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Abstract. This article presents a fully automatic method for segment-
ing the brain from other tissue in a 3-D MR image of the human head.
The method is a an extension and combination of previous techniques,
and consists of the following processing steps: (i) After an initial intensity
normalization, an affine alignment is performed to a standard anatom-
ical space, where the unsegmented image can be compared to a seg-
mented standard brain. (ii) Probabilistic diffusion, guided by probability
measures between white matter, grey matter and cerebrospinal fluid,
is performed in order to suppress the influence of extra-cerebral tissue.
(iii) A multi-scale watershed segmentation step creates a slightly over-
segmented image, where the brain contour constitutes a subset of the
watershed boundaries. (iv) A segmentation of the over-segmented brain
is then selected by using spatial information from the pre-segmented
standard brain in combination with additional stages of probabilistic
diffusion, morphological operations and thresholding.

The composed algorithm has been evaluated on 50 T1-weighted MR
volumes, by visual inspection and by computing quantitative measures
of (i) the similarity between the segmented brain and a manual segmen-
tation of the same brain, and (ii) the ratio of the volumetric difference
between automatically and manually segmented brains relative to the
volume of the manually segmented brain. The mean value of the similar-
ity index was 0.9961 with standard deviation 0.0034 (worst value 0.9813,
best 0.9998). The mean percentage volume error was 0.77 % with stan-
dard deviation 0.69 % (maximum percentage error 3.81 %, minimum
percentage error 0.05 %).

1 Introduction

Segmenting the brain from other tissue in a 3-D MR image of the human head
is an important pre-processing stage for many tasks, for example:
� Shortened version in L. Griffin and M. Lillholm (Eds), Proc. Scale-Space’03 , Isle of

Skye, Scotland, Springer Lecture Notes in Computer Science, volume 2695, 641–656.
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– when aligning individual brains to a standard anatomical format,
– when delimiting a volume in the brain where statistical measurements of

brain activation are to be performed, and
– when computing morphological measures of the shape of the brain.

Until recently, high-quality segmentation was carried out semi-automatically at
our laboratory, which implied a large amount of manual intervention. The pur-
pose of this article is to develop a procedure for carrying out this task in a
fully automatic manner. This automation step is also important for the devel-
opment of brain databases containing functional brain activation images as well
as procedures for analyzing such data in a fully automated manner.

Despite the fact that the MR imaging technique provides images with high
spatial resolution and good soft-tissue contrast, computing a high-quality and
fully automatic segmentation of the brain from other tissue is a non-trivial prob-
lem. Some reasons why the problem is hard, are imperfections in the data due to
electrical and thermal noise, errors in the scanner due to inhomogeneities in the
magnetic field, partial volume effects and biological variations between subjects.

To address this problem, we propose a multi-stage solution that combines
and extends earlier image processing methods, essentially based on:

– an approximate normalization to standard anatomical format, so that anatom-
ical information from a pre-segmented standard brain can be exploited,
– an anisotropic diffusion algorithm, guided by approximate probabilities for

different types of tissue, in order to improve the performance of subsequent
multi-scale watershed segmentation and morphological processing.

The integrated algorithm has been evaluated on 50 T1-weighted MR images
of the human head, which were also segmented manually (see section 4). In
addition, the algorithm has been applied to at least 200 more brain images, with
highly successful results.

2 Approaches to brain segmentation

To address the brain segmentation problem, several different types of approaches
have been considered in the literature. Since the brain consists of a known set
of tissue types (mainly white matter, grey matter, bone and cerebrospinal fluid)
a natural first approach consists of capturing the distributions of these tissues,
and aiming at a classification from the intensity values , see for example (Atkins
& Mackiewich 1997), who fitted a mixture of Rayleigh distributions to the his-
togram of the original MR image. The main strength of this method is that it
allows for fast and easy implementation. The main weakness is that the distri-
butions of the different tissue types in general overlap, which means that it will
not be possible to find thresholds that separate brain and non-brain tissue.

Another approach is to align a pre-segmented template brain to the brain of
any individual subject, and thereby propagate the segmentation to this subject.
Such an approach has been used by (Collins et al. 1994), (Dawant et al. 1999)
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and (Holden et al. 2001) for identifying anatomical substructures, and provides
an efficient way to incorporate anatomical information into segmentation algo-
rithms. These works, however, depend on high quality registration between the
template brain and the unsegmented brain, which may be hard to obtain.

