Classification of Carbide Distributions using Scale Selection
and Directional Distributions

Klaus Wiltschi!, Tony Lindeberg?, Axel Pinz'
nstitute for Computer Graphics and Vision, TU-Graz, A-8010, Austria
2Computational Vision and Active Perception Laboratory, KTH, S-100 44, Stockholm, Sweden

Abstract

We present an automatic method for the classifi-
cation of steel quality based on scale-space operations.
The carbide distribution of microscopic specimen im-
ages is assessed by classifying according to so-called
‘degree’ and ‘type’ of the specimen. ‘Degree’ is rep-
resented by features extracted with automatic scale
selection, and ‘type’ information is computed from
second-moment descriptors. In combination with a
morphological verification scheme, this pattern classi-
fier shares large similarities with current manual tech-
niques. Compared to previous work, the new classifi-
cation scheme has several advantages: The significant
scale of the carbide agglomeration is calculated explic-
itly, and the method is less sensitive to the variance of
spatial connectivity than a morphological approach.

1 Introduction

In the production of high speed steel, the rolling
affects the micro-structure of the steel, which in turn
influences the mechanical properties. Specifically, the
distribution of carbide is essential, since cracks prop-
agate within the carbide agglomerations [14]. Thus,
the classification of carbide distributions is an im-
portant task in quality control. Currently, specially
skilled metallographers classify the carbide distribu-
tions using a light microscope at a magnification of
1:100 by assigning them to a standard chart of 28
images, arranged in 4 rows and 7 columns as shown
in Fig. 1. Carbide distributions are distinguished ac-
cording to visually captured features, referred to as
the ‘degree’ and the ‘type’ of the carbide agglomera-
tions (i.e. the white dense areas of carbide particles).
In each row (degree), the size of the agglomerations
increases from left to right, whereas in each column
(type), the shape ranges from band-shaped to net-
shaped structures from top to bottom, caused by the
stretching of originally net-shaped structures during
the rolling process. The standard chart can be inter-
preted as categorizing the carbide distributions into
4 x 7 classes according to type and degree.

The subject of this article is to present a method
which performs this classification automatically based
on recently developed computer vision tools for fea-
ture detection with automatic scale selection [10, 9, 11]
combined with texture descriptors derived from sec-
ond moment descriptors [1, 10, 4, 12]. The image de-
scriptors obtained in this way are then verified by a
morphological scheme [13, 14].

2 Scale selection module

To handle the inherent multi-scale nature of im-
age data, the notion of scale-space theory has been
developed [15, 6, 8, 3, 10]. For any N-dimensional
image f:RY — R, its scale-space representation L :
RY x Ry — R is defined by

L(5t) =g(5t) * £() (1)

where g : RY x R, — R denotes the N-dimensional
Gaussian kernel:

1 —(e3+-+2%)

g(st) = We 2 (2)

and the variance t € RT of the Gaussian kernel is
referred to as the scale parameter. Based on this rep-
resentation, scale space derivatives are defined by

Lya (1) = Opon.gonw L(551) = (Opo1.pan 9(5)) % ()
3)

with corresponding normalized derivatives given by
(95? = tn/2 az?- (4)

Many feature detectors can be formulated as (linear
and non-linear) combinations of partial derivatives.
Specifically, scale levels for feature detection can be
selected by detecting local extrema over scales of such
differential geometric descriptors [9, 10, 11].
2.1 VFeature detection and ranking

Since the agglomerations mainly form blob- or
ridge-like structures, a ridge detector, which builds
upon the earlier methods for ridge detection described
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Figure 1: The microscopic standard chart for characterizing carbide distributions of high speed steels (white dots
represent carbide particles). The row index (1..4) denotes the type of the distribution, which corresponds to the shape
of the agglomerations. The column index (1..7) describes the degree, basically reflecting the size of the agglomerations.

in [5, 2, 7] is defined as follows [11]: Introduce a local
(p, q)-coordinate system at each image point, defined
by the mixed second-order derivative being zero (i.e.,
L,y = 0). Then, we can detect (possibly elongated,
bright) blob features from points which are simulta-
neously maximal with respect to space and scales in

~Lppinorm = —t Lpp (%) (a) 30 most significant resp. (b) overlap suppression (10)
where Ly, is the principal curvature having the largest Figure 2: The most significant ridge features detected
absolute value. To rank these features on significance, from equations (5) and (6). Each response is illustrated
we weigh the normalized response Lyp,norm at each by a circle with the radius proportional to the selected
scale-space maximum by /¢, which gives the signifi- scale.
cance measure

S(A) = =VE Lypmorm (2,1). (6) 2.2 Feature verification
An intuitive motivation for this weighting is that the To suppress spurious responses from the feature de-
width of the ridge feature can be expected to be pro- tection module (‘false alarms’), we use the following
portional to v/Z. Figure 2(a) shows the result of apply- verification mechanism, which constitutes an exten-
ing this operation to image 33 of the reference chart. sion of a previously developed morphological module
Certain image structures give rise to multiple re- for perceptual grouping of substructures [13, 14]:
sponses. To suppress overlaps, a scale-space maximum 1. An elliptical support region is associated with
A is rejected if there exists another maximum B and each detected scale-space maximum based on the two

principal curvatures Lpp norm/Lqg.norm 2 well as the

center(A) € support region(B) A ) : ) ‘ A
orientation of the ridge. Starting from an idealized

center(B) € support region(4) A () two-dimensional elliptical blob model defined by
ta/tp € [L,a]; (@>1) A S(A) < S(B)
with a = 4 corresponding to a ratio of 2 between the 1 =2 1 -2

blob radii (see Fig. 2(b)). g(z,y;t) = \/me n N ) (8)



(c) Verified structures.

