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Abstract 

This thesis, within the subfield of computer science known as computer vision, 
deals with the use of scale-space analysis in early low-level processing of visual 
information. The main contributions comprise the following five subjects: 

• 	 The formulation of a scale-space theory for discrete signals. Previously, the 
scale-space concept has been expressed for continuous signals only. We pro
pose that the canonical way to construct a scale-space for discrete signals 
is by convolution with a kernel called the discrete analogue of the Gaussian 
kernel, or equivalently by solving a semi-discretized version of the diffusion 
equation. Both the one-dimensional and two-dimensional cases are cov
ered. An extensive analysis of discrete smoothing kernels is carried out for 
one-dimensional signals and the discrete scale-space properties of the most 
common discretizations to the continuous theory are analysed. 

• 	 A representation, called the scale-space primal sketch, which gives a formal 
description of the hierarchical relations between str'Uctures at different levels 
of scale. It is aimed at making information in the scale-space represe nta
tion explicit. We give a theory for its construction and an algorithm for 
computing it. 

• 	 A theory for extracting significant image structures and determin ing the 
scales of these structures from this representation in a solely bottom-up 
data-driven way. 

• 	 Examples demonstrating how such qualitative information extracted from 
the scale-space primal sketch can be used for guiding and simplifying other 
early visual processes. Applications are given to edge detection, histogram 
analysis and classification based on local features. Among other possible 
applications one can m ention perceptual grouping, texture analysis, stereo 
matching, model matching and motion. 

• 	 A detailed theoretical analysis of the evolution properties of critical points 
and blobs in scale-space, comprising drift velocity estimates under scale
space s moothing, a classification of the possible types of generic events at 
bifurcation situations and estimates of how the number· of local extrema 
in a signal can be expected to decrease as function of the scale parameter. 
For two-dimensional signals the generic bifurcation events are annihilations 
and creations of extremum-saddle point pairs. Interpreted in terms of blobs, 
these transitions correspond to annihilations, merges, splits and cr·eations. 

Experiments on different types of real imagery demonstrate that the proposed 
theory gives perceptually intuitive results. 

Keywords : computer vision, low-level processing, scale-space, diffusion, Gaus
sian filter·ing, discrete smoothing, primal sketch, segmentation, descriptive ele
ments, scale detection, image s tructure, focu s-of-attent ion, tuning low-level pm
cessing, blob detection, edge detection, edge focusing , his togram analysis, junc
tion classification, perceptual grouping, texture analysis, critical points, classifi
cation of blob events, bifurcations, dr·ift velocity, density of local extrema , multi
scale representation, digital signal processing 
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Sammanfattning 
Denna avhandling, inom det delomrdde av datalogin som gdr under namnet 

datorseende, behandlar anviindningen av skalrumsanalys i de fOrsta stegen av 
tidig ldgnivdbearbetning av visuella bilddata. De huvudsakliga bidragen omfattar: 

• 	 Formulering av en skalrumsteori fOr diskreta signaler. Tidigare har skal
rumsbegreppet uttryckts enbart for kontinuerliga data. Vi foreslar att det 
bara finns ett (kanoniskt) siitt att definiera ett skalrum for diskreta sig
naler, niimligen genom att falta med den diskreta motsvarigheten till Gauss
kiirnan eller ekvivalent sett genom att losa en semi-diskretiserad version av 
diffusionsekvationen. Bade det endimensionella och det tvadimensionella 
fallet behandlas. En omfattande analys av diskreta faltningskiirnor med 
utjiimningsegenskaper genomfors fOr endimensionella signaler och de disk
reta skalrumsegenskaperna hos de vanligaste diskretiseringarna av den kon
tinuerliga teorin analyseras. 

• 	 En representation vid namn skalrumsskissen, vilken ger en formell beskrivn
ing av de hierarkiska relationer som finns mellan strukturer pd olika skalor 
i en bild. Den iir avsedd att lyfta fram egenskaper i skalrumsrepresentatio
nen sa att de blir explicita. Vi ger en teori fOr dess konstruktion och en 
algoritm for att bygga upp den beriikningsmiissigt. 

• 	 En teori fOr att extrahera signifikanta bildstrukturer och bestiimma deras 
skalnivaer frdn denna representation pd ett helt datadrivet siitt. 

• 	 Exempel som visar hu1· sddan kvalitativ information extraherad frdn skal
rumsskissen kan anviindas for att viigleda och forenkla andra tidiga vi
suella processer. Tilliimpningar ges mat kantdetektion, histogramanalys 
och klassificering baserad pd lokala egenskaper. Bland ytterligare mojliga 
tilliimpningar kan niimnas perceptuell gruppering, texturanalys, stereomatch
ning, modellmatchning samt rorelse. 

• 	 En detaljerad analys av hur lokala extrempunkter och blobbar kan forviintas 
bete sig i skalrummet, innefattande uppskattningar av de ras drifthastighet, 
en klassificering av vilka typer av hiindelser som iir mojliga vid bifurka
tionspunkter samt uppskattningar av hur antalet lokala extrempunkter i 
en signal kan fo1·vantas minska som funktion av skalparametern. For tvd
dimensionella signa/er utgors de generiska bifurkationsh iindelserna av par 
bestdende av en lokal extrempunkt och en sadelpunkt som forsvinne r eller 
skapas dd skalparametern okar. Uttryckt i termer av ext1·empunktsregioner 
svarar de mojliga overgdngarna mot annihilationer, sammanslagningar, split
tringar och skapanden. 

Expe1·iment pd olika typer av verkliga bilddata visar att den foreslagna teorin ge1· 
perceptuellt sett intuitiva och rimliga resultat. 


Nyckelord: datorseende, ldgnivdbearbetning, skalrum, diffusion , gaussfiltering, 

disk!·et utjiimning, primiirskiss, segmentering, deskriptiva element, skaldetektion, 

bilclst1·uktur, fokusering av uppmiirksamheten, styrning av lcignivdbearbetning, 

blobdetektion, kantdetektion, kantfokusering, histogramanalys, forgreningspunkls

klassificering, perceptuell g1·uppe1·ing, texturanalys, kritiska punkter, kla ssiflce1'

ing av blobhiindelse1·, bifurkationer, drifthastighet, densitet av lokal extrempunk

te1·, multiskalrepresentation, digital signalbehandling 
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Chapter 1 


Introduction and Overview 


Computer vision deals with the problem of deriving meaningful interpretations or descrip
tions from visual data. What should be meant by meaningful is, of course, strongly de
pendent on the goal of the analysis, i.e., the underlying purpose why we want to make use 
of visual information. One reason can be that of machine vision - the desire to provide 
machines and robots with visual abilities. Ot her common applications concern image pro
cessing, where one can mention image enhancemen t , visualization and analysis of medical 
data as well as remote sensing, data compression and the design of visual aids etc. A more 
theoretical reason why computer vision is studied is the tremendously inspiring challenge 
of trying to understand the workings of biological visual systems, which accomplish their 
tasks in such a reliable way essential for the survival of most living creatures. 

Some of t he most basic questions that still remain to be answered concern what type 
of information in images is relevant for accomplishing different tasks, how this information 
is extracted from the sensory data and how such features can be related to properties of 
environment. Then, what is vision? To the question "What does it mean to see?" Marr 
[Mar82) answers: 

... vision is the process of discovering from images what is present in the world 
and where it is 

emphasizing that vision is an information-processing task. He also stresses that t he issue 
of internal representation of information is of outmost importance. Only by representation 
can information be captured and made available to decision processes. The purpose of 
a representation is to make certain aspects of the information content explicit, t hat is, 
immediately accessible without any need for additional processing. 

There have been different opinions in the computer vision community abou t how a visual 
system should be constructed. A long debate concerned t he choice between bottom-up and 
top-down based reasoning. It has been argued by many authors t hat a visual system should 
be constructed in a modular way with different levels of processing. At the simplest level 
of abstraction three layers can be distinguished , denoted low-level, in termediate level and 
high-level. Although also other types of design str ategies have been proposed such as acti ve 
vision, see Bajscy [Baj 85], and "labyrinthi c design", see Aloimonos [Alo90), implying that it 
is probably not as easy to clearly separate out different processing levels as would be needed 
for a dogmatic interpretation of the three-layer description, t he need for some kind of early 
low-level processing and representation for providing a sparse but rich set of primitives for 
other processing modules still remains highly motivated. 
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This thesis deals with the use of a certain type of approach, scale-space 1·epresentation, 
for analysing data at the lowest levels in such a chain of information processing. The aim 
is to operate directly on the raw pixels values without any type of pre-processing. The 
suggested methodology can be said to be intended as a first confrontation between the 
reasoning process and the raw image data. We will not make any specific assumptions 
about how higher-level processes are to operate on the output. Therefore, we believe that 
the approach should be applicable to a variety of reasoning strategies. 

Computer vision is a cross-disciplinary field with research methodologies from several 
scientific disciplines such as computer science, mathematics, neurophysiology, physics and 
psychology. The approach taken here will be computationaJl. We will develop a theory and 
a framework for how certain aspects of image information can be represented and analysed 
at the very earliest processing stages of a machine visual system. 

1.1 Goal 

The goal we are aiming at is a methodology, where significant structures can be extracted 
from an image in a solely bottom-up way, without any a priori information. We will suggest 
a ranking of events in order of significance based on volumes of four-d imensional objects in 
a scale-space representation where the scale dimension is treated as equally important as the 
spatial and grey-level coordinates. The associated extraction method is based on a systematic 
parameter variation principle where locally stable states are detected and abstractions are 
determined from those. We will exemplify how qualitative scale and 1·egion inf ormation 
extracted in this way can be used for guiding the focus-of-att ention and tuning other early 
visual processes as to simplify their tasks. The general principle is to adapt the low-level 
processing to the local structure of an image. The leading idea of the thesis is to construct 
a framework in which these operations can be formalized. 

1.2 The Nature of the Problem 

When given an image as obtained from a standard camera device, say a digitized video signal 
or a scanned photograph, all information is in principle in the pixel values represented as 
a matrix of numerical data. If this information is presented to a human observer with the 
pixel values coded as grey-level intensities, then he or she will in general have no problems 
in perceiving and interpreting what the image represents. 

However, if the same pattern of grey-level values is coded as decimal digits, or as a 
three-dimensional diagram with the grey-level values drawn as a function of the image 
coordinates, the problem is no longer as easy for biological vision. A person not familiar 
with the field often underestimates the difficulties in designing algorithms for interpreting 
data on this numerical form. The problem with the matrix represent ation of the image is 
that the information is only implicit in the data. 

1 Although there are neuropsysiological indications for the existence of processing at multiple scales in 
biological vision systems, we will not make any claims that the methodology to be proposed here in any 
way describes how processing is done in human perception. We will rather b e con cerned with what visual 
information can be extracted by a computer. When biological vision is discussed it will be mainly as a source 
of inspiration . 

2 



1.2.1 lll-posedness 

The task of a visual processing system can be said to be to extract meaningful information 
about the outside world from a set of pixel values that are the result of light measurements 
from a physical scene. 

In principle this vision problem is impossible to solve if it is stated as a pure mathematical 
problem. Given a data set of grey-level values, there will always be an infinite number 
of scenes that could have given rise to the same result. To realize that this is the case, 
consider for in stance a photograph on a paper or a slide projected onto a screen. We easily 
interpret such light distributions on flat surfaces as corresponding to three-dimensional 
objects with perceived depth . From this viewpoint the vision problem is ill-posed2 in the 
sense of Hadamard, since it does not have any unique solution. A rigorous person without 
plenty of unspoiled optimism would probably take this as a very good motivation to study 
some other field of science where t he pre-requisites could be more clearly stated and better 
suited for formal analysis . Nevertheless, despite this, the human visual system as well as 
other biological vision systems are capable of coping with the indeterminacy. Moreover, since 
vision is generally regarded as our most important sense one can believe that there must 
be some properties in the image data reaching t he retina that make the visual perception3 

possible. 

1.2.2 Grouping 

A main purpose of the low-level processing modules is to provide a reasonable set of primi
tives that can be used for further processing or reasoning modules. A fundamental problem 
in this context concerns which points in the image are related to each other and correspond 
to objects in the scene, i. e., which pixels in the image belong together and form meaningful 
entities. This is the problem of primitive grouping or perceptual organization. Before any 
such grouping operations have been performed, the matrix of grey-level values is, from the 
viewpoint of interpretation, in principle only an unstructured data set of numerical values. 

The grouping problem has been extensively studied in psychology, especially by the 
Gestaltists [Kof35], and in computer vision, see e.g. Lowe [Low85] or Ahuja and Tuceryan 
[Ahu89] for an overview, and it seems to be generally agreed upon that the existence of 
active grouping processes in the human perception can be regarded as established. Witkin 
and Tenenbaum [Wit83b] discuss this property: 

People are able to perceive structures in images, apart from the perception of 
three-dimensionality, and apart from the recognition of familiar objects. We 
impose organization on data ... even when we have no idea what it is we are 
organizing. What is remarkable is the degree to which such naively perceived 
structure survives more or less intact once a semantic context is established: the 
naive observer often sees essentially the same thing as an expert does. ... It 
is almost as if the visual system has some basis for guessing what is important 
without knowing why. 

2 For a mathematical proble m to be regarded as well-posed, Hadamard stated three crite ria: (i) a solution 
should exist (ii) the solution should be unique and (iii) t he solution should depend continuously on the input 
data. A well-posed problem is not necessarily well-conditioned. 

3 0f course, experiences and expectations are generally believed to play a very important rol e in the 
perception process. However, also that information must be related to the incoming image data in some way. 
Moreover, the experiences must have been acquired (learned) in some way, at least partially based on visual 
data 
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Although the gestalt school of psychology formulated rules as those of proximity, similarity, 
closure, continuation, symmetry and familiarity, we still have no satisfactory understanding 
of how t hese mechanisms operate from a quantitative point of view. 

1.2.3 Operator Size 

In order to be able to derive any information from an image it is necessary to operate on 
t he data with some operators. T his leads to two simple but very fundamental problems: 
One has to determine where to apply the operator and whi ch operator size to use. 

To illustrate this problem consider the task of detecting edges. It is generally agreed 
upon that this type of image features represents important information, since edges in the 
image often correspond to discontinuities in depth, surface orientation, reflectance properties 
or illumi nation in the physical world. A standard way of extracting edges from an image is 
by gradient computation followed by some type of post-processing step where "high values" 
should be separated from "low values", e.g. by detection of local maxima or by thresholding 
on the g radient magnitude. For simplicity consider the one-dimensional case and assume 
that the gradient is computed with a central difference operator. More sophisticated ap
proaches exist, but they will face similar problems. The selection of step size leads to a 
well-known trade-off question: A small step size will give a small truncation error but the 
noise sensitivity might be severe. Conversely, a large step size reduces the noise sensitivity at 
the cost ofan increased truncation error. In the worst case we may even miss the interesting 
slope and get meaningless results if the difference quotient is formed over a larger distance 
than the object to be considered in t he image, see Figure 1.1 for an illustration. Therefore, 
only a certain interval of step sizes can be appropriate for extracting the main slope of the 
signal that we perceive when looking at that figure. Note also that this slope may in fact 
be interpreted as due to noise (or some other phenomena that should be neglected) if it is 
a part superimposed onto some coarser scale structure (not visible here). 

--...--. ----- .. 

• 
• • • • 

... .. .. -
. ....... -

------ ---

Figure 1.1: Illustration of the basic scale problem involved when computing the gradients that are t o 

form the basis for edge detection. The lines show the effects of computing derivative approximations 

from noisy data (here represented as a set of dots) using a central difference operator with varying 

step size. Note that a if the step size is selected too small then the n oise s ensitivity can be severe. A 

larger step size on the other hand reduces the noise sensitivity at the cost of an increased truncation 

error. In the worst case we may even miss the interesting slope and get m eaningless results if the 

difference quotient is formed over a larger distance than the object to be consider ed in the image. 
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1.2.4 Scale 

The problem falls back on the basic scale problem, namely that that objects in the world 
and details in an image only exist and make sense over a limited range of scale4 • A typical 
example is the concept of a branch of a tree which makes sense only on the scale say from 
a few centimeters to at most a few meters. It is meaningless to discuss the tree concept 
at the nanometer or the kilometer level. At those levels of scale it is more relevant to talk 
about the molecules, which form the leaves of the tree, or the forest , in which the tree grows. 
Similarly, it is meaningful to talk about a cloud only at a coarse scale. At finer scales it 
is more appropriate to talk about the individual droplets, which in turn consist of water 
molecules, atoms etc. 

For a finite image only structures within a certain range of scales can be resolved and 
registered . This interval is delimited by the inner scale corresponding to the sampling 
density, that is, the resolution of the image and the outer scale corresponding to the size of 
the image. 

These properties indicate that if one aims at describing the structure of an image, the 
scale concept is of crucial importance. A methodology that has been suggested to deal 
with this issue is by representing signals at multiple scales. Moreover, since in general 
no particular levels of scale can be pre-supposed without strong a priori knowledge, it is 
natural that all levels of scale have to be considered. The main idea of creating a multi
scale representation of a signal is by generating a whole family of derived signals where the 
fine-scale information is successively suppressed. Then a mechanism, which systematically 
simplifies the data and removes the finer scale details or the high-frequency information, is 
required. This operation, which will be termed scale-space smoothing, must be available at 
any level of scale. 

increasing t r....________.__{?7 rcoarser levels 
of scale

f ~~JgiDol m.,, 

Figure 1.2: A multi-scale representation of a signal is an ordered set of derived signals intended to 

represent the original signal at various levels of scale. 

Why should one represent a signal at multiple scales or different levels of resolution when 
all information is anyway in the original data? The reason for this is that we would like 

• An important philosophical question in this context concerns if this property should be attributed to the 
actual physical objects themselves or just to our subjective way of perceiving and categori zing them . For 
instance, a table made out of wood certainly has a fine-scale texture with underlying fibral and molecular 
structures that we usually suppress when dealing with it for everyday purposes. Obviously such fi ne r scale 
properties will always be there but anyway we almost always automatically disregard those. One may 
speculate that the organization at multiple scales may in fact be just one of our ways of sim plifying our 
extremely complkated environment into a hierarchical structure as to be able to cope with it. However, even 
if this standpoin t would be the "true" one, it could still be the way that there are properties in image data 
that make such hierarchical o rganization suitable and also, possibly, efficient. 

5 



to explicitly cope with the scale aspect. Another aim is to simplify further processing by 
removing unnecessary and disturbing details, such that the later stage processing tasks can 
be simplified. 

1.3 Scale-Space Representation 

A methodology proposed by Witkin (Wit83a] and Koenderink, van Doorn (Koe84] to obtain 
such a multi-scale representation is by embedding the original signal into a one-parameter 
family of derived signals, the scale-space, where the parameter5 t , denoted scale parameter, is 
intended to somehow describe the current level of scale6 . Let us briefly review the procedure 
as it is formulated for one-dimensional continuous signals: Given a signal f : R -+ R a 
fun ction7 L: R x R+-+ R is defined by L(·; 0) = J(-) and convolution with the Gaussian 
kernel g: R x R+ \ {0}-+ R 

1L(x; t) = ( X> - -e-ef21 J(x- {)d{ (1.1) 
le=-oo J21ii 

if t > 0. Equivalently, the family can be regarded as generated by the diffusion equation 

fJL 1 fJ2L 
(1.2)7ft - 2 fJx 2 

with initial condition L(-; 0) = J(-). For a two-dimensional signal f : R 2 -+ R the scale
space L: R2 x R+ -+ R is given by convolution with the two-dimensional Gaussian kernel 

L(x,y;t)= f oo l oo _1_e- (e+TJ2) f2tf(x-{,y - 1J )d{dry (1.3) 
Je=- oo TJ=-oo 27rt 

or equivalently as the solution to the two-dimensional diffusion equation 

fJL = ~ (fJ2L+ fJ 2L) (1.4) 
ot 2 fJx2 oy2 

where the initial conditions are of the same type as in the one-dimensional case. Similar 
ideas can be applied to higher dimensions. However, since the amount of generated data 
in general increases rapidly with the number of dimensions, we will here be restricted to 
one-dimensional and two-dimensional signals, since these cases (currently) have the highest 
relevance to computer vision applications. 

At first glance the task of designing a multi-scale signal representation could be regarded 
as rather arbitrary. Would it suffice to carry out just any type of "smoothing operation"? 
This is, however , not the case. A crucial problem is that the transformation fro m a fine 

~The parameter t used in this presentation corresponds to u2 
, where u is t he standard deviation of t he 

Caussia.n kernel. 
6 We have not yet formally defined what we mean by scale. In principle the re should be a correspondence 

between the scale parameter and a char acte ristic le ngth of a characteristic object in the scale-space repre
sentation at that scale. However, so far the scale parameter should be interpreted only as an abstr·act scale 
parameter implying a weak ordering p roperty of objects of different size without any d irect mapping fro m its 
ac tual value to the size of features in a signal represented at that scale. Later in Section 8.6 we will specify 
further what types of relations between the size of image features and the actual value of the scale parameter 
that this definition leads to. 

7 R+ denotes the set of real non-negative numbe rs. 
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Figure 1.3: The main idea with a scale-space representation of a signal is to generate a family of 

derived signals where the fin e-scale information is successively suppressed. This figure shows a signal 

that has been successively smoothed by convolution with the Gaussian kernel. (Adapted from Witkin 

{1989)). 

scale to a coarse scale really can be regarded as a simplification such that fine scale features 
disappear monotonically. If new artificial structures could be created at coarser scales, not 
corresponding to important regions in the finer scale representations of the signal, then it 
would be impossible to determine whether a feature at a coarse scale corresponded to a 
simplification of some coarse scale structure from the original image or if it were just an 
accidental phenomenon, say an amplification of the noise, created by the smoothing method 
- not the data. Therefore, it is of outmost importance that artifacts are not introduced by 
the smoothing transformation when going from a finer to a coarser scale. 

1.3.1 Non-Creation of New Structure 

Then, what should one mean by structure? When Witkin (Wit83a] coined the term scale
space of a one-dimensional signal, he observed that the number of zero-crossings in the 
second derivative of the signal decreased monotonically with scale and took that as a basic 
characteristic of the representation. In fact this property holds for derivatives of arbitrary 
order and also implies that the number oflocal extrema in any derivative of the signal cannot 
increase with increasing scale. From this viewpoint convolution with a Gaussian kernel can 
really be regarded as possessing a strong smoothing property. 

Later, when Koenderink and van Doorn (Koe84] extended the scale-space concept to 
two-dimensional signals they introduced the notion of causality, which means that new level 
curves must not be created when the scale parameter is increased. In other words, it should 
always be possible to trace a grey-level value existing at a certain level of scale to a similar 
grey-level at any finer level of scale. The reverse statement does of course not need to be 
true. Combined with homogeneity and isotropy constraints, which essentially mean that 
all spatial points and all scale levels should be handled in a similar manner, it was shown 
that these criteria necessarily and sufficiently lead to a formulation in terms of the diffusion 
equation, both in one and two dimensions. A similar result , although based on slightly 
different assumptions, was given by Yuille and Poggio (Yui86] regarding the zero-crossings 
of the Laplacian. Yet another proof was provided by Babaud et al. (Bab86] who showed 
that natural constraints on a one-dimensional smoothing kernel necessarily implied that the 
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kernel had to be a Gaussian. 
To summarize, it has been established that within the class of convolution transform a

tions (which means that the blurring is given by shift-invariant linear filtering), the only 
reasonable way of embedding a signal in to one-parameter multi-scale family of representa
tions is by the diffusion equation or equivalently by convolution with the Gaussian kernel. 
It can by now be regarded as generally agreed upon that this formulation describes the 
canonical way to construct a multi-scale signal representation. 

1.3.2 Other Multi-Scale Approaches 

The idea of representing signals at multiple scales is not new8 • Early work in this direc
tion has been performed by e.g. Rosenfeld and his eo-workers , see e.g. [Ros71, Ros84], 
and Klinger [Kli71] about the representation of signals at different levels of resolution9 , in 
particular using pyramids. A pyramid is a set of successively smoothed and sub-sampled 
representations of the original signal, organized in such a way that the num ber of pixels 
decreases with a constant factor (usually either 2 or 4) from one layer to the next. 

These ideas have been developed further by e.g. Burt and Adelson [Bur83], Crowley and 
his eo-workers [Cro84a, Cro84b, Cro87] and other s, see e.g. Meer et al. [Mee87] and Cantoni 
and Levialdi [Can86]. Marr [Mar76] and Marr, Hildreth [Mar80] made use of difference of 
Gaussians (DOG), which are approximations to the Laplacian of the Gaussian, at different 
scales. Recently, a concept of anisotropic diffusion has been proposed by Perona and Malik 
[P er90] and been developed further by Nordstrom [Nor90]. 

Among other types of representations involving multiple scales one can mention the 
Gabor functions [Gab46] as well as the wavelet theory, see e.g Stromberg [Str83] and Meyer 
[Mey88], which has been applied to image analysis by Mallat [Mal88, Mal89]. Multi-grid 
methods, see e.g. Hackbush [Hac85], are receiving a growing interest in numerical analysis 
together with techniques based on hierarchical basis functions for finite element spaces, see 
Yserentant (Yse86] and Szeliski (Sze90]. Another interesting early work was done by Ehrich 
and Lai [Ehr78]. They did not directly rely on multiple scales, but a different type of 
hierarchical signal representation based on the inclusion of extremal regions into each other. 

Multi-scale representations of curves have been studied by e.g. Bengtsson and Eklundh 
[Ben86, Ben90], who define a sequence of polygons approximating the original data with 
varying accuracy, Mokhtarian and Mackworth [Mok86, Mac88, Mok88], who smooth the 
coordinate functions of a parameterized curve, Lowe [Low88] who suggests a way to com
pensate for the shrinking problem s in that type of smoothing, and Kimia et al. [Kim90], 
who use a reaction-diffusion approach. 

1.3.3 Multi-Scale v.s. Multi-Resolution 

The main difference between a multi-scale and a multi-resolution representation is t hat a 
multi-scale representation is defined by smoothing, where one in principle uses t he same 
number of grid points at all levels of scale, while in a multi-resolution representation the 

8 0 ne of the most important contributions with Witlcin 's and K oenderink and van Doorns' scale-space 
formulation was the systematic way to re/ate and interco nnect representations at diffe re nt scales. 

9 T he scale and the resolution concepts are sometimes used interchangeably in the vi sion literature and 
their precise meanings are not always clear. Wort h e m ph asizing in t his context is therefore that with 
resolution in this thesis we mean just the spatial density o f g rid points used in the sampling of the image. 
Scale on the other hands stands for the characteristic leng th over which variations in the image take place 
and/or the operator s ize used for processing the image data. 
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main objective is to reduce the number of grid points from one layer to the next. In order to 
reduce the aliasing problems some pre-filtering must be performed before the sub-sampling 
step is carried out. Different operators have been proposed for this task, see e.g. Burt and 
Adelson [Bur83], Crowley et al. [Cro84a, Cro84b] or Meer et al. [Mee87]. 

Hen ce, a multi-resolution representation will be efficient in t he sense that the number of 
grid points will be rapidly decreased, while a scale-space representation will get more and 
more redundant as the scale increases. A wavelet representation is in fact non-redundan t 
while a scale-space representation can be said to be maximally redundant. On t he other 
hand in a scale-space representation, t he representations at all levels of scale are immediately 
accessible without any need for further computations. The task of operating on the data will 
be successively simplified, since a feature existing at a coarse scale will in general correspond 
to a larger number of grid points than a feature at a fine scale. In pyramid representations , 
however, this relation remains unchanged - there is a fixed relation between the scale 
parameter and the resolution. Moreover, in contrast to the pyramids and the wavelets, the 
scale-space representation is invariant to translations in space. 

Another important property with the scale-space representation is that the behaviour of 
structure across scales can be analytically described with a simple formalism. By definition it 
is given as the solution to the diffusion equation, which means that features at different scales 
can be related to each other in a precise manner. Moreover, the pyramid representations 
imply a fixed sampling step in scale or resolution t hat cannot be decreased, while the scale
space concept possesses a continuous scale parameter. Therefore, one can expect the task 
of following or tracking features across scales to be easier in a multi-scale than in a multi
resolution representation, since refinements of the scale sampling can be performed whenever 
required. Finally, is is sometimes argued that the pyramid representations undersample the 
signals along the scale direction. 

1.3.4 Theoretical Scale-Space Properties 

There have been thorough investigations about the theoretical properties of this representa
tion. As was described above, the fundamental property of non introducing new "artificial" 
structure has been given different formulations by different authors. The behaviour of 
structures under this type of smoothing has been analysed by Koenderink and van Doorn 
[Koe86]. Other studies concerning edges have been made by Bergholm [Ber87j and Clark 
[Cla88]. Hummel [Hum86] investigated the information content in the zero-crossings of the 
Laplacian. These properties together make the scale-space representation special and one 
should therefore be careful of not using the term "scale-space" for other possible types of 
multi-scale-like representations, like those that can be obtained, e.g. by varying regular
ization parameter s and error criteria in optimization methods, unless similar theoretical 
properties can be proved . 

1.4 Philosophies and Ideas behind the Approach 

1.4.1 Making Information Explicit 

This scale-space theory constit utes a well-founded framework for handling structures at 
different scales. However, the information in the scale-space embedding is only implicit in 
the grey-level values. The smoothed images in the raw scale-space representation contain no 
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explicit information about the features in them or the relations between features at different 
levels of scale. 

One of the main goals of this thesis is to presen t such an explicit representation, called 
the scale-space primal sketch, and to demonstrate that it enables extraction of significant 
image structures in such a way that the output can be used for guiding later stage processes 
in early vision as to simplify their tasks. We shall treat intensity images, the grey-level 
landscape, and the objects will be blobs, that is, bright regions on dark backgrounds or vice 
versa. However, the theory applies to any bounded function and is therefore useful in many 
tasks occurring in computer vision, like the study of level curves and spatial derivatives in 
general, depth maps, colour etc, and also of histograms and for point clustering and grouping 
in one or several variables. 

1.4.2 Scale and Segmentation 

Many methods in image analysis implicitly assume that the problems of scale detection 
and initial segmentation have been solved. Models based on spatial derivatives ultimately 
rely upon the computation of difference approximations, which means that they will face 
similar scale problems as were described in the djscussion about edge detection from gradient 
data in Section 1.2.4. Although we will here be concerned mainly wit h static imagery, the 
same type of problems arise also when dealing with image sequences. In other words, when 
computing derivatives from measured data we in general always fall back to a basic scale 
problem, namely that of selecting a filter mask size10 for the approximation. 

A commonly used technique to improve the results obtained in computer vision and 
other branches of applied numerical analysis is by pre-processing the input data with some 
amount of smoothing and/or careful tuning of the operator size or some other parameters. 
In some situations the output result might depend strongly on these processing steps. For 
some algorithms these so called tuning parameters can be estimated, in other cases they are 
set manually. A robust image analysis method, intended to work in an autonomous robot 
situation, must however be able to make such decisions. How should this be done? We 
contend that these problems are in many situations nothing but disguised scale problems. 

More generally, in order to be able to apply a. refined mathematical model like a dif
ferential equation or some kind of deformable template it is necessary to have some kind 
of qualitative jnitia.l information, i.e., a domain where the illfferentia.l equation is (assumed 
to be) valid or a.n initial region for application of the raw deformable template. Examples 
can be obtained from many "shape from X" methods, which in general assume that they 
are applied to a. domain in the image where the underlying assumptions are satisfied. A 
commonly used assumption is that of smoothness implying that the region in the image, to 
which the model is applied to, must correspond to, say, one physical object or one facet of 
a surface etc. How should we select such regions automatically? Many methods cannot be 
used unless this non-trivial part of the problem has been solved. 

How do we detect appropriate scales and regions of interest when there is no a priori 
information available? In other words, how to detect the scale of an object and where t o 
search for it before knowing what kind of object we are studying and before knowing where 
it is located. This problem arises implicitly in many kinds of processes, e.g. dealing with 
texture, contours etc. It all seems to boil down to an impossible chicken-in-the-egg problem. 

100bserve that it is not so much the actual size of the filter mask that is important but rather the 
characteristic length over which the difference approximation is computed. 
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The solution of the pre-attentive recognition problem requires the solution of the scale and 
region problems and vice versa. However , in this work we will show that such scale and 
region determination actually can be performed computationally from raw image data by 
early low-level processing. The basic tool for the analysis will be the scale-space theory. 

We argue that once scale information is available and once we have extracted "regions 
of interest" the remaining processing tasks can be much simpler. We will support this claim 
by experiments on edge detection and classification based on local features. 

1.4.3 Detection of Image Structure 

The main features arising in the scale-space representation are smooth region s which are 
brighter or darker than their background and stand out from the surrounding. We will call 
them blobs (a precise definition will be given later). The purpose of the suggested scale
space primal sketch representation is to make these blobs as well as their relations across 
scales explicit. The idea is also that this representation should reflect the intrinsic shape 
of the grey-level landscape - not be an effect of some externally chosen criteria or tuning 
parameters. The theory should in a bottom-up fashion allow for a data-driven detection of 
significant structures, their relations and the scales at which they occur. We will, indeed , 
experimentally show that the proposed representation gives intuitively reasonable results, 
in which salient structures are (coarsely) segmented out. Hence, this representation can 
serve as a guide to subsequent, more finely tuned processi ng, that requires knowledge about 
where and at which scales structure occurs. In this respect it can serve as a mechanism for 
focus-of-attention. 

As one application demonstrating the predictive power of our method we have integrated 
the output from the scale-space primal sketch with an algorithm known as edge focusing, see 
Bergholm [Ber87]. We let the extracted scale level and region information serve as to initiate 
an edge focusing procedure starting at an adaptively determined local scale determined from 
a relevant scale of a significant blob. The experiment shows that, at a proper level of scale, 
edges can be detected without thresholding, however at the cost of possibly poor localization. 
But, the localization can be considerably improved using the edge focusing method, which 
tracks the safely detected edges at coarse levels of scale through scale-space to corresponding 
and better localized edges at finer levels of scale. 

Since the proposed representation tries to capture all the important structure with a 
small set of primitives, it bears some similarity to Marr's primal sketch, even though fewer 
primitives are used. However, the central issue here is to explicitly represent also the scale 
at which different events occur. In this respect our work addresses problems similar to 
those studied by Bischof and Caelli [Bis88]. They try to parse the scale-space by definillg 
a measure of stability. However, their work focuses on zero-crossings of the Laplacian 
and is therefore less general than our approach. Moreover, they overlook the fact that in 
measuring significance or stability of structures we must treat the scale parameter properly. 
The behaviour of structure over scale will be analyzed to give the basis of such measurements. 

Of course, several other representations of the grey-level landscape have been proposed 
without relying on scale-space theory. Let us also note that Pizer and his eo-workers , 
[Lif87, Piz87], indeed, have performed studies of the behaviour of local extrema in scale
space. However, we will defer discussing the relations to these representations until we have 
described our own methodology. 
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1.4.4 Computational Issues 

The idea of scale-space representation of images, suggested by Wi tkin [Wit83a] has, in 
particular, been developed by Koenderink and van Doorn [Koe84, Koe86]. Our work is aimed 
at complementing this work by considering the computational aspects and by adding means 
of making significant structures and scales explicit. It turns out that several problems have 
to be solved to this end. One basic problem is how to measure significant and insignificant 
behaviour over scale. This involves questions about "the amount of structure in an image 
without structure" and the interference between salient structure and the inner and outer 
scales. An observation in this context is that noise can survive for a long time during 
scale-space blurring. In measuring significance we need an appropriate scaling of the scale 
parameter. It turns out that these problems touch upon general issues about the appearance 
of structure in images. We will show that they can be given well-founded solu t ions and that 
the theoretical framework can be robustly implemented in a rigorous manner. 

1.4.5 Consistency over Scales 

The main idea with our approach is to link features at different levels of scales in scale
space into (four-dimensional) higher order objects, called scale-space blobs, and to extract 
significant image features based on the appearance and lifetime of the higher order objects in 
scale-space. We argue that significant image features must be stable with respect to variations 
in scale. Another important point with our work is that we treat the scale parameter as 
equally important as the spatial and grey-level coordinates. This is directly reflected in the 
fact that the primitives in our representation are objects having extent not only in space and 
grey-level, but also in scale. 

1.5 Relations to Traditional Numerical Analysis 

In principle we are to derive information from image data by operating on it with certain 
operators. An obvious question is then why this could not be seen as an ordinary standard 
problem in numerical analysis and be solved with standard numerical techniques? Let us 
point out several reasons to why the problem is hard. 

1.5.1 Modelling, Simulation and Inverse Problem 

Traditional numerical analysis is often concerned with the simulation of mathematical or 
physical models, for example formulated as discrete approximations to continuous differen
tial equations, which are rather good descriptions of the underlying reali ty. The problems 
are usually well-defined , the models can often be treated as exact and the errors involved in 
these types of computations are mainly due to discretization and round-off errors. 

In computer vision we have a different situation. Given a signal, the task is to analyse 
and extract information from it. We are trying to solve an inverse problem where t he noise 
level is generally substantially higher11 and the modelling12 . aspect is still open. With 

11 A rule of thumb sometimes used in this context is that whe n derivatives of orJe r higher t han two are 
computed from raw image data, then the amplitude of the amplified noise will often be of the same order of 
magnitude as the derivative of the signal , or be even higher. 

12 T he geometry of image formation is quite simple and well understood, but our knowledge about the 
complicated phys ical phenomena (comprising reflections etc) and how to model those from a computat.ional 
viewpoint is still rather vague. In addition, we have the problem of representing the enormous variety of 
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a precise model of the illumination situation as well as the reflectance properties of the 
surfaces in the environment one could conceive solving for the surface geometry based on 
the physical light characteristics. This is the subject of e.g. shape from shadi ng. However, 
it is well-known that this problem of reco nstructing the world is extremely hard , to a large 
extent because it is very difficult to formulate an accurate and useful physical model for the 
image formation process, but also because such a model would require a lot of additional 
a priori knowledge in order to be com putationally tractable. Although fur ther attempts 
to explore the situation in more detail are being made, see e.g. Forsyth and Zissermann 
[For89a, For89b] or Nayar et al. [Nay90], most shape from shading and similar algorithms 
still rely on very restrictive simplifying assumptions. 

1.5.2 Scale and Resolution 

Other aspects are those of scale and resolution. In numerical analysis the accuracy can 
often be increased by a refinement in the grid sampling. The selection of a larger grid size 
is often mainly motivated by efficiency reasons, since one is simulating exact equations. 
In com puter vision algorithms the number of grid points used for resolving structures in a 
given image is sometimes very low, something that we believe makes a difficult problem even 
more difficult. This restriction can be however be relaxed ;n an active vision situation as 
will be developed in Section 9.3. A more serious problem is that of scale. In most standard 
numerical problems the inner scale is zero , which means that the s maller grid size t hat is 
being used, t he higher will the accuracy be in the computations (compare again with t he 
example in Section 1.2.3). In easy problems, the solutions asked for often contain variations 
taking place on essentially one single scale. 

Problems having solu tions with variations on different scales are more complicated and 
require more advanced algorithms for their solution. Examples can be obtained from com
puter fluid dynamics, where turbulence and very thin boundary layers are known to lead to 
very hard numerical problems. These fine-scale phenomena cannot always be fully resolved 
by the discrete approximations, and in fact some type of (sometimes artificial) smoothing 
(dissipative terms) is often required. When the fine-scale phenomena are not properly dealt 
wi t h, t hey can interfere wi t h and disturb the coarse-scale phenomena that usually are the 
ones of interest in e.g. design applications. Moreover, the occurrences of discontinuities 
in t he solu tions, which are also very frequent in image data, are known to complicate t he 
situation. 

The idea with the scale-space representation is to separate out information at different 
scales. Note however that we are confronted with a very difficult problem, since in general 
we have just very little or no a p riori knowledge at all abou t what types of structures we 
are studying or at what scales they occur. 