To detect tissue boundaries from local information, edge detection is a natural
approach to consider. However, since the contrast may vary substantially in an
MR image of a brain, it will in general not be possible to find thresholds and scale
levels that lead to connected edges that separate different tissues into connected
regions. A more refined approach has been considered by (Zeng et al. 1999),
who developed an edge detector aimed at detecting only edges that correspond to
boundaries between pre-defined tissue types, e.g. between cerebrospinal fluid and
white matter. The method is based on approximating the distribution of tissue
types A and B by Gaussian distributions, and then computing the probability
pA(x) that a voxel x belongs to tissue A, and the probability pB(N(x)) that a
neighbour N(x) of x belongs to tissue type B. The product pA(x) pB(N(x)) will
only assume high values when both the factors are high, and in this way the
probability of a border between any two tissue types can be estimated.

Another limitation of edge detection preceded by Gaussian smoothing is that
edges with low contrast may be lost during the smoothing operation and that
highly curved edges may be rounded. To address these issues, several anisotropic
diffusion schemes have been developed, where the Gaussian smoothing opera-
tor is replaced by an edge preserving anisotropic diffusion step, see e.g. (ter
Haar Romeny 1994, Weickert 1998) for overviews and (Gerig et al. 1992) for an
application to brain segmentation.

More specific multi-scale methods have also been developed. By extending
the ideas of multi-scale extrema linking (Koenderink 1984, Lifshitz & Pizer 1990,
Lindeberg 1994), (Olsen 1997) developed a multi-scale watershed approach based
on the definition of sinks in the gradient magnitude map at all scales in a Gaus-
sian scale-space representation of the original image. Provided that an appro-
priate scale level can be selected, this approach can be expected to give rise to
an over-segmentation of the anatomical MR image, where the boundaries of the
brain constitute a subset of the boundaries of the watersheds computed from the
gradient magnitude image. By linking the watershed segments between different
scales, a coarse scale segmentation can be propagated to finer scales by following
links over scales. In continued work by (Dam & Nielsen 2000), non-linear diffu-
sion was added as a complement. As far as we know, however, these methods
have not been fully automated, and require a certain degree of operator assis-
tance. An interesting alternative in the area of automated watershed approaches
has been presented by (Hahn & Peitgen 2000), based on a modified watershed
transform.

Linking of image structures over scales has been considered also (Vincken
et al. 1997) by establishing probabilistic links between image structures over
scales , and then propagating a coarse-scale segmentation to finer scales in a
probabilistic manner. A combination of probabilistic relations and anisotropic
diffusion referred to as probabilistic diffusion has been presented by (Arridge
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& Simmons 1997), based on the idea of using probabilities of different classes
to control the conductance in a diffusion equation, as opposed to intensity dif-
ferences. In close relation to these notions, three-dimensional Markov random
field models have been developed by e.g. (Rajapakse et al. 1997) and (Held
et al. 1997). Moreover, morphological processing is used in several works (Atkins
& Mackiewich 1997, Lemieux et al. 1999). For further overviews of brain seg-
mentation, see e.g. (Atkins & Mackiewich 1997) and (Hahn & Peitgen 2000).

3 Proposed method

Based on the abovementioned literature survey, we propose to address the prob-
lem of segmenting MR images of human brains using a combination of the fol-
lowing types of methods:

– Empirically, we have found that MR images often contain spurious high
values. To reduce the possibly negative influence of these, an intensity nor-
malization will be performed as a first step in the proposed algorithm.
– A spatial normalization is a natural pre-processing step, since using a pre-

segmented standard brain, prior knowledge about the shape of the brain can
be effectively represented by transforming the given image into a standard
anatomical space.
– We will make use of probabilistic anisotropic diffusion guided by edges be-

tween different types of tissue as an important pre-processing stage to multi-
scale watershed segmentation. Probabilistic anisotropic diffusion may also
be used for reducing the negative influence of inhomogeneities in the unseg-
mented image.
– Multi-scale watershed segmentation transforms the image into a collection of

volumetric elements. Identifying the volumetric elements that constitute the
brain can be accomplished by using prior anatomical knowledge obtained
via the spatial normalization step.
– Post-processing using a combination of probabilistic anisotropic diffusion,

morphological operations and thresholding for computing the final result.

