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Abstract. This paper addresses the problem of computing cues to the
three-dimensional structure of surfaces in the world directly from the
local structure of the brightness pattern of a binocular image pair. The
geometric information content of the gradient of binocular disparity is
analyzed for the general case of a �xating system with symmetric or
asymmetric vergence, and with either known or unknown viewing ge-
ometry. A computationally inexpensive technique which exploits this
analysis is proposed. This technique allows a local estimate of surface
orientation to be computed directly from the local statistics of the left
and right image brightness gradients, without iterations or search. The
viability of the approach is demonstrated with experimental results for
both synthetic and natural gray-level images.

1 Introduction

Binocular disparities, i.e., the slight di�erences between the views of the world
captured by the left and the right eye, can convey important information about
the three-dimensional structure of objects and surfaces in the scene. Tradi-
tionally, binocular stereopsis has often been associated with recovery of three-
dimensional depth. Here, however, we shall be concerned with estimation of sur-
face orientation, i.e., the rate of change of depth. Many computational models
of stereopsis are based on sparse but salient features such as edges or corners
(see e.g. (Pollard et al. 1985)). This approach is often quite successful, but has
the drawback that it only produces sparse depth estimates. If higher-order prop-
erties are needed, such as local surface orientation or curvature, they could in
principle be estimated by �rst applying an additional stage that interpolates the
surface between the data points to obtain a dense depth map (see e.g. Blake and
Zisserman 1987), and then di�erentiating this representation.

An alternative approach, which we shall pursue here, is to derive higher-order
surface properties directly from the properties of corresponding image patches,
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without using depth as an intermediate representation. This can be achieved
either by �rst computing a dense disparity map and then estimating derivatives
of the disparity �eld, or by directly using di�erences in local image properties,
e.g. the local statistics of the orientation or curvature of contours.

In both cases, the estimation of surface orientation can be formulated in terms
of modelling the local transformation from the right eye's view of a small surface
patch to the left eye's view of the same patch by an a�ne transformation, rather
than a simple displacement. Analogously, surface curvature can be estimated
from the second-order properties of the local left-to-right transformation. The
local a�ne transformation gives rise to orientation disparity as well as spatial

frequency disparity, and several computational models based more or less directly
on these cues have been described in the literature (Blakemore 1970; Koenderink
and van Doorn 1976; Tyler and Sutter 1979; Rogers and Cagenello 1989; Wildes
1991; Jones and Malik 1992).

The present work builds on most of these theories, and extends them in sev-
eral ways. In the �rst part of the paper, we analyze the geometric structure of
the problem. We �rst treat the case in which the orientation of the cameras is
known, and then generalize to the case of unknown camera orientation which al-
lows the surface shape to be recovered up to the group of relief transformations.
In the second part of the paper, we propose a direct and inexpensive compu-
tational technique which exploits the geometric analysis. This technique allows
a local estimate of surface orientation to be computed directly from the local
statistics of the left and right image brightness gradients, without iterations or
search.

2 Viewing Geometry and Binocular Disparity

Viewing Geometry. A representation of the binocular viewing geometry is
shown in Figure 1. We represent visual space with respect to a virtual cyclopean
eye, constructed such that the cyclopean visual axis (the Z axis) bisects the left
and right visual axes. The X and Z axes as well as the centres of the eyes lie in
a common plane, called the �xation plane.

We de�ne left and right coordinate systems (Xl ; Yl; Zl) and (Xr ; Yr; Zr) such
that the origin of each system is at the center of projection, the Zl, Zr and Z axes
intersect at the �xation point p with cyclopean coordinates (0; 0; R), and the Xl,
Xr and X axes are contained in the �xation plane. Normalized cyclopean image
coordinates are de�ned by x = X=Z, y = Y=Z; left and right image coordinates
are de�ned analogously. These coordinates are related to the pixel coordinates
through the intrinsic camera parameters, which are assumed to be known.

This representation of the viewing geometry does not require p to be the
actual �xation point of the viewing system, nor indeed that the eyes �xate any
point at all, since a rotation of either eye around the optical centre does not a�ect
the information content of the image. However, to simplify the presentation we
shall continue to refer to p as the �xation point.
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Fig. 1. Representation of the binocular viewing geometry. The plane of the drawing
is the �xation plane. The primary direction (indicated by dashed lines) is de�ned as
the direction in the �xation plane that is perpendicular to the interocular baseline.
The dotted circle through the �xation point and the eyes indicates a part of the point
horopter, i.e., the locus of points that yield zero horizontal and vertical disparity.

