
Active Detection and Classi�cation of Junctionsby Foveation with a Head-Eye SystemGuided by the Scale-Space Primal Sketch ?Kjell Brunnstr�om, Tony Lindeberg and Jan-Olof EklundhComputational Vision and Active Perception Laboratory (CVAP)Department of Numerical Analysis and Computing ScienceRoyal Institute of Technology, S-100 44 Stockholm, SwedenProc. of the 2nd European Conference on Computer Vision, (Santa Margherita Ligure, Italy),May. 1992, Vol. 588 of Lecture Notes in Computer Science, pp. 701{709, Springer-Verlag.Abstract. We consider how junction detection and classi�cation can beperformed in an active visual system. This is to exemplify that feature de-tection and classi�cation in general can be done by both simple and robustmethods, if the vision system is allowed to look at the world rather than atprerecorded images. We address issues on how to attract the attention tosalient local image structures, as well as on how to characterize those.A prevalent view of low-level visual processing is that it should provide a rich but sparserepresentation of the image data. Typical features in such representations are edges, lines,bars, endpoints, blobs and junctions. There is a wealth of techniques for deriving suchfeatures, some based on �rm theoretical grounds, others heuristically motivated. Never-theless, one may infer from the never-ending interest in e.g. edge detection and junctionand corner detection, that current methods still do not supply the representations neededfor further processing. The argument we present in this paper is that in an active system,which can focus its attention, these problems become rather simpli�ed and do thereforeallow for robust solutions. In particular, simulated foveation1 can be used for avoidingthe di�culties that arise from multiple responses in processing standard pictures, whichare fairly wide-angled and usually of an overview nature.We shall demonstrate this principle in the case of detection and classi�cation ofjunctions. Junctions and corners provide important cues to object and scene structure(occlusions), but in general cannot be handled by edge detectors, since there will beno unique gradient direction where two or more edges/lines meet. Of course, a numberof dedicated junction detectors have been proposed, see e.g. Moravec [15], Dreschler,Nagel [4], Kitchen, Rosenfeld [9], F�orstner, G�ulch [6], Koenderink, Richards [10], Deriche,Giraudon [3] and ter Haar et al [7]. The approach reported here should not be contrastedto that work. What we suggest is that an active approach using focus-of-attention andfoveation allows for both simple and stable detection, localization and classi�cation, andin fact algorithms like those cited above can be used selectively in this process.In earlier work [1] we have demonstrated that a reliable classi�cation of junctions canbe performed by analysing the modalities of local intensity and directional histogramsduring an active focusing process. Here we extend that work in the following ways:? This work was partially performed under the ESPRIT-BRA project INSIGHT. The supportfrom the Swedish National Board for Industrial and Technical Development, NUTEK, isgratefully acknowledged. We would also like to thank Kourosh Pahlavan, Akihiro Horii andThomas Uhlin for valuable help when using the robot head.1 By foveation we mean active acquisition of image data with a locally highly increased resolu-tion. Lacking a foveated sensor, we simulate this process on our camera head.



{ The candidate junction points are detected in regions and at scale levels determinedby the local image structure. This forms the bottom-up attentional mechanism.{ The analysis is integrated with a head-eye system allowing the algorithm to actuallytake a closer look by zooming in to interesting structures.{ The loop is further closed, including an automatic classi�cation. In fact, by using theactive visual capabilities of our head we can acquire additional cues to decide aboutthe physical nature of the junction.In this way we obtain a three-step procedure consisting of (i) selection of areas of interest,(ii) foveation and (iii) determination of the local image structure.1 Background: Classifying Junctions by Active FocusingThe basic principle of the junction classi�cation method [1] is to accumulate local his-tograms over the grey-level values and the directional information around candidatejunction points, which are assumed to be given, e.g. by an interest point operator. Then,the numbers of peaks in the histograms can be related to the type of junction accordingto the following table:Intensity Edge direction Classi�cation hypothesisunimodal any noise spikebimodal unimodal edgebimodal bimodal L-junctiontrimodal bimodal T-junctiontrimodal trimodal 3-junctionThe motivation for this scheme is that for example, in the neighbourhood of a pointwhere three edges join, there will generically be three dominant intensity peaks corre-sponding to the three surfaces. If that point is a 3-junction (an arrow-junction or a Y -junction) then the edge direction histogram will (generically) contain three main peaks,while for a T -junction the number of directional peaks will be two etc. Of course, theresult from this type of histogram analysis cannot be regarded as a �nal classi�cation(since the spatial information is lost in the histogram accumulation), but must be treatedas a hypothesis to be veri�ed in some way, e.g. by backprojection into the original data.Therefore, this algorithm is embedded in a classi�cation cycle. More information aboutthe procedure is given in [1].1.1 Context Information Required for the Focusing ProcedureTaking such local histogram properties as the basis for a classi�cation scheme leads totwo obvious questions: Where should the window be located and how large should it be2?We believe that the output from a representation called the scale-space primal sketch[11, 12] can provide valuable clues for both these tasks. Here we will use it for two mainpurposes. The �rst is to coarsely determine regions of interest constituting hypothesesabout the existence of objects or parts of objects in the scene and to select scale levelsfor further analysis. The second is for detecting candidate junction points in curvaturedata and to provide information about window sizes for the focusing procedure.2 This is a special case of the more general problem concerning how a visual system should beable to determine where to start the analysis and at what scales the analysis should be carriedout, see also [13].



