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Abstract

This paper addresses the problem of computing cues to the three-dimensional structure
of surfaces in the world directly from the local structure of the brightness pattern of
either a single monocular image or a binocular image pair.

It is shown that starting from Gaussian derivatives of order up to two at a range
of scales in scale-space, local estimates of (i) surface orientation from monocular tex-
ture foreshortening, (ii) surface orientation from monocular texture gradients, and (iii)
surface orientation from the binocular disparity gradient can be computed without
iteration or search, and by using essentially the same basic mechanism.

The methodology is based on a multi-scale descriptor of image structure called the
windowed second moment matrix, which is computed with adaptive selection of both
scale levels and spatial positions. Notably, this descriptor comprises two scale param-
eters; a local scale parameter describing the amount of smoothing used in derivative
computations, and an integration scale parameter determining over how large a region
in space the statistics of regional descriptors is accumulated.

Experimental results for both synthetic and natural images are presented, and the
relation with models of biological vision is briey discussed.
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1 Introduction

Virtually all methods for inferring properties of the three-dimensional world from one or
more images require an initial stage of retinotopic processing in which the raw image bright-
ness pattern is transformed into some more useful representation. In practical computer
vision applications this representation is often tailored for the speci�c task at hand, but a
number of attempts have been made at de�ning general principles for the structure of a
more general-purpose set of low-level operators capable of computing useful representations
without any speci�c prior knowledge of the image structures to be processed.

One such approach, based primarily on theoretical considerations, is the scale-space

representation, introduced by Witkin (1983) and Koenderink (1984). Perhaps the most
important conclusion of this theory is that if the low-level operators are unbiased in the
sense that they do not single out particular locations, orientations, or sizes, then the only
permissible linear operations are convolutions with Gaussian kernels and their derivatives
at various scales (Koenderink and van Doorn, 1992; Florack et al., 1992; Lindeberg, 1994a).

An alternative approach is to try to emulate the structure and characteristics of the early
stages of primate vision, either for the purpose of gaining a better understanding of it, or
simply because the performance of biological vision systems is superior to that of existing
computer vision systems. This approach has generated many interesting and useful results,
despite the fact that the current understanding of biological vision is far from complete. For
example, general considerations regarding the information processing requirements of the
visual system led Marr (1976) to propose the computation of a primal sketch in which low-
level features of the brightness pattern, such as bars and blobs, are explicitly represented.
Other models, e.g. (Turner, 1986; Bergen and Adelson, 1988; Malik and Perona, 1990),
have been based on neurobiological studies of the structure of the receptive �elds in the
mammalian retina and the primary visual cortex. These models have been quite successful
at predicting human pre-attentive texture discrimination, and have largely replaced the
earlier texton theory by Julesz (1981). Interestingly, the theoretical scale-space approach
and the more empirical receptive �eld approach are to a certain extent in agreement; simple
receptive �elds in the mammalian retina and primary visual cortex are well described by
Gaussian derivatives (Young, 1985, 1987; Jones and Palmer, 1987a, 1987b) but also by
similar models such as Gabor functions.

Retinotopic processing models are often based on considerations of relatively low-level
visual tasks, such as feature detection and two-dimensional texture discrimination. One
might therefore be led to think that visual tasks concerning three-dimensional interpreta-
tions of the environment require a qualitatively di�erent type of information processing,
which would have little in common with such basic operations as can be performed by a
single cell or processing unit. In this paper, however, we show that at least some visual tasks
of this type can be implemented as bottom-up retinotopic processing sequences, without
the need for iterations, search, or a priori knowledge.

More speci�cally, we consider the task of estimating the shape and orientation of three-
dimensional surfaces in the scene from (i) perspective distortion of surface texture observed
in a monocular image, and (ii) the gradient of disparity observed in a binocular image
pair. We show that this can be achieved using in principle only the following types of
visual front-end operations (Lindeberg, 1993b): (large support) di�usion smoothing, (small
support) derivative computations from smoothed brightness data, and (pointwise) non-
linear combinations of these derivatives.
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The framework is based on the computation of a local (regional) descriptor of the struc-
ture of the brightness pattern, referred to as the windowed second moment matrix, which
describes the local variance of blurred �rst-order directional Gaussian derivatives. We em-
phasize and analyze the need for two di�erent scale parameters; a local scale parameter
describing the amount of smoothing used for suppressing irrelevant �ne scale structures
when computing pointwise non-linear descriptors of the image brightness pattern, and a
second integration scale parameter describing the size of the spatial window used for accu-
mulating statistics of the pointwise descriptors.

Thus, the multi-scale nature of image structures is explicitly taken care of, and is built
into the representation. We do not attempt to make the representation \complete" in the
sense of allowing reconstruction of the original image from the descriptors. On the contrary,
we emphasize adaptive selection of both scale levels and spatial positions, for the purpose
of providing an explicit representation of precisely the information needed by the later
stage processes. Moreover, the representation is normalized in such a way that selection of
interesting scale levels and spatial positions is achieved simply through detection of local
extrema with respect to scale and position of the computed non-linear entities.

The presentation is organized as follows. Section 2 provides a formal de�nition and de-
scription of the basic multi-scale image texture descriptor we propose. Section 3 describes
scale problems arising in this context. The notions of local scale and integration scale are
formalized, and it is shown how relevant scale values for these two scale parameters can be
automatically selected. Section 4 demonstrates how the basic principles for scale selection
can be applied to spatial selection, resulting in what can be viewed as a multi-scale blob
detection method. These components are then combined in Section 5, which reviews the
shape-from-texture problem and demonstrates how estimates of surface shape and orien-
tation can be computed directly from the multi-scale texture descriptor. Section 6 treats
the problem of estimating shape from gradients of binocular disparity, and demonstrates
that the proposed approach can be successfully applied to this problem as well. Finally, in
Section 7 some general conclusions are made, and their implications are discussed.

2 A local texture descriptor

The task of computing meaningful texture descriptors is often referred to in the literature
as extraction of texture elements or \texels". Considering the great variability of natural
textures, it is not surprising that there is no generally accepted de�nition of precisely what
a texel is. A �rst and rather obvious requirement on a texel de�nition is that it must be
computable for a large class of natural images, but this still leaves many degrees of freedom.

Here, we shall take a functional approach to texel extraction. Rather than postulating
any particular structure of the texture, we consider the requirements of the higher-level
processes that need to use the local texture description. The basic principle of shape-from-
texture estimation is to use the observed perspective distortion of the texture pattern to
estimate the parameters of the distorting transformation, which in turn allow properties
of surface and/or viewing geometry to be inferred. The principle of shape-from-disparity-
gradient estimation is analogous, the di�erence being that it uses the distortion from the
right to the left image, rather than the distortion from a surface to its image. Hence,
for both these processes, the texture description must reect perspective distortion of the
texture in a predictable way, so that the parameters of the distorting transformation can
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be recovered from the texture description.
A great simpli�cation of the problem comes from the observation that for many purposes

it is su�cient to recover the linear part of the perspective distortion. The analysis behind
this observation is given in Sections 5 and 6; for the moment we take it as a given fact.

2.1 The windowed second moment matrix

We propose that a texture descriptor expressed in the form of a two-dimensional second
moment matrix is well suited for the purpose of estimating local linear distortion. Such a
second moment matrix can be thought of e.g. as a covariance matrix of a two-dimensional
random variable, or, with a mechanical analogy, as the moment of inertia of a mass distri-
bution in the plane. It can be graphically represented by an ellipse, and as will be shown,
a linear transformation applied to the spatial coordinates a�ects the ellipse precisely as it
would a�ect a physical ellipse painted on the surface.

Various forms of second moment descriptors have previously been successfully applied
to a number of visual tasks. For estimation of shape from texture, Brown and Shvaytser
(1990) used the second moment of the image brightness autocorrelation function to estimate
foreshortening, G�arding (1991, 1992) used the second moment of the local Fourier spectrum
to estimate foreshortening and texture gradients. Super and Bovik (1992) used the same
moment to estimate relative foreshortening. Second moments of the directional statistics
of image contours have been used by Kanatani (1984), Blake and Marinos (1990a) and
G�arding (1993) for estimation of foreshortening. Moreover, second moment descriptors of
brightness gradients have been used by Big�un et al. (1991) and Rao and Schunk (1991) for
analysis of oriented or ow-like texture patterns, as well as by F�orstner and G�ulch (1987)
as an \interest" operator in the context of junction detection and stereo matching.

Here, we shall use a particular type of second moment matrix similar to some of those
described in the above cited articles. It is de�ned as follows (Lindeberg and G�arding, 1993):
Let L : R2! R be the image brightness, and let rL = (Lx; Ly)T be its gradient. We now
de�ne the second moment descriptor1 �L : R2! SPSD(2) of L by

�L(q) =

 
�11 �12
�21 �22

!
= Eq

 
L2
x LxLy

LxLy L2
y

!
= Eq((rL)(rL)T); (1)

where Eq denotes an averaging operator centered at q = (x; y)T 2 R2. �L(q) has a number
of convenient properties. Clearly, it is invariant to translations, and it can easily be shown
that the trace and determinant of �L are also invariant to rotations. Moreover, uniform
rescaling in the spatial domain and a�ne brightness transformations only a�ect �L by a
uniform scaling factor.

We de�ne the averaging operator Eq as the local weighted mean using a symmetric and
normalized window function w : R2 ! R. Hence, the components �ij of �L(x; y) can be
expressed as

�ij(x; y) =
Z Z

(x0;y0)2R2
w(x� x0; y � y0)Lxi(x

0; y0)Lxj(x
0; y0) dx0 dy0; (2)

The invariance properties are preserved provided that w is rotationally symmetric (see be-
low) and has a nice scaling behaviour. A natural choice of window function is the Gaussian;

1The notation SPSD(2) stands for the cone of symmetric positive semide�nite 2 � 2 matrices.
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in fact, as described in Section 3.1 this is the only translationally invariant choice that leads
to scale-space behaviour of �L.

2.1.1 Spatial frequency interpretation

�L can also be understood in terms of the spatial frequency distribution of L(x; y). Rename
temporarily the coordinates (x; y)T to (x1; x2)

T , and let �L : R2! Rbe the power spectrum
of L, i.e.,

�L(!1; !2) = L̂(!1; !2) L̂
�(!1; !2); (3)

where L̂ : R2! C denotes the Fourier transform of L

L̂(!1; !2) =
Z
(x1;x2)2R2

L(x1; x2) e
�(!1x1+!2x2)dx1 dx2 (4)

and L̂� its complex conjugate. Using Plancherel's relation it follows thatZ Z
(x1;x2)2R2

LxiLxj dx1 dx2 =
1

(2�)2

Z Z
(!1;!2)2R2

!i!j �L(!1; !2) d!1 d!2: (5)

Hence, if L 2 L2(R
2), the inner products of the �rst derivatives are proportional to the

components of the second moment of the power spectrum.

2.1.2 Visualization by ellipses

Since the second moment matrix is positive semide�nite, it follows that the equation

(� � q)T�L(q) (� � q) = 1 (�; q 2 R2) (6)

de�nes an ellipse (possibly degenerated to a line) centered at q. The semi-axes of this ellipse
are the square roots of the inverse of the eigenvalues (�1; �2) of �L(q), while the orientations
of the axes give the directions of the corresponding eigenvectors (see Figure 1). It is easily
veri�ed that the distance from the center to the perimeter of the ellipse in some direction
is equal to the inverse of the average squared magnitude of the directional derivative of
L(x; y) in that direction.

1/µ11
2

1/µ2
22

1
21/λ

1/λ2
2

ξ 1

ξ 2

Figure 1: The ellipse representation of the second moment matrix �L. For simplicity, the ellipse is
shown centered at the origin of the coordinate system.



