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Abstract

This article describes a method for reducing the shape distortions due to scale-
space smoothing that arise in the computation of 3-D shape cues using operators
(derivatives) de�ned from scale-space representation. More precisely, we are con-
cerned with a general class of methods for deriving 3-D shape cues from 2-D image
data based on the estimation of locally linearized deformations of brightness pat-
terns. This class constitutes a common framework for describing several problems
in computer vision (such as shape-from-texture, shape-from-disparity-gradients,
and motion estimation) and for expressing di�erent algorithms in terms of similar
types of visual front-end-operations.

It is explained how surface orientation estimates will be biased due to the use
of rotationally symmetric smoothing in the image domain. These e�ects can be
reduced by extending the linear scale-space concept into an aÆne Gaussian scale-
space representation and by performing aÆne shape adaptation of the smoothing
kernels. This improves the accuracy of the surface orientation estimates, since
the image descriptors, on which the methods are based, will be relative invariant
under aÆne transformations, and the error thus con�ned to the higher-order
terms in the locally linearized perspective transformation.

A straightforward algorithm is presented for performing shape adaptation
in practice. Experiments on real and synthetic images with known orientation
demonstrate that in the presence of moderately high noise levels the accuracy is
improved by typically one order of magnitude.

�A short version of this article has been published in Proc. 3rd European Conference on Computer
Vision, (Stockholm, Sweden), May 1994, pp. 389{400, vol. 800 of Springer-Verlag Lecture Notes in
Computer Science.
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1 Introduction

This article deals with the problem of estimating cues to local three-dimensional
scene structure using textural properties measured from either a single monocular
image or a binocular image pair. The notion of scale is of crucial importance in this
context, and we consider the problem of adapting traditional scale-space theory to the
shape estimation process, thereby reducing bias e�ects due to rotationally symmetric
smoothing.

1.1 Scale-space representation

To derive any information from image data it is necessary to interact with it using
operators. Some of the very fundamental questions in computer vision concern what
operators to use, how large they should be, and where they should be applied. If these
problems are not properly dealt with, the task of interpreting the operator response
can be very hard.

A systematic approach that has been developed to address the problem of what
operators to use is scale-space theory . It focuses on the basic property of image data
that image structures, in general, exist at di�erent scales and the fact that one cannot
expect to know in advance at what scales relevant image structures exist. A funda-
mental assumption is that in cases when no a priori information is available, the only
reasonable approach is to treat image structures at all scales simultaneously and as
uniformly as possible. Analogously, all image points should be treated in a similar
manner.

Starting from these basic properties several axiomatic derivations have been given
concerning what image operators to use (Witkin 1983, Koenderink 1984, Babaud,
Witkin, Baudin & Duda 1986, Yuille & Poggio 1986, Lindeberg 1990, Lindeberg
1993a, Lindeberg 1994c, Lindeberg 1994a, Koenderink & van Doorn 1990, Florack,
ter Haar Romeny, Koenderink & Viergever 1992). The essence of these results is that
if one assumes that the �rst stages of visual processing should be as uncommitted as
possible and have no particular bias, then, within the class of linear transformations,
convolution with Gaussian kernels and their derivatives is singled out as a canonical
class of low-level operations. The output from these operators can in turn be used
as a basis for a large number of early visual operations, such as feature detection,
matching, and computation of shape cues.

It is, however, well-known that shape distortions may arise in image descrip-
tors de�ned from the scale-space representation based on the rotationally symmetric
Gaussian kernel and its derivatives. In edge detection, for example, smoothing across
\object boundaries" can a�ect both the shape and the localization of edges. A corre-
sponding problem arises in the derivation of three-dimensional shape cues from image
data. In shape-from-texture, for example, rotationally symmetric smoothing a�ects
the local anisotropy in the image (measured, for instance, in terms of the distribution
of gradient directions), which means that surface orientation estimates may be biased.
A common e�ect that occurs in practice is that the slant angle (the angle between
the visual ray and the surface normal) is systematically underestimated.



1.2 Non-uniform smoothing methods

To reduce the problems of shape distortion in edge detection, (Perona & Malik 1990)
proposed the use of anisotropic di�usion as a generalization of the linear scale-space
representation (which is generated by the (linear) di�usion equation
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1

2

NX
i=1

@xixiL (1)

with initial condition L(�; 0) = f , where f denotes the original signal). The basic idea
is to modify the conductivity c(x; t) in a non-linear version of the di�usion equation
@tL = 1

2 rT (c(x; t)rL) such as to favour intra-region smoothing to inter-region
smoothing. In principle, they solved the di�usion equation

@tL = 1
2 rT (h(jrL(x; t)j)rL) (2)

for some monotonic decreasing function h : R+ ! R+ . The intuitive e�ect of this
evolution is that the conductivity will be low where the gradient magnitude is high
and vice versa.

This idea has been further developed by several authors. (Nordstr�om 1990) showed
that by adding a bias term to the di�usion equation, it was possible to relate this
method to earlier considered regularization approaches by (Terzopoulos 1983) and
(Mumford & Shah 1985). Alternative modi�cations in terms of adaptive smoothing
schemes have been presented by (Saint-Marc, Chen & Medioni 1991, Nitzberg &
Shiota 1992).

By adopting an axiomatic approach, (Alvarez, Guichard, Lions & Morel 1993)
have shown that given certain constraints on a visual front-end, a natural choice of
non-linear di�usion equation is the equation

@tL = 1
2 jrLjrT (rL=jrLj) = 1

2 L�u�u; (3)

where L�u�u represents the second order derivative in the tangent direction to a level
curve. This evolution, also used by (Osher & Sethian 1988) and (Kimia, Tannenbaum
& Zucker 1990), means that level curves move in the normal direction with a velocity
proportional to the curvature of the level curves. For a slightly modi�ed version of
(3),

@tL = 1
2 (jrLj2 L�u�u)

1=3; (4)

the solutions are relative invariant under aÆne transformations of the spatial coordi-
nates (Alvarez et al. 1993). This property has been used by (Sapiro & Tannenbaum
1993) for de�ning an aÆne invariant curve evolution scheme.

An interesting approach to describing non-linear di�usion more generally is pur-
sued by (Florack, Salden, t. Haar Romeny, Koenderink & Viergever 1995), who con-
sider general non-linear coordinate transformations of the spatial coordinates as a
common framework for expressing such operations. Interestingly, this approach cov-
ers several of the above-mentioned methods. A more general overview of non-uniform
smoothing approaches can be found in the book edited by (ter Haar Romeny 1994).

1.3 AÆne shape-adapted smoothing

Improvements relative to the rotationally symmetric scale-space representation can
also be obtained using linear theory. As has been argued by several authors, it can



in certain situations be advantageous to use �lters that correspond to di�erent scale
values along di�erent directions; for example a large scale value along the direction
of an edge, and a smaller scale value in the perpendicular direction. At junctions, on
the other hand, where several directions meet, a converse behaviour may be desired
to better resolve the directional information.

In this article we shall develop how linear, or aÆne, shape adaptation of the
smoothing kernels can be used as an important mechanism for reducing the shape
distortions that occur when using the traditional rotationally symmetric scale-space
representation for computing three-dimensional shape cues from image data. The
basic underlying approach we shall adopt for relating image data to local surface
shape is to observe how surface patterns are distorted under projective transforma-
tions. This problem can be substantially simpli�ed by approximating the projective
transformation with its locally linearized transformation (the derivative).

The basic idea of using measurements of local linear, or aÆne, distortions of
two-dimensional patterns as a cue to three-dimensional structure goes back to (at
least) (Koenderink & van Doorn 1976), and has been applied to several shape-from-
X problems, such as shape-from-texture (G�arding 1992, Lindeberg & G�arding 1993,
Malik & Rosenholtz 1993), shape-from-disparity (Wildes 1981, Jones & Malik 1992,
G�arding & Lindeberg 1996), and motion estimation (Koenderink & van Doorn 1991,
Bergen, Anandan, Hanna & Hingorani 1992, Weber & Malik 1993, Cipolla, Okamoto
& Kuno 1993). Related works on the estimation of aÆne transformations have been
presented by (Manmatha 1994, Sato & Cipolla 1994).

The advantages of shape-adapted smoothing in shape-from-texture were �rst
pointed out by (Stone 1990), who proposed to adapt the smoothing kernels to be
isotropic when backprojected to the surface, rather than in the image. He also sug-
gested an iterative scheme, based on the principle of �rst estimating the surface
orientation and then adapting the kernel shape accordingly.

Here, we shall apply and generalize this idea, and demonstrate how the accuracy of
shape-from-X methods based on local aÆne distortion can be improved by extending
the rotationally symmetric linear scale-space representation to an aÆne Gaussian

scale-space representation based on Gaussian kernels with arbitrary (positive de�nite)
covariance matrices. The methods we shall consider here are based on a speci�c image
descriptor called the second moment matrix , which re
ects the local distribution of
gradient directions in the image. However, the need for shape adaptation arises in
many other contexts (such as stereo matching over windows) if one aims at image
descriptors that obey transformation properties exactly and do not bias measurements
between corresponding image patches.

2 Intuitive idea for shape adaptation

To motivate the need for shape adaptation and to give an intuitive illustration of the
basic idea behind the presented approach, let us study an idealized model pattern for
the e�ect of scale-space smoothing can be analysed in closed form. Consider �rst a
non-uniform Gaussian blob

f(x; y) = g(x; l21) g(y; l
2
2) (l1 � l2 > 0); (5)



as a simple linearized model of the projection of a rotationally symmetric Gaussian
blob. The foreshortening, �, and the slant angle, �, are given by

� = cos � =
l2
l1
; (6)

and the tilt direction (the direction of the projection of the surface normal onto
the image plane) is � = �=2. From the semi-group property of the Gaussian kernel
g(�; t1) � g(�; t2) = g(�; t1 + t2), it follows that the scale-space representation of f at
scale t is

L(x; y; t) = g(x; l21 + t) g(y; l22 + t): (7)

This means that under scale-space smoothing foreshortening varies as

�(t) =

s
l22 + t

l21 + t
; (8)

i.e., it increases and tends to one, which means that after a suÆciently large amount
of smoothing the image will eventually be interpreted as 
at.