In the following we will describe each method and show that a highly useful
method for brain segmentation can be obtained by combining these modules in
the proposed novel way.

3.1 Intensity normalization

To avoid the possibly negative influence of spurious high values in the original
MR image, an intensity normalization was performed prior to the affine nor-
malization. This intensity normalization was carried out by estimating a central
region of the brain, by computing the weighted center of gravity in the MR im-
age, and computing mean and standard deviation of the intensity values in the
central region. A high threshold was chosen two standard deviations above the
mean value in the central region, and each voxel having an intensity value above
the high threshold was set to this value.
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3.2 Spatial normalization by affine warping

To transform the brain images to a standard anatomical space, we apply an
affine transformation in 3-D which in practice is computed using the AIR pack-
age (Woods et al. 1998) with a 12 parameter model and a 6 mm Gaussian FWHM
(FWHM = 2σ

√
2 ln 2) pre-filtering of both the target and the input image. Fig-

ure 1 shows a summary of an evaluation of this processing stage, by computing
the intersection of 50 manually segmented brains that were transformed to a
standard anatomical space in this way. As can be seen, this processing stage
effectively reduces the main variations in brain anatomy between different sub-
jects. Certain individual variations, however, remain, which leads to the need for
more refined processing stages that will be described next.

Fig. 1: The contour of the intersection of 50 stripped brains, linearly transformed to
the standard brain, compared to the binary standard brain mask. (a) a sagittal slice,
(b) a coronal slice (b), (c)–(d) two horizontal views.

3.3 Capturing the intensity distributions of different tissues

Due to the alignment of the input image to a standard anatomical brain, we can
use a manual pre-segmentation of the standard brain into different tissue types
(white matter, grey matter, cerebrospinal fluid and bone) as an initial estimate
of the segmentation that is to be computed. In particular, since the volume
of the transformed brain ideally will be equal to the volume of the standard
brain, we can initially assume that the volume of white matter, grey matter
and cerebrospinal fluid is equal in these two brains. Thus, threshold values for
each tissue type can be easily computed from the idea of sorting the voxels
in the transformed brain image, and assuming that the intensities are ordered
LCSF < LGM < LWM < LBONE (for simplicity we denote both bone, eye
muscles and vascular tissue by “bone”). If the volume of cerebrospinal fluid is
VCSF , LCSF can be determined from the lowest VCSF voxels, etc.

Due to the fact that some background voxels may be (and often are) included
in the support region of the pre-segmented brain mask, the lower threshold LCSF

can sometimes be close to the intensity of the background. This is however not a
problem since we want to treat background and CSF voxels the same way when



6

Fig. 2: (a) An MR image of a brain after intensity normalization and scaled to val-
ues between 0.0 and 100.0. (b) The computed intensity intervals are marked in the
histogram: CSF [0.0-36.2], GM [36.2-69.5], WM [69.5-89.6] and BONE [89.6-100.0].

segmenting the brain from surrounding tissue. Moreover, the threshold between
white matter and bone, can sometimes be in the bone intensity region, due to
the fact that some bone voxels are likely to be included in the support region
of the pre-segmented standard brain. Thus, the following modification is used in
practice: Every voxel outside the standard brain mask in the transformed image
with an intensity above the mean value of the intensity for white matter is taken
to be a bone voxel. The low threshold value for the bone voxels is then computed
as the average of the mean value for white matter and the mean value for the
bone voxels outside the standard brain mask.

Figure 2 shows a histogram of an MR image with associated intensity inter-
vals for CSF , GM , WM and BONE determined in this way.

3.4 Multi-scale watershed segmentation

For segmenting an MR image using edge information, it is natural to compute
gradient magnitude maps and to associate a watershed with each local minimum.
If the watersheds are computed at a too fine scale, however, there will be a large
over-segmentation, while if we choose a too coarse scale the boundaries between
the watershed regions will not constitute a superset of the boundaries between
the different tissue types. Hence, selecting a proper scale level for computing the
gradient magnitude is of crucial importance. The selection of reasonable subsets
may be simplified by considering coarse-to-fine propagations of watershed sup-
port regions, using criteria based on overlap of support regions, intensity levels
and inclusion of local minima. Figure 3 shows a few examples of watersheds,
computed according to the method in (Vincent & Soille 1991), propagated in
this manner. In general, however, it may still be non-trivial to automatically
select which watershed regions should be included in the final segmentation. For
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this reason, (Olsen 1997) and (Dam & Nielsen 2000) considered semi-automatic
watershed segmentation method complemented by operator assistance to obtain
reliable segmentations.