In order to estimate the number of peaks in the histogram, some minimum numberof samples will be required. With a precise model for the imaging process as well as thenoise characteristics, one could conceive deriving bounds on the resolution, at least insome simple cases. Of course, direct setting of a single window size immediately validfor correct classi�cation seems to be a very di�cult or even an impossible task, since ifthe window is too large, then other structures than the actual corner region around thepoint of interest might be included in the window, and the histogram modalities wouldbe a�ected. Conversely, if it is too small then the histograms, in particular the directionalhistogram, could be severely biased and deviate far from the ideal appearance in case thephysical corner is slightly rounded | a scale phenomenon that seems to be commonlyoccurring in realistic scenes3.Therefore, what we make use of instead is the process of focusing. Focusing meansthat the resolution is increased locally in a continuous manner (even though we still haveto sample at discrete resolutions). The method is based on the assumption that stableresponses will occur for the models that best �t the data. This relates closely to thesystematic parameter variation principle described in [11] comprising three steps{ vary the parameters systematically{ detect locally stable states (intervals) in which the type of situation is qualitativelythe same{ select a representative as an abstraction of each stable interval2 Detecting Candidate JunctionsSeveral di�erent types of corner detectors have been proposed in the literature. A prob-lem, that, however, has not been very much treated, is that of at what scale(s) thejunctions should be detected. Corners are usually treated as pointwise properties and arethereby regarded as very �ne scale features.In this treatment we will take a somewhat unusual approach and detect corners ata coarse scale using blob detection on curvature data as described in [11, 13]. Realisticcorners from man-made environments are usually rounded. This means that small sizeoperators will have problems in detecting those from the original image.Another motivation to this approach is that we would like to detect the interest pointsat a coarser scale in order to simplify the detection and matching problems.2.1 Curvature of Level CurvesSince we are to detect corners at a coarse scale, it is desirable to have an interest pointoperator with a good behaviour in scale-space. A quantity with reasonable such propertiesis the rescaled level curve curvature given by~� = jLxxL2y + LyyL2x � 2LxyLxLy j (1)This expression is basically equal to the curvature of a level curve multiplied by thegradient magnitude4 as to give a stronger response where the gradient is high. Themotivation behind this approach is that corners basically can be characterized by twoproperties: (i) high curvature in the grey-level landscape and (ii) high intensity gradient.3 This e�ect does not occur for an ideal (sharp) corner, for which the inner scale is zero.4 Raised to the power of 3 (to avoid the division operation).