On the other hand, if we have initial estimates of the slant angle and the tilt
direction (�̂; �̂), say computed using rotationally symmetric Gaussian smoothing, a
straightforward compensation technique is to let the scale parameter in the (esti-
mated) tilt direction, denoted tt̂ and the scale parameter in the perpendicular direc-
tion, denoted tb̂ be related by

tt̂ = tb̂ cos
2 �̂: (9)

If this estimate is correct, then the slant estimate computed from the image data in
the shape-adapted scale-space representation will be una�ected by the non-uniform
smoothing operation. To algebraically illustrate this property, assume �rst, for sim-
plicity, that the estimate of the tilt direction is correct (�̂ = � = �=2) and convolve
the signal with a non-uniform Gaussian kernel

g(x; y; tt̂; tb̂) = g(x; tt̂) g(y; tb̂): (10)

From the semi-group property of the Gaussian kernel it follows that the shape-adapted
scale-space representation of f using non-uniform smoothing is

L(x; y; t) = g(x; l21 + tb̂) g(y; l
2
2 + tt̂); (11)

and the new foreshortening estimate corresponding to (8) is

�̂ = �(�̂; tt̂; tb̂) =

s
l22 + tt̂
l21 + tb̂

= j cos �j
s
1 +

tb̂
l21 + tb̂

�
cos2 �̂

cos2 �
� 1

�
: (12)

It is clear that if the initial slant estimate is correct (�̂ = �), then the estimate of
foreshortening is correct (�̂ = �). This means that surface orientation estimate will be
una�ected by the smoothing operation (and corresponds to rotationally symmetric
smoothing in the tangent plane to the surface).

In practice, one cannot, of course, assume that correct values of (�; �) are known,
since this requires knowledge about the solution to the problem we are to solve. A
more realistic formulation of the problem it therefore to �rst compute initial surface



orientation estimates using rotationally symmetric smoothing (based on the principle
that in situations when no a priori information is available, the �rst stages of visual
processes should be as uncommitted as possible and have no particular bias). (For
this speci�c example the tilt angle will be correct, whereas the slant angle will be
underestimated if a non-zero value of t is used). Then, when a hypothesis about a
certain surface orientation (�̂0; �̂0) has been established, an iterative method for shape
adaptation can be formulated based on successive estimates of the surface normal,

�̂n+1 = arccos �(�̂n; tt̂; tb̂) = h(�̂n): (13)

From the derivative of this mapping,

j(@�̂h)(�̂)j = j(@�̂ arccos �)(�̂; tb̂ cos �̂; tb̂)j = flet �̂ = �g = tb
l21 + tb

< 1;

it is clear that the true value of �̂ is a convergent �xed point of the above equation
(with � = cos �̂). Hence, in this example, the method is guaranteed to converge to the
true solution, provided that the initial estimate is suÆciently close to the true value.

Although this example concerns a speci�c example (orthographic projection of a
rotationally symmetric surface pattern) it illustrates the following general properties:

� Isotropic smoothing in the image domain distorts the two-dimensional \shape"
of the image pattern. Unless this e�ect is taken into account, i.e. unless shape
adaptation is performed, the surface orientation estimates will be biased.

This problem can be expected to arise for any shape-from-X method based on
operators de�ned from the rotationally symmetric Gaussian kernel.

� A �xed-point property is a natural indicator of successful shape adaptation.

More generally, a �xed-point property re
ects the fact that the shape of the
smoothing kernel agrees with the shape of the image structure, and is therefore
independent any speci�c assumption about the surface texture (e.g. isotropy).
If such a �xed-point is preserved under linear transformations, then image de-
scriptors computed at the �xed point have a predictable behaviour under linear
transformations, and it is possible to preserve transformation properties exactly.

In the following, we shall develop these ideas further and apply them to the prob-
lems of estimating local surface orientation from either monocular texture distortion
or from the gradient of binocular disparity. The speci�c shape-from-X methods we
shall be concerned with are based on an image descriptor called the windowed second

moment matrix , which is reviewed in section 3. The aÆne Gaussian scale-space rep-
resentation described in section 4 provides the necessary theoretical basis for de�ning
a shape-adapted second moment descriptor in section 5. In section 6, an iterative pro-
cedure for computing this descriptor is proposed, and in section 7 it is reviewed how
shape-from-texture and shape-from-disparity-gradients algorithms can be expressed
in terms of second moment matrices. Experimental results of including shape adap-
tation in these schemes are presented in section 8, and section 9 summarizes the
approach.



3 The windowed second moment descriptor

Several local shape estimation problems can be formulated in terms of estimating the
parameters of a local aÆne1 transformation, either between the image and a surface
patch with known structure, or between two image patches. The second moment
matrix described in this section is a highly useful descriptor for this purpose; in
principle it makes it possible to express the transformation parameters directly in
terms of the parameters of the computed descriptors. The second moment matrix
also �ts naturally within the scale-space framework.

Because the second moment descriptor has only three degrees of freedom, it is not
possible to estimate all parameters of a general linear transformation; the transfor-
mation is determined up to an arbitrary rotation. (More precisely, given two positive
de�nite second moment matrices �L and �R, the transformation property (17) gives

B = �
�1=2
R R�

1=2
L ; (14)

where �1=2 represents any matrix that satis�es (�1=2)T (�1=2) = � andR is an arbitrary
rotation matrix.) Fortunately, however, further geometric constraints can in many
cases be exploited to eliminate this ambiguity.

In this section, we shall review the de�nition of the basic (non-adapted) second
moment descriptor based on isotropic smoothing. After introducing the aÆne Gaus-
sian scale-space representation in section 4, we shall then in section 5 de�ne a second
moment descriptor that allows for shape adaptation.

3.1 Measuring local aÆne distortion

Let L : R2 ! R denote the image brightness and let rL = (Lx; Ly)
T be its gradient.

Given a symmetric and normalized window function w, the windowed second moment

matrix � : R2 ! SPSD(2)2 can be de�ned as

�L(q) =

Z
x2R2

(rL(x))(rL(x))T w(q � x) dx

=

Z
(x1;x2)2R2

�
L2
x1 Lx1Lx2

Lx1Lx2 L2
x2

�
w(q1 � x1; q2 � x2) dx1 dx2;

(15)

where q = (q1; q2) 2 R2 denotes the image point at which it is computed. Introduce an
averaging operator Eq describing the e�ect of integration with the window function
centered at q. Then, (15) can more compactly be written

�L(q) =

�
�11 �12
�21 �22

�
= Eq

�
L2
x LxLy

LxLy L2
y

�
= Eq((rL)(rL)T ): (16)

This type of descriptor can be thought of as the covariance matrix of a two-dimensional
stochastic variable, or as the moment of inertia of a mass distribution in the plane.
Di�erent versions of it have been used by several authors, for example, (F�orstner &
G�ulch 1987, Big�un 1990, Brown & Shvaytser 1990, Blake & Marinos 1990a, Big�un,

1For the problems considered in this article, the translational part of the aÆne transformation is
either irrelevant or will be assumed to be known. Therefore, the terms \aÆne" and \linear" are used
interchangeably.

2The notation SPSD(2) stands for the cone of symmetric positive semide�nite 2� 2 matrices.



Granlund & Wiklund 1991, Rao & Schunk 1991, Super & Bovik 1992, G�arding 1992,
G�arding 1993, Lindeberg & G�arding 1993).

The usefulness of this descriptor with respect to estimation of linear distortion
can be realized from its transformation property under linear transformations. Let
B be an invertible linear transformation of the image domain (represented by an
invertible 2 � 2 matrix), and de�ne a transformed intensity pattern R : R2 ! R by
L(�) = R(B�). Then, it can be shown that �L(q) transforms according to

�L(q) = BT �R(p)B; (17)

where �R(p) is the second moment matrix of R at p = Bq computed with respect to
the \backprojected" normalized window function

w0(� � p) = (detB)�1w(� � q) (18)

and � = B�. This result can be easily veri�ed by inserting rL(�) = BTrR(B�) into
(16), which gives

�L(q) =

Z
�2R2

w(q � �)BT (rR(B�))(rR(B�))TB d�

=BT

�Z
�2R2

w(B�1(p� �)) (rR(�))(rR(�))T (detB)�1 d�
�
B:

The integral within brackets can be recognized as the second moment matrix of R at
p if w0 according to (18) is used as window function. Clearly, the transformed window
function w0 is normalized if w is, sinceZ

�2R2
w(B�1(� � p))(detB)�1 d� =

Z
�2R2

w(� � q) d�:

3.2 Representing and selecting scale

Computation of the second moment matrix from image data (or any other non-trivial
texture descriptor) involves the integration of local image statistics (here, gradient
directions) over �nite-sized image regions. This immediately leads to two scale prob-
lems. The �rst problem concerns the scale(s) at which to compute the primitives for
the texture descriptors (here, the �rst order derivatives). This scale determining the
amount of initial smoothing in the (traditional �rst-stage) scale-space representation
of the image is called local scale (denoted t). The second scale problem concerns the
size of the regions over which to collect the statistics. This scale controlling the size
of the window function (which is selected as a Gaussian function) is referred to as
integration scale (denoted s).

With respect to these two scale concepts, the brightness function L in (15) can be
reinterpreted as the scale-space representation of any given image f , and the window
function w be associated with a scale parameter. This gives the multi-scale windowed

second moment matrix

�L(q; t; s) =

Z
x02R2

(rL)(x0; t) (rL)T (x0; t) g(q � x0; s) dx0: (19)

This descriptor depends on two scale parameters. To use it for distortion measure-
ments it is necessary to have some mechanism for selecting scale levels automatically,



since scales useful for measuring aÆne transformations cannot, in general, be assumed
to be known in advance. In typical shape-from-X problems, such scale levels can be
expected to vary substantially over the image, depending on the type of texture con-
sidered, the distance to the surface, and the noise in the image formation process.

One general principle for automatic scale selection has been proposed in (Lindeberg
1993b, Lindeberg 1994b). The basic idea is to study the evolution over scales of (pos-
sibly non-linear) combinations of normalized derivatives de�ned by

@�i =
p
t @xi ; (20)

(where � = x=
p
t are normalized coordinates) and to select scale levels from the scales

at which such entities based on normalized derivatives assume local maxima over
scales. In junction detection and edge detection, useful entities for selecting detection
scales are the normalized rescaled curvature of level curves, ~�norm = t2 jrLj2 L�u�u,
and the normalized gradient magnitude, Lv;
�norm =

p
t Lv, respectively.

With respect to the problem of computing the second moment matrix descriptors,
a useful strategy is to select integration scales at a given point from the scale at which
the determinant or the trace of the normalized second moment matrix (Lindeberg &
G�arding 1993, G�arding & Lindeberg 1996)

det�L;norm = t2 det�L trace �L;norm = t trace�L (21)

assumes local maxima over scales. (In practice, the scale is selected as some constant

 � 1 times this scale value, typically 
 = 1,

p
2, or 2). Ideally, this means that the

size of the image patch for which the descriptor is computed re
ects the characteristic
size of the signi�cant image structures contained in the patch.