During our experiments with multi-scale watershed segmentation some char-
acteristics of the method became apparent:

– Sharp edges in the input image are likely to be present even at coarser scales.
– Thin structures close to the brain surface will be lost at coarser scales. This

has the effect that the watersheds sometimes coincide with the brain surface
and sometimes with structures just outside the brain.
– Large volumes with slowly varying intensities give rise to large catchment

basins.

These observations suggested that a pre-processing of the MR image that trans-
formed the image into an image with slowly varying intensity inside the brain
and sharp edges between brain and non-brain tissue, with the fine structures
close to the brain surface suppressed would be beneficial to the performance of
the multi-scale watershed method.

Fig. 3: (a)-(h) Watersheds computed from the gradient magnitude of a brain image
smoothed with Gaussian filters of widths: (a) 7 mm, (b) 11 mm, (c) 15 mm, (d) 19 mm
propagated down to the 1 mm scale using criteria based on overlap

3.5 Probabilistic diffusion using prior knowledge

Edge preserving smoothing is a common pre-processing step in applications for
brain segmentation. A common approach in this context is to make use of local
gradient information, to construct either anisotropic diffusion schemes based on
either a scalar conductivity c(x, y, z, t)

∂tL =
1
2
∇T (c(x, y, z, t)∇L) (1)
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or a conductivity matrix C(x, y, z, t) that allows for different conductivities in
different directions

∂tL =
1
2
∇T (C(x, y, z, t)∇L) (2)

In computer vision applications, the motivation for setting the conductivities
from local gradient information (Perona & Malik 1990, ter Haar Romeny 1994,
Weickert 1998) originates from the fact that in intensity images the absolute
intensity information rarely has meaningful semantic interpretation. In our case,
however, the situation is different, since we can associate probability distribu-
tions of the different tissue types to the image intensities. To formulate this
notion, let us discretize the evolution equations (1) and (2). For both of these
types of equations, the result of a spatial semi-discretization only, can be ex-
pressed in the form (with slightly different interpretation of w(u,v,w)(x, y, z))

∂tL(x, y, z) =
∑

(u,v,w)∈N(x,y,z)

w(u,v,w)(x, y, z) (L(u, v, w) − L(x, y, z)) (3)

where (u, v, w) represents any neighbour N(x, y, z) of (x, y, z) on the grid that
is used, and the weights w(u,v,w)(x, y, z) can be interpreted as local conduc-
tivities between any neighbouring points (u, v, w) and (x, y, z). If a boundary
preserving operation is desired, the weights should be high at connections where
it is regarded as likely that (u, v, w) and (x, y, z) belong to the same type of
tissue, while the weight should be low at connections where is is regarded as
likely that (u, v, w) and (x, y, z) belong to different types of tissue. In this
way, we can aim at a natural unification between the ideas of probabilistic
edge detection (Zeng et al. 1999), tensor-based anisotropic diffusion (Nitzberg &
Shiota 1992, Lindeberg 1994, Weickert 1998, Almansa & Lindeberg 2000) and a
previously proposed notion of probabilistic diffusion (Arridge & Simmons 1997).

Determination of weights in probabilistic anisotropic diffusion A prob-
lem that remains concerns how to choose the weights w(u,v,w)(x, y, z). One natu-
ral approach could be to fit parameterized models to the distributions of the dif-
ferent tissue types as described in section 3.3, and using these distributions to ex-
press an iterative scheme within a Bayesian setting. Such an approach would have
close similarities to a Markov random field model (Rajapakse et al. 1997, Held
et al. 1997). When initiating this work, however, we started by experimenting
with empirically determined weights, which turned out to give highly useful
results, based on the following ideas:

