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Abstract. Rotationally symmetric operations in the image domain may
give rise to shape distortions. This article describes a way of reducing
this e�ect for a general class of methods for deriving 3-D shape cues from
2-D image data, which are based on the estimation of locally linearized
distortion of brightness patterns. By extending the linear scale-space con-
cept into an a�ne scale-space representation and performing a�ne shape
adaption of the smoothing kernels, the accuracy of surface orientation
estimates derived from texture and disparity cues can be improved by
typically one order of magnitude. The reason for this is that the image
descriptors, on which the methods are based, will be relative invariant
under a�ne transformations, and the error will thus be con�ned to the
higher-order terms in the locally linearized perspective mapping.

1 Introduction

To derive any information from image data it is necessary to interact with it
using operators. Some of the very fundamental questions in computer vision
concern what operators to use, how large they should be, and where they should
be applied. If these problems are not properly dealt with, the task of interpreting
the operator response can be very hard.

A systematic approach that has been developed to address the problem of
what operators to use is scale-space theory. It focuses on the basic property of
image data that image structures, in general, exist at di�erent scales and one
cannot expect to know in advance at what scales the relevant image structures
manifest themselves. A fundamental assumption is that in cases when no a priori
information is available, the only reasonable approach is to treat image structures
at all scales simultaneously and as uniformly as possible. Analogously, all image
points should be treated in a similar manner.

Starting from these basic properties several axiomatic derivations have been
given concerning what image operators to use (Witkin 1983; Koenderink 1984;
Babaud et al. 1986; Yuille and Poggio 1986; Lindeberg 1990, 1994; Koenderink
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and van Doorn 1990; Florack et al. 1992). The essence of these results is that if
one assumes that the �rst stages of visual processing should be as uncommitted

as possible and have no particular bias, then, within the class of linear transfor-
mations, convolution with Gaussian kernels and their derivatives is singled out
as a canonical class of low-level operations. The output from these operators can
in turn be used as a basis for a large number of early visual operations, such as
feature detection, matching, and computation of shape cues.

It is, however, well-known that shape distortions may arise due to the use
of rotationally symmetric Gaussian kernels. In edge detection, smoothing across
\object boundaries" can a�ect both the shape and the localization of edges. A
corresponding problem arises when deriving three-dimensional shape cues from
image data. In shape-from-texture, rotationally symmetric smoothing a�ects the
anisotropy in the image (measured, for instance, in terms of the distribution
of gradient directions), which means that surface orientation estimates may be
biased. A common e�ect that occurs in practice is that the slant angle (the angle
between the visual ray and the surface normal) is systematically underestimated.

Non-uniform smoothing methods. To reduce the problems of shape distortion in
edge detection, (Perona andMalik 1990) proposed the use of anisotropic di�usion
as a generalization of the linear scale-space representation (which is generated
by the (linear) di�usion equation

@tL = 1
2 r2L (1)

with initial condition L(�; 0) = f , where f denotes the original signal). The
basic idea is to modify the conductivity c(x; t) in a non-linear version of the
di�usion equation @tL = 1

2 rT (c(x; t)rL) so as to favour intra-region smoothing
to inter-region smoothing. This approach has then been furthered into di�erent
evolution schemes, e.g., (Nordstr�om 1990; Nitzberg and Shiota 1992; Alvarez et
al. 1993; Sapiro and Tannenbaum 1993; Florack et al. 1993).

A�ne shape-adapted smoothing. Improvements relative to rotationally symmet-
ric smoothing can also be obtained using linear methods. As has been argued
by several authors, it can in certain situations be advantageous to use �lters
that correspond to di�erent scale values in di�erent directions; e.g., a large scale
value along an edge, and a smaller scale value in the perpendicular direction.