Then, given a value of the integration scale, a value for the local scale parameter

must be selected. If the noise level is known and the perspective e�ects are small, it
may be suÆcient to use a �xed value. A more sophisticated approach is to select the
local scale(s) for which the normalized anisotropy

~Q =

p
trace2 �L � 4 det�L

trace�L
; (22)

assume local maxima over scales. The motivation for this choice is that suppression of
(isotropic) noise is likely to lead to increasing anisotropy, whereas shape distortions
due to isotropic smoothing are likely to lead to decreasing anisotropy. Selecting a
local maximum over scales gives a natural balance between these two e�ects.

An alternative methodology suitable for blob-like textures (Lindeberg 1993b, Lindeberg
1994b)3 is to simultaneously select interesting points and integration scales from scale-
space maxima (points that are local extrema with respect to both scale and space)
of

traceHnormL = t (Lxx + Lyy); detHnormL = t2 (LxxLyy � L2
xy); (23)

where HnormL denotes the normalized Hessian matrix of L. Then, given a point of
interest and an integration scale s, the local scale is determined as described above.

3An intuitive motivation why this approach is suitable for blob-like image structures, is that the
Laplacian operator can be expected to give a strong spatial response near the center of the blob,
provided that the scale is tuned to the size of the blob. In addition, the scale, at which the maximum
normalized Laplacian response over scales is assumed, can be expected to re
ect the size of the blob.
The determinant of the Hessian has the additional advantage that it relative invariant under aÆne

transformations. A disadvantage of detHnorm, however, is that this di�erential expression is more
likely to give strong responses near corners.



4 AÆne Gaussian scale-space

When dealing with linear transformations of the spatial domain, a natural general-
ization of the linear scale-space representation (based on the rotationally symmetric
Gaussian kernel) is the aÆne Gaussian scale-space representation generated by con-
volution with non-uniform Gaussian kernels (Lindeberg 1994c). Given a symmetric
positive semi-de�nite (covariance) matrix, �t 2 SPSD(2), the non-uniform Gaussian
kernel in the two-dimensional case can be de�ned by

g(x; �t) =
1

2�
p
det�t

e�x
T��1

t x=2; (24)

where x 2 R
2 . In the special case when the matrix �t is a scalar entity t times the

unit matrix I (�t = tI), this function corresponds to the ordinary (uniform) Gaussian
kernel with scale value t.

Given any function f : R2 ! R, the aÆne Gaussian scale-space representation of f
can then be de�ned as the three-parameter family of functions L : R2 �SPSD(2)! R

L(�; �t) = g(�; �t) � f(�): (25)

This representation, considered in more detail in (Lindeberg 1994a), obeys the same
scale-space properties as the linear scale-space representation, except those speci�cally
connected to rotational symmetry. Moreover, due to the linearity, the scale-space
properties transfer to spatial derivatives of the scale-space representation as well
as to linear combinations of these. In this respect, the aÆne Gaussian scale-space
representation constitutes the presumably simplest extension of the linear scale-space
model to situations where further information is available.

4.1 Transformation property under linear transformations

A basic reason for introducing the aÆne Gaussian scale-space is that it is closed under
linear (and aÆne) transformations of the spatial coordinates. Let fL; fR : R

2 ! R be
two intensity patterns related by an invertible linear transformation � = B�, i.e.,

fL(�) = fR(B�); (26)

and de�ne the aÆne Gaussian scale-space representations by

L(�; �L) = g(�; �L) � fL(�); (27)

R(�; �R) = g(�; �R) � fR(�); (28)

where �L;�R 2 SPSD(2). Then, L and R are related by

L(�; �L) = R(�; �R); (29)

where
�R = B�LB

T : (30)

Hence, for any matrix �L there exists a matrix �R such that the aÆne Gaussian
scale-space representations of fL and fR are equal (see the commutative diagram in
�gure 1). This property does not hold for the traditional linear scale-space representa-
tion based on the rotationally symmetric Gaussian (unless the linear transformation
can be decomposed into rotations and uniform rescalings of the spatial coordinates).



L(�; �L) | � = B� ! L(�; B�LB
T )

" "

�g(�; �L) �g(�; B�LB
T )

j j

fL(�) | � = B� ! fR(�)

Figure 1: Commutative diagram of the aÆne Gaussian scale-space representation
under linear transformations of the spatial coordinates in the original image.

Proof: To verify the transformation property, insert d(B�) = detB d� into the (25):

L(q; �L) =

Z
�2R2

g(q � �; �L) fL(�) d�

= (detB)�1
Z
�2R2

g(B�1(Bq �B�); �L) fR(B�) d(B�):

(31)

Under a linear transformation, the non-uniform Gaussian kernel transforms as

g(B�1�; �L) =
1

2�
p
det�L

e�(B
�1�)T��1

L (B�1�)=2

=
p
detBBT

1

2�
p
B det�LBT

e��
T (B�LB

T )�1�=2;
(32)

which gives
g(B�1�; �L) = detB g(�; B�LB

T ): (33)

By inserting (33) in (31) with � = Bq � B� and by letting � = B� with p = Bq it
follows that

L(q; �L) =

Z
�2R2

g(Bq �B�; B�LB
T ) fR(B�) d(B�)

=

Z
�2R2

g(Bq � �; B�LB
T ) fR(�) d�

= R(Bq; B�LB
T ) = R(p; �R);

(34)

which proves (29) and (30).

4.2 Interpretation in terms of eigenvectors and eigenvalues

The e�ect of smoothing by convolution with the non-uniform Gaussian kernel can be
easily understood in terms of the eigenvectors �b and �t and the eigenvalues tb � tt > 0
of ��1t . Let u = (ub; ut) denote coordinates along the two eigenvectors respectively.
The two coordinate systems are related by u = Ux, where U is a unitary matrix
(UUT = UTU = I) such that �t = UT�t U and ��1t = UT��1t U , where �t is a
diagonal matrix with tb and tt along the diagonal. In the transformed coordinates,
the quadratic form can be written

xT��1t x = xTUT ��1t Ux = uT��1t u =
u2b
tb

+
u2t
tt
; (35)



which means that the non-uniform Gaussian kernel in this coordinate system assumes
the form

g(ub; ut �t) =
1

2�
p
tbtt

e�(u
2
b
=2tb+u

2
t=2tt) =

1p
2�tb

e�u
2
b
=2tb

1p
2�tt

e�u
2
t =2tt : (36)

In other words, convolution with (24) corresponds to (separable) smoothing with a
one-dimensional Gaussian kernel with scale value tb along the �b-direction, and a one-
dimensional Gaussian kernel with scale value tt along the �t-direction (see �gure 2 for
a few examples of such kernels).

Figure 2: Examples of non-uniform Gaussian kernels. From left to right the
eigendirection corresponding to the maximum eigenvalue is (0Æ; 0Æ; 30Æ; 60Æ) and
the minimum eigenvalue is decreased such that it corresponds to slant angles of
(0Æ; 22:5Æ; 45Æ; 77:5Æ).

4.3 Di�usion equation interpretation of aÆne Gaussian scale-space

Convolution with the non-uniform Gaussian kernel can also be interpreted in terms
of the di�usion equation. Assume that tt and tb are related to a one-dimensional scale
parameter t by

tb = t�; tt = t=�; (37)

for some constant4 � > 1. Then, in terms of the transformed coordinates, (ub; ut),
the non-uniform scale-space representation given by (25) satis�es the non-uniform
di�usion equation

@tL = 1
2 (� @ubub +

1

�
@utut)L (38)

with initial condition L(�; 0) = f . With �t = t�0, where �0 is a diagonal matrix with
entries � and 1=�, and with ru = (@ub ; @ut)

T , the matrix form of this equation is

@tL = 1
2 rT

u�0ruL: (39)

In terms of the original coordinates, (x; y), and with r = (@x; @y)
T , the non-uniform

di�usion equation assumes the form

@tL = 1
2 rT�0rL; (40)

where �0 = UT�0U is the positive de�nite matrix corresponding to �0 rotated back
to the (x; y) coordinate system (i.e. �t = t�0). (Here, it has without loss of generality
been assumed that the determinants of �0 and �0 are equal to one.)

4In the example in section 2 above, � corresponds to 1= cos�.



4.4 Fourier transform of the non-uniform Gaussian kernel

From the Fourier transform of the one-dimensional Gaussian kernel

G(!; t) =

Z
1

x=�1
g(x; t) e�i!xdx = e�!

2t=2 (41)

it directly follows that the Fourier transform of the non-uniform Gaussian kernel in
the transformed (ub; ut) coordinates is

G(wb; wt; �t) = e�tbw
2
b=2 e�tbw

2
t =2 = e�(tbw

2
b+ttw

2
t )=2 = e�w

T�tw=2:

With w = U!, and ! = (!x; !y) the Fourier transform in the original coordinate
system can then be written

G(!; �t) = e�!
T�t!=2: (42)

From this expression it can be immediately realized that the semi-group property
transfers to the non-uniform Gaussian kernel

G(!; �1) �G(!; �2) = G(!; �1 +�2): (43)

5 Texture descriptors de�ned from aÆne Gaussian scale-

space

We are now prepared to de�ne a second moment matrix based on the aÆne Gaussian
scale-space representation. Given an image f : R2 ! R with aÆne Gaussian scale-
space representation L : R2 � SPSD(2) ! R, the second moment matrix based on
non-uniform smoothing �L : R

2 � SPSD(2)2 ! SPSD(2) can be de�ned by

�L(�; �t;�s) = g(�; �s) � ((rL)(�; �t) (rL)(�; �t)
T ) (44)

where �s represents the covariance matrix corresponding to the integration scale, and
�t the covariance matrix corresponding to the local scale.

5.1 Transformation property under linear transformations

Under a linear transformation of the image coordinates � = B�, this descriptor trans-
forms as

�L(q; �t;�s) = BT�R(Bq; B�tB
T ; B�sB

T )B: (45)

Proof: Di�erentiation of (29) gives

rL(�; �t) = BTrR(B�; B�tB
T ); (46)

which implies that �L(q; �t;�s) assumes the formZ
�2R2

g(q � �; �s)B
T (rR(B�; B�tB

T )) (rR(B�; B�tB
T ))TB d�:

After calculations similar to those in section 4.1, this expression can in turn be rewrit-
ten as

BT

Z
�2R2

g(Bq � �; B�sB
T ) (rR(�; B�tB

T )) (rR(�; B�tB
T ))T d� B

which proves (45).