For the purpose of segmenting the outer boundary of the brain, the bound-
ary between grey matter and cerebrospinal fluid is of major interest. Hence, the
intensity ranges corresponding to these types of tissues constitute a main source
of information (see also figure 2). With reference to the method described in sec-
tion 3.3 for classifying voxels into different types of tissue, this method classifies
background and cerebrospinal fluid as non-brain tissue (not white matter and
not grey matter) with high accuracy. The voxels classified as CSF can therefore
be regarded as certain non-brain voxels. Thus, an edge detector for the outer
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boundary of the brain should give a maximum response when a CSF voxel has
a certain GM voxel (or a voxel with a higher value) as a neighbour. Sometimes,
however, the intensity interval for GM includes some cerebrospinal fluid. The
mean value GMmean of the set of GM voxels is, however, always well inside the
true intensity interval for grey matter. Therefore, the probability for an edge
between CSF and GM should be low for a voxel with intensity close to the
lower threshold GMlow of the GM intensity interval, and increase as the voxel
intensity approaches the mean value GMmean of grey matter. In practice, we
have chosen a linear function to approximate this transition of edge probabil-
ities. Thus, the probability pedge(L(x, y, z)) of an edge between cerebrospinal
fluid CSF and grey matter GM at a voxel (x, y, z) is approximated by

pedge =




1 if L(x, y, z) ∈ CSF and ∃L(N(x, y, z)) ≥ GMmean
GMmean−L(x,y,z)
GMmean−GMlow

if GMlow ≤ L(x, y, z) ≤ GMmean

0 otherwise
(4)

Then, in turn the conductivity weights ω(u,v,w),(x,y,z) as function of the edge
probabilities pedge(u, v, w) and pedge(x, y, z) of adjacent image points (u, v, w)
and (x, y, z) are determined according to

ω(u,v,w),(x,y,z) = 1− | pedge(u, v, w) − pedge(x, y, z) | 1
α (5)

which gives high conduction only between voxels with similar edge probability.
The motivation for 1/α in the expression above is that we want to control

the influence of edges of intermediate magnitudes. Empirically, we have found
that α = 4 to give a probabilistic diffusion scheme with desirable properties.

3.6 Combining probabilistic diffusion with watershed segmentation

Let us recapitulate from section 3.4 that an ideal input for the multi-scale water-
shed algorithm would be a brain image with slowly varying intensities inside the
brain, sharp edges between brain and non-brain tissue and structures close to the
brain surface suppressed. We propose to use probabilistic diffusion according to
section 3.5 to achieve these properties. Applied on the unsegmented MR image
(Figure 4), probabilistic diffusion guided by the probabilities of the brain edge
produces an image with slowly varying intensities inside the brain and sharp
edges between brain and non-brain tissue. However, the thin structures just out-
side the brain surface are still present, making a correct segmentation difficult
to obtain. A way to suppress these structures is to not use the unsegmented MR
image as initial condition for the probabilistic diffusion, but something that is
well inside the brain, typically the white matter. If only the white matter voxels
are used as initial condition and all other voxels are set to zero, the intensity
of the white matter will flow towards the brain boundaries as new states of the
diffusion equation (heat equation) are computed. The high edge probabilities
at the brain contour will hinder voxels outside the brain to be reached by the
white matter intensity. The voxels outside the brain will therefore in general
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have lower values than voxels inside the brain, where the white matter intensity
is distributed.

Using white matter as initial condition has, however, its problems: (i) Local
intensity variations in the MR image may make it difficult to segment the white
matter (ii) The presence of white matter is very small in some parts of the
brain, e.g. the temporal lobes and the cerebellum which has the effect that it
takes many time steps for the intensity to reach the lower parts of the temporal
lobes and cerebellum. A side effect of many iterations is that intensity will begin
to leak out from other parts of the brain where the amount of white matter is
large and the estimated edge probabilities at the brain contour is less than one.
Thus, a better initial condition than just the white matter is desirable.

Fig. 4: Original MR image (a) diffused (50 iterations) with edge probabilities (c) pro-
duces (b). If instead the white matter (d) is used as initial condition the fine structures
outside the brain are suppressed (e).

In short, such an initial condition can be computed by using probabilistic
diffusion in an iterative manner. First, white matter is used as an initial condition
to the diffusion equation iterated 50 time steps. In the resulting image, the mean
value is computed from all the voxel sites occupied by GM voxels in the original
MR image (transformed to standard space). All voxels above this mean value in
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the diffused white matter image are then saved as a binary mask that will be a
slightly undersized approximation of the brain. This mask can in turn be used as
initial condition to the probabilistic diffusion under the restriction that the heat
transportation only is allowed from “hotter” to “colder” voxels. After 50 time
steps the voxels with an intensity larger than 10 percent of the intensity of the
voxels in the input mask will be an excellent initial condition to the probabilistic
diffusion. (This procedure is derived in an empirical way and is described in full
detail in (Undeman 2001). See also (Atkins & Mackiewich 1997) for another way
of segmenting white matter.)