Figure 3: Verification of the most significant entities
using a characteristic structure.

the ratio ¢2/t; between the major and the minor axis
of the ellipse can be estimated as

t2 1 ( Lpp norm )
—=—(3—"—-1); t) =1t 9
tl 2 qumorm ' ( )

where an upper bound of ¢»/t; < 2 is used to prevent
overestimation [11]. Within each such support region
the following verification scheme is applied:

2. A binary mask of the characteristic structure in
the image is generated by adaptive thresholding fol-
lowed by morphological opening and closing yielding
a binary image showing connected components for the
carbide agglomerations (see Figure 3(b) and [13]).

3. The largest non-overlapping circular opposite re-
gions in the support region are computed by detecting
local extrema in an Euclidean distance map.

4. The areas of these opposite regions are used for
suppressing responses with interfering substructures.

5. The k most significant extrema are selected, and
the radius Rgetect Of the largest extremum is used as
a size description feature for the classification of the
carbide distribution according to the degree, i.e.

tdetect = max(tl, P ,tk)

Rdetect =V 2tdetect 10g 27
(10)

where k£ = 10. This size descriptor is illustrated in
Figure 4, where the largest detected structures are
marked (the length of the minor axes of the ellipse
is equal to Rgetect) for 2 neighboring reference images.

T3

(a) Reference image 34 (b) Reference image 35

Figure 4: The largest structures obtained by applying the
composed detection/verification procedure to two neigh-
boring columns in the reference chart.

3 Shape estimation
3.1 The multi-scale windowed
moment matrix
To represent directional distributions, the second
moment matrix is a useful texture descriptor [1, 4, 12].
Given a symmetric normalized window function w, the
windowed second moment matriz can be defined by

pr@) = [ (VEG)(VE) wla —x)ds, (11

second

where L : R?> — R denotes the image brightness and
VL = (L., L,)" its gradient. Denoting the windowing
operation by E,, Equation (11) can be written as

P 2\ _op L? LzLy
M1 22 "\ L.L, L

E(VL)(VL)T) (12)

po(e) =

and from the components of py,, the following descrip-
tors can be defined

P=E(I2+L3), C=E,L3-L?), S=2E,LL,).

(13)
P is a measure for the strength of the operator
response, C' and S contain directional information,

which can be summarized in two anisotropy measures

Q=VC*+ 5, Q=Q/P. (14)

The normalized anisotropy Q € [0;1] is zero, if and
only if Ey(L3) = E,(L}) and Ey(L,Ly) =0and Q = 1
if and only if E,(L.Ly) = E4(L3)E,(L}). A rotation-

ally symmetric gray-level pattern has ¢ = 0 and a
translationally symmetric pattern has Q = 1.

When computing this descriptor in practice, the
gradient vectors are defined at local scale t; and we use
a Gaussian window function g with integration scale
t; [10, chap. 14]. Therefore, the multi-scale windowed

second moment matriz pr is defined as

palastit) = [ (VLE)TLE9) 0(a - ).
(15)



3.2 Scale selection to compute anisotropy

The directional distribution (type) of the car-
bide distribution can be modeled by evaluating the
w1 (q; t;, t;) based on the scale information of the scale
selection scheme described in section 2. Therefore, the
normalized anisotropy Q is calculated for

ty = Y * tetects (16)

where ; = 0.5, which is chosen to maximize the classi-
fication performance of the resulting shape description
feature Q) according to the type (see section 4).

Assuming a globally valid significant scale for each
image, the integration scale is set to the size of the
image. Global values of P,C and S are computed by
summing up the corresponding gradient expressions
over the whole image and determining global values of
Q and Q afterwards. This yields a shape description
feature for classifying carbide distributions according
to their type (see section 4):

Qdetect = Q(HL (.T, Y; tl; image Size)) (17)

4 Classification results

To evaluate the size and shape descriptors obtained
from the composed feature detection scheme, we used
a reference data base consisting of 429 images, which
was then split up into a training set of 290 carbide
distributions and a disjunct test set with 139 images.
The performance of the features extracted from the
data was evaluated by a minimum distance classifier.

To assess the performance of Rgetect governing the
determination of the degree (size) of the carbide distri-
bution, all images of the same degree were combined
into one class, yielding 7 degree classes. In a similar
manner, we produced 4 type classes to evaluate the
performance of Qdetect determining the type (shape)
of the carbide distribution.

The classification rates of the resulting minimum
distance classifiers for degree and type are shown in
table 1. We give the percentages of images classified to
the correct or to a directly neighboring class, allowing
a one step class deviation, which is also quite common
in the visual classification by the metallographers.

correct [%] | one class deviation [%)]
Ryetect (degree) 50 93
Qdetect (type) 45 80

Table 1: Minimum distance classification performance.

Figure 5 shows mean and standard deviation of the
features for the whole sample set of 429 images. There
is a large variance in the values of Qdetect for type 1
because no anisotropic (band-like) structures occur in

the very fine-scale carbide structures (cf. fig. 1), result-
ing in a low anisotropy value, similar to net-shaped
structures. This drawback of low discrimination for
the lowest degrees can be eliminated by including se-
lected features from previous work [13].
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Figure 5: Mean and StdDev for degree and type.
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