5.2 Shape adaptation: Invariance property of �xed points

With respect to the problem of shape adaptation, let us assume that at a certain image
point we can compute the second moment matrix using shape adaptation such that
the scale matrices are proportional to the inverse of the second moment matrix. Then,
this �xed point will be preserved under aÆne transformations, and the backprojected
window function (corresponding to (18)) transforms in the same way as the aÆne
transformation.

To verify this property, consider a signal fL, and assume that at a point qL 2 R2
the second moment matrix has been computed with shape adaptation5 such that

�L(qL; �t;L;�s;L) =ML; (47)

where �t;L and �s;L are scalar multiples of M�1
L ,

�t;L = tM�1
L ; �s;L = sM�1

L ; (t; s 2 R+): (48)

Moreover, de�ne a transformed intensity pattern fR by fL(�) = fR(B�) for some
linear transformation � = B�. Then, computation of the second moment matrix at a
corresponding point in the transformed domain, qR = BqL, using the same type of
shape adaptation gives

�R(qR; �t;R;�s;R) =MR; (49)

where
�t;R = tM�1

R ; �s;R = sM�1
R : (50)

Proof: Using (45) we obtain

�L(qL; �t;L;�s;L) = BT�R(qR; B�t;LB
T ; B�s;LB

T )B: (51)

Hence,
MR = �R(qR; �t;R;�s;R) = B�TMLB

�1 (52)

where

�t;R = tB�t;LB
T = t (BM�1

L BT ) = t (B�TMLB
�1)�1 = tM�1

R : (53)

A corresponding relation holds for �s;R, which veri�es the result.

In other words, if we can compute image descriptors that satisfy the �xed point
conditions (47){(48), these �xed point conditions will be preserved under arbitrary
(invertible) aÆne transformations, and the image descriptors will be relative invariant
under aÆne transformations.

In next section, it will be veri�ed that this property transfers6 to scale-space
maxima of det�L. (Similar calculations show that it holds for detHnormL as well.)

5In certain situations it is useful to normalize the scale matrix for shape adaptation to have
determinant one. Then, if �t;L and �t;R are rewritten as �t;L = tL �L and �t;R = tR �R, where
det�L = det�R = 1, tL and tR will be related by tR = tL (detB)

2.
6This invariance property is non-trivial and does not hold, for example, for maxima over scales of

trace �L;norm or traceHnormL.



5.3 Invariance property of normalized scale-space maxima

Assume that the shape and the orientation of the matrix used for shape adaptation
is given and that only size variations are performed. Then, �t and �s can be written

�t = t�1; �s = s�2; (54)

for some constant matrices �1;�2 2 SPSD(2), and (45) assumes the form

�L(q; t�1; s�2) = BT�R(Bq; tB�1B
T ; sB�2B

T )B: (55)

The corresponding expression for the (normalized) determinants becomes

@t(t
2 det �1 det�L(q; t�1; s�2)) = 0 ,

@t(t
2 det(B�1B

T ) det�R(Bq; tB�1B
T ; sB�2B

T )) = 0 (56)

showing that maxima over scales in the (normalized) determinant of the second mo-
ment matrix are preserved under linear transformations provided that the matrices
�1 and �2 are matched accordingly. The same result applies to spatial maxima.

5.4 Interpretation of the invariance property in the case of weak

isotropy

Selecting the shape adaptation matrix as the inverse of the second moment matrix has
a simple geometric interpretation when estimating the aÆne deformation of a weakly
isotropic pattern, i.e., a pattern for which the second moment matrix is proportional
to the unit matrix. Then,

MR = cI (57)

in (49), and at the �xed point it holds that the shape adaptation matrices �t;R and
�s;R according to (50) are also proportional to the unit matrix.

In other words, for weakly isotropic patterns rotationally symmetric smoothing
and rotationally symmetric window functions in the original domain (e.g., in the
case of shape from texture, the tangent plane to the surface) correspond to an aÆne
invariant �xed point of the shape-adapted smoothing scheme.

6 Designing an iterative procedure

Given the �xed-point formulation of shape adaptation, it is natural to formulate
an algorithm in terms of an iterative procedure. The invariance properties are then
obtained provided that the procedure converges to the desired �xed point.

6.1 Variation of scale matrices

A general variation of the covariance matrices in the second moment matrix (44)
based on the aÆne Gaussian scale-space representation obviously gives rise to a six-
dimensional search space. With respect to the problem of �nding the speci�c �xed
point de�ned in section 5.2, this search space can be reduced by requiring the local
and integration scale matrices to be coupled (according to (48)) such that

�t = t�0; �s = s�0; (58)
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Figure 3: Interpretation of the shape-adapted smoothing operation in the case of
weak isotropy. If the shape adaptation matrices are proportional to (BTB)�1, where
B describes the local linear backprojection from the image fL of a weakly isotropic
pattern fR to the original domain, i.e., fL(�) = fR(B�), then, from the de�nition
of the �xed-point condition, it follows that the estimate of the essential transforma-
tion properties (given by �L = cBTB) will (up to �rst order of approximation) be
una�ected by the smoothing operation.

for some matrix �0 (assumed to be normalized in some way; see next). This reduces
the search space to four free parameters (two parameters determining the shape of
�0, and the two other parameters determining the size of each scale matrix).

Here, we shall consider the following methods for choosing these parameters in an
iterative shape adaptation scheme (see section 10 for further discussion):

Shape of the smoothing matrices. Concerning the choice of the �rst two pa-
rameters, we shall here adopt the straightforward approach of letting the shape of �0

be proportional to the second moment matrix at the given point in each iteration.

Size of the integration scale matrix. To preserve invariance under size variations
it is natural to require the size of the integration scale matrix to be selected such
that the normalized di�erential entity considered for scale selection (det�L;norm or
detHnormL) one may require) still assumes a maximum over scales (compare with
section 5.3). If the size variations are small it is also reasonable to keep s constant
(for example, for binocular vision with approximately symmetric vergence).

Size of the local scale matrix. Some further precautions7 must be taken when
choosing the size of local scale matrix. It is clear that selecting it such that the nor-
malized anisotropy ~Q is still a maximum over scales is not an appropriate solution in
the non-isotropic case.8 To formulate an alternative criterion, one may at �rst �nd

7Note that invariance arguments cannot be applied here, since a main purpose of the local smooth-
ing is to suppress noise, which is an image e�ect decoupled from the surface geometry.

8The motivation for selecting this scale was that in the rotationally symmetric case, local smooth-
ing could be expected to increase the anisotropy when it serves the purpose of suppressing noise,



it natural to normalize �0 to det�0 = 1 and then assume that t should be constant
during the iterations. Such an approach would, however, also lead to systematic over-
estimates of the anisotropy and, hence, the slant angle. This can be easily understood
by observing that the amount of smoothing in the direction of the smallest eigenvalue
of the local scale matrix will then be smaller in the non-isotropic case than in the
isotropic case. Hence, the contribution from the �ne scale variations in the signal
(here, the noise) can be expected to be larger, which means that the anisotropy will
increase.

Here, given an initial estimate based on a maximum over scales of ~Q (computed
with rotationally symmetric smoothing), we propose to keep the smallest eigenvalue

�min(�t) of �t constant during the iterations. By this approach, the smallest amount
of smoothing will still be preserved, and the same (minimum) degree of noise sup-
pression is guaranteed.

6.2 Composed method for shape adaptation

To summarize, a straightforward iterative method for shape adaptation can be ex-

pressed as follows (M
(k)
I denotes the matrix for shape adaptation in the kth iteration

step, DnormL represents the normalized di�erential entity used for selecting the inte-

gration scale, and s
(k)
DL the selected integration scale in each step):

1. M (0) = I.

2. M
(k)
I =M (k)=�min(M

(k)).

3. s
(k)
DL =

(

2 � (s : maxs>0 (DnormL)(q; sM

(k)
I ));

alternatively, let s
(k)
DL = s

(0)
DL for all k � 1:

4. M (k+1) = ��1L (q; tM
(k)
I ; s

(k)
DLM

(k)
I ). Go to step 2 if not converged.

When formalizing a termination criterion, it is natural to require that successive
second moment matrices should be suÆciently \similar". When formulating such a
similarity measure for a multi-dimensional entity some precautions need to be taken.
A natural approach in this case is to represent each matrix � by an ellipse xT�x = 1,
interpreting each ellipse as the orthographic projection of a planar circle, and mea-
suring the angle between the three-dimensional orientations of the circles. Whereas
for weakly isotropic surface patterns this measure is equal to the angle between the
surface normals, this measure is a natural choice also in other situations.

In summary, a useful convergence criterion is to require this angular di�erence
between successive second moment matrices to be less than some given threshold
�' < ", and to impose an upper bound on the number of iterations.

7 Estimating surface orientation: Review

This section reviews a previously developed methodology for estimating surface orien-
tation from either monocular texture distortion or the gradient of binocular disparity.
These methods are based on measurements of aÆne transformations using second mo-
ment matrices, i.e. the same entities as we here use for shape adaptation.

whereas too much local smoothing can be expected to decrease the anisotropy when it leads to shape
distortions. Hence, selecting the maximum gives a natural trade-o� between these two e�ects.



7.1 Shape from texture

The systematic distortion of texture patterns under perspective transformations can
under certain conditions provide strong cues to surface orientation and surface shape.
Whereas the general problem of determining three-dimensional surface structure from
monocular data is obviously underdetermined (because of dimensionality considera-
tions), it may become feasible if additional a priori information is available. This is
the subject of shape-from-texture: to combine measurements of image structures with
di�erent assumptions about the surface texture and the camera geometry to derive
three-dimensional shape cues.

This idea of using perspective distortion of texture as a cue to surface shape goes
back to Gibson (1950), who coined the term \texture gradient" for the systematic
variation of image textures induced by perspective e�ects. Since then, computational
studies of the shape-from-texture problem have been done by several researchers,
for example, (Bajcsy & Lieberman 1976, Stevens 1981, Witkin 1981, Kanatani 1984,
Pentland 1986, Aloimonos 1988, Blostein & Ahuja 1989, Kanatani & Chou 1989, Blake
& Marinos 1990b, Blake & Marinos 1990a, Brown & Shvaytser 1990, G�arding 1992,
G�arding 1993, Lindeberg & G�arding 1993, Malik & Rosenholtz 1993). Here, we shall
consider the shape-from-texture method by (Lindeberg & G�arding 1993), which will
be brie
y reviewed.

7.1.1 Shape-from-texture using local aÆne distortion

With respect to the shape-from-texture problem, let the linear transformation B
represent the derivative of the mapping A : �! S from the planar image � onto the
surface S. In practice, it is convenient to decompose A = F Æ G into the so-called
gaze-transformation G : �; q ! �; p from the planar image to the viewsphere �, and
the perspective backprojection F : �; p! S; F (p) from the viewsphere to the surface.
The chain rule of di�erentiation gives B = A�q = F�pG�q, where F�p and G�q denote
the derivatives9 of F and G respectively.