Direct computation of shape cues 5

2.2 Transformation properties

As mentioned in the beginning of this section, the (linear) transformation properties of the
local texture descriptor are crucial to the higher-level processes (shape-from-texture and
shape-from-disparity-gradients) that are going to operate on the description. Because these
processes attempt to recover the parameters of the transformation from the properties of
the texture descriptors, the descriptors must be a�ected in a predictable way by a linear
transformation B : R2! R2, representing e.g. the linearized perspective mapping from the
surface to the image in the shape-from-texture case, or the linearized projective mapping
from the left to the right image in the shape-from-disparity-gradient case.

For the windowed second moment matrix the relation is straightforward. Given a bright-
ness pattern L, let R : R2! R represent the brightness pattern subjected to an invertible
linear transformation of the spatial coordinates � = B�, i.e.,

L(�) = R(B�) (7)

where �; � 2 R2. Moreover, let �R(p) 2 SPSD(2) be the local second moment of R at the
point p = Bq computed with respect to the \backprojected" normalized window function
w0 : R2! R de�ned by

w0(� � p) = (detB)�1w(B�1(� � p)) = (detB)�1w(� � q): (8)

It is then straightforward to show that (see Appendix A.1)

�L(q) = BT �R(p)B: (9)

In the rest of this section, the arguments p and q to �L and �R will be dropped to simplify
the notation.

It is easily veri�ed that (9) also describes the e�ect of the coordinate transformation B
to the ellipse (6) representing �L(q). Hence, it is justi�able to think of �L as analogous to
an ellipse that is \painted" on the surface. This analogy often provides su�cient intuition
to directly predict the behaviour of �L in various situations.

If �L and �R are known, then the linear transformation B is clearly constrained by (9).
However, it is not determined uniquely, since �L and �R are symmetric and hence only
contain three independent components, whereas B may contain four unknown parameters.
It can be shown (G�arding, 1991) that the general solution to �L = BT�RB is

B = �
�1=2
R WT�

1=2
L (10)

where W is an arbitrary orthogonal matrix, and the notation �1=2 indicates some (e.g., the
unique positive semide�nite symmetric) solution to the equation X2 = �.

Fortunately, in the applications to shape estimation from texture and disparity gradients
considered in this paper, the ambiguity represented by the rotation matrix W is eliminated
by geometric constraints which reduce the degrees of freedom of the linear transformation
B (see Sections 5.3 and 6.2).

2.3 The structure of the second moment descriptor

In this section we shall take a closer look at the structure of �L(q), and de�ne a number of
derived entities that will turn out to be useful later on.
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For any two-dimensional second moment matrix �, the following entities can be de�ned
from its components �ij :

P = �11 + �22; C = �11 � �22; S = 2�12: (11)

Applied to �L (with the argument q dropped), these de�nitions can be rewritten:

P = Eq(L
2
x + L2

y); C = Eq(L
2
x � L2

y); S = 2Eq(LxLy): (12)

The �rst descriptor P : R2! R is a natural measure of the strength of operator response;
it is the average of the square of the gradient magnitude in a region around q. The two
other entities C; S : R2! R contain directional information, and it is natural to treat them
as a vector (C; S), the magnitude of which is

Q =
p
C2 + S2: (13)

We also de�ne the normalized entities

~C = C=P; ~S = S=P; ~Q = Q=P: (14)

It can easily be shown that ~Q 2 [0; 1]; it holds that ~Q = 0 if and only if Eq(L2
x) = Eq(L2

y)

and Eq(LxLy) = 0, while ~Q = 1 if and only if (Eq(LxLy))
2 = Eq(L

2
x)Eq(L

2
y). ~Q is a natural

measure of the anisotropy of �L(q); in terms of the ellipse representation, ~Q = 0 corresponds
to a circle, and ~Q = 1 to a line. For example, a rotationally symmetric brightness pattern
has ~Q = 0, while a translationally symmetric pattern2 has ~Q = 1. Rotational symmetry
is, however, not necessary in order to obtain ~Q = 0. For example, any pattern with
N � 2 uniformly distributed dominant (unsigned) directions also satis�es ~Q = 0. A second
moment matrix with ~Q = 0 will be referred to as weakly isotropic.

Q and P are invariant under rotations of the coordinate system provided that the
window function w is rotationally symmetric, and they allow the di�erential invariants of
�L to be succinctly expressed as follows:

trace�L = P;

det�L =
1

4
(P 2 � Q2) =

1

4
P 2(1� ~Q2);

�1;2 =
1

2
(P �Q) =

1

2
P (1� ~Q);

(15)

where �1 � �2 are the eigenvalues of �L.
The normalized components ( ~C; ~S)T can also be understood as representing the local

statistics of unsigned gradient directions. A standard technique (Mardia, 1972) for com-
puting statistics of unsigned directions in R2 is to map a direction angle � to the point
(cos 2�; sin 2�)T on the unit circle. This mapping has the desired property that � and
� + � are mapped to the same point. Using this representation, map each gradient vector
(Lx; Ly)T = �(cos�; sin�)T to the point (cos 2�; sin 2�)T , and give it a \mass" proportional
to the squared gradient magnitude �2 multiplied by the window function. It is then easily
shown that the center of mass of this distribution is given by ( ~C; ~S)T . Hence, the average
unsigned gradient direction is arg( ~C; ~S)=2, which is also the direction of the eigenvector
corresponding to the largest eigenvalue of �L; see (Lindeberg and G�arding, 1993) for more
details.

2A (two-dimensional) translationally symmetric brightness pattern f :R2!R can be written f(x; y) =
h(ax+ by) for some one-dimensional function h :R!R and some (scalar) constants a and b.
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3 Representing and selecting scale

An intrinsic property of objects in the world and details in images is that they only exist
as meaningful entities over certain ranges of scale. This issue is of crucial importance when
using perspective distortion to derive shape cues; size variations of image structures can
occur both because a surface texture contains structures at di�erent scales, and because of
perspective e�ects in the image formation process. Analysing image structures at wrong
scales often leads to meaningless results. Concerning the computation of the windowed
second moment matrix (or, indeed any other non-trivial texture descriptor which involves
integration of statistics of pointwise properties over �nite-sized local image neighborhoods)
there are two fundamental scale problems, which manifest themselves as follows.

First, the image statistics must be collected from a region large enough to be representa-
tive of the texture. Yet, the region must not be so large that the local linear approximation
of the perspective mapping becomes invalid. For example, for an ideal texture consisting
of isolated blobs, a lower limit for the extent of the integration region is determined by
the size of the individual blobs, while an upper limit may be given by the curvature of the
surface or interference with other nearby surface patches. This scale controlling the window
function is referred to as integration scale (denoted s).

Second, the image statistics must be based on descriptors computed at proper scales, so
that noise and \irrelevant" image structures can be suppressed. The descriptor considered
in this paper is based on �rst order spatial derivatives of the image brightness, and it is
obvious that useful results hardly can be expected if the derivatives are computed directly
from unsmoothed noisy data, although this problem disappears in ideal noise-free data if
the sampling problems are handled properly. This scale determining the amount of initial
smoothing in the (traditional �rst-stage) multi-scale representation of the image is referred
to as local scale3 (denoted t).

3.1 The multi-scale windowed second moment matrix

A general framework for handling image structures at di�erent scales is provided by scale-
space theory (Witkin, 1983; Koenderink, 1984; Babaud et al., 1986; Yuille and Poggio,
1986; Lindeberg, 1990, 1993b, 1994a; Koenderink and van Doorn, 1990, 1992; Florack
et al., 1992). In summary, this theory basically states that the natural way to process a
given two-dimensional continuous signal f : R2! R is by embedding it into the scale-space
representation L : R2�R+! R de�ned as the solution to the di�usion equation

@tL =
1

2
r2L =

1

2
(@xx + @yy)L (16)

with initial condition L(�; 0) = f(�). Equivalently, this representation can be obtained by
convolution with the Gaussian kernel L(�; t) = g(�; t) � f(�), where

g(x; y; t) =
1

2�t
e�(x

2+y2)=(2t): (17)

Based on this framework, a formal de�nition of the multi-scale windowed second moment

matrix can be stated as

�L(�; t; s) = w(�; s) � ((rL)(�; t) (rL)(�; t)T ); (18)

3This terminology refers to local operations (derivatives). Concerning the use of two scale parameters
for texture analysis, see also (Casadei et al., 1992).
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where s is the integration scale parameter associated with the window function w, and t is
the local scale parameter in the scale-space representation of the original image.

In Section 2.1, it was indicated that the Gaussian is a natural choice of window function
in (2). This choice could, in principle, be motivated by the fact that this kernel is rotation-
ally symmetric with a nice scaling behaviour, which means that the invariance properties
described in Section 2.1 are preserved. More importantly, however, it holds that if and only

if the window function is a Gaussian, then the components of �L, �ij , constitute scale-space
representations of the components of (rL)(rL)T , LxiLxj , respectively (Lindeberg, 1994a).
This is a direct consequence of the uniqueness of the Gaussian kernel for scale-space rep-
resentation given natural front-end postulates (e.g. the causality condition introduced by
Koenderink (1984), or the scale invariance used by Florack et al. (1992)).

3.2 Scale selection: Review

The second moment matrix depends upon two scale parameters. In general, appropriate
values for these parameters can be expected to vary substantially between di�erent images,
and even between di�erent locations in a single image, depending on the type of surface
texture, the distance to the surface and the noise in the image formation process. It is thus
highly desirable (or even necessary) to include some automatic and adaptive mechanism
for selecting appropriate scale levels.

A general method for scale selection has been proposed by Lindeberg (1993c, 1994b). It
is based on the idea of studying the evolution over scales of di�erential invariants expressed
in terms of normalized scale-space derivatives de�ned by

@� =
p
t @x (19)

where � = x=
p
t are normalized coordinates. More precisely, the method for scale selection

states that scale levels for further processing should be selected from the scales where
normalized di�erential entities assume maxima over scales, based on the following heuristic
principle:

In the absence of other evidence, a scale level at which some (possibly non-
linear) combination of normalized derivatives assumes a local maximum can be
treated as a characteristic dimension of a corresponding structure contained in
the data.

This principle is similar although not equivalent to the method for scale selection described
in (Lindeberg, 1993a), where scales were selected from from maxima over scales of a normal-
ized measure of the strength of a blob response. This principle can be justi�ed theoretically
for a general class of di�erential invariants as well as a number of speci�c local brightness
models; see (Lindeberg, 1993c, 1994a) and Section 3.3, but its practical usefulness must be
veri�ed empirically. Here, we shall apply it for selecting scale levels for computing second
moment descriptors.

Figure 2 illustrates the variation over scale of three di�erential entities related to the
second moment descriptor. The graphs show from left to right the variation over scales
of (i) the normalized square of the gradient magnitude jjrnormLjj22, (ii) the local average
of the gradient magnitude using a Gaussian window function with the integration scale
proportional to the local scale (this is the trace of �L(q)), and (iii) the determinant of
�L(q). These graphs are called the scale-space signatures of the entities considered.
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Figure 2: Scale-space signatures of the pointwise and integrated normalized gradient magnitude
(jjrnormLjj22 and trace �L respectively), as well as the determinant of the second moment matrix
(det �L) for two details of a sunower image; (left) grey-level image, (middle left) signature of
jjrnormLjj22, (middle right) signature of trace �L, and (right) signature of det�L. Observe that the
maxima in the top row are assumed at �ner scales than the maxima in the bottom row. (All entities
are computed at the central point. The scaling of the horizontal axis is basically logarithmic, while
the scaling of the vertical axis is linear.)