1.5.3 Interpreting the Results 

If we apply some operator all over an image we will hopefully get r easonable answers in 
those regions where the underlying assumptions for the method are valid (provided that 
t he operator size has been appropriately tuned). However we will also get false alarms 
in regions where the assumptions are not satisfied. One could say that such a unifor m 
application of an operator enforces an answer in every point even though any well-defined 

diffe•·ent situations that can occur in the real wo rld as well the question of how cognitive aspects should be 
incorporated into the process. 
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answer does not exist. In general it is very hard to distinguish, just from the output of such 
an operation, which responses can be trusted as correct and which ones should be rejected. 
Plain thresholding on the magnitude of the response is usually not sufficient. Therefore, a 
conservative strategy is to rather aim at deriving a sparse set of safe and reliable cues at t he 
risk of "missing" a few ones that possibly should be included than to try to compute "every" 
feature at the risk of including a large number of false responses. This is the motivation to 
why we would like to determine in advance where to apply13 refined ope rations. 

1.5.4 Approximation and Regularization 

It is sometimes argued that the main aims of approximation theory have already been 
accomplished. Nevertheless, one is confronted with serious problems when applying this 
theory to irregular and noisy measurement data as those obtained from images. Some of 
the most basic problems concern how one should determine a region in space appropriate for 
fitting a model to the data and how one should tune the associated parameters , such as t he 
filter weights. An approach that has been used extensively in computer vision during the 
last decade is regularization. This technique has been applied to a variety of reconstruction 
problems , see e.g. Terzopoulos et al. [Ter86, Ter87, Ter88, Kas87, Wit87), P entland [Pen88, 
P en90], Blake and Zisserman [Bla87) and Aloimonos and Schulmann [Alo89). The basic 
methodology is to define some functional, which is a weighted combination of different error 
criteria, and then try to compute the function within some restricted space that minimizes it. 
These methods often contain a large number of parameters but the theory gives little or no 
information about how they should be set withou t manual intervention , although attempts 
have been made to learn them from examples [Alo89). In ad dition we have a verification 
problem, since the algorithm is forced to always find a solution within the given space. How 
does one determine whether that function resembles the answer we actually want (to the 
original problem). To summarize, both these types of methods require a careful setting of 
their associated parameters as well as the regions in space to which they should be applied. 

1.5.5 Principles behind the Work 

A basic intention with the work presented here is to pre-process the data and to derive 
context information from it in such a way that the output from these types of operations 
can be well-defined. Although we do not claim that we have solved these problems and even 
though further complications may appear on the way to the solu tion, we believe that the 
framework to be developed here represents a significant step towards posing the questions 
in a context where standard numerical techniques could be readily applied and give useful 
answers. 

1.6 Organization of the Presentation 

The thesis deals with the very fundamental problems that are associated with t he use of 
scale-space analysis in early low-level processing of visual data. More specifically some of 
the main questions we will address are: 

13T his is a problem arising mainly in an initia lization phase of a reasoning process . In a situation where 
the time aspect is present, t his problem should be simplified , since then t he context knowledge co uld be us ed 
for predictions to the future. It is generally argued that problems become easier once the boot-st rapping 
step has been performed. 
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• 	 How should the scale-space model be implemented computationally? The scale-space 
theory has been formulated for continuous signals while realistic signals are discrete. 

• 	 Can the scale-space representation be used for extracting information? How should 
that be done? 

• 	 The scale-space representation in itself contains no information about preferred scales. 
In fact, without any a priori scale information all levels of scale must be treated 
similarly. Is it possible to determine a sparse set of appropriate scales for processing 
the information? 

• 	 How can the scale-space concept interact and cooperate with other processing mod
ules? 

• 	 What can happen in scale-space? What is the behaviour of structure in scale-space? 
How will features evolve under scale-space smoothing? What types of events can take 
place? 

The presentation is divided in to three parts. We start by developing a scale-space theory for 
discrete signals. Then we present a representation called the scale-space primal sketch, which 
is a formal representation of structures in scale-space at multiple scales aimed at mak ing 
information in the scale-space representation explicit. Finally we demonstrate how this 
representation can be integrated with other visual modules. We illustrate how qualitative 
scale and region information extracted from the scale-space primal sketch can be used for 
guiding other low-level processes and simplifying their tasks. We will now, in t he form of a 
long abstract, give a brief overview of some of the main results to be presented in each one 
of the different parts. 

1.6.1 Part 1: Scale-Space Theory for Discrete Signals 

We start by formulating a scale-space theory for discrete signals. In one dimension it is 
possible to completely characterize which linear transformations on the form 

f out(x) = L
00 

K (n)f(x- n) 	 (1.5) 
n=-oo 

can be regarded as smoothing transformations. An exhaustive treatment is given, answering 
the following two main questions: 

1. 	 Which linear transformations on that form remove structure in the sense that the 
number of local extrema does not increase? 

2. 	How should one create a multi-scale family of representations with the property that 
a signal at a coarser level of scale never contains more structure than a sign al at a 
finer level of scale? 

Qualitative properties of the relevant kernels are derived. We show that t hey necessarily 
have to be non-negative and unimodal both in the spatial and the frequency domain s. It is 
also shown that all such kernels with fini te support can be derived from generalized binomial 
kernels having a generating fun ction of the form 

N 

cpg(z)=Czk iT(l+a;z) (k ,NEZ) 	 (1.6) 
i = l 
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We propose that there is only one reasonable way to define a scale-space for one-dimensional 
discrete signals comprising a continuous scale parameter 

L(x; t ) = L
00 

T(n; t ) f(x- n ) (1.7) 
n=-oo 

namely by discrete convolution with the family of kernels called the discrete analog of the 
Gaussian kernel 

(1.8) 

where In are the modified Bessel functions of integer order. Similar arguments applied in the 
continuous case uniquely lead to the Gaussian kernel. Some obvious discretizations of the 
contin uous scale-space theory are discussed in view of the results presented. We show that 
the scale-space family equivalently is given by the sol ution to the semi-discretized diffusion 
equation: 

(1.9) 

with initial condition L(·; t) = f(-) . The commonly adapted technique with a sampled 
Gaussian can lead to undesirable effects, since scale-space violations might occur in the 
corresponding representation. The result exemplifies the fact that properties derived in the 
continuo us case might be violated after discretization. 

A two-dimensional theory, showing how the scale-space should be constructed for im
ages, is given based on the requirement that local extrema must not be enhanced when the 
scale parameter is increased contin uously. We show that this requirement, combined with 
linear shift-invariant smoothing and uniform treatment of all scale levels, by necessity and 
sufficiency implies that the scale-space representation has to satisfy the equation 

(1.10) 

for some C > 0 and 1 E [0, 1], where Vg and '\7 ~ denote the well-known discrete fi ve-point 
and cross-operators approximating the con tinuous Laplacian. In the separable case, corre
sponding to 1 = 0, t he resulting scale-space representation can be computed by separated 
convolution with the kernel T (n; t). 

00 00 

L(x, y; t ) = L L T(m; t )T(n; t)f(x- m, y- n) (1.11 ) 
m=-oon=-oo 

We outline how a discrete version of theN-jet representation, see Koenderink and van Doorn 
[Koe87], with derivatives computed from the scale-space representation at different scales, 
can be defined. The presented discrete theory has computational advantages compared 
to a scale-space implementation based on the sampled Gaussian, for example in the sense 
that discrete approximations to derivatives can be computed directly from the scale-space 
representations at different scales, without any need for repeating the smoothing operation. 
The main reason for this is that the discrete nature of the im plementation has been taken 
in to account already in the theoretical fo rmu lation of the scale-space representation, which 
means that the involved operators will commute. 
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1.6.2 Part II: Theory of the Scale-Space Primal Sketch 

We present a multi-scale representation of grey-level shape, called scale-space primal sketch, 
which makes explicit information in scale-space as well as t he relations between certain 
features at different levels of scale. The representation is based on blobs, that are regions 
either brighter or darker than the background. We give a formal definition of what we 
mean by a grey-level blob, which is a local extremum with extent in a grey-level image 
at a certain scale, and a scale-space blob, which is a set of grey-level blobs linked across 
scales. The extent of a scale-space blob in the scale direction is delimited by bifurcations 
between critical points, or equivalently, by bifurcations between blobs. These events also 
define hierarchical relations between scale-space blobs at different scales. The scale-space 
primal sketch can be interpreted as a tree-like data structure with the scale-space blobs as 
vertices and the bifurcation events as arcs between those. 

The representation is obtained in a completely bottom-up data-driven manner , without 
relying on any specific parameters or error criteria. We treat grey-level images, but the 
approach is valid for any bounded function , and can therefore be used for deriving properties 
of e.g. spatial derivatives. 

As to enable comparisons of significance between structures at different scales we need to 
transform the coordinate axes in the scale-space representation in such a way t hat structures 
at different scales will be treated in a uniform manner. We show that natural requirements 
on a transformed scale parameter, effective scaler, imply that there is in principle only one 
reasonable way to define it, namely by 

r(t ) = log(~~;) (1.12) 

where p(t) is the expected density oflocal extrema at scale tin the scale-space representation 
of a reference signal and p0 is a constant. From estimates of how the density of local extrema 
can be expected to vary with scale we show that for continuous signals this function will be 
a logarithm, while for discrete signals it will be approximately logarithmic at coarse scales 
and approximately linear at fine scales. It turns out that the volumes of the grey-level blobs 
must be transformed in a similar manner. That normalization is based on simulation results 
accumulated from the evolution properties of grey-level blobs extracted from random noise 
signals. 

We investigate the theoretical properties of the representation by apply ing elementary 
techniques from real analysis, singularit y theory and statistics to derive analytical result s 
for the behaviour in scale-space of critical points and related entities. 

The implicit function theorem for can be used for describing the general nature of the 
trajectories that the critical points will form when the scale parameter in scale-space i~ 

changed. We deri ve estimates for the drift velocity of critical points and straight edges. For 
critical points we have 

(1.13) 

where 1-{L denotes the Hessian matrix and \lL the gradient vector. Fo r a straight edge the 
drift velocity in the normal direction to the edge is 

(1.14) 
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These expressions show that the drift velocity momentarily may tend to infinity. Generically, 
t his occurs at bifurcation situations only. 

We a nalyse the qualitative behaviour of critical points in bifurcation situa tions a nd 
classify what types of blob events are possible. In one dimension the generic bifurcation 
events for critical points are annihilations of pairs consisting of one local maximum and one 
local minimum . In the two-dimensional case, pairs consisting of a local extremum and a 
saddle point can be both annihilated and created with increasing scale. Interpreted in terms 
of blobs these events correspond to, in one dimension annihilations and merges, while in 
two dimensions the list of possible blob events comprises annihilations, merges, splits and 
creations. A set of illustrative examples is presented, demonstrating how the blobs behave 
in characteristic situations. 

We describe an algorithm for actually computing the represen tation. It is based on 
detection of gr·ey-level blobs at different levels of scale. On that output data an adaptive 
scale sampling algori thm operates and performs the actual linking of the grey-level blobs 
into scale-space blobs as well as the registration of t he bifurcations and the blob events. 

1.6.3 Part Ill: Applications of the Scale-Space Primal Sketch 

We develop a framework for how the scale-space primal sketch can be used for extracting 
significant image structures and their scales and how this type of qualitative informa.tion 
in turn can be used for guiding other early visual modules and simplifying their tas ks. 
From measurements of stability and significance in scale-space the representation gives a 
qualitative description of the image structure with information about approximate location 
and extent as well as appropriate scale for important regions in the image - allowing for 
detection of stable scales and r egions of interest. 

In other words, it generates safe segmentation cues and can hence be seen as guiding the 
focus-of-attention and preceding fur ther processing, which can then be properly tuned. We 
argue that once such scale and region information is available many other processing tasks 
can become much simpler. The extraction method is based on the assumption that: 

• Significant blobs in scale-space correspond to important structures in the image. 

The actual mnking of events in order of significance is based on the volumes of the scale
space blobs in the four-dimensional scale-space given by the space, grey-level and scale 
coord inates. A scale-space blob in general exists over some interval in scale. As aJ1propriate 
scale for such a blob we take the scale where the blob response is as its highest, that is the 
scale level for which the three-dimensional grey-level blob volume, t reated as function of the 
scale parameter, assumes its maximum. Two important prin ciples behind this a pproach are 
that : 

• 	 We link related features at different level of scale in scale-space a nd t1·eat the scale 
pammete1· as equally important as the spatial and grey-level coordinates. This is 
direct ly reflected in the fact that the primitives of our representation are objects 
having extent not only in space and grey-level but also in scale. 

• 	 We subject the image to a systematic paramele1· va1·iation in order to detect im portant 
image structures by registering locally stable stales and determining abstract ion s from 
those. 
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An important aspect here is that stable scale is a local property associated with objects, 
not with entire images. Previous methods often face serious problems when assuming the 
existence of a global stable scale. It is usually impossible to detect such a globally valid 
scale, since the size of objects and also their distance to the camera will in general vary 
substantially over an image. 

Applications are given to edge detection, histogram analysis and junction classification 
demonstrating how the proposed method can be used for guiding various sub tasks in early 
visual processing. 

• 	 When integrating the scale-space primal sketch with edge detection we detect edges 
at a locally adapted scale determined from a significant scale-space blob. This will 
simplify the detection problem at the cost of possibly poor localization. In fact we do 
not do any thresholding on gradient magnitude. Then the localization can be improved 
by following the edges to finer scales with a method known as edge focu sing. 

• 	 For histogram analysis we use the scale-space primal sketch for automatic peak detec
tion. 

• 	 We also describe how the scale-space primal sketch can be used for providing context 
information necessary for an active fo cusing procedure aimed at classifying junctions. 
We show how a range of window sizes can be set fro:n the blob information as well as 
how the blobs can serve to guide the focus-of-attention. 

Finally, we briefly outline how the scale-space primal sketch can be applied to other visual 
tasks such as texture analysis, perceptual grouping and matching problems. Experiments 
on real imagery demonstrate that the proposed theory gives perceptually intuitive results. 
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Part I 


Discrete Scale-Space Theory 
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Chapter 2 

Scale-Space for 1-D Discrete Signals 

2 .1 Int ro duction 

The scale-space theory has been developed and well-established for continuous signals and 
images. However, it does not tell us anything about how the implementation should be per
formed computationally for real-life problems, i.e. discrete signals and images. In principle, 
we believe that there are two approaches possible. 

• 	 Apply the results obtained from the continuous scale-space theory by discretizing the 
occurring equations. For instance the convolution integral (1.1) can be approximated 
by a sum using customary numerical methods. Or, the diffusion equation (1.2) can 
be discretized in space with the ordinary five-point Laplace operator forming a set 
of coupled ordinary differential equations, which can be further discretized in scale. 
If the numerical methods are chosen with caution, we will certainly get reasonable 
approximations to the continuous numerical values. But we are not guaranteed that 
the original scale-space conditions, however formulated in a discrete situation, will be 
preserved. 

• 	 Define a genuinely discrete theory by postulating suitable axioms. 

The goal with the first part of this thesis is to develop the second item and to address 
the formulation of a scale-space theory for discrete images. We will start with a one
dimensional signal analysis. In this case it is possible to characterize exactly which kernels 
can be regarded as smoothing kernels and a complete and exhaustive treatment will be 
given. One among many questions which are answered is the following: If one performs 
repeated averaging, does one then get scale-space behaviour? We will also present a family 
of kernels, which are the discrete analog of the Gaussian family of kernels. The set of 
arguments, which in the discrete case uniquely leads to this family of kernels, do in the 
continuous case uniquely lead to the Gaussian family of kernels. 

The structure of the two-dimensional problem is more complex, since it is difficult to 
formulate what should be meant by preservation of structure in this case. However , by slight 
modification of the arguments used in the one-dimensional case, we will give an answer to 
how the scale-space for two-dimensional discrete signals should be constructed. In the sep
arable case it reduces to separated convolution with the presented one-dimensional discrete 
analog of the Gaussian kernel. The representation obtained in this way has computational 
advantages compared to the commonly adopted approach, where the scale-space is based 
on different versions of the sampled Gaussian kernel. One of many spin-off products which 
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come up naturally is a well-conditioned and efficient method to calculate (a discrete analog 
of) the Laplacian of the Gaussian. It is well-known that the implementation of the Laplacian 
of the Gaussian has lead to computational problems, see e.g. Grimson and Hildreth [Gri85]. 

The theory developed in this presentation does also have the attractive property that it is 
linked to the continuous theory through a discretized version of the diffusion equation. This 
means that continuous results may be transferred to the discrete implementation provided 
that the discretization is done correctly. However, the important point with the scale
space concept to be outlined here is that the properties we want from a scale-space hold 
not only in the ideal theory but also in the discretization1 , since the discrete nature of the 
problem has been taken into account already in the theoretical formulation of the scale-space 
r epresentation. Therefore, we believe that the suggested way to implement the scale-space 
theory really describes the proper way to do it. 

The presentation is organized as follows : In Section 2.2 we define what we mean by 
a scale-space representation and a one-dimensional discrete scale-space kernel. Then in a 
straightforward and constructive manner Section 2.3 illustrates some qu alitative properties 
that must be possessed by scale-space kernels. A complete characterization as well as an 
explicit expression for the generating function of all discrete scale-space kernels are given in 
Section 2.4. Section 2.5 develops the concept of a discrete scale-space with a continuous scale 
parameter. The formulation is equivalent to the previous scale-space formulation, which 
in the continuous case leads to the Gaussian kernel. Section 2.6 discusses discrete scale
space properties of some obvious discretizations of the convolution integral and the diffusion 
equation. Section 3.1 describes some problems which occur due to the more compli cated 
topology in two dimensions. In Chapter 3 we develop the scale-space for two-dimensional 
discrete images. Then in Chapter 4 we compare the discrete scale-space representation with 
the commonly used approach, where the scale-space implementation is based on various 
versions of the sampled Gaussian kernel. The numerical implementation of the discrete 
scale-space is treated in Section 4.3. Finally, Section 4.5 gives a brief summary of the main 
res ults. 

The results presented should have implications for image analysis as well as other disci
plines of digital signal processing. 

2.2 Scale-Space Axioms 

Dy a scale-space we mean a family of derived signals intended to represent t he original 
signal at various levels of scale. Each member of the family should be associated with a 
value of a scale parameter intended to somehow describe the current level of scale. The 
scale parameter, here denoted by t, may be either discrete (t E Z+) or continuous (t ER+) 
and we obtain two different types of discrete scale-spaces - discrete signals with a discrete 
scale parameter and discrete signals with a continuous scale parameter. However, in both 
cases we start from the following basic assumptions: 

1 ln a practical imple mentation we are of course faced with truncation and rounding e rrors due to finite 
precision . But the idea with this approach is that we hope to improve our algorithms by including at least 
the discretization effects already in the theory. In ordinary numerical analysis for simulation of physical 
phenomena it is almost always possible reduce these effects by in c reasing the density of mesh points, if the 
current grid is not fine enough to give a prescribed accuracy in the result . However, in computer vi s ion we 
are often locked to some fixed maximal resolution , beyond which additional image data are not available. 
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• Every representation should be generated by a linear 	and shift-invariant transforma
tion of the original signal. Therefore, the smoothing operator can be expressed as a 
convolution operator. 

• An increasing value of the scale parameter t should correspond to coarser levels of scale 
and signals with less structure. Particularly, t = 0 should represent to t he original 
signal. 

• 	 All signals should be real-valued functions : Z -> R defined on the same infinite grid; 
in other words no pyramid representations will be used. 

The essential requirement is that a signal at a coarser level of scale should contain less 
structure than a signal at a finer level of scale. If one regards the number of local extrema 
as one measure of the amount of structure it is thus necessary that the number of local 
extrema in space does not increase as we go from a finer to a coarser level of scale. It can 
be shown that the family of functions generated by convolu tion with the Gaussian kernel 
possesses this property in the continuous case. We state it as the basic axiom for our 
one-dimensional analysis and define: 

Definition 2.1 (Discrete scale-space kernel (ID)) 

A one-dimensional discrete kernel J( : Z -+ R is called a scale-space kernel if for· all signals 

hn : Z -+ R the number of local extrema in the convolved signal !out = ]( * fin does not 

exceed the number of local extrema in the original signal. 


A minor complication is involved in this statement. If either /;n or !out would happen to 
have a plateau t he question must be raised about how many local extrema the plateau 
should be counted as. At this moment we will not go into the details of those peculiar cases. 
We count a plateau as one local maximum (minimum ) if there are strictly smaller (larger) 
values bounding it both at the left and at the right, see Fig 2.1. An accurate treatment will 
be given in Section 2.4. 

(a) (b) 

0~ 
Figure 2.1: Examples illustrating th e definition of local extremum. {a) A local maximum (generic 

case). {b) A plateau counted as one local maximum. (c) A plateatt not counted as a local extremttm. 

An important observation to be made is that this definition equivalently can be expressed 
in terms of zero-crossings just b y replacing the string "local extrema" with "zero-crossings". 
The result follow s from the facts that a local extremum in a discrete function f is equivalent 
to a zero-crossing in its first difference t:::.j, defined by (!::::.f)(x) = f(x +1)- f(x ), and that 
the difference operator commutes with the convolution operator. 

However, the stated definition has further consequences. It means that the number of 
local extrema (zero-crossings) in any n:th order difference of the convolved signal cannot be 
greater than the number of local extrema (zero-crossings) in the n:th order difference of the 
original signal. Actually, the result can be generalized to arbitrary linear operators. 

25 




Proposition 2.1 (Ge neral smoothing property of d iscrete scale-space ke rnels) 
Let ]( : Z __. R be a discrete scale-space kernel and [, an operator (from the space of real
valued discrete functions to itself), which commutes with ](. Then for any f : Z __. R (such 
that the involved quantities exist) the number of local extrema (ze ro-crossings) in £(!(*f) 
cannot exceed the number of local extrema (zero-crossings) in£(!). 

Proof: Let g = £(!). As ]( is a scale-space kernel the number of local extrema (zero
crossings) in ]( *g cannot be larger than the number of local extrema (zero-crossings) in g. 
Since, J( and [, commute J( *g = ]( * £ (!) = £(!(*f) and the result follow s. 0 

T his shows that not only the fun ction, but also all its "derivatives" will become smoother. 
Accordingly, convolution wit h a discrete scale-space kernel can really be regarded as a 
smoothing operation. 

To realize that the number of local extrema or zero-crossings can increase even in a 
rather uncomplicated situation consider the input signal 

- 3 if n = 0 
lin(x) = 2 if n = ± 1 (2.1)

{ 0 otherwise 

an convolve it with the kernels (~, ~' ~), (!, ~) and (t, ~' ~) - The results ar e shown in 
Figure 2.2 (b), (c) and (d) respectively. As we see, both t he number of local extrema and 
the number of zero-crossings have increased for the first kernel, but not for the two latter 
ones. T hus, an operator which naively can be apprehended as a smoothing operator , might 
actually give a less smooth result. Further, it can really matter if one averages over t hree 
instead of two points and how the averaging is performed. 

(a) (b) 213
2 

1/3 
-3 

(c) I (d) 1/2 

I·1/2 
-1/2 

Figure 2.2: ( a) Input signal. {b) Convolved with( ~. ~. ~)- (c) Convo/ved with (t. ~)- {d) 

Convolved with (*, ~, i). 

In order to get familiar with the consequences of the definition we will illustrate what this 
scale-space property means. We start by pointing out a few general qualitative requirements 
of a scale-space kernel that are necessarily induced by the given axiom . We will also show 
that the two latter kernels indeed are discrete scale-space kernels. 

2.3 Properties of Scale-Space Kernels 

2.3 .1 Positivity and Unimodality in the Spatial Domain 

Dy considering the impulse response it is possible to draw some qualitative conclusions about 
the properties of a discrete scale-space kernel. Let the input function be the discrete delta 
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function 

6 {
lin(x) = (x) = 

1 
0 

if X= 0 
otherwise (2.2) 

Then, the output signal will be identical to the kernel 

f out(x) =(I( * 6)(x) = K(x) (2 .3) 

6(x) has exactly one local maximum and no zero-crossings. Therefore in order to be a 
scale-space kernel ]( must not have more t han one extremum and no zero-crossings. Thus, 

Proposition 2.2 (Positivity) 
All coefficients of a scale-space kernel must have the same sign. 

Proposition 2.3 (Unimodality) 

The coefficient sequence of a scale-space kernel {]((n)}~=-oo must be unimodaP . 


• • 
• •

• •
• • 

n 

Figure 2.3: The filter coefficiwt sequence K(n)::'=-oo of a discrete scale-space kernel must be positive 

and unimoda/. 

Without loss of generality we can therefore restrict the rest of the treatment to positive 
sequences where all K(n) ~ 0. 

It seems reasonable to require3 that J( E h , i.e. that L:;:<'=-oo IK(n)l is finite. If h n is 
bounded and ]( E 11 then the convolution is well-defined and the Fourier transform of the 
filter coefficient sequence exists. This requirement also allows us to normalize the coefficients 
such that L:;:<'=-oo K(n) = 1. Particularly, the filter coefficients K (n) must then tend to zero 
as n goes to infinity. 

2.3.2 Generalized Binomial Kernels 

Consider a two-kernel with only two non-zero filter coefficients: 

p if n = 0 
J((2l(n) = q if n = - 1 (2.4)

{ 0 otherwise 

Assume that p ~ 0, q ~ 0 and p + q =1. 
It is easy to verify that the number of zero-crossings (local extrema) in !out =]((2) *hn 

cannot exceed the number of zero crossings (local extrema) in lin· This result follows from 

2 A re al sequence is said to be unimodal if it is first ascending (descending) and then d escending (ascend
ing). 

3 Some regularity requirement must be imposed o n t he input signal as weU. Throughout our following 
considerations we will stick to one general convention. If nothing else is explicitly mentioned we assume that 
/in is sufficiently regular such that the involved quantities exist and are weU-defined. 
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the fact that convolution of f in with ]((2 ) is equivalent to the formation a weighted ave rage 
o f the sequence {J;n(x) }~=-oo• see F igure 2.4. T he values of t he ou t put signal can be 
const ructed geometrically and will fall on straight lines co nnect ing t he valu es of the input 
signal. T he offse t along t he x -ax.is is determined by the ratio qf (p + q). It is obvious that 
no additional zero-crossings can be introduced by this transformation. Thus, a kernel on 
t he form (2.4) is a discrete scale-space kernel. 

• · I a+ I 

Figure 2.4: T o con volve a s ignal /in with a two-kernel [((2)(n ) is equivalent to to form a weighted 

average of th e seque n ce {/in(x)}~=-oo · It is obvious that no n ew ze ro-crossin gs can be in trodu ced by 

this transf ormation . 

Directly from t he definition of a scale-space kernels it follows t hat if t wo kernels K a and J(b 

are scale-space kernels t he n also K a * J(b is a scale-space kernel. 

L e mma 2 .4 (Repeate d application of scale-space ke rne ls ) 
If two kernels !(, an d J(b are scale-space kernels then also Ka * J(b is a scale-space kernel 

Re peated application of t his result yields: 


Proposition 2 .5 (Re p ea t ed averaging leads to sca le-spa ce k e rne ls ) 


All kernels /( on the f orm *i'::tK}2l, with K}2l according to (2 . ..f}, are discrete scale-space 

kernels . 


T he filter coefficient s generated in t his way can be regarded as a kind of generalized binomial 
coeffi cien ts. T he ordinary binomial coefficients are ob tained, except for a scaling-factor , as 
a special case if all Pi and Qi are equal. Another formulat io n of Proposition 2.5 in terms of 
genera ting functions is also possible. 

P r o p osition 2.6 (Gener a ting function of generalized binomia l kernels ) 
All kernels with the generating fun ction <t'K (z) = L:~=-oo f {( n)zn on the form 

N 

<pg (z) = C zk IT ( P i+ q;z) (2 .5) 
i= l 

whe1'e P i > 0, Qi > 0 and k E Z are discrete scale-space kernels. 


P r oof: Th e genera ting fun ction of a ker nel o n t he fo rm (2.4) is <p .c2 >(z) = Pi + QiZ.

1\ . 

As con volutio n in t he spatial dom ain corresponds to multipli cation of generat ing functions 
Proposition 2.5 gives tha t 

<t'K( z) = <p1,(2J(z ) <,O K(2J(z) .. . <p1.(2J(z) (2.6)
\ I 2 \ N 
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is the generating function of a scale-space kernel. A constant scaling-factor Cor a translation 
<ptransl(z) = zk cannot affect the number of local extrema. Therefore these factors can be 
multiplied onto <pK(z) without changing the scale-space properties. 0 
Another way to express this result is as follows: 

Pro pos ition 2 .7 (Suffic ie nt crite r ion fo r s cale-space ke rne ls) 
Let c_m, ... , c_ 1 , c 0 , c 1 , ...cn be the coefficients of a discrete kernel with finite support. Then a 
sufficient condition for the kernel to be a scale-space kernel is that all roots of the generating 
function 

cp(z) = c_mz-m +... + c_lz-
1 +Co +Ct Z + ... + CnZn (2.7) 

are real and non-positive. 

P roo f: Let k = -m, N = n +m in (2.5). If all roots of cp(z) are real and negative then 
(2.5) in Proposition 2.6 must be t he factorization of (2.7). 0 

2 .3 .3 Pos it iv ity a nd U nimodality in the Fourier Domain 

The Fourier transform of a symmetric sequence on the form (2.5) has some interesting 
properties. The most general generating function of such a sequence can be written as 

N 

<pK(z)=c fl (p,., + q,.,z)(p,.,+q ...z-1 
) (2.8) 

v= 1 

Consider one factor (p., + q... z)(p,., + q.,z-1 ). Its Fourier tr~nsform is 
00 • 

tPK(B) = L K(n)e-inO = <pK(eiO) = (Pv +q,_,eio)(p,.,+q,_,e-io) = p~+q;+2pvqv cos(} (2.9) 
n=-oo 

On the interval [-1r, 7r] this function is non-negative. It assumes its maximum value (p.,+q... )2 

for(}= 0 and its minimum value (p... -q... )2 for () = ±7r . tPK(O) is monotonically increasing on 
[- 11",0] and monotonically decreasing on [0,11"], in other words unimodal. It is easy to show 

'l'(e) 

- 1t 1t e 

Figur e 2.5: The Fourier transform of a (normalized) symmetric three-kernel with the coefficients 

(a/2, 1- a , a/2) is t/J(B) = 1- a( l - cos B). If 0 ::; a ::; 1/2 this function is non-negative and 

unimodal on t he interval [-1r, 1r]. In the special case a= 1/2 the Fourier transform tends to zero at 
the end points of the interval. 

that any finite product of non-negative increasing (decreasing) functions is also increasing 
(decreasing). Consequently, the Fourier transform of a symmetric kernel on the form (2.5) 
is non-negative and unimodal on the interval [-11", 7r]. In this section we will derive results 
showing that the Fourier transform of any symmetric scale-space kernel must possess these 
properties. The proofs, which sometimes are of a rather technical nature, can be skipped 
by the hasty reader without loss of continuity. 

29 



2.3.3.1 No Real Negative Eigenvalues of the Convolution Matrix 

If the convolution transformation ! out = I(* /;n is represented on matrix form fout =C fin 
a matrix with constant values along the diagonals C;,j = K ( i - j) appears. Such a matrix 
is called a Toeplitz matrix. If this matrix has a real and negative eigenvalue then the 
corresponding kernel cannot be a scale-space kernel. 

Proposition 2.8 (No real negative eigenvalues of the convolution matrix) 
L et](: Z-+ R be a discrete kernel with finite support and filt er coefficients Cn = K(n). If 
for some dimension N the N x N convolution matrix 

co C- t C2-N Ct-N 

Ct co C- t C2-N 

c<N> = (2.10) 

CN-2 Ct co C-t 

CN-1 CN-2 Ct Co 

has a negative eigenvalue with a corresponding real eigenvector then K cannot be a scale
space kernel. Particularly, if the kernel is symmetric then all eigenvalues must be real and 
non-negative. 

Proof: Because of Proposition 2.2 it is sufficient to study kernels having only non-negative 
filter coefficients. Assume that C(N) has a real negative eigenvalue for some dimension N 
and a corresponding real eigenvector v. Let IN be the index set l..N. Create an input 
signal /;n, which is equal to the components of v for x E IN and zero otherwise. Convolve 
this signal with the kernel. Then for x E IN the values of I( * /;n will be equal to the 
corresponding components of C (N)v (see Figure 2.6). As vis an eigenvector with a negative 

(a) 

" 
(b) 

'I 'I 
(c) 

~ 
...I.. ff ,\ 

Figure 2.6: (a) The eigen vector v . (b) The components of C(N) v having indices l.. N. (c) T he 

components of I< * fin . 

eigenvalue the components of C(N) V and V have opposite signs. This means that V' c(N) V 

and K * hn all have the same number of internal zero-crossings provided that we observe 
only the components in IN. 

The reversal of these components and the positivity of the filter coefficients g uarantee 
that at least one additional zero-crossing will occur in the output signal. Let a denote the 
index of the fir st non-zero component of hn· If h n(a) is positive (negative) then due to 
the negative eigenvalue ]( * h n( a) will be negative (positive). Since the filter coefficients 
are non-negative the first non-zero component of](* fi n (at position {3 ) will have the same 
sign as h n(a), i.e. positive (negative). Consequently, we have found at least one additional 
zero-crossing in ](*fin between these two positions (a and {3). The same argument can be 
carried out at other end point producing another scale-space violation. This shows that ]{ 
cannot be a scale-space kernel. D 

30 



2.3.3.2 Positivity in the Frequency Domain 

The eigenvalues of a Toeplitz matrix are closely related to the the Fourier transform of 
t he corresponding sequence of coefficients, see e.g. Grenander [Gre58) or Gray [Gra72). A 
theorem by Toeplitz [Toell] relates the eigenvalues4 of an infinite Toeplitz matrix C with 
elements C;,j = Ci-j to the the values of the generating function associated with the sequence 
of filter weights. Assume that <p(z) = L~=-oo CnZn is convergent in the ring r < jzj < R, 
where 0 < r < 1 < R. Then the eigenvalues of C coincide with the set of com plex values 
that <p(z) assumes on the unit circle lz l = 1. This property allows us to derive an interesting 
corollary from Proposition 2.8. 

Proposition 2.9 (Non-negative Fourier transform) 
The Fourier transform tjJK(8) = L~=-oo J(( n )e-inO of a symmetric discrete scale-space 
kemel J( with finite support is non-negative. 

Proof: Let >.~N) denote the smallest eigenvalue of the convolution matrix of dimension N 
and let m denote the minimum value5 the Fourier transform tPK assumes on [-1r, rr ). As 
a consequence of a theorem by Grenander [Gre58] Section 5.2 p65 about the asymptotic 
distribution of eigenvalues of a finite Toeplitz matrix it follows that 

lim >.~N) =m ;.(N) >m (2.11)-N-+oo 1 

If m is strictly negative then as limN-+oo >.~N) = m it follows that >.~N) will be negative for 
some sufficiently large N. According to Proposition 2.8 t he kernel cannot be a scale-space 
kernel. 0 

2.3.3.3 Unimodality in the Frequency Domain 

If a linear transformation is to be regarded as a smoothing transformation it turns out to 
be necessary that the low frequency components are not suppressed more than the high 
frequency components. This means that the Fourier transform must not increase when t he 
absolute value of the frequency increases. The occurring unimodality property is easiest to 
establish for circular convolution. In that case the convolution matrix becomes circulant6 , 

which means that its eigenvalues and eigenvectors can be determined analytically. 

Proposition 2.10 (Unimodal Fourier transform; wrap-around) 

Let {cn}~=-oo be the filter coefficients of a symmetric discrete kemel with Cn = 0 if lnl > N. 

For all integers M ~ N it is required that the transformation given by multiplication with 


the (2M + 1) x (2M + 1) symmetric circulant matrix ctf) (2.12}, defined by (CbM))i,j = 

Ci- j (i, j = o..M) and Ci1'Culant extension, should be a scale-space transformation. Then, 

necessarily the Fourier transform tj;(8) = L~=-oo Cne-inO must be unimodal on [- 1r, 1r). 


•.). is said to be an eigenvalue of an infinite matrix C if the matrix C-).[ has no bounded inverse. I 
denotes the unit matrix. 

~Due to the symmetry of the kernel, t/Jt<(8) assu mes only real values. The minimum value exists, since 
t/1(8) is a continuous function and the interval [-,.., Jrj is compact. 

6 ln a circulant matrix each row is a circular shift of the previous row except for the first row which is a 
circular shift of the last row. 
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Proof: The core in the proof is to show that if a kernel has a non-unimodal Fourier 
transform then there exists some low frequency component that disappears faster than 
some other high frequency component. By considering a signal which is a superposition 
of two such components will show that repeated application of the convolution operator 
will eventually lead to an increase in the number of local extrema when t he low frequency 
component has died out and the high frequency component dominates, see also Figure 2.7. 

(a) 

(b) 

Figure 2.7: (a) Input signal consisting of a low frequency component of high amplitude and a 

high frequency component of lo w amplitude. {b) In the output signal th e lo w frequen cy component 

has been suppressed while the high frequency component remains unchanged. As we see, additional 
zero-crossings have been introduced. 

We will introduce a temporary definition. If x is a vector of length L let V(x) denote 
the number of zero-crossings in the sequence of wmponents x1 , x2 , . .• XL, x1 . By verification 
one shows t hat the eigenvalues Am and eigenvectors V m of c~M) are 

(m = -M.. O ..M) (2.13) 

. ( 21rmk )(v m)k =Sin (m= -M.. - 1, k = -M..O..M) (2.14)
2M+1 

21rmk )
(vm )k =cos M + (m= O.. M, k = -M.. O ..M)( 2 1 

We note t hat V(vm) increases as lm l increases. Further, the eigenvalues Am = 7JI( 2Xf~~\ ) 
of C~M) are uniformly sampled values of the Fourier transform and a larger value of lml 
corresponds to a larger absolute value of the argument 7J1 . 
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Now, assume that the Fourier transform is not unimodal. (Without loss of generality we 
can presuppose that 'ljJ is non-negative on [-1r, 1r], because otherwise, according to Propo
sition 2.9, the kernel cannot be a scale-space kernel.) Then, as 'ljJ is a continuous function 
of 0 it is possible to find some sufficiently large integer M such that there exist Oa = !;:

2 1 

and 0{3 = 2!;~ satisfying t/J( 8{3) > tjJ( 8a) for some integers {J > o: in [0, M].1 
To summarize, cfl has eigenvalues >.{3 > >.0 and corresponding eigenvectors wi t h 

V(v{J) > V(v0 ). We will show that this situation leads to a scale-space violation. The 
scale-space properties are not affected by a scaling factor. Therefore, we can equivalently 

study B = ~cgvl}. For both eigenvectors we define the smallest and largest absolute values 

v(ab•min) and v(ab•mar) by 

(2.15) 

Let x = cv.,. + V[J where c is chosen large enough such that V(x) = V(va) · This can 

always be achieved if lcl viab•min) > v~ab•mar}, since then the components of x and V a will 

have pairwise same signs. (vi"b•min) will be strictly positive as all components of v .,. are 
non-zero.) Then consider Bx = ~(c>.ava + >.{Jv{J) and study 

(2.16)Bkx = c ( ~:rv"' + V {3 

For a fixed value of c we can always find a sufficiently large value of k such t hat V(Bkx) = 
V(v{J)· In a similar manner to above one verifies that the condition lcll1:lkviab•mar) < 

v1ab•min) suffices. Consequently, V(Bkx) > V(x) which shows that the transformation 

induced by Bk is not a scale-space transformation. Therefore, B cannot be a scale-space 
kernel since at least one scale-space violation must have occurred in the series of k successive 
transformations. 0 

t/t(O) 

() 

Figure 2.8: If the Fourier transform is not unimodal on [-1r, 1r] , i. e if there exist 82 > 81 in [0, 1r] 
such that 1/1(82) > 1/1(81) then the corresponding transformation cannot be a scale-space transforma
tion. 

The result can be extended to com prise non-circular convolution as well. The idea behind 
the proof is to construct an input signal consisting of several periods of the signal leading 
to a scale-space violation in the proof of Proposition 2.10. Then , the convolution effect on 
the "interior" periods will be identical to effect on one p eriod by circular convolution . If 
the signal consists of a sufficient number of periods the boundary effects will be negligible 
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compared to the large number of scale-space violations occurring in the inner parts. The 
formal details are somewhat technical and can be found in Appendix A.l.l. 

Proposition 2 .11 (Unimodal Fourier transform; general case) 
The Fourier transform tPK(0) = L::~=-oo K(n )e-ine of a symmetric discrete scale-space 
kernel ]( with finite support is unimodal on the interval [-1r, 1r) (with the maximum value 
at()= 0). 