To relate local surface orientation to these entities, introduce a local coordinate
system on the viewsphere such that for any point p 2 � the triple (�p; �t;�b) is a local
orthonormal coordinate system with �p as view direction. De�ne the tilt direction �t as
the direction of the gradient of the distance from the focal point, and let �b = �p � �t.
Moreover, in TF (p)(S), let �T and �B be the normalized images of �t and �b respectively.
From the di�erential geometric analysis in (G�arding 1992) it follows that in the bases
(�t;�b) and ( �T ; �B) the expression for F�p is

F�p =

�
r= cos � 0

0 r

�
=

�
1=m 0
0 1=M

�
; (59)

where r = jjF (p)jj is the distance along the visual ray from the center of projection to
the surface (measured in units of the focal length), � is the slant angle, and m < M
are the inverse eigenvalues of F�p.

This framework describes how local surface orientation can be related to local
aÆne distortion in the monocular case. With B = A�q (17) gives

�L(q) = GT
�q F

T
�p �S(F (G(q)))F�pG�q; (60)

9Using traditional di�erential geometric notation, F�p : Tp(�) ! TF (p)(S) is the derivative of F
at p = G(q) 2 �, G�q : Tq(�)! Tp(�) is the derivative of G at q 2 � = R

2 , and Tp(�) is the tangent
plane of � at p, etc.



where �S(F (G(q))) denotes the second moment matrix de�ned in the tangent plane
to the surface with respect to the window function

w0(� � F (G(q))) = (detA�q)
�1w(� � q) (61)

where � = A�q�. A general procedure, then, for estimating shape from texture is
to combine estimates of �L(q) with assumptions about the structure of the surface
brightness pattern �S(F (G(q))) to infer the structure of A�q. This permits compu-
tation of F�p after compensation with respect to G�q (which is known if the camera
geometry is).

The assumption that leads to the simplest estimation procedure is weak isotropy,
i.e., that �S(F (p)) is proportional to the unit matrix ( ~Q = 0). Under this condition
and if F�p is non-degenerate, it holds that the tilt direction is parallel to the eigenvalue
of �L corresponding to the maximum eigenvalue and

cos � =
m

M
=

r
�2
�1

=

s
1� ~Q

1 + ~Q
; (62)

which gives a direct estimate of local surface orientation.
This scheme can be applied also under other assumptions. For example, if the local

\size" of the surface texture elements does not vary systematically, then A = 1=
p
det�

is an area measure, and the normalized area gradient provides information about both
local surface orientation and curvature (G�arding 1992, Lindeberg & G�arding 1993,
G�arding & Lindeberg 1996). An alternative assumption is that the surface texture can
be well modelled as the realization of a stationary process and that the spectrogram
can be assumed to be approximately constant when measured in di�erent windows
over the surface (Malik & Rosenholtz 1993).

7.2 Shape-from-disparity-gradients

A similar approach can be applied to binocular data. If we have two cameras verging
onto the same surface structure, then we can make use of the fact that two di�erent
observations are made of the same surface structure. If the mapping between the left
and the right image is approximated by an aÆne transformation, and if this compo-
nent of the perspective transformation can be measured, then the surface orientation
can be computed provided that the camera orientation is known. The main di�erence
compared to the monocular case is that no speci�c assumptions about the surface
texture will be necessary.

Several computational models have been described in the literature that are based
more or less directly on this type of cue, e.g., (Blakemore 1970, Koenderink & van
Doorn 1976, Tyler & Sutter 1979, Rogers & Cagenello 1989, Wildes 1981, Jones &
Malik 1992). Here, we shall consider a shape-from-disparity-gradient method which
is a straightforward extension of the previous shape-from-texture method (G�arding
& Lindeberg 1994, G�arding & Lindeberg 1996). It assumes epipolar geometry and
verging cameras,10 and computes a surface orientation estimate at the �xation point.

10In the work by (Jones & Malik 1992) symmetric vergence was assumed. This assumption is,
however, not necessary for the analysis. A generalization to the case of asymmetric vergence is given
in (G�arding & Lindeberg 1994).
Moreover, there is no need to assume that the cameras verge physically in these models. All that is

required is that the camera geometry is known (calibrated stereo) such that compensations (virtual
camera movements or virtual image warpings) can be performed.



7.2.1 Shape-from-disparity-gradients using local aÆne distortion

Following (Jones & Malik 1992) consider an aÆne transformation of the mapping
from the left to the right camera�

xR
yR

�
=

�
1 +Hx Hy

Vx 1 + Vy

��
xL
yL

�
+

�
H
V

�
: (63)

Since the cameras are assumed to verge onto the same physical structure, the horizon-
tal disparityH and the vertical disparity V are zero. Moreover, due to the assumption
about epipolar geometry, the components of the vertical disparity gradient, Vx and
Vy, are zero. According to the analysis in (Jones & Malik 1992), the components of
the horizontal disparity gradient can then be related to local surface geometry by

tan�y =
Hx

Hx + 2
cot Æ;

tan�x =
�Hyp

H2
x + 4(Hx + 1) sin2 Æ

;
(64)

where 2Æ is the vergence angle, and the orientation of the surface relative to the
cyclopean image plane is represented by a rotation �x around the x-axis followed by
a rotation �y around the y-axis. These angles are related to slant � and tilt � by

cos � = cos�x cos�y; tan � = � tan�x= sin�y: (65)

Assume now that second moment matrices �L and �R can be measured in the left and
the right images, and let B represent the linear transformation (63). Then, according
to (17), the second moment matrices are related by

�L(q) = BT �R(p)B: (66)

This relation imposes three restrictions onto the two unknowns, Hx and Hy. One
way to relax the overdeterminacy (G�arding & Lindeberg 1996) is to consider only the
directional information in �L and �R and to ignore the size information. After some
algebraic manipulations it can then be shown that the horizontal disparity gradient
can be computed from the components of the second moment matrices using

Hx =
1 + ~CL

1 + ~CR

s
1� ~Q2

R

1� ~Q2
L

� 1;

Hy =
~SL

q
1� ~Q2

R � ~SR

q
1� ~Q2

L

(1 + ~CR)
q
1� ~Q2

L

;

(67)

where for each second moment matrix the entities ~C and ~S are de�ned as

P = Eq(L
2
x + L2

y);
~C = Eq(L

2
x � L2

y)=P;
~S = Eq(2LxLy)=P: (68)

The main di�erence between this method and the work by (Jones & Malik 1992) is
that here direct estimates are obtained and no explicit search is necessary.



8 Experiments

The proposed scheme for shape adaptation has been applied to the problem of estimat-
ing surface orientation using the methods reviewed in previous section. Experiments
have been performed on real and synthetic reference images with known orientation.
To test the stability of the method, Gaussian noise of di�erent standard deviation
has been added to the images. Some test images are shown in �gure 4.

\periodic" (1.0) \periodic" (10.0) \periodic" (100.0) \skewed"

\gauss 10:5" \gauss 10:2.5" \curved" \wallpaper"

Figure 4: Grey-level images used in the experiments on shape-from-texture. The �rst
image, called 'periodic', is shown with added Gaussian noise of standard deviation
1.0, 10.0, and 100.0, respectively. while for the other test data only the original image
is shown.

8.1 Shape-from-texture

Table 1 shows the result of applying the scheme to the image labelled \periodic" and
using di�erent amounts of added noise (the standard deviation is shown in parenthesis
in the header of each table). The columns in each table show from left to right,
the iteration index, surface orientation estimates in terms of slant and tilt angles
computed under the assumption of weak isotropy, and the angle between the estimated
direction and the true direction of the surface normal. To compare the e�ect of shape
adaptation with the e�ect of increasing the integration scale in the isotropic scale-
space representation, experimental results are also given using di�erent values of the
relative integration scale, 
.11 Notice that for high noise levels the shape adaptation
leads to improvements in estimated surface orientation that cannot be achieved by

11This parameter (de�ned in section 3.2) determines how large the integration scale is relative to
the scale at which the maximum over scales in the scale-space signature is assumed. Basically, a
larger value of 
 can be expected to increase the accuracy up to the point where the modelling error
increases due to violation of the local linear approximation.



just increasing the integration scale. Moreover, observe that substantial improvements
can be obtained after just one or two iterations.

periodic (1.0) (
 = 1:0)

0 (56.94, 80.94) 8.29
1 (60.03, 86.52) 3.00
2 (60.10, 87.55) 2.12
3 (60.09, 87.61) 2.07
4 (60.09, 87.61) 2.07

periodic (10.0) (
 = 1:0)

0 (56.31, 81.13) 8.37
1 (60.18, 86.32) 3.18
2 (60.42, 87.55) 2.16
3 (60.42, 87.67) 2.06
4 (60.41, 87.67) 2.05

periodic (100.0) (
 = 1:0)

0 (47.11, 74.45) 17.90
1 (54.18, 81.32) 9.31
2 (56.39, 84.21) 6.09
3 (57.03, 85.33) 4.96
4 (57.21, 85.69) 4.61

periodic (1.0) (
 = 1:4)

0 (58.88, 89.22) 1.29
1 (60.08, 90.12) 0.13
2 (60.09, 90.11) 0.13
3 (60.08, 90.11) 0.13
4 (60.08, 90.11) 0.13

periodic (10.0) (
 = 1:4)

0 (57.88, 88.95) 2.29
1 (60.51, 90.09) 0.52
2 (60.75, 90.11) 0.76
3 (60.77, 90.10) 0.77
4 (60.77, 90.10) 0.77

periodic (100.0) (
 = 1:4)

0 (53.86, 89.61) 6.14
1 (59.90, 90.76) 0.67
2 (61.45, 90.90) 1.65
3 (61.94, 90.89) 2.09
4 (62.10, 90.88) 2.24

periodic (1.0) (
 = 2:0)

0 (60.29, 90.18) 0.33
1 (60.59, 89.95) 0.59
2 (60.59, 89.95) 0.60
3 (60.59, 89.95) 0.60
4 (60.59, 89.95) 0.60

periodic (10.0) (
 = 2:0)

0 (58.80, 90.04) 1.19
1 (60.49, 89.90) 0.49
2 (60.66, 89.90) 0.66
3 (60.68, 89.90) 0.68
4 (60.68, 89.90) 0.68

periodic (100.0) (
 = 2:0)

0 (49.95, 91.24) 10.10
1 (56.72, 90.74) 3.34
2 (58.38, 90.40) 1.65
3 (58.87, 90.32) 1.16
4 (59.02, 90.30) 1.00

Table 1: Experiments with shape adapted smoothing applied on the image labelled
\periodic" (using di�erent values of the relative integration scale 
). The columns
show from left to right, the iteration index, the slant and tilt values (reference values
(60.0, 90.0)), and the angle between the estimated and the true surface normal. (The
noise level gives the standard deviation of the noise, to be related to the grey-level
range [0, 255]. All angles in degrees.)