Vergence and Version. Let 'l and 'r be the angles between the primary
(straight-ahead) direction and the left and right visual axes respectively. The
vergence angle � and the version (or gaze) angle 
 are then de�ned by

� =
1

2
('l � 'r); 
 =

1

2
('l + 'r):

As a consequence of this de�nition, the angle between the cyclopean visual axis
and the primary direction is equal to 
 (see Figure 1).

It is sometimes convenient to specify the cyclopean �xation distance R in-
stead of the vergence angle �. The relation between these parameters is

R =
I cos 


sin 2�
; (1)

where I is the interocular distance.

Camera Orientation. The orientation of a camera with respect to a reference
system in the \head" has three degrees of freedom; two for the orientation of
the optical axis, and one for the torsion, i.e., the angle of rotation around the
visual axis. For human vision, Donder's law states that the eyes do not use
the third degree of freedom; the amount of torsion is fully determined by the
direction of the visual axis for each eye. This reduces the number of degrees
of freedom to four for the whole binocular system. One additional constraint is
supplied by the assumption that the eyes �xate some point p; the total number



of degrees of freedom for the orientation of the binocular system is thus three,
i.e., the extrinsic geometry of the binocular system is fully determined by the
coordinates of the �xation point.

A more convenient way of specifying the extrinsic binocular geometry is by
using the angles of vergence and gaze de�ned previously, supplemented with the
angle � of elevation of the �xation plane with respect to a reference plane con-
taining the interocular baseline. This representation, which is equivalent to the
Helmholtz �xation model (Helmholtz 1910; Carpenter 1988), has the advantage
that the vertical axes of the left and right coordinate systems remain perpendic-
ular to the �xation plane for all �xation points; as a consequence, any computed
entity which is de�ned relative to the �xation plane is independent of �.

Binocular Disparity. The retinal disparity of a point in the scene is de�ned
as the di�erence in retinal position of the left and right projections of the point.
Consequently, the retinal disparity of the �xation point is zero by de�nition. We
de�ne horizontal and vertical retinal disparity (h; v) by

h = xr � xl; v = yr � yl;

where (xl; yl) and (xr; yr) are the normalized left and right image coordinates
corresponding to the same point in the scene.

If the �xation point p lies on a smooth surface Z(X;Y ), a di�erentiable
mappingM is induced from points in the left image to points in the right image
in some neighbourhood of the images of p. A Taylor expansion to �rst order in
(xr ; yr) can then be expressed as�

xr
yr

�
=

�
1 + hx hy
vx 1 + vy

��
xl
yl

�
: (2)

In the following we shall denote the matrix in (2) by M� and refer to it as the
derivative map. The components (hx; hy; vx; vy) constitute the disparity gradient.

3 The Disparity Gradient

The disparity gradient depends on the viewing geometry and the local surface
orientation. At the �xation point, the precise relation is given by

Proposition1 (Disparity gradient). Let M� be the derivative map from the

left image to the right image. The disparity gradient is M� � I, where I is the

unit matrix, and at the �xation point

M� =

�
1 + hx hy
vx 1 + vy

�
=

cos(
 � �)

cos(
 + �)

0
@ cos �+ P sin�

cos �� P sin�

2Q cos� sin�

cos �� P sin�

0 1

1
A ; (3)

where P = @Z
@X , Q = @Z

@Y .



See (G�arding and Lindeberg 1994b) for a derivation.
The size of the region where M� provides a reasonably accurate approxima-

tion of the disparity �eld depends on the shape of the surface; for planar surfaces
it is in fact valid over quite large visual angles.

3.1 The Information Content of the Disparity Gradient

What do the non-vanishing components (hx; hy; vy) of the disparity gradient
at the �xation point tell us about the local scene structure and the viewing
geometry? First, note that the disparity gradient (3) depends on four parameters;
two for the viewing geometry (�; 
) and two for the surface orientation (P;Q).
It is thus impossible to recover both the viewing geometry and the local surface
orientation from a single measurement of the disparity gradient. However, if the
viewing geometry is known, the surface orientation can be estimated, and vice
versa. Moreover, the surface orientation is independent of the gaze angle 
, since

 only a�ects the overall scale factor in M� according to (3). Formally, denote
the components ofM� by mij, and de�ne the normalized horizontal components
as

m̂11 = m11=m22; m̂12 = m12=m22:

By comparison with (3) we obtain after some algebraic manipulations

P =
(m̂11 � 1) cos �

(m̂11 + 1) sin�
; Q =

m̂12

(m̂11 + 1) sin�
: (4)

Consequently, to estimate the surface orientation it su�ces to estimateM� up to
an arbitrary scale factor, and there is no need to know the angle 
 of asymmetric
gaze.