2 .3.4 Kernels with Three Non-Zero E lements 

For a three-kernel ]((3) with exactly three non-zero consecutive elements c_1 > 0, c0 > 0 
and c1 > 0 it is possible to determine the eigenvalues of the convolution matrix and the 
roots of the characteristic equation analytically. It is easy to verify that the eigenvalues >.1, 
of the convolution matrix 

are all real and equal to 

J.L1r>.,. = c0 - 2Jc_1c1 cos( N +1) (p. = l..N) (2.18) 

and that the roots of generating function <f'K<3>(z) = c_1z-l +c0 + c1z are 

(2.19) 

From (2.18) we deduce that if c0 < 2.Jc_ 1c1 then for some sufficiently large N at least one 
eigenvalue of C(N) will be negative. T hus, according to Proposition 2.8 the kernel cannot 
be a scale-space kernel. However, if c~ 2:: 4c_1c1 then both the roots of <f'K(3) will be real 
and negative. This means that the generating function can be written on the form (2.5) 
and the kernel is a scale-space kernel. Consequently, we obtain a complete classification for 
all possible values of c_t, c0 and c1 . We conclude that: 

Proposition 2.12 (Classification of general three-kernels) 

A three-kernel with elements (c_t, c0 , c1) is a scale-space kernel if and only if c~ 2:: 4 c_1c1 , 


i.e. , if and only if it can be written as the convolu tion of two two-kernels with positive 
elements. 

For explicitness we state the corresponding result in the symmetric case when c_ 1 =c1 : 

Corollary 2.13 (Classification of symmetric three-kernels) 

A symmetric three-kernel with elements (c1 , c0 , et) is a scale-space kernel if and only if 

eo 2:: 2ct 2:: 0. 
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The necessity of this property can also be shown directly from the positivity and unimodality 
properties in the spatial and Fourier domains. Observe that the usual binomial kernel with 
the coefficients ( t, t, t) is actually a boundary case. 

At this moment one could ask one-self if these results can be generalized to hold for 
kernels with arbitrary numbers of non-zero filter coefficients. I.e. if all discrete scale-space 
kernels with finite support have a generating function on the form (2.5). This question will 
be answered in the next section. 

2.4 Kernel Classification 

Until now we have postulated an axiom in terms of local extrema or equivalently zero
crossings and investigated some of its consequences for signal transformations expressed as 
linear convolution with a shift-invariant kernel. We have seen that the sequence of filter 
coefficients must be positive and unimodal and that its sum should be convergent. For 
symmetric kernels the Fourier transform must be positive and unimodal on [ -1f, 1f]. 

In t his section we will perform a complete characterization of the scale-space kernels. We 
have studied the literature and seen that several interesting results can be derived from the 
theory of total positivity. The proofs of the important theorems are sometimes of a rather 
complicated nature for a reader with an engineering background. We will not burden t he 
presentation with them but give a brief background to the theory and a few summarizing 
results without proof. 

The pioneer in the subject of variation-diminishing transforms was J.J_ Schoenberg. He 
studied the subject in a series of papers from 1930 to 1953 [Sch30, Sch48, Sch53]. Later the 
theory of total positivity has been covered in a monumental monograph by Karlin [Kar68] . 
A recent paper by Ando [And87] reviews the field using skew-symmetric vector products 
and Schur complements of matrices as major tools. The questions issued in this treatment 
constitute a new application of these not too well-known but very powerful results. 

2.4 .1 Background 

Consider first a general linear transformation of discrete signal where the kernel does not 
need to be shift-invariant. 

fout(x) = L
00 

K(x, y)fin(Y) (x E Z) (2.20) 
y=-oo 

Two notions of sign changes in vectors will be used, see e.g. Karlin [Kar68] or Ando [And87]. 
Let x = (x1 , x 2 , ..• ,xn) be a vector of n real numbers. We denote by v-(x) the (minimum) 
number of sign changes obtained in the sequence x1, x2 , ... , Xn if all zero terms are deleted 
and by v+(x) the maximum number of sign changes possible in the sequence xl> x2 , ••• , Xn 

if each zero value is allowed to be replaced by either +1 or -1. We use a special convention 
saying that the number of sign changes in the null vector is - 1. 

The interesting sequences and kernels will defined in terms of minors of the transfor
mation matrix. Given a kernel ]( : X x Y _. R we form minors of arbitrary order r by 
selections of x1 < x2 < ... < Xr from X and of y1 < Y2 < ... < Yr from Y. The determinant 
of the resulting matrix with components {K(x; , Yi)}i,j=l..r is called "a minor of order r" 
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and denoted by 

J((xl , Yl) J(( xl,Y2) K(x1 , Yr) 
K(x2,y1) J( (x2,Y2) K (x2, Yr)

]( ( Xi,X2, ···•Xr) = (2.21 )
Y1 , Y2 , .. . , Yr 

A basic concept when dealing with variation-diminishing properties is sign-regularity: 

Sign-regularity: 
A discrete kernel K : Z x Z -+ R is said to be sign-regular (SRoo ) if all its 
r-order m inors have same sign for every order r from 1 through oo, i.e. if there 
exists a sequence of constants £ 1 , £ 2 , ••• each +1 or - 1 such that 

(2.22) 

for all choices of X1 < X2 < ... < Xr and Yl < Y2 < ... < Yr from Z. 

In other words, sign-regularity means that it is impossible to find two minors of same order 
having opposite signs. If strict inequality holds for all r then ]( is said to be strictly sign
regular (SSR oo). General linear transformations (not necessarily shift-invariant) possessing 
variation-diminishing properties in the sense that they never increase the number of sign 
changes in a vector, can be fully characterized in terms of sign-regularity. 

Classification of general variation-diminishing transformations 1: 
Let A be ann x m real matrix with n ~ m. Then the lin ear map A from R m to 
Rn diminishes variations in sign in the sense that 

for all x E Rm x =f. 0 (2.23) 

if and only if A is strictly sign-regular {SS Roo) . 

The o riginal proof of this powerful theorem, forming the foundation of the theory for 
variation-diminishing transforms, can be found in Schoenberg [Sch53]. Ando [And87] de
rives it using skew-symmetric vector products. Another formulation is possible [And87] if 
A is known to be of full rank. 

Classification of general variation-diminishing transformations 11: 
Let A be an n x m real matrix of rank m. Then 

(2.24) 

holds fo r all x E Rm (x =f. 0) if and only if A is sign-regular {SR00 ). 

We no te that the condition (2.24) is equivalent to t he form ulation we expressed in Defini
tion 2. 1. Consequen tly, sign-regularity a nd full r ank are the necessary and sufficient condi
tions for a kernel to be a potential scale-space kernel. A narrower class of transformations 
is o btained if all m inors are required to be non-negative , see e.g. Karlin [Kar68]. 
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Total positivity: 
A discrete kernel J( : Z x Z -+ R is said to be totally positive (TPoo) if all its 
minors are nonnegative; i.e. if 

]( ( 	 X},X2,··•,Xp);::: 0 (2.25) 
Yl' Y2 , ... , YP 

x 1 < x 2 < ... < xp; Y1 < Y2 < ... < yp; p = 1, 2, ... , oo 

An important subclass of totally positive kernels appears if the discrete kernel is required 
to be shift-invariant i.e. if K (x, y) can be written as k(x- y ) = Cx- y· 

Polya frequency sequence: 
A sequence {cn}~-CXl is said to be a P6lya frequency sequence if all minors of 
the infinite Toeplitz matrix 

co c_l c-2 
(2.26) Cl Co C- 1C= 

c2 c1 co 

are non-negative. 

The im portance of the P6lya frequency sequences becomes apparent when we require that 
the generating function converges, which for instance holds if the sum of the filter coefficients 
is convergent. 

Normalized Polya frequency sequence: 
A P6lya frequency sequence {cn}~=-oo having a gen erating fun ction <p(z) = 
:L:::"=-oo CnZn which converges in an annulus r < lzl < R (0 < r < 1 < R ) 
such that <p(z) =/= 0 is called a normalized P6lya frequency sequence. 

According to a theorem by Schoenberg [Sch48] sign-regularity combined with the Toeplitz 
structure implies total positivity. Consequently, 

Classification of variation-diminishing convolution transformations: 
The convolution transformation 

f out(x) = L
00 

Cnhn(x- n) 
n=-oo 

is variation-diminishing i.e. 

holds for all fin if and only if the sequence of filter coefficients {Cn} ~-oo is a 
normalized P6lya frequency sequence. 
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In other words, every shift- invariant discrete scale-space kernel corresponds to a norm alized 
P 6lya f requency sequence. 

T here exists a remarkably explicit characterization theorem for the generating function 
of a P F00-sequence. It has been proved in several steps by Edrei and Schoenberg, see [Sch53] 
or [Kar68]. 

Classification of P6lya frequency sequences: 
An infinite sequence {cn};:o=-oo is a P6lya frequency sequence if and only if its 
generating function cp(z) = L~=-oo CnZn is of the form 

cp(z) =c z k e (q- l z-t+qtz) IIoo (1 +a ;z)(1 +6;z- 1) (2.27) 
i=1 (1 - ,B;z)(1 - ")';z-1) 

00 

c > 0; k E Z q_1 , ~ , a;,,8; ,")'; , 6; ~ 0; 	 l,)a; +{3; + / i +6;) < oo 
i=1 

The sequence { cn};:o=- oo is normalized if and only if it in addition holds that ,8; < 1 and 
/i = 1, see (Kar68]. 

2.4.2 Classification of Discrete Scale-Space Kernels 

The results from the previous section allow us to completely classify which kernels are scale
space kernels. To summarize, we can state two criteria; one in terms of minors of the 
convolution matrix and one in terms of the generating function of the convolution kernel. 

Theorem 2.14 (Classification of discrete scale-space kernels I) 
A discrete kernel K : Z -+ R is a scale-space kernel if and only if the corresponding sequence 
of filter coefficients {K(n)};:o=-oo is a normalized P6lya frequency sequence, i.e. if all minors 
of the infinite matrix 

K(O) K( -1) K( -2) 
K(1) K(O) K( -1) (2.28) 
K(2) K(1) K(O) 

are non-negative. 

Theorem 2.15 (Classification of discrete scale-space kernels II) 
An discrete kernel J( : Z -+ R is a discrete scale-space kernel if and only if its generating 
funct ion IPI<(z) =L~=-oo K ( n)z n is of the form 

<px(z) = c zk e(q-tz-l + qtz) II (1 + a ;z)(1 +6;z-1) oo 	 (2.29) 
i=1 (1- {3;z)(1- ")';z-1) 

00 

{3; , /i < 1; 	 2)a; + {3; + /i + 6;) < oo 
i=l 
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Note that we get the Fourier transform of the kernel by replacing z by e-iB. 

The product structure of this expression corresponds to the previously mentioned prop
erty that if J(a and J(b are scale-space kernels then also J(a * J(b is a scale-space ker
nel. The meanings of the leading factors C and zk are just rescaling and translation. In 
(1 + a;z) and (1 + 8;z-1 ) we recognize rewritten versions of the generating functions of two
kernels. The factors in the denominator are Taylor expansions of geometric series , which 
correspond to moving average processes of the forms fout(x) = hn(x) + f3dout(x- 1) and 
fout(x) = hn(x) + i dout(X + 1). The exponential factor describes infinitesimal smooth
ing. Its interpretation will become clearer in the next section, when we derive the discrete 
scale-space with a continuous scale parameter. To conclude, this classification implies that 

Corollary 2.16 (Primitive discrete smoothing transformations) 
For discrete signals Z -+ R there are exactly five primitive types of linear and shift-invariant 
smoothing transformations, of which the last two ones are trivial: 

• 	 two-point weighted average or generalized binomial smoothing 

f out(x) = f;n(x) +a;/;n(x- 1) (a;::: 0) (2.30) 

fout(x) = f;n(x) +8;/;n(x +1) (8 ;::: 0) (2.31) 

• 	 moving average or first order recursive filtering 

fout(x) = hn(x) + f3dout(x- 1) ({3 ;::: 0) (2.32) 

fout(x) = fin(x) + ldout(X + 1) Cl;::: 0) (2.33) 

• 	 infinitesimal smoothing or diffusion smoothing, see Section 2.5.2 for further explana
tion. 

• 	 rescaling 

• 	 translation 

Moreover we have that 

Corollary 2.17 (Decomposition property of scale-space kernels) 
A convolution transformation is a smoothing transformation with discrete scale-space prop
erties if and only if it can be decompo sed into primitive transformations, which are all 
smoothing transformations possessing scale-space properties. 

This means that the inverse statement of Lemma 2.4 is true and that once a non-smoothing 
transformation has been performed, that step it is impossible to full y compensate for by 
further smoothing. Of course, one could in general expect that such fur ther smoothing leads 
to a signal with a smaller number of local extrema. However , there will always exist some 
signals for which this is not possible. 

For kernels with finite support q_1 , q1 , {3; and /i must be zero and the infinite product 
must be replaced with a finite one. Then, the generating function will be reduced to IPK(z) = 
c zk f1~1 (1+a;z)(1+8;z-1 ), for some finite N, which except for rescaling and translation is 
the generating function of the class ofgeneralized binomial kernels in Proposition 2.5 and 2.6. 
Hence, 
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Theorem 2.18 (Classification of discrete scale-space kernels with finite support) 

The kernels on the form *~1 KJ2>, with KJ2> according to {2.4), are {except for rescaling 
and translation) the only discrete scale-space kernels with fin i te support. 

An immediate consequence of this result is that convolution with a fin ite scale-space kernel 
can be decomposed into convolution with kernels having two strictly positive consecutive filter 
coefficients. This gives further emphasis to the statement that t he generalized binomial 
kernels are, excep t for a trivial t r anslation, the only discrete scale-space kernels with finite 
support. In the symmetric case the generating function can be furth er reduced to lf'K(z) = 
c f1f: 1(1 + a;z)(1 + a;z-1 ), which shows that 

Corollary 2.19 (Symmetric discre te scale-space kernels with finite support) 
Every symmetric discrete scale-space kernel can be decomposed into convolutions with sym
metric three-kernels of type 

(a;, b;, a;) where b; 2 2a; > 0 (2.34) 

In othe r words, every symmetric discre te scale-space kernel with finite support has a Fourier 
transform of the f orm 

N 

1/JK(O) = Il(b; +2a;cos(O)) (2.35) 
i=l 

T he representation (2.29), which gives a catalogue of all one-dimensional discrete smooth
ing kernels, can sometimes be very convenient for further analysis. For example, starting 
from (2.29) it is almost trivial to show that t he Fourier transform of a symmetric discrete 
scale-space kernel is unimodal and non-negative on the interval [-7r,7r). Due to the sym
metry we have q_ 1 = q1 , a., = o., and f3v = lv· As a firs t step one replaces z with e-iB 

(which gives the Fourier transform ) and shows that each one of t he factors e<q-~ z- 1 
+q1z), 

(1 +avz)(1 +Ov z- 1 ) and (( 1- f3vz)(l - !vz- 1 ))-1 is a non-negative and unimodal function 
of 0 on [-71", 1r] . The remaining details are left to the reader. 

2.5 Axiomatic Scale-Space Construction 

2.5.1 Discrete Scale-Space with Discr ete Scale P a r a meter 

With the classification result from the previous section in mind an apparent way to get a 
multi-scale representation of a discrete signal f is by defining a set of discrete fun ctions 
L; (i = O..n) where L0 = f and each coarser level is calculated by convol ution from the 
previous one L; = Ki-i- 1 * Li-1 (i = l..n). The kernels Ki-i- 1 should be appropriately 
selected scale-space kernels corresponding to suitable amounts of blurring. T he scale-space 
condition for each kernel guarantees that signals at coarser levels of scale (larger value of 
i) do not cont ain more structure t han signals at finer levels of scale. This leads to a so
called sampled scale-space with a discrete scale parameter. Combined with a sub-sampling 
operator it provides a possible theoretical basis for the pyramid represen tations7 . However, 
one problem arises. How should one select the kernels/scale-levels a priori in order to achieve 
a sufficiently dense sampling in scale? 

7 Note that when dealing w ith pyramids t here a re other problems a rising due to the lower number of grid 
points, aliasing and t he fixed scale sampling that might influence the design criteria. Those issues a rc not 
covered by this treatment . 
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Figure 2 .9: Given th e classification of discrete scale-space kernels it is straightforward, at least in 

principle, to construct a scale-space representation associated with a discrete scale paramet er: Start 

from the original signal and select a set of kernels K;+1-; , each one describing the transformation 

f rom a scale le vel i to the n ext coarser level i + 1, where every such kernel should be a discrete 
scale-space kernel. Then one is guaranteed that any coarser level of scale j does not contain m ore 

local extrema any a finer level of scale i provided that j ~ i. However, there is still o ne problem that 

needs to be solved. How should the kernels be selected in order to achieve an appropriate sampling 

in scale ? 

2.5.2 Discrete Scale-Space with Continuous Scale Parameter 

The goal in this section is to tie together scale-space kernels corresponding to different 
degrees of smoothing in a systematic manner such that a continuous scale parameter can 
be introduced. The concept of a continuous scale parameter is of considerable importance, 
since we will no longer be locked to fixed pre-determined discrete levels of scale. It allows 
us to defocus signals with an arbitrary amount of blurring, which will certainly make it 
easier to locate and t race events in scale-space. Of course, it is impracticable to generate 
the representations at all levels of scale in a real implementation. However, the important 
idea is that, in contrast to the pyramid representations where the scale levels are fixed, 
with a continuous scale parameter the scale-space representation at any level of scale can 
be calculated if desired. 

We will not consider the question about how to choose a suitable set of scale levels in 
a practical case. Imagine for instance that we want to t race events, like local extrema, 
zero-crossings, edges (Ber87] or convex and concave regions, as the blurring proceeds in 
scale-space. In order to analyze scale-space behaviour, t he con tinuum of multi-scale repre
sentations must be sampled at some levels of scale. It is certainly a non-trivial problem to 
make an appropriate selection of t hese levels, and it seems plausible that the sampling rate 
along the scale direction should depend upon the signal under study. If in some scale scale 
interval the representation varies relatively smoothly we should be able to allow a larger scale 
step than if it were strongly varying. We will thus be lead to methods t hat a utomatically 
regulate the scale step, based on t he local st ruct ure of the signal as function of the spatial 
and scale coordinates, compare also with the drift velocity estimates in Chapter 6.1.1 and 
the linking algorithm across scales in C hapter 7.2. The point with a scale-space with a con
tinuous scale parameter is that it provides a t heoretical fr amework for the development of 
such algorithms, in which the scale steps can be varied arbitrarily. We do not need to select 
any set of scale levels in advance, but can leave the decision open to t he actual situation. 

We start from the axioms given in Section 2 and postulate that t he scale-space should 
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be generated by convolution with a one-parameter family of kernels , i.e. L(x; 0) = f (x) 
and 

L(x; i) = L
00 

T(n; i)f(x - n ) (i > 0) (2.36) 
n=-oo 

This form of the smoothing formula reflects the requirements about linear shift-invariant 
smoothing and a continuous scale parameter. The amount of structure in a signal must not 
increase with scale. This means that for any i 2 > it the number of local extrema in L(x; i 2) 

must not exceed the number of local extremain L(x; ti). Particularly, by setting it to zero 
we realize that each T( ·; i ) must be a scale-space kernel. 

In order to simplify the analysis a semi-group requirement T(·; s) *T(·; t) = T(· ; s + 
i) is imposed on the family of kernels. This property makes it possible to calculate the 
representation L( ·; i 2 ) at a coarser level i 2 from the representation L(·; ti) at a finer level 
it (i2 > it) by convolution with a kernel from the one-parameter family. In sum mary, 

L(·; i 2 ) ={definition} = T(·; t 2 ) * f ={semi-group}= (2.37) 

= (T(·; i2 - it)* T(·; ii)) * f = {associativity} = 

= T(·; i2- it)* (T(·; i1) *f)= {definition} = T(· ; i2 - it)* L(-; il) 

As each T(·; i) is required to be a scale-space kernel, the semi-group property ensures that 
the scale-space property holds between any two levels of scale. It also means that all scale 
levels will be treated in a uniform manner. 

We will show below that the conditions mentioned, combined with a normalization cri
terion 'L~=-oo T(n; i) = 1 and a symmetry constraint T( - n ; i) = T( n; t) , determine the 
family of kernels up to a positive scaling parameter8 a. One obtains, 

(2 .38) 

where In are the modified Bessel functions of integer order. These functions with real 
arguments are except for an alternating sign sequence equal to the ordinary Bessel functions 
Jn of integer order with purely imaginary arguments. 

I n(i) = Ln(t) = (-1tJn(ii) (n ~ 0, t > 0) (2.39) 

Theorem 2.20 (Scale-space for discrete signals; Necessity and sufficiency) 
Given any one-dimensional signal f : Z -+ R let L : Z x R+ -+ R be a one-parameter family 
of functions defined by L(x; 0) = f( x) (x E Z) and 

L(x; t) = L
00 

T(n; t ) f(x- n) (2.40 ) 
n=-oo 

(x E Z, t > 0}, where T : Z x R+ -+ R is a one-parameter family of symmetric f tmctions 
satisfying the semi-group property T(·; s) * T(· ; t) = T(· ; s + t ) and the normalization 
criterion 'L~=-oo T( n; t ) = 1. For all signals f it is required that if t 2 > t 1 then the number 
of local extrema (zero-crossings) in L(x; t2) must not exceed the number of local extrema 
(ze ro-crossings) in L(x; ti). Then necessarily (and sufficiently), 

(2.41) 

for some non-negative real a, where In are the modified Bessel funct ions of integer order. 
8 For simplicity, the parameter a , which only affec ts t he scaling of the scale parameter , will be set to 1 

a fter the end of this section. 
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Proof: As mentioned above, every kernel T(n; t) must be a scale-space kernel. A theorem 
by Karlin [Kar68) states that the only semi-group of normalized P6lya frequency sequences 
has a generating function of the form 

(2 .42) 

where t > 0 and a, b ~ 0. This result, which forms the basis of the proof can be eas
ily understood from Theorem 2.15. If a family h(-; t) possesses t he semi-group property 
h(-; s) * h(-; t) = h(-; s + t) then its generating function must necessarily obey the relation 
<t'h(·; s)<t'h( ·; t) = <t'h(·; s+t) for all non-negative s and t. This excludes the factors zk, (1+ a;z ), 
(1 + o;z-1 ), (1 - {3;z) and (1 - /i z- 1 ) from (2.27). What remains are the constant and the 
exponential factors. The argument of the exponential factor must also be linear in tin order 
to fulfil! the add ing property of the scale parameters of the kernels under convolution. 

Due to the symmetry the generating function must satisfy <t'h(z- 1 ) = <t'h(z), which in 
our case leads to a= b. For simplicity, let a= b = ~'and we get the generating function for 
the modified Bessel fun ctions of integer order, see Abramowitz and Stegun [Abr64) (9.6.33). 

<t't(z) = e¥<•-t+z) = L
00 

In (a t)zn (2.43) 
n=-oo 

We obtain a normalized kernel if we let T : Z x R+ -+ R be defined by T(n; t) = e-atI n( at). 
Set z to 1 in the generating function e¥<z-t +•) = I:~=-oo In(at)zn. Then it follows that. 

01I:~=-oo In ( at) = e , which means that I:~=-oo T(n; t) = 1. The semi-group property is 
trivially preserved after normalization. 0 

This theorem, which is one of the main results of this chapter, provides us with an 
explicit controlled method to preserve structure in t he spatial domain as we let a discrete 
signal erode by smoothing it to coarser level of scales. The kernel T(n; t) = e- 011 In(at) 
possesses similar properties in the discrete case as those who make the ordinary Gaussian 
kernel special in the continuous case. Therefore it is natural to refer to it as the discrete 
analog of the Gaussian kernel, see also Norman [Nor60). 

Definition 2.2 (Discrete analog of the Gaussian kernel) 

The kernel T : Z x R+ -+ R given by T(n; t) = e-at I n( at) is called the discrete analog of 

the Gaussian kernel, or shorter, the discrete Gaussian. 


2.5.2.1 Properties of the Discrete Analog of the Gaussian Kernel 

We will now point out some elemen tary properties of this kernel. In the special case t = 0 
it holds that 

1 if n = 0 
I n(O) = L n(O) = o(n) = O tl . (n;::: 0) (2.44) { o 1erw1se 

which means that T(-; 0) = o(-) and the convolution expression (2.40) with T according to 
(2.41) is valid fort = 0 as well. Observe that when the scale parameter tends to zero t he 
continuous Gaussian kernel tends to the continuous delta fun ction while the discrete analog 
of the Gaussian kernel instead tends to the discrete delta function. 

For large t on the other hand it holds that the discrete analog of the Gaussian kernel 
approaches the continuous Gaussian. This can be understood by studying an asymptotic 
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expression for the modified Bessel functions for large t, see Abramowitz and Stegun [Abr64] 
(9.7 .1). 

(2.45) 

which shows that 

T(n; t)- g(n; t) = e-tln(t)- ~e-f.. = ~ ( 1 +0( 
1 

))) (2.46) 
v2~t v2~t 8t t 2 

If the relation (2.43) is multiplied with the factor e-t and if z is replaced with e-iB one gets 
the analytical expression for the Fourier transform ofT(n; t). 

Proposition 2 .21 (Fourier transform of the discrete Gaussian kernel) 
The Fourier transform of the kernel T( n; t) = e-crtIn(at) is 

1/Jy(8) = L00 

T(n; t)e- in8 = ecrt(cos8-1) (2.47) 
n=-oo 

For completeness, we give the variance of this kernel as well 

Proposition 2.22 (Variance of the discrete analog of the Gaussian kernel) 
The variance of the kernel T(n; t) =e-atIn(at) is 

L
00 

n 2T(n; t) = t (2.48) 
n=-oo 

Proof: This can be easily shown from a recurrence relation for t he modified Bessel func
tions, 

2n 
In-t(t)- In+t(t) = tln(t) (2.49) 

see e.g Abramowitz and Stegun [Abr64], and the normalization condition. We have 

00 00 00 t 
2L n 2T(n ; t) = L n 2e-tln(t) = L n e-t n Un-t(t)- In+t(t)) = (2.50)

2n=-oo n=-oo n=-oo 

te-t oo oo oo 
- - L (m+ 1- m+ 1)Im(t) = te-t L Im(t) = t L T(m; t) = t (2.51)

2 m=-oo m=-oo m=-oo 

0 
Compare with the variance of the continuous Gaussian kernel , which is <12 = t. All moments 
of odd order are of course zero due to symmetry. 

2.5.3 Equivalent Formulation for Continuous Signals 

If similar arguments are applied in the continuous case we obtain the Gaussian kernel. In 
order to give a background to the analysis, we will first briefly review some important the· 
orems from the theory of variation-diminishing convolution transformations for continuous 
signals. Then we will use those results to give a new and equivalent formulation of the 
scale-space for continuous signals. 
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2.5.3.1 Background 

Let s-(J) denotes the number of sign changes in a function f defined by 

s-(J) =sup v - (f(ti), f(t2), ... , f(tm)) (2.52) 

where the supremum is extended over all sets t 1 < t2 < ... < tm (t; E R ), m is arbitrary but 
finite and v -(x) denotes the number of sign changes in a vector x defined in Section 2.4.1. 
The transformation 

fout(TJ) = i~-oo lin(TJ- 0dG(0 (2.53) 

where G is a distribution function , is said to be variation-diminishing if 

(2.54) 

holds fo r all continuous and bounded lin· The continuous correspondence to P6lya frequency 
sequences is called P6lya frequency fun ctions. Also this concept is defined in terms of total 
positivity and shift invariance, see e.g. Karlin [Kar68]. 

Total positivity (continuous case): 
A continuous kernel A"(x, y): R X R -... R is said to be totally positive (TP00 ) if 
all minors, of every order r from 1, 2 to. infinity, are non-negative, i.e. if there 
fo r all choices of X t < X2 < ... < Xr and YI < Y2 < ... < Yr from R holds that 

]( ( Xt, X2, ... ,Xr) 2: O (2.55)
YI, Y2 ,·· ·•Yr 


X}<X2< ... <Xri Y1<Y2<···<Yri r=1,2, ... ,oo 


P6lya frequency functions: 

A fun ction k : R -... R is said to be a P6lya frequency function if the function 
]( : R x R -... R given by K (x, y) =k(x- y) is totally positive. 

The variation-diminishing property of continuous convolution transformations on the form 
(2.53) can be completely characterized in terms of P6lya frequency functions. T he following 
results are due to Schoenberg [Sch50], see also Hirschmann and Widder [Hir55] or Karlin 
(Kar68]. 

C lassification of continuous variation-diminishing transformations I: 
The transformation (2.53} is variation-diminishing if and only if G is either, up 
to a sign change, a cumulative P6lya f requency function 

G(t) = f 1~-oo k(u)du (2 .56) 

where f = ±1 and k(u) is a P6lya frequency function, 01· else G is a step funct ion 
with only one jump. 

C lassification of continuous variation-diminishing transformations Il: 

i 

The transformation (2. 53) is variation-diminishing if and only if G has a bilateral 
Laplace-Stieltjes transfo rm of the form 

oo oo a, s 
e-•€dG(O = Ce"'~82 +6• II _e__ (-c < Re(s) < c) (2.57) 

€=-oo i= l 1 + a;s 

for some c > 0, where C =f 0, 1 2: 0, h and ai are real and L::~1 ai is convergent. 
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Interpreted in the spatial domain, these results imply that for continuous signals there are 
four primitive types of linear and shift-invariant smoothing transformations; convolution 
with the Gaussian kernel, 

(2.58) 

convolution with the truncated exponential functions, 

el -'1~h(O = { ~- 1-' 1~ h(O = { 0 
(2.59) 

as well as trivial translation and rescaling. Moreover, it means that a shift-invariant linear 
transformation is a smoothing operation if and only if it can be decomposed into these 
primitive operations. 

2.5.3.2 Continuous Scale-Space with Continuous Scale Parameter 

These results show that the P6lya frequency functions are the natural fun ctions to start 
from when defining a scale-space representation for continuous signals, or equivalently, that 
the P6lya frequency functions m·e the continuous scale-space kernels. If again a semi-group 
requirement and a symmetry constraint are imposed on these kernels the Gaussian kernel 
will remain as the only candidate. 

Theorem 2.23 (Scale-space for continuous signals; Necessity and sufficiency) 
Given any one-dimensional continuous signal f : R --> R let L : R x R + -+ R be a one
parameter family of fun ctions defined by L( ·; 0) = f ( ·) and 

(2.60) L(x ; t) =t:-oo g(~; t)f( x - Od~ 

(x E R, t > 0}, where g : R x R+ -+ R is a one-paramete r family of s ymmetric fu nctions 
satisfying the semi-group property g(-; s) * g(-; t) = g(-; s + t ) and the normalization 
criterion fe~-oo g( ~; t)d~ =1. For all signals fit is required that ift2 > t 1 the n the nttmbe1· 

of local extrema9 (zero-crossings) in L(x; t 2) must not exceed the number of local extrema 
(ze ro-crossings) in L(x ; ti) . Suppose also that g(~ ; t) is Borel-measurable as a funct ion of 
t . Then necessarily (and sufficiently) , 

g(~; t) = (21rat) - 112exp(-e/ 2at ) (2.61 ) 

for some non-negative real a. 

Proof: According to the above treatment every kernel g( ·; t ) must be a continuous scale
space kernel , that is a. P6lya frequency function. A theorem by Karlin [Ka.r68] shows t hat 
these conditions uniquely define the Gaussian family of kernels. 

C lassification of semi-groups of P6lya frequency functions: 
Let g : X X R+ --> R denote a one-parameter family of P6lya frequency function s 
integrable on the real axis and fulfilling the semi-group property 

(2.62) 

9 In the continuous case, the variation-diminishing property is normally expressed in terms of zero
crossings. Thus, this formulation is valid only if the differentiation operator commutes with the convolu tion 
operator. If problems occur we prefer to base the discussion on ze ro-crossings instead . 
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Suppose also that g(x; t)) is Borel-measurable as a function oft. Then, neces
sarily 

g(x; t) = __l_e-(x-51)2 /2al - oo < x < oo; t > 0 oE R (2.63)
../2·mt 

Because of the symmetry constraint the constant omust be zero. The constant a only affects 
the scaling of the scale parameter. Hence, it can be set to one without loss of generality. 0 

Consequently, this theorem provides a new formulation of the one-dimensional scale
space theory for continuous signals, leading to the same result as the work by Koenderink 
and van Doorn (Koe84] and Babaud et.al. (Bab86], as well as further support for the firm 
belief that Theorem 2.20 states t he canonical way to define a scale-space for discrete signals. 
The assumption of Borel-measurability means no important restriction. It is well-known that 
all continuous functions are Borel-measurable. 

2.6 	 Discrete Scale-Space Properties of Some Numerical Ap
proximations of the Continuous Scale-Space Theory 

In this section we will consider some numerical approximations, which are close at hand for 
the convolution integral (1.1 ) and the diffusion equation (1.2). Using the classification re
sults derived in previous sections we will investigate if the occurring transformations possess 
scale-space properties in the discrete sense. One aim is to analyze the previously commonly 
adapted approach where the filter coefficients are set to sampled values of the Gaussian ker
nel. We show that some undesired effects occur, mainly due to the fact that the semi-group 
property does not hold after discretization . We also show that the transformation obtained 
by convolution with the presented discrete analog of the Gaussian kernel is equivalent to the 
solution of a discretized version of the diffusion equation. This result as well as some other 
interconnections between the scale-space formulations for continuous and discrete signals 
provide further motivation for the selection ofT as the canonical discrete scale-space kernel. 
The rendering is of necessity somewhat technical and the details can be skipped by the hasty 
reader without loss of continuity. 

2.6.1 	 Sampled Gaussian Kernel 

Maybe the most obvious way to app roximate the convolution integral 

100 1 2 
L(x;t ) = I(C";e-e 121 /(x -Od€ (x E R,t > 0) (2.64) 

{=-oo v27rt 

numerically is by the rectangle rule of integration. Provided that no truncation of the infinite 
integration interval is performed this leads to the approximation formula. 

- ~ 1 2/2L(x; t) = L...J --e-n 1/(x- n) 	 (2.65) 
n= - oo ,.J21ft 

i.e. discrete convolution with the sampled Gaussian kernel. We will show that this rep
resentation might lead to undesirable effects. From the definitions of PF00-functions and 
P F 00 -sequences in terms of minors it is clear that 
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Lemma 2.24 (A sampled PF00-function is a PF00-sequence) 
Uniform sampling of a continuous scale-space kernel gives a discrete scale-space kernel. 

Therefore, since the Gaussian kernel is a P F00 function it follows that the transformation 
from the zero level L(·; 0) to a higher level never increases the number of local extrema (zero
crossings). However, we will show below that the transformation from an arbitrary low level 
L(·; tt) to an arbitrary higher level L(·; t2 ) is in general not a scale-space transformation. 
Thus, we are not always guaranteed that t he amount of structure will decrease monotonically 
with scale. More precisely, 

Proposition 2.25 (Scale-space properties of the sampled Gaussian kernel) 
The transformation from a low level t 1 ~ 0 to an ar·bitrary high er level t 2 > t1 in th e 
representation (2.65}, generated by discrete convolution with the sampled Gaussian kernel, 
is a scale-space transformation if and only if either t 1 is zero or the ratio t2 jt 1 is an odd 
integer. 

Proof: Assume that we construct the "scale-space" for a discrete signal by convolution 
with the sampled Gaussian kernel, i .e. given a discrete signal f : Z -+ R we define the 
family of functions L: Z x R+-+ R by L(x; 0) = f( x) (x E Z) and 

L(x; t) = L
00 

g(n; t)f(x- n) (xEZ, t >O) (2.66) 
n=-oo 

where 

(nE Z, t > 0) (2 .67 ) 

We will make use of an expression for the generating function for the discrete kernel corre
sponding to t he sampled Gaussian. For simplicity we let q1 =e-?.. One can show, see e.g. 
Mumford [Mum83], that 

00 1 00 00 
2 1<pt(z) = L g(n; t) zn =-- L qi zn =Ct IT (1 + qzn+1z)(1 + qzn+Iz- ) (2.68) 

n=-oo ..j21ft n=- oo n=O 

where 

Ct = ~ fi (1 - q;n) (2.69) 
V 27rt n=l 

Comparison wit h the complete characterization of the generating function of a discrete 
scale-space kernel ( 16) in Theorem 2 shows that the sampled Gaussian kernel is a discrete 
scale-space kernel. This constitutes another proof of the property th at for a ny signal f t he 
number of local extrema in L(x; t) (t > 0) does not exceed the number of lor.al extrema 
in f. However, we will now show that this scale-space property does not hold between two 
arbitra1·y levels. 

Let t 1 and t2 be two levels (t2 > t1 > 0) of the representation (2.66 ) and let <pin be 
the generating fun ction of the input signal. Then the generating functions of i ( x; t1 ) and 
L (x; t 2 ) are 

(2.70) 

Let <pdi ff describe the transformation from l (x; t1 ) to l(x; t 2 ) . Thus, 

(2.7 1) 
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Combination of (2.70), (2.71) and (2.69) gives 

cp~(z) Ct 0~::::o(l+ql2m+lz)(1+ql2m+Jz-1 )
2 (2. 72) 

ct'diJJ(z) = IPLI(z) = Ctl . 0 ::'::::o(1 + q;ln+tz)(l + qrln+I z-t ) 

According to the complete characterization of scale-space kernels it follows that the corre
sponding kernel is a scale-space kernel if and only if (2. 72) can be written on the form (2.27). 
Then, for each factor (1 + q;n+I z±l ) in the denominator there must exist a corresponding 

1 

factor in the numerator (1 +q;m+I z±l ) , i.e for each n there must exist an m such that 
2 

(2.73) 

I 

Insertion of Qt, =e-2ii and reduction gives the necessary and sufficient requirement 

t2
2m=-(2n+l) -1 (2.74 ) 

tl 

It is clear that this relation cannot hold for all n E Z if t 1 and t2 are chosen arbitrarily. The 
transformation from L(x; tt) to L(x; t2 ) (t 2 > t1 ) is a scale-space transformation if and 
only if the ratio ~ is an odd integer. 0 

The result constitutes an example of the fact that properties derived in the continuous 
case might be violated after discretization. The main reason why the scale-space property 
fails to hold between two arbitrary levels is because the semi-group property of the Gaussian 
kernel is not preserved after discretization10 . 

"---/----J7
= t2 

,.---------7 ) ~~~-space
scale-space 

transformations 
 ( / /t'= ll O~f~•tiM 

L..--/_7::::0 
Figure 2. 10: In the "scale-space representation" produced by discrete convolution with the sampled 

Gaussian kernel the transformation from the zero level to any coarser level of scale is always a scale

space transformation. However, the transformation between two arbitrary levels is in general not a 

scale-space transformation. 

2.6.2 Discretized Diffusion Equation 

The scale-space family generated by (2.36) and (2.38 ) can be interpreted in terms of a 
discretized version of the diffusion equation. 

10 This means that if a represe nt atio n at a level t2 > 0 is computed via an intermediate le vel t 1 (0 < t 1 < t2 ) 

by application of the approximation formula (2 .66) in two s teps, the computation does yield t he same result 
as if it would have been computed directly fro m the original signal. 
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Theorem 2.26 (Diffusion formulation of the scale-space for discrete s ignals) 
Given a discrete signal f : Z --+ R in 11 let L : Z x R+ --+ R be the discrete scale-space 
representation given by 

L(x; t) = L
00 

T(n; t)f(x- n) (2.75) 
n=-oo 

where T : Z x R+ --+ R is the discrete analog of the Gaussian kernel. Then L is the solution 
of the system of ordinary differential equations 

{)L~; t) = ~(L(x + 1; t)- 2L(x; t) + L(x- 1; t)) (x E Z) (2.76) 

with initial conditions L(x; 0) = f(x), i.e. the system of differential equations obtained if 
the diffusion equation (1.2} is discretized in space but solved analytically in time. 