After 50 time steps the initial condition computed as described above will
produce an image with slowly varying intensity inside the brain and sharp edges
between brain and non-brain tissue, with the fine structures close to the brain
surface suppressed, i.e ideal input for the multi-scale watershed segmentation.

The diffused image is then filtered with Gaussian FWHM-filters of sizes rang-
ing from 1 mm to 19 mm with a 2 mm increment between each scale. At each
scale, catchment basins are computed from the gradient magnitude image of the
filtered image. The 19 mm scale catchment basins are then propagated down
to the 1 mm scale using a linking scheme based on maximum overlap of sup-
port regions. The selection of catchment basins that constitutes the brain is then
done by multiplying the percentage overlap of each basin with the pre-segmented
standard brain and the percentage of the voxels in the basin that is classified as
GM or WM. If the product is more than 0.25 ( that is 0.5 * 0.5 ), the catchment
basin is regarded as a part of the brain.

When inspecting the result from the multi-scale watershed segmentation it
turns out that a good estimate of the true brain mask is obtained. The algo-
rithm works particularly well where the cerebrospinal fluid is clearly present just
outside the brain contour (almost everywhere). In some parts, however, where
the partial volume effect causes the border between CSF and GM to be diffuse,
the computed brain mask is sometimes a bit oversized due to leakage (caused by
low edge probabilities) in the probabilistic diffusion step. This problem is most
common close to the sagittal sinus. To reduce these minor errors the following
post-processing algorithms were implemented.

3.7 Post-processing

Morphological operations in combination with probabilistic diffusion
and thresholding When looking at the results from the multi-scale watershed
segmentation we observed that where the algorithm has included thin structures
just outside the brain, there is often a weak edge coinciding with the correct brain
contour very close to the incorrect edge suggested by the watershed segmenta-
tion (Fig 5.c). If the contour computed by the watershed segmentation (Fig 5.b)
is used as input to the probabilistic diffusion guided by the edge image, with the
restriction that no heat transfer is allowed outside the mask computed by the
watershed segmentation (Fig 5.a), the transportation of heat away from the re-
gions where the watershed segmentation has made mistakes will be lower than in
the correct regions due to the presence of the correct edge (although weak). This
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Fig. 5: Sometimes the watershed segmentation leaves non-brain tissue (a) in the mask.
By using the outline (b) of the mask computed by the watershed segmentation as
input to probabilistic diffusion guided by (c), an image where the misclassified voxels
have high intensity (d) can be generated. The image in (d) is thresholded, leaving the
voxels shown in (e), which are used for removing some misclassified voxels from (a),
producing (f)

will result in an image where the misclassified thin structures close to the brain
surface will have higher intensity than the regions where the watershed segmen-
tation has made no error (Fig 5.d). These incorrect regions can be thresholded
away. In the first post-processing step of the suggested algorithm, all voxels on
the border of the brain mask computed by the watershed segmentation are set
to one. These voxels are used as input to the probabilistic diffusion equation,
applied 60 steps. Then, a threshold of 0.33 removes the incorrect voxels (Fig 5.e)
from the brain mask.

Morphological operations in combination with region growing A T1-
weighted brain image in general has lower intensities at the brain contour than
inside the brain. This observation can be used for reducing the amount of mis-
classified voxels using the boundary of the computed brain mask in combination
with a simple region growing technique. All voxels on the border of the brain
mask obtained from the watershed segmentation are used as a seed to a region
growing step. The seed is allowed to grow in every direction where there is a
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neighbouring voxel with lower intensity. When the growing is finished all voxels
included in the growing are removed from the mask obtained from the watershed
segmentation.

4 Experimental results

To evaluate the proposed method, we will in this section present the results of
applying it to 50 T1-weighted MR images of the human head, acquired from a
GE Signa 1.5 T scanner. An illustration of one volume in this data set is shown in
figure 6, where the difference between manual and automatic segmentation can
be seen. For display purposes, a set of representative slices have been selected.

4.1 Qualitative evaluation

Criteria for a successful segmentation are that (i) no brain tissue should be
removed and that (ii) the amount of non-brain tissue left should be so small that
further analysis will not be influenced in a negative manner by remaining non-
brain tissue. To give a preview of the results, the method performs well in about
99 % of the volume. In some brains, however, the method has problems. These
problems usually occur in regions close to the pituary gland, basilar artery, the
sagittal sinus and the internal carotid artery. The most common mistake made
by the proposed algorithm is to include small parts of the sagittal sinus.