The subject of this article is to develop how linear, or a�ne, shape adaption
of the smoothing kernels can be used as an important mechanism for reducing
the shape distortions when deriving three-dimensional shape cues from image
data. The basic approach we shall adopt for relating image data to local surface
shape is to observe how surface patterns are distorted under projective trans-
formations. This problem can be substantially simpli�ed by approximating the
projective transformation with its locally linearized component (the derivative).
The application of this general idea to vision problems goes back to (at least)
(Koenderink and van Doorn 1976), and has been explored in several shape-from-
X problems, such as shape-from-texture (G�arding 1992; Lindeberg and G�arding
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1993a; Malik and Rosenholtz 1993), shape-from-disparity (Wildes 1981; Jones
and Malik 1992; G�arding and Lindeberg 1993a), and motion estimation (Koen-
derink and van Doorn 1991; Weber and Malik 1993; Cipolla et al. 1993).

The general advantage of shape-adaption in shape-from-texture has been
pointed out by (Stone 1990). He proposed to adapt the smoothing kernels to
be isotropic when backprojected to the surface, rather than in the image. He
also suggested an iterative scheme, based on the principle of �rst estimating the
surface orientation and then adapting the kernel shape accordingly.

Here, we shall apply and generalize this idea, and demonstrate how the accu-
racy of a general class of shape-from-X methods can be improved by extending
the traditional linear scale-space representation to an a�ne scale-space represen-
tation based on Gaussian kernels with arbitrary (positively de�nite) covariance
matrices.We shall be mainly concerned with the monocular case, the shape-from-
texture problem. The underlying idea is, however, of much wider generality, as
will be illustrated on shape estimation from disparity gradients.

Because of space constraints, the presentation is condensed and proofs omit-
ted. For details and further background, see (Lindeberg and G�arding 1993b).

2 Basic idea for shape adaption

To motivate the need for shape adaption and to illustrate the basic idea behind
the presented approach, consider �rst a non-uniform Gaussian blob

f(x; y) = g(x; l21) g(y; l
2
2) (l1 � l2 > 0); (2)

as a simple linearized model of the projection of a rotationally symmetric Gaus-
sian blob (where l1 and l2 are characteristic lengths in the x- and y-coordinate di-
rections and g is the one-dimensionalGaussian, g(x; t) = (2�t)�1=2 exp(�x2=2t)).
The foreshortening, �, and the slant angle, �, are given by � = cos � = l2=l1, and
the tilt direction (the direction of the projection of the surface normal onto the
image plane) is � = �=2. From the semi-group property of the Gaussian kernel
g(�; t1) � g(�; t2) = g(�; t1 + t2), it follows that the scale-space representation
of f at scale t is L(x; y; t) = g(x; l21 + t) g(y; l22 + t). Thus, under scale-space
smoothing the estimate of foreshortening varies as

�̂(t) =

s
l22 + t

l21 + t
; (3)

i.e., it increases and tends to one, which means that after a su�ciently large
amount of smoothing the image will eventually be interpreted as at.

On the other hand, if we have initial estimates of the slant angle and the tilt
direction (�̂; �̂), say computed using rotationally symmetric Gaussian smoothing,
a straightforward compensation technique is to let the scale parameter in the (es-
timated) tilt direction, denoted tt̂, and the scale parameter in the perpendicular
direction, denoted tb̂, be related by

tt̂ = tb̂ cos
2 �̂: (4)
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If this estimate is correct, then the slant estimate will be una�ected by the non-
uniform smoothing operation. To illustrate this property, assume that the tilt
estimate is correct (�̂ = � = �=2) and convolve the signal with a non-uniform
Gaussian kernel g(x; y; tt̂; tb̂) = g(x; tt̂) g(y; tb̂), which gives L(x; y; t) =
g(x; l21 + tb̂) g(y; l

2
2 + tt̂). Then, the new foreshortening estimate is

�̂ = �(�̂; tt̂; tb̂) =

s
l22 + tt̂
l21 + tb̂

= j cos�j
s
1 +

tb̂
l21 + tb̂

�
cos2 �̂

cos2 �
� 1

�
: (5)

Clearly, �̂ = � if �̂ = �. In practice, however, we cannot assume that true values of
(�; �) are known, since this requires knowledge about the solution to the problem
we are to solve. A more realistic formulation is therefore to �rst compute initial
surface orientation estimates using rotationally symmetric smoothing (based on
the principle that in situations when no a priori information is available, the
�rst stages of visual processes should be as uncommitted as possible and have
no particular bias). Then, when a hypothesis about a certain surface orientation