Proof: From the relation 
2J~(t ) = In-I(t) + In+I(t) (2.77) 

for modified Bessel functions, see e.g Abramowitz and Stegun (Abr64], one easily shows that 
T(n; t) =c 1In(t ) satisfies: 

aT~; t) = :t (e-tln(t)) = e-ti~(t)- e-tln(t) = (2.78) 

1 1
e-t n-I(t); n+I(t) - e-1In(t) = ~(T(n - 1; t) - 2T(n; t) +T (n +1; t)) (2.79) 

which in turn means that 

aL~; t) = :t f T(n; t)j(x - n) = f aT~~; t) f (x- n) = (2.80) 
n=-oo n=-oo 

L 100 

2(T(n- 1; t)- 2T(n; t) +T(n + 1; t ))f(x- n) = 
n=-oo 

1 
2(L(x- 1; t) - 2L(x; t) + L(x + 1; t)) 

The regularity condition on f justifies the change of order between differentiation and infinite 
summation. 0 

T his provides another motivation for the selection ofT(n; t) = e-trn(t) as the canonical 
discrete scale-space kernel. If (2. 76) is furthe r discretized in scale using Eulers method we 
obtain the iteration formula 

k+I D..t k ( ) k D..t kL· = - L·+1 + 1 - D..t L + -L· 1 (2.81) • 2 • • 2 ·

where t he subscript s denote the spatial coordinates and the superscripts the iteration indices. 
Equivalently one iteration with this formula can be described as discrete convolution with 
the three-kernel 

D..t 1 - D..t D..t) (2.82) ( 2 ' ' 2 

Proposition 2.12 states that this kernel is a scale-space kernel if and only if 

D..t < -1 
(2 .83) - 2 
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which is a. stronger condition on !lt than induced by the stability criterion for Euler's forward 
method, see e.g. Stra.ng [Str86]. From Corollary 2.19 we have that all symmetric scale-space 
kernels with finite support can be derived from kernels of this latter form. Hence, they 
provide a. possible set of primitive kernels for the scale-space with a discrete scale parameter 
discussed in Section 2.5.1. 

Proposition 2.27 (Diffusion equation and discrete scale-space kernels) 
All symmetric discrete scale-space kernels with finite support arise from r·epeated application 
of the discretization of the diffusion equation (2.81}, using if necessary different !lik E [0, ~]. 

In many applications the scale step in multi-scale representations with discrete scale param
eter has selected such that !lt = ~· Note, however, that for any 0 ~ 6.t ~ ~ the kernel 
given by (2.82) is a. discrete scale-space kernel. Hence, it enables a finer sampling in scale 
also for the scale-space with discrete scale parameter. 

It is not too difficult to derive the analytical solution to the system of scale-continuous 
equations (2.76). Assume that we want to compute the scale-space representation for a fixed 
value oft. We can use the discretization (2.81) with n steps in the scale-direction such that 
the step size !lt = tfn satisfies (2.83). As each iteration step consists of a linear convolution 
the final solution can equivalently be obtained by convolution with the composed kernel 
K com posed = •~ 1 Kstw Let us derive an asymptotic expression for its generating function. 
The generating function for the transformation corresponding to one iteration with the 
formula (2.81) is 

(2.84) 

and the generating function of the composed kernel describing the transformation from the 
scale zero to scale t is 

(2.85) 

which can be written as 

t z-1 z l ) n 
'Pcomposed,n(z) = 1 +-(- - 1 + -) (2.86) ( n 2 2 

after substitution of ~ for !lt. Since limn-oo( l + ~ )n = e<> if limn-oo O:'n = a it follows 
that 

(2.87) 

We recognize the generating function of the family of discrete kernels we arrived at when 
we constructed the discrete scale-space in Section 2.5 .2. e-t is the normalization factor. 
Consequently, this provides a. more constructive proof of the property that the transforma
tion obtained by convolution with the discrete analog of the Gaussia.n is equiva.lent 11 to the 
analytical solution of the system of equations obtained by discreti zing the diffusion equation 
on a. fixed equidistant grid in space. 

Proposition 2.28 (Repeated averaging and the diffusion equation) 
The discrete scale-space generated by convolution with th e discrete Gaussian kernel (2.41) 

11The conclusion is valid o nly if the solution to the discretization (2.81) converges to the solution of the 
continuous equations (2.76) when tJ.t- 0. This does for instance hold if I E l1 or I E l2. 
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or equivalently by the semi-discretized version of the diffusion equation (2. 76) describes the 
limit case of repeated iteration of the recurrence relation (2. 81) as the scale step tends to 
zero. 

This is not surpnsmg bearing Theorem 2.23 in mind. These essence of this treatment is 
that when one applies the scale-space theory to discrete signals one should discretize what 
is necessary, namely along the spatial coordinate. The continuous scale parameter can be 
left untouched. 

2.6.3 Integrated Gaussian Kernel 

Another way of discretizing the con volution integral (2.64 ) is by integrating the continuous 
Gaussian kernel over each pixel support region. This method can be regarded as giving "a 
more true approximation" 12 than the method with the sampled Gaussian, especially at fine 
scales (compare also with Chapter 4 ). The resulting approximation formula corresponds to 
discrete convolution with the kernel given by 

'+I 
c; = j' 2 _l_e-t.2f2td~ (2.88)

i-~ .j2ii 

This choice of filter coefficients is equivalent to the continuous formulation (2.64) if we let 
the continuous signal f be a piecewise constant function, which is equal to the discrete pixel 
value over each pixel support region. Another possibility is to let fin (2.64) be defined by 
linear interpolation between the discrete values, which leads to 

(2.89) 

According to a theorem by Karlin [Kar68] it holds that that a kernel, given by the difference 
operator applied to uniformly sampled values of an integrated P6lya frequency function, is 
a P6lya frequency sequence. 

Uniform sampling of integrated PF00 functions: 
Let J( x) be a P F 00 sequence and form 

g(x) = t~-oo f(~)d~ (2.90) 

Then (6g)(n) = g(n +1)- g(n) constitutes a PF00 sequence. 

This means that the transformation from the original sig nal (t = 0) to an arbitrary level 
of scale (t1 > 0) is always a scale-space transformation. However, we cannot expect any 

12 This issue a ctually comes down to philosophical questions in t he image formati on process. What do 
t he recorded pixel values actually represent ? Often they are implicitly without notice regarded as sampled 
values o f the underlying physical light intensity in the real world . In reality t his is certainly not true, hut 
u nder that assumption the formula (2.65) should be a proper discreti zat.ion . (Except fo r the fact that the grid 
is no t dense enough to resolve the rapid variations in the integrand.) Pres umably, a more correct statemen t 
is that the pixel values should be regarded as the result of first applying a continuous convolu tion operator 
to the physical light intensity a nd then as a seco nd step sampling that output uniformly. The integration 
formula defined by (2.88) is an example of the latter model. In that case the kernel function is assumed to be 
one within t he whole pixel support region and ze ro outside. Probably, a bell-shaped kernel would be more 
realistic. 

52 




semigroup property to hold exactly and will probably arrive at similar scale-space p roblems 
as with the sampled Gaussian kernel when considering transformations between arbit rary 
scale levels. We leave it is an open problem to judge whether t he second kernel (2.89) is a 
scale-space kernel or not. 

Proposition 2.29 (Scale-space properties of the integrated Gaussian kernel) 
The transformation from the zero level to a coarser level in the representation generated 
by discrete convolut ion with the integrated Gaussian ke rnel, given by (2.88}, is a discrete 
scale-space transformation. 

2.7 Summary and Discussion 

The aim of this treatment has been to investigate the discrete aspect s of t he one-dimensional 
scale-space theory. We have studied linear and shift -i nvariant transformations and stated a 
requiremen t on kernels saying that the number of local extrema in a convolved signal must 
not exceed the number of local extrema in the original signal. As an immediate conseq uence 
we saw that the coeffi cient sequence must be non-negative and unimodal. For symmetric 
kernels the same requirements hold for the Fourier transform. We saw that the in teresting 
kernels could be completely classified in terms of total posit ivi ty- all shift- invariant discrete 
scale-space kernels are equivalent to normalized P 6lya frequency sequences. The generating 
function of such a sequence/kernel possesses a very simple characteri zation, implying that 
there are only t hree non-trivial types of primitive smoothing transformations; repeated 
averaging, recursive smoothing and diffusion smoothing. 

T hen we introduced a continuous scale parameter and showed that the only reasonable 
way to define a scale-space for discrete signals is by convolution with the one-parameter 
family of kernels T(n; t) = e-1In(t), where In are the modified Bessel functions of integer 
order. When simil ar arguments were applied in the continuous case we were uniquely lead to 
t he Gaussian kernel. The kernel T does also have t he attractive property that it is equi valen t 
to the limit case of a certain discretization of the diffusion equation. The idea of a cont inuou s 
scale parameter even for discrete signals is of considerable importance, since it permits 
arbitrary degrees of smoothing, i.e. we are no longer restricted to specific predetermined 
levels of scale. Due to the semi-group property, the scale-space condition holds between 
any two levels of representation. We showed that the commonly used tech nique, where the 
"scale-space" is constructed by convolution with the sampled Gaussia.n kernel, might lead 
to undesirable effects, sin ce in general the transformation from an arbitrary fine level to a 
randomly selected coarser level is not a scale-space transformation. 

Let us finally point out some other aspects o f the presented t heory that have not been 
mentioned elsewhere. 

2.7 .1 Ideal L ow-Pass Filte rs and Block Average Filters 

The unimodality requirement on discrete scale-s pace kernels implies that an "ideal low
pass filter" is not a smoothing kernel in thi s sense because of the ringing phenomena in 
the spatial domain. This means that the first p re-fi ltering step that is often carried out 
in digi tal signal p rocessi ng in order to guarantee band-lim ited signals actually violates the 
scale-space conditions. Neither does a block average filter possess scale-space properties, 
unless its width is either 1 or 2. This can be easily understood from t he ringing phenomena 
and the non-negative values introduced in the frequency domain. 
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2.7.2 Positivity and Unimodality is Necessary but not Sufficient 

Note that the positivity and unimodality requirements for discrete scale-space kernels are 
necessary but not sufficient requirements. In other words, there exist kernels, which are non
negative and unimodal both in the spatial and the frequency domain but are not discrete 
scale-space kernels. This can be easily shown, for instance by considering a symmetric 
five-kernel having a generating function with only complex roots, see Appendix A.1.2. 

Observation 2.30 (Positivity and unimodality not sufficient) 
The positivity and unimodality requirements in the spatial and the frequency domain are 
necessary but not sufficient conditions for a one-dimensional discrete kernel Z -+ R to be a 
discrete scale-space kernel. 

2.7.3 Recursive Filters 

According to the classification of discrete scale-space kernels , it follows that the recursive 
filters suggested by Deriche [Der87a, Der87b] possess discrete scale-space properties if and 
only if they can be implemented as a series of first order smoothing filters , i.e., if and only 
if their gener ating function 

1 b-(n-1 )b bH (z) = o + 1z- + ··· + n-1 
a,b n (2.91) 

1 + a1 z-1 + ... +On 

can be factorized to the form 

1n 1 + ~kz-
Z (2.92)<pK( ) =C rr 1 - ·nz-1

k=1 

where c > 0, /k, ~k 2: 0 and /k < 1, compare with (2.29 ). 

2.8 Conclusion: Scale-Space for 1-D Discrete Signals 

The results from this one-dimensional treatment seem to point all in the same direction. Th e 
natural way to apply the scale-space theory to discrete signals is apparently by discretizing 
the diffusion equatio n, not the convolution integral. 
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Chapter 3 


Scale-Space for 2-D Discrete Signals 

3.1 From One to Two Dimensions 

The extension of the previous one-dimensional theory to two and higher dimensions is not 
obvious, since it is possible to show that there do not exist any non-trivial kernels on R 2 

or Z2 with the property that they never introduce new local extrema. Lifshitz and Pizer 
[Lif87) present an illuminating counter-example: 

Imagine a two-dimensional image function consisting of two hills, one of them somewhat 
higher than the other one, see Fig. 3.1. Assume that they are smooth, wide, rather bell
shaped surfaces situated some distance apart clearly separated by a deep valley running 
between them. Connect the two tops by a narrow sloping ridge without any local extrema, 
so that the top point of the lower hill no longer is a local maximum. Let this configuration 
be the input image. When the operator corresponding to the diffusion equation is applied 
to the geometry, the ridge will erode much faster than the hills. After a while it has eroded 
so much that the lower hill appears as a local maximum again. Thus, a new local extremum 
has been created. 

The same argument can be carried out in the discrete case. Of course, we have to consider 
connectivity when we define what we mean by local extrema. But this question is only of 
a formal nature. Given an arbitrary non-trivial convolution kernel it is always possible to 
create a counter-example where the number of local extrema can increase, provided that 
the peaks are located sufficiently wide apart and the valley between them is sufficiently 
deep. Therefore, it is not clear what we should mean with a scale-space property in two 
space dimensions. We cannot generalize the formulation in terms of zero-crossings of the 
Laplacian either. From the counter-example it is apparent that a level curve may split 
into two during erosion. Consequently, we cannot expect to find a nontrivial kernel never 

1increasing the number of zero-crossing curves either . 
Anyway, we should not be too surprised. In some sense the decomposition of the scene 

is intuitively quite reasonable. The narrow ridge is a fine-scale phenomenon and should 
therefore disappear before the coarse-scale peaks. In this case it is rather the measure on 
structure than the smoothing method that is the decisive factor. 

The property that 11ew local extrema can be created by linear smoothing seems inherent 
and inescapable in two and higher dimensions. Also other types of features, which are 
possible candidates for being "measures of structure", like zero-crossings, convex and concave 

1 However, new zero-crossings of the Laplacian , not arising from splits of previously existing zero-crossings 
of the Laplacian, cannot be created due to the causality property. 
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Figure 3.1: New local extrema can be created by the diffusion equation in the t wo-dimensional case 

regions etc. may be created, see e.g. Yuille (Yui88]. 
Therefore, when extending the theory to higher dimensions, we should not be too locked 

to the previously given definition of a discrete scale-space kernel. In one dimension the 
number of local extrema is a natural measure of structure on which a theory can be founded 
- in two d imensions obviously not. Instead the previously given treatment should be 
understood in a wider sense as a characterization of which one-d imensional convolution 
transforma tions can be regarded as smoothing transformations. 

Is it true that the discrete analogue of the Gaussian kernel used as a separated kernel 
is the natural discrete kernel in two dimensions? If one, due to computational considera
tions, wants to use separable discrete kernels, one could, of course, heurist ically argue that 
the kernel should at least have a good performance in one dimension. Another indication 
in that direction is obtained if one studies a discretized version of the two-dimensional 
diffusion equation. In Appendix A.2.1 it is shown that separated convolution with the one
dimensional discrete analogue of the Gaussian kernel describes t he solution of the system 
of ordinary differential equations, which appears if the diffusion equation is discretized in 
space but not in time (scale). 

In this chapter we will develop a two-dimensional theory based on somewhat modified 
axioms, which however in one dimension turns out to give the same result as the previous 
formulation. In a special case, the resulting scale-space representation can be reduced to the 
representation given by separated convolution with t he discrete analogue of the Gaussian 
kernel. 

3 .2 Selecting Two-Dimensional Scale-Space Axioms 

From the. discussion in the previous section it is clear that t he one-dimensional t reatment 
cannot be generalized directly to higher dimensions. However, an important point about 
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the study we have performed, is that we have acquired a deep understanding on what one
dimensional linear transformations can be regarded as smoothing transformations. We have 
also shown that the only reasonable way to convert the one-dimensional scale-space t heory 
from continuous signals to discrete signals is by discretization of the diffusion equation. 

Koenderink, van Doorn [Koe84] derive the two-dimensional scale-space for continuous 
images from three assumptions - causality, homogeneity and isotropy. The leading idea 
is that every grey-level at a coarse level of scale should be possible to trace from the same 
grey-level at a finer level of scale. In other words, no new grey-level surfaces2 should be 
created in the scale-space representation when the scale parameter increases, see Fig. 3.2. 
Using differential geometry they show that these requirements uniquely lead to the diffusion 
equation , or equivalently to convolution with the Gaussian kernel. 

t (b) \;)(a) (c)L!J 
y ~- ----, 

X 
)- A 

Figure 3.2: Grey-level surfaces L(x, y; t) = z0 • (a) Causal (and generic) grey-level surface. {b) 

Non-causal (and impossible) grey-level surface. (c) Grey-level surface corresponding to the example 

in Fig. 4 where one grey-level curve splits into two. 

It is of course impossible to apply these ideas directly, since there do not exist any direct 
correspondences to level curves and differential geometry in the discrete case. However, an 
alternative way to express the previous ideas is by requiring that if for some scale level t0 

a point (x0 , y0 ) is a local maximum for the scale-space representation at that level (regarded 
as a function of the space coordinates only) then its value must not increase when the scale 
parameter increases. Analogously, if a point is a local minimum then its value must not 
decrease when the scale parameter increases. 

It is clear that this formulation is equivalent to the formulation in terms of grey-levels 
for continuous images, since if the grey-level value at a local maximum (minimum) wou ld 
increase (decrease) a new grey-level curve would be created. Inversely, if a new grey-level 
curve is created then some local maximum must have increased or some local minimum 
must have decreased. 

An intuitive description of this requirement is that it prevents local extrema from being 
enhanced and from "popping up out of nowhere" when the scale parameter increases. As 
we have seen earlier, we can never ever prevent the number of local extrema from being 
increased. However the idea is that those creation events should be "few". 

In the next section we will show that this condition combined with a continuous scale 
parameter means a strong restriction on the smoothing method also in the discrete case, 
and we will again obtain a discretized version of t he diffusion equation. In a special case 
the resulting scale-space representation will be reduced to the family of functions gen erated 
by separated convolution with the discrete analogue of the Gaussian kernel, T ( n ; t ). 

2 By a. grey-level surface we mea.n an iso-surface in sca.le-spa.ce i.e. a. connected set of points ( x, y ; t ) E 
R2 x R such tha.t L(x, y; t) = zo for some grey-level va.lue z0 • 
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3.2.1 Basic Definitions 

Before getting into the detailed scale-space formulation we will need to make a few defini
tions. The eigh t-neighbours of a point (x,y) E Z 2 will be denoted N 8(x,y). If the central 
point is included as well we will use the notation Ni(x, y). The notion of extremum points 
will be as follows: 

Definition 3.1 (Discrete local maximum) 
Z2A point (x, y) is said to be a (weak) local maximum point for a function g --> R if 

g(x, y) ~ g(~ , ry) for all(~, ry) E Ns(x, y). 

Definition 3.2 (Discrete local minimum) 
Z2A point (X' y) is said to be a (weak) local minimum point for a funct ion g --> R if 

g(x, y) ~ g(~, ry) for all(~, ry) E Ns(x, y). 

It is also useful here to introduce two common discrete operators, approximating the two
dimensional Laplace operator ~ + ~' namely the five-point operator V~ and the cross 
operator V~, defined by3: 

(VU)(x, y) = f (x- 1, y) + f (x + 1, y) + f(x, y- 1) + f(x, y + 1)- 4f(x, y) (3.1) 

1
(V~f)(x, y) = (/(x-1, y-1)+ f(x-1,y+1) + f(x+1,y-1)+ f(x + 1, y+1)-4f(x, y)) (3.2)

2 

The corresponding one-dimensional operator is the three-point operator, V~, given by 

(V5fl(x) = f(x- 1)- 2f(x, y) + f(x + 1) (3.3) 

1 ~4 1 ) ( 1/2 -2 1/2 ) ( 1 -2 1 ) 
( 1 1/2 1/2 

Figure 3.3: Computational molecules for (a) the five-point operator 'Vg (b) the cross operator \7~ 

and (c) the three-point operator \7§. (Throughout this treatment we use a unit step size.) 

3.3 Axiomatic 2D Discrete Scale-Space ·Construction 

When we construct the scale-space for two-dimensional discrete images we follow the ideas 
from the one-dimensional case, see Section 2.5.2. We start by postulating that the scale-space 
should be generated by convolu tion with a one-parameter of kernels, i.e. L(x, y; 0) = f(x, y) 
a.nd 

00 00 

L(x,y; t) = L L T(m, n; t)f(x- m, y- n) (t > 0) (3.4) 
m =-oon=- oo 

As mentioned earlier, this form on the smoothing formula corresponds to the requirements 
about linear shift-invarian t smoothi ng and a continuous scale parameter. We want bot h 

3 l n our considerations the step size h is set to 1. 
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coordinate directions to be processed identically. Therefore all kernels should be symmetric. 
We will also impose a semi-group condition on the family T. This means that all scale levels 
will be treated similarly, i.e. the smoothing operation does not depend on the scale value, 
and that the transformation from a lower scale level to a higher scale level will be given by 
convolution with a kernel from the family, compare with (2.37). 

The smoothing criterion will be the requirement about local extrema indicated in the 
previous section. It is convenient to express it as a condition on the derivative of the scale
space family with respect to the scale parameter. In order to ensure a proper statement 
of this condition, where differentiability is guaranteed, we will need to state a series of 
preliminary definitions leading to the desired scale-space formulation. 

3.3.1 Definitions 

We start by summarizing the basic properties we would like a family of kernels to satisfy in 
order to be a candidate family for the generation of a scale-space representation. 

Definition 3.3 (Pre-scale-space family of kernels) 
A one-parameter family of kernels T : Z 2 X R+ --t R is said to be a pre-scale-space family 
of kernels if it satisfies 

• 	T(·, ·; 0) = b(-, ·) 

• 	 the semi-group property T( ·, ·; s) *T(-, ·; t) =T ( ·, ·; s + t) 

• 	 the symmetry properties4 T(-x,y; t) = T(x,y; t ) and T(y,x; t) = T (x ,y; t) for all 
(x, y) E Z 2 • 

• 	 the continuity requirement 11 T(-, ·; t)- b( ·, ·) llt--t 0 when t 10 

Definition 3.4 (Pre-scale-space representation) 

Let f : Z2 --t R be a discrete signal and T : Z2 X R+ --t R a pre-scale-space family of kernels. 

Then the one-parameter family of signals L : Z 2 x R+ --t R given by 


00 00 

L(x, y; t) = 2: 2: T(m, n; t)f(x- m, y- n) (3.5) 
m=-oon=-oo 

is said to be the pre-scale-space representation off generated by T. 

Provided that the input signal f is sufficiently regular, these conditions on the family of 
kernels T guarantee that the representation L is differentiable and satisfies a system of 
linear differential equations. 

Lemma 3.1 (A pre-scale-space representation is differentiable) 

Let L : Z 2 x R+ --+ R be the pre-scale-space representation of a signal f : Z2 -+ R in 11 . 


Then L satisfies the differential equation 


aL = AL 	 (3.6) at 
for some linear and shift-invariant operator A. 

4 T(x , -y; t) = T(x,y; t) is implied from the two other properties. 
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Proof: If f is sufficiently regular , e.g. if f E 11 , we can define a family of operators 
{'It , t > 0} , here from from 11 to lt, by 'It! = T(-, ·; t) *f. Due to the conditions imposed 
on t he kernels it will satisfy the relation 

lim 11 (Ti- Ti0 ) f lit = lim 11 (Ti-t 0 -I)(Ttof) lit= 0 (3.7)
t-t0 t-to 

where I is the identity operator. Such a family is called a strongly continuous semigroup of 
operators, see Hille and Philips [Hil57) p58-59. A semi-group is often cha racterized by its 
infinitesimal ge nerator A defined by, 

Af =lim 7iJ - f (3.8) 
h!O h 

The set of elements f for which A exists is denoted V (A). This set is not empty a nd it 
never reduces to the zero element. Actually, it is even dense in lt, se Hille and Philips [Hil57) 
p307. If this operator exists we obtain 

lim L( ·, ·; t +h)- L(-, ·; t) = lim 1i+hf - 'It! = (3. )9
h l O h h!O h 

lirn 7i.(7tf)- ('It!) = A(Ttf) = AL(-, ·; t ) 
hlO h 

According to a Theorem by Hille and Phillips [Hil57) p308 strong continuity implies that 
/t(Tif) = ATtf = TtAJ for all f E V(A) . Hence, the scale-space family L must obey t he 
differential equation 

oL = AL (3.10)at 
for some linear operator A. Since L is generated from f by a convolution operation it follow s 
that A must be shift-invariant. 0 
This property allows us to formulate the previously indicated scale-space property in terms 
of de rivatives of the scale-space representation with respect to the scale parame ter. In every 
local maximum point we require the grey-level value not to increase and in every local 
minimum point the value not to decrease. 

Definition 3.5 (Pre-scale-space property: Non-enhancement of local extrema) 
A differentiable one-parameter family of signals L : Z 2 X R+ -+ R is said to possess pre
scale-space properties, or equivalently not to enhance local extrema, if f or every value of the 
scale parameter t 0 E R+ it holds that if (x0 , y0 ) E Z 2 is a local extremum point for the 
mapping (x, y),...... L (x , y; t 0 ) then the derivative of L with respect tot in this point satisfies 

oL 
Ft(xo, Yoi to ) :::; 0 if (xo, Yo) is a Local maximum point (3.11) 

oL
Ft(xo, Yoi to) ?: 0 if (xo, Yo) is a local minimum point (3.12) 

Now we can state that a pre-scale-space family of ke rnels is a scale-space family of kernels 
if it sat isfies this property for any input signal. 

Definition 3 .6 (Scale-space family of kernels) 

A one-parameter fa mily of pre-scale-space kernels T : Z 2 x R+ -+ R is said to be a scale

space family of kernels if for any signal f : Z 2 

-+ R E 11 the pre-scale-space representation 

of f generated by T possesses pre-scale-space properties, i.e. if for any signal loco[ ext1·enw 

a1·e never· enhanced. 
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Definition 3.7 (Scale-space representation) 

A pre-scale-space representation L : Z2 X R + -+ R of a signal f : Z 2 -+ R generated by a 

family of kernels T : Z 2 x R+ -+ R , which are scale-space kernels, is said to be a scale-space 

representation off. 


We will now develop how these requirements strongly restrict the possible class of kernels 
and scale-space representations. 

3.3.2 Necessity 

We start by showing that these conditions necessarily imply that the family L satisfies a 
semi-discretized version of t he diffusion equation. 

Theorem 3.2 (Scale-space for 2-D discrete signals: Necessity) 
A scale-space representation L : Z2 x R+ -+ R of a signal f : Z2 -+ R sa tisfies the differential 
equation 

8 L = aV2L + (3'\12 L (3.13)[)t 5 X 

with initial condition L (·, ·; 0) = f(· , ·) for some constants a 2: 0 and (3 2: 0. 

Proof: The proof consists of two parts. The firs t step has already been established in 
Lemma 3. 1, where we showed tha.t the requirements on the kernels imply that t he family L 
obeys a linear diffe rential equation. Because of the shift invariance AL can be written 

00 00 

(AL)(x, y; t) = L L am,nL(x- m, y- n; t) (3.14) 
m=-oon=-oo 

In the second step we construct counterexamples from various simple test function s in order 
to delimit t he class of possible operators. 

The extremum point conditions (3.11), (3.12) (combined with Definitions 3 .6-3.7) mean 
that A must be local, i.e. that am,n = 0 if lml > 1 or 1nl > 1. This is easily understood by 
study ing the following counterexample: First, assume that an.,;; > 0 where either l1hl > 1 
or Jii.J > 1 (or both), and define a fun ction h : Z2 -+ R by 

t: > 0 if (x,y) = (0, 0) 

f (. ) = 0 if (x,y) E N8 (0,0)
1 (3.15)x,y 1 if (x,y) = (1il,ii.){ 

0 otherwise 

Obviously, (0 , 0) is a local maximum point for /J. From (3.6) a nd (3.14) we get that 
t~(O, 0; 0) = fao,o + a,h,n . It is clear that this value can be positive provided t hat t: has 
been chosen small enough . Hence, L cannot satisfy (3.11). In a similar manner one shows 
that also a.n.n < 0 leads (Jet t: < 0) to a violation against the extremum point condition 
(3. 12). Consequently, a,n,n must be zero if either of Jml or Jii.l is larger than one. T hereby, 
(3.6) will be reduced to 

8L 
Ft(:c, Yi t) = L am,nL(x- m, y- n; I) (3 .16) 

(m,n) ENi(o,o) 
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where Nt(O, 0 ) denotes the set of eight-neighbours to the origin including the origin. D ue 
to the symmetry conditions, opposite coefficients must be equal, i.e. a- m,n = am,n and 
an,m = am,n· Thus, (3.16) can be written 

8L = ( ab b (3.17) at c 
a b 

for some a, b and c. Then, consider the fun ction 

(x ) = { 1 if (x ,y~ E Nt(o, 0)f 2 (3 .18)
' y 0 otherwise 

With the given (weak) definitions of local extremum points it is clear that (0, 0) is both a 
local maximum point and a local minimum point. Hence ¥t(O, 0; 0) must be zero and we 
obtain t he relation 4a+4b+c = 0. This means that (3.17) can be split into two components. 

oL ( a b a ) ( 1 ) ( 1/2 1/2 )7) = b c b L = a 1 -4 1 L + (3 - 2 L (3.19) 
t a b a 1 1/2 1/2 

provided that a = band (3 = 2a. The condition 4a +4b +c = 0 is trivially satisfied. Finally, 
by considering the test function 

i > 0 if (X, y) = ( 0, 0) j,(x , y)~ { 1 if (x,y) = (m,n) (3.20) 
0 otherwise 

for some (m, n) in N 8(0, 0) one easily realizes that am,n must be non-negative if (m, n) E 
N8(0, 0). This shows that a ~ 0 and (3 ~ 0 in the differential equation. The initial condition 
follows directly from the definition of pre-scale-space kernel. 0 

3 .3.3 Sufficiency 

The reverse statement of Theorem 3.2 is also true. This sufficiency is much easier to estab
lish: 

Theorem 3.3 (Scale-space for 2-D discrete signals: Sufficiency) 
Let f : Z2 -+ R be a discrete signal in /1 and let L : Z2 x R+ -+ R be the representation 
generated by the solution to differential equation 

(3.21) 

with initial condition L(-, ·; 0) = f( ·, ·) for some fixed a > 0. Then L is a scale-space 
representation of f. 
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Proof: It follows almost trivially that L possesses pre-scale-space properties, i.e. that L 
does not enhance local extrema, if we rewrite the differential equation on the form 

a[L(x, y- 1; t)- L(x, y; t)]+ 
a [L(x, y + 1; t)- L(x, y; t)]+ 
a[L(x- 1, y; t)- L(x, y; t)]+ 

oL a[L(x + 1, y; t)- L(x, y; t)]+
Ft(x, y; t) = (3.22) 

t .B[L(x - 1,y -1: t)- L (x,y: t)]+ 

2.B[L(x + 1,y - 1, t)- L(x ,y, t)] + 
~.B[L(x- 1, y + 1; t)- L(x , y; t)]+ 
~.B[L(x + 1, y + 1; t) - L(x, y ; t)] 

If for some scale level t a point (x, y) is a local maximum point then all differences (within 
brackets) are non-positive, which means that ft(x, y; t ) :::; 0 provided that a ;::: 0 and .B ;::: 0. 
Similarly, if a point is a local minimum point then the differences are all non-negative and 
ft(x, y; t) ;::: 0. 

What remains to verify is that L actually satisfies the requirements for being a pre-scale
space representation. Since L is generated by a linear differential equation it follows that L 
can be written as the convolution off with some kernel T, i.e. L(·, ·; t) = T (·, ·; t) *f. The 
requirements on pre-scale-space kernels can be shown to hold by letting the inpu t signal f be 
the discrete delta function. The semi-group property of the kernels follows from the fact that 
the coefficients a and .Bare constant and the solution at a times+ t hence can be computed 
from the solution at an earlier time s by letting the time increase by t. The symmetry 
properties of the kernel are obvious from the symmetry of the differential equation. The 
continuity at the origin follows directly from the differentiability. 0 

These results show that a one-parameter family of signals is a scale-space representation 
if and only if it satisfies the differential equation (3.13). 

3 .3.4 Equivalent One-Dimensional Formulation 

From the proofs it is apparent that if similar arguments are applied in the one-dimensional 
case, we are uniquely lead to the one-dimensional scale-space concept developed earlier in 
Theorem 2.20 and Theorem 2.26. To summarize, 

Theorem 3.4 (Scale-space for 1-D discrete signals: Necessity) 
A scale-space representation L : Z x R+ -+ R of a signal f : Z -+ R satisfies the differential 
equation 

~~ = a'V~L (3.23) 

with initial condition L(· ; 0) = f(·) for some constant a;::: 0. 

Theorem 3.5 (Scale-space for 1-D discrete signals: Sufficiency) 
Let f : Z -+ R be a discrete signal in 11 and let L : Z x R+ -+ R be the representation 
generated by the solution to differential equation 

oL- 'VzL7ft - a 3 (3.24 ) 

with initial condition L ( ·; 0) = f ( ·)for some fixed a ;::: 0 and .B ;::: 0 . Then L is a scale-space 
representation off. 
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For completeness the corresponding relevant definitions are given in Appendi x A.2.2. These 
resul ts show that, combined with the requirements about a continuous scale parameter an d 
semi-group s tructur·e, the condition about suppression of local extrema is in one di mension 
equivalent to the condition about decreasing number of local extrema. 

Consequently, also this formulation in terms of local extrema has lead to a discretized 
version of the diffusion equation. But here in t he two-dimensional case there is a pparently 
anot her degree of freedom left in the class of possible smoot hing operators, since a linear 
combin at ion of the two common discrete Laplacian operators \7 ~ and \7~ is admitted on the 
right hand side of the the differential equation. The effects of combining those in different 
ways will be illuminated in the next section. 

3.4 Parameter Determination 

If (3.13) is rewritten on the form 

(3.25) 

one realizes that the interpretation of the para meter C is just a trivial rescaling of the 
scale parameter. Thus, withou t loss of generali ty5 we may set C to t in order to get the 
same scaling const ant as in the one-dimensional case (2.76). Wha t is left to inves tigate 
is how the remaining degree of freedom in the parameter 1 E [0, 1) affects t he scale-space 
representation. 

If1 = 1 then a undesirable situation appears. Since the cross-operator only links diagonal 
points, the system of ordinary differential equations given by (3.25) can then be split into 
two uncoupled systems, one operating on the points wi th even coordinate sum x + y and 
the o ther opera ting on the points with odd coordinate sum. It is clea r that t his is really a.n 
unwanted behaviour, since then even after a substantial amoun t of "blurring", for certain 
types of inpu t signals the "smoothed" grey-level landscape may still have a rather saw
toot hed shape. 

3.4.1 Derivation of the Fourier Transform 

Further arguments showing that 1 must not be too large can be obtained if one studies the 
Fourier t ransform of the corresponding scale-space family of kernels . Using a methodology 
similar to the derivation of the generating function of the solution to the one-dimensional 
semi-discretized diffusion equation in Section 2.6.2, we can derive the ge nera ting fu nction 
of t he kernel describing the t ransforma tion from the o riginal image to the scale-space rep
resentat ion a t a certain scale, which in turn gives us th e Fo urier transform. 

Proposition 3.6 (Fourier transform of the discrete scale-space) 
Let L : Z 2 X R + -+ R be the scale-space representation of a discre te signal f : Z 2 -+ R 
genemted by the differential equation (3. 25) with initial condition L ( ·, ·; 0) = f ( ·, ·). A ssume 
that f E 11 . Then the generating fu nction of the kemel describing the tmnsf ormation f rom 

'The case when C = 0 is obviously not interesting since then all scale-space representations would be 
eq ual. 

64 




the original signal to the representation at a certain scale t is given by 

00 

cpT(z, w) = E 
m=-oo n=-oo 

(3.26) 
Its Fourier transform is 

00 00E T(m, n; t)e-i(mu+nv) = e-(2--y)t + (1--y)(cosu+cosv)t + (-ycosucosu)t1/JT(u,v) = E 
m=-oon=-oo 

(3.27) 

Proof: If (3.25) is discretized further is scale using Euler's explicit method with scale step 
Llt, we get an iteration formula of the form 

L~,j 1 = (1- (2 -~)~t) L7,; + 

(1-l)ilt (Lk_1 . + Lk+1 . + Lk ·-1 + Lk+1) +2 ' ,) & ,) t,) t,) 

I Llt k k k k )
- 4 - (L;-1,j-1 + Li-1,i+1 + L;+t ,i-1 + L;+t,i+1 (3.28) 

where the subscripts i and j denote the spatial coordinates x and y respectively and the 
superscript k denotes the iteration index. The generating function describing one iteration 
with this transformation is 

(3.29) 

Assume that we want to compute the scale-space representation at a scale level t using n 
iterations with a scale step ~t = k· Then the generating function describing the composed 
transformation can be written 

cpcomposed,n( z, W) = (cpstep(z, W) )n = (3.30) 

( 1 + k<-(2 -I)+ (1;-y)cz-1 + z + w-1 + w) + f(z- 1w- 1 + z - 1w + z w - 1 + zw))r 

after substitution of ~t for k· Since limn .....oo( l + ~ )n = ea if limn .....oo O'n = a it follows 
that 

r ( ) - -(2--y)+l!..=..:!l( z- 1 + z+ w- 1 + w )+ l.(z-1 w-1 + z-1 w+zw- 1 +zw)n:.n;;, cpcomposed,n z - e 2 • (3.31) 

provided that the discretization (3.28) converges to the actual solution of (3.25). From this 
expression the Fourier transform is directly obtained by replacing z with e - iu and w with 
e-iv . 0 

3.4.2 Unimodality in the Fourier Domain 

It is easy to verify that the Fourier t ransform is unimodal if and only if 1 ~ i· 
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Proposition 3.7 (Unimodality of the Fourier transform) 
The Fourier transform (3. 27} of the kernel describing the transformation from the original 
signal to the smoothed representation at a coarser level of scale is unimodal if and only if 

I$!· 

Proof: We would like the Fourier transform to decrease with lu l and lvl for all u and v in 
[-1T, 1r]. Differentiation of (3.27) gives 

~~ = -"f/1(u,v)sinu(1 -1(1 +cosv))t (3.32) 

~~ = -t/l(u, v)sin v (1-1(1 + cosu))t (3.33) 

The partial derivatives ~ and %'{; have opposite signs to the variables u and v respectively 
if and only if the factors (1-1(1 +cosv)) and (1-1(1 +cosu)) are non-negative for all u 
and v, i.e. if and only if 1 $ ~· If this condition is satisfied then any directional derivative 
in a direction away from the origin will be negative. 0 

3.4.3 Separability 

The transformation kernel is separable if and only if its Fourier transform is separable, i.e. 
if and only if "!/IT( u, v) can be written on the form UT(u )VT( v) for some functions UT and 
VT· From (3.27) we realize that this separation is possible if and only if 1 = 0. Hence, 

Proposition 3 .8 (Separability of the 2-D discrete scale-space) 
The convolution kernel associated with the scale-space representation defined by L(x, Yi t) = 
J(x, y) and 

{)L 1 ( )at = 2 (1 - 1)V'~L + 1V'~L (3.34) 

is separable if and only if 1 = 0. Then L is given by 

00 00 

L(x, Yi t) = L T(m; t) L T(n; t)f(x - m, y - n) (t > 0) (3.35) 
m=-oo n=-oo 

where T( n; t) = e-t In(t ) and In are the modified B essel functions of integer order. 

Proof: The Fourier transform t/IT(u,v) can be written on the form UT(u)Vr(v) for some 
functions Ur and VT if and only if the term with cos u cos v can be eliminated from t he 
argument of t he exponen tial func tion, i .e. if and only if 1 is zero. In that case the Fourier 
transform reduces to 

t/lr(u, v) = e(-2+cosu+cos v)t = e(-l+cos u)te(-l+cosv)t (3.36) 

which corresponds to separated smoothing with the one-dimensional discrete analogue of the 
Gaussian kernel, first along one coordinate direction and then along the other one. It can also 
be verified directly that (3 .35) satisfies (3.34) by differentiating the kernel T(m; t)T( n; t) 
with respect tot and then carrying out similar calculations as in the proof of Theorem 2.26, 
see Appendix A.2.1. 0 

In other words, in the separable case the resulting two-dimensional discrete scale-s pace 
corresponds to repeated application of the one-dimensional scale-space concept along each 
coordin ate direction. 
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3.4.4 Discrete Iteration 

If as indicated in the proof of Proposition 3.6 the differential equation (3.25) is further 
discretized in scale using Euler's explicit method with scale step D.t , we get an iteration 
kernel with the coefficients. 