Di�erent versions of this operator have been used by several authors, see e.g. Kitchen,Rosenfeld [9], Koenderink, Richards [10], Noble [16], Deriche, Giraudon [3] and Florack,ter Haar et al [5, 7].Figure 1(c) shows an example of applying this operation to a toy block image at ascale given by a signi�cant blob from the scale-space primal sketch. We observe that theoperator gives strong response in the neighbourhood of corner points.2.2 Regions of Interest | Curvature BlobsThe curvature information is, however, still implicit in the data. Simple thresholding onmagnitude will in general not be su�cient for detecting candidate junctions. Therefore,in order to extract interest points from this output we perform blob detection on thecurvature information using the scale-space primal sketch. Figure 1(d) shows the resultFig. 1. Illustration of the result of applying the (rescaled) level curve curvature operator ata coarse scale. (a) Original grey-level image. (b) A signi�cant dark scale-space blob extractedfrom the scale-space primal sketch (marked with black). (c) The absolute value of the rescaledlevel curve curvature computed at a scale given by the previous scale-space blob (this curvaturedata is intended to be valid only in a region around the scale-space blob invoking the analysis).(d) Boundaries of the 50 most signi�cant curvature blobs (detected by applying the scale-spaceprimal sketch to the curvature data). (From Lindeberg [11, 13]).of applying this operation to the data in Figure 1(c). Note that a set of regions is extractedcorresponding to the major corners of the toy block. Do also note that the support regionsof the blobs serve as natural descriptors for a characteristic size of a region around thecandidate junction. This information is used for setting (coarse) upper and lower boundson the range of window sizes for the focusing procedure.A trade-o� with this approach is that the estimate of the location of the corner willin general be a�ected by the smoothing operation. Let us therefore point out that weare here mainly interested in detecting candidate junctions at the possible cost of poorlocalization. A coarse estimate of the position of the candidate corner can be obtainedfrom the (unique) local maximumassociated with the blob. Then, if improved localizationis needed, it can be obtained from a separate process using, for example, information fromthe focusing procedure combined with �ner scale curvature and edge information.The discrete implementationof the level curve curvature is based on the scale-space fordiscrete signals and the discrete N-jet representation developed in [11, 14]. The smoothingis implemented by convolution with the discrete analogue of the Gaussian kernel. Fromthis data low order di�erence operators are applied directly to the smoothed grey-leveldata implying that only nearest neighbour processing is necessary when computing thederivative approximations. Finally, the (rescaled) level curve curvature is computed as apolynomial expression in these derivative approximations.



3 Focusing and Veri�cationThe algorithm behind the focusing procedure has been described in [1] and will notbe considered further, except that we point out the major di�erence that classi�cationprocedure has been integrated with a head-eye system (see Figure 2 and Pahlavan, Ek-lundh [17]) allowing for algorithmic control of the image aquisition.
Fig. 2. The KTH Head used for acquiring the image data for the experiments. The head-eyesystem consists of two cameras mounted on a neck and has a total of 13 degrees of freedom. Itallows for computer-controlled positioning, zoom and focus of both the cameras independentlyof each other.The method we currently use for verifying the classi�cation hypothesis (generatedfrom the generic cases in the table in Section 1, given that a certain number of peaks,stable to variations in window size, have been found in the grey-level and directionalhistogram respectively) is by partitioning a window (chosen as representative for thefocusing procedure [1, 2]) around the interest point in two di�erent ways: (i) by back-projecting the peaks from the grey-level histogram into the original image (as displayedin the middle left column of Figure 5) and (ii) by using the directional informationfrom the most prominent peaks in the edge directional histograms for forming a simpleidealized model of the junction, which is then �tted to the data (see the right columnof Figure 5). From these two partitionings �rst and second order statistics of the imagedata are estimated. Then, a statistical hypothesis test is used for determining whetherthe data from the two partitionings are consistent (see [2] for further details).4 Experiments: Fixation and FoveationWe will now describe some experimental results of applying the suggested methodologyto a scene with a set of toy blocks. An overview of the setup is shown in Figure 3(a). Thetoy blocks are made out of wood with textured surfaces and rounded corners.Fig. 3. (a) Overview image of the scene under study. (b) Boundaries of the 20 most signi�cantdark blobs extracted by the scale-space primal sketch. (c) The 20 most signi�cant bright blobs.



Fig. 4. Zooming in to a region of interest obtained from a dark blob extracted by the scale-spaceprimal sketch. (a) A window around the region of interest, set from the location and the size ofthe blob. (b) The rescaled level curve curvature computed at the scale given by the scale-spaceblob (inverted). (c) The boundaries of the 20 most signi�cant curvature blobs obtained byextracting dark blobs from the previous curvature data.(a) (d)(e) (h)(i) (l)(m) (p)Fig. 5. Classi�cation results for di�erent junction candidates corresponding to the upper left,the central and the lower left corner of the toy block in Figure 4 as well as a point along theleft edge. The left column shows the maximum window size for the focusing procedure, themiddle left column displays back projected peaks from the grey-level histogram for the windowsize selected as representative for the focusing process, the middle right column presents linesegments computed from the directional histograms and the right column gives a schematicillustration of the classi�cation result, the abstraction, in which a simple (ideal) corner modelhas been adjusted to data. (The grey-level images have been stretched to increase the contrast).Figures 3(b)-(c) illustrate the result of extracting dark and bright blobs from theoverview image using the scale-space primal sketch. The boundaries of the 20 most signif-icant blobs have been displayed. This generates a set of regions of interest correspondingto objects in the scene, faces of objects and illumination phenomena.In Figure 4 we have zoomed in to one of the dark blobs from the scale-space primalsketch corresponding to the central dark toy block. Figure 4(a) displays a window aroundthat blob indicating the current region of interest. The size of this window has been setfrom the size of the blob. Figure 4(b) shows the rescaled level curve curvature computed atthe scale given by the blob and and Figure 4(c) the boundaries of the 20 most signi�cant