(�̂0; �̂0) has been established, the estimates can be improved iteratively

�̂k+1 = arccos �(�̂k; tt̂; tb̂) = h(�̂n): (6)

From the derivative of this mapping,

j(@�̂h)(�̂)j = j(@�̂ arccos �)(�̂; tb̂ cos2 �̂; tb̂)j = flet �̂ = �g = tb
l21 + tb

< 1; (7)

it is clear that the true value of �̂ is a convergent �xed point for (6). Hence,
for the pattern (2) the method is guaranteed to converge to the true solution,
provided that the initial estimate is su�ciently close to the true value.

Here, no assumptions have been made about what actual method should be
used for computing surface orientation from image data. The example describes
essential e�ects of the smoothing operation, which will arise in any shape-from-X
method that contains a smoothing module and interprets a non-uniform Gaus-
sian blob as the projection of a rotationally symmetric one.

3 Shape-from-texture and disparity-gradients: Review

Computational studies of shape-from-texture and shape-from-stereo-cues have
been done by several researchers. For a literature survey, see the previously cited
papers on the subjects. Here, we shall consider the approach by (Lindeberg and
G�arding 1993a; G�arding and Lindeberg 1993b), which will be briey reviewed.

Measuring local a�ne distortion. Let L : R2! Rbe the image brightness, rL =
(Lx; Ly)

T its gradient, and w : R2! R a window function. An image descriptor
that allows for measurements of local linear distortions is the windowed second

moment matrix. � : R2! SPSD(2).2 At any image point q 2 R2 it is de�ned by

�L(q) =

Z
x02R2

(rL)(x0) (rL)T (x0) g(q � x0) dx0: (8)

2 Here, SPSD(2) stands for the cone of symmetric positive semide�nite 2�2 matrices.
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Let R : R2 ! R be de�ned by L(�) = R(B�), where B is an invertible 2 � 2
matrix representing a linear transformation. Then, �L(q) transforms as

�L(q) = BT �R(p)B; (9)

where �R(p) is the second moment matrix of R at p = Bq computed using the
\backprojected" normalized window function w0(� � p) = (detB)�1w(� � q).

Shape-from-texture and disparity gradients. Given two measurements of �L and
�R, (9) can be used for recovering B (up to an arbitrary rotation). This gives a
direct method for deriving surface orientation frommonocular cues, by imposing
speci�c assumptions on �R, e.g., that �R is a constant times the unit matrix,
�R = cI (weak isotropy), or that det �R is locally constant (constant area).
Similarly, if two cameras �xate the same surface structure, a direct estimate of
surface orientation can be obtained provided that the vergence angle is known.

Scale selection. Computation of �L requires selection of two scale parameters,
a local scale for computing derivatives, and an integration scale describing the
size of the window function. The determination of these scales follows the scale
selection method proposed by (Lindeberg 1993, 1994) based on extrema over
scales of combinations of normalized derivatives, @�i =

p
t @xi . Integration scales

are set to a constant  (typically  = 1,
p
2, or 2) times the scales where

det�L;norm = t2 det�L or traceHnormL = t (Lxx + Lyy) (10)

assume local maxima over scales. Then, local scales are selected from minima
over scales of the normalized anisotropy ,

~Q =

p
trace2 �L � 4 det�L

trace �L
: (11)

4 A�ne scale-space

When dealing with linear transformations of the spatial domain, a natural gen-
eralization of the linear scale-space representation (based on the rotationally
symmetric Gaussian kernel) is the a�ne scale-space representation generated
by convolution with non-uniform Gaussian kernels. Given a symmetric positive
semi-de�nite (covariance) matrix, �t 2 SPSD(2), the non-uniform Gaussian ker-
nel in the two-dimensional case can be de�ned by

g(x; �t) =
1

2�
p
det�t

e�x
T��1

t
x=2 where x 2 R2: (12)

