(ξ; s(t)) dξ∫

ξ∈R2 W (ξ; t)wx(ξ; s(t)) dξ
. (23)

This leads to a rapid propagation of disparities from regions with strong intensity
variations (typically edges and textured regions where the disparity information
can be expected to be maximally reliable) to the interior of smooth regions.
Moreover, locally inconsistent disparity estimates as well as spurious deviations
are likely to be suppressed, since these can be expected to be assigned low confi-
dence values.
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6. Proposed framework for automatic scale selection

Within this framework, disparity estimates can be computed at any scale, using
conceptually simple front-end operations. A fundamental problem, however, con-
cerns how to combine the information from different scales. Selecting disparity
estimates from the finest scale after a coarse-to-fine hierarchical propagation is
not guaranteed to be the best solution, since the flow field estimates at the finest
scales can be highly sensitive to noise and other interfering fine-scale structures.
In practice, there may be substantial variations within as well as between the
disparity fields at the finer scales. Hence, for a flexible vision system required to
handle a large number of different situations without any a priori information
about what are the proper scales to use in a given situation, it is of crucial impor-
tance to complement this coarse-to-fine flow estimation framework by an explicit
mechanism for scale selection.

Intuitively, such a scale selection mechanism should select coarse-scale dispar-
ity fields from noisy data, for which fine-scale correspondences may be impossible
to establish. Correspondingly, it should select fine-scale representatives from the
disparity fields from sharp data that contain detailed information, so as to pro-
duce a maximally accurate disparity field.

Scale selection method. To measure how well two image regions have been
aligned by the local least-squares fit (5), it is natural to consider the residual
(12). This entity does, however, not contain sufficient information for making
such judgements, since it depends upon the local contrast. A straightforward but
nevertheless powerful approach is to select the scale that minimizes the normalized
residual

r̃ =
r

traceA
=
c− bTA−1b

traceA
(24)

over scales. A basic motivation for dividing the regular residual (12) by the trace
of the covariance matrix is that this operation cancels the effect of the amplitude
of local brightness variations. Since the dimensions involved are as follows:

Entity Dimension
A [luminance]2/[length]2

b [luminance]2/[length]
c [luminance]2

it follows that the normalized residual has dimension [length]2 and can be seen
as reflecting a spatial error in the disparity estimate. (A statistical analysis and
interpretation of this measure is given in appendix A.)

Concerning the specific selection of normalization factor, traceA constitutes
a natural choice, since it is a well-defined function of a differential invariant (the
weighted average of the square gradient magnitude in a local neighbourhood).
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Qualitative effects. Relating to the abovementioned intuitive requirements,
the qualitative effects of this scale selection method are as follows:

• At too coarse scales, a uniform deformation model cannot be expected to
hold over the entire region. Also, the shape distortions can be expected to
be stronger, thereby increasing the normalized residual.

• At too fine scales, where noise and other fine-scale structures are present,
the likelihood that these structures obey the same motion model will be
low. Hence, the normalized residual can be expected to increase.

Selecting the minimum leads to a natural trade-off between these effects.

7. Qualitative properties of the scale selection method

Let us now consider the effect of applying this scheme to image data. Figures 1–
2 illustrate general properties of the scale selection method when applied to
smoothly deformed patterns for which interfering structures are present at finer
scales.

Selection of coarser scales for larger size image structures. In figure 1,
two synthetic image patterns have been subject to a uniform expansion. The
underlying patterns are identical except for the size of the texture elements which
differs by a factor of four, and 10 % white Gaussian noisea added to each image
independently after the deformation. For each pattern, the normalized residual
has been computed at different scales for all points in an 8 × 8 window at the
center of the image (of size 64 × 64 pixels). Such a graph is referred to as the
scale-space signature of r̃ (Lindeberg 1994c).

Observe that besides small fluctuations due to noise at the finer scales, these
signatures become more stable at coarse scales. More importantly, with increasing
size of the image structures, the minimum over scales is assumed at coarser scales.
This behaviour agrees with the intuitive notion that coarser scales should be
selected for patterns containing larger size image structures.