As can be seen, the maxima over scales in the top row of Figure 2 are obtained at �ner
scales than in the bottom row. Moreover, the ratio between the scale values for which the
graphs attain their maxima is roughly equal to the ratio of the sizes of the sunowers in
the centers of the two images respectively, in agreement with the heuristic principle.

This principle for scale selection is not restricted to texture analysis; see (Lindeberg,
1993c, 1994b) for a more general treatment concerning other feature detection tasks, such
as junction detection, blob detection, edge detection and ridge detection.

3.3 Properties of the scale selection method

This section lists some more speci�c properties of the heuristic principle for scale selection.
A more extensive treatment can be found in the references cited above.

For two parallel (two-dimensional) sine waves

fpar(x; y) = sin!1x+ sin!2x (20)

(where !1 � !2) it is easy to show that for both jjrnormLjj22 and trace�L there is a unique
scale maximum when !2=!1 is close to one, while there are two scale maxima for su�ciently
large !2=!1 (!bifurc � 2:4). A similar result holds for two orthogonal sine waves,

forth(x; y) = sin !1x+ sin!2y: (21)

If the latter signal is interpreted as the orthographic projection of an isotropic pattern with
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foreshortening � = !1=!2, then the interpretation is that the response changes from one to
two peaks at slant �bifurc = arccos(1=!bifurc) � 65�.

The determinant of the windowed second moment matrix, det�L, behaves somewhat
di�erently; it is identically zero for fpar, while there is always a unique peak in forth.

More generally, for an isotropic pattern (with ~Q = 0, or equivalently, �1 = �2) the scale
maxima of trace�L and det�L coincide. This is easily proved from trace�L = �1+�2 = 2�1
and det�L = �1�2 = �21, which gives @t det�L = 0, @t trace�L = 0.

For a unidirectional pattern (with ~Q = 1, or equivalently, �2 = 0) det�L is identically
zero, while trace�L is non-zero. Hence, det�L only responds when there are signi�cant
variations along both the coordinate directions, typically for blob-like signals.

The behaviour of the normalized derivatives can be understood also in the context of
signals having a dense Fourier spectrum. For a signal f with a (fractal) power spectrum
�f = f̂ f̂� = j!j�2� it follows from Plancherel's relation that

Pnorm(�; t) = t (E(L2
x(�; t)) +E(L2

y(�; t))) � t��1: (22)

This expression is independent of scale if and only if � = 1. In other words, in the two-
dimensional case the normalized derivative model is neutral with respect to power spectra
of the form j!j�2, which commonly occur in natural imagery (Field, 1987).

3.4 Scale selection for computing �L

Computation of the windowed second moment matrix �L requires selection of suitable
values for both the local scale parameter t and the integration scale parameter s. In its most
general form, the adaptive scheme we propose for setting these scales can be summarized
as follows. Given any point in the image;

1. vary the two scale parameters, the local scale t and the integration scale s, according
to some scheme;

2. accumulate the scale-space signature for some (normalized) di�erential entity;

3. detect some special property of the signature, e.g., the global maximum, or all local
extrema, etc;

4. set the integration scale(s) used for computing �L proportional to the scale(s) where
the above property is assumed;

5. compute �L at the �xed integration scale while varying the local scale between a min-
imum scale, e.g. t = 0, and the integration scale, and then select the most appropriate
local scale(s) according to some criterion.

Our speci�c implementation of this general scheme is described below.

Scale variation. A completely general implementation of Step 1 would involve a full
two-parameter scale variation. Here, a simpler but quite useful approach will be used; the
integration scale is set to a constant times the local scale, s = 21 t (typically 1 =

p
2). In

light of the scale selection heuristic, this scale invariant choice means that the size of the
integration region is proportional to the characteristic length of the local smoothing kernel.
For example, in the case of periodic patterns, this implies that the size of the integration
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region at each local scale is proportional to the wavelength for which the normalized �rst
derivative at that scale would give a maximum response.

Selecting integration scales. Concerning Steps 2{3, we propose to set the integration
scales from the scales, denoted sdet�L , where the normalized strength of �L, represented by
det�L, assumes a local or global maximum. This choice is motivated by the observation
that for both simple periodic and blob-like patterns, the signature of det�L has a single
peak reecting the characteristic size (area) of the two-dimensional pattern, while for the
pointwise and integrated gradient magnitude the response changes from one to two peaks
with increasing (linear) distortion.

Once sdet�L has been determined, it is advantageous to compute �L at a slightly larger
integration scale s = 22 sdet�L = 21

2
2 tdet�L (typically 2 = 2), in order to obtain a

more stable descriptor. More formally, using 2 > 1 can be motivated by the analysis
in (Lindeberg and G�arding, 1993; Lindeberg, 1994a) which shows that the estimates of
the directional information in �L are more sensitive to small window sizes than are the
magnitude estimates. The factor  = 12 is referred to as relative integration scale.

Selecting local scales. The local scale at which �L is computed in Step 5 should be
chosen to suppress noise and irrelevant �ne-scale structure without introducing excessive
shape distortions due to smoothing. In simple situations it may be acceptable to set it to
a �xed value reecting the overall noise level in the image. A more general and adaptive
principle is to set the local scale(s) at each point to the scales, denoted tQ, where the
normalized anisotropy, ~Q, assumes a local maximum. This is motivated by the fact that
in the absence of noise and interfering �ner scale structures, the main e�ect of the �rst
stage scale-space smoothing is to decrease the anisotropy. For example, the aspect ratio
of a non-uniform Gaussian blob f(x; y) = g(x; l21) g(y; l

2
2) varies as (l

2
2 + t)=(l21 + t), and

clearly approaches one as t is increased. On the other hand, suppressing isotropic noise and
interfering �ner scale structures increases the anisotropy. Selecting the maximum point
gives a natural trade-o� between these two e�ects.

Experiments. Figure 3 illustrates these e�ects for a synthetic image with di�erent amounts
of additive white Gaussian noise. Note that the scale-space signature of det�L has a unique
maximum when the noise level, �, is small, and two maxima when � is increased. Table 1
gives numerical values obtained by using the proposed method for scale selection. Notice
the stability of sdet�L with respect to noise. The selected local scale tQ increases with the
noise level �, while ~Q decreases at t = 0.4

In Section 5.3 it is shown that under a certain assumption about the surface texture
(weak isotropy), the estimate of surface orientation is directly related to the normalized
anisotropy ~Q, and to the eigenvector of �L corresponding to the maximum eigenvalue.
Table 1 illustrates the accuracy in estimates of ~Q and surface orientation computed in this

4In these curves there is also a minimum in the signature of ~Q at coarse scales. The reason why this
occurs is that the higher-frequency sine component is suppressed much faster than the lower-frequency sine
component. At a certain scale, the contributions to �L from these two components are equal (corresponding
to ~Q = 0). Then, when the higher-frequency component is suppressed further, the local image structure
asymptotically approaches a translationally symmetric pattern; see also (Lindeberg and G�arding, 1993) for
a theoretical analysis.
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Figure 3: Scale-space signatures of det�L and ~Q (accumulated at the central point) for a synthetic
texture with added (white Gaussian) noise of standard deviation � = 1:0 (top row), 10.0 (middle
row), and 100.0 (bottom row). The range of grey-levels is [0::255]. The columns show; (left) grey-
level image with noise, (middle) signature of det�L, and (right) signature of ~Q.

noise level sdet �L tQ ~Q(tQ) ~Q(t = 0) ��n(tQ) ��n(t = 0)
1.0 34.9 0.0 0.602 (0.602) 0:2� (0:2�)
10.0 34.4 2.0 0.579 (0.329) 1:1� (15:3�)
31.6 34.1 4.2 0.510 (0.033) 4:7� (45:3�)
100.0 31.4 8.5 0.456 (0.006) 7:8� (53:7�)

Table 1: Numerical values of some characteristic entities obtained at the central point of the image
in Figure 3 using di�erent amounts of additive Gaussian noise and automatic scale selection. Note
the stability of the selected integration scale (proportional to sdet �L) with respect to variations in
the noise level �, and that the selected local scale tQ increases with �. Observe also the increasing

di�erence between the estimates of the normalized anisotropy ~Q computed at the selected local
scale, and at zero local scale (true value 0.600). The last two columns show the error in surface
orientation ��n computed by monocular shape-from-texture under a speci�c assumption about the
surface texture (weak isotropy).
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way. The error in surface orientation is measured by the angle ��n between the estimated
and true surface normal.

Figure 4 illustrates these results graphically, by ellipses representing the second moment
matrices, with the size rescaled to be proportional to sdet�L . As a comparison, Figure 5
displays a typical result of using non-adaptive (globally constant) scale selection. Here,
useful shape descriptors are only obtained in a small part; the window size is too small
in the lower part, while the �rst stage smoothing leads to severe shape distortions in the
upper part.

noise 1.0 noise 10.0 noise 100.0

Figure 4: Ellipses representing �L computed at di�erent spatial points using automatic scale selection
of the local scale and the integration scale | note the stability with respect to variations of the
noise level.

noise 10.0 non-adaptive smoothed image

Figure 5: Typical example of the result of using non-adaptive selection of the (here constant) local
and integration scales | geometrically useful shape descriptors are obtained only in a small part of
the image.

3.5 The ellipse representation revisited

The ellipse given by (6) graphically represents the local statistics of the �rst-order direc-
tional derivatives computed at the local scale t and the integration scale s. In particular,
the area A = 1=

p
det�L of the ellipse reects the average magnitude of these derivatives.

A scaling of the image brightness by some factor k scales A by 1=k2, whereas the shape of
the ellipse remains unchanged. Hence, ellipses computed in a dim region on average tend
to be larger than those computed in areas of higher contrast. For this reason, the absolute
magnitude of �L is not used for shape estimation.
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Size information about characteristic image structures is instead available from the scale
selection procedure, and for the purpose of graphically visualization we normalize �L by
scaling its components to make the area of the ellipse proportional5 to the scale at which
the maximum of det�L is assumed.

4 Spatial selection and blob detection

The previous sections treated the problem of selecting appropriate scales for local smoothing
and regional integration at a given image point. In this section, we shall consider the
complementary problem of selecting where in the image to apply the multi-scale analysis.
This problem is referred to as spatial selection.

Spatial selection could in principle be avoided by computing a texture descriptor at every
image point, but this is typically not an acceptable solution; it can lead to unnecessarily
poor estimates since many image points often contain little or no useful image structure.6

In particular, many natural textures seem to consist of fairly similar texture elements
randomly scattered on the surface. This is quite unlike the idealized case of a perfectly
periodic texture, in which all image points provide more or less the same information
provided that integration is performed over one period of the pattern.

Here, we shall use the scale selection method for guiding spatial selection process as
well. The resulting simultaneous selection of scale and spatial position can be interpreted
as a form of multi-scale blob detector , where each detected blob is represented by its po-
sition, its detection scale, and a second moment matrix. This multi-scale blob detector
has obvious limitations compared to more general approaches, e.g. (Blostein and Ahuja,
1989a; Lindeberg, 1993a), since it only represents the shape of each blob by a second mo-
ment matrix. However, it is well suited as a pre-processing step for the shape estimation
processes described in Sections 5 and 6, since it produces precisely the information needed
for estimating local linear distortion and size changes.

4.1 Spatial selection: Basic principle

In Section 3.4, scales were selected at a given image point from local maxima over scale
of some (possibly non-linear) combination of normalized spatial derivatives. This principle
can be applied to spatial selection as well, by selecting points (x; y)T and scales t that
are simultaneously maxima with respect to scale and position. Such points are called
normalized scale-space maxima of the di�erential entity considered.