Corresponding experimental results for the Gaussian blobs and the three other
images are given in table 2 and table 3 respectively To save space, the results are
shown for a smaller number of combinations of noise levels and values of 
, and only
the �rst two iterations are displayed.

8.2 Shape-from-disparity-gradients

The need for shape adaptation can be further motivated when dealing with binocu-
lar data, since multiple measurements are made of the same surface structure, and
the di�erence between these measurements is used as the basis for inferring cues
to the three-dimensional surface structure. Hence, when non-negligible amounts of
smoothing are required (typically, in the presence of noise or other interfering �ne-
scale structures), substantial improvements can be expected in the accuracy of the
resulting surface orientation estimates. Moreover, it is desirable if the support regions
of the image operators in the di�erent images correspond to the same region when
backprojected onto the surface.

Table 4 shows the results of including shape adaptation as an essential step in
the shape-from-disparity-gradient method reviewed in section 7.2 and applying it to
the stereo pair in �gure 5. (The shape adaptation has been performed on both im-
ages independently before the surface orientation estimates have been computed from



gauss 10:5 (1.0)

0 (66.71, 90.04) 6.71
1 (58.83, 90.01) 1.16
2 (60.10, 90.02) 0.10

gauss 10:5 (10.0)

0 (65.55, 89.52) 5.56
1 (58.66, 89.81) 1.34
2 (59.54, 89.73) 0.50

gauss 10:5 (100.0)

0 (66.71, 92.13) 6.98
1 (62.13, 90.64) 2.20
2 (61.72, 90.68) 1.82

gauss 10:2.5 (3.1)

0 (80.68, 89.93) 5.16
1 (75.99, 90.00) 0.47
2 (75.26, 90.00) 0.25

gauss 10:2.5 (10.0)

0 (80.24, 89.90) 4.72
1 (75.89, 89.95) 0.37
2 (75.25, 89.95) 0.27

gauss 10:2.5 (31.6)

0 (79.36, 90.28) 3.85
1 (76.91, 90.17) 1.39
2 (75.93, 90.03) 0.41

Table 2: Shape adaptation applied to two Gaussian blobs using di�erent amounts of
added white Gaussian noise. The reference orientation in the top row is (60.0, 90.0)
and in the bottom row (75.5, 90.0). (In these experiments the relative integration
scale is 
 = 1:0.)

skewed (10.0) (
 = 1:4)

0 (28.81, 20.91) 1.26
1 (29.71, 20.95) 0.55
2 (29.75, 20.95) 0.53

curved (10.0) (
 = 1:4)

0 (59.57, 92.07) 4.89
1 (55.99, 90.61) 1.11
2 (56.22, 90.73) 1.36

wallpaper (10.0) (
 = 16)

0 (46.09, 85.56) 4.71
1 (51.86, 85.44) 1.06
2 (53.74, 85.34) 2.94

Table 3: Shape adaptation applied to the images labelled \skewed", \curved", and
\wallpaper". The reference orientations are (30.0, 20.0), (55.0, 90.0), and (50.8, 85.3)
respectively.

(??){(67) and (??){(64).) Observe how the error (measured as the angle between the
estimated and the true directions of the surface normal) decreases with the iterations.

\skewed-R (10.0)" \skewed-L (10.0)"

Figure 5: A stereo pair used in the experiments on shape-from-disparity-gradients
(arranged for cross-eyed fusion). (The standard deviation for the added Gaussian
noise is 10.0.)

An obvious alternative approach is to let the shape adaptation procedure be driven
by the inter-image deformations. This corresponds to adjusting the shapes of (one
or both of) the Gaussian kernels such that they (to �rst-order of approximation)
backproject to the same surface patch in the world (see �gure 6).12

12The aÆne transformation B from �L and �R can the be determined either from the general
expression (14) or the explicit expressions in section 6.2.2 in (G�arding & Lindeberg 1996), which
make use of the fact that the relative orientation states between the cameras are known.



skewed (10.0) (
 = 1:4)

0 (50.15, 65.23) 5.99
1 (54.19, 62.71) 2.12
2 (54.70, 61.31) 0.94
3 (54.96, 61.11) 0.85
4 (55.02, 61.01) 0.81
5 (55.04, 60.99) 0.80

skewed (10.0) (
 = 2:0)

0 (47.69, 70.04) 10.33
1 (50.24, 64.62) 5.61
2 (51.72, 62.47) 3.42
3 (52.52, 61.43) 2.32
4 (52.94, 60.89) 1.77
5 (53.19 ,60.58) 1.45

skewed (10.0) (
 = 2:8)

0 (49.53, 68.77) 8.47
1 (52.05, 63.53) 3.72
2 (53.32, 61.87) 1.89
3 (53.88, 61.12) 1.07
4 (54.18, 60.80) 0.67
5 (54.33, 60.61) 0.46

Table 4: Shape adaptation applied to the stereo images in �gure 5. The vergence angle
is 2Æ = 10:00 and the reference orientation with respect to a cyclopean coordinate
system is (54.60, 60.16) (corresponding to �x = �45:00 and �y = 35:00).

9 Summary

We have described how shape distortions may arise when computing three-dimen-
sional shape cues from image data using operators (derivatives) de�ned from linear
scale-space representation. A methodology for reducing these problems has been pre-
sented, based on a straightforward extension of the linear scale-space concept into an
aÆne Gaussian scale-space representation generated by convolution with non-uniform
Gaussian kernels. The suggested approach is to adapt the shape of the smoothing ker-
nel to the local image structure by measuring an image descriptor called the second
moment matrix. This descriptor represents statistics of gradient directions in a neigh-
bourhood of the point at which the descriptor is de�ned, and is a useful entity for
measuring local aÆne distortions in shape-from-X algorithms.

If shape adaptation can be performed such that the second moment matrix com-
puted at a certain point is proportional to the matrix used for shape adaptation at
that point, then this �xed point will be preserved under aÆne transformations of the
brightness pattern. In other words, the image descriptors will be relative invariant
under the locally linearized perspective mapping, and (to �rst-order of approxima-
tion) the smoothing operation corresponds to using the same smoothing kernel in the
tangent plane to the surface|independent of the view direction and independent of
the shape-from-X method that uses the data.

In the shape-from-texture case, the shape adaptation means that the errors due
to the smoothing operation will be con�ned to the higher order terms in the lin-
ear approximation, which in turn means that the accuracy in the computed surface
orientation estimates can be expected to increase.

Similar properties hold for shape estimation from disparity gradients provided
that the iterative scheme converges to corresponding �xed points in the left and right
images. In this case, the geometric interpretation of the shape adaptation scheme is
that the image operators in the left and right images correspond to similar operations
when backprojected onto the image domain. Hence, the actual e�ects of the Gaussian
derivative operators are the same and the window functions in the left and right
images correspond to the same region on the surface.

Whereas the technical treatment in this article has been concerned with shape
adaptation for the speci�c schemes for shape-from-texture and shape-from-disparity-
gradients, the underlying ideas are of much wider generality. The notion of shape
adaptation is essential to any method for estimating three-dimensional shape cues
from measurements of aÆne distortions of two-dimensional brightness structures over
regions of non-in�nitesimal size. Without this operation, it is impossible to achieve



exact equality in the aÆne transformation between images of the same surface patch
taken from di�erent view points.13 Therefore there will be systematic errors in the es-
timates, since the measurements performed in the di�erent images do not correspond
to the same physical region when backprojected to the surface. Besides shape from
texture and stereo cues, this problem arises also in motion estimation and structure
from motion. How large these errors become in practice is determined by the relation
between the structures covered by registrations in both domains and the structures
covered just by one (see �gure 6 for an illustration).

left right

Figure 6: If a method for shape estimation from disparity gradients is based on ro-
tationally symmetric operators in the image domain, then the backprojections of the
operators from the left and right images to the physical domain will in general, cor-
respond to di�erent regions, in which the information is weighted di�erently. Hence,
if the di�erence between these two measurements is used as a basis for estimating
surface shape (for example, using the type of methodology described in section 7.2),
the shape estimates will, in general, be biased unless that shapes of the operators are
adapted such that the backprojections correspond. How large the bias becomes is in
practice is, of course, strongly dependent on the image data.

When estimating local surface orientation, �rst-order shape adaptation is suÆ-
cient to obtain estimates that are una�ected by the smoothing operation up to the
same order of approximation as the geometric approximation. To allow for unbiased
curvature estimation, higher-order shape adaptation will then, in general, be needed.

10 Discussion

For the �rst-order shape adaptation approach based on second moment matrices, a
straightforward algorithm has been presented for reaching the �xed point. Whereas it
in the experiments has lead to substantial improvements after just a few iterations, no
claims are made that it constitutes any \optimal solution". (Compare with the vast
number of iterative methods for solving non-linear equations in numerical analysis
and optimization theory.) We are currently studying convergence properties in more
detail as well as the ability to reach appropriate �xed points. As a brief indication of
the convergence properties, it can be mentioned that for a periodic pattern

f(x; y) = cos!1x+ cos!2y (!1 < !2); (69)
13For the speci�c shape-from-X method presented here, based on the second moment matrix,

the violation of the linear transformation property manifests itself as follows: If measurements of
second moment matrices �L and �R in both domains are performed based on rotationally symmetric
Gaussian kernels, then the transformation property in (17) is not valid (although in many cases it
may constitute a reasonable approximation). The transformation property holds (exactly) only if the
shapes of the Gaussian kernels are modi�ed, as expressed in (45).



the desired �xed point is convergent if the minimum amount of smoothing t0 satis�es

!21t0 < (!1=!2)
2 (70)

(see appendix A). For example, for most images, there are (at least) two additional
�xed points; one corresponding to the shape adaptation matrix being singular14 ( ~Q =
1, i.e., � = �=2 in the case of weak isotropy) and one corresponding to an in�nite
amount of isotropic smoothing ( ~Q = 0, i.e., � = 0 in the case of weak isotropy).