Then, given any f : R2 ! R, the a�ne scale-space representation of f can be
de�ned as the three-parameter family of functions L : R2� SPSD(2)! R

L(�; �t) = g(�; �t) � f(�): (13)
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Transformation property under linear transformations. The basic reason for in-
troducing the a�ne scale-space is that it is closed under linear (and a�ne)
transformations of the spatial coordinates. Let fL; fR : R2! R be two intensity
patterns related by an invertible linear transformation � = B�, i.e.,

fL(�) = fR(B�); (14)

and de�ne the a�ne scale-space representations by

L(�; �L) = g(�; �L) � fL(�) and R(�; �R) = g(�; �R) � fR(�); (15)

where �L;�R 2 SPSD(2). Then, L and R are related by

L(�; �L) = R(�; �R) where �R = B�LB
T : (16)

Hence, for any �L there exists a �R such that the a�ne scale-space represen-
tations of fL and fR are equal. This property does not hold for the traditional
linear scale-space representation based on the rotationally symmetric Gaussian.

Interpretation in terms of eigenvectors and eigenvalues. Let tb � tt > 0 be the
eigenvalues of ��1t , and let �b and �t be the corresponding eigenvalues. Then,
convolution with (12) corresponds to (separable) smoothing with scale value tb
along the �b-direction and scale value tt along the �t-direction.

Di�usion equation interpretation of a�ne scale-space. Rewrite �t as �t = t�0,
where t 2 R+ and det �0 = 1. Then, with r = (@x; @y)T , the non-uniform
scale-space satis�es the transformed di�usion equation @tL = 1

2 rT�0rL.

Fourier transform and semi-group property. From the Fourier transform of g,

G(!; �t) = e�!
T�t!=2, it follows that the non-uniform Gaussian satis�es the

semi-group property G(!; �1) �G(!; �2) = G(!; �1 +�2).

5 Texture descriptors de�ned from a�ne scale-space

Given an image f : R2 ! R with a�ne scale-space representation L : R2 �
SPSD(2) ! R, let us now de�ne the second moment matrix based on non-
uniform smoothing �L : R

2� SPSD(2)2 ! SPSD(2) by

�L(�; �t;�s) = g(�; �s) � ((rL)(�; �t) (rL)(�; �t)
T ) (17)

where �s represents the covariance matrix corresponding to the integration scale,
and �t the covariance matrix corresponding to the local scale.

Transformation property under linear transformations. Under a linear transfor-
mation of the image coordinates � = B�, this descriptor transforms as

�L(q; �t;�s) = BT�R(Bq; B�tB
T ; B�sB

T )B: (18)
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Shape adaption: Invariance property of �xed points. Assume next that we can
compute the second moment matrix using shape adaption such that the scale
matrix is equal to the inverse of the second momentmatrix. Then, this �xed point
will be preserved under a�ne transformations, and the backprojected window
function (see (9)) transforms in the same way as the a�ne transformation.

To verify this property, consider a signal fL, and assume that �L has been
computed with shape adaption at a certain point qL 2 R2 such that

�L(qL; �t;L;�s;L) = ML; (19)

where �t;L and �s;L are scalar multiples of M�1
L ,

�t;L = tM�1
L ; �s;L = sM�1

L ; (t; s 2 R+): (20)

Moreover, de�ne a transformed intensity pattern fR by fL(�) = fR(B�). Then,
computation of the second moment matrix at a corresponding point in the trans-
formed domain, qR = BqL, using the same type of shape adaption gives

�R(qR; �t;R;�s;R) = MR where �t;R = tM�1
R ; �s;R = sM�1

R : (21)

Similar properties hold for the scale-space maxima of det�L and detHnormL as
well, i.e., the entities used for selecting integration scales (and interest points).

Interpretation in the case of weak isotropy. At �rst glance, this property may be
regarded as somewhat arbitrary. However, it has a simple geometric interpreta-
tion when the surface pattern is weakly isotropic. If the second moment matrix
of the surface pattern is proportional to the unit matrix, then MR = cI, and
at the �xed point the covariance matrices �t;R and �s;R are also proportional
to the unit matrix. This corresponds to rotationally symmetric smoothing and
rotationally symmetric window functions in the tangent plane to the surface.