The most straightforward implementation of this general principle is to use the same
normalized entity for spatial selection as was used in the selection of integration scale,
i.e., det�L (see Section 3.4). This method has the advantage that spatial selection and
scale selection are performed simultaneously. Alternatively, the spatial selection can be
performed independently of the scale selection. In particular, it may be desirable to use
an operator based on second order derivatives (even operators), since such an operator

5The scale factor is selected such that for a circular binary blob the ellipse area is equal to the area of
the blob. This only a�ects how ellipses are displayed; in the computations of various shape cues from �L

the scale factor always cancels out.
6When implementing the algorithm on a serial computer there are obviously e�ciency considerations as

well.
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typically gives rise to spatial maxima at the centers of high contrast blobs that stand out
from the surrounding.

Previous methods for blob detection have often been based on the Laplacian of the
Gaussian,r2g; see e.g (Marr, 1982; Blostein and Ahuja, 1989b, 1989a; Voorhees and Poggio,
1987) It is common for methods utilizing r2g or similar operators to be combined with
some thresholding operation in order to suppress false alarms, and also to contain a more
or less complex spatial post-processing step, in which blobs may, e.g., be split or merged
according to some geometric criterion. In contrast, the scheme we propose contains neither
thresholding nor spatial post-processing.

For the purpose of spatial selection, we have investigated the use of three di�erent non-
linear combinations of normalized derivatives, all of them well-de�ned in the sense that
they do not depend on the choice of coordinate system:

� The determinant of the second moment matrix, det�L, i.e., the same property as was
favoured for scale selection previously.

� The squared7 Laplacian (L��+L��)
2, i.e., the squared trace of the normalized Hessian,

trace2HnormL.

� The determinant of the normalized Hessian matrix, detHnormL = L��L�� � L2
��.

An analysis concerning the scales at which these entities assume local maxima over scales
for a periodic and a blob-like pattern respectively is given in (Lindeberg and G�arding,
1993; Lindeberg, 1994b); some results are summarized in Table 2. Note that the scales at
which the maxima are assumed are related by constant factors.

Model signal ttrace�L tdet�L ttraceHnormL tdetHnormL
Periodic: sin!1x+ sin!2y 1=!2

0 2=(!2
1 + !2

2) 2=!2
0 4=(!2

1 + !2
2)

Blob: g(x; t1) g(y; t2) t0=
p
1 + 22

1

p
t1t2=

p
1 + 22

1
t0

p
t1t2

Table 2: Closed-form expressions for the scale levels where the local maxima over scales are attained
for a periodic model signal and a blob-like model signal. For the entities based on the trace of �L and
HnormL respectively, only the results from the isotropic cases (!1 = !2 = !0, and t1 = t2 = t0) are
shown. For the periodic signal the trace based entities have two extrema when the foreshortening is
su�ciently large, while the maximum is unique for determinant based entities. For the blob signal,
the maximum is unique in all four cases.

In practice, each of these entities is computed at an integration scale s = 21t propor-
tional to the local scale t. In the �rst case, the integration is applied to �L before the
determinant is taken, since det�L is identically zero when considered pointwise. In con-
trast, the pointwise representations of the other two operators are not singular, so in these
cases the integration step could in principle be omitted (i.e., 1 = 0). Nevertheless, such
smoothing will be used here as a simple way of suppressing less signi�cant responses, and
hence reducing the computational load.

7The squaring is performed only in order to obtain uniform treatment of bright and dark blobs. The same
e�ect could, of course, also be achieved by considering both normalized scale-space maxima and normalized
scale-space minima of the ordinary Laplacian operator (although the e�ect of the second stage smoothing
then would become somewhat di�erent).
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Noisy test pattern det �L detHnormL (traceHnormL)2

Figure 6: (a) Synthetic image with dark elliptical blobs with varying sizes and aspect ratios on
a brighter background, and additive Gaussian noise with a standard deviation equal to 20% of
the brightness di�erence between the blobs and the background. (b){(d) Normalized scale-space
maxima detected using 1 =

p
2. From left to right, the operator used was det �L, detHnormL, and

(traceHnormL)2. The size of each circle indicates the scale at which the maximumwas assumed.

Figure 7: Multi-scale blob detection using normalized scale-space extrema of the square of the
Laplacian of the Gaussian. (Left) Original image. (Middle) Detected ellipses. (Right) Ellipses
representing the second moment matrix superimposed onto a bright copy of the original grey-level
image.

Figure 8: Multi-scale blob detection using normalized scale-space extrema of the square of the
Laplacian of the Gaussian. (Left) Original image. (Middle) Detected ellipses before adaption of
local scale. (Right) Detected ellipses after adaption of local scale.
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4.2 Experimental results

The properties of the spatial selection process will now be illustrated using two synthetic
test images. Additional experiments, using natural images, are given in Section 5.

The result of the �rst experiment is shown in Figure 6. The image to the left contains
dark elliptical blobs with varying sizes and aspect ratios on a brighter background, and
additive Gaussian noise with a standard deviation equal to 20% of the brightness di�er-
ence between the blobs and the background. The blob positions detected by each of the
three operators in this image are shown to the right.8 Since no shape information is com-
puted at this stage, the detected blobs are displayed as circles, with the area of each circle
proportional to the detection scale.

The performance of all three operators is somewhat similar, but it is clear that they
di�er in the number of spurious maxima they generate, as well as in their tendency to
generate multiple spatial maxima for elongated blobs. Clearly, det�L generates the largest
number of maxima, and (traceHnormL)

2, i.e., the squared normalized Laplacian, generates
the fewest. Subsequent experiments on spatial selection will therefore be based on the latter
operator, but it should not be ruled out that the other two operators can be advantageous
in some situations.

Figure 7 shows the �nal blobs found by the method, using the squared Laplacian for
spatial selection and det�L for computation of blob size and shape as explained previously.
In the scale selection step, the integration scale parameter was coupled to the local scale
parameter by s = 21t with 1 =

p
2. Then, when computing the second moment matrices,

the integration scale was set to s = 22 sdet�L with 2 = 2, where sdet�L denotes the
integration scale for which the maximum in det�L was assumed. Here, only the global
maxima with respect to scale have been retained.

The last example of this section demonstrates the importance of adapting the local scale
in the computation of �L. Figure 8 shows the blobs detected in an image at the local scale
that maximizes det�L, as well as the �nal blobs obtained by adapting the local scale to
maximize anisotropy.

5 Shape from texture

This section shows how the proposed multi-scale texture descriptor can be used for esti-
mating the shape or orientation of three-dimensional surfaces in the scene from perspective
distortion of surface texture observed in a monocular image.

5.1 Background

The image of a slanted textured surface contains several more or less independent cues
that can be used to estimate the shape and orientation of the surface. Pioneering work
on this subject was done by Gibson (1950) who studied so-called texture gradients, i.e.,
systematic variations in the image texture due to perspective distortions. One example is
the familiar \perspective e�ect" which makes the image of a near surface patch smaller
than that of a far patch. Several algorithms for estimation of surface orientation from
texture gradients have later been proposed, e.g. (Aloimonos, 1988; Blostein and Ahuja,

8The scale interval used was t 2 [1; 256], with three samples per octave distributed in uniform logarithmic
steps, and the image size was 512� 512. The integration scale was s = 21t with 1 =

p
2.
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1989b; Kanatani and Chou, 1989; Blake and Marinos, 1990b). Witkin (1981) pointed out
that the foreshortening e�ect, i.e., the systematic compression of a slanted pattern in the
direction of slant, can also be a cue to surface orientation. For example, the image of a
slanted circle is an ellipse, and the degree and orientation of the elongation of the ellipse
indicates the magnitude and direction of slant. Whereas texture gradients are primarily
due to perspective e�ects, the foreshortening e�ect can also be observed in orthographic
projection of a planar pattern. Various extensions of Witkin's method have later been
described, e.g. (Davis et al., 1983; Kanatani, 1984; Blake and Marinos, 1990a; G�arding,
1993). Related methods include (Pentland, 1986; Brown and Shvaytser, 1990).

5.2 Review of image geometry

In order to understand how a local texture description can be interpreted in terms of three-
dimensional surface shape, it is necessary to take a closer look at the surface and viewing
geometry.

Consider a smooth surface S viewed in perspective projection. The local perspective
distortion of the projected surface pattern results from two factors; �rstly, the distance and
orientation of the surface with respect to the line of sight, and secondly, the angle between
the line of sight and the image surface. The latter factor is often referred to as the \position
e�ect". Since it only depends on the internal camera geometry, it can be eliminated by
reprojection of the image from the focal point. Hence, for analytical clarity we represent the
image by a unit viewsphere �, and let it be understood that in practical computations with
a planar image the coordinates on � are obtained by a local coordinate transformation.

Fortunately, it can be shown that in order to estimate local surface orientation from
texture, it su�ces to consider the �rst-order (linear) terms of the perspective projection at
each image point. To give a more precise formulation of this statement, it is necessary to
introduce a few de�nitions. Following (G�arding, 1992) and using standard notation from
di�erential geometry (see e.g. (O'Neill, 1966)), consider a perspective mapping of a smooth
surface S onto a unit viewsphere � (see Figure 9). At any point p on � let (�p; �t;�b) be a
local orthonormal coordinate system de�ned such that the �p direction is parallel to the view
direction, �t is parallel to the direction of the gradient of the distance from the focal point,
and �b = �p� �t.

Denote by F : � ! S the perspective backprojection from � to S, and by F�p the
derivative of this mapping at any point p on �. The mapping F�p, which constitutes a
linear approximation of F at p, maps point in the tangent plane of � at p, denoted Tp(�),
to points in the tangent plane of S at F (p), denoted TF (p)(S). In TF (p)(S), let �T and �B be
the normalized images of �t and �b respectively. In the bases (�t;�b) and ( �T; �B) the expression
for F�p : Tp(�)! TF (p)(S) is

F�p =

 
r= cos� 0

0 r

!
=

 
1=m 0
0 1=M

!
; (23)

where r = jjF (p)jj is the distance along the visual ray from the center of projection to
the surface (measured in units of the focal length) and � is the slant of the surface. Two
characteristic (dimensionless) ratios (m;M) have been introduced here to simplify later
expressions and because of their geometric signi�cance. These entities are the inverse
eigenvalues of F�p, and they basically describe how a unit circle in TF (p)(S) is transformed
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Figure 9: Local surface geometry and imaging model. The tangent planes to the viewsphere � at
p and to the surface S at F (p) are seen edge-on but are indicated by the tangent vectors �t and �T .
The tangent vectors �b and �B are not shown but are perpendicular to the plane of the drawing, into
the drawing. (Adapted from (G�arding, 1992).)

when mapped to Tp(�) by F
�1
�p ; it becomes an ellipse with m as minor axis (parallel to the

t direction) and M as major axis (parallel to the b direction).

From F�p several useful relations between local perspective distortion and surface shape
can be derived. Firstly, surface orientation is directly related to (m;M) and the corre-
sponding eigenvectors (�t;�b). The tilt direction, de�ned as the direction of the gradient
of the distance from � to the surface, is parallel to the eigenvector �t corresponding to the
smaller inverse eigenvalue m. Foreshortening is de�ned as the ratiom=M , and is directly re-
lated to surface slant � by the relation cos � = m=M . Together, tilt �t and slant � determine
the surface orientation (up to the sign of tilt; both �t and ��t are eigenvectors corresponding
to the eigenvalue 1=m). Secondly, \texture gradients" can be computed from the spatial
rate of change of various measures derived from the eigenvalues/eigenvectors of F�p. For
example, the local area ratio between the image and the surface is 1= detF�p = mM , and
the normalized area gradient which contains information about surface shape and orienta-
tion is thus r(mM)=(mM). In Section 5.3 we will return to these relations, and show how
they can be exploited in practice.