During recent years, a large number of approaches to non-uniform smoothing
have been proposed in the literature based on di�erent non-linear versions of the
di�usion equation (see section 1.2). The suggested scheme has a number of interesting
relationships to these. If applied at edge points, it leads to larger amount of smoothing
in the direction along the edge than in the perpendicular direction (compare with the
closely related work by (Nitzberg & Shiota 1992)). Moreover, the non-linear di�usion
equation (3) closely relates to a singular limit case of this method (when ~Q = 1).

Since the proposed shape adaptation method is based on rotationally symmetric
smoothing as an uncommitted �rst processing step, which is then used for invoking
more re�ned processing, the suggested scheme provides an interesting connection
between the linear and non-linear scale-space approaches|potentially also as a step
towards a common framework for unifying processing modules based on sparse edge
data and dense �lter outputs.

A Convergence analysis

This section analyses the convergence properties of the iterative shape adaptation
algorithm in a speci�c case. (Another example is analysed in section 2.)

A.1 Convergence analysis for a periodic signal

Model. Consider a two-dimensional signal de�ned as the sum of two cosine waves
along the two coordinate directions respectively,

f(x; y) = cos!1x+ cos!2y (!1 � !2): (71)

This function can be interpreted as a simple locally linearized model of the projection
of a periodic pattern. The ratio

� =
!1
!2

= cos � (72)

describes the foreshortening, where � denotes the slant angle.

14If the shape adaptation procedure reaches a singular �xed point with ~Q = 1, this is a strong
indicator that there is only one dominant orientation in the support region of the window function
w, and that the surface orientation estimate, hence, cannot be trusted.
In a related work, (Almansa & Lindeberg 1996) apply a closely related shape adaptation procedure

to a dense set of points. To avoid that the �lters become too elongated (an that the shape adaptation
process approaches a singular �xed point), an upper bound is introduced on the eccentricity of the
�lters by letting the shape adaptation matrix be given by � = (� + "I)�1, where " = Q

��1
and �

serves as an upper bound on the condition number of �.



Scale-space representation. The scale-space representation of f is given by

L(x; y; t) = e�!
2
1 t=2 cos!1x+ e�!

2
2t=2 cos!2y: (73)

Di�erentiation gives the scale-space derivatives

Lx(x; y; t) = �!1e�!2
1t=2 sin(!1x+ �1);

Ly(x; y; t) = �!2e�!2
2t=2 sin(!2y + �2):

(74)

Preliminaries: Calculation of the second moment matrix. In (15) the com-
ponents of the multi-scale second moment matrix are de�ned as

�ij(�; �; t; s) = g(�; �; s) � (Lxi(�; �; t)Lxj (�; �; t)); (75)

where g(x; y; s) = g(x)(x; s)g(y)(y; s) denotes the two-dimensional Gaussian kernel,
and g(x) and g(y) are the one-dimensional Gaussian kernels in the x- and y-directions
respectively. It is straightforward to show that in this case �ij at the origin (x; y) =
(0; 0) are given by

�11(x; y; t; s) =
!21e

�!2
1t

2
(1� e�2!

2
1s cos 2�1);

�22(x; y; t; s) =
!22e

�!2
2t

2
(1� e�2!

2
2s cos 2�2);

�12(x; y; t; s) = !1!2 e
�(!2

1+!
2
1)(t+s)=2 sin�1 sin�2:

(76)

The validity of (??) and (??) follow from

�11(x; y; t; s) = !21 e
�!2

1tg(x)(x; s) � g(x)(x; s) � sin2(!1x+ �1); (77)

(which is obtained from (74) and (75) as well as similar calculations as for deriving
(73) from (71)) and (76) can be obtained in an analogous way from

�12(x; y; t; s) = !1!2 e
�(!2

1+!
2
2)t=2(g(x)(x; s)�cos(!1x+�1)) (g(y)(y; s)�cos(!2y+�2)):

Approximation: Large integration scale. Assume now, for simplicity, that the
integration scale is large (!21s >> 1). Then, the sensitivity to the actual position
(given by �1 and �2) will be small, and the second moment matrix can be approxi-
mated by

� =

�
�11 �12
�12 �22

�
=

 
!21e

�!2
1t=2 0

0 !22e
�!2

2t=2

!
: (78)

Under the assumption of weak isotropy, the estimate of the foreshortening � = cos �
is given by the ratio between the eigenvalues of �:

� =

p
�11p
�22

=
!1e

�!2
1t=2

!2e�!
2
2t=2

=
!1
!2

e(!
2
2�!

2
1)t=2 (79)

showing that in the case of rotationally symmetric Gaussian smoothing, the estimate
is unbiased only if the value of the scale parameter is zero. For strictly positive values
of the scale parameter, the slant angle is systematically overestimated, due to the
fact that the higher-frequency component cos(!2y + �2) is suppressed faster by the
scale-space smoothing operation than the lower-frequency component cos(!1x+ �1).



Shape adaptation. Assume next that the shape of the smoothing kernel is adapted
to the local image structure, such that the pattern (71) is smoothed with scale value
t1 along the x-direction and scale value t2 along the y-direction. Then, the second
moment matrix computed with shape-adapted smoothing is given by

� =

 
!21e

�!2
1t1=2 0

0 !22e
�!2

2t2=2

!
; (80)

and the foreshortening estimate is

�̂ =
!1
!2

e(!
2
2t2�!

2
1t1)=2: (81)

Clearly, the foreshortening estimate will be correct if the scale parameters are adapted
such that

t2
t1

=

�
!1
!2

�2

: (82)

This shows that the desired solution is always a �xed point for shape adaptation.

Convergence condition. To study the convergence properties of the speci�c scheme
in section 6.2, introduce !1 = ! and !2 = !=�. Assume (as in the algorithm) that
the smallest amount of smoothing is �xed, t2 = t0, and that t1 is determined from
the foreshortening estimate �̂ according to t1 = t2=�̂

2. Then, each new estimate �̂k+1
as function of a previous estimate �̂k (k 2 Z+) is given by

�̂k+1 = �
e�!

2t0=2�̂2k

e�!2t0=2�2
(83)

where � = !1=!2 denotes the true foreshortening. Some rewriting gives

�̂

�k+1
= exp

�
�!2t0

2�2

�
1

(�̂k=�)2
� 1

��
: (84)

Consider next the function

h(x) = exp

�
�!2t0

2�2

�
1

x2
� 1

��
: (85)

The �xed point �̂=� = 1 is convergent if and only if the derivative of h satis�es

jh0(x)jx=1 = �c =
!2t0
�2

< 1: (86)

Interpretation. This expression gives a sharp condition on when the �xed point
is convergent. By and large it means that the iterative procedure converges provided
that the initial slant estimate is suÆciently close to the true value and provided that
the initial amount of smoothing is suÆciently small compared to the wavelength of
the signal. The more detailed convergence properties depend on the slant angle; the
smaller the slant angle is the larger is the domain of convergence.

Given that t0 is selected using the automatic scale selection method described
previously (based on maxima over scales in the normalized anisotropy ~Q), the inter-
pretation of this result is that the method can be expected to diverge if the noise
level is too high compared to the wavelength, and that the method can be expected
to converge provided that the noise level is suÆciently small. These qualitative e�ects
can be observed experimentally.



Uniqueness. A �nal remark may be useful concerning the issue of uniqueness. From
(84) it is clear that the number of �xed points is given by the number of roots to the
equation h(x) = x. Since

h0(x) = ��c
x3

e��c(
1
x2
�1)=2 < 0 if x > 0 (87)

and @xx = 1 > 0, it is obvious that only one root can exist. Hence, besides the
singular cases when either t1 or t2 tend to in�nity, the �xed point given by (82) is
always unique.
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A �rst version of this manuscript was presented in (Lindeberg & G�arding 1994). After
the completion of this work, the following extensions and closely related works have been
presented. (Weickert 1995) applies a non-linear di�usion scheme to the enhancement of ridge
structures in �nger-print images, where the conductivities in di�erent directions are controlled
by second moment descriptors. (Almansa & Lindeberg 1996) perform corresponding ridge
enhancement based on the shape adaptation ideas in this article.

Extensions of the scale selection scheme reviewed in section 3.2, based on a 
-normalized
derivative concept, have been presented in (Lindeberg 1996a, Lindeberg 1996b). A main ad-
vantage of this extension is that it allows for immediate localization when detecting one-
dimensional image features, such as edges and ridges.

References

Almansa, A. & Lindeberg, T. (1996), Enhancement of �ngerprint images by shape-adapted
scale-space operators, in J. Sporring, M. Nielsen, L. Florack & P. Johansen, eds, `Gaus-
sian Scale-Space Theory: Proc. PhD School on Scale-Space Theory', Kluwer Academic
Publishers, Copenhagen, Denmark. (To appear).

Aloimonos, Y. (1988), `Shape from texture', Biological Cybernetics 58, 345{360.

Alvarez, L., Guichard, F., Lions, P.-L. & Morel, J.-M. (1993), `Axioms and fundamental
equations of image processing', Arch. for Rational Mechanics 123(3), 199{257.

Babaud, J., Witkin, A. P., Baudin, M. & Duda, R. O. (1986), `Uniqueness of the Gaus-
sian kernel for scale-space �ltering', IEEE Trans. Pattern Analysis and Machine Intell.
8(1), 26{33.

Bajcsy, R. & Lieberman, L. (1976), `Texture gradients as a depth cue', Computer Vision,
Graphics, and Image Processing 5, 52{67.

Bergen, J. R., Anandan, P., Hanna, K. J. & Hingorani, R. (1992), Hierarchical model-based
motion estimation, in G. Sandini, ed., `Proc. 2nd European Conf. on Computer Vision',
Vol. 588 of Lecture Notes in Computer Science, Springer-Verlag, Santa Margherita Lig-
ure, Italy, pp. 237{252.

Big�un, J. (1990), `A structure feature for some image processing applications based on spiral
functions', Computer Vision, Graphics, and Image Processing 51, 166{194.



Big�un, J., Granlund, G. H. & Wiklund, J. (1991), `Multidimensional orientation estimation
with applications to texture analysis and optical 
ow', IEEE Trans. Pattern Analysis
and Machine Intell. 13(8), 775{790.

Blake, A. & Marinos, C. (1990a), `Shape from texture: estimation, isotropy and moments', J.
of Arti�cial Intelligence 45, 323{380.

Blake, A. & Marinos, C. (1990b), Shape from texture: the homogeneity hypothesis, in `Proc.
3rd Int. Conf. on Computer Vision', IEEE Computer Society Press, Osaka, Japan,
pp. 350{353.

Blakemore, C. (1970), `A new kind of stereoscopic vision', Vision Research 10, 1181{1200.

Blostein, D. & Ahuja, N. (1989), `Shape from texture: integrating texture element extraction
and surface estimation', IEEE Trans. Pattern Analysis and Machine Intell. 11(12), 1233{
1251.