Selection of coarser scales with increasing noise level. In figure 2 the
image pattern is the same, whereas the noise level is varied. Observe that with an
increasing amount of interfering fine scale structures, the minimum in r̃ over scales
is assumed at coarser scales. This behaviour agrees with the intuitive notion that
a larger amount of smoothing is required for noisy data than otherwise similar
data with less noise.

aThroughout this article, we measure the noise level by the ratio between the standard
deviation of the noise and the amplitude of the signal.
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first image second image signature of r̃

size: 4

  

                                                               

size: 16

  

                                                               

Figure 1: Scale-space signatures of the normalized residual r̃ computed from synthetic
expanding patterns with structures at different scales. Notice that with increasing size
of the texture elements, the minimum over scales in the normalized residual is assumed
at coarser scales.

first image second image signature r̃

noise: 1 %

  

                                                               

noise: 10 %

  

                                                               

Figure 2: Scale-space signatures of the normalized residual r̃ computed for a synthetic
expanding pattern with different amounts of added white Gaussian noise. Observe that
with increasing noise level, the minimum over scales in the normalized residual is assumed
at coarser scales.
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Selection of finer scales near discontinuities in the deformation field.
Figure 3 shows the qualitative behaviour of the scale selection method in the
neighbourhood of a discontinuity in the flow field. For a “wedding-cake type”
random dot stereo pair (consisting of 64× 64 dots in a 256× 256 image with zero
disparity in a central square and uniform non-zero disparity in the periphery) to
which 1% white Gaussian noise has been added, the results are shown of accu-
mulating the scale-space signature of the normalized residual in three windows
with different distance to the discontinuity. These windows have been uniformly
spaced from the image center to one of the discontinuities in the disparity field
as shown in figure 3(c).

Observe that with decreasing distance to the discontinuity, the minimum over
scales is assumed at finer scales. This qualitative behaviour agrees with the in-
tuitive notion that smaller windows for matching should be selected for image
structures near a discontinuity in the disparity field than when matching other-
wise similar image structures in a region where the disparity varies smoothly.

Notably, this rapid decrease of the selected scale levels could also provide a
clue for detecting flow field discontinuities and signalling possible occlusions.

left image right image windows on difference

  

                                                               

  

                                                               

  

                                                               

Figure 3: The qualitative behaviour of the scale selection method at a discontinuity in
the deformation field. The bottom row shows scale-space signatures of the normalized
residual computed in three windows with different distance to the discontinuity (with
positions indicated in the upper right image showing the pointwise difference between the
two images). Observe that with decreasing distance to the discontinuity, the minimum
over scales is assumed at finer scales.
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8. Experiments: Estimation of image deformations

Figures 4–5 show the result of applying the composed flow estimation scheme
to a synthetic pattern which has been transformed by a pure rotation and a
pure expansion, respectively. (In analogy, with previous experiments, 10% white
Gaussian noise has been added to each image after the deformation.) To illus-
trate the consistency between the estimates computed in the two directions, both
estimates are shown. Notice first how the qualitative shape of the flow field is
captured and that the compensated differences between the images (the result
of computing R(ξ + v

(k)
L (xL; t); t)− L(ξ; t) and L(ξ + v

(k)
R (xR; t); t)− R(ξ; t)

according to (15)) correspond to errors comparable to the noise level. Moreover,
the significance measure is high (represented as dark) in the regions where the
computed flow field estimates are valid.

Figure 6 shows corresponding results for a “wedding-cake” random dot stereo
pair similar to the one in figure 3. Observe that except for a few points near the
discontinuity, the flow compensated differences between the left and right images
have been driven down to essentially zero. Moreover, the significance measure is
very low near the discontinuities in the disparity field.

Figure 7 shows corresponding results for a detail of a head subject to a rather
large (unknown) rotation. Note that except for the upper right corner, where
most points either correspond to occluded points or points outside the image, a
correct matching has been established without any use of epipolar geometry.

9. Relations to previous work

The least squares formulation (5) for computing optic flow was proposed by
(Lukas and Kanade 1981) and has been applied by several researchers; see (Bergen et
al. 1992; Barron et al. 1994) for overviews. The idea of using local image
deformations as a primary cue for shape estimation and motion analysis goes
back to (Koenderink and van Doorn 1975, 1976) and has been extended in sev-
eral directions. Besides the references given previously, further examples include
(Werkhoven and Koenderink 1990; Koenderink and van Doorn 1991; Arnspang
1991; Jones and Malik 1992; Malik and Rosenholtz 1993; Proesmans et al. 1994;
Devernay and Faugeras 1994; Sato and Cipolla 1994; G̊arding and Lindeberg
1996; van Ee 1995). Whereas a large class of approaches have been developed
to compute these deformation fields, most previous algorithms operate either at
a fixed scale, or in terms of coarse-to-fine propagation between two given scale
levels. A notable exception is the interesting work by (Kanade and Okutomi
1994), who present an algorithm for adapting the window size of a correlation
based stereo algorithm based on a statistical model of the disparity field.