-y61 (1--y)61 
2 -y61 ) 

(1-})61 (1-})611- (2- -y)D.t (3.37) 
( -y61 (1--y)61 ~ -4 2 4 

Clearly, this kernel is unimodal if and only if -y ~ ~- One can show that it is separable if 
and only if -y = D.t, see below. In that case the corresponding one-dimensional kernel is 
a discrete scale-space kernel in the sense given in Definition 2.1 if and only if D.t ~ ~' see 
(2.83). This gives a further indication that -y should not exceed ~-

Observation 3.9 (Separability of the iteration kernel) 
The iteration kernel {3.37), corresponding to discrete forward iteration with Euler 's explicit 
m ethod, is separable if and only of -y = D.t. In that case, the corresponding one-dimensional 
kernel is a discret e scale-space kernel if and only if 0 ~ -y ~ 1/2. 

Proof: Since the kernel is symmetric and the coefficients sum to one, the kernel is separable 
if and only if it can be written as a kernel (a, 1 - 2a, a) convolved with itself, i.e. if and 
only if there exists an a 2: 0 such that 

-y!::!.t
a2 = (3.38) 

4 
(1- -y)D.t

a(1- a)= (3.39)
2 

(1 - a)2 = 1- (2- -y)D.t (3.40) 

The fir st equation has one non-negative root a = -Efl. Insertion into the second equation 
gives t wo conditions on D.t , either D.t = 0 or D.t = -y. One verifies that these roots satisfy 
the third equation. D 
It is worth mentioning, that if the extremum definitions, Definition 3.1 and Definition 3.2, 
would have been based on four-neighbour s instead of eight-neighbours then -y = 0 would 
have app eared as a necessary condition in Theorem 3.2. 

3.4.5 Spatial Isotropy 

Another aspect which might affect the selection of -y is spatial isotropy. It is not clear that 
rotational invariance is a primary quality to be aimed at in the discrete case, since we are 
anyway locked to a fixed square grid. It is also far from obvious what should be meant by 
spatial isotropy in a discrete situation. Possibly, it is better to t alk about the lack of spatial 
isotropy, spatial anisotropy or rotational asymmetry. However, since the Fourier transform 
is a continuous function of u and v , one can regard its variation as a function of the polar 
angle, given a fi xed value of the radiu s, as one measure of this property6 . If one expresses 
'1/rr(u , v) in polar coordinates u = w cos</>, v =w sin </> and examines the resulting expression, 

1/JT(wcos <f>, w sin <f> ) = eh(wcos,P,wsi n </>)1 (3.4 1) 
6 This measure d escribes how much the amplitude of a sampled planar sine wave e•'"·z is s uppressed as a 

fun ction of the propagation direction w. 
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where 

h(wcos<f>,w sin </>)= -(2 -;)+ 

(1 -;)(cos(w cos</>)+ cos(w sin</>))+ 

; cos(w cos</>) cos(w sin </>) (3.42) 

one reali zes that t he value of;, which gives the smallest angular variation for a fixed value 
of w, depends on w. Hence, with this formulation, t he " rotational invariance" is scale 
dependent . 

If; = ! we get the nine-point operator V~, see Figure 3.4 and e.g Dahlquist [Dah74] . As 
we will see later it is not difficult to show that for large spatial scales, this value of ; gives 
the "most" isotropic second order a pproximation of the continuous Laplacian operator a t 
the cost of a non-separable convolution kernel. But if we use a non-zero value of ;, it should 
be noted t hat the discrete scale-space representation can always be computed efficiently in 
the Fourier domain , using (3.27). 

1/6 2/3 1/ 6 ) 
2/3 -10/3 2/3 

( 1/6 2/3 1/6 

Figure 3.4: Computational molecule for the nine-point operator h2'V~ corresponding to r = ~· At 

coarse scales this value of r gives t he spatially least anisotropi c approximation of the continuous 

diffusion equation. 

Proposition 3 .10 (Rotational invariance in the Fourier domain) 

The value of ; that gives the least rotational invariance for large scale phenomena in the 

solution to the differential equation (3.25) is 1 = l· 


Proof: Express ..PT(u, v ) on the form ..PT(u, v) = eh(u,v)t and introduce polar coordinates 
(w,</>)by 

u =wcos</> (3.43) { v =w sin</> 

Then the Taylor expansion of h for small values of w is, see Appendix A.2.3 , 

(3.44) 

where the O(w6 ) term depends on both </> and ;. Observe that if ; = l then the </>
dependence decreases with w as w6 instead of as w4 . 0 

This means that ; = ! asymptotically, i.e. with increasi ng spatial scale, gives the most 
isotropi c smoothing effect on coarse scale events. The reason why we desire spatial isotropy 
at coarse scales rather than at fine scales is because t he grid effects become smaller for 
coarse scale phenomena, which in turn makes it more meaningful to talk about rotational 
invariance. In this context it should be noted t hat, if we use a non-zero value of1, the discrete 
scale-space representation can always be calculated efficiently in the Fo urier domain usi ng 
(3.27). 
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3.4.6 Remaining Degree of Freedom 

We leave the question about definite selection of 1 open. However , from a computational 
point of view it seems very plausible that 1 = 0 should not be a too bad choice. As we 
will see in the next chapter, the closed-form expressions for some derived qu antities will also 
become simple in this case. A possible disadvantage with that approach is that it emphasizes 
t he x- and y-directions as being special directions. 

3 .5 2D Summa r y a nd Discussion 

The proper way to apply the scale-space theory to two-dimensional discrete images is ap
parently by discretization of the diffusion equation. Starting from a requireme nt that local 
extrema must not be enhanced when the continuous scale parameter is increased we have 
shown that a necessary and sufficient condition for a family of derived representations to be 
a scale-space family is that it satisfies the differential equation 

oL C ( )7ft= 2 (1- 1)\l~L + 1\l~L (3 .45 ) 

for some real constants C and 1 where 1 E [0 , 1]. Our recommendation is that 1 should 
not exceed ! . 1 = 0 gives a separable convolution kernel, while 1 = ~ leads to a spatially 
more isotropic smoothing effect on coarse scale objects. In the separable case t he scale
space representation can be calculated by separated convolution with the presented one
dimensional discrete analogue of the Gaussian kernel, T(n; t). 

3 .6 Possible Extensions 

The treatment so far has been restricted to one- and two-dimensional signals defined on 
infinite and uniformly sampled square grids using uniform smoothing of all grid points, 
because this is the natural special case we have been interested in when dealing with image 
data generated from standard camera devices. However, there is nothing in principle that 
prevents those restrictions from being removed. 

3 .6.1 Anisot rop ic Smo o t hing 

In a recent paper, Perona and Malik [Per90] propose the use of anisotropic smoothing. 
The motivation behind their approach is to try to avoid or to reduce the shape distortions 
introduced by scale-space smoothing across object boundaries, particularly with application 
to edges. The way they suggest to prevent this from happening is by modifying the diffusion 
coefficients such as to favour intraregion smoothing to interregion smoothing. 

Using the maximum principle they show that the resulting anisotropic scale-space repre
sentation satisfies a similar suppression property for local extrema as was the basis for Koen 
derink and van Doorns [Koe84] continuous scale-space formulation and this two-dimensional 
discrete treatment. From the proofs of Theorem 3.2 and Theorem 3.3 it is obvious that the 
ideas behind the discrete scale-space concept can be easily extended to such anisotropic dif
fusion if we let the coefficients of the linear operator A vary with both the scale parameter, 
the grey-level values and the spatial coordinates. However, when introducing an anisotropic 
diffusion equation we have to sacrifice t he convolution form of smoothing as well the semi
group property. Therefore, when proving the necessity of the representation a certain for m 
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of the smoothing formula may have to be assumed, e.g. of the form (3.6) where A depends 
on the scale parameter and is no longer shift invariant. 

In this work we have throughout made use of uniform smoothing all over the image at 
the possible cost of such smoothing across "object boundaries". The motivation behind t his 
choice is that we are mainly interested in using the scale-space representation for act ually 
detecting image structures. T herefore, we would like to in troduce as few commitments as 
possible into the process. The approach we instead have adopted is to first detect candidate 
regions of interest. T hen , once such a candidate has been detected as a region in an image, its 
localization can be improved in various ways. For an example, compare wi t h t he integration 
of blob detection and edge detection in Section 9.1. 

Modifying the diffusion coefficient requires some kind of a priori information concerning 
which structures in the image should be smoothed and which structures should not. In 
Peronas and Maliks case there is a tuning function , giving the diffusion coefficient as fun ction 
of the gradient magnitude, that needs to be determined. 

There is also another aspect of the approach we find somewhat dubiou s. When the scale 
parameter t tends to infinity the solution to the anisotropic diffusion equation will tend 
to a function that is not constant, but contains various sharp edges. Hence, the choice of 
the tuning fun ction in the method somehow implies an implicit assumption about a " final 
segmentation" of the image. It is not clear that such a concept exists or can be defined 
rigorously. 

3 .6.2 Higher Dimensions 

In Section 3.3.4 we showed that the ideas behind the two-dimensional scale-space concep t 
could be directly applied to one-dimensional signals. Similarly, they can be extended to 
arbitrary n-dimensional discrete signals zn -+ R, although t he amount of data generated in 
a practical application may increase dramatically with the number of dimensions. Analogies 
to the definitions given in Section 3.3.1 can be obtained almost directly just by replacement 
of Z2 by Z". All we have to take care of is that the symmetry condition in Definition 3.3 is 
stated properly. One can require that 

(3.46) 

(3.47) 

hold for all (x1, .. . ,xn) E zn, all t E R + and for all possible permutations Pf: ofn elements. 
The proof of Lemma 3.1 is independent of the number of dimensions. In the analogies 

of Theorem 3.2 and Theorem 3.3 we will have to replace the operator o\7~ + {3 \7~ with a 
corresponding n-dimensional discrete operator \i'~D approximating the continuous La pla
cian. Only the coefficients in \i'~D corresponding to the nearest neighbours of a point can 
be non-zero because of the locality requirement induced by the non-en hancement of local 
extrema. Moreover, by studying a piecewise constant signal one verifies that the sum of 
the coefficients must be zero. When t he symmetry constraints have been applied to this 
operator there will be n remaining parameters left to be determined. One of t hose can be 
removed si nce it will only affect the scaling of the scale parameter. In the separable case 
the corresponding scale-space representation can be computed by separated convolution 
with the one-dimensional discrete analogue of the Gaussian kernel along each coordinate 
direction. 
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3.6.3 Finite Data 

A practical problem that always arises when implementing linear filtering concerns what to 
do with those pixels near the image boundary for which a part of the filter mask stretches 
outside the current image. In this treatment we have throughout assumed the signals to be 
defined for all the points in an infinite square grid and not gone into the complications that 
occur due to the boundary effects if the signal function is defined only for a finite subset of 
the integers. 

The most conservative outlook is, of course, to regard the output as undefined as soon 
as a computation requires some image data outside the available domain. In the case with 
scale-space smoothing this approach would, however, lead to a rapidly decreasing image 
size, something hardly desirable, since the peripheral coefficients decrease towards zero very 
rapidly and the (untruncated) convolution masks actually have infinite support. A variety 
of ad hoc methods have been used/proposed to solve for this problem; zero value extension, 
periodic wrap-around, mirroring at the boundaries, subtraction of the steady-state compo
nent, solving the diffusion equation with adiabatic boundary conditions etc. However, we 
believe that neither of these techniques can give a desired results in all situations. The re
sult depends too much on how the image behaves near the boundary. For some very simple 
cases it might be enough do an ad hoc extension. But this requires some kind of a priori 
information about what can be expected to be in the scene. 

There is no getting away from the fact that all finite images have boundaries and that 
problems arise if one tries to analyze objects near them. By necessity, the peripherical image 
values of a smoothed finite image will be less reliable than the central ones. Instead we think 
that if one really needs accurate values near the boundary of an image then one should 
instead try to acquire additional image data such that the convolution operation becomes 
well-defined. This can be easily achieved within the active vision paradigm simply by moving 
the camera such that image values become available in a sufficiently large neighbourhood 
of the object of interest. We think that the task of analysing an object manifesting itself at 
a certain scale requires input data in a region around the object. The width of this frame 
depends both on the current level of scale and the prescribed accuracy of the analysis. 

If one because of computational efficiency and simplicity uses the extension approach 
there is is one aspect we would like to emphasize. If one wants the semi-group property to 
hold exactly between arbitrary scale levels (except for numerical rounding and truncation 
errors) it is necessary that the representations at all scales are generated directly from 
the original extended signal using the approximation ( 4.20). If cascade smoothing is used 
then the truncation of the intermediate representations at the boundaries implies that the 
semi-group property will be violated unless the size of the intermediate representations is 
increased. 

Of course, a genuinely finite approach is also possible. In this presentation we have 
chosen not to develop the subject, since the associated problems are somehow artificial and 
difficult to handle in a consistent manner, although in the one-dimensional case the concepts 
of sign-regularity and semi-groups of totally positive matrices in principle provide possible 
tools for handling this issue. 

One way of avoiding both the infiniteness and the boundary problems could be by 
using a spherical camera. Then, the ordinary planar camera geometry would appear as an 
approximate description for fovea! vision, i.e. small solid angles in the central field of vision. 
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3.6.4 Other Types of Grids 

Neither is the assumption of a square grid any necessary restriction. The same type of treat
ment can be carried out on e.g. a hexagonal grid with the semi-group property preserved, 
and also in principle on a grid corresponding to non-uniform spatial sampling provided that 
the diffusion coefficients are modified accordingly. In the latter case some a priori form 
of the smoothing formula may have to be assumed when proving the necessity of the rep
resentation. An interesting case to consider might actually be the non-uniformly sampled 
spherical camera. 

3.6.5 Further Work 

Let us finally point out that there is one main issue that we have not considered in this 
treatment, namely s<;ale dependent spatial sampling. T his issue is certainly of importance 
in order to improve the computational efficiency both when computing the representation 
and for algorithms working on the data. The scale-space concept outlined here uses the 
same spatial resolution at all levels of scale. The pyramid representations on the other hand 
imply a fixed relation between scale and resolution as well as a fixed scale step that one 
cannot go below. In fact, the scale is given directly by the resolution. 

Since the smoothed images at coarser scales will get more and more redundant is seems 
plausible that some kind of subsampling could be done at the coarser scales without very 
much loss of information. It would be interes ting to car ry out an analysis about how 
much information would be lost by such an operation and regarding to which extent the a 
subsampling operator could be introduced in this representation, anyway maintaining the 
continuous scale parameter and without introducing any severe discontinuities along the 
scale direction that could lead be a potential source to numerical difficulties for algorithms 
working on the output from the representatio n. 
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Chapter 4 

lrnplernentational Implications and 
Conclusions 

In this chapter we will first describe some computational and implementational implications 
of the presented discrete scale-space theory and then conclude this overall t reatment by 
summarizing the main results. 

4.1 Discrete Definitions of "Derivatives" 

The scale-space representation obtained from the discrete t heory has some implementational 
advantages compared to the commonly adapted approach, where the scale-space implemen
tation is based on different versions of the sampled Gaussian kernel. It allows for discrete 
definitions of the derivatives of the Gaussian arising in the N-jet representation suggested 
by Koenderink and van Doorn [Koe87). 

4.1.1 The Laplacian of the Gaussian 

Consider for instance the computation of the Laplacian of the Gaussian \12G of an image 
f. It is well-known that \72 G is not a separable kernel - a clear disadvantage in terms of 
computational efficiency, unless the convolutions are carried out in the frequency domain. 
It is also known that the straightforward implementation consisting of smoothing with the 
sampled Gaussian kernel followed by application of a discrete Laplacian gives unsatisfactory 
results, since t he values obtained in this way deviate too much from the sampled values 
o f \72G. A common approach to circumvent this problem has been by the calculation of 
difference of Gaussians (DOG) instead, see e.g. Marr and Hildreth [Mar80). However, t his 
met hod will only give approximate results, and the selection of the scale-step 6t leads to 
a numerical trade-off between cancellation of digits and accuracy in the representation. It 
also requires the computation of two smoothed representation s instead of one. 

4 .1.1.1 Approximations b ased on the Continuous Theory 

To summarize, we have t hat t here are several possible ways to get a disc rete approximation 
of the La pl acian of the Gaussian of a signal ; discrete convolution with the sampled Gaussia.n 
ker·nel 

00 00 

(\12L)(x,y;t)= L L (\12 G)(m,n; t)f(x- m,y- n) (x, y) E Z2 (4.1 ) 
m=-oo n=-oo 
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corresponding to the application of the rectangle rule of integration to the convolution 
int egral 

(V72 L )(x, y ; t ) =J:_ 1:-oo(V72G)({, 7]; t)f(x - {, y - 17)d{d7] (x, y ) E R 2 (4.2) 
00 

discrete convolution with the sampled Gaussian kernel f ollowed by the discrete Laplacian 

(V72L)(x,y; t) = V7; (m~oom~oo G(m,n; t )f(x- m,y- n)) (x, y) E Z 2 (4.3) 

correspondi ng to a two-step discrete approximation of at first the convolution in tegral 

(x, y) E R 2 ( 4.4) 

using the rectangle rule of integration and then the Laplacian operator applied to that result 

2(V7 L)(x,y;t) = V72 (J:_oo 1:-oo G({,7]; t )f (x- {,y -17)d{d7]) (x,y) E R2 (4 .5) 

as well as difference of sampled Gaussians 

2 )( . )- ~ ~ 2(G(m,n; t+~tt) -G(m, n; t - ~t2))J( _ _)(V7 L x, y, t - L....- L....- ~ t. x m, y n (x, y) E . m=-oo n=-oo t1 + .t2 
(4.6) 

corresponding to discretization of the derivative with respect to the scale parameter in the 
diffusion equation 

(x,y) E R2 (4.7) 

where L in turn is given by the convolution integral (4.4). Of course, the sampled Gaussian 
kernel may in all these cases be replaced by the integrated Gaussian kernel in order to yield 
"more true approximations" at fine scales, compare also with Section 2.6.3. 

In the continuous case the various expressions (4.2), (4.5) and (4.7) will all be equivalent 
when ~t1 and ~t2 tend to zero provided that the signal f is sufficiently regular. However , 
the different discrete approximations ( 4.1 ), ( 4.3) and (4.6) will not give the same but different 
output results, not even in the limit case. The main reason why these expressions are no 
longer equivalent is because the operators involved , which commute in the continuous case, 
do not commute after discretization. 

4 .1.1.2 Discrete Defi nition of the Laplacian of the Gaussian 

The discrete scale-space concept outlined in the previous chapters allows for a discrete 
definition of t he Laplacian of the Gaussian of an image, for which the discrete analogies of 
(4.2), (4 .5) and (4.7) are all maintained equal. From the diffusion eq uation (3.25) we have 
t hat 

8L 1 1 1 1
fit = 2((1 - 1 )V7~L +1V1~L) = 2V7;(T *f) = 2r * (V7;f) = 2(V7;T) * f (4.8) 

In t his discrete case V7; commutes with the smoothing operator and we can compute the 
discrete analogue of the Laplacian of the Gaussian of an im age in several ways. We take 
the output of those equivalent operations as the discrete definition of this concept. When 
implemen t ing t his operation we have several possibilities to compute the output: 
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• in two sweeps -	 a smoothing step with the discrete analogue of the Gaussian kernel 
followed by the application of the discrete Laplacian operator \7~. 

• 	 a discrete Laplacian step applied to the o riginal signal followed by smoothing. 

• by comp utation of the Laplacian of the smoothing kernel as a first step and then by 
convolving t he signal with t hat kernel. 

• 	 as the limit case of differences of discrete Gaussians, compare with ( 4. 7). 

Note again that all methods give exactly the same result, since the (discrete) smoothing 
operator commutes with the (discrete) Laplacian, provided that the same value of 1 is used 
in all discrete Laplacian operators. With t he first method the amount of computational 
work required to compute t he discrete analogue of the Laplacian of the Gaussian of an 
image is, if 1 = 0, just one separable two-dimensional smoothing step followed by an efficient 
application of the discrete Laplacian. T he second method can be slightly advantageuos for 
algorithms where only the Laplacian of the Gaussian is required, since then t he Laplacian 
step needs to be car ried out just once. The third method destroys the separability! and 
should probably be avoided . The fi rst method is really the one to prefer in situations where 
both the smoothed image and its spatial derivatives are required. 

4.1.2 The Gradient of the Gaussian 

The discrete scale-space does also provide a con venient formulation of gradient calculations. 
For simplicity, consider the separable case when 1 = 0. Then a one-dimensional analysis 
is sufficient. Let bx denote the well-known central difference operator in the x-direction 
defined by 

1 
(8xf)(x, y) = 2(/(x + 1, y)- f(x- 1, y)) 	 (4.9) 

Similarly to the previous case, b:cL can be computed either by application of bx on the 
smoothed image, the original image or on the smoothing kernel. The effect of this gradient 
calculation is given by the effect bx has on the one-dimensional kernel applied in t he x 
direction. From a recurrence relation for the modified Bessel functions ( 4.22) we get an 
explicit analytical expression for ( b:cT)(x; t), namely 

(4.10) 

Note the similarity with the derivative of t he con tinuous Gaussian kernel 

0 X
(!IG)(x ; t) = --G(x; t) 	 (4 .11 ) 
ux t 

4.1.2 .1 Approximations of the Continuous Equations 

If one instead would have used t he approach based on the sampled Gaussian kernel it is 
clear t hat convolution with the sampled x-gradient of the Gaussian 

- 00 00 ac 
(8xL)(x, y; t) = L L ox (m, n; t)f(x- m, y- n) (x,y) E Z 2 (4.12) 

m=-oo n=- oo 

1 As men tioned earlier, the convolu tion kernel is separable if a nd only if -y = 0 

75 




corresponding to the rectangle rule of integration approximation applied to the integral 

8 foo l oo oG 
( oxL)(x , y;t ) = le=-oo 71=-oo(ox )(~, ry; t )f (x- (,y - ry) d~dry (x, y) E R2 (4 .13) 

would not have given the same result as application of 6:r on the "scale-space representa tion" 
generated by smoothing with the sampled Gaussian kernel 

(6; L)(x , y; t ) = 6:r (m~oo m~oo G(m, n ; t )f ( x- m , y - n)) (x, y) E Z 2 (4.14) 

corresponding to a two-step discrete approximation of at first the convolution integral (4.4) 
using the rectangle rule of integration and t hen t he x-gradient operator applied to that 
result 

(x,y) E R2 (4.15) 

Gradient approximations of type suggested in ( 4.9), although based on binomial kernels in 
pyramids, have been used e.g. by Crowley [Cro87]. 

Second order derivatives can be obtained either by application of 6:r twice or by using 
the well-known discrete approximation to the second derivative V~. The first approach is 
advantageous in the sense that the discrete analogue to a derivative of any order can be 
obtained by repeated application of the 6:r operator. The second approach gives a higher 
accuracy and also preserves t he coupling between the second order spatial derivative with the 
first order derivative with respect to the scale parameter as required in the diffusion equation. 
Higher order "discrete derivatives" can be formed by combinations of t hese operators. 

4.1.3 Normalization 

Another disadvantage with the sampled Gaussian kernel appears for small values oft . Then, 
as the continuous Gaussian kernel tends towards t he continuous delta fun ction when t tends 
to zero, the central coefficient may get very dominant. Even though the integral of the 
continuous kernel is normalized to one, the central peak can drive the sum of the filter 
coefficient s to a value substantially greater than one2 • This negative effect at fine scales 
is further amplified when derivatives of the Gaussian and/or when difference operators are 
applied to the smoothed grey-level images. Such problems do not occur with the discrete 
analogue of the Gaussian kernel, since this kernel tends to the discrete delta functio n as t 
tends to zero and the fil ter coefficients always sum up to one. 

L
00 

T(n; t ) = 1 (4.16) 
n=-oo 

Ot her normalization conditions that are trivially satisfied are 

00 

L(6:rT)(n; t ) = - T (O; t ) ( 4.17) 
n=O 

2 lt has been suggested that this effect should be compensated fo r by renormalization of the filt er coefficient 
sequence. But this operation does not solve the major problem since the mutual relation between the 
coefficients remains unchanged a nyway. It only leads to a rescaling of the output image. The problem with 
the sampled Gaussian kernel for small values oft is rather that it appears as having a smaller 1- value than 
it s ho uld . 
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L
00 

(V'5T)(n; t) = 0 (4.18) 
n=-oo 

4 .1.4 Summary 

The effects mentioned in this section are all due to the difference between continuous theory 
and discrete implementation. As indicated above, the main reason why they arise is because 
the involved operators, which commute in the continuous case, do not commute when the 
discretization operator is involved, compare also with violated semi-group property discussed 
in Section 2.6.1. With the discrete scale-space theory presented in this treatment we feel 
that we have accomplished a structured way to eliminate this kind of problems. 

4.2 K e rne l Graphs 

In order to illustrate the difference between the discrete analogue of the Gaussian kernel and 
the continuous Gaussian kernel we have drawn their graphs at a few levels of scale together 
with corresponding results for the first and second order derivatives and differences, see 
Figures 4.1-4.5. For comparison the sampled Gaussian kernel and the integrated Gaussian 
kernel have been shown next to these graphs. As we see, the difference be tween the two 
kern els is largest at fine le vels of scale and becomes smaller as the kernels approach each 
other at coarser levels of scale. 

4.3 Imp lement ing S cale-Space Smoothing 

According to the definition of the scale-space for d iscrete signals, the representation of a 
one-dimensional signal f at a scale-level t is given by, 

L(x; t) = L
00 

T(n; t)f(x- n) (x E Z, t > 0) (4 .19) 
n=-oo 

whe re T(n; t) = e-t .rn(t). When this transformation is to be implemented computationally 
there are a few numerical problems that must be considered: 

• 	 The infini te convol ut ion sum must be replaced with a finite one. 

• 	 Normally, the modified Bessel functions are not available as stand a rd library routines. 
Therefore, we must design an algorithm to generate the required filter coefficients 
T(n; t) for a given value oft. 

• 	 A realistic signal is finite, but a finite approximation of ( 4.19) might need additional 
values. 

In this section we will discuss the first two items. We will not go in to the complications, 
which arise from finite sign als. Instead we assu me that f is defined for all those integers, 
where signal values are required for our algorithms. 
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4 .3.1 Truncation and Filter Coefficient Generation 

A reasonable approach to approximate ( 4.19) is to truncate3 the infinite sum for some 
sufficiently large value of N, 

N 

L(x; t) ~ L T(n; t)f(x - n) (x E Z, t > 0) (4.20) 
n=-N 

chosen such that the absolute error in L due to truncation does not exceed a given error 
bound e. If we assume that f is bounded (lf(x)l ~M) we get the sufficient condition 

2 L
00 

T(n; t) ~ M 
g 

= €trunc ( 4.21) 
n=N+l 

An easy way to generate the filter coefficients is to use the recurrence relation, see Abramowi t z 
[Abr64] (9.6.26), 

2n 
ln-l(t)- ln+l(t) = -ln(t) ( 4.22) 

t 

One can use Miller's algorithm, see e.g. Press et al. [Pre86] p142, and start the recurren ce 
with an arbitrary seed IN.,ar• = 1 and IN.,ar•+1 = 0 for a sufficiently large start in dex 
N.tart· As n decreases the iterates obtained from ( 4.22) will successively approach the 
correct solution. The sequence of iterates can be normalized if I 0 (t) is computed by a 
separate routine. Once a sufficient number of filter coefficients has been computed, it is 
easy to determine how many that are actually needed from the condition "£_;/_=-N T ( n; t) :::: 
1 - 2€trunc· A more detailed investigation as well as an algorithm generating the ftlter 
coefficients T(n; t) can be found in [Lin88] Section 5 and Appendix A.3. 

Another possibility is of course to start from the expression for the Fourier transform 
(2.47) and perform the convolutions in the frequency domain instead. At coarse scales 
this method will be computationally far more efficient than convolutions car ried out in t l1e 
spatial domain. Then also, the truncation error in the convolution integral can be expected 
to be substantially reduced, since the only truncation that occurs in the frequency domain 
is because of the finite size of the actual image subject to the Fourier transformations. 
However, some precautions may have to be t aken in order to reduce the wrap-around effects, 
for instance by extending the signal before the fast Fourier transform is carried out. 

In the separable case when 1 = 0 the two-dimensional scale-space smoothing can be 
implemented by application of the one-dimensional smoothing formula along each coordinate 
direc tion. For square filter masks the truncation error €20 in the two-dimensional case is 
related to the truncation error t:w in the one-dimensional case by 

(4 .23) 

3 0bserve that by truncating the infinite kernel we actually violate the scale-space conditions and can no 
longer assume the scale-space property to hold exactly between two scale levels. Actually, we are not even 
guaranteed that the truncated convolution kernel is a dicrete scale-space kernel. One possible approach t o 
reduce this problem might be by trying to find the generalized binomial kernel of gi ve n size that in some 
sense is the closest approximation to the infinite support discrete analogue of the Gaussian kernel. Al~o the 
possible ringing in t he Fourier domain introduced by truncation in the spatial domain might. cause problems, 
and it could possibly be better to "round off" the kernels at the tails. In order to avoid t hese complications 
we ins tead assume that the upper bound on the truncation error ~•rune is selected small enough such that 
those effect can be readily ig nored. 
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4.3.2 Application to the N-jet 

Let us again point out that once the scale-space smoothing step has been carried out, 
the "discrete derivatives" can be computed directly from the smoothed grey-level images 
by application of their corresponding filter masks (containing just a small number of non
zero coefficients) on the smoothed data. Hence, there is no need to redo any smoothing 
by convolving the image with any large size filter masks derived from derivatives of the 
Gaussian kernel. 

Note, however, that the absolute error due to truncation of the infinite discrete analogue 
of the Gaussian kernel increases by this operation, with a factor of 2 when computing first 
order differences and a factor of 8 when computing the discrete analogue of the Laplacian 
of the Gaussian. Therefore the truncation error should be selected small enough in the 
smoothing approximation. 

4.4 Summary and Discussion 

We have seen that the discrete scale-space representation given by discretization of the dif
fusion equation has computational advantages compared to the commonly used approach, 
where the scale-space implementation is based on various versions of the sampled Gaussian 
kernel. It can be expected that the difference is largest for small values of the scale param
eter, when the sampled Gaussian kernel and the discrete analogue of the Gaussian kernel 
deviate as most. When the scale parameter increases these two kernels approach each other, 
see also Section 2.5.2.1, and we might expect that the difference becomes smaller. This effect 
can also be understood from another point of view. At coarse levels of scale the large scale 
phenomena dominate in the scale-space representation, which means that the grid effects 
become smaller, since a characteristic length in the smoothed image will be large compared 
to the distance between adjacent grid points. It is difficult to say gener ally how large the 
numerical effects are in an actual implementation and how seriously they affect the output 
result, since t his is very much determined by the algorithms working on the sca.le-space 
representation and the goal of the analysis in which the scale-space part is just one of the 
modules. However, in Figures 4.6-4.7 we have tried to visualize how some measures of the 
difference between the sampled Gaussian kernel and the discrete analogue of the Gaussian 
kernel behave as a function of the scale parameter. Tabulated values for a few values oft are 
given in Appendix A.3.1. The graphs verify that the difference is largest for small values of 
t and show t hat it increases with higher order differences. Do also note the large difference 
between the sampled second derivative of the Gaussian kernel and t he second difference of 
the sampled Gaussian kernel. 

Finally, it should be explicitly stressed that the discrete scale-space theory is closely 
linked to the continuous scale-space theory through the discretization of the diffusion equa
tion. This means that continuous results can be transferred to discrete implementation 
provided that the discretization is done correctly. The discussion in the previous section is 
intended to exemplify the technique. 

4.5 Conclusions: Scale-Space for Discrete Signals 

The first part of this thesis gives a basic and extensive treatment of discrete aspects of the 
scale-space theory. A genuinely discrete scale-space theory is developed and its connection 
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to t he continuous scale-space theory is explained. Special attention is given to discretization 
- effects, which occur when results from the continuous scale-space theory are to be imple

mented computationally. The one-dimensional problem is solved completely in an axiomatic 
manner. The two-dimensional problem is more complex, but we answer the question about 
how the two-dimensional discrete scale-space should be constructed. The main results can 
be summarized as follows (References to central theorems and appropriate sections of the 
thesis are given within parenthesis): 

• 	 The proper way to apply the scale-space theory to discrete signals is by discretization 
of t he diffusion equation, not the convolution integral (Thms. 2.20, 2.26, 3.2, 3.3, 
Prop. 2.25, and Secs. 4.1, 2.6). 

• T he discrete 	scale-space obtained in t his way can be described by convolution with 
the kernel T(n; t) , which is the discrete analogue of the Gaussian kernel (Thm. 2.20, 
Prop. 3.8 and Sec. 3.4). 

• 	 A scale-space implementation based on the sampled Gaussian kernel might lead to un
desirable effects and computational problems, especially at fine levels of scale (Prop. 2.25 
and Sec. 4.1). 

• 	 The one-dimensional discrete smoothing transformations can be characterized exactly 
and a complete catalogue is given (Thms. 2.14, 2.15). 

• 	 All one-dimensional discrete smoothing transformations with finite support arise from 
repeated averaging over two adjacent elements (Thm. 2.18 and Props. 2.5, 2.6) . The 
kernel T(n; t) describes the limit case of such an averaging process (P rop. 2.28). 

• 	 The symmetric one-dimensional discrete smoothing kernels are non-negative and uni
modal, both in the spatial and the fr equency domain (Props. 2.2, 2.3, 2.9, 2.11 and 
Sec. 2.4). These conditions are necessary but not sufficient (Ohs. 2.30). 

The important idea with the scale-space concept suggested in this paper is that the dis
crete nature of the implementation has been taken into accoun t already in the t heoretical 
formulation of the scale-space representation. 

4.6 Philosophy 

The formulation in terms of the diffusion equation appears to be a nat ural unification of 
the existing scale-space theory for continuous signals and the presented scale-space theory 
for discrete signals. One could say that the primary formulation of the scale-space t heory 
is by the diffusion equation. Then, 

• 	 the Gaussian kernel appears as the fundamental solution of the continuous diffusion 
equation. 

• 	 the discrete analogue of the Ga.ussia.n kernel is the fund amental solu tion of the discrete 
diffusion equation . 

During recent years "Gaussian smoo thin g" has become a wide-spread concept in the com
puter vision society. In view of these results one should rather say "diffusion smoothing" . 
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Discrete Gauss Sampled Gauss Integrated Gauss 

Figure 4. 1: t = 0.25: Comparisons between the discrete analogue of the Gaussian kernel (left 

column), the sampled Gaussian kernel (middle column) and the integrated Gaussian kernel (right 

column). The upper row shows the raw smoot hing kernel, the middle row the first order differ

ences/derivatives and the lower row the second order difference/derivatives. The block diagrams 
indicate the discrete kernels and the smooth curve the continuous Gaussian. 
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Discrete Gauss Sampled Gauss Integrated Gauss 

Figure 4.2: t = 1.0: Comparisons between the discrete analogue of the Gaussian kernel {left 

column}, the sampled Gaussian kernel {middle column) and th e integrated Gaussian kernel (right 

column). The upper row shows the raw smoothing kernel, the middle row the first orde r differ

ences/derivatives and the lower row th e second order difference/derivatives. The block diag rams 

indicate th e discrete kernels and the smooth curve the continuous Gaussian. 
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Discrete Gauss Sampled Gauss Integroted Gauss 

d 

Figm·e 4.3: t = 4.0: Comparisons between the discrete analogue of the Gaussian kernel {left 

column), the sampled Gaussian kernel {middle column) and the integrated Gaussian kernel {right 

column). The upper row shows the raw smoothing kernel, the middle row the first order differ

ences/derivatives and the lower row the second order difference/derivatives. The block diagrams 
indicate the discrete kernels and the smooth curve the continuous Gaussian. 
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Discrete Gauss Sampled Gauss Integrated Gauss 

Figure 4.4: t = 16.0: Comparisons between the discrete analogue of the Gaussian kernel {left 

column), the sampled Gaussian k ernel {middle column) and the integrated Gaussian kernel (right 

column). The upper row shows the raw smoothing kernel, the middle row the first order dijJeT·

encesjderivatives and the lower row the second order difference/derivatives. The block diagrams 
indicate the discrete kernels and the smooth curve the continuous Gaussian. 
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Discrete Gauss S ampled Gauss In tegrated Gauss 

Figure 4.5: t = 64.0: Comparisons between the discrete analogue of the Gaussi!tn ken1el (left 

column), the sampled Gaussian kernel (middle column) and the integrated Gaussian kernel (t·ighi 

column). The upper row shows the raw smoothing kernel, the mtddle row the fit·st ot·det· diffet·

ences/derivatives and the lowet· r·ow the second order difference/derivatives. The block diagrams 

mdicate the discrete kernels and lite smooth curve the continuous Gausswn. 
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Figure 4.6: l1 norms of some differences between the sampled Gaussian kernel G(-; t) and the 

discret e analogue of the Gaussian kernel T(· ; t) in the one-dimensional case. The left column shows 

comparisons between differences of the discret e analogue of the Gaussian kernel and sampled deriva

tives of the Gaussian kernel, the middle column comparisons between sampled derivatives of the 

Gcwssian kerne l and differences of the sampled Gaussian kernel and fin ally th e right column dif

ferences of the discrete analogue of the Gaussian kernel compared with differences of the sampled 

G aussian kernel. The t op row displays the result f or zero order differences/derivatives, the mid

dle row for first order differen ces/derivatives and the bottom row shows the result for second order 

differences and derivatives. As we see, the magnitude of the e1·ror increases with the order of th e 

derivatives/differences. The scaling of the x-axis is logarithmic with range between t equals 0.01 and 

10000. The range of they-axis is shown below each graph. 
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F igure 4 . 7: 11 norms of some differences between the integrated Gaussian kernel jG( ·; t) and 

the discrete analogue of the Gaussian kernel T(-; t) or the sampled Gaussian C(-; t) in the one

dimensional case. Here, the modified integration sign j stands for integration over each pixel support 

region. The left column shows comparisons between differences of the discrete analogue of the Gaus

sian kernel and integrated derivatives of the Gaussian kernel, the middle column comparisons between 

sampled derivatives of the Gaussian kernel and integrated derivatives of the sampled Gaussian kernel 

and finally the right column differences of the sampled Gaussian kernel compared with differences of 

the integrated Gaussian kernel. The top row displays the result for zero order differences/derivatives, 

the middle row for fi rst order differences/derivatives and the bottom row shows the result for second 

order differences and derivatives. As we see, the magnitude of the error increases with the order of 

the derivatives/differences. The scaling of the x-axis is logarithmic with range between t equals 0.01 
and 10000 . The range of the y-axis is shown below each graph. 
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Part 11 

The Scale-Space Primal Sketch: 

Theory 
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Chapter 5 


Definition of the Representation 


The scale-space theory provides a well-founded framework for dealing with image structures, 
which naturally occur at different scales. According to this theory one can from a given 
signal generate a family of derived signals by successively removing features when moving 
from fine to coarse scale. In contrast to other multi-scale or multi-resolution representations, 
scale-space is based on a precise mathematical definition of causality, and the behaviour of 
structure as scale changes can be analytically described. However, the information in the 
scale-space embedding given by the diffusion equation is only implicit in the grey-level values. 
The smoothed images in the raw scale-space representation contain no explicit information 
about features or the relations between features at different levels of scale. 

The goal of the second part of this thesis is to present a theory for constructing such an 
explicit representation on the basis of formal scale-space theory. This material constitutes 
the framework for the third part, where we will demonstrate that the suggested represen
tation enables extraction of significant image structure and that it can serve as a guide to 
other processes in early vision. 

We shall treat intensity images, the grey-level landscape, and the objects will therefore be 
blobs, that is bright regions on dark backgrounds or vice versa. However , the theory applies 
to any bounded function and is therefore useful in many tasks occurring in computer vision, 
such as the study of level curves and spatial derivatives in general, depth maps, colour etc, 
and also histograms and point clustering and grouping in one or several variables. 

From experiments one can (visually and subjectively) observe that the main features 
arising in the scale-space representation seem to be blob-like, i.e. , they are smooth regions 
either brighter or darker than the background. Especially regions which appear to stand out 
from the surroundings in the original image seem to be further enhanced by t he scale-space 
smoothing. In the suggested scale-space primal sketch we will focus on this aspect of image 
structure with the purpose of building a formal representation to make such information in 
scale-space explici t. Therefore, there is a need to formalize what should be meant with a 
"blob". 