Brown, L. G. & Shvaytser, H. (1990), `Surface orientation from projective foreshortening of
isotropic texture autocorrelation', IEEE Trans. Pattern Analysis and Machine Intell.
12(6), 584{588.

Cipolla, R., Okamoto, Y. & Kuno, Y. (1993), Robust structure from motion using motion
parallax, in `Proc. 4th Int. Conf. on Computer Vision', Berlin, Germany, pp. 374{382.

Florack, L. M. J., Salden, A. H., t. Haar Romeny, B. M., Koenderink, J. J. & Viergever, M. A.
(1995), `Nonlinear scale-space', Image and Vision Computing 13, 279{294.

Florack, L. M. J., ter Haar Romeny, B. M., Koenderink, J. J. & Viergever, M. A. (1992), `Scale
and the di�erential structure of images', Image and Vision Computing 10(6), 376{388.

F�orstner, M. A. & G�ulch, E. (1987), A fast operator for detection and precise location of dis-
tinct points, corners and centers of circular features, in `Proc. Intercommission Workshop
of the Int. Soc. for Photogrammetry and Remote Sensing', Interlaken, Switzerland.

G�arding, J. (1992), `Shape from texture for smooth curved surfaces in perspective projection',
J. of Mathematical Imaging and Vision 2, 329{352.

G�arding, J. (1993), `Shape from texture and contour by weak isotropy', J. of Arti�cial Intel-
ligence 64(2), 243{297.

G�arding, J. & Lindeberg, T. (1994), Direct estimation of local surface shape in a �xating
binocular vision system, in J.-O. Eklundh, ed., `Proc. 3rd European Conference on Com-
puter Vision', Vol. 800 of Lecture Notes in Computer Science, Springer-Verlag, Stock-
holm, Sweden, pp. 365{376.

G�arding, J. & Lindeberg, T. (1996), `Direct computation of shape cues using scale-adapted
spatial derivative operators', Int. J. of Computer Vision 17(2), 163{191.

Gibson, J. (1950), The Perception of the Visual World, Houghton Mi�in, Boston.

Jones, D. G. & Malik, J. (1992), Determining three-dimensional shape from orientation and
spatial frequency disparities, in G. Sandini, ed., `Proc. 2nd European Conf. on Com-
puter Vision', Vol. 588 of Lecture Notes in Computer Science, Springer-Verlag, Santa
Margherita Ligure, Italy, pp. 661{669.

Kanatani, K. (1984), `Detection of surface orientation and motion from texture by a stereo-
logical technique', J. of Arti�cial Intelligence 23, 213{237.

Kanatani, K. & Chou, T. C. (1989), `Shape from texture: general principle', J. of Arti�cial
Intelligence 38, 1{48.

Kimia, B. B., Tannenbaum, A. & Zucker, S. W. (1990), Toward a computational theory of
shape: An overview, in `Proc. 1st European Conf. on Computer Vision', Antibes, France,
pp. 402{407.



Koenderink, J. J. (1984), `The structure of images', Biological Cybernetics 50, 363{370.

Koenderink, J. J. & van Doorn, A. J. (1976), `Geometry of binocular vision and a model for
stereopsis', Biological Cybernetics 21, 29{35.

Koenderink, J. J. & van Doorn, A. J. (1990), `Receptive �eld families', Biological Cybernetics
63, 291{298.

Koenderink, J. J. & van Doorn, A. J. (1991), `AÆne structure from motion', J. of the Optical
Society of America pp. 377{385.

Lindeberg, T. (1990), `Scale-space for discrete signals', IEEE Trans. Pattern Analysis and
Machine Intell. 12(3), 234{254.

Lindeberg, T. (1993a), `Discrete derivative approximations with scale-space properties: A
basis for low-level feature extraction', J. of Mathematical Imaging and Vision 3(4), 349{
376.

Lindeberg, T. (1993b), On scale selection for di�erential operators, in K. H. K. A. H�gdra,
B. Braathen, ed., `Proc. 8th Scandinavian Conf. on Image Analysis', Norwegian Society
for Image Processing and Pattern Recognition, Troms�, Norway, pp. 857{866.

Lindeberg, T. (1994a), On the axiomatic foundations of linear scale-space: Combining semi-
group structure with causality vs. scale invariance, Technical Report ISRN KTH/NA/P--
94/20--SE, Dept. of Numerical Analysis and Computing Science, KTH. Extended version
to appear in J. Sporring and M. Nielsen and L. Florack and P. Johansen (eds.) Gaussian
Scale-Space Theory: Proc. PhD School on Scale-Space Theory, Copenhagen, Denmark,
Kluwer Academic Publishers, May 1996.

Lindeberg, T. (1994b), Scale selection for di�erential operators, Technical Report ISRN
KTH/NA/P--94/03--SE, Dept. of Numerical Analysis and Computing Science, KTH.
(Submitted).

Lindeberg, T. (1994c), Scale-Space Theory in Computer Vision, The Kluwer International
Series in Engineering and Computer Science, Kluwer Academic Publishers, Dordrecht,
Netherlands.

Lindeberg, T. (1996a), Edge detection and ridge detection with automatic scale selection, in
`Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, 1996', San
Francisco, California, pp. 465{470.

Lindeberg, T. (1996b), Feature detection with automatic scale selection, Technical Report
ISRN KTH/NA/P--96/18--SE, Dept. of Numerical Analysis and Computing Science,
KTH.

Lindeberg, T. & G�arding, J. (1993), Shape from texture from a multi-scale perspective, in
H.-H. N. et. al., ed., `Proc. 4th Int. Conf. on Computer Vision', IEEE Computer Society
Press, Berlin, Germany, pp. 683{691.

Lindeberg, T. & G�arding, J. (1994), Shape-adapted smoothing in estimation of 3-D depth
cues from aÆne distortions of local 2-D structure, in J.-O. Eklundh, ed., `Proc. 3rd Eu-
ropean Conference on Computer Vision', Vol. 800 of Lecture Notes in Computer Science,
Springer-Verlag, Stockholm, Sweden, pp. 389{400.

Malik, J. & Rosenholtz, R. (1993), A di�erential method for computing local shape-from-
texture for planar and curved surfaces, in `Proc. IEEE Comp. Soc. Conf. on Computer
Vision and Pattern Recognition', pp. 267{273.

Manmatha, R. (1994), Measuring the aÆne transform using Gaussian �lters, in J.-O. Eklundh,
ed., `Proc. 3rd European Conference on Computer Vision', Vol. 801 of Lecture Notes in
Computer Science, Springer-Verlag, Stockholm, Sweden, pp. 159{164.



Mumford, D. & Shah, J. (1985), Boundary detection by minimizing functionals, in `Proc.
IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition'.

Nitzberg, M. & Shiota, T. (1992), `Non-linear image �ltering with edge and corner enhance-
ment', IEEE Trans. Pattern Analysis and Machine Intell. 14(8), 826{833.

Nordstr�om, N. (1990), `Biased anisotropic di�usion: A uni�ed regularization and di�usion
approach to edge detection', Image and Vision Computing 8, 318{327.

Osher, S. & Sethian, S. (1988), `Fronts propagating with curvature dependent speed: algo-
rithms based on the Hamilton-Jacobi formalism', J. of Computational Physics 79, 12{49.

Pentland, A. P. (1986), `Shading into texture', J. of Arti�cial Intelligence 29, 147{170.

Perona, P. & Malik, J. (1990), `Scale-space and edge detection using anisotropic di�usion',
IEEE Trans. Pattern Analysis and Machine Intell. 12(7), 629{639.

Rao, A. R. & Schunk, B. G. (1991), `Computing oriented texture �elds', CVGIP: Graphical
Models and Image Processing 53(2), 157{185.

Rogers, B. & Cagenello, R. (1989), `Orientation and curvature disparities in the perception
of three-dimensional surfaces', Investigative Opthalmology and Visual Science 30, 262.

Saint-Marc, P., Chen, J.-S. & Medioni, G. (1991), `Adaptive smoothing: A general tool for
early vision', IEEE Trans. Pattern Analysis and Machine Intell. pp. 514{529.

Sapiro, G. & Tannenbaum, A. (1993), `AÆne invariant scale-space', Int. J. of Computer
Vision 11(1), 25{44.

Sato, J. & Cipolla, R. (1994), Extracting the aÆne transformation from texture moments, in
J.-O. Eklundh, ed., `Proc. 3rd European Conference on Computer Vision', Vol. 801 of
Lecture Notes in Computer Science, Springer-Verlag, Stockholm, Sweden, pp. 165{172.

Stevens, K. A. (1981), `The information content of texture gradients', Biological Cybernetics
42, 95{105.

Stone, J. V. (1990), Shape from texture: textural invariance and the problem of scale in
perspective images of surfaces, in `Proc. British Machine Vision Conference', Oxford,
England, pp. 181{186.

Super, B. J. & Bovik, A. C. (1992), Shape-from-texture by wavelet-based measurement of local
spectral moments, in `Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern
Recognition', Champaign, Illinois, pp. 296{301.

ter Haar Romeny, B., ed. (1994), Geometry-Driven Di�usion in Computer Vision, Series
in Mathematical Imaging and Vision, Kluwer Academic Publishers, Dordrecht, Nether-
lands.

Terzopoulos, D. (1983), `Multilevel computational processes for visual surface reconstruction',
Computer Vision, Graphics, and Image Processing 24, 52{95.

Tyler, C. W. & Sutter, E. E. (1979), `Depth from spatial frequency di�erence: An old kind of
stereopsis?', Vision Research 19, 859{865.

Weber, J. & Malik, J. (1993), Robust computation of optical 
ow in a multi-scale di�erential
framework, in `Proc. 4th Int. Conf. on Computer Vision', Berlin, Germany, pp. 12{20.

Weickert, J. (1995), Multiscale texture enhancement, in `6th International Conference on
Computer Analysis of Images and Patterns', Prague.

Wildes, R. P. (1981), `Direct recovery of three-dimensional scene geometry from binocular
stereo disparity', IEEE Trans. Pattern Analysis and Machine Intell. 13(8), 761{774.

Witkin, A. P. (1981), `Recovering surface shape and orientation from texture', J. of Arti�cial
Intelligence 17, 17{45.



Witkin, A. P. (1983), Scale-space �ltering, in `Proc. 8th Int. Joint Conf. Art. Intell.', Karl-
sruhe, West Germany, pp. 1019{1022.

Yuille, A. L. & Poggio, T. A. (1986), `Scaling theorems for zero-crossings', IEEE Trans.
Pattern Analysis and Machine Intell. 8, 15{25.