6 Designing an iterative procedure

Although the entity used for shape adaption is directly measurable from the
second momentmatrix, there is a chicken-and-the-egg aspect in the problem. The
goal is to estimate the second moment matrix, while the smoothing procedure
requires this information to obey the invariance properties. Nevertheless, an
iterative procedure can be formulated. The invariance properties are obtained
provided that the procedure converges to the desired �xed point.

Variation of scale matrices. A general variation of each scale matrix leads to a
three-parameter variation. Hence, if no restrictions are imposed, there are six
parameters to vary. The dimensionality of this search space can, however, be
reduced by coupling the local and integration scale matrices such that

�t = t�0; �s = s�0; (22)

for some matrix �0 (assumed to be normalized in some way; see next). This
reduces the search space to four free parameters (two parameters determining
the shape of �0, and the other two determining the size of each scale matrix).
Here, we shall consider the following methods for choosing these parameters:
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Shape of the smoothing matrices. With reference to the �xed point condition,
the shape of �0 will be selected proportional to �L at the given point.

Size of the integration scale matrix. To preserve the invariance of the scale-space
maximum under linear transformations, one may require the size of the inte-
gration scale matrix to be selected such that the normalized di�erential entity

considered for scale selection (det �L;norm or detHnormL) assumes a maximum

over scales. In practice, it is often reasonable to keep s constant.

Size of the local scale matrix. Further precautions must be taken when choosing
the size of local scale matrix. Choosing the scale that maximizes the normalized
anisotropy ~Q over scales is not appropriate in the non-isotropic case. To formu-
late an alternative criterion, one may at �rst consider letting det �t be constant
during the iterations. Such an approach would, however, lead to systematic over-
estimates of the anisotropy and, hence, the slant angle. A simple explanation for
this is that the amount of smoothing in the direction of the smallest eigenvalue
of the local scale matrix would be smaller in the non-isotropic case than in the
isotropic case. Hence, the contribution from the �ne scale variations in the signal
(noise) would be expected to be larger and the anisotropy would increase.

Here, we propose to keep the smallest eigenvalue of �0 constant during the
iterations. By this approach the smallest amount of smoothing will be preserved,
and the same (minimum) degree of noise suppression is guaranteed.

Composed method for shape adaption. To summarize, a straightforward method

can be expressed as follows (M (k)
I denotes the matrix for shape adaption in the

kth iteration step, DnormL the normalized di�erential entity used for selecting

the integration scale, and s
(k)
DL the selected integration scale in each step):

1. M (0) = I.
2. M

(k)
I =M (k)=�min(M (k)).

3. s
(k)
DL =

(
2 � (s : maxs>0 (DnormL)(q; sM

(k)
I )); or

s
(0)
DL when k � 1:

4. M (k+1) = ��1L (q; tM (k)
I ; s

(k)
DLM

(k)
I ). Go to step 2 if not converged.

A useful convergence criterion is to require the angle between two successive
surface normals (computed, e.g., under the assumption of weak isotropy) to be
less than some given threshold �' < " (and to limit the number of iterations).

7 Experiments

This shape adaption scheme has been integrated with the shape-from-texture
and shape-from-disparity-gradient methods reviewed in section 3. Experiments
have been performed on real and synthetic reference data with known orienta-
tion. To test the stability of the method, Gaussian noise of di�erent standard
deviation has been added to the images. (Some test images are shown in �gure 1.)
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\periodic" (10.0) \periodic" (100.0) \gauss 10:5" \gauss 10:2.5"

\curved" \wallpaper" \skewed-R (10.0)" \skewed-L (10.0)"

Fig. 1. Grey-level images used in the experiments on shape-from-texture. The �rst
image, called 'periodic', is shown with added Gaussian noise of standard deviation 10.0
and 100.0, respectively. For the other test data only the original image is shown.