4.2 Quantitative performance measures

To measure the quality of the computed segmentation in a quantitative way, an
approach similar to the procedure in (Atkins & Mackiewich 1997) was applied:

– A set of manually segmented brains was generated by correcting any errors
in the automatic segmentations.
– A similarity index was computed between the manually corrected segmen-

tations and the corresponding automatically segmented brains.
– For each brain, the difference between the volume of the automatically seg-

mented brain and the manually corrected segmentation was computed.

The following quantitative performance measures were used:

– Similarity index: Consider a binary segmentation as a set A containing the
voxels that are considered to belong to the segmentation. The similarity
index of two segmentations A1 and A2 is given by

S = 2 ∗ | A1 ∩ A2 |
| A1 | + | A2 | (6)

where A1 ∩ A2 denotes the intersection of two sets A1 and A2, and | A |
denotes the volume of any set A. The algorithm described in (Atkins &
Mackiewich 1997), which is claimed to compare very favorably with other
methods, gives similarity indices that in general are above 0.95 and at 0.99
at its best.
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Fig. 6: Illustration of an average result: (a)-(c) The unsegmented brain. (d)-(f) The
manually segmented brain. (g)-(i) The automatically segmented brain

– Percentage volume change error: This entity measures the relative size of
the difference between the two segmentations in relation to the manually
segmented brain:

P = 100 ∗ | A1 − A2 |
| A2 | (7)

where | A1−A2 | denotes the absolute value of the volume difference between
the sets A1 and A2, and | A | is the volume of any set A. In (Atkins &
Mackiewich 1997) this measure is within 4% in most cases.

Our method gave a mean similarity index of 0.9961 (standard deviation 0.0034)
for the 50 automatically segmented brains. The worst brain had a similarity
index of 0.9813, the best 0.9998. Our method gave at worst a percentage volume
change error of 3,81 % and 0.049 % at its best. 47 of the 50 segmented brains
had a percentage error of less than 2.0 %, and 38 of the 50 segmented brains had



15

a percentage error of less than 1.0 %. The mean percentage error was 0.77 %
(standard deviation 0.69 %).

While our performance measures are, in general, better than those reported
by (Atkins & Mackiewich 1997), we cannot jump to the conclusion that the pro-
posed method by necessity is better, since the results are based on different data
sets. The combination of qualitative and quantitative results, however, strongly
suggests that the method satisfactorily solves the task it was designed for – to
automatically segment brains in functional brain databases.

5 Summary and discussion

We have presented an integrated method for brain segmentation, based on the
primary components of (i) anatomical normalization, (ii) probabilistic diffusion,
(iii) multi-scale watershed analysis and (iv) morphological processing.

Anatomical standardization as a pre-processing stage allows us to explore
anatomical prior knowledge and to estimate the distributions of the different
types of tissue in the skull. Probabilistic diffusion, in turn, allows us to express a
tensor-like diffusion scheme, that instead of local gradient information allows us
to make use of probabilities of different tissue types to control an anisotropic dif-
fusion schemes. We propose that these two mechanisms are natural components
to consider for future developers of brain segmentation systems and that prob-
abilistic diffusion per se warrants further study due to its efficiency in specific
situations.

Using these components as primary tools, an integrated brain segmentation
system has been developed and evaluated. The qualitative properties of the re-
sults and the quantitative performance values are highly satisfactory. To state
firm conclusions of the performance relative to other works, however, full avail-
ability of the original image data and the original software is needed.

Concerning suggestions for further work, a natural extension consists of ex-
pressing a Bayesian derivation of the conduction coefficients w(u,v,w)(x, y, z) in
the discrete diffusion equation (3) and to estimate the probabilities more accu-
rately from the image data. Another natural extension is to refine the watershed
module, e.g. based on the ideas presented by (Hahn & Peitgen 2000). Thus,
a natural next step is to investigate if the composed scheme can be simplified
by such extensions. Nonwithstanding these possibilities for additional improve-
ments, it should be emphasized that besides the detailed quantitative evaluation
presented in section 4, the method has been applied to at least 200 more brain
images, with highly successful results.
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