Normally, the brightness pattern is provided in a planar image �, rather than in the
viewsphere �. This is of little consequence, however, because the mapping G : � ! �
from a point q on the planar image to the corresponding point p on the viewsphere can be
pre-computed as long as the internal camera geometry is known.9 Hence, a representation
of the brightness structure on � can always be obtained by applying G (or its derivative
G�q) to the corresponding representation in the planar image �.

A more detailed discussion of the shape cues that can be derived from the components
of F�p and its derivatives can be found in (G�arding, 1992).

5.3 Deriving shape cues from the second moment descriptor

In order to use a texture description derived from a monocular image to infer properties
of the surface geometry, it is necessary to introduce some assumptions about the surface

9The mapping G is often referred to as the gaze transformation. In practice it is usually very close to
the identity mapping.
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texture. These assumptions can have many di�erent forms. In this section two useful
examples are considered; �rstly, weak isotropy, which allows estimation of \shape from
foreshortening", and secondly, constant size, which allows estimation of \shape from the
area gradient". In both cases the general idea is to compute properties of the local surface
geometry by combining estimates of various properties of the image brightness descriptor �L
with assumptions about the corresponding properties of the surface reectance descriptor
�S .

We �rst need to establish how the relation between �L and �S depends on the local
geometry. The analysis is simpli�ed by introducing an intermediary descriptor ��(p), which
is de�ned in the tangent plane Tp(�) to the unit viewsphere � at the point p = G(q).
��(p) describes the structure of the intensities transformed from the image to Tp(�) by
the linearized mapping G�q, and weighted by the transformed window function w0(p) =
w(G�1

�q p). By (9) we have

�L(q) = GT
�q ��(p) G�q; (24)

where G�q : Tq(�)! Tp(�) is the derivative map between (the tangent plane to) the planar
image � at q and the tangent plane to the viewsphere at p. Hence, the practical procedure
is �rst to estimate �L(q) in the image plane and then to compute ��(p) by inverting (24).

Analogously, �S(F (p)) describes the structure of the intensities transformed from Tp(�)
by the linearized mapping F�p, and weighted by the window function transformed accord-
ingly. Assuming that the image brightness is directly proportional to the surface reectance,
it holds that �S(F (p)) describes the structure of the linearized and windowed surface re-
ectance at the point F (p).

In practice, the second moment matrices ��(p) and �S(F (p)) cannot be directly ex-
pressed in terms of the (�t;�b) and ( �T; �B) bases respectively, since the orientations of these
bases are not known a priori. Introduce rotation angles � and ' describing these orienta-
tions relative to some reference systems. (For ��(p) we de�ne this reference as the gaze-
transformed image coordinate frame, whereas the precise de�nition concerning �S(F (p)) is
left open.) Then, (9) gives that the second moment matrices in the reference systems are
related by

RT
� ��(p) R� = FT

�p R
T
' �S(F (p)) R' F�p; (25)

where

R� =

 
cos � � sin �
sin � cos �

!
gives the tilt direction relative to the gaze-transformed image coordinate frame and R'

represents a corresponding rotation relative to some coordinate system in the tangent plane
to the surface.

To simplify the notation, the arguments to �L, �� and �S will be dropped in the
remainder of this section.

5.3.1 Shape from foreshortening

If �S is known and if �� can be computed from the image data, then (25) provides three
equations for the four unknowns (m;M; �; '). From this viewpoint, the problem is, in
general, underdetermined.

To compute surface orientation, however, it is only necessary to know the angle � (which
gives the tilt direction) and the ratio m=M (which gives the slant angle). Moreover, if �S
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is weakly isotropic, i.e., if
�S = cI (26)

for some (unknown) constant c > 0, then the orientation ambiguity concerning ' disappears,
since the representation of �S is in this case invariant under rotations. Such a distribution
(for which ~QS = 0) has the property that there is no single preferred direction in the surface
texture, i.e., that the surface texture is not systematically elongated. Under this condition
and assuming that F�p is non-degenerate, (25) can be rewritten as

�� = c R� F
T
�pR

T
' R' F�pR

T
� = c R� F

T
�p F�pR

T
� : (27)

It follows that the eigenvectors of �� are (�t;�b) expressed in the gaze-transformed image
coordinate frame, and that the eigenvalues of F�p are proportional to the square roots of
the eigenvalues (�1; �2) of ��;

m � 1=
p
�1 � 1=

q
1 + ~Q; M � 1=

p
�2 � 1=

q
1� ~Q: (28)

From the analysis in Sec. 5.2 we then obtain that the tilt direction, �t, is (plus/minus) the
eigenvector, �e1, corresponding to the maximum eigenvalue, �1, and the slant is given by

cos � =
m

M
=

vuut1� ~Q

1 + ~Q
: (29)

Hence, if the assumption of weak isotropy can be justi�ed, an easily computed estimate of
local surface orientation is directly available. Unfortunately, many natural textures violate
this assumption, and it is therefore often necessary to exploit alternative assumptions.

5.3.2 Shape from the area gradient

Assuming that the local \size" of the surface texture does not vary systematically, it is
obvious that the gradient of size of the projected texture is an important cue to surface
shape and orientation.

Consider a point p in Tp(�), and let F�p be the local linear part of the perspective
backprojection. The area ratio is then equal to detF�1

�p = mM , i.e.,

A� = mMAS ; (30)

where A� is the area of a small surface patch on the viewsphere �, and AS is the area of
the corresponding patch in the surface S. Hence, assuming that AS = c where c is some
unknown constant, we can de�ne the normalized area gradient

rA�

A�
=
r(mM)

mM
: (31)

Note that the unknown scale constant c has been eliminated. This means that no as-
sumptions about the absolute scale of the surface texture are necessary. Moreover, no
assumptions are made about the elongation of the surface texture (given by the ratio of the
eigenvalues of �S).

The area A� can be computed from the corresponding area AL in the planar image
� using A� = (detG�)AL, where G� is the gaze transformation discussed in Section 5.2.
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In our current implementation AL is estimated from the scale at which det�L assumes its
maximum, as described in Section 3.5. A more detailed description of how to estimate the
normalized area gradient from AL is given in Appendix A.2.

It has not yet been mentioned how the normalized area gradient should be interpreted
in terms of surface shape and geometry. It turns out that its information content is con-
siderably more complex than that of foreshortening; in (G�arding, 1992) it is shown that

r(mM)

mM
= � tan�

 
3 + r�t= cos�

r�

!
; (32)

with respect to the (�t;�b) basis. Here, r is the distance from the viewer, � is the slant of the
surface, �t is the normal curvature of the surface in the tilt direction, and � is the geodesic
torsion, or \twist", of the surface in the tilt direction.

Hence, the normalized area gradient can either be used to recover information about
the surface curvature (scaled by distance) if the surface orientation is known, or to recover
the surface orientation if the curvature is known or (assumed to be) small. In the latter
case there is no ambiguity in the sign of the tilt direction, unlike the case of foreshortening.

5.4 Estimating surface shape and orientation: Basic scheme

Our method for computing monocular shape-from-texture cues from image data can be
summarized as follows:

1. Compute local texture descriptors �L as described in Section 3.4. This can either be
done at selected spatial positions corresponding to normalized scale-space extrema as
described in Section 4, or at a (uniform) grid of points generated by some default
principle.

2. Determine a set of points where estimates of surface orientation are to be computed.
This set of points can be the same as that used for computing the texture descriptors,
or it can be a smaller set of points, e.g. a uniform grid. Associate with each point
a (Gaussian) window that speci�es the weighting of the texture descriptors in the
neighborhood of the point. The scale of this window function will be referred to as
the texel grouping scale.

3. Estimate surface orientation:

(a) Apply the assumption of weak isotropy as described in Section 5.3 to compute
foreshortening. This leads to a direct estimate of surface orientation up to the
sign of tilt.

(b) Apply the assumption of constant area as described in Section 5.3 to compute the
normalized area gradient. This permits a unique estimate of surface orientation
under the additional assumption that the local curvature of the surface can be
neglected in (32).

(c) Optionally, apply other assumptions about the surface texture, e.g. compute the
foreshortening gradient, and use these assumptions to estimate surface shape
and/or orientation.
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5.5 The texel grouping scale

In order to compute an estimate of surface orientation at a speci�ed point, the local texture
descriptors in the neighbourhood of the point must somehow be combined. As was described
in previous sections, the second moment descriptor computed by spatial and scale selection
can be informally thought of as a single \texture element". In the case of a perfectly regular
surface texture, the shape of this texture element can be relied upon to provide information
about local perspective distortion. Most natural textures, however, exhibit a considerable
degree of randomness in their structure, and it is therefore necessary to consider more
than one texture element in order to detect the systematic geometric distortions due to the
perspective e�ects. Attempts have been made at modeling such randomness statistically
(Witkin, 1981; Kanatani and Chou, 1989; Blake and Marinos, 1990a, 1990b), but here such
speci�c models are replaced by the basic principle of reducing variance by integration. For
this reason, the concept of texel grouping scale has been introduced in the scheme above;
it refers to the scale used for combining texture descriptors computed at di�erent spatial
points into entities to be used for computing geometric shape descriptors.

If the texture descriptors are combined by weighted averaging into a descriptor of the
same type, as in the case of methods based on foreshortening, then the texel grouping scale
is closely related (or even equivalent) to the relative integration scale. More precisely, from
the semi-group property of Gaussian smoothing, g(�; s2) = g(�; s2� s1) � g(�; s1), it follows
that, if the local smoothing scale t is held constant, then the second moment matrix at
any coarse integration scale, s2, can be computed from the second moment matrices at any
�ner integration scale, s1,

�L(�; t; s2) = g(�; s2 � s1) � �L(�; t; s1): (33)

Hence, if the local scale parameter in the scale-space representation is constant (e.g. equal
to the scale level in the input image), then in the basic version of the method of estimat-
ing surface orientation from foreshortening and weak isotropy, the texel grouping scale is
equivalent to the relative integration scale.

However, the cascade smoothing property (33) is not applicable when the texture de-
scriptors are combined into a descriptor of a di�erent type. For example, estimation of
shape from texture gradients is based on the average rate of change of some property of
the local texture descriptors, so in this case it is clearly not meaningful to compute an
average texture descriptor for the whole region. Rather, the appropriate texture property
(e.g. area) is estimated from each windowed second moment descriptor separately, and the
corresponding texture gradient is then estimated using Gaussian weights given by the texel
grouping scale. (The procedure for the case of the area gradient is described in Appendix
A.2.)

So far no method for automatic selection of the texel grouping scale has been imple-
mented. In the experiments presented below, the estimates are computed on sparse regular
grids, and the size of the Gaussian grouping window is proportional to the grid cells. An
alternative approach is, of course, to let the texel grouping scale be proportional to the
selected integration scale.

5.6 Experimental results

The examples shown in this section have been computed using the same parameters as in the
previous sections, i.e., using 1 =

p
2; 2 = 2. The surface orientation will be represented
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�L (ellipses)

true orientation

weak isotropy

constant area

Figure 10: Estimating local surface orientation in a synthetic image of a planar surface with 5%
noise (left), a synthetic image of a cylindrical surface with 25% noise (middle), and a real image of
a planar surface with known orientation (right). The rows show from top to bottom; (a) the grey-
level image, (b) elliptical blobs detected by the adaptive multi-scale method, (c) reference surface
orientation, (d) surface orientation estimated from foreshortening, (e) surface orientation estimated
from the area gradient.
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numerically by (�; �), where � is the slant, i.e., the angle between the surface normal and
the optical axis, and � is the angle between the tilt direction �t and the horizontal axis of
the image coordinate frame.

Figure 10 shows results10 from two noisy synthetic images and one real image, all with
known camera geometry and surface orientation. From top to bottom, the rows show the
grey-level image, the detected blobs, the true surface orientation, the surface orientation
estimated from foreshortening (only the �rst of the two estimates is shown), and the surface
orientation estimated from the area gradient.