The present work aims at addressing the general problem of scale selection
that arises in this context and to unify the abovementioned ideas into a coher-
ent framework for flow estimation with integrated scale selection. Specifically,
the least-squares formulation in (Lukas and Kanade 1981) has been extended to
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first image second image difference

flow field

differences

significance

Figure 4: Flow field estimates computed from a synthetic flow field using the proposed
scheme with automatic scale selection. From the top row to the bottom row, the images
show respectively (a) the original image pair, (b) estimated flow field, (c) compensated
differences, (d) significance measure. (Image size: 64*64 pixels. Noise level: 10 % ).
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first image second image difference

flow field

differences

significance

Figure 5: Flow field estimates computed from a synthetic flow field using the proposed
scheme with automatic scale selection. From the top row to the bottom row, the images
show respectively (a) the original image pair, (b) estimated flow field, (c) compensated
differences, (d) significance measure. (Image size: 64*64 pixels. Noise level: 10 % ).
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first image second image difference

flow field

differences

significance

Figure 6: Flow field estimates computed from a synthetic random dot stereogram using
the proposed scheme with automatic scale selection. From the top row to the bottom
row, the images show respectively (a) the original image pair, (b) estimated flow field,
(c) compensated differences, (d) significance measure. (Image size: 64× 64 pixels. Noise
level: 1 % ).
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Figure 7: Flow field estimates computed from a detail of a statue using the proposed
scheme with automatic scale selection. From the top row to the bottom row, the images
show respectively (a) the original image pair, (b) estimated flow field, (c) compensated
differences, (d) significance measure. (Image size: 200× 200 pixels.)
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involve minimization over the scale dimension as well.

10. Summary and discussion

We have argued that the incorporation of an explicit mechanism for automatic
scale selection is an essential complement to traditional techniques for stereo
matching and flow estimation. The main purpose of such a scale selection mech-
anism is to allow for local adaptive determination of the scales at which the
deformation estimates should be extracted, and to suppress the influence of the
erroneous deformation estimates that may be obtained if too fine scales are used.
Specifically, such a mechanism makes it unnecessary to provide external informa-
tion about the scales to which the coarse-to-fine propagation should be performed.

For general flow estimation and stereo matching algorithms, it was proposed
that this problem could be addressed in the following general way by:

• Evaluating the evolution properties over scales of the estimated uncertainty
of the deformation estimates, and

• selecting the deformation estimates from the scales at which the estimated
uncertainty assumes local minima (or boundary minima) over scales.

Then, a specific implementation of this approach was presented based on a re-
gion based differential scheme for hierarchical and iterative computation of optic
flow, which incorporated explicit mechanisms for flow averaging and confidence
measurements. The confidence measure was constructed as a combination of
the strength of the operator response, the internal consistency between the flow
estimates in the forward and backward directions of the bidirectional matching
scheme, as well the error in the least squares alignment measured in terms of the
residual.

It was shown that for this specific scheme, automatic scale selection could
be performed by minimizing a suitably normalized residual over scales. Specifi-
cally, the combined scale selection and flow estimation scheme resulting from this
approach has the intuitively appealing qualitative properties of leading to:

• selection of coarser scales for large size image structures,
• selection of coarser scales with increasing noise levels, and
• selection of finer scales near flow discontinuities.

The underlying reason why this behaviour can be expected is that the normal-
ized residual can be expected to be high when a local translation model does not
agree with the image data. Thus, by selecting scales that minimize the normal-
ized residual over scales we are much less likely to select deformation estimates
computed at inappropriate scales.

Notably, the resulting scheme is expressed in terms of only the following types
of image operations: large support scale-space smoothing, small support deriva-
tive computations, pointwise combinations of the outputs from abovementioned
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steps, and the detection of local minima across scales. Hence, the algorithm lends
itself naturally to straightforward implementation in a visual front-end.

Another interesting aspect of the resulting approach is that the problem of
computing the deformation flow fields has been reformulated as the problem of
finding a suitable transformation of the image operators that brings the output of
the image operators into alignment (corresponding to a fixed point of (15). In an
active situation, the control signals obtained from this construction can serve as a
natural vergence mechanism. If a corresponding translation scheme is applied in
the log-polar domain, it provides a lower order approach for measuring the other
primitive transformations in the similarity group, i.e., rotations and size changes.
When extended to local full affine models, and when complemented by an affine
Gaussian scale-space representation (see section 2.1. and section 11.), the scheme
allows for estimation of full local affine transformations without bias effects due
to the image operators. Philosophically, such a viewpoint to the image matching
problem can be seen as finding the transformation that best explains the data.