curvature blobs extracted from the curvature data.In Figure 5(a) we have zoomed in further to one of the curvature blobs (correspondingto the upper left corner of the dark toy block in Figure 4(c)) and initiated a classi�cationprocedure. Figures 5(b)-(d) illustrate a few output results from that procedure, whichclassi�ed the point as being a 3-junction. Figures 5(e)-(l) show similar examples for twoother junction candidates (the central and the lower left corners) from the same toyblock. The interest point in Figure 5(e) was classi�ed as a 3-junction, while the point inFigure 5(i) was classi�ed as an L-junction. Note the weak contrast between the two frontfaces of the central corner in the original image. Finally, Figures 5(m)-(p) in the bottomrow indicate the ability to suppress \false alarms" by showing the results of applying theclassi�cation procedure to a point along the left edge.5 Additional Cues: Accomodation Distance and VergenceThe ability to control gaze and focus does also facilitate further feature classi�cation, sincethe camera parameters, such as the focal distance and the zoom rate, can be controlledby the algorithm. This can for instance be applied to the task of investigating whether agrey-level T -junction in the image is due to a depth discontinuity or a surface marking.We will demonstrate how such a classi�cation task can be solved monocularly, usingfocus, and binocularly, using disparity or vergence angles.
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1.2Fig. 6. Illustration of the e�ect of varying the focal distance at two T -junctions corresponding toa depth discontinuity and a surface marking respectively. In the upper left image the camera wasfocused on the left part of the approximately horizontal edge while in the upper middle imagethe camera was focused on the lower part of the vertical edge. In both cases the accomodationdistance was determined from an auto-focusing procedure, developed by Horii [8], maximizinga simple measure on image sharpness. The graphs on the upper right display how this mea-sure varies as function of the focal distance. The lower row shows corresponding results for aT -junction due to a surface marking. We observe that in the �rst case the two curves attaintheir maxima at clearly distinct positions (indicating the presence of a depth discontinuity),while in the second case the two curves attain their maxima at approximately the same position(indicating that the T -junction is due to a surface marking).In Figure 6(a)-(b) we have zoomed in to a curvature blob associated with a scale-space blob corresponding to the bright toy block. We demonstrate the e�ect of varyingthe focal distance by showing how a simple measure on image sharpness (the sum of thesquares of the gradient magnitudes in a small window, see Horii [8]) varies with the focal



distance. Two curves are displayed in Figure 6(c); one with the window positioned atthe left part of the approximately horizontal edge and one with the window positionedat the lower part of the vertical edge. Clearly, the two curves attain their maxima fordi�erent accomodation distances. The distance between the peaks gives a measure of therelative depth between the two edges, which in turn can be related to absolute depthvalues by a calibration of the camera system. For completeness, we give correspondingresults for a T -junction due to surface markings, see Figure 6(d)-(e). In this case the twographs attain their maxima at approximately the same position, indicating that there isno depth discontinuity at this point. (Note that this depth discrimination e�ect is moredistinct at a small depth-of-focus, as obtained at high zoom rates).In Figure 7 we demonstrate how the vergence capabilities of the head-eye system canprovide similar clues for depth discrimination. As could be expected, the discriminationtask can be simpli�ed by letting the cameras verge towards the point of interest. Thevergence algorithm, described in Pahlavan et al [18], matches the central window of onecamera with an epipolar band of the other camera by minimizing the sum of the squaresof the di�erences between the grey-level data from two (central) windows.
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1Fig. 7. (a)-(b) Stereo pair for a T -junction corresponding to a depth discontinuity. (c) Graphshowing the matching error as function of the baseline coordinate for two di�erent epipolarplanes; one along the approximately horizontal line of the T -junction and one perpendicular tothe vertical line. (d)-(e) Stereo pair for a T -junction corresponding to a surface marking. (f)Similar graph showing the matching error for the stereo pair in (d)-(e). Note that in the �rstcase the curves attain their minima at di�erent positions indicating the presence of a depthdiscontinuity (the distance between these points is related to the disparity), while in the secondcase the curves attain their minima at approximately the same positions indicating that thereis no depth discontinuity at this point.Let us �nally emphasize that a necessary prerequisite for these classi�cation methodsis the ability of the visual system to foveate. The system must have a mechanism forfocusing the attention, including means of taking a closer look if needed, that is acquiringnew images.6 Summary and DiscussionThe main theme in this paper has been to demonstrate that feature detection and classi-�cation can be performed robustly and by simple algorithms in an active vision system.