3.2 Unknown Viewing Geometry and the Relief Ambiguity

An important line of research in computational vision concerns the recovery of
three-dimensional structure under \weak calibration" conditions, in which the
epipolar geometry is known but the intrinsic camera parameters as well as the
extrinsic camera orientation remain unknown. Typically, this allows the scene
structure to be recovered up to an arbitrary projective or a�ne transformation
(Koenderink and van Doorn 1991; Faugeras 1992; Robert and Faugeras 1993).

In a �xating binocular system, however, the extrinsic camera orientation is
quite constrained; as pointed out in Section 2, it has essentially only three degrees
of freedom. Moreover, these angles vary continuously as the system changes its
�xation in the visual �eld, so unlike the remaining parameters of the system
they could not be even approximately determined by a preliminary calibration
stage. It is therefore of interest to study the case in which only these dynamic

parameters (i.e., the angles of vergence, gaze and elevation) of a binocular vision
system are unknown.2

2 In fact, the subsequent analysis would also allow some of the intrinsic camera pa-
rameters to be unknown, but we shall not pursue this possibility further here.



In fact, two of the three dynamic degrees of freedom have already been elimi-
nated; the elevation angle by assuming Helmholtz �xation, and the gaze angle by
normalizing the disparity gradient. Hence, we only need to analyze the in
uence
of the vergence �.

It is convenient to introduce the small baseline approximation,3 which applied
to some expression f is de�ned to be the term(s) up to �rst order in a Taylor
expansion of f with respect to I=R. Rearranging terms in (4) and then applying
this approximation, we obtain

2
(m̂11 � 1)

(m̂11 + 1)
= 2P tan� � (I cos 
)

P

R
; (5)

2
m̂12

(m̂11 + 1)
= 2Q sin� � (I cos 
)

Q

R
; (6)

where (1) has been used to expand tan� and sin� to �rst order with respect
to I=R. The right-hand sides of these expressions have an interesting geometric
interpretation in terms of nearness, i.e., inverse depth. At the origin of the
cyclopean system we have

@

@x

1

Z
= � 1

R

@Z

@X
= �P

R
;

@

@y

1

Z
= � 1

R

@Z

@Y
= �Q

R
:

Hence, at the �xation point the gradient of nearness can be computed up to the
scale factor I cos 
 without any knowledge about the viewing geometry. Suppose
that this scaled gradient has been computed in a region around the �xation
point.4 By integration we can then recover the function

�(x; y) = I cos 


�
1

Z(x; y)
� 1

R

�
; (7)

where I, 
 and R can be considered as unknown constants. We shall refer to �
as scaled relative nearness.

Clearly, knowledge of � determines the scene structure up to a two-fold ambi-
guity corresponding to the unknown parameters A = I cos 
 and B = 1=R. This
ambiguity has a clean mathematical structure which allows a simple geometric
interpretation. Consider an arbitrary member of this family of scene con�gu-
rations, obtained from some arbitrarily chosen values (A0; B0), and denote the
true values by (A;B). It is then easily veri�ed that the position (X0; Y 0; Z0) of
any point in this scene con�guration is related to the position (X;Y; Z) of the
corresponding point in the true scene con�guration by0

@X0

Y 0

Z0

1
A =

1

a + bZ

0
@X
Y
Z

1
A (8)

3 This approximation can in fact be justi�ed even for quite small viewing distances;
see (G�arding and Lindeberg 1994b).

4 A straightforward application of the method in the whole visual �eld yields the gra-
dient of inverse cyclopean distance rather than inverse depth. A suitable coordinate
transformation converts one of these representations to the other.



where a = A=A0 and b = B0 � (A=A0)B. We shall refer to this as a relief trans-

formation; it is an instance of what is sometimes referred to as the bas-relief

ambiguity. Examples of the e�ect of the relief transformation (8) are shown in
Figure 2.
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Fig. 2. Relief transformations. The diagrams show horizontal cross-sections of a group
of surfaces related by the relief transformation (8). In these examples the parameter
B = 1=R is varied whereas A = I cos 
 is held �xed. The position of the cyclopean
eye is at (0; 0). Note that planes are mapped to planes, and that the depth ordering is
preserved.