The synthetic image in the left column (also shown in Figure 7) shows a planar surface
pattern consisting of the sum of two sine waves and 5% additive Gaussian noise. The
true orientation of the surface is (� = 60�; � = 90�), and at the center the estimates from
foreshortening and the area gradient are (�̂ = 61:1�; �̂ = 90:0) and (�̂ = 62:3�; �̂ = 90:0),
respectively.

The middle column shows the same cylindrical surface image that was used in the �rst
row in Figure 4. Here, 25% white Gaussian noise has been added; a noise level high enough
to ensure that direct computations on unsmoothed data are bound to fail (compare with
Table 1). It is quite obvious that the adaptive multi-scale blob detection technique is able
to handle this noise level without much di�culty. At the center the true orientation is
(� = 55�; � = 90�), the estimate from foreshortening is (�̂ = 54:1�; �̂ = 90:3�), and the
estimate from the area gradient is (�̂ = 33:5�; �̂ = 89:1�). The fact that the slant of
this surface is underestimated by the area gradient is entirely in keeping with the theory;
the estimate is based on the assumption that �t = 0 in (32), but here �t < 0 since the
surface is concave rather than at. In fact, by using (32) the scaled curvature r�t can be
estimated from the di�erence between the slant estimates from weak isotropy and the area
gradient. At the central point the estimate obtained this way is dr�t = �0:92, which should
be compared to the true value r�t = �0:87.

The right column of Figure 10 shows the results obtained with a real image of a planar
surface with known surface orientation. The true surface orientation is (� = 50:8�; � =
85:3�), and at the center the estimate from foreshortening is (�̂ = 48:7�; �̂ = 82:7�). Due
to the narrow �eld of view the measurable e�ects of the area gradient in this image are
very small. This fact is reected by a fairly inaccurate estimate (�̂ = 25:7�; �̂ = 86:2�)
obtained from the area gradient in the whole image. On a 3 � 3 grid the estimates break
down completely.

Figure 11 shows the results obtained with �ve images from (Blostein and Ahuja, 1989b).
The camera geometry is unknown, and it is therefore impossible to compute absolute esti-
mates of the surface orientation. To estimate surface orientation from foreshortening, the
second moment matrix �L(p) must �rst be transformed to Tp(�), but the parameters of this
transformation depend on the camera geometry and are hence unknown. Foreshortening is
therefore visualized directly by ellipses representing the weighted second moment matrices
in the image on which the estimate would be based. To estimate surface orientation from
the area gradient, the focal length must be known. However, the position of the horizon of
the plane, i.e., the line where projected area is estimated to vanish, can still be determined.

10In the examples in this section the surface orientation is indicated graphically by a dish with an attached
needle parallel to the surface normal. In contrast to the previous illustrations of the second moment matrices,
the dishes are from now on viewed in parallel projection along the visual ray through the image center. With
this convention, the shape of each projected dish speci�es the surface orientation regardless of the internal
camera geometry and the position of the dish in the image.
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�L (ellipses) weak isotropy constant area

Figure 11: Estimation of foreshortening and the area gradient in real images from (Blostein and
Ahuja, 1989b). (a) Real grey-level image. (b) Elliptical blobs detected by the adaptive multi-scale
method. (c) Estimated foreshortening, here represented by weighted averages of the second moment
descriptors associated with each blob. (d) Estimated area gradient, visualized by lines aligned with
the tilt direction converging to a point on the horizon.
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The estimated horizon typically lies outside the image, but in the rightmost column of
Figure 11 it is indirectly represented by a set of projected lines parallel to the tilt direction
in the surface.

It is interesting to note that the foreshortening in these examples often reects the ori-
entation of the individual texture elements (e.g., the sunowers), whereas the area gradient
corresponds to the orientation of the underlying surface.

6 Shape from disparity gradients

In this section we shall apply a similar methodology, based on multi-scale second moment
descriptors, to shape estimation from binocular (stereo) vision. A more detailed account of
the geometric aspects of this problem can be found in (G�arding and Lindeberg, 1994).

Traditionally, binocular stereopsis has often been associated with recovery of three-
dimensional depth. Here, however, we shall be concerned with estimation of surface ori-

entation, i.e., the rate of change of depth. Many computational models of stereopsis are
based on sparse but salient features such as edges or corners (see e.g. (Pollard et al., 1985)).
This approach is often quite successful, but has the drawback that it only produces sparse
depth estimates. If higher-order properties are needed, such as local surface orientation or
curvature, they could in principle be estimated by �rst applying an additional stage that
interpolates the surface between the data points to obtain a dense depth map and then
di�erentiating this representation.

An alternative approach, which we shall pursue here, is to derive higher-order surface
properties directly from the properties of corresponding image patches, without using depth
as an intermediate representation. This can be achieved either by �rst computing a dense
disparity map and then estimating derivatives of the disparity �eld, or by directly using
di�erences in local image properties, e.g. the local statistics of the orientation or curvature
of contours.

In both cases, the estimation of surface orientation can be formulated in terms of mod-
elling the local transformation from the right eye's view of a small surface patch to the left
eye's view of the same patch by an a�ne transformation, rather than a simple displace-
ment. Analogously, surface curvature can be estimated from the second-order properties
of the local left-to-right transformation. The local a�ne transformation gives rise to ori-

entation disparity as well as spatial frequency disparity, and several computational models
based more or less directly on these cues have been described in the literature (Blakemore,
1970; Koenderink and van Doorn, 1976; Tyler and Sutter, 1979; Rogers and Cagenello,
1989; Wildes, 1981; Jones and Malik, 1992). The methodology presented here builds on,
and extends, several of these models.

6.1 Viewing geometry and binocular disparity

A representation of the binocular viewing geometry is shown in Figure 12. We represent
visual space with respect to a virtual cyclopean eye, constructed such that the cyclopean
visual axis (the Z axis) bisects the left and right visual axes. The X and Z axes as well as
the centers of the eyes lie in a common plane, called the �xation plane.

We de�ne left and right coordinate systems (XL; YL; ZL) and (XR; YR; ZR) such that
the origin of each system is at the center of projection, the ZL, ZR and Z axes intersect
at the �xation point p with cyclopean coordinates (0; 0; R), and the XL, XR and X axes
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Figure 12: Representation of the binocular viewing geometry. The plane of the drawing is the
�xation plane. The primary direction (indicated by dashed lines) is de�ned as the direction in
the �xation plane that is perpendicular to the interocular baseline. The dotted circle through the
�xation point and the eyes indicates a part of the point horopter, i.e., the locus of points that yield
zero horizontal and vertical disparity.

are contained in the �xation plane Normalized cyclopean image coordinates are de�ned
by x = X=Z, y = Y=Z; left and right image coordinates are de�ned analogously. These
coordinates are related to the pixel coordinates through the intrinsic camera parameters,
which are assumed to be known.

This representation of the viewing geometry does not require p to be the actual �xation
point of the viewing system, nor indeed that the eyes �xate any point at all, since a
rotation of either eye around the optical center does not a�ect the information content
of the image. Conceptually, we represent the eyes or cameras by the unit viewspheres �,
�L and �R independently of the physical shape (e.g., spherical or planar) of the physical
imaging surface. Left and right image coordinates are then de�ned in the tangent planes
to the viewspheres at the images of any given point p in space. These image coordinates
are related to the image coordinates de�ned with respect to some other �xation point q by
a projective transformation which is independent of the structure of the scene. However,
to simplify the presentation we shall continue to refer to p as the �xation point.

6.1.1 Vergence and version

Let 'L and 'R be the angles between the primary (straight-ahead) direction and the left
and right visual axes respectively. The vergence angle � and the version (or gaze) angle 
are then de�ned by

� =
1

2
('L � 'R);  =

1

2
('L + 'R): (34)

As a consequence of this de�nition, the angle between the cyclopean visual axis and the
primary direction is equal to  (see Figure 12).
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6.1.2 Binocular disparity

The retinal disparity of a point in the scene is de�ned as the di�erence in retinal position
of the left and right projections of the point. Consequently, the retinal disparity of the
�xation point is zero by de�nition. We de�ne horizontal and vertical retinal disparity (h; v)
by

h = xR � xL; v = yR � yL; (35)

where (xL; yL) and (xR; yR) are the normalized left and right image coordinates correspond-
ing to the same point in the scene.

If the �xation point p lies on a smooth surface Z(X; Y ), a di�erentiable mapping M is
induced from points in the left image to points in the right image in some neighbourhood
of the images of p. A Taylor expansion to �rst order in (xR; yR) can then be expressed as 

xR
yR

!
=

 
1 + hx hy
vx 1 + vy

! 
xL
yL

!
: (36)

In the following we shall denote the matrix in (36) by M� and refer to it as the derivative

map. The components (hx; hy; vx; vy) constitute the disparity gradient.

6.2 The disparity gradient

The disparity gradient depends on the viewing geometry and the local surface orientation.
LetM� be the derivative map from the left image to the right image. The disparity gradient
is M� � I , where I is the unit matrix, and at the �xation point it holds that

M� =

 
1 + hx hy
vx 1 + vy

!
=

cos( � �)

cos( + �)

0B@ cos�+ ZX sin�

cos�� ZX sin�

2ZY cos� sin�

cos�� ZX sin�

0 1

1CA ; (37)

where (ZX ; ZY ) = ( @Z@X ;
@Z
@Y ) is a gradient based parametrization of surface orientation

relative to the cyclopean coordinate system. These parameters are related to the slant-tilt
representation used in the previous section by

ZX = tan� cos �; ZY = tan� sin �: (38)

A derivation of (37) can be found in (G�arding and Lindeberg, 1994). The size of the region
where M� provides a reasonably accurate approximation of the disparity �eld depends on
the shape of the surface; for planar surfaces it is in fact valid over quite large visual angles.

6.2.1 The information content of the disparity gradient

What do the non-vanishing components (hx; hy; vy) of the disparity gradient at the �xation
point tell us about the local scene structure and the viewing geometry? First, note that
the disparity gradient (37) depends on four parameters; two for the viewing geometry
(�; ) and two for the surface orientation (ZX ; ZY ). It is thus impossible to recover both
the viewing geometry and the local surface orientation from a single measurement of the
disparity gradient. If the viewing geometry is known, however, then surface orientation can
be estimated and vice versa.
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Denote the components ofM� by mij . Then, a few algebraic manipulations on (37) give

ZX =
(m11 �m22) cos�

(m11 +m22) sin�
; ZY =

m12

(m11 +m22) sin�
: (39)

These expressions are homogeneous in the components of M�. Therefore, to estimate the
surface orientation it su�ces to estimate M� up to an arbitrary scale factor. In particular,
there is no need to know the angle  of asymmetric gaze, since this parameter only a�ects
M� by a uniform scaling factor (see (37)).

6.2.2 Estimating the disparity gradient

Using the transformation property (9) of the second moment matrix (with B = M�), it
is reasonably straightforward to derive explicit expressions for the disparity gradient in
terms of second moment matrices in the left and right images respectively. The system of
quadratic equations 

�L11
�L12

�L12
�L22

!
=

 
m2

11�R11
m11(m12�R11

+ �R12
)

m11(m12�R11
+ �R12

) m2
12�R11

+ 2m12�R12
+ �R22

!
(40)

gives rise to two real solutions11

m11 = � (1 + ~CL) ~FR;

m12 = � ( ~SL ~FR � ~SR ~FL);

m22 = �� (1 + ~CR) ~FL;

(41)

where

~FL =
q
1� ~C2

L � ~S2
L; (42)

~FR =
q
1� ~C2

R � ~S2
R; (43)

� =
1
~FR

1q
1 + ~CL

q
1 + ~CR

s
PL
PR

; (44)

and the '�' and �' signs are coupled. Notably, � occurs as a common factor in all mij and
cancels in (39). Hence, only the directional structure of �L and �R (i.e. ~CL, ~SL, ~CR and ~SR)
inuences the surface orientation estimates, while any di�erence in magnitude (represented
by PL and PR) is ignored.