Shape-from-texture. Table 1 shows the result of applying the scheme to the im-
age labelled \periodic" and using di�erent amounts of added noise. To compare
the e�ect of shape adaption with the e�ect of increasing the integration scale in
the isotropic scale-space representation, experimental results are also given using
di�erent values of the relative integration scale, .3 Notice that for high noise
levels the shape adaption leads to improvements in estimated surface orienta-
tion that cannot be achieved by just increasing the integration scale. Moreover,
substantial improvements can be obtained after just one or two iterations. Cor-
responding experimental results for the other images are given in tables 2{3.

Shape-from-disparity-gradients. The need for shape adaption can be further mo-
tivated when dealing with binocular data, since multiple measurements are made
of the same surface structure, and the di�erence between these measurements is
the basis for inferring cues to the three-dimensional surface structure.

Table 4 shows the results of including shape adaption as an essential step in
the shape-from-disparity-gradient method indicated in section 3 and applying
it to the stereo pair in �gure 1. (The shape adaption has been performed on
both images independently before the surface orientation estimates have been
computed from (9).) Observe how the error decreases with the iterations.

3 This parameter determines how large the integration scale is relative to the scale at
which the maximum in the scale-space signature is assumed (see section 3). Basically,
a larger value of  can be expected to increase the accuracy up to the point where
the modelling error increases due to violations of the local linear approximation.
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periodic (1.0) ( = 1:0)
0 (56.94, 80.94) 8.29
1 (60.03, 86.52) 3.00
2 (60.10, 87.55) 2.12

periodic (10.0) ( = 1:0)
0 (56.31, 81.13) 8.37
1 (60.18, 86.32) 3.18
2 (60.42, 87.55) 2.16

periodic (100.0) ( = 1:0)
0 (47.11, 74.45) 17.90
1 (54.18, 81.32) 9.31
2 (56.39, 84.21) 6.09

periodic (1.0) ( = 1:4)

0 (58.88, 89.22) 1.29
1 (60.08, 90.12) 0.13
2 (60.09, 90.11) 0.13

periodic (10.0) ( = 1:4)

0 (57.88, 88.95) 2.29
1 (60.51, 90.09) 0.52
2 (60.75, 90.11) 0.76

periodic (100.0) ( = 1:4)

0 (53.86, 89.61) 6.14
1 (59.90, 90.76) 0.67
2 (61.45, 90.90) 1.65

periodic (1.0) ( = 2:0)
0 (60.29, 90.18) 0.33
1 (60.59, 89.95) 0.59
2 (60.59, 89.95) 0.60

periodic (10.0) ( = 2:0)
0 (58.80, 90.04) 1.19
1 (60.49, 89.90) 0.49
2 (60.66, 89.90) 0.66

periodic (100.0) ( = 2:0)
0 (49.95, 91.24) 10.10
1 (56.72, 90.74) 3.34
2 (58.38, 90.40) 1.65

Table 1. Shape adapted smoothing applied to the image labelled \periodic" (using
di�erent values of the relative integration scale ). The columns show from left to right,
the iteration index, slant and tilt values computed under the weak isotropy assumption,
and the angle between the estimated and the true surface normal (reference values
(60.0, 90.0)). (The �rst value within parentheses is the standard deviation of the noise,
to be related to the grey-level range [0, 255]. All angles are given in degrees.)

gauss 10:5 (1.0)
0 (66.71, 90.04) 6.71
1 (58.83, 90.01) 1.16
2 (60.10, 90.02) 0.10

gauss 10:5 (10.0)
0 (65.55, 89.52) 5.56
1 (58.66, 89.81) 1.34
2 (59.54, 89.73) 0.50

gauss 10:5 (100.0)
0 (66.71, 92.13) 6.98
1 (62.13, 90.64) 2.20
2 (61.72, 90.68) 1.82

gauss 10:2.5 (3.1)
0 (80.68, 89.93) 5.16
1 (75.99, 90.00) 0.47
2 (75.26, 90.00) 0.25

gauss 10:2.5 (10.0)
0 (80.24, 89.90) 4.72
1 (75.89, 89.95) 0.37
2 (75.25, 89.95) 0.27

gauss 10:2.5 (31.6)
0 (79.36, 90.28) 3.85
1 (76.91, 90.17) 1.39
2 (75.93, 90.03) 0.41