Koenderink and van Doorn (1976, 1991) have pointed out that many as-
pects of perceived visual shape are invariant against relief transformations. This
fact was noted already by Helmholtz (1910), and artists have long exploited it.
To develop these remarks formally, we �rst note that (8) is a linear transfor-
mation in projective three-space IP3, which means that it preserves coplanarity
and collinearity. Moreover, if the scene is thought of as consisting of a stack
of \depth planes" of constant Z, the transformation (8) preserves the order-

ing of these planes. Consequently, shape judgements such as planar{curved or
convex{concave can be performed without resolving the relief ambiguity. A use-
ful and intuitively appealing way of understanding (8) is as an equivalence class

of three-dimensional shapes; this is well-de�ned since it de�nes a transformation
group.

The idea of representing the structure of the three-dimensional environment
up to a relief transformation has also been applied to unify theories of binocular
stereopsis in human vision (G�arding et al 1994).

Cyclotorsion and DisparityDeformation. The preceding analysis is similar
but not equivalent to the \disparity deformation"model proposed by Koenderink
and van Doorn (1976). Both methods are based on the small baseline approxi-
mation, but the deformation model also allows arbitrary cyclotorsion around the



line of sight of each camera. To obtain this invariance, however, it is necessary to
estimate the full structure of M� up to scale (i.e., three parameters), unlike the
method proposed above which only uses the normalized horizontal components
ofM� (i.e., two parameters). This di�erence will turn out to be of great practical
importance for the computational technique that will be described next.

4 Direct Estimation of the Disparity Gradient

The preceding analysis has shown how to interpret the disparity gradient under
conditions of known or unknown dynamic viewing geometry. These results can
be applied to dense disparity �elds computed by any stereo matching method,
but in the following we shall use them for direct estimation of the disparity
gradient, without �rst establishing a large number of point correspondences. We
shall only assume the ability to �xate, i.e., to establish correspondence for a
single point. Moreover, this correspondence will be allowed to be approximate.

Basically, the technique by which this will be achieved is to compute a cer-
tain descriptor of the structure of the local brightness pattern in the left and
right image patches, and then to use the di�erence between these descriptors to
compute the required parameters of the local a�ne transformation between the
patches. This method is an adaptation of a computational framework for estima-
tion of shape-from-texture proposed in (Lindeberg and G�arding 1993; G�arding
and Lindeberg 1994a), which will be brie
y reviewed below.

This approach di�ers from those based on orientational disparity (Koenderink
and van Doorn 1976; Wildes 1991) in that it does not require a preprocessing
step in which contours are extracted from the image; rather, it is based directly
on the outputs of simple local operators (more precisely, �rst-order Gaussian
derivatives). In this respect it is therefore similar to the �lter-based approach
proposed by Jones and Malik (1992), but whereas in that approach the param-
eters of the local left-to-right a�ne transformation are estimated by exhaustive
search in the space of permissible transformations, we derive a closed-form ex-
pression for the transformation parameters directly in terms of the operator
outputs.

4.1 The Windowed Second Moment Descriptor

A simple image descriptor that allows estimation of linear spatial distortion
can be de�ned as follows. Let L: IR2 ! IR denote the image brightness and let
rL = (Lx; Ly)

T be its gradient. Given a symmetric and normalized Gaussian
window function w, the windowed second moment matrix �L can be de�ned as

�L(q) =

�
�11 �12
�21 �22

�
= Eq

�
L2

x LxLy
LxLy L2

y

�
= Eq((rL)(rL)T ); (9)

where Eq is an averaging operator describing the e�ect of integration with the
window function w centered at q. Di�erent versions of it have been used by
several authors; see e.g. (Lindeberg and G�arding 1993) for a review.



Transformation property. Let B be an invertible linear transformation of the
image domain and de�ne a transformed intensity pattern R: IR2 ! IR by L(�) =
R(B�). Then, it can be shown that �L(q) transforms according to

�L(q) = BT �R(p)B; (10)

where �R(p) is the second momentmatrix of R at p = Bq computed with respect
to the backprojection of the window function w.

Directional statistics. The trace of a second moment descriptor �L is equal to
the average squared gradient magnitude. The remaining two degrees of freedom
of the descriptor contain directional information, which can be represented by

~C = (�11 � �22)=trace �; ~S = 2�12=trace �: (11)

It is easily veri�ed that ( ~C; ~S)T is invariant with respect to uniform scaling of ei-
ther brightness L or the spatial coordinates (x; y). The computational technique
described below uses only these directional components of �L.