5.1 Grey-Level Blobs 

What properties do we require from a blob definition? Intuit ively, one would generally like 
a blob to be a connected region that is either significantly brighter or significantly darker 
than its neighbourhood. It should have a sufficiently large area and be st able over some 
sufficiently large interval in scale-space. One would also like a blob to have some kind of 
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natural significance measure associated with it. 
It is clear that a blob should be a region associated with at least one (or possibly more) 

local extremum point. However, it is essential to define t he spatial extent of the blob region 
around t he extremum. Ehrich and Lai [Ehr78] considered t his problem. They allowed peaks 
to extend to valleys, a definition that will give unintuitive results e.g. for small peaks on 
large slopes. Koenderink and van Doom [Koe84] briefly touch upon the problem and our 
definition is related to their argument. 

5.1.1 Definition of Grey-Level Blob 

The blo b definition we base t his work on should be evident from Figure 5.1. The basic idea is 
to let the blob extend " until it would merge with another blob". To intuitively illustrate this 
notion, consider a grey-level image at a fixed level of scale, and study the case wit h bright 
blobs on a. dark background. Imagi ne the image function as a flooded grey-level landscape. 
If the water level sinks gradually, peaks will appear. At some instances two different peaks 
become connected . The corresponding elevation levels or grey-levels are called the base
levels of the blobs and a re used for delimiting the spatial extent of the blobs. The support 
region of t he blob is defined to consist of those poin ts that have a grey-level exceeding t he 
base-level and can be reached from the local maximum poin t without descending below the 
base-level of the blob. 

Fig ure 5 .1: Illustration of the grey-level blob definition for (a) a one-dimensional signal and (b) a 

two-dimensional signal. This figure shows bright blobs on a dark background. In one dimension a 

bright grey-level blob is given by a pair consist ing of a local maximum and a local minimum, i n two 

dimensions generically by a pair consisting of a maximum and a saddle. 

He nce, a bright blob will grow and include poin ts having lower grey-levels until it would 
meet with another blob. As soon as it has got confronted with t he other blob the blob 
region stops growing, not only in the region around the neighbour blob but also in all other 
directions. In t his sense t he blob definition can be regarded as rather conservative. 

From this construction we may also proceed and define the g1·ey-level blob as the region 
delimited by the grey-level surface a nd the base-level and the blob contrast as how deep one 
has to descend fro m the maximum point in order to climb another blob. Consequently, a. 
grey-level blob is a 3D object wit h extent both in space and grey-level, whose size is called 
g1·ey-level blob volume and comprises both the amplitude a nd the spatial extent of the blob, 
see F igure 5.2. 

5.1.2 Mathematical D efin ition 

To give a precise mathematical definition the concepts int roduced above consider again 
the case with bright blobs on dark background and assume a. contin uous grey-level signa.! 
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Figure 5.2: Some desc riptive quantities of a grey-level blob in the two-dimensional case: volume, 

area, contrast. Note that the grey-level blob has extent both in space (x, y) and grey-le vel z. 

f : R2 --+ R at a fixed level of scale. Consider two local maxima, A and B. They are 
connected by an infinite set of paths, PA,B· On each path, PA,B, the grey-level function 
assumes a minimum. To reach another maximum from A, one must at least descend to the 
grey-level 

Zbcue(A) = sup sup min f(~,TJ) (5 .1) 
BEM PA,sEPA ,B ({,fi)EPA, B 

where M is the set of all local maxima. In the compact case to be considered later, we may 
replace sup with max and inf with min and write: 

Zbase(A) = max max min /({, 77) (5.2) 
BEM PA,sEPA,B ({,fi)EPA,B 

Zbase( A) constitutes the previously mentioned base-level of the bright blob associated wit h 
the local maximum A. The support region Dsupport(A) of the blob is t he region 

(5 .3) 

The difference in grey-level between the extremum point and the base-level gives the blob 
contrast. 

cblob(A) = f(A)- Zbase(A) (5.4) 

Finally the grey-level blob associated wit h the local maximum A is the set of points 

Gblob(A) = {(x, y, z) E R2 
X R : ((x, y) E Dsupport(A )) /\ (zba•e( A ) ~ z ~ f (x, y))} (5.5) 

To summarize, 

Definition 5.1 (Bright grey-level blob of a continuous signal (2D)) 
Given a continuous signal f : R2 --+ R let A E R2 be a local m aximum point, Zbase(A) 
its associated base-level as given by (5 .1) and D•upport( A) its associated support region as 
defined in (5.3}. Then the bright grey-level blob associated with A , denoted Gblob(A), is the 
region 

Gblob(A) = {(x, ·y, z) E R2 
X R: ((x, y) E Dsupport(A)) /\ (Zbase(A) ~ Z ~ f (x,y))} (5.6) 
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It is worth stressing that with this blob concept we regard a grey-level blob as an object 
with extent both in space and grey-level. The defi nition is expressed for a two-dimensional 
continuous function, but applies in any number of dimensions. Similarly, it can be extended 
to comprise discrete signals by replacement of R2 with Z2 and by letting the paths ]JA,B 

be given by a suitable connectivity concept, e.g., eight-connectivity for a square grid. For 
discrete signals it is, however, because of algorithmic reasons more suitable to define the 
support region of the blob as those pixels that have a grey-level (strictly) exceeding the 
base-level of the blob in order to obtain grey-level blobs that a re disjunct objects. In the 
two-dimensional discrete case we get: 

Definition 5.2 (Bright grey-level blob of a discrete signal (2D)) 
Given a discrete signal f : Z 2 - R let A be a local maximum point, Zbase(A) its associated 
base -leve l as given by (5. 1} (where the connectivity is defin ed based on eight-connectivity) 
and D •upport(A) i ts associated support region defined by 

D.upport(A ) = {rE Z2 
: sup inf /(~, TJ ) > Zbase(A)} (5 .7) 

PA,rEPA,r ({ ,'l)EPA,r 

Th en the bright grey-leve l blob associated with A, denoted Gblob(A), is the region 

Gbtob(A) = {(x,y,z) E Z2 x R : ((x,y) E Dsupport(A)) 1\ (zbase( A) ~ z ~ j (x,y))} (5.8) 

Local minima can be treated analogously and every local minimum point will give rise to 
dark blob on bright background. Hence, each local extrem um point will be associated with 
a region in two-space and a volume in three-space. 

5.1.3 Properties 

It can easily be verified that a blob will be connected. Moreover, in one dimension t he base 
level of a bright blob will be attained at a local minimum point , in t wo dimensions generically 
at a saddle point , see Figure 5.1. In other words, a grey-level blob of a one-dimensional 
signal is generically given by a pair consisting of one local maximum and one local minimum. 
A grey-level blob of a two-dimensional blob is given by a similar pair of a local extremum 
and a saddle. Consequently, the blobs are di rectly determined from geom etric properties of 
the grey-level landscape, namely the first order singularities of t he grey-level function. 

These blobs are not purely local features, as are extrema, but regional. In fact, this is 
not only because t hey are defined as regions. An inherent property of the stated defi nition is 
that it leads to a compe ti tion between parts. The prese nce of a nearby blob might neutralize 
it or reduce its size. In other words, things m anifest t hemselves only compared to their 
background. These aspects reflect importan t principles of the approach. 

We will see later that the blobs are easier to trace across scales than are local extrema. 
This is because they will be stable over some scale interval, a property considered important 
also by Bischof and Caelli [Bis88) and Koenderink and van Doorn [Koe84). In fact , our 
definition is closely related to their measurement of shape based on relative densities. The 
grey-level function can be seen as a mass distribution in t he pla ne. 

5.1.4 R e lations Betwee n Bright and Dark Blobs 

Note t hat this definition leads to separate systems for bright blobs on da rk background and 
dark blobs on bright background. T his implies that a spatial point may belong both to a 
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bright blob and a dark blob and that some points will also be left unclassified. Consequently, 
the given definition will , in contrast to, e.g., the sign of the Laplaci an of the Gaussian, only 
attempt to make a partial (and hopefully safer) classification of the grey-level landscape . 

(a) 

Figure 5.3: In one dim ensions the bright and dark blobs of a signal will be closely coupled, since an 

extremum point which delimits the extent of a blob will in general be the seed of a blob of the r eve r se 

polarity. 

Figure 5.4: Example showing that in two dimensions some points may actually be classified as 

belonging to both a dark blob and a bright blob. This phenomenon can be prevented from happening 

if the blob definition is modified such that a blob delimits its own extent in this t ype of situ ations. 

Then it will be guaranteed that no points belong to both dark and bright blobs. 

In one dimension the dark and bright blobs of a signal will be strongly related since a 
minimum point , which delimits the extent of a bright blob, can also be the seed of a dark 
blob. This gives a natural coupling between blobs of reverse polarity, see Figure 5.3(a). In 
two dimensions the situation is slightly different , since a sadd le point that delimits the extent 
of a bright blob will in general not delimi t the extent of any da rk blob, unless the signal 
is degenerate. Therefore, in two dimensions a point will in general belong to eit her a dark 
blob or a bright blob but not both. However, for certain types of situations it may indeed 
happen that some points are classified as b elonging to both a dark blob and a b right blob, 
see Figure 5.3(b), which shows a dark blob "contai ned" in a bright blob. If for some reasons 
this type of phenomenon is not desired then it can be easily prevented from happen ing if 
the blob definition is modified slightly so t hat a blob can be allowed to "delimit its ow n 
extent". 

Finally, let us poin t out that what we have defined here is a grey-level blob at one level 
of scale. When we Link grey-level blobs over scales we will obtain scale-s pace blobs, which 
will be described after the next section. 
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5.2 Motivations for a Multi-Scale Hierarchy 

The concept of a blob a t a single level of scale is not powerful enough for extraction of 
relevant image structure. It is easy to realize that it leads to strong noise sensitivity, since 
two closely situated local extrema will neutralize each other, see Figure 5.5. This means that 
a large peak distorted by a few local extrema with low amplitude will not be detected as one 
unit, only the fine scale blobs will be found. This kind of p roblem has been considered also by 
Ehrich and Lai [Ehr78). They suggest the use of a so-called relational-tree, in order to obtain 
the spatial relations between superimposed blobs, without developing that concept further. 
However, their relational-tree will still be noise sensitive, since the hierarchical relations 
between blobs are determined directly by the grey-levels in the valleys of the original signal. 

Figure 5.5: A high-cont rast large scale peak with two superimposed low-contrast fine-sca le peaks will 

not be detect ed if the signal is considered at one scale only. 

5.2.1 Blob D etection and Scale-Space Smoothing 

To some extent the noise sensitivity in such a situation can be reduced with a suitable 
amount of smoothing. However, at a fine level of scale (without smoothing) it is difficult 
to detect that the configuration consists of two large peaks with small superimposed low
amplitude peaks. A naive observer might say that the situat ion can be resolved easily with 
thresholding, but how does one select a proper threshold automatically? 

One possible way of designing a blob detector t hat could "handle" such a configuration 
and detect the underlying large peaks could be "by making the blob detector more intel
ligent" . Such an approach wou ld still face a difficult and undefined question: How deep 
may the valley between the superimposed blobs be before they are regarded as belonging 
to different blobs? To avoid such dilemmas we will in this work instead take a contrary 
approach. 

The idea with our method is to use a simple blob definition based on distinct geometrical 
properties of the signal. T hen, we use the scale-space embedding to integrate local properties 
into regional descriptors, and to make the hierarchical relations between features at different 
levels of scale explicit. Applied to the previous example it means that the fine-scale peaks 
will disappear after some degree of scale-space smoothing and the underlying coarse scale 
pea k will appear as one unit. Hence, in a multi-scale representation of the signal it will be 
made explicit that the configuration in Figure 5.5 consists o f a coarse scale blob with two 
superimposed fine scale blobs . 

The method to achieve t his is by linking grey-level blobs over several levels of scale into 
higher-order objects, called scale-space blobs, which in addition to extending in space and 
grey-level have extent also in scale. How those objects are constructed will be described in 
the next section. 
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5 .3 Scale-Space Blobs- Linking Grey-Level Blobs across Scales 

In general, a grey-level blob existing at one level of scale in scale-space wiU correspond 
to a similar blob both at a finer level of scale and at a coarser level of scale. lly linking 
together such grey-level blobs across scales we obtain four-dimen sional objects, which we 
call scale-space blobs1 • 

(a) 

Figure 5.6: (a) By linking together similar grey-level blobs at adjacent levels of scale we obtain {b) 
sca le-space blobs, which are objects having extent both in space, scale and grey -leve l. {In this figure we 
hav e omitted th e grey-leve l coordinate. The slices illustrate th e blob support regions of the grey-l evel 
blobs.) 

At some levels of scale in scale-space it might be impossible to a accomplish a plain 
link between a grey-level blob at t he current level of scale to a similar grey-level blob at a 
coarser or finer scale - a catastrophe affecting the connectivity of t he blobs has occurred. 
The generic situations telling how blobs may behave with scale will be classified in Chapter 6. 
According to that treatment four possible types of blob events may occur when the scale 
parameter increases: 

• annihilation - a blob disappears 

• merge- two blobs merge into one 

• split - one blob splits into two 

• creatio n - a new blob appears 

The scale levels where these singularities take place are used for delimiting the extent in the 
t-direction of the scale-space blobs. Consequently, every scale-space blob will be associated 
with a a minimum scale and a maximum scale, denoted the appearance scale and the disap
pearance scale respectively, see Figure 5.6. The difference2 between the disappearance scale 
and the appearance scale yields the scale-space lifetime of the blob. Precise mathemaliclll 
d efinitions of these concepts are given in Section 6.1.3 . 

In merge situations and split situations we regard the involved grey-level blobs existing 
before the bifurcation event as belonging to different scale-s pace blobs than the grey-level 
blobs existing after the bifurcation. In special configurations it may happen that a. blob 
without a hole forms a torus, or that a torus fiUs in its hole. These events are also stable 

1A formal definition of this concept is given in Section 6.1.3 
2 lt turns out that some transformation of the scale parameter is necessary in order for the difference 

between scale values to capture the concept of scale-space lifetime "properly". This issue is consid ered in 
Section 5.5. 
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Figure 5.7: Common blob events in scale-space: {a) annihilation (b) m erge {c) split (d) creation 

in the sense of singularity theory, but we will not let them affect the scale-space blobs. 
The grey-level blobs involved in such processes will be treated as belonging to the same 
scale-space blob. 

The scale values where these blob events occur define t he previously mentioned appear
ance scales and disappearance scales for the involved scale-space blobs. This means that 
the scale-space Lifetime of a scale-space blob is directly determined by t he singularities in 
scale-space. 

These objects will constitute the fundamental primitives in our proposed scale-space 
primal sketch. The idea with this representation is to detect the scale-space blobs in scale
space and to build a data structure that makes them as well as their relations between 
scales explicit. This implies that grey-level blobs must be detected at all levels of scale, the 
actual linking of grey-level blobs between scales into scale-space blobs must be performed 
and that the bifurcations taking place in scale-space m ust be registered. T he computational 
aspects of these tasks will be briefl y described in Section 7.1 and Sectio n 7.2. However, 
in order to get acquainted with the blob concepts just defined, we will first present some 
experimental results illustrati ng the effects of detecting grey-level blobs at various levels of 
scale in scale-space. 

5.4 Grey-Level Blob Extraction: Expe rimental Results 

In Figure 5.8 we give an example with a realistic toy block image showing how (the 
support regions of) t he extracted grey-level blobs3 behave with increasing scale together with 
the raw grey-level images in the scale-space representation. We see that at fine levels of scale 
mainly small blobs due to noise and surface texture arc detected. When the scale increases 
the noise blo bs disappear gradually, although much faster in regions near steep gradients. 
Notable in this context is that blobs due to noise can survive for a long time in scale-space if 
they are located in regions with slowly varying grey-level intensity. T his observation shows 
that scale-space lifetime alone cannot be used as the basis for a significance measure, since 
then the significance of such blobs due to noise would be substantially overestimated4 . At 
coarse levels of scale, t he toy blocks appear at single blob objects. Finally, at very coarse 

3 Each one of these blob images has been obtained di rectl y from t he scale-space representation at a single 
level of scale. In other words, no scale linking was performed in t he generation of t hese images. An algorithm 
for extracting grey-level blobs from a discrete image will be described in Section 7.1. 

•or course, the con t rast of such noise blobs decreases, but it is far from clear that it is possible to set a 
threshold on objective g rounds. 
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Figure 5.8 : Grey-level and {dark) grey-level blob images of a toy block image at scale levels t 
0, 1, 2, 4,8, 16, 32, 64. 128, 256,512 and 1024 (from top left to bottom right). 
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Fig ure 5 .9: Grey-level and (dark} grey-level blob images of a telephone and calculator· image at 

scale levels t = 0, 1, 2, 4, 8, 16, 32, 64, 128,256,512 and 1024 {from top left to bottom right} . 
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levels of scale, adjacent blocks become grouped into larger entities. 

A 8 
Figure 5.10: Low-contrast blobs in regions with slowly varying intensity may have long lifetime in 
scale-space. However, low-contrast blobs located near steep gradients will have short lifetime. This 

means that blob A will disappear before blob B in this example. 

Figure 5.9 shows a similar scale-space sequence for a telephone and calculator image. 
In this case as well, one can notice that at the :finest levels of scale only blobs due to noise 
are detected, and that some blobs in the background actually survive over a relatively large 
range of scale. Moreover a hierarchical behaviour between grey-level blobs at different scales 
appears again. The buttons on the telephone keyboard manifest themselves as blobs after 
a small amount of smoothing. At coarser levels of scale they merge into one unit (the 
keyboard). One can also observe that some other dark details in the image, the calculator, 
the cord and the receiver, appear as single blobs at coarser level of scale. 

One could say that the grey-level blob concept shows an extreme degree of noise sen
sitivity, which can be circumvented by the scale-space smoothing. But it is certainly a far 
from trivial problem to determine a proper amount of smoothing automatically, based on 
existing conventional methods. 

The aim with the suggested blob linking between scales is to determine which blobs in 
the scale-space representation can be regarded as significant, without any prior information 
about neither scale, spatial location nor the shape of the primitives5 . As we will see later, 
the output from the linking procedure also enables determination of a relevant scale for each 
blob, i.e., a suitable amount of blurring for treating that individuaf-3 blob. 

5.4.1 Rernarks 

As stated earlier the idea behind this combination of grey-level blobs and scale-space smooth
ing is that instead of trying to design "an intelligent blob detector" to handle difficult 
situations as the case above with superimposed local extrema, we establish a simple blob 

'Except for the previously mentioned fact that the scale-space blurring favours blob-like o r Gaussian
shaped objects 

6 We em p hasize t he wo rd individual since we believe that stable scales (if they exist) are in general asso
ciated with objects - not with entire images. For the toy block image one could possibly say that the scales 
t = 128 and t = 1024 are stable in the sense that the grey-level blob detection algorithm finds blobs all 
with meaningful interpretatio n in the smoothed grey-level images at these levels of scale. However, for more 
general images of moderate complexity such "stable scales" will not exist. From experiments one quickly 
learns that a scale level well fit for one part of an image will in general not be useful for treating other parts 
of the image (com pare with the blob behaviour at fine scale levels in the toy block image and the overall 
appearance in the telephone and calculator image). 

However, the assumption about a globally stable scale for an image is sometimes used implici tly in many 
computer vision algorithms - for instance whe n edge detec tion is performed using the same amount of 
smoothing all over an image. [nstead we believe that better performance can be obtained if the scale levels 
a re adapted to t he local image structure, compare with the integration of the outpu t from the scale-space 
primal s ke tch with the edge focusing method, developed in Section 9.1. 
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definition based on distinct topological properties of the signal. Then, we use the scale-space 
embedding to integrate local properties into regional descriptors, and to make the hierarchical 
relations between features at different levels of scale explicit. 

Another aspect of this definition of a scale-space blob is that we treat blobs not just 
as entities within an image at a given level of scale, but as objects in the four-dimensional 
scale-space parameterized by the two spatial coordinates, the grey-level coordi nate and the 
scale parameter. In other words , we treat the scale parameter as equally important as the 
spatial and grey-level coordinates, and the primitives of our representation are objects having 
extent not only in grey-level and space, but also in scale. 

It will be demonstrated later that this is a powerful approach, particularly since our 
notion of scale-space blobs gives us a natural geome tric measure of significance, namely the 
volume of the scale-space blob in the four-dimensional scale-space7 . Before going into the 
experimental results, which will be presented in Section 8, we will however first describe 
some normalization aspects that are necessary when computing the representation. 

5.5 Measuring Significant Image Structure 

Since our ultimate goal of the analysis is to extract important regions in the image based on 
the significance of scale-space blobs in the scale-space representation, there is an absolute 
need for some methodology for comparing blob significance between different levels of scale. 
In other words, what we actually desire is a mechanism to judge if a blob, existing only 
at coarse levels of scale, can be regarded as more significant or less significant than a blob , 
with extent primarily at fine levels of scales. 

The approach we propose is to use the volumes of the scale-space blobs defined in 
Section 5.2. We suggest that it is a useful quantity for such a significance measure, since it 
comprises both the grey-level blob volume, which is a combination of the contrast, spatial 
extent and lifetime of the blob in scale-space, see also Section 8.2. However, if one is to base 
a significance quantity on this quantity, it is of crucial importance that the scale parameter 
and grey-level blob volume are measured in proper units, since in principle the x, y, z and 
t axes could be transformed by arbitrary monotone functions. 

5.5.1 Measuring Scale-Space Lifetime 

Consider for instance the measurement of scale-space lifetime. According to a wide-spread 
paradigm the scale-space should be sampled logarithmically in scale, i.e., the ratio between 
successive scale values should not vary with scale. Based on this idea one could be inspired 
to define the scale-space lifetime as log to -logtA, where to and tA are disappearance and 
appearance scales of the scale-space blob respectively. It seems reasonable that t his would 
give a good description at coarse levels of scale, since it is well-known that "things happen 
approximately logarithmically with scale" . However , such an approach would certainly lead 
to unreasonable results for discrete signals at fine levels of scale, since then a blob existing 
at t = 0 would be given an infinite lifetime. Similarly, one can observe that to - tA will 
not work either, since then the lifetime of blobs existing at coarse levels of scale would be 
substantially overestimated. Consequently, there is a need to introduce a transform ed more 

7 Note that in this context we regard the scale-space not merely a.s a. plain set of gradually smoothed 
(but anyway relatively disparate or just loosely connected) grey-level images, but a.s a.n intimately con nected 
entity. 
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realistic scale parameter r, which will be called effective scale, such that scale-space lifetime 
measured by rn - r A gives a proper description of the behaviour in scale-space. This new 
scale parameter should neither favour coarse scales to fine scales nor the opposite. 

In this section we will first give a formal treatment showing how the notion of "effective 
scale" can be defined in a precise way. We will also give experimental results showing how 
the major blob descriptors (volume, area, contrast) are expected to behave with scale, and 
explain how these results can be used to rescale the descriptors in question. Some other 
facts that will be illuminated are that the inner scale and the outer scale of an image really 
must be taken into account in an actual implementation. 

5.5.2 Transformation of the Scale Parameter: Effective Scale 

At first glance the problem of transforming the scale parameter might seem rather ad hoc. 
What properties do we want from an "effective scale parameter? Assuming that we have a 
measure for the amount of structure in an image then a natural requirement would be that 
the amount of structure, which is destroyed if the scale parameter increases with one unit , 
should not depend on the current scale. In other words, if we plot the amount of structure 
as a function of the effective scale parameter, we should expect the curve to be a straight 
line. However, what does one mean with the amount of structure in an image? Moreover, 
even if we had a definition of the measure of structure it would be possible to transform 
it and then the effective scale could also be transformed in a similar way, while the graph 
would remain a straight line. Hence, if one is to define a measure of structure one still has 
a transformation function to determine. 

Another natural requirement is that the expected lifetime of a scale-space blob in scale
space should not vary with scale. Assuming that we know how the number of blobs depends 
on the scale, this condition will actually determine the transformation of the scale parameter, 
except for an arbitrary but unimportant affine transformation. 

5.5.2.1 Definition and Derivation of Effective Scale and Effective Structure 

Assume that we know how the expected number of extremum points per unit length , i.e., 
the density of grey-level blobs, behaves over scale. In other words, assume that we know 
how 

p(t) = {the expected density of extremum points at scale t} (5.9 ) 

varies with t. Assume that the amount of structure in an image can be measured with the 
expected number of local extrema8 per unit length. What we want to define is a transformed 
scale r and a transformed measure of structure m, such that the new coordinate system 
becomes ''natural", i.e. , we want to define transformation functions h and g such that the 
new coordinates r = h(t) and m = g(p) capture the concepts of structure and scale in a 
"natural sense". From this discussion the following requirements seem reasonable to pose 
on the new coordinate system: 

Requirement 5.1 (Uniform decrease in the amount of structure) 
The expected amount of effective structttre dm, which is destroyed if the effective scale is 

8 ln one dimension the number of local extrema seems to be a reasonable measure of the amount of 
str ucture, since a whole scale-space theory can be founded on this basis, see Chapter 2. In two dimensions 
the situation is more elaborate, since in this case the number of local extrema in an image may actually 
increase with scale due to blob splits. However, the expected number of local extrema, as an average over 
many images, will always be expected to decrease. 
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increased with dr, should be indepen den t of both the current effective scale an d the current 
amount of effective st ructure. In other words, 

dm dg 
- = - = A = constant (5.10) 
dr dh 

R equir ement 5.2 ( U niform decay intensity fo r loca l extrema) 
The probability that an extremum poin t (or a blob) disappears after a small in crem ent dr in 
effective scale should be independent of both the effective scale T and the current amoun t of 
structure m in the image. T hat is 

*= *= d(logp) = B = constant (5.11 ) 
p p dh 

Integration of (5.10) and (5.11) gives: 

g(h )= Ah + C (5.12) 

logp =Eh+ D (5.13) 

where C and D are integration constants. Reasonable bound ary condit ions state that if the 
scale t is zero t hen also the effective scale h should also be zero. Let p0 denote9 p( O) and g0 

the amount of struct ure at scale t = 0. After a few calculations it then follows t hat 

A p
g(p) = go + B log - (5.14) 

Po 
1 p

h( t ) = -log - (5.15) 
B Po 

Since A , Band g0 are arbit rary const ants we set A = - 1, B = - 1 and go = 0. Then 

g(p) =log -
p 

(5.16) 
Po 

h(t ) = log Po (5.17)
p(t ) 

Equation (5. 16) describes how the m easure of effective structure should be computed from 
the measured density of local extrema, while (5 .17) gives the relation between the effective 
scale parameter r and t he ordinary scale parameter t . To summarize, 

Theorem 5.1 (Effective scale) 
Assume that we know how th e expected density of local extr·ema p behaves as a f unction of 
scale t , let r and m be the effective scale and th e effective measure of structu re given by 
Requirement 5. 1 an d Requirement 5.2. Then th e transf ormation f unction h f rom t to r and 
the tmnsf ormation fu nction g f rom fj to mare, except for an arbitrar y affine tmnsformation, 
given by 

m= g(p) = log ~ (5. 18) 
Po 

r = h(t) = Jog~~) (5 .19) 

where p(t) is the expected density of local extrema at scale t and p(t) is the measured density 
of local extrema at scale t . 

9 For continuous signals it might be more co nvenient to set p0 = I , since p(O) m ay be infinite a nd/ or 
d ifficult to estima te. 
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This concept of effective scale, which is the natural unit for measurements of scale, will be 
of crucial importance in the extraction of significant blobs. What is now left to determine 
is how t he density of extrema can be expected to behave with scale. Experimental results 
will be given the next section. But we will first illustrate some consequences of t he stat ed 
definition. 

5 .5.2.2 Examples and Experimental Results 

For continuous signals it is known that the number of local extrema in a signal decreases ap
proximately as t01 with scale, where a is approximately-!· This relation has been discussed 
by other authors, see e.g. Miissigmann [Miis89], and can be motivated theoretically, at least 
for one-dimensional signals generated by white noise or fractal noise normal processes, see 
Section 6.5. Hence, we have p(t) = constant/ t01 which means that 

m(t) = logp(t) =log constant- alogt (5.20) 

and the curve giving the number of local extrema as a function of scale will be a straight 
line in a log-log-diagr am. 

For discrete signals the number of extrema will also show the same qualitative behaviou r 
at coarse levels of scale, when the grid effects are negligible. However, at fine levels of scale 
the t-01 -behaviour cannot hold, since it is based on the assumption that the original signal 
contains equal amount of structure over all levels of scale. The discrete signal is limited 
by its inner scale given by the sampling density. These ideas are illustrated in F igure 5.11, 

(a): Jog( If extrema) (b): log(lf extrema) 

8.00 

6.00 6.00 

4.00 4.00 

200 

0.00 
Jog(scale) log(scale) 

0.00 5.00 0.00 5.00 

Figure 5.11: Experimental results showing the number of local extrema as function of the scale 

parameter t in log-log scale {a) measured values {b) accumulated m ean values. The dashed line 

indicates th e valu e at t =0. Not e that a straight-line approximation is valid only in the interior part 

of the scale interval. At the lower end point of the interval we have interf erence with the inner scale, 

given by the sampling density of the image, and the higher end point there is interference with the 
outer scale, gi ven by the size of the image. 

where we show the logarithm of the number of extrema as a fun ction of t he logarithm of 
the scale parameter. The left diagram shows simulated results for a large number of point 
noise images (see below). The right curve shows the average of these results. Note t hat 
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the straight line approximation is valid only in an interior scale interval. At fine scales we 
ha ve interference with the inner scale, given by the sampling density of the image, and at 
coarse scales there is interference with the outer scale, given by the size of the image. A 
theoretical analysis for one-dimensional signals generated by white noise and fractal noise 
normal processes will be carried out in Section 6.5. 

The notion of effective scale takes the inner scale into account and guarantees that we 
have a precise definition of scale-space lifetime at fine levels of scale. Combined with the 
notion of a scale-space for discrete signals, which takes the discrete nature of implementation 
into account, it gives us t he necessary tool to investigate the fi ne scale structures. 

In this p resent ation we have chosen not to treat the behaviour at very coarse levels of 
scale, since there the treatmen t of the image boundaries will affect the scale-space behaviour 
substantially. Also, if one wa nts to study objects at such a coarse scale that the boundary 
effects become important, then the problem is undefined, and one should instead try to 
acquire additional image data in a region around the current image, such t hat the scale
space smoothing becomes well-defined. 

5.5.3 Transformation of the Blob Volumes 

Similarly to the scale parameter, t he grey-level blob volu mes need to be rescaled, since 
the size of the grey-level blob volumes will vary substantially with scale. When the scale 
parameter increases in scale-space t he peaks in the grey-level landscape will erode and t he 
fine scale details will be successively removed. This means that we can expect the mean 
value of the grey-level blob contrasts to decrease and the mean value of the grey-level blob 
area to decrease, when the scale parameter increases. But, what a bout the mean value of 
the grey-level blob volumes, will it increase or decrease? Experimental results, which will 
be given later, show that the mean value of the blob volumes actually decreases with scale 
at fine scales and increases with scale a t coarser scale. 

Hence , if these effects are not taken into accoun t t hen the significance of the coarse-scale 
blobs will be substantially over-estimated compared to the significance of fine-scale blob. In 
other words if no compensation is performed non-significant structures a t coarse levels of 
scale may be ranked as more important than important structures at fine levels of scale. 

It is clear t hat the blob behaviour depends very much on the image (since we actually 
want to use it for segmentation). Is it then possible to talk about some ki nd of average 
behaviour. It might happen that the blob behaviour varies substantially from one image to 
another. How sho uld one then be able to talk about expected behaviour? 

5.5.3.1 Simulation Results 

A conservative approach to t he problem is to study point noise images, that is images with 
no spatial structure, i.e., images with no simple relations between the grey- levels of different 
pixels. If we accum ulate statistics about how blobs in such images are expected to behave 
with scale, we will get an esti mate of how much structure the multi-scale blob detection 
algorithm will fin d in images without spatial struct ure. In t his way we get an estimate of 
the extent of accidental groupings in scale-space. 

We have made experiments on several point-noise images with norm al distribu tion , rect
angle distribution and exponential distribution. The results are shown in F igure 5.11 and 
Figu re 5.12. As we see, t he qualitative behaviour is not very much affected by the image 
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(a): log (blob volwne m ean value) (b): log( blob volwne s tandard deviation) 
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Figu re 5 .12: Experimental results for poilll noise images showing how the gre y-level blob descriptors 

vary with scale (in log-log scale). (a) th e mean value of the blob volumes, Vm(t) ( b) the standard 

deviation of the blob volumes, Vu(t) (c) the mean value of the blob areas, Am(t ) (d) the standard 

deviation of the blob areas, Au(t) (e) the m ean va lue of the blob contrasts, Cm(t) (f) the standard 

deviation of the blob contrasts, Cu(t). The out/iers at the very coarse scales are du e to interference 
with the outer scale of the image. 
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synthesis process. The number of extrema and the expected blob area turn out to be quanti
ties very insensitive to the image synthesis method. The blob contrast and the blob volume 
must be rescaled in order for the curves to fit, since these latter quantities are proportional 
to the amplitude of the signal. 

Note that in the intermediate scale interval the curves can be approximated with straight 
lines. This means that the blob descriptors vary with scale approximately as powers of t". 
Fits to straight lines in the interval t E (4, 64] for 256 * 256-images give that the exponents 
are approximately 0.5, 1.0 and - 0.5. Hence the blob descriptors behave approximately in 
the following way for large values of t. 

Vm(t)"' Vt Vu(t) "' Vt (5.21) 

Am(t)"' t Au (t) "' t (5.22) 

1 
Cm(t)"' ,fi 

1 
Cu(t)"' ,fi (5.23) 

5.5.3.2 Effective Grey-Level Blob Volume 

Based on these results we will have a basic tool to differentiate between significant and 
non-significant structure across scales. If a grey-level blob has a blob volume smaller than 
the expected blob volume for point noise images it can hardly be regarded as significant. On 
the other hand, if at some level of scale the blob volume is much larger than the expected 
blob volume, and if the difference in blob volume is much larger than the expected variation 
around the expected standard deviation then blob may be regarded as significant. A natural 
normalization to perform is to subtract by the mean value and divide by the standard 
deviation. Hence, an effective blob volume at scale t could be defined as 

V(t) - Vm(t) 
(5.24)Ve/f,pr el(t) = Vu( t) 

where V(t) is the measured grey-level blob volume at scale t, Vm(t) the mean value of the 
grey-level blob volumes at scale t for point noise images and Vu (t) the standard deviation 
of the grey-level blob volumes at scale t for point noise images. However, note that this 
definition implies a few problems. Since the blob volumes depend strongly on the amplitude 
of the signal this quantity may be sensitive to the scaling of Vm (t) . Another negative aspect 
is that, since this quantity may assume negative values it is not suited for integration. In 
the current implementation we have chosen to define the effective grey-level blob volume in 
the following way, which empirically turns out to give reasonable results. 

Ve (t) = { 1 +Ve/f ,prel if Ve/f,~rel? 0 ( 5.25) f f e v•JJ,prcl otherwise 

Hence, the effective volume of the mean value will be one. For larger volumes it will be grow 
affinely with Ve/f,prel· Thus, Veff and Ve/f,prel will show the same qualitative behaviour for 
significant grey-level blobs. For smaller volumes it will decay to zero, and the qualitative 
difference will increase gradually as the significance decreases. However , note that we get a 
correct behaviour in the important situations, namely for the significant blobs. Therefore, 
we may expect that this solution should not affect the result too seriously. It should also 
be mentioned , that in order to adapt to the current amplitude of the signal, Vm and Vu 
are rescaled linearly from a least-squares fit between the actual behaviour and expected 
behaviour of these quantities. 
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5.5.3.3 Other Possibilities 

If the mean value and the standard deviation would show the same qualitative behaviour 
over all levels of scale it would suffice to divide the current grey-level blob volume with the 
expected value of grey-level blob volume. Then the variation around this rescaled quantity 
would show the same behaviour at all levels of scale, and the information about standard 
deviation would not be necessary. Moreover, the rescaling to the current amplitude of 
the signal could be ignored, since it would affect all scale levels similarly. However, from 
Figure 5.13, where we have plotted the standard deviation of the blob volume as "function" 
of the mean value of the blob volumes, we see that the situation is not that simple. In 

log(volwne sdev) 

3.00 
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1.00 

log(volume mean) 
0.00 1.00 2.00 3.00 

Figure 5.13: Standard deviation Vn of grey- le vel blob volume as "function" of the mean val-ue Vm 

of grey-level blob volumes in log-log scale. 

later work we will instead investigate if it is possible to normalize the grey-level volumes by 
division with the Vm only, and then define a significance measure as in (5.24) based on the 
scale-space volumes instead. Since these volumes need not be accumulated, negative values 
will not be any problem. However, then also the underlying statistics must be based on 
scale-space volumes instead of grey-level volumes. As scale value for normalization we may 
choose the representative scale value defined in Chapter 8. 

Another approach to determine a significance level for the grey-level blob contrast and 
the grey-level blob volume could be by estimation of characteristic variation amplitude 
in the image, similar to the method used by Voorhees and Poggio [Vor87]. The basic 
idea is to accumulate a histogram over the grey-level differences in the image over some 
characteristic lengt h corresponding to t he curren t level of scale, and extract the peak(s) 
from the histogram. If the contrast of a grey-level blob is lower than the estimated variation 
level then the blob can be regarded as non-significant. Similarly, if its contrast is much 
larger than the variation level in the image it may be regarded as significant. However, t his 
approach assumes that there is a global grey-level variation level valid for the enti re image, 
an assumption that is often violated in realistic imagery. 

5.5.4 Resulting Representation- The Scale-Space Primal Sketch 

To summarize, the data structure we propose is a tree-like multi-scale represent a lion of 
blobs at all levels of scale in scale-space including the rei a tions between blobs at differcn t 
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levels of scales. Grey-level blobs should be extracted at all scales, the bifurcations occurring 
in scale-space be explicitly registered and grey-level blobs stable over scales be linked across 
scales into the higher-order objects called scale-space blobs. 

Since the representation tries to capture the significant features and events occurring in 
scale-space with a small set of primitives we call it a scale-space primal sketch. In the result
ing data structure constructed according to this description, every scale-space blob contains 
explicit information about which grey-level blobs it consists of. The grey-level blobs are 
given at (sampled) scale levels obtained from an adaptive scale linking and refinement pro
cedure to be outlined in Chapter 7. Further, the (normalized) scale-space blob volume, the 
appearance scale, the disappearance scale and the scale-space lifetime have been computed 
(using straightforward numerical techniques). The scale-space blobs "know" about the type 
of bifurcations (annihilation, split, merge, creation) that have taken place at the appearance 
and disappearance scales. They also have links to the other scale-space blobs involved in 
the bifurcation processes. Hence, the representation10 we have computed explicitly describes 
the hierarchical relations between blobs at different levels of scale. 

The intention with this representation is to capture inherent geometric properties of 
the underlying grey-level image and we suggest that the representation as such is useful in 
itself. Worth e mphasizing is that the involved quantities (grey-level blobs and scale-space 
blobs) are defined solely in terms of singularities, namely local extrema, saddle points and 
bifurcations in scale-space and completely free from tuning parameters. 

In Chapter 8 we will show how some directly available information from this scale-space 
primal sketch can be used for extraction of significant image structure. Before that we will 
in the next chapter investigate some of the theoretical properties of the representation and 
then in Chapter 7 describe an algorithm for actually computing it. 

10 More detailed information about what type of information can be contained in a data s tructure repre
sent ing the scale-s pace primal sketch is given in Appendix A.6.3. 
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Figure 5.14: The scale-space primal sketch is a tree-like multi-scale representation of blobs with the 

scale-space blobs as basic primitives (nodes) and the relations (bifurcations) between scale-space blobs 

at different levels of scale as branches. 
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Chapter 6 

Evolution Properties in Scale-Space: 
Drift Velocities and Bifurcation Events 

It is well-known that scale-space smoothing leads to shape distortions. For example, features 
like local extrema, edges, blobs etc can be expect ed to drift when the underlying grey-level 
image is subject to blurring. 