Table 2. Shape adaption applied to two Gaussian blobs using di�erent amounts of
added white Gaussian noise. The reference orientation in the top row is (60.0, 90.0)
and in the bottom row (75.5, 90.0). (Relative integration scale:  = 1:0.)

skewed (10.0) ( = 1:4)
0 (28.81, 20.91) 1.26
1 (29.71, 20.95) 0.55
2 (29.75, 20.95) 0.53

curved (10.0) ( = 1:4)
0 (59.57, 92.07) 4.89
1 (55.99, 90.61) 1.11
2 (56.22, 90.73) 1.36

wallpaper (10.0) ( = 16)
0 (46.09, 85.56) 4.71
1 (51.86, 85.44) 1.06
2 (53.74, 85.34) 2.94

Table 3. Shape adaption applied to the images labelled \skewed", \curved", and \wall-
paper". Reference orientations: (30.0, 20.0), (55.0, 90.0), and (50.8, 85.3) respectively.
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skewed (10.0) ( = 1:4)
0 (50.15, 65.23) 5.99
1 (54.19, 62.71) 2.12
2 (54.70, 61.31) 0.94
5 (55.04, 60.99) 0.80

skewed (10.0) ( = 2:0)
0 (47.69, 70.04) 10.33
1 (50.24, 64.62) 5.61
2 (51.72, 62.47) 3.42
5 (53.19 ,60.58) 1.45

skewed (10.0) ( = 2:8)
0 (49.53, 68.77) 8.47
1 (52.05, 63.53) 3.72
2 (53.32, 61.87) 1.89
5 (54.33, 60.61) 0.46

Table 4. Shape adaption applied to the stereo pair in �gure 1. (Vergence angle:
2� = 10:00. Reference orientation (in a cyclopean coordinate system): (54.60, 60.16).)

8 Summary and discussion

We have described a methodology for reducing shape distortions when comput-
ing three-dimensional shape cues from image data using operators (derivatives)
de�ned from the linear scale-space representation. The suggested approach is to
adapt the shape of the smoothing kernel to the local image structure by mea-
suring an image descriptor called the second moment matrix. If shape adaption
can be performed such that the second moment matrix computed at a certain
point is equal to the matrix used for shape adaption at that point, then this �xed
point will be preserved under a�ne transformations of the brightness pattern.
In the speci�c case when the surface pattern is weakly isotropy, this corresponds
to rotationally symmetric operators in the tangent plane to the surface.

A straightforward algorithm has been presented for reaching the �xed point.
Whereas it in the experiments has lead to substantial improvements after just
a few iterations, no claims are made that it constitutes any \optimal solution".
(Compare with the vast number of iterative methods for solving non-linear equa-
tions in numerical analysis and optimization theory.) We are currently studying
convergence properties in more detail as well as the ability to reach appropri-
ate �xed points. As a brief indication of the convergence properties, it can be
mentioned that for a periodic pattern f(x; y) = cos !1x + cos!2y (!1 < !2),
the desired �xed point is convergent if the minimum amount of smoothing t0
satis�es !21t0 < (!1=!2)2. For many images, there are (at least) two more �xed
points; one corresponding to the shape adaption matrix being singular, and one
corresponding to an in�nite amount of isotropic smoothing.

The suggested scheme has an interesting relationship to non-linear di�usion
schemes. If applied at edge points, it leads to more smoothing along the edge
than in the perpendicular direction. In this respect, the work constitutes a link
between processing modules based on sparse edge data and dense �lter outputs.

References

L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel: Axioms and fundamental equa-
tions of image processing. Arch. Rat. Mech., (to appear).

J. Babaud, A.P. Witkin, M. Baudin, and R.O. Duda: Uniqueness of the Gaussian kernel
for scale-space �ltering. IEEE-PAMI, 8(1):26{33, 1986.