By adding the natural requirement that detM� > 0, i.e., that the left-to-right ordering
is the same in both images, a unique solution is obtained (with m22 > 0). This constraint
is closely related to the disparity gradient limit used e.g. by Pollard et al. (1985).

6.3 Experimental results

6.3.1 Procedure

In the experiments described below, estimation of surface orientation from disparity gradi-
ents was performed as follows. The windowed second moment descriptors were computed as

11The indeterminacy with respect to rotations referred to at the end of Section 2.2 disappears in this case,
since B =M� has only three degrees of freedom (b21 =m21 = 0).
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described in previous sections (using 1 =
p
2; 2 = 2 as usual) for the left and right images

separately. To reduce clutter, a subset of the descriptors for the left image was extracted
by applying a threshold to the magnitude of the scale-space maximum of the Laplacian
(which was computed in the spatial selection stage). A very simple matching algorithm,
based on the epipolar constraint and similarity of detection scale, was then applied to �nd
a corresponding descriptor from the right image for each remaining descriptor from the left
image. For each of the resulting left-right pairs of windowed second moment descriptors, the
normalized horizontal disparity gradient was estimated using (41), and surface orientation
was computed using (39).

It is worth pointing out that the positional disparities which are obtained as a result
of the matching process can be used to obtain a depth estimate for each descriptor pair.
Hence, the left and right sets of second moment descriptors in fact contain two binocular
cues, in addition to the texture cues which were discussed in the previous section. However,
in the examples below the positional disparity is not used.

6.3.2 Results

Three examples of results obtained with the method are shown in Figure 13.

The �rst two image pairs were created by perspective texture mapping onto a planar
surface with orientation (� = 60�; � = 50�). The visual angle across the diagonal of each
image is 32�. The �rst texture is a sinusoidal pattern with 5% additive Gaussian noise.
In order to reduce cluttering of the graphical display, a subset of the matched descriptor
pairs was selected manually. The second texture is a natural gray-level image of a pebble
pattern. The gaze angle is  = �5� for both image pairs, and the vergence half-angle is
� = 10� for the �rst pair and � = 6:9� for the second pair.

The third image pair was acquired with two CCD cameras and depicts a nursery wall-
paper. The camera geometry was (� = 5:6�;  = �4:0�).

At the �xation point of the �rst image pair, the estimated surface orientation was
(�̂ = 58:5�; �̂ = 52:2�). The error in the estimate, expressed as the angle between the
estimated and true surface normals, is 2:4�. Similar results were obtained at the remaining
sixteen points; the maximum error is 3:3�.

The results obtained with the second and third image pairs were slightly more variable
but still fully acceptable, as can be seen from the graphical representation. The two or
three large errors in each image pair are due to incorrect matches, which could probably be
eliminated by a more sophisticated matching algorithm.

7 Summary and discussion

We have shown that a representation of local image structure computed by multi-scale
bottom-up retinotopic processing can be directly used for deriving non-trivial cues to the
local structure of three-dimensional surfaces in the scene, without iterations, search, or
high-level knowledge.

In the �rst part of the paper, we treated the problem of computing such a representation,
and introduced the windowed second moment matrix to represent the local statistics of
�rst order Gaussian normalized derivatives of image brightness. We showed that linear
transformations of the spatial coordinates a�ect this descriptor in a simple way, which
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Right Left Estimated orientation Reference

Figure 13: Local surface orientation estimated from the gradient of horizontal disparity in three
stereo pairs. The images in the two �rst rows are generated by texture mapping. The images in
the bottom row are taken with a pair of CCD cameras. The columns show from left to right; (a-b)
Bright copies of the right and left images with computed texture descriptors superimposed. (c)
estimated surface orientation, (d) reference surface orientation.
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allows the parameters of the transformation to be estimated from the properties of the
descriptor.

The computation of this descriptor involves two scale parameters; �rst, the smoothing
scale at which derivatives of the image brightness are computed, and second, the scale
of the window used to integrate statistics of nonlinear descriptors of the di�erential im-
age structure. We proposed a systematic two-stage method for adaptively choosing these
scale parameters. The characteristic dimensions of salient image structures at any given
point are �rst estimated by detecting local maxima with respect to scale of certain di�er-
ential invariants derived from the windowed second moment matrix. The integration scale
is then set proportional to the estimated characteristic dimensions, while the smoothing
scale is adapted to obtain a trade-o� between suppression of noise and irrelevant �ne-scale
structures on the one hand, and distortion of the shape of local image structures due to
smoothing on the other.

The principle used to determine characteristic dimension was also applied to guide the
selection of where in the image to compute the texture descriptors. Whereas the second
moment descriptor which describes local image \shape" is based on �rst derivatives, the
entities used for spatial selection were based on second derivatives in order to favour centers
of blob-like structures.

In the second part of the paper we treated the problem of using the multi-scale second
moment descriptor to derive cues to local three-dimensional surface shape and orientation.
We �rst discussed estimation of shape from texture in a monocular image, based on two
independent cues referred to as foreshortening and the area gradient, respectively. It was
shown that these two cues can be reliably computed both in noisy synthetic images and
natural images.

We then showed that the same methodology can be used to recover local surface ori-
entation by estimating the gradient of horizontal disparity in a binocular image pair. This
method has the advantage that it does not depend on any speci�c assumptions about the
surface texture. Experimental results were shown for both synthetic and natural images.

7.1 Relations to biological vision

As mentioned in the introduction, we have not attempted to model biological vision. How-
ever, the general principles on which the methodology is based appear to be compatible
with current understanding of the structure of the �rst stages of the primate visual pathway.

For example, it is worth noting that the computation of the windowed second moment
descriptor follows the pattern \linear �ltering { nonlinearity { spatial averaging". Process-
ing sequences of this type have in recent years been proposed as models for human texture
discrimination, e.g. (Caelli, 1985; Bergen and Adelson, 1988; Malik and Perona, 1990). The
initial linear �ltering stage in our model is based on directional Gaussian derivatives, which
have been used to model the receptive �elds of simple cells in the mammalian visual cortex
(Young, 1985). Moreover, selection of scale levels and spatial positions by detection of local
maxima could easily be implemented by lateral inhibition between cells.

The spatial detection process we discussed was based on rotationally symmetric op-
erators such as the Laplacian, which limits the ability to detect very elongated blob-like
structures based on the response of a single operator. However, in this context it is inter-
esting to note that in a psychophysical study of the visibility of elliptical Gaussian blobs,
Bijl and Koenderink (1993) found that their results can be predicted by a model based on
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Pythagorean summation of the responses of rotationally symmetric receptive �elds.

7.2 Further research

Some issues not directly addressed by the present work are discussed below.

Grouping We have tacitly assumed that integration of local properties is always a mean-
ingful operation, but in general situations it may be necessary to restrict the integration to
some coherent subset of the descriptors in the window. This can have any of a number of
reasons, e.g. that the image contains more than one surface, that a surface contains more
than one type of texture, or that an image region contains textures resulting from more
than one physical process.

Furthermore, we have in most cases used only the most dominant scale at each spatial
position; a more general approach would be to detect all local maxima, and then apply
spatial grouping based on similarity of characteristic dimension. For example, a noisy
image of a slanted pattern might give rise to maxima at small scales due to the noise, in
addition to the maxima at coarser scales corresponding to the surface texture. Separate
estimation of the area gradient for the �ne-scale maxima would then correctly indicate a
fronto-parallel surface corresponding to the noise in the image plane.

Cue combination This paper has treated local estimation of surface shape and orien-
tation, using three independent processes. Clearly, some mechanism is needed for unifying
these independent estimates into hypotheses about coherent surfaces.

Brightness discontinuities The linear transformation property (9) is strictly valid only
if the brightness pattern is di�erentiable. Non-di�erentiable structures such as sharp discon-
tinuities may therefore invalidate (9) to a greater or lesser extent. For example, compression
of an ideal step edge in the direction perpendicular to the edge obviously does not a�ect the
magnitude of derivatives estimated by �nite di�erences at all, unlike the case of a smooth
edge for which the compression would a�ect the slope of the edge. We plan to investigate
this problem in more detail.

Non-uniform smoothing The reason for adapting the local scale in the computation of
the second moment descriptor was to obtain a reasonable trade-o� between on the one hand
suppression of noise and irrelevant �ne-scale structures, and on the other hand distortion
of the shape of the brightness pattern due to the isotropic Gaussian smoothing.

However, if the shape estimation methods are based on an a�ne scale-space represen-
tation (Lindeberg, 1994a) instead of the linear scale-space based on rotationally symmetric
smoothing, then the shape of the smoothing kernel can be adapted to the local image
structure and the shape distortion e�ects be reduced (Lindeberg and G�arding, 1994). This
observation is related to the suggestion by Stone (1990) to adapt the local operators used
in shape-from-texture estimation to be isotropic when backprojected to the surface, rather
than in the image.
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A Appendix

A.1 Transformation property of the second moment matrix

The transformation property (9) of the windowed second moment matrix can be veri�ed as
follows. Assume that L;R : R2 ! R are two intensity patterns related by L(�) = R(B�),
where � 2 R

2, and B is a non-singular linear transformation. Without loss of generality
assume detB > 0. Then,

rL(�) = BTrR(B�); (45)

which when substituted into the de�nition of the windowed second moment matrix yields

�L(q) =
Z Z

�2R2
w(q��)(rL(�))(rL(�))T d� =

Z Z
�2R2

w(q��)BT (rR(B�))(rR(B�))TB d�:

(46)
Substituting � = B� (with p = Bq) we obtain

�L(q) = BT
�Z Z

�2R2
w(B�1(p� �))(rR(�))(rR(�))T (detB)�1d�

�
B: (47)

The integral within brackets is the second moment of R at p computed with respect to the
backprojected window function w0(��p) = (detB)�1w(B�1(��p)). This window function
is normalized as long as the original window function is, becauseZ Z

�2R2
w(B�1(��p))(detB)�1 d� = flet � = B� with p = Bqg =

Z Z
�2R2

w(��q) d�; (48)

which veri�es (9). Note, however, that the window function w0 will not, in general, be
rotationally symmetric.

A.2 Estimating simple distortion gradients

In this appendix a practical procedure for estimation of surface orientation from the area
gradient in the case of a locally planar surface will be described. A more detailed description
is given in (Lindeberg and G�arding, 1993). The same procedure can with only minor
modi�cations be applied to estimation of surface orientation from any simple distortion
gradient.

Equation (32) relates the normalized gradient of projected texel area in the viewsphere
� to surface orientation and curvature. If the curvature is assumed to be small, an estimate
of the surface tilt is given by the negative direction of the area gradient, and an estimate
of surface slant is given by tan�1 jj(rA�(p))=(3A�(p))jj.