Aspects of this phenomenon have been studied by other author s from different view
points. Canny [Can86] discussed the general trade-off problem between detection and lo
calization occurring in edge detection. Bergholm [Ber87] estimated the drift velocity of 
edges for a set of plausible configurations with the aim of estimating a step size for scale 
changes in the edge focusing algorithm. Berzins [Ber84] has analyzed the localization error 
for zero-crossings of the Laplacian of the Gaussian. 

Other kinds of phenomena affecting the topology may also occur . Blobs can disappear, 
merge and split as developed by Koenderink and van Doorn [Koe86]. Similar transit ions 
apply to edges, zero-crossings of the Laplacian, corners etc. Such events are usually called 
bifurcations. 

In this work we will perform a study of critical points, that is local extrema and saddle 
points, and investigate in detail what happens to those features when the underlying image 
undergoes scale-space smoothing. We will essentially 

• develop how these feature points can be expected to behave generically when the scale 
parameter in scale-space changes 

• 	 derive an expression for their drift velocity 

• classify their behaviour at bifurcation situations into a discrete set of generic situations 

• give a coarse estimate to the global problem of how the number of local extrema can 
be expected to vary with scale. 

The results we will arrive at are not based on any specific models for the in tensity variations 
in the image but are generally valid under rather weak a priori assumptions. Although the 
results are expressed in a general form the primary intention with the study is to provide a 
further theoretical basis of the scale-space primal sketch concept. In this context the results 
to be presented will find their maj n application to 

• 	 the formal construction and definition of t he primitives (scale-space blobs) in the scale
space primal sketch. The scale-space blobs are defined as families of grey-level blobs, 
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which in turn are directly determined by pairs of critical points. This t reatment allows 
for precise mathematical definitions of those concepts. 

• 	 providing a theoretical basis for the linking algorithm necessary when computing the 
representation. 

• 	 giving further motivations for the normalization process with respect to "expected 
scale-space behaviour", which is necessary when defining the significance measures of 
the scale-space blobs. 

In other words, we will try to explain what happens when scale changes in scale-space, 
especially with application to the scale-space primal sketch. Therefore, special attention 
will be given to the objects called grey-level blobs and scale-space blobs. 

Before starting, let us point out that some of the results to be presented are (at least 
partly) known or touched upon before, see e.g. Koenderink and van Doorn [Koe84, Koe86] 
and Koenderink [Koe90a]. Bifurcations in scale-space have also been studied by Johansen 
et.al. [Joh86], who have shown that a band-limited one-dimensional signal up to a multi
plicative constant is determined by its "toppoints", that is the points in scale-space where 
bifurcations take place. 

The purpose of this treatment is to develop systematically and comprehensively what can 
be said about the behaviour in scale-space of critical points using elementary mathematical 
techniques and to convey an intuitive feeling for the qualitative behaviour in the different 
generic cases. Detailed calculations will also be given showing the behaviour of blobs in a 
set of "characteristic examples". 

The scale-space concept we will deal with is the traditional diffusion based scale-space for 
continuous signals developed by Witkin [Wit83a], Koenderink, van Doorn [Koe84, Koe86] 
and Babaud et al. [Bab86], which is given by the solution to the diffusion equation, in one 
and two dimensions respectively, 

{)L 
(6.1) 7ft = 28x2 

oL = ~ (82 L+ 82 L) 	 (6.2) 
{)t 2 {)x2 {)y2 

with initial condition L( ·; 0) = J( ·) where f indicates the original signal. 
The chapter is organized as follows: In Section 6.1 we start by analysing the evolution 

of non-degenerate critical points as scale changes. This results in drift velocity estimates 
useful both for extremum points and straight edges as well as precise definitions of the 
notions of extremum paths, saddle paths and scale-space blobs. Then Section 6.2 gives a 
classification of the generic behaviour around degenerate critical points, which also leads 
to a classification of which blob events are possible in scale-space. Further illustrations to 
these results are given in Section 6.3 and Section 6.4 where detailed calculations are carried 
out for a set of characteristic examples. In Section 6.5 we study another problem , arising 
for instance when defining the concept of effective scale, concerning how the density of local 
extrema in a signal in scale-space can be expected to vary with scale. The analysis is carried 
out both for continuous and discrete signals and the results from the two approaches are 
compared. Finally, Section 6.6 gives a brief summary of the main result s. 
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6.1 Trajectories of Critical Points in Scale-Space 

In many situations it is of interest to estimate the drift velocity of crit ical points when 
the scale parameter varies. Such information is useful for instance when estimating the 
localization error of feature points due to blurring or when tracking local extrema or related 
entities between scaJes as done for instance by Lifshitz and Pizer [Lif87) or in the scale
space p rimal sket ch. In non-degenerate sit uations, that is when the second differential is 
a non-degenerate quadratic form , we can base such an analysis on the im plicit function 
theorem. 

Definition 6.1 (Critical point (2D)) 
A point (x0 , y0 ) is a critical point of a mapping f : R2 -+ R if the gradient in this point 

(V' f)(xo, Yo) = ( ij ) 	 (6.3) 
By (xo,Yo) 

zs zero. The critical point is said to be non-degenerate if the Hessian matr·ix in this point 

(6.4) 

is non-singular. Otherwise it is called degenerate. 

Lemma 6.1 (Behaviour of critical points in continuous scale-space (2D)) 

Let L : R2 X R+ -+ R be the scale-space representation of a two-dimensional continuous 

signal given by the diffusion equation (6.2} . Assume that at some scale level to > 0 the point 

(x0 ,y0 ) is a non-degenerate critical point for the mapping (x,y) >-+ L(x,y; t0 ). 


Then there exist an open set S(xo,Yo; to ) C R 2 X R+ and an open interval f t 0 C R with 
(xo, Yo; to) E S(xo,YO; to) and to E f t0 having the f ollowing property: To e very t , E ft 0 

there corresponds a unique (x,, yi) such that (x,, y,; tt) E S(xo,yo; to) and (xi> yi) is a non
degenerate critical point for the mapping (x, y) >-+ L(x, y; tt). 

If this ( x 1 , yt) is defined to be r(tt) then r is a continuously differ·entiable mapping 
l t0 -+ R2 such that 

• 	 r(to) = (xo, Yo) 

• 	 7'(tt) is for every t 1 E I to a non-degenerate critical point for the mapping (x, y) >-+ 

L(x, y; tt). 

• 	 the derivative of r with r·espect tot in the point (x0 , y0 ) is given by 

(6 .5) 

Proof: The result can be proved directly by a st raight-forward appl ication of the implicit 
function t heorem to the cu rrent situation . For the sake of clari ty we review its formulation 
as expressed and proved by Rudin , [Rud76). We will adapt the follow in g notat ion: Assume 
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that~ ERn and rJ E Rm. The derivative of a mapping f: Rn+m ..... Rn in a point (~o; TJo) 
is given by the n x ( n + m) matrix 

8JI 8JI ...or;; Fri1 or;;;; 
A ~ [f'((o; 'lo)J ~ ( '" ) (6.6) 

8/n 8fn 8fn 
or;; Fr11 or;;;; (eo ; 17o) 

which can be decomposed into one n x n matrix Band one n x m matrix C, where 

8h . . . 8h )~ or;; 	 Fr;;;; )8h . .B = ; ·.. ; and 	 . . (6.7) 
( 8/n 8fn . . . 8fn 
~ or;; (eo; 11o) Fr;;;; (€o; 1/o) 

Implicit function theorem: 
Let f be a continuously differentiable mapping of an open set E C R n+m into Rn

1 

such that f(a; b)= 0 for some point (a; b) E E. Put A= ( B C ) = [J'(a; b)] 

and assume that B is invertible. Then there exist open sets U C R n+m and 
W C Rm 1 with (a; b) E U and b E W 1 having the following property: To every 
rJ E W corresponds a unique ~ such that 

(~; rJ) E U and f(~; 	ry) = 0 (6.8) 

If this ~ is defined to be g( rJ )1 then g is a continuously differentiable mapping of 
W into Rn satisfying 

g(b) = a and f(g(ry); rJ) = 0 (rJ E W). (6.9) 

The derivative of g with respect to rJ in b is given by 

g'(b) = -B-1 C 	 (6. 10) 

Moreover, we can directly observe that, since here, Lis a solution of t he diffusion equa
tion (6.2) for strictly positive t it follows that L and hence also the mapping (x, y) f-> 

L(x, y; t) will be continuously differentiable (in fact infinitely continuously differentiable) 
for all (x,y) and t. Hence, the existence of derivatives of low order will be no problem in 
our treatment. 

Given the scale-space representation L : R2 x R+ ..... R, we define an auxiliary function 
h : R 2 X R+ ..... R 2 by 

h(x,y; t) = ( h1(x,y; t)) = ( jt(x,y; t)) (6.11)h2(x, y; t) ay(x, y; t) 

Then a point (xi , YI) is a critical point of the mapping (x, y) f-> L(x, y; ti) if and only if 
h(XI, YI; ti) = 0. The derivative of h in (xo, y0 ; to) is given by 

( ~ ~ ~ )A = [h'(xo,yo; to)]= 	 ah ~Y 8~ = ( B C) (6.12) 
~ Ciu '1ft (xo,yo; to) 
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where 

B - ( ~ - ahTx 
(6.1 3) 

C - at
( 

& )- oh
Tt (xo.~; to) 

(6. 14) 

In the last equations we have also replaced h1 wi t h ~ and h 2 with %-· Since (xo, yo) is a non
degenerate critical point of the mapping ( x , y) ....... L(x, y ; to) we have that h( xo, yo; to) = 
0 and that B is non-singular. Hence, we can apply the implicit fun ction t heorem and 
accordingly there exist open sets U C R2 x R a nd W C R with (xo, yo; t o) E U and toE W 
such that there to every t E W corresponds a unique ( x, y) satisfying ( x, y; t ) E U and 
h(x, y; t) = 0. In ot her words, there exists an open neighbourhood U around (xo , yo; to) 
such that for every t E W there exists a unique critical poin t ( x, y) t hat we can defi ne as 
r (t ). T he derivative of t his mapping r: W __. R2 is 

(6.1 5) 

Moreover , sin ce L satisfies the diffusion equation (6.2) we can replace the derivatives wi t h 
respect to t by derivatives with respect to x and y via 

(6.1 6) 

to obtain the result in Equation (6.5 ). 
Wi t h t he formulation so far, nothing ensures the cri t ical point to be non-degenerate. 

Sin ce, however , the Hessian (HL ) = f;ftfy¥- J:jYJ:fx is a continuous function of (x,y ; t) 
and is non-zero in (x0 , y0 ; t0 ) it follows t hat there exists some open neighbou rhood l' C U 
with (xo, yo; to) E V where ( 1i.L ) is non-zero. If we let S( xo, y0 ; t0 ) = V and l t0 = 

R2r - 1 ( V ) n W we a re g uaranteed th at t he crit ical poi nts given by t he mapping r: l t
0 

_. 

are non-degenerate. The uniqueness property will be trivially preserved . 0 
A corresponding result does of course also hold in one d imensio n. Fo r t he sake of 

clarity we state t he necessary definit ions and t he result. T he proof is obvious from t he 
two-dimensional case. 

D efinition 6.2 (Critical point (lD)) 
A poin t xo is a c1·itical poin t of a mapping f : R -+ R if the firs t de r·ivative in this point 
~(xo) is zer-o. The critical point is said to be non-degenerate if the seco n d de1·ivative in this 

point ~(x0) is non-zero, ot herwise degenemte. 

Lemma 6.2 (Be haviour of critica l points in continuous sca le -s pace ( lD)) 

Let L : R x R + __. R be the scale-SJXtce repr·esentation of a one-dimens ion al co n tinuous signal 

given by the diffus ion equation ( 6.1 ) . A ssume that at som e scale level t0 > 0 the poin t x 0 is 

a non-degen erate c ritical point fo r the mapping x ....... L ( x; to ). 


Then there exis t an open set S (xo; to) C R X R+ and an ope n inter val / 10 C R + u·ith 
(xo; to) E S (xo; to ) and to E l t0 having the f ollowing ]Jropert y: To every t 1 E f t

0 
lhe r·e 
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corresponds a unique x1 such that (x 1; tl) E S(xo; to) and x1 is a non-degenerate critical 
point for the mapping x >-> L ( x; t 1). 

If this x1 is defined to be r(t1 ) then r is a continuously differentiable mapping 110 -+ R 
such that 

• r(to) = xo 

• r( tt) is for every t E 110 a non-degenerate critical point for the mapp ing x >-> L ( x; t1). 

• the deriva tive of r with respect to t in the point x0 is given by 

a3L( )dr (t ) = -~~ x o; to 
0 (6. 17) 

dt 2 ~(x0 ; t0 ) 

6.1.1 Interpretation: Drift Velocity Estimates 

These lemmas express how critical points in general can be expected to behave in scale
space. As indicated above, one of the most immediate in terpretations is that t hey give 
straightforward estimates of the drift velocity of cri t ical points in under scale-space smooth
ing. 

Proposition 6.3 (Drift velocity of critical points in scale-space (2D)) 

Given the scale-space representation L : R2 x R+ -+ R , assume that fo r some scale level t0 > 

0 the point (xo, Yo) is a non-degenerate critical point for the mapping (x,y) >-> L(x,y ; t 0 ) . 


Then the drift velocity of that critical point when the scale parameter changes is given by 


(6.18) 

= 

Proof: Follows directly from Lemma 6.1 above. In t he las t line we have used t he well
known inversion formula for 2 x 2 matrices 

a b ) - l 
(6.19) ( c d 

for wri ting down an explicit expression for the drift velocity in term s of spatial derivatives 
of the smoothed g rey-level data. 0 

Note that the d rift velocity actually can become infinite when t he t he Hessian becomes 
singular. At such poin ts bifurcations can occur, as will be developed in Sections 6.2-6.4. 

Corollary 6.4 (Unbounded drift velocity of critica l points) 
The dr·ift velocity of cr·itica.l poin ts may tend to infinity n ear bifm·cation s. 

These conclusions are of course valid also in one dimension. The expression for t he dr.ift 
velocity is, however , much simpler in this case: 
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Proposition 6.5 (Drift velocity of critical points in scale-space (lD)) 
Given the scale-space representation L : R x R+ --+ R, assume that for some scale level 
to > 0 the point xo is a non-degenerate critical point for the mapping x ....... L(x; to). Then 
the drift velocity of that critical point as the scale parameter changes is given by 

83£( )
dr ( t ) = _~ p xo; to 

0 (6.20)
dt 2 ~(xo; to) 

This estimate can easily be extended to comprise edges as well. For simplicity, assume that 
the edge under study is sufficiently long and sufficiently close to a straight line such that 
a one-dimensional analysis is a valid approximation. Further, without loss of generality 
assume that the coordinate system is oriented such that the edge is perpendicular to the 
x-axis. Then, we can use for instance non-maximum suppression to define the location of 
the edge as those points where the firs t derivative along the gradient direction (that is here 
the x-direction) has a local maximum. In other words, the edge is defined by those points 
where the second derivative along the gradient direction is zero. Now, since under these 
conditions, critical points are given by zeros in the first derivative and edge points by zeros 
in the second derivative, we can apply Proposition 6.5 to this situation just by replacing L 
by~- Hence, 

Proposition 6.6 (On the drift velocity of straight edges in scale-space (2D)) 
Given the scale-space representation L : R2 X R+ --+ R , assume that for some scale level 
t 0 > 0 the point (x0 , y0 ) is an edge point along a long straight line. Moreover, assume that 
the coordi nate system is aligned to the edge such that the x-direction is perpendicular to 
the edge and further that the third derivative in this direction is non-zero. Then the drift 
velocity of the edge point as the scale parameter changes is given by 

a• L( )dr (to) __ ~ 8XT xo, yo; to (6.21)
dt - 2 ~(xo, yo; to) 

A similar idea, although with just an approximate derivation , has been expressed by Zhuang 
and Huang [Zhu86]. 

This analysis is applicable also to edges given by zero-crossings, provided that the second 
derivative along the edge direction (here they-direction) is sufficiently small to be neglected. 
Trivially, an identical result holds for the edges of a one-dimensional signals. Note also, 
that we have not made any specific assumptions about the shape of the intensity profile 
perpendicular to the edge. Hence, the result is valid for any configuration that ca.n be 
described by a. one-dimensional analysis. 

Corollary 6.7 (Unbounded drift velocity of straight edges) 
The drift velocity of edges may tend to infinity when two adjacent parallel edges are just 
about to merge into one. 

This result can, for instance, be used for explaining a. recent observation by Zhang and 
Bergholm [Zha.9 1], where they noted that configu rations consisting of two adjacent edges, 
a so-called "staircase edge" - see Figure 6.1, can lead to a rapid edge drift when the scale 
changes, which in turn violates t he assumptions behind the step size estimate used in the 
edge focusing algorithm [Ber87]. In this situation the third derivative is in fact very close 
to zero. 
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Finally, regarding the drift velocity estimates for local extrema and edges, let us point out 
that although the drift velocity momentarily may tend to infinity, the total drift (integrated 
over a scale interval of finite length) will always be finite. What the results mean , is that 
it is not possible to derive any uniform upper bound for the dri ft velocity of these features. 
Given any scale interval of length !:!.t and any distance !:!.x it is always possible to find a 
signal such that the total drift of a feature during the time !:!.t exceeds !:!.x . This property 
emphasizes the need for algorithms based on adaptive sampling along the scale direction. 

(b) (e) 

~ ~ 
(c) (d) 

(\~ ~ 
ZL ZL tL 


X X X 

Figure 6 .1 : (a) A "staircase edge" can lead to a rapid edge drift . This behaviour can be explained 

by noting that (b) after sufficient amount of blurring th e configuration will tend to a "diffus e step 

edge" and by s tu dying the der·ivatives of {c) the original signal (d) th e signal after strong smoothing. 

{e) By considering the paths the zero- crossings of the Laplacian will describe as s cale changes it is 

easy to realize that when the edge points tend to each other the drift veloci ty will tend to infinity. 

See also Sections 3-5 for a m ore detailed descri1rtion of the behaviour at bifurcation situations, in 

particular Section 5. 2 conceming this configuration. 

6.1.2 I nterpretation: Extremal Paths 

Another consequence of Lemma 6.1 and Lemma 6.2 is that a non-degenerate critical point 
exist ing at a certain level of scale in general can be traced to a similar critical point both at 
a slightly coarser and a slightly finer scale. By continuation, such local paths obtained from 
the implicit function theorem can be extend ed to cu rves as long as the Hessian determinant 
remains non-zero. Hence, we get trajectories of critical points that in general will be regular 
cu rves, delimited from above and below by some scale values, tmin and tmax> at whi ch the 
Hessian is zero and the critical point hence degenerate. One easily shows, that t he type of 
critical point will not change along such a path, see below. Therefore, we have: 

Proposition 6.8 (Extremal path s and saddle path s (2D)) 

Given the scale-space representation L : R 2 x R+ __. R , assume that for· some scale level t0 > 

0 the point (xo, yo) is a non-degenerate maximum (minimum/saddle) point for the mapping 

(x, y) ...... L(x , y; to). Then there exists a unique tmjector·y of maximum (minimum/saddle) 


R 2]JOints r: lt0 __. with to E 110 such that r(to) = (xo, yo) and that r(t) for every t is a local 
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maximum (minimum/saddle} point for the mapping (x, y) >--+ L(x, y; t) . This lrajecto1·y is 
called the extremal (extremaljsaddle} path through (xo, Yo; to) and is denoted by M(~o.vo; to) 

(M(-;,o,yo; 
10 

/S(xo,Yo; to)J· The associated scale interval, where the path is defined, is delimited 
by a minimum scale tmin and a maximum scale tmax· At those scales the critical paths end 
up in degenerate critical points unless the minimum scale is zero or the maximum scale 
infinite. At all interior points the associated critical points are non-degenerate, 

Proof: The existence of trajectories of critical points is evident from Lemma 6.1 a nd 
the previous discussion about continuation. What remains to verify is that the nature of 
the critical point does not change under scale-space smoothing. It is obvious t hat a local 
maximum (minimum) cannot be transformed into a saddle point or vice versa, because if the 
Hessian would change sign then it would first become zero, since it is a continuous fu nction 
of the scale parameter. However, then , by definition, the trajectory would be cut off by a 
degenerate critical point into two separate segments. 

Moreover, a ma.ximum point cannot be transformed into a minimum point or opposite, 
since then (at least) the partial derivative ~ would need to change sign. However, such 
a sign change implies that this derivative would first become zero (because of continuity), 
which in turn means that the quadratic form would become indefinite, i.e. the point would 
get transformed in to a saddle point. Above we have shown that such a transition has to go 
through a degenerate critical point which means that the trajectory would be cut off into 
at least two parts. 0 

The one-dimensional situation is similar, although simpler, since there are no stable 
saddle points in this case. 

Proposition 6.9 (Extremal paths (lD)) 
Given the scale-space representation L : R x R+ -+ R, assume that for some scale level t0 > 0 
the point x0 is a non-degenerate maximum (minimum} point for the mapping x >--+ L(x ; to). 
Then there exists a unique trajectory of maximum (minimum) points r : / 10 -+ R with 
to E 110 such that r(to) = xo and r(t) is for every t local maximum (minimum) point for 
the mapping x >--+ L( x; t ). This tmjectory is called the extremal path thmugh (xo ; to) and 
is denoted by M+(x0 ; t0 ) (M-(x0 ; t0 )). The associated scale interval, where the path is 
defined, is delimited by a minimum scale tmin and a maximum scale tmax. At those scales 
the critical paths end up in degenerate c1·itical points unless the minimum scale is zero or· 
the maximum scale infinite. At all inte1·ior poi11ts the associated ext1·emum points are non
degene rate, 

6.1.3 Formal Definition of Scale-Space Blob 

The treatment of ext remal paths above allows for a more formal definition of scale-space 
blobs - the basic primitives in the scale-s pace primal sketch. In Chapter 5 grey- level 
blobs were defined as local extrema with extent and scale-space blobs in t urn as families 
of those. More precisely, a grey-level blob of a two dimensional signal was given by a pa.i r 
consisting of a local extremum and a saddle point and in one dimension by a maxim um and 
minimum point , implying a one-to-one correspondence between loc al extrema and grey-level 
blobs. The previous definition of scale-space blob was, however, intuitive: "similar blobs at 
adjacent levels of scale were linked into scale-s pace blobs" . The linking process proceeded 
until no such linking co uld be performed, i.e., until a bifurcation was encountered . The idea 
behind this construction was to identify and gro up similar features at different scales into 
higher order and unified objects. 
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The notion of extremal pat hs makes it possible to express this linking criterion in a more 
formal way. Consider the two-dimensional case and study a non-degenerate local extremum 
point a t some level of scale. T hen, by Proposition 6.8 there exists a unique trajectory of local 
extrema associa ted with t his point such that all points along this path are local ex t rema 
of t he same kind and this path is delimited by two scales, tmin and tmax · At all interior 
scales of this interval the associated extremum points will be non-degenerate, while at the 
end poin ts they will , by definitio n, be degenerate. The scale-space blob associated with t he 
local extremum point we origin ally started wit h , will be defined as a subset of the union of 
all grey-level blobs corresponding to the local extrema along the extremum path t hrough 
the original extremum point. To be more precise we first define a natural concept: 

Definition 6.3 (Delimiting saddle point (2D)) 
Let E be an extrem um point and S a saddle point together defining th e ext ent of a grey-level 
blob. Th en S is sai d to be the deli miti ng saddle point of E , denoted S delimit( E ). 

The delimiting saddle points associated with the extremum points of an extremum path 
need of course not all be on the same saddle path, but may jump between different saddle 
paths. Generically this occurs at a discrete set of scales at which the extremum point and 
the (two ) involved saddle points are non-degenerate. 

If t he delimiting saddle point (or the extremum point) is involved in a bifurcation then 
we say that a blob event has occurred for the scale-space blob associated with (the segment 
of) t he extremum path. It is therefore natural to proceed with the linking as long as the 
extremum points and their delimiting saddle points are non-degenerate critical points and 
to stop it when either of the crit ical points degenerates. Hence, a scale-space blob will be 
given as the union of the grey-level blobs along a subset [t~in> t~axl of the previous scale 
interval (tmin, t maxl· In order to obtain a closed object it might however be convenient to 
define the scale-space blob as the closure of the previously suggested set. To summarize: 

Definition 6.4 (Scale-space blob (2D)) 
Given the scale-space represe ntation L : R2 x R + -+ R of a t wo-di m ensional s ignal f : R2 -+ 

R , let r : [t min, tmax] -+ R2 be an extremal path as formulat ed i n Propo sit ion 6. 8 such that 
r (t min ) and r (tmax) are degenerate critical points. Furth er let [t~in> t~axl C [tmin , t max ] be 
a scale inte1·val where for all int erior scales the delimiting saddle points of the extre mum 
points alo ng th e extremum path are non-degenerate and at the e nd poin ts, eith er of r(t~in ) 

and Sdelimit( r ( t~;,.) ) and also either of r ( t~ax) and S delimit ( r( t~ax )) are degene rate critical 
points. Th en the scale-space blob associated with the segment f : (t~in, t~axl -+ R2 of the 
extremal ])ath is defin ed as the se t 

S blob( r ) = Closure({ (x ,y, z ; t) E R 2 x R + x R : 

(t~in < t < t~ax ) 1\ ((x, y , z) E Gblo6(r(t))) }) (6.22) 

where the s ymbol Gblob( r (t )) denotes the grey-leve l blob associat ed with the extre mum poin t 
r ( t). 

It is natural to define the support regio n of the scale-space blob as 

Ssupport( r) = Closure( { (X, y ; t) E R 2 X R + : 

( t:nin < t < t:nax ) 1\ ((X, Y) E Gsupp ort( r ( t)))}) (6.23) 
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One easily verifies that this constructio n implies that 

S.upport(r) = {(x,y; t) E R2 x R+ : (x,y,z; t) E Sblob(r) for some z} ( 6.24) 

In most figures presented in earlier papers it is this projection of the four-dimensional scale
space blob that has been illustrated. 

Strictly, in this original coordinate system the scale-space blob volume is given by 

Svolume(r) = jjj { dxdydzdt = t 'ma:r G volume(r(t))dt (6 .25 ) 
Jsblob(r) lt=t'm;n 

wher e G volume(r(t) ) is the grey-level blob volume of the grey-level blob associated with 
the extremum point r(t)). However, when the scale-space blob volume is to be used as a 
significance measure in the scale-space primal sketch it turns out that some transformations 
need to be done in order to enable a uniform treatment of structures over scale. The aim 
with that normalization is to achieve a significance measure that neither favours fine scales 
to coarse scales nor the opposite. Therefore, we define a normalized scale-space blob volume 
as 

t 'mo:r 
s.olume,norm(r) = lt- Vtran.(G volume(r(t )); t )d(r .n{t)) (6.26)I 

t-tmin 

where t.u : R -+ R is a transformation fun ction mapping the ordinary scale parameter 
into a transformed scale parameter called effective scale and Vtran• : R x R + -+ R is a 
corresponding transformation function normalizing the grey-level blob volumes into a mo re 
uniform behaviour over scale, see Chapter 5 for details. 

For one-dimensional signals the treatment is similar and a scale-space blob associated 
with a segment of an extremum path is defined as follow s: We express the definition for 
bright blobs only. The case with dark blobs is similar. 

Definition 6.5 (Delimiting minimum point (bright blobs lD)) 
Let M + be a maximum point and M - a minimum point together defining tht extent of a 
bright grey-level blob. Then M- is said to be the delimiting minimum point of M+, denoted 

Mielimit(M+) . 

Definition 6.6 (Scale-space blob (bright blobs in lD)) 
Given the scale-space representation L : R x R+ -+ R of a one-dimensional signal f : R -+ R, 
let r : [tmin, tmaz] -+ R be a maximum path as formulated in Proposition 6.9 such that 
r(tmin) and r(tmaz) are degenerate critical points. Further let [t~in, t~""] C [tmin, tmaz] be 
a scale interval where for all interior scales the delimiting minima of the maximum points 
along the maximum path are non-degenerate and at the end points, either of r(t~in) and 

Mdelimit(r(t~in)) and also either of r(t~"") and Mdelimit(r(t~az)) are degenerate critical 
points. Then the scale-space blob associated with the segment r' : [t~in, t~azl -+ R of the 
extremal path is defined as the set 

Sblob(r) = Closure( {(x, z; t) ER x R x R+: ( t~in < t < t~az) 1\ ((x, z) E Gblob(r(t.)))}) 
(6.27) 

where the symbol Gblob( r( t)) denotes the grey-level blob associated with the extremum point 
r( t). 

It should be obvious how the related entities, support region and scale-space blob volume, 
should be defined in an analog manner. 
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6.2 Behaviour Near Singularities: Classification 

The results so far describe the evolution properties in scale-space of non-degenerate criti
cal points. When we want to investigate t he behaviour of degenerate critical poin ts, the 
approach with the implicit function theorem is no longer applicable, since at those points 
t he Hessian matrix is singular. One can show that the critical points of a solution to the 
diffusion equation will , in general, be non-degenerate and that, generically, critical points 
will be degenerate at isolated points only. 

Useful methods for analysing the behaviour around these points, where bifurcations can 
occur, can be obtained from a branch of mathematics known as singularity or catastrophe 
theory. In this t reatment we will make use of some existing results from this field to express 
what kind of behaviour can be expected at the singularities in the scale-space representation 
of a one-dimensional or t wo-dimensional sig nal. We will not make any attempt to summarize 
the full t heory behind the important theorems, but instead just briefly review some of the 
definitions and results of highest relevance to this application. We refer the reader to e.g. 
Poston and Stewart [Pos78], Gibson [Gib79] or Bruce and Giblin [Bru84] for an application
oriented introduction and to e.g. Arnold et al. [Arn81, Arn85, Arn88], Golubitsky and 
Schaeffer [Gol85] or Lu [Lu76] for a more rigorous treatment of the subject. 

6.2.1 Background 

The main purpose with the analysis in singularity or catastrophe theory is to deal with the 
qualitative behaviour of functions in t he neighbourhoods of points where singularities occur. 
An important concept in this context is the notion of equivalence. Two functions and or 
two families of functions are said to be equivalent if they show the same kind of qualitative 
behaviour. More precisely, t he notion of equivalence of means that functions (or families of 
functions) are similar up to a diffeomorphic change of variables: 

Equivalence of functions : 
Two functions h, h : R n --> R are said to be (right) equivalent around 0 if there 
is a local diffeomorphism y : R n --> R n around 0 and a constant 1 such that 

h (x) = h(y(x)) + "'f 	 (6.28) 

in some neighbourhood around the point 0. 

Equivalence of fa milies of functions: 
Two r -parameter families of fu nctions L 1 , L2 Rn X R r --> R are said to be 
equivalent if the1·e exist 

• 	 a diffeomorphism e : Rr --> Rr 

• 	 a smooth map y : R n x R r --> R n such that fo r each s E Rr the map 
Ys: Rn --> Rn defined by Ys(x) = y(x; s) is a diffeomorphism 

• 	 a smooth map 1 : Rr --> R 

defined in a neighbourhood around the point 0 such that 

g(x , s) = f(y.(x),e(s)) + 7(s) 	 (6.29 ) 

f01' all (x ; s) E R n X R r in that neighbourhood. 
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In other words, two r-parameter families of functions are treated as equivalent if there exists 
a set of diffeomorphisms such that one of the families can be smoothly transformed into the 
other one. This notion of equivalence implies that the singularity sets of the families, which 
are the sets of points where the first differential with respect to the state variable x E R n is 
zero, 

SL
1 	

= {(x; u) ERn X Rr: (DxLt)(x; u) = 0} (6.30) 

SL2 	 = {(x; u) ERn X R": (DxL2)(x; u) = 0} (6.31) 

will also be equivalent sets up to a diffeomorphic change of variables. In this sense the 
concept of equivalence can be seen as capturing the property of qualitative similarity. 

The equivalence concept is closely linked to the concept of structural stability. Intuitively 
a function or a family of functions is structurally stable if a sufficiently small perturbation 
does change the qualitative behaviour of the function or the family. This property is more 
formally expressed in terms of transversality: 

Transverse intersection: 
Let X and Y be affine subspaces of Rn of dimensions s and t respectively. They 
are said to meet transversely if either 

• their intersection X n Y is empty, or 

• s + t ~ n and dim(X n Y) = s + t - n 

Two submanifolds of Rn meet transversely at a given point provided either they 
do 	not meet or their tangent affine hyperplanes meet transversely. 

One of the fundamental results in singularity theory is that the typical qualitative behaviour 
of families given by a small number of parameters can be expressed completely by the 
qualitative behav:our of a finite set of families. A famous theorem by Thorn classifies the 
generic behaviour of families of functions with the number of parameters r :::; 4 into seven 
elementary catastrophes. We cite a summarizing result as expressed by Poston and Stewart 
[Pos78]: 

Thorn's classification theorem: 
Typically an r-parameter family Rn X Rr -+ R of smooth fu nctions R n x Rr -+ R , 
for any n and r :::; 4, is structurally stable and is in every point (locally) equivalent 
to one of the following forms: 

• non-c1·itical: x 1 

• non-degenerate critical, or Morse: xi+ ... + x!- x!+1 - ... - x~ (0 :::; i :::; n) 

• 	 degenerate critical - catastrophe 


- fold (A2): xy + Ut X! +(M) 


cusp (A 3): ±(xj + U2Xf + UtXt) +(M) 


swallowtail (A4): xf + u3xy + u2xi + u1x1 +(M) 


butterfly (A s) : ±(x~ + U4Xt +U3XY +U2Xf + 1LtXt) +(M) 


elliptic umbi/ic (D4 ) : XfX2 -xi+ U3Xf +U2X2 + u1 x1 + (N) 

hyperbolic umbilic (D;t ): xix2 +d +u3xi +u2x2 +u 1x 1 + (N) 
parabolic umbilic (D s): ±(:vix2+X~+ U4X~+U3XI +U2X2 +u 1 x2) +(N) 
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The symbols A2 , A3 , etc. denote the types of singularities of which the families constitute 
generic unfoldings while (M) and (N) indicate Morse functions on the forms 

(M)= x~ + ... + x?- x?+l - ... - x~ (2::::; i::::; n) (6.32) 

(N)=x5+ ... +x?-x?+1- ... -x~ (2<i:s;n) (6 .33) 

which must be added on to the previously mentioned expressions to match up the dimen
sions. This is in strong analogy with the Morse splitting lemma, which states a singularity 
at a degenerate critical point can be separated into two components: 

Splitting lemma for families: 
Let L : Rn X Rr - R be smooth. Denote a point in Rn X Rr by (x; u) = 
(xi. ... , Xm u1. ... , ur)· Suppose that the Hessian 

HL = {~} (6.34) 
ox;(Jxj t <i,j<n 

has corank m at (x; u) = 0. Then L is equivalent to a family of the form 

L(yt(x; u), ... , Ym(x; u), u) ± y;,+l ± ... ± y~ (6.35) 

If the Hessian is non-degenerate, i.e. has corank zero, this result reduces to the Morse 
Lemma for families, containing the ordinary Morse lemma as a special case: 

Morse lemma for families: 
Let L: Rn X Rr - R be smooth and assume that the Hessian 

(6.36) 

is non-degenerate at (x ; c)= 0. Then L is equivalent to a family of the form 

± Yf ± Y~ ± ..· ± Y~ (6.37) 

If the number of parameters in the family is increased to five, then a few more catas
trophes, not mentioned in Thorn's original treatment, will also be possible, see e.g. Poston 
and Stewart [Pos78]: 

- wigwam (A6) xf +usx~ +u4xf + U3X~ +U2XI +UtXt + (M) 


- second elliptic umbilic (Df:): xix2- x~ +usx~ +u4x~ +u3x~+u2x2 +UtXt + (N) 


- second hyperbolic umbilic (Dt): xix2+x~+usx~+u4x~ + u3xi+ u2x2 +utx1 +(N) 


- symbolic umbilic (E6): ±(x~ +X~+ UsXtX~ +U4X~ +U3X1X 2+U2X2 +Ut Xt) +(N) 


According to Poston and Stewart [Pos78] the latter four cases contain geometry not signif
icantly altered from the previous cases, however comprising interchanges between maxima 
and minima that may be important in certain situations. Material on the classification of 
singularities of higher order can be found in for instance Arnold et.al. [Arn81, Arn85, Arn88]. 
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6 .2 .2 	 Application to Scale-Space R e presentation: One-Parameter Fami
lies 

Treating the scale-space embedding of a two-dimensional signal, we can restrict t he treat
ment to one-parameter families. T hen the only possible catastrophe will be the one of fold 
type. To summarize, 

Thorn's classification theorem applied to one-parameter families: 
Typically a one-parameter fam ily R " x R -+ R of smooth functions R" -+ R, for 
any n , is structurally stable and is in every point (locally) equivalent to one of 
the following forms: 

• non-c ritical: Xt 

• non-degenerate critical, or Morse: xi+ .. . + x[- xr+l- ... - X~ (0 :$ i :$ n) 

• degenerate critical - fold catastrophe (A2): x~ +u1x 1 ± x~ ± ... ± x~ 

The A2 type of singularity in the fold singularity means that the first and second derivatives 
in one direction are zero while the third derivative in that direction is non-zero. At the 

x 3 2singularit y point t he function is locally equivalent to t he function ± y and from the 
concept of equivalence between families of fun ctions it follows t hat any transversal unfolding 
through a singularity of this type will be equivalent to the family G1(x, y; u) = x3 +ux±y2 , 

where x and y should be interpreted as state variables and u ser ve as the parameter. 
Therefore, if one is interested in the behaviour of t he critical points of a signal during t he 

evolution of the diffusion equation, it should in principle be sufficient to study this situation. 
For two-dimensional signals the singularity set is given by the solutions of 

&Gt 
o x (x, y; u) = 3x2 + u = 0 	 (6.38) 

&Gt 
ay (x, y; u) = ±2y = 0 	 (6.39) 

and the bifurcation set by t he solu tion of 

&Gt 
ox (x, y; u) = 3x 2 + u = 0 	 (6.40) 

oG1 
ay (x, y; u) = ±2y =0 	 (6.41) 

o2 Gt 
f)x2 (x, y; u) = 6x = 0 	 (6.42) 

We easily observe t hat t he singularity set is given by (x1(u),y1(u)) = (-A,O) and 

(x2(u), y2(u)) = (+.j=j, o) (u :$ 0) and t hat t he bifurcation is an isolated point (x,y; u) = 

(0, 0; 0). From the sign of the Hessia n determinant I(HGI)I(x, y; u) = ± 12x it follows that 
(x t (u),yt(u)) are saddle/maximum points and (x2(u),y2(u)) are minimum/saddle points 
for every u < 0. At u = 0 t he points merge and t hen disappear , see also F igu re 6.2. 

By similar arguments the scale-space representation of a one-dimensional signal will at a 
bifurcation point be locally equivalent to the unfolding G1(x; u) = x3 +ux. The same type 
of calculations as above show that in this case the fold catastrophe instead describes the 
merging of a maximum point and a minimum point with increasing u, see also Figure 6.2. 
To summarize, 
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Corollary 6.10 (Generic behaviour at singularities in scale-space (2D)) 
The typical behaviour to be expected at singularities in a one-parameter family of two
dimensional continuot~s signals are annihilations or creations of pairs of local extrema and 
saddle points. 

Corollary 6 .11 (Generic behaviour at singularities in scale-space (lD)) 
The typical behaviour to be expected at singularities in a one-parameter family of one
dimensional continuous signals are annihilations or creations of pairs of local maxima and 
local minima. 

0 bserve in this context that in the scale-space representation of a one-dimensional signal the 
number of local extrema cannot increase when the scale parameter increases. This means 
that creations of pairs of local maxima and minima with increasing scale are impossible if 
the special structure of t he diffusion equation is taken into account . However, as will be 
demonstrated below, creations of saddle-extremum pairs with increasing scale are possible 
in the scale-space representation of a two-dimensional signal. 

(a) (b) 

Figure 6.2: (a) T he generic behaviour at a singularity of a one-parameter family of two-dimensional 

function s is described by the unfolding cl (x I y ; u) =x3 +ux ± y2 . The singularity set of this family, 

that is the s et of cri tical points t o the mapping given by x ...... G1(x , y; u) , describes an extremum 

point and a saddle point that merge along a parabola and then disappearing. (b) For a one-parameter 

family of one- dimensional func tions th e beha viour is instead given by G1(x; u) = x3 + ux. The 
singula1·ity set corresponds to a similar merge of a maximum point and a minimum point. 