4.2 Estimating Surface Orientation

Let �L and �R denote the windowed second moment matrices computed at the
left and right images of the �xation point. If the linearized mapping from the
left to the right image is denoted by M�, then from (10)

�L =MT
�
�RM�: (12)

If �L and �R are known, then (12) provides three equations for the four param-
eters of the linear transformationM�; it can be shown that the general solution
to (12) is

M� = �
�1=2
R WT�

1=2
L (13)

where W is an arbitrary orthogonal matrix, and the notation �1=2 indicates
the unique positive de�nite symmetric solution to the equation X2 = �. Here,
however, the viewing geometry provides the additional constraint m21 = vx = 0
(assuming no cyclotorsion), so in this case it is in fact possible to recover M�

completely from �L and �R (excluding degenerate cases).
To recover the surface orientation, however, only the normalized horizontal

components m̂11 = m11=m22 and m̂12 = m12=m22 are needed (see Section 3).
These components can be computed from the di�erence in the directional struc-
ture of �L and �R, while ignoring any di�erence in magnitude. As pointed out
earlier, this procedure has the additional advantage that there is no need to
know the angle of asymmetric gaze.

Expressing M� in terms of (m̂11; m̂12;m22) and using m21 = 0, (12) can be
rewritten

�L = m2

22

 
m̂2

11
�R
11

m̂11(m̂12�
R
11
+ �R

12
)

m̂11(m̂12�
R
11
+ �R

12
) m̂2

12
�R
11
+ 2m̂12�

R
12
+ �R

22

!
; (14)



where �Rij denotes the components of �R. Substituting the directional compo-

nents ( ~C; ~S)T de�ned by (11) into (14), we obtain after some algebraic manipu-
lation

m̂11 =
1 + ~CL

1 + ~CR

~FR
~FL
; m̂12 =

~SL ~FR � ~SR ~FL

(1 + ~CR) ~FL
; (15)

where
~FL =

q
1� ~C2

L � ~S2L;
~FR =

q
1� ~C2

R � ~S2R:

5 Experimental Results

Figure 3 shows the ellipse representation of the windowed second momentmatrix
computed at the �xation point and four neighbouring points superimposed on
a bright copy of a synthetic stereo pair (arranged for cross-eyed fusion). The
images are perspective views of a sinusoidal pattern, and contain 5% additive
Gaussian noise. The visual angle across the diagonal of each image is 32�, and
the vergence angle is � = 10�. The orientation of the surface is (P̂ = 1; Q̂ =

p
2).

Fig. 3. Local surface orientation estimated from the gradient of horizontal dis-
parity in a synthetic stereo pair with 5% noise. The columns show from left to
right; (a-b) Bright copies of the right and left images with the computed texture
descriptor superimposed. (c) reference surface orientation, (d) estimated surface
orientation at �ve manually matched points. (c) and (d) are shown with respect
to the left eye's view.

At the �xation point, the estimated normalized horizontal disparity gradient
was (m̂11 = 1:405; m̂12 = 0:577), and from (4) we then obtain the estimated
surface orientation (P = 0:96; Q = 1:38). The error in the estimate, expressed
as the angle between the estimated and true surface normals, is only 0:9�. The
results obtained at the remaining four points were very similar, as can be seen
from the graphical representation shown to the right in Figure 3.

Figure 4 shows the results obtained by applying the same procedure to a real
stereo pair. A number of point pairs were matched manually, and �L and �R were
then computed at each of these points. Together the estimates clearly indicate
the curved shape of the object, although a few of the individual estimates contain
signi�cant errors.



Fig. 4. Local surface orientation estimated from the gradient of horizontal dis-
parity in a real stereo image of a curved object (arranged for cross-eyed fusion).
The estimates are shown with respect to both the right and the left views.

6 Conclusions

We have analyzed the geometric information content of the gradient of binocular
disparity, both for the cases of known and unknown dynamic viewing geometry.
If the vergence angle is known, the disparity gradient can be used to recover
local surface orientation independently of the gaze angle. If the vergence angle is
unknown, the disparity gradient determines the three-dimensional structure of
the scene up to a relief transformation, which preserves projective properties as
well as depth ordering. As an application of the geometric analysis, we presented
a direct and inexpensive computational technique which allows a local estimate
of surface orientation to be computed directly from the local statistics of the left
and right image brightness gradients, without iterations or search.

The direct method described in Section 4 uses a very limited amount of
information to estimate the a�ne transformation between two image patches.
The performance in terms of accuracy can therefore not be expected to match
that which can be obtained by more elaborate and computationally intensive
methods; the value of the direct approach lies in the fact that it makes hypotheses
about local orientation available with a few simple low-level operations and a
limited computational e�ort. As needed, each hypothesis could then be veri�ed
and improved by a separate mechanism. A complementary way of improving the
accuracy is described in (Lindeberg and G�arding 1994).
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