Concerning the possible relevance of the proposed methodology to biological
vision, one may speculate whether mechanisms for scale selection exist in biolog-
ical vision. In this context, it is worth noting that in their investigations of the
receptive fields of motion sensitive cells in Area MT (V5) of the macaque monkey,
(Raiguel et al. 1995) have observed that receptive field sizes can typically vary
by a factor of 10 in area among the cells in a locally confined region of visual
space. Hence, it seems plausible that the information may at least be available
in confined regions for making the types of local judgements that the proposed
scale selection principle is based on.

11. Extensions

The main message of this article has been to advocate the need for a scale se-
lection mechanism in visual modules for computing optic flow and performing
stereo matching, and to propose a systematic methodology for addressing this
problem. Whereas a specific implementation was presented to support the sug-
gested approach, no claims are made that this implementation constitutes any
optimal choice. (For example, we are currently developing a point based scheme
based on a similar approach.) Besides possible technical improvements of the
uncertainty measure used, this scale selection methodology lends itself to more
general extensions in the following directions:

Higher order deformation models. Whereas the specific scheme presented
has been concerned with a local translation model, there is nothing in principle
that prevents it from being extended to higher-order deformation models, such
as local affine deformations. This will, in general, increase the accuracy and
allow for unbiased estimation of the higher order deformations. As mentioned
previously, these general ideas can also be applied on other flow estimation and
stereo matching algorithms.
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Incidentally, minimization of normalized error measures over scales applies
also to other types of problems, such as junction localization (Lindeberg 1994b).

Relaxing the constant brightness assumption. Throughout this work, we
have applied the constant brightness assumption implying that the image bright-
ness is assumed to be the same for all views of a physical point. Since this
approach suffers from inherent limitations (see (Pentland 1990) for illustrative
examples), one could, of course, more generally apply the same technique to
other functions of the local N -jet. For example, if we apply it to the output from
the Laplacian operator, we cancel the effects of illumination variations up to first
order. More generally, if we apply it to several differential invariants simultane-
ously, we will be much more likely to obtain useful results from point based optic
flow techniques.

Enforcing consistency. The scheme presented so far estimates local image
deformations in a neighbourhood of each image point. The only coupling between
the flow field estimates at different points is via the local least squares model and
the flow field smoothing, which limit the spatial variation of the computed flow
fields. Clearly, for such independently computed estimates, it is not guaranteed
that shape descriptors derived from them correspond to a coherent surface. For
example, for surface orientation estimates computed from such descriptors, it is
not guaranteed that the curl is zero, which is a necessary requirement for a vector
field to have a potential, and hence for the surface orientations to correspond to
a coherent surface.

Figure 8 shows an example of enforcing such consistency on monocular data
by fitting a pointwise (and hence parameter free) depth map to surface orientation
estimates computed from a slight modification of the shape from texture method
in (Lindeberg and G̊arding 1993; G̊arding and Lindeberg 1996) based on the weak
isotropy assumption (G̊arding 1993). For each point, the surface orientation has
been obtained from a centered second moment matrix

ν =
∫

ξ∈R2
(∇L)(∇L)T w dξ − (∇L)(∇L)T (25)

where ∇L = ∫
ξ∈R2 ∇Lw dξ and w is a Gaussian window function. Then, from

(a modification of) the weak isotropy assumption—that ν in the surface should
be a constant times the unit matrix—the slant angle has been computed as σ =

arccos
√

1−Q̃(ν)

1+Q̃(ν)
, (where Q̃(ν) is defined from ν in a similar way as Q̃ is defined

from A in (10)) and the tilt direction has been determined as the eigendirection
of µ corresponding to the maximum eigenvalue. The resulting surface orientation
estimates are shown in figure 8(a) as a set of ellipses, which should be interpreted
as projected circles.

Finally, a pointwise depth map has obtained by a least-squares fitting of a
pointwise depth function to the data by minimizing the curl of the estimated
field of surface orientation estimates, in a way analogous to the experimental
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technique used in (Koenderink et al. 1992) and the integrability constraint ex-
ploited in certain shape-from-shading algorithms (see (Horn and Brooks 1989)
for an overview). Observe how the qualitative shape of the torso is captured by
these very conceptually simple operations. We are currently studying the further
analysis and integration of these components into a unified framework for shape
estimation.
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Figure 8: (left) Surface normals estimated from local affine deformations measured by
centered second moment matrices. (right) Surface model constructed from the additional
requirement that the field of surface normals should correspond to a depth function (i.e.
have a zero curl).
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A Appendix: Statistical analysis

Given a disparity estimate computed according to the methodology in section 3.,
we would like to estimate how accurate this estimate is.