In principle, the area gradient can be estimated by applying a central di�erence operator
to the product mM obtained from the pointwise estimate of F�. However, for a planar
surface the product A� = mM is not a linear function of the image coordinates, and so a
central di�erence estimate of the �rst derivate would be biased by the higher derivatives
of A�. A more consistent approach is to transform A� to a form that is linear in the
image before the central di�erence operator is applied, thereby eliminating the bias. This
procedure can be simpli�ed even further by transforming the image texel area AL, rather
than the viewsphere texel area A�, to linear form, thus bypassing the need to apply the
gaze transformation G�.
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For a planar surface with slant � and tilt �, it can be shown (Lindeberg and G�arding,
1993) that

(AL(x; y))
1=3 = k(f cos � � (x cos� + y sin �) sin �); (49)

where k is an unknown constant.12

Hence, a practical procedure for estimating the local surface orientation from estimates
of, for example, the area AL(x; y) in some region of the image can be described as fol-
lows. First, compute (samples of) h(x; y) = (AL(x; y))

1=3. Then, estimate the parameters
(hx; hy; h(0; 0)), either by central di�erences or, more robustly, by a weighted least-squares
�t of h(x; y) = hxx+hyy+h(0; 0). Finally, compute the estimated local surface orientation
using (49) which can be rewritten

�̂ = cos�1

0@ h(0; 0)q
f2h2x + f2h2y + h2(0; 0)

1A ; (50)

�̂ = arg(hx; hy): (51)

Note that this procedure only requires AL(x; y) to be computed up to an arbitrary scale
factor.

References

Aloimonos, Y. (1988). Shape from texture. Biological Cybernetics, 58, 345{360.
Babaud, J., Witkin, A. P., Baudin, M., and Duda, R. O. (1986). Uniqueness of the Gaussian kernel

for scale-space �ltering. IEEE Trans. Pattern Anal. and Machine Intell., 8, no. 1, 26{33.
Bergen, J. and Adelson, E. (1988). Early vision and texture perception. Nature, 333, 363{364.
Big�un, J., Granlund, G. H., and Wiklund, J. (1991). Multidimensional orientation estimation with

applications to texture analysis and optical ow. IEEE Trans. Pattern Anal. and Machine Intell.,
13, no. 8, 775{790.

Bijl, P. and Koenderink, J. J. (1993). Visibility of elliptical Gaussian blobs. Vision Research, 33,
no. 2, 243{255.

Blake, A. and Marinos, C. (1990a). Shape from texture: estimation, isotropy and moments. J. of
Arti�cial Intelligence, 45, 323{380.

Blake, A. and Marinos, C. (1990b). Shape from texture: the homogeneity hypothesis. In Proc. 3rd
Int. Conf. on Computer Vision, pp. 350{353, Osaka, Japan. IEEE Computer Society Press.

Blakemore, C. (1970). A new kind of stereoscopic vision. Vision Research, 10, 1181{1200.
Blostein, D. and Ahuja, N. (1989a). A multiscale region detector. Computer Vision, Graphics, and

Image Processing, 45, 22{41.
Blostein, D. and Ahuja, N. (1989b). Shape from texture: integrating texture element extraction

and surface estimation. IEEE Trans. Pattern Anal. and Machine Intell., 11, no. 12, 1233{1251.
Brown, L. G. and Shvaytser, H. (1990). Surface orientation fromprojective foreshortening of isotropic

texture autocorrelation. IEEE Trans. Pattern Anal. and Machine Intell., 12, no. 6, 584{588.
Caelli, T. (1985). Three processing characteristics of visual texture segmentation. Spatial Vision,

1, 19{30.
Casadei, S., Mitter, S., and Perona, P. (1992). Boundary detection in piecewise homogeneous images.

In Sandini, G., editor, Proc. 2nd European Conf. on Computer Vision, volume 588 of Lecture
Notes in Computer Science, pp. 174{183. Springer-Verlag.

Davis, L., Janos, L., and Dunn, S. (1983). E�cient recovery of shape from texture. IEEE Trans.
Pattern Anal. and Machine Intell., 5, no. 5, 485{492.

12Similar expressions have been derived e.g. by Blostein and Ahuja (1989b) and Kanatani and Chou
(1989).



Direct computation of shape cues 37

Field, D. J. (1987). Relations between the statistics of natural images and the response properties
of cortical cells. J. of the Optical Society of America, 4, 2379{2394.

Florack, L. M. J., ter Haar Romeny, B. M., Koenderink, J. J., and Viergever, M. A. (1992). Scale
and the di�erential structure of images. Image and Vision Computing, 10, no. 6, 376{388.

F�orstner, M. A. and G�ulch, E. (1987). A fast operator for detection and precise location of distinct
points, corners and centers of circular features. In Proc. Intercommission Workshop of the Int.
Soc. for Photogrammetry and Remote Sensing, Interlaken, Switzerland.

G�arding, J. (1991). Shape from surface markings. PhD thesis, Dept. of Numerical Analysis and
Computing Science, Royal Institute of Technology, Stockholm.

G�arding, J. (1992). Shape from texture for smooth curved surfaces in perspective projection. J. of
Mathematical Imaging and Vision, 2, 329{352.

G�arding, J. (1993). Shape from texture and contour by weak isotropy. J. of Arti�cial Intelligence,
64, no. 2, 243{297.

G�arding, J. and Lindeberg, T. (1994). Direct estimation of local surface shape in a �xating binocular
vision system. Technical Report ISRN KTH/NA/P--94/08--SE, Dept. of Numerical Analysis and
Computing Science, Royal Institute of Technology. Shortened version in Eklundh, J.-O., editor,
Proc. 3rd European Conf. on Computer Vision, Stockholm, Sweden, volume 800 of Lecture Notes
in Computer Science, pp. 365{376. Springer-Verlag.

Gibson, J. (1950). The Perception of the Visual World. Houghton Mi�in, Boston.
Jones, D. G. and Malik, J. (1992). Determining three-dimensional shape from orientation and

spatial frequency disparities. In Proc. 2nd European Conf. on Computer Vision, pp. 661{669,
Santa Margherita Ligure, Italy.

Jones, J. and Palmer, L. (1987a). An evaluation of the two-dimensional Gabor �lter model of simple
receptive �elds in cat striate cortex. J. of Neurophysiology, 58, 1233{1258.

Jones, J. and Palmer, L. (1987b). The two-dimensional spatial structure of simple receptive �elds
in cat striate cortex. J. of Neurophysiology, 58, 1187{1211.

Julesz, B. (1981). Textons, the elements of perception and their interactions. Nature, 290, 91{97.
Kanatani, K. (1984). Detection of surface orientation and motion from texture by a stereological

technique. J. of Arti�cial Intelligence, 23, 213{237.
Kanatani, K. and Chou, T. C. (1989). Shape from texture: general principle. J. of Arti�cial

Intelligence, 38, 1{48.
Koenderink, J. J. (1984). The structure of images. Biological Cybernetics, 50, 363{370.
Koenderink, J. J. and van Doorn, A. J. (1976). Geometry of binocular vision and a model for

stereopsis. Biological Cybernetics, 21, 29{35.
Koenderink, J. J. and van Doorn, A. J. (1990). Receptive �eld families. Biological Cybernetics, 63,

291{298.
Koenderink, J. J. and van Doorn, A. J. (1992). Generic neighborhood operators. IEEE Trans.

Pattern Anal. and Machine Intell., 14, no. 6, 597{605.
Lindeberg, T. (1990). Scale-space for discrete signals. IEEE Trans. Pattern Analysis and Machine

Intell., 12, no. 3, 234{254.
Lindeberg, T. (1993a). Detecting salient blob-like image structures and their scales with a scale-

space primal sketch: A method for focus-of-attention. International Journal of Computer Vision,
11, no. 3, 283{318.

Lindeberg, T. (1993b). Discrete derivative approximations with scale-space properties: A basis for
low-level feature extraction. J. of Mathematical Imaging and Vision, 3, no. 4, 349{376.

Lindeberg, T. (1993c). On scale selection for di�erential operators. In K. A. H�gdra, B. Braathen,
K. H., editor, Proc. 8th Scandinavian Conference on Image Analysis, pp. 857{866, Troms�,
Norway. Norwegian Society for Image Processing and Pattern Recognition.

Lindeberg, T. (1994a). Scale-Space Theory in Computer Vision. The Kluwer International Series in
Engineering and Computer Science. Kluwer Academic Publishers, Dordrecht, Netherlands.

Lindeberg, T. (1994b) Scale selection for di�erential operators. Technical Report ISRNKTH/NA/P-
-94/03--SE, Dept. of Numerical Analysis and Computing Science, Royal Institute of Technology.
(Submitted).



38 G�arding and Lindeberg

Lindeberg, T. and G�arding, J. (1993). Shape from texture from a multi-scale perspective. Technical
Report ISRN KTH/NA/P--93/03--SE, Dept. of Numerical Analysis and Computing Science,
Royal Institute of Technology, Stockholm. Shortened version in Nagel, H.-H., editor, Proc. 4th
International Conference on Computer Vision, pp. 683{691, Berlin, Germany. IEEE Computer
Society Press.

Lindeberg, T. and G�arding, J. (1994). Shape-adapted smoothing in estimation of 3-D depth cues
from a�ne distortions of local 2-D brightness structure. In Eklundh, J.-O., editor, Proc. 3rd Eu-
ropean Conf. on Computer Vision, Stockholm, Sweden, volume 800 of Lecture Notes in Computer
Science, pp. 389{400. Springer-Verlag.

Malik, J. and Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms.
J. of the Optical Society of America, 7, 923{932.

Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, London.
Marr, D. (1982). Vision. W.H. Freeman, New York.
Marr, D. C. (1976). Early processing of visual information. Phil. Trans. Royal Soc (B), 27S, 483{524.
O'Neill, B. (1966). Elementary Di�erential Geometry. Academic Press, Orlando, Florida.
Pentland, A. P. (1986). Shading into texture. J. of Arti�cial Intelligence, 29, 147{170.
Pollard, S. B., Mayhew, J. E. W., and Frisby, J. P. (1985). PMF: A stereo correspondence algorithm

using a disparity gradient limit. Perception, 14, 449{470.
Rao, A. R. and Schunk, B. G. (1991). Computing oriented texture �elds. CVGIP: Graphical Models

and Image Processing, 53, no. 2, 157{185.
Rogers, B. and Cagenello, R. (1989). Orientation and curvature disparities in the perception of

three-dimensional surfaces. Investigative Opthalmology and Visual Science, 30, 262.
Stone, J. V. (1990). Shape from texture: textural invariance and the problem of scale in perspective

images of surfaces. In Proc. British Machine Vision Conference, pp. 181{186, Oxford, England.
Super, B. J. and Bovik, A. C. (1992). Shape-from-texture by wavelet-based measurement of local

spectral moments. In Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recogni-
tion, pp. 296{301, Champaign, Illinois.

Turner, M. (1986). Texture discrimination by Gabor functions. Biological Cybernetics, 55, 71{82.
Tyler, C. and Sutter, E. (1979). Depth from spatial frequency di�erence: An old kind of stereopsis?

Vision Research, 19, 859{865.
Voorhees, H. and Poggio, T. (1987). Detecting textons and texture boundaries in natural images.

In Proc. 1st Int. Conf. on Computer Vision, London, England.
Wildes, R. P. (1981). Direct recovery of three-dimensional scene geometry from binocular stereo

disparity. IEEE Trans. Pattern Anal. and Machine Intell., 13, no. 8, 761{774.
Witkin, A. P. (1981). Recovering surface shape and orientation from texture. J. of Arti�cial

Intelligence, 17, 17{45.
Witkin, A. P. (1983). Scale-space �ltering. In Proc. 8th Int. Joint Conf. Art. Intell., pp. 1019{1022,

Karlsruhe, West Germany.
Young, R. A. (1985). The Gaussian derivative theory of spatial vision: Analysis of cortical cell recep-

tive �eld line-weighting pro�les. Technical Report GMR-4920, Computer Science Department,
General Motors Research Lab., Warren, Michigan.

Young, R. A. (1987). The Gaussian derivative model for spatial vision: I. Retinal mechanisms.
Spatial Vision, 2, 273{293.

Yuille, A. L. and Poggio, T. A. (1986). Scaling theorems for zero-crossings. IEEE Trans. Pattern
Anal. and Machine Intell., 8, 15{25.