Traditional methods based on prerecorded overview pictures may provide theoreticalfoundations for the limits of what can be detected, but applied to real imagery theywill generally give far too many responses to be useful for further processing. We arguethat it is more natural to include attention mechanisms for �nding regions of interestand follow up by a step taking \a closer look" similar to foveation. Moreover, by lookingat the world rather than at prerecorded images we avoid a loss of information, which israther arti�cial if the aim is to develop \seeing systems".The particular visual task we have considered to demonstrate these principles on isjunction detection and junction classi�cation. Concerning this speci�c problem some ofthe technical contributions are:{ Candidate junction points are detected at adaptively determined scales.{ Corners are detected based on blobs instead of points.{ The classi�cation procedure is integrated with a head-eye system allowing the algo-rithm to take a closer look at interesting structures.{ We have demonstrated how algorithmic control of camera parameters can provideadditional cues for deciding about the physical nature of junctions.In addition, the classi�cation procedure automatically veri�es the hypotheses it generates.References1. Brunnstr�om K., Eklundh J.-O., Lindeberg T.P. (1990) \Scale and Resolution in ActiveAnalysis of Local Image Structure", Image & Vision Comp., 8:4, 289-296.2. Brunnstr�om K., Eklundh J.-O., Lindeberg T.P. (1991) \Active Detection and Classi�cationof Junctions by Foveation with a Head-Eye System Guided by the Scale-Space PrimalSketch", Tech. Rep., ISRN KTH/NA/P{91/31{SE, Royal Inst. Tech., S-100 44 Stockholm.3. Deriche R., Giraudon G. (1990) \Accurate Corner Detection: An Analytical Study", 3rdICCV, Osaka, 66-70.4. Dreschler L., Nagel H.-H. (1982) \Volumetric Model and 3D-Trajectory of a Moving CarDerived from Monocular TV-Frame Sequences of a Street Scene", CVGIP, 20:3, 199-228.5. Florack L.M.J., ter Haar Romeny B.M., Koenderink J.J., Viergever M.A. (1991) \GeneralIntensity Transformations and Second Order Invariants", 7th SCIA, Aalborg, 338-345.6. F�orstner M.A., G�ulch (1987) \A Fast Operator for Detection and Precise Location of Dis-tinct Points, Corners and Centers of Circular Features", ISPRS IntercommissionWorkshop.7. ter Haar Romeny B.M., Florack L.M.J., Koenderink J.J., Viergever M.A. (1991) \InvariantThird Order Detection of Isophotes: T-junction Detection", 7th SCIA, Aalborg, 346-353.8. Horii A. (1992) \Focusing Mechanism in the KTH Head-Eye System", In preparation.9. Kitchen, L., Rosenfeld, R., (1982), \Gray-Level Corner Detection", PRL, 1:2, 95{102.10. Koenderink J.J., Richards W. (1988) \Two-Dimensional Curvature Operators", J. Opt.Soc. Am., 5:7, 1136-1141.11. Lindeberg T.P. (1991) Discrete Scale-Space Theory and the Scale-Space Primal Sketch,Ph.D. thesis, ISRN KTH/NA/P{91/8{SE, Royal Inst. Tech., S-100 44 Stockholm.12. Lindeberg T.P., Eklundh J.-O. (1991) \On the Computation of a Scale-Space PrimalSketch", J. Visual Comm. Image Repr., 2:1, 55-78.13. Lindeberg T.P. (1991) \Guiding Early Visual Processing with Qualitative Scale and RegionInformation", Submitted.14. Lindeberg T.P. (1992) \Discrete Derivative Approximations with Scale-Space Properties",In preparation.15. Moravec, H.P. (1977) \Obstacle Avoidance and Navigation in the Real World by a SeeingRobot Rover", Stanford AIM-340.16. Noble J.A. (1988) \Finding Corners", Image & Vision Computing, 6:2, 121-128.



17. Pahlavan K., Eklundh J.-O. (1992) \A Head-Eye System for Active, Purposive ComputerVision", To appear in CVGIP-IU.18. Pahlavan K., Eklundh J.-O., Uhlin T. (1992) \Integrating Primary Occular Processes", 2ndECCV, Santa Margherita Ligure.19. Witkin A.P. (1983) \Scale-Space Filtering", 8th IJCAI, Karlsruhe, 1019-1022.

This article was processed using the LaTEX macro package with ECCV92 style