The estimate is computed from a local Taylor expansion of the brightness
constancy relation (5) at any level t in scale-space

(∇L)(ξ; t)T (∆ξ) + (L(ξ; t)−R(ξ; t)) = O(|∆ξ|2). (26)

This relation is integrated over a region of interest (5)

min
v∈R2

∫
ξ∈R2

(((∇L)(ξ; t))T v − (L(ξ; t)−R(ξ; t))2 w(ξ) dξ. (27)

which leads to the least squares estimation problem (6), with A, b and c according
to (7), (8) and (9):

min
v∈R2

vTAv + 2bT v + c. (28)

The solution (11) of (28) is given by

v = −A−1b. (29)

Definition of error measures. Given a field of pointwise disparity estimates
∆ξ obtained from (26), one may at a first glance consider the following entity as
a natural measure of the error in the least squares estimate (29):

E =
∫

ξ∈R2
|v −∆ξ|2 w(ξ) dξ =

∫
ξ∈R2

(v −∆ξ)T (v −∆ξ)w(ξ) dξ. (30)

This measure does, however, not take the following facts into account: (i) The
brightness constancy relation (26) only implies a one-dimensional constraint on
two-dimensional local disparity estimate. (ii) For points where the gradient mag-
nitude is high, the brightness constancy relation (26) provides a stronger con-
straint on the local disparity than in regions where the gradient magnitude is
low, and the local image structure is more strongly influenced by the information
in the higher order derivatives of the intensity function L.

To capture these effects, let us instead measure the error in the local disparity
estimate only in terms of it component parallel to the local gradient direction (i.e.,
we are only sensitive to errors in the pointwise normal flow), and let us weight the
local errors using the gradient magnitude as weight. This leads to the following
weighted error measure, where the integrated square gradient magnitude in the
numerator serves as normalization for the weight in the denominator:

E∇L =

∫
ξ∈R2 |(∇L)T (v −∆ξ)|2 w(ξ) dξ∫

ξ∈R2 |∇L|2w(ξ) dξ

=

∫
ξ∈R2(v −∆ξ)T (∇L)(∇L)T (v −∆ξ)w(ξ) dξ∫

ξ∈R2(∇L)T (∇L)w(ξ) dξ (31)
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To derive a more explicit expression for this entity, let us make the following
linear approximation, which disregards the higher order terms in (26):

(∇L)T (∆ξ) ≈ R− L. (32)

Then, after expansion, the numerator of (31) can be written

E∇L,num =
∫

ξ∈R2
|(∇L)T v − (R − L)|2 w(ξ) dξ

= vTAv − 2bT v + c, (33)

with A, b and c according to (7), (8) and (9). Using v = −A−1b and

E∇L,denom =
∫

ξ∈R2
(∇L)(∇L)T w(ξ) dξ = traceA, (34)

it follows that E∇L in (31) can be written

E∇L ≈ c− bTA−1b

traceA
= r̃ (35)

corresponding to the definition of the normalized residual r̃ in (24). In other
words, the normalized residual used for automatic scale selection can be seen as an
approximate estimate of the error in the local least squares estimation problem.
Specifically, the scale selection principle proposed in section 6. corresponds to
matching the image data at the scale at which the error estimate is minimized.

Perturbation analysis. In the abovementioned analysis, the input images fL

and fR are regarded as given, and so are their scale-space representations L and
R. The error measure (31) estimates the error in the regional disparity estimate
v based on the internal consistency between the pointwise flow estimates ∆ξ.

An alternative approach to error analysis is to investigate how sensitive the
estimated disparity is to perturbations of fL and fR. Such an analysis, however,
requires further a priori information about the statistical properties of fL and fR,
based on specific knowledge about the structure of the world as well as the imaging
conditions. We do not exclude that the proposed scale selection methodology
could benefit from such an approach, provided that an appropriate statistical
model can be formulated. In this treatment, we have deferred from such an
approach, partly because of the need to formulate accurate statistical models
of the two-dimensional signals fL and fR, and partly because the closed form
expressions for the error estimates become much more involved.
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