R. Bajcsy and L. Lieberman: Texture gradients as a depth cue. CVGIP, 5:52{67, 1976.

11



D. Blostein and N. Ahuja: Shape from texture: integrating texture element extraction
and surface estimation. IEEE-PAMI, 11(12):1233{1251, 1989.

L.G. Brown and H. Shvaytser: Surface orientation from projective foreshortening of
isotropic texture autocorrelation. IEEE-PAMI, 12(6):584{588, 1990.

R. Cipolla, Y. Okamoto, and Y. Kuno: Robust structure from motion using motion
parallax. 4th ICCV, 374{382, 1993.

L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever: Scale
and the di�erential structure of images. IVC, 10(6):376{388, 1992.

|: Non-linear scale-space. (submitted), 1993.
M.A. F�orstner and E. G�ulch: A fast operator for detection and precise location of

distinct points, corners and centers of circular features. ISPRS, 1987.
J. G�arding: Shape from texture for smooth curved surfaces in perspective projection.

J. Math. Im. Vis., 2:329{352, 1992.
J. G�arding and T. Lindeberg: Direct computation of shape cues by multi-scale retino-

topic processing IJCV, (to appear). TRITA-NA-P9304, Royal Inst. Tech., 1993a.
|: Direct estimation of local surface shape in a �xating binocular vision system. 3rd

ECCV, (Stockholm, Sweden), (these proceedings), 1993b.
D.G. Jones and J. Malik: Determining three-dimensional shape from orientation and

spatial frequency disparities. 2nd ECCV, 661{669, 1992.
J.J. Koenderink: The structure of images. Biol. Cyb., 50:363{370, 1984.
J.J. Koenderink and A.J. van Doorn: Geometry of binocular vision and a model for

stereopsis. Biol. Cyb., 21:29{35, 1976.
|: Receptive �eld families. Biol. Cyb., 63:291{298, 1990.
|: A�ne structure from motion. J. Opt. Soc. Am., 377{385, 1991.
T. Lindeberg: Scale-space for discrete signals. IEEE-PAMI, 12(3):234{254, 1990.
|: Scale selection for di�erential operators. 8th Scand. Conf. Im. An., 857{866, 1993b.
|: Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, 1994.
T. Lindeberg and J. G�arding: Shape from texture from a multi-scale perspective. 4th

ICCV, 683{691, 1993a.
|: Shape-adapted smoothing in estimation of 3-D depth cues from a�ne distortions

of local 2-D brightness structure. TRITA-NA-P9335, Royal Inst. Tech., 1993b.
J. Malik and R. Rosenholtz: A di�erential method for computing local shape-from-

texture for planar and curved surfaces. CVPR, 267{273, 1993.
M. Nitzberg and T. Shiota: Non-linear image �ltering with edge and corner enhance-

ment. IEEE-PAMI, 14(8):826{833, 1992.
N. Nordstr�om: Biased anisotropic di�usion: A uni�ed regularization and di�usion ap-

proach to edge detection. IVC, 8:318{327, 1990.
P. Perona and J. Malik: Scale-space and edge detection using anisotropic di�usion.

IEEE-PAMI, 12(7):629{639, 1990.
G. Sapiro and A. Tannenbaum: A�ne invariant scale-space. IJCV, 11(1):25{44, 1993.
J.V. Stone: Shape from texture: textural invariance and the problem of scale in per-

spective images of surfaces. Brit. Machine Vision Conf, pp. 181{186, 1990.
J. Weber and J. Malik: Robust computation of optical ow in a multi-scale di�erential

framework. 4th ICCV, 12{20, 1993.
R.P. Wildes: Direct recovery of three-dimensional scene geometry from binocular stereo

disparity. IEEE-PAMI, 13(8):761{774, 1981.
A. Witkin: Recovering surface shape and orientation from texture. AI, 17:17{45, 1981.
|: Scale-space �ltering. 8th IJCAI, 1019{1022, 1983.
A. Yuille and T. Poggio: Scaling theorems for zero-crossings. IEEE-PAMI, 8:15{25,

1986.

12