6.2.3 Interpretations 

By comparisons with earlier theoretical and experimental results we know that these corol
laries describe the qualitative behaviour of critical points in scale-space. However, when 
to give a more detailed interpretation of those results there is one apparent com plication. 
From the equivalence concepts we know that t here exist diffeomorphisms such that the sin
gula ri ty set of a solution to t he one-dimensional diffusion equation around a bifurcation 
point (xo; t0 ) in scale-space can be transformed into the singularity set of G 1 around (0; 0). 
However, there is obviously some directional information lost in the equivalence concept: 
In which direction should we interpret the u parameter? If we treat u and t as increasing 
simulta neously, t hen the sit uation desc ribes a local minimum and a local maximum merg
ing with increasi ng t . On t he other hand , if u runs in a direction opposite to t then the 
interpretation would be that a pair with a local maximum and a local minimum would be 
created when t increases. However, as indicated above, we know from the scale-space t heory 
for continuous signals that the latter p henomenon is impossible, since the number of local 
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extrema in a solution to the one-dimensional diffusion equation cannot increase when the 
scale parameter increases. 

The diffusion equation apparently introduces a directional preference to its solutions 
(due to the causality requirements ), which makes such creations impossible. How should 
this information be incorporated into the analysis of the singularities in scale-space? One 
way of avoiding the previous blindness of the equivalence concept to the structural property 
of the diffusion equation is by requiring the previous polynomial unfoldings in Thorn's 
transversa.lity lemma to satisfy the diffusion equation. Then we are ensu red that artifacts 
cannot be introduced. In the one-dimensional case this can be accomplished by interpreting 
the parameter u as a rescaled scale parameter, i.e. by replacing u by 3t. Then the unfolding 
of a one-dimensional signal would be1 , 

G\(x; t) = x3 + 3xt (6.43) 

which satisfies the one-dimensional diffusion equation. Obviously, with this interpretation, 
creations of pairs oflocal maxima with increasing tare no longer possible. Moreover, since 
the family is still on the generic form it seems as if we could treat it as a general representative 
of the solutions to the diffusion equation and the only possible bifurcation events would be 
pairs of local maxima and minima merging with increasing scale. 

On the other hand, if similar heuristic arguments are applied to the two-dimensional 
case, the corresponding unfolding would instead be 

(6.44) 

We have added at term to t he previous expression for G1 in order to have G1 satisfying the 
diffusion equation. Adding such a term does not affect the equivalence concept, since the t 
term can be treated as a constant with respect to the state variables (x, y) and, hence, be 
included in t he 1 term in the definition of equivalence of families of functions. 

However, there is more complexity in the two-dimensional situation, since in this case, 
pairs of extremum and saddle points actually can be created with increasing scale, see e.g. 
the example in Figure 6.4. Obviously this kind of phenomenon is not captured by the 
unfolding in (6.44). Therefore, the directional constraint on the parameter tt in terms oft 
implies that we can no longer treat the catastrophe of fold type as exhausting all possible 
types of behaviours at a singulari ty in a solution to the diffusion equation . 

One way of addressing this problem could possibly be by trying to develop results similar 
to Thorn's classification theorem, which instead of being expressed in terms of the ordinary 
standard basis of polynomials could be expressed in terms of polynomials satisfying the 
diffusion equation. A possible set of candidates for such a treatment in the two-dimensional 
case is listed in Appendix A.5.1. 

Another approach is to use the previous classifications in Corollary 6.10 and Corol
lary 6.11 to state which configurations are possible in general one-parameter families of 
functions. Then, after this classification has been performed the special structure of the 
diffusion equation can be taken into account for judging which of the resulting possibili
ties apply to the scale-space representation when the directional constraint of the diffusion 
equation has been added. Such a treatment will be the subject of the next section. 

1 Analyses of this type have been carried out by e.g. I<oenderink and van Doorn (I<oe84, J{oe86]. 
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6.2.4 Classification of Blob Events at Bifurcations in Scale-Space 

A natural question that arises in connection with the scale-space primal sketch concerns 
which types of blob events a re possible in bifurcation situations. Since scale-space blobs 
are defined in terms of paths of critical points, the beh avio ur of a scale-space blob at a 
sing ularity will be solely determined by the behaviour of those paths during a short scale 
interval around t he bifurcation moment. 

Com pared to the previous t reatment where we were analysing the behaviour of cri tical 
points only there is, however, an additional factor that must be taken into accoun t when 
dealing with scale-space blobs, namely the fact that saddle points, delimiting the extent of 
grey-level blobs involved a bifurcation, can be associated with other grey-level blobs as well. 
T his leads to natural coupling between scale-space blobs sha ring the same saddle pa th (of 
delimiting saddle points) in a neighbourhood of a bifurcation. We define: 

Definition 6.7 (Non-share d saddle path (2D)) 
Given a saddle path involved in a structu rally stable bifurcation of a two-dimen sional signal 
we say that the saddle path is non-shared before (after) the bif urcation if there exists some 
scale interval before (after) the bifurcation during which every saddle point of the saddle 
path is not contained in more than one grey-level blob. Otherwise, the saddle path is said to 
be shared. 

More formally, a saddle path is called non-sha red befor e (aft er ) a bifurcation at tbifurc 

if there exists some l > 0 such that for all scales in the in terval t E ]tbi/urc - l, tbi/urc[ 
(t E]tbifu rc, tbi/urc + f[) the saddle point of the saddle path at that scale does not belong to 
more than one grey-level blo b, see also Figure 6.3. Another way to express t his property is 
t hat a shared saddle point is the delimiting sad dle point of two (or more) grey-level blobs 
of the same polarity, while a non-shared saddle point either is the delimiting saddle point 
of one or no grey-level blobs. 

shano' ~ao'o'le 

110n ~shorttf 
soddle 

Figure 6.3: Illust ration of the definitio n of grey-level blob f or a two-dimensional signal. Every local 

extremum gives rise t o a blob and the extent of t he blob is given by a saddle point. A saddle point is 

said to be shared if it i s contained in more than one grey-level blob, i.e. if it is a delimiting saddle 

poi nt of two (or more) grey-level blobs of the same polarity. 

T his definition implies that a non-shared saddle path participating in, say, an extremum
saddle pair disappearing with increasing scale descri bes an isolated blob that disappears. 
We call this event a blob annihilation. On the other hand , a shared saddle path involved 
in a similar even t describes a blob disappearing under the influence of a neighbour blob, a 
blob merge. Similarly, a shared sad dle point t aking part in an extr em um-saddle pair that is 
created with increasing scale describes a blob split, while a. non-shared saddle path partici
pating in a. similar event describes a blob creation. From t he classification of the canonical 
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behaviour of the critical points of one-parameter families of functions in Corollary 6.10 we 
therefore have: (Below, the term annihilation (creation) of an extremum-saddle pair will 
mean that a pair consisting of an extremum path and a saddle path disappears (appears) 
when the scale parameter increases.) 

Theorem 6.12 (Classification of scale-space blob events (2D)) 
In the scale-space representation of two-dimensional continuous signal, the following blob 
events are possible at a structurally stable bifurcation: 

• 	 blob annihilation - annihilation of an extremum-saddle pair where the saddle path is 
non-shared before the bifurcation. 

• 	 blob merge - annihilation of an extremum-saddle pair where the saddle path is shared 
with another scale-space blob before the bifurcation. 

• 	 blob split - creation of an extremum-saddle pair where the saddle path is shared with 
another scale-space blob after the bifurcation. 

• 	 blob creation - creation of an extremum-saddle pair where the saddle path is non
shared after the bifurcation. 

These four cases constitute the definitions of the terms annihilation, merge, split and creation 
with respect to grey-level blobs and scale-space blobs in the two-dimensional case. 

Proof: From Corollary 6.10 we have that the typical behaviour at singularities are pairwise 
annihilations and creations of extremum-saddle pairs. Combined with the definition of 
shared saddle path this means that the class of possible blob events is restricted to the 
given four types, provided that we deal with structurally stable bifurcations. 

What remains to verify is t hat all these four types can be instantiated and that they also 
are structurally stable. It is well-known that blob annihilations and blob merges can take 
place in scale-space, see also Section 6.4 for illustrative examples. The fact that splits can 
occur is known as well, see e.g. the example given by Lifshitz and Pizer [Lif87] illustrated in 
Figure 6.4(a) and also Figure 3.1. The latter configuration can also be modified to describe 
a blob creation as well, if the hjgher one of the two peaks is replaced by a double peak, 
see Figure 6.4(b). Then the extent of the two smaller blobs at the higher peak will be 
delimited by the grey-level in the valley between them, which means that when the narrow 
ridge has eroded and given rise to the creation of a saddle-extremum pair the saddle path 
in the created saddle-extremum pair will not be shared by any other blob. 0 

The assumption of structural stability is important in this context, since otherwise, 
there is an infinite variety of possible events. For instance, three or more blobs could merge 
into one blob at the same moment. Such events will however be unstable, since a slight 
perturbations of the input signal would perturb such a simultaneous merge of three blobs 
into a sequence of two successive pairwise merges. Note in this context that for Morse 
functions, see e.g. Arnold [Arn81], no pair of critical points will have the same values. In 
other words, for generic functions all critical points will be distinct. Although, by definition , 
the grey-level function will not be Morse at a bifurcation, we can, in general, assume this 
latter property to hold at bifurcations, which means that situations with three or more blobs 
simultaneously merging into one can be expected not to occur. 

Algorithmically, this means that an encountered actual situation with, say, th ree blobs 
at a fine scale seeming to belong all to the same blob at a coarser scale, can in general be 
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Figure 6.4: (a) Example illustrating the property that new lo cal extrema can be created with in

creasing scale in the scale-space representation of a two-dimensional signal. Interpreted in terms of 

blobs the configuration describes a blob split. {b) By modifying the example slightly (by replacing the 

higher one of the two peaks with a double peak) one realizes that blob creations can occur as well. 

The base levels of the different grey-level blobs have been indicated. 

decomposed into transitions of the four primitive types. This principle forms the idea behind 
the automatic scale refinement algorithm to be described in Chapter 7, which essentially 
refines the scale sampling until all relations between scale-space blobs in scale-space can be 
decomposed into events of the previously listed types. 

For one-dimensional signals the analogies of Definition 6. 7 and Proposition 6.12 will be 
as follow s: We express the formulations for bright blobs only. The case with dark blobs is 
similar. 

Definition 6.8 (Non-shared extremum path {bright blobs in lD)) 
Consider the case with bright blobs in the scale-space representation of a one-dimensional 
signal. Given an extremum path of minimum points involved in a structurally stable bifur

b) c) 

d)~ 

8 
--

/ 

~ 
Figure 6.5: Illustration of the various events possible for the scale-space blobs of a two-dimensional 

signal: (a) blob annihilation ( b) blob m erge {c) blob split ( d) blob creation. 
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cation we say that the extremum path is non-shared before (aft er) the bifurcation if there 
exists some scale interval before (after) the bifurcat ion during which every minimum point 
of the ext1·emum path is contained only one bright grey-level blob. Otherwise the saddle path 
is said to be shared. 

Theorem 6.13 (Scale-space blob events (bright blobs in lD)) 
Typically, in the scale-space representation of one-dimensional continuous signal, the fol
lowing blob events are possible at a structurally stable bifurcation: 

• 	 blob annihilation - annihilation of a minimum-maximum pair where the extremum 
path of minimum points is non-shared before the bifurcation. 

• 	 blob merge - annihilation of an extremum-saddle pair where the extremum path of 
minimum points is shared with another bright scale- space blob before the bifurcation. 

Proof: From Corollary 6.11 we have that the typical behaviour at singularities in a 
one-parameter family of function s are pairwise annihilations and creations of minimum
maximum pairs. However, as discussed above the number of local extrema cannot increase 
with scale in the scale-space representation of a one-dimensional signal if follows that new 
minimum-maximum pairs cannot arise with increasing scale. This means that blob splits 
and blob creations are impossible in the one-di mensional case because of the causality re
quirements. 0 

These bifurcations between scale-space blobs define the hierarchical relations across 
scales between scale-space blobs at different scales in the tree-like representation scale
space primal sketch. The generated data struct ure will, however , not constitute a strict tree 
because of the blob annihilations and the blob splits. 

6.3 Behaviour Near Singula rities: Examples in lD 

In the previous section we classified the qualitative behaviour at bifurcation points. In 
this section we will illustrate the quan t itative behaviour at singularities and give examples 
demonstrating how the blo b descripto rs vary with scale for a set of characteristic examples. 

We will start by exploring the one-dimensional situation in more detail and show how one 
with very simple techniques can ar rive at an expression similar to the generic representative 
of the fold unfolding ( 6.43 ) just by studying a t hird order Taylor expansion of the scale-space 
embedding. Then we will investigate the consequences of some of the other unfoldings in 
Thorn's classi fication theorem with ap plication to grey-level blobs and scale-space blobs. 

Since t he main intention with t his section is to mediate an intuitive feeling for what will 
happen at bifurcations in scale-space we will in most cases, for t he sake of clarity, display 
the full calculations and sometimes also redo calculations carried out in previous sections. 
The technical details can be skipped by t he hasty reader with out loss of continui ty. 

6 .3.1 Third Order Taylor Expansion of the Scale-Space Embedding 

Given a scale-space embedding L : R x R+ -+ R o f a one-dimensional signal f : R -+ R 
consider a third order Taylor expansion of t he map ping x,..... L(x; t0 ) around a given point 
xo a t some scale level t0 : 

(6.45) 
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where 

Requiring this function to satisfy the diffusion equation 

= (6.47)
8t 28x2 

with initial condition L(x; to)= fto (x E Z) we obtain 

L(x; t) =a+ {3(x- xo) +1(x- xo? + f(x- xo)3 +61(t- to)+ 62(x- xo)(t- to) (6.48) 

where 61 =1 and 62 = 3f. For simplicity, introduce new (offset) variables by 

u = x - xo; v = t - to (6.49) 

Then, 
L(u; v)=L(u+x0 ; v+to)=a+{3u+l(u2+v)+f(u3 +3uv) (6.50) 

The critical points of the function u ,...... L(u; t) are given by 

aL 
Bu (u; v) = {3 +21u +3f(u 2+ v) =0 (6.51) 

If f = 0 we get one single root x = - 2;, whose location is independent oft. Obviously, this 
case is not interesting, since it implies a totally stationary solution. Therefore, from now 
on, we will only consider the solutions when f =f 0. Then we get two trajectories of critical 
points 

u1(v) = _]_ + (6.52)
3f 

(6.53) 

These paths only exist when the argument of the root function £..r- (v +f.) is non-negative, 

i.e. if and only if v ::; ~ - f.. The critical paths meet and a bifurcation takes place at 

(6.54) 

From the second derivative ~(u; v) = 21 +6w = 0 we obtain: 

(6.55) 

(6.56) 

i.e. the second derivative has different sign in the two critical points (provided that f =f 0). 
Thus, the bifurcation consists of one maximum point and minimum point that meet and 
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Figure 6.6: Third order Taylor expansion of the scale-space embedding: Schematic view over the lo ci 

of the critical points as scale changes. The bifurcation consists of a maximum point and a minimum 

point that meet and annihilate. 

annihilate, see also Figure 6.6. At the bifurcation ~ is of course zero. Note that, as 
expressed in Corollary 6.4, the drift velocity actually tends to infinity as the critical points 
approach the singularity. At v = 0 the drift velocity is 

83L(o 0) 83£( )
8u1 (O) = _3£ = -~V ; = -~ azy xo; to (6.57)ov 1 2 ~(0; 0) 2 fx¥(xo; to) 

which agrees with the result (6.20) in Proposition 6.5. 
Now, assume that for the scale level t0 the point x = xo is a critical point for the 

mapping x ._.. L(x; t0 ), i.e. that for v = 0 the point u = 0 is a critical point for t he mapping 
u ._.. L(u; 0). Then f3 = 0 and we can estimate the time llVbi/urc as well as the distance 
!lubifurc until bifurcation by 

/ I ~- (0; 0) = I~(x0 ; t0 ) I!lUbi/urc = iui(Vbifurc)- tLt(O)I = 3€ = ~83""£;---- (6.58) 
1 ~(0; 0) 8 x3 (xo; to) 

282 
1 ) 

2 
( L(O; 0)) (6.59) 

flVbifurc = ( 3 € = ~(O; O) = 

where we have also inserted the actual expressions for 1 and E. To summarize, 

Observation 6.14 (Coarse estimate of the scale-step when linking grey-level blobs 
into scale-space blobs (Distance to a bifurcation) (lD)) 
A coarse estimate of the scale-step when linking grey-level blobs to into scale-space blobs is 
given by (6.58} and (6.59). 

So far we have not made any numerical experiments testing the feasibility of using this 
estimate as the basis for the step size selection in the actual blob linking. Note, however, 
that despi te the pessimistic upper bound on the drift velocity induced by Proposition 6.5, 
the local extremum will hardly escape far outside the support region of its associated grey
level blob. This property has proved to be very useful in the blob linking algorithm to be 
described in Section 7.2 
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Observation 6.15 (Coarse bound on the drift of local extr ema (ID)) 
Although the drift velocity of a local extremum point may momentarily be very large (tend 
to infinity near a bifurcation), when scale changes, the grey-level blob support region defines 
a natural spatial region to search f or blobs in at the next level of scale. 

To simplify our fur t her considerations we introduce new coordinates again by 

(6.60) 

Then, the expressions for the scale-space representation reduces to 

(6.61) 

Finally, we let 

(6.62) 

These coordinate shifts from (x; t) to (u; v) and at last (~; 17) only mean that we have 
tmnslated the coordinate axes such that the bifu rcation occurs for (~; r ) = (0; 0) and 
subtracted a constant to achieve .X(O; 0) = 0. Therefore, no derivatives are affected, which 
in turn means that .X : R x R+ --+ R satisfies 

(6.63) 

and can be regarded as the general third order approximation to the solution of the original 
diffusion equation. Moreover, the calculations show that for one-dimensional functions any 
third order polynomial satisfying the diffusion equation can be reduced to the canonical 
form (6.43 ) just by a simple translation and rescaling of the coordinate axes. T his property 
cannot, however, be expected to hold in higher dimensions. 

In the next section, we will develop how one from this analytically simple expression can 
derive closed form results for the evolution properties of grey-level blobs and scale-space 
blobs over scale. 

6.3.2 	 Evolution Properties of Local Extrema, Grey-Level Blobs and Scale
Space B lobs in ID Continuous Scale-Space 

Consider again the generic unfolding of t he scale-space embedding in the neighbourhood of 
a bifurcation. 

.X(x; t ) = G\(x; t) = x3 + 3xt (6.64) 

where x and t can be interpreted local coordinates in a coordinate system centered at t he 
bifurcation point. As mentioned above, the criti cal points of this fun ction are given by 

{).X 2
'il(x; t) = 3(x + t) = 0 	 (6.65) 
vx 

that is by 
6(t) = -R; 6(t) =+R ( 6.66) 

Moreover , from this analytically simple expression one can easi ly analyze what happens to 
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(a) t < o (b) t = 0 (c) t> o 

z z 

XX X 

Figure 6.7: Fold unfolding in one dimension: Schematic view of th e smoothed signal {a) before the 

bifurcation (b) at th e bifurcation {c) after the bifurcation. 

t he grey-level blobs of a one· dimensional continuous signal as scale changes. The critical 
values, .A1 and .A 2 , in the two extremum points are given by 

-At(t) = .A(6(t); t) = +2(-t)~ ; -A2(t) = .A(6(t); t ) = -2(-t)~ (6.67) 

Hence, the contrasts, C1 and C2 , of the two blobs have equal magnitude given by 

(6.68) 

The level crossings, p1 and p2 , for the grey-level blob associated with the extremum points 
6 and 6 respectively are given by the roots of single multiplicity to the equations 

(6.69 ) 


One easily shows that these equations have t he set of roots { -Ff-, -Ff,2Ff-} and 
{-2Ft,Ff-, y'-t} respectively, which leads to 

Pt(t) = +2R ; p2(t) = -2..;=I (6.70) 

The support regions of the two blobs are the intervals 

G•upport(rt( t)) ={x: P2(t) ~X~ 6 ( t)} (6.71) 

G•upport (r2( t)) = {x: 6 (t) ~X~ Pt (t)} (6.72) 

Hence, the magnitudes of the blob support regions are 

At(t) = IIGsupport( rt (t))ll = l6(t)- P2(t) i = 3yCl (6.73) 

A2(t) = IIGsupporth(t))ll = IPt (t) - 6(t)l = 3yCl (6.74) 

The grey-level blobs are the two sets 

Gblob(r,(t)) = {(x,(): (p2(t ) ~ x ~ 6(t)) 1\ (.A2(t) ~ ( ~ .A(x; t ))} (6.75) 

Gblob(r2(t)) = {(x, (): (6(t ) ~ x ~ Pt(t)) 1\ (.A(x; t ) $ ( $ At (t))} (6. 76) 
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Figure 6.8: The situation before the bifurcation occurs. Illustration of the definitions of6, 6, Al, 

A2, Pl and P2· 

1
Finally, the grey-level blob volumes, V1 and V2 , of the two blobs are given by 


6(t) 27( - t)2 


Vt(t) = IIGbtob(rt(t)) ll = I.X(x; t)- .X2(t)idx = · · · = (6.77) 

1
4 

pt(t) 27(-t)2 

x=P2(t) 

V2(t) = i1 Gbtob(r2(t))ll = I.Xt(t)- .X(x; t)idx = ... = (6.78) 
z=(t(t) 4 

There is a. natural dimensionless quantity associated with these blob measures: 

(6.79) 

Assuming t hat the sca.le-spa.ce blob has some minimum scale tmin (of course less than zero) 
we can compute its sca.le-space blob volume by 

St = fo Vt(t)dt = 9( -tmin? (6.80)
~min 4 

From the previous discussion it follows that we can treat this situation as a. general repre
sentative of the generic behaviour around a. structurally stable singularity in a. solution to 
the one-dimensional diffusion equation. 

Proposition 6.16 (Generic behaviour at singularities in scale-space (lD)) 
The generic behaviour at a singularity in the scale-space representation of a continuous signal 
can be represented by the fold unfolding G1(x; t) = x3 + 3xt. This singularity describes a 
maximum point and a minimum point that meet with increasing scale along the two branches 
of a parabola and then disappear. Interpreted in terms of blobs the situation describes a 
blob annihilation (or, possibly, a blob merge if the delimiting saddle point is shared before 
bifurcation). Above we have illustrated how the blob descriptors contrast, support region and 
blob volume evolve with scale near the bifurcation in this case. 

6.4 Behaviour Near Singularities: Examples in Two Dimen. 
SlODS 

The a.na.lysis in the previous section can in a sense be said to be complete, since the restricted 
unfolding G1(x; t) = x3 + 3xt exhausts the possible events between critical points in the 
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scale-space representation of a one-dimensional signal. In this section we will examine the 
more difficult two-dimensional case and investigate the consequences of some of the other 
unfoldings in T horn 's classification theorem with application to the diffusion equation. 

6.4.1 Fold 

As mentioned several times above the general unfolding in the fold case is on the form 

(6.81) 

Earlier we have said that in order for this function to satisfy the diffusion equation it is 
necessary that u = 3t. Another way of reaching to the same conclusion is by replacing every 
monomial in C 1 by a corresponding polynomial satisfying the diffusion equation. Hence, we 
replace the x3 term by x3 +3xt (and the x term by x), see also Appendix A.5.1. Moreover, 
since we are here in terested in the two-dimensional case we have to add a ±y2 term, which 
then because of the diffusion equation leads to a ±t term. We get the unfolding 

L(x , y; t)=x3 +(u+3t)x±(y2 +t) (6.82 ) 

which is still of t he same type as C 1 . Here, one can observe that the u parameter will not 
affect the qualitative behaviour2 of the singularity set, since a change of variable 3t' = u +3t 
would move the u-dependence to the constant term. Hence, without loss of generality, we 
may set u to zero and study the polynomial: 

L(x,y; t) = x3 +3tx ± (y2 + t) ( 6.83) 

which, as earlier indicated, is t he same one as we would have got just by setting the original 
parameter u to 3t. For simplicity, first assume that the sign of the ±(y2 + t) is positive. 
Then t he scale-space family to be studied is 

L(x, y; t) = x3 + 3xt + y 2 + t (6.84) 

where x, y and t should again be interpreted as offset coordinates. The cri t ical points of 
this mapping are given by 

aL = 3(x2 + t) = 0 
(6.85)

{ If= 2y = 0 

If t < 0 we obtain two solutions: 

(6.86) 

At t = 0 they degenerate into a double root (the bifurcation moment), and for t > 0 
they cease to exist. Hence, the trajectories of the critical points will be similar to the 
one-dimensional case described in Section 6.3.2. The Hessian of L is 

o2L fPL o2L 

(1tL) = ox2 oy2 - <axoy? = 12x (6.87) 


Hence, {1tL)(r1 (t)) =-12J=I < 0 and (1tL)( r 2(t )) =+12J=I > 0. Furt her , ~(r2(t)) = 
6J=I > 0. Therefore, 

r1 describes the trajectory of a saddle point and 

r 2 describes the trajectory of a minimum poin t. 
--~-------------------------

2The interpretation of the v parameter is that it translates the sing ularity along the t-axis. 
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Hence, for every t < 0 the point r2(t) gives rise to a dark grey-level blob. The values in the 
criti cal points are 

Lt (t ) = L(rt(t) ; t) = t- 2t..;=t; L2(t ) = L(r2(t ); t ) = t + 2tyCi (6.88) 

The dark grey-level blob asso ciated with the minimum point r2(t) is delimi ted by t he base
level L1(t) . At a fixed value oft we get t he intersection curve bet ween the base-level and 
the grey-level surface by solving the equation: 

L(x, y; t) = Lt (t ) (6.89) 

which can be reduced to 
x 3 +3tx + y 2 

- 2(- t) ~ = 0 (6.90) 

Hence, t he curve is symmetric with respect to the y-axis. Solving for y as a fun ction of x 
and t we obtai n two solutions: 

(6.91) 

Setting y = 0 and solving for x we obtain one single root at x = 2A and one double root 
at x = - A . See also Figure 6.9. Equation (6.90) gives the equation for t he boundary of 

y 

' ' ' ' \ 
' \ 
' ' ' ' ' ' ' ,, X 
I 

I 
I 

,' ' 
I ' 

!' 

F igure 6.9: T h e blob support r egion of t he grey- level blob at a specifi c level of scale. Outside the 

blob t h e level curve correspon ding to the clipping level of the grey-le vel blob has been indicated with 

a das he d line. T his figure can be regarded as des cribing the general appear ance of the support r egion 

of a grey- le vel blob d elimited by a non-share d saddle poi n t. 

t he support region of t he grey-level blob provided t hat x E [- A, 2v=t] and t < 0. Now 
we can easily compute closed-form expressions for the blob descriptors. 

(6.92) 

2..;=l 1 y=y+ (x; t ) 
IIG.upport(r2(t )) il = dx dy = dydx = ... = (6.93) 

1

!1Ablol>(r2(t )) 1x=- ..J=l y=y-(x;t) 


2 A .1 24VJ(-t) ~ 
=2 (x +..;=t)y 2..;=t - xdx = .. . = ---'--'-
x=-..J=l 5 

IIGbtob(r2(t))il = JJJ dxdydz= j · f ( Lt (t )- L(x, y; t )) dxdy = (6.94) 
Gblob(r2 ( t) ) J o,,.ppord r2 ( t)) 
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2.,f=t 1y+(r; t) 
3(2( -t)2

3 
- 3tx- x - y2 )dydx = 

1
1r=-..;=i y=y-(r; t) 

2F 4 3 3456-./3u¥= -(yCt + x)3(2yCi - x)2dx = ... = 
r=-..;=i 3 385 

These quantities give rise to a. natural dimensionless ratio: 

(6.95) 

If the sign of the (y2 + t) term in (6.83) instead would have been selected negative, the 
trajectories of critical points would have been similar. The only difference would have been 
that the minimum point would have been replaced by a saddle point and the saddle point 
by a maximum point. Hence, the situation would have described the annihilation of a bright 
blob instead of a dark one. 

Observation 6.17 (Evolution pr operties, Fold case (2D)) 
The unfolding in the two-dimensional fold case L(x, y; t) = x3 + 3xt ± (y2 + t) describes 
a minimum (maximum) point and a saddle point that merge along the two branches of a 
parabola and disappear at t = 0. In other words, it describes the annihilation of a dark 
(bright) grey-level blob. 

Figure 6.10: The fold unfolding in two dimensions L(x, y; t) =x 3 + 3xt ± (y2 + t) describes (a) a 

saddle point and a minimum (maximum) point that merge or equivalently (b) the annihilation of a 

dark (brigh t) grey-level blob. 

Finally, if we assume that the scale-space blob is from below by a minimum scale lmin we 
can compute its scale-space blob volume. Then, 

0 J7>( )~44608v 3 - tmin( ) I 1 ( ( )) I (6.96) I Sbtob r2 = t=tmon I Gbtob r2 t dt = ... = 1925 

6.4.1.1 Comparisons with Zero-Crossings of the Laplacia n 

In this context it is interesting to compare the results with the location s of the zero-crossings 
of the Laplacian. Since the sign of the ±(y2 + t) term affects the qualitative behaviour, we 
introduce a parameter a such that 

L 01(x, y; t ) = x3 +3xt + a(y2 + t) (6.97) 
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Then, the zero-crossings are given by 

(6.98) 

Hence, under variations in scale, the zero-crossings of the Laplacian will always be on a 
vertical straight line at x = -~. Moreover, the zero-crossings will always be on the same 
side of the local extremum, see also Figure 6.11. This p roperty will, however, not hold in 
the cusp unfolding to be considered in our next example. 

(b) a< 0(a) a> 0 
I 

I 

I 

I 

I


:1 

X X 

Figure 6.11: Fold case unfolding: Locations of the zero-crossings over scale (marked with Z) com

pared to the trajectories of the local extrema (marked with M- and M+) and the saddle points 

(marked with S ). (a) Positive a corresponding to +(y2 +t). (b) Negative a corresponding to -(y2 + t ). 

6.4.2 Cusp 

The general unfolding in the cusp case is given by 

(6.99) 

In order to have this function satisfying the diffusion equation we replace x4 by x 4 +6tx2 +3t3 

and x 2 by x2 + t. Moreover , we add a ±y2 term which also leads to a ±t term to get: 

L(x, y; t ) = x 4 + (6t +u)x2 + vx +ut+ 3t2 + ±(y2 + t) (6.100) 

Notable is t hat also this unfolding is of the same type as the previous one. The ut, 3t2 and 
t terms can all be treated as constants with respect to x and y. Further, the u parameter 
will not affect the singulari ty set since a translation of the t axis wou ld eliminate the u

dependence from the terms depending on x and y. Hence, we may set u to zero without 
loss of generality. Thus, 

L(x, y; t ) =x4 +6tx 2 + vx + 3t2 ± (y2 + t ) (6.101) 

First, we assume that the sign of the y2 term is positive. Then, the polynomial to be studied 
is: 

(6. 102) 
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where x, y and t should again be interpreted as offset coordinates, while vis a free parameter. 
The critical points of this mapping are given by 

aL =4x3 + 12tx + v =0 
(6.103)

{ *= 2y = 0 

and their type by the sign of the Hessian 

(HL)(x, y; t) = 24(x2 + t) 	 (6.104) 

The existence of roots to this system of equations can obviously be reduced to the existence 
of roots to h(x) = 4x3 +12tx +v = 0. After some calculations, see Appendix A.5.2, one can 
easily show the following: 

• 	If t > - ( *) ~ then h(x) = 0 has only one real root and there exists a unique stationary 
point. Fort > 0 this point obviously has a strictly positive Hessian and is accordingly 
a local minimum. 

• 	If t < -(*)~ then h(x) = 0 has three distinctly different roots. These roots satisfy 
x1(t) < -R < x2(t) < +R < x3(t). Hence by (6.104) we have that x 1(t) and 
x3(t) are local minima and that x2(t) is a saddle point . 

• 	If t = -(*)~ then h(x) has either one root of multiplici ty three or one root of multi
plicity two and another root of multiplicity one. The root of multiplicity greater than 
one is at x =(*)!,and at this point a bifurcation occurs. The behaviour around this 
point depends on the value of v, see also Figure 6.12: 

- If v > 0 then x2 and x3 meet and disappear while Xt remains unaffected. 

- If v < 0 then x 1 and x2 meet and disappear while X3 remains unaffected. 

- If v = 0 then all three roots meet in x = 0. This is obviously a degenerate case. 

Hence , this situation describes a minimum point and a saddle point that meet and annihilate 
under the influence of another maximum. In other words, it describes two dark grey-level 
blobs merging into one. To summarize, 

Observation 6.18 (Evolution properties, Cusp case (dark blobs, 2D)) 

The unfolding in the two-dimensional cusp case L(x, y; t) = x 4 + 6x2t + vx + 3t2 + (y2 + t) 

describes a minimum point and a saddle point that merge under the influence of another 

minimum point. In other words, it describes two dark grey-level blobs merging into one. 


Interpreted in terms of blobs all the bifurcation situations above correspond to two grey-level 
blobs merging into one. In this sense the bifurcation relations between grey-level blobs at 
different levels of scale will be more stable to small perturbations than bifurcation relations 
between critical points only, since the blob bifurcation remains unaffected by a change in 
the v parameter while expressed in terms of critical points only the topology of the situation 
is completely changed with the sign of v. 

If the sign of the ±(y2 + t) term in {6. 101) instead would have been selected negative, 
then x1(t) and x 3 (t) would have been saddle points and x 2(t) a local maximum. In that case 
the unfolding would have described a ma:<imum point and a saddle point merging under the 
influence of another saddle point. 
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(a): v< 0 (b): V z 0 (c) : v > 0 
t t 

A 
X 

Figure 6.12: The cusp unfolding in two dimensions L(x, y; t) = x 4 +6x2t+vx+3t 2 +(y2 +t) describes 

a minimum point and a saddle point that merge under th e influence of anoth er minimum poi11t 

provided that a > 0. ( a)-(c) Depending on the value of v different events may occur. Equivalently 

the situation describes the two dark grey-level blobs merging into one. 

~ 

j \ 
 merge 

~ 

Figure 6.13: Independent of the value of v all the three situations above describe two dark grey-level 

blobs merging into one. In this sense the bifurcation relations between grey-level blobs are more stable 

than the corresponding relations between critical points, for which th e topology of the situation is in 

fact ch anged by a variation in the sign of v. 

Observation 6.19 (Evolution properties, C usp case (bright blobs, 2D)) 
The unfolding in the two-dimensional cusp case L(x, y; t) = x 4 +6x2t +vx +3t2 - (y2 + t) 
describes a maximum point and a saddle point that merge under the influence of another 
saddle point. In other words, it describes the annihilation of a bright grey-level blob. 

If instead the sign of the entire unfolding would have been changed, then, depending 
on the sign of the ±(y2 + t) term, the situation would have described either a m aximum 
point and a saddle point m erging under the influence of another maximum point or a local 
minimum and a saddle merging under the influence of another saddle. Interpreted in terms 
of blobs this corresponds to either two bright blobs merging into one or the annihilation of 
a dark blob. 

6.4.2.1 Comparisons with Zero-Crossings of the Laplacian 

By introducing a parameter a such that 

L0r(x, y; t) = x 4 +6x 2t +vx + 3t2 a(y2 + t) (6.105) 

the zero·crossings of the Laplacian will in this case be given by 

fP L a2Laxt + {)yt = 12x
2 + 12t +2a = 0 (6.106 ) 
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which leads to two solutions x = -J-t- ~and x = +J-t-% if t ~ -~. One can observe 
that these curves do not give a correct subdivision around the local extrema for all t, see 
also Figure 6.14. 

(a) v:O. Cl>O (b) V=O. CX<O 

s 

,,'' -......,, 
' ' ' ' ' ', ' 

' ', ' ' ., . , ., .
' ., . 

1-- -,,, ...,\ 
,/ \1 

z / s \ z 

(c) v > o. a> o 

Figure 6.14: Cusp unfolding in the two-dimensional case: Locations of the zero-crossings over scale 

compared to the trajectories of the local extrema. {a-b) The degenerate case when v = 0. (a) a> 0. 
Note that during a certain scale interval the zero-crossings of the Laplacian fail to enclose isolated 
local extrema - a property pointed out also by J(oenderink and van Doorn {1984}. (b) a< 0. Note 

that during a certain scale interval there is no local extremum between the two zero-crossing curves. 

{c-d) Similar examples for the non-degenerate case when v > 0. (c) a> 0. {d) a< 0. 

This example shows that, strictly speaking, in two (and higher) dimensions there is 
no absolute relation between the locations of the Laplacian zero-crossing curves and the 
local extrema of a signal. We have seen that it may happen that a zero-crossing curve 
encloses either no extremum, one extremum or more than one local extremum. In the 
one-dimensional case, though, the zero-crossings of the Laplacian will always divide local 
extrema correctly. In other words, between any two consecutive Laplacian zero-crossing 
points of a one-dimensional signal there will always be exactly one local extremum point. 

One could say that by summing up the second order derivatives as done in the Laplacian 
operator we mix the behaviours from the different coordinate directions into a single scalar 
quantity that cannot fully describe the geometry of the two-dimensional grey-level landscape. 
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6.4.2.2 Cusp Unfolding in One Dimension 

If we restrict this treatment to the one-dimensional case the cusp unfolding will be 

(6.107) 

and the singularity set be given by 

f)L 3 
- = 4x + 12tx +v = 0 (6.108)ox 

From similar calculations as in the previous two-dimensional case it follows t hat this un
folding describes a maximum point and a minimum point merging under the influence of 
another minimum point. 

Observation 6 .20 (Evolution properties , Cusp case (lD)) 

The unfolding in the one-di mensional cusp case L(x, y ; t ) = x4 +6x2 t +vx +3t2 describes a 

minimum point and maximum merging under the influence of another m inimum point. In 

other words, it describes two dark grey-level blobs m erging into one. 


By changing the sign of the entire unfolding we will instead describe a maximum point and 
a minimum point merging under the influence of another maximum point , or equivalently 
two bright blobs merging into one. 

6.4.2 .3 Drift Velocity Analysis 

In order to analyse the drift velocity of the local extremum point not involved in the bifur
cation we differentiate (6.108) with respect tot: 

OX X 
(6.109) at = - x 2 + t 

To find the scale where the drift velocity assumes its maximum value we differentiate again 
and set the derivative to zero: 

o2x 2xt = 0 (6.110) 
f)t2 - (x2 + t )3 

Here, we are not interested in the case x = 0 since the behaviour at the bifurcation has 
already been a nalysed. Thus, as expected, the maximum drift velocity occurs for t = 0. At 
this scale we have x = ( -~)1 13 . Hence, 

(6.111 ) 

which shows that the m aximum drift velocity of the extremum point increases towards 
infinity as v decreases towards zero and the configuration tends to the non-generi c case. 
This exemplifies a further consequence of Proposition 6.3, namely that even for critical 
points not directly involved in bifurcations there is no absolute upper bound one their drift 
velocity, a conclusion valid both in one and two dimensions. 

T his analysis gives further explanation to some of t he problems occurring when edge fo
cusing is applied to "staircase edges" , see Figure 6.1 and the brief discussion in Section 6.1.1. 
From experiments (Ber90) it is known that, in general, only one of the t wo edges in such a 
config ura tion will be found by t he focusing algorit hm and that sometimes even that edge 
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might get lost when scale decreases. The fact that only one of the edges will be found is 
obvious from the bifurcation diagram in Figure 6.12 provided that the focu sing procedure 
is initiated from a sufficiently coarse scale and the bifurcation takes places sufficiently far 
away from the edge subject to tracking. The bifurcation diagram and the previous analysis 
for local extrema also indicate that the drift velocity of an edge point may increase rapidly 
even though the edge is not directly involved in any bifurcation, and hence exceed t he finite 
drift velocity estimate used by the edge focusing algorithm. 

6.4.3 Elliptic Umbilic 

If we are to find a polynomial that both satisfies the diffusion equation and captures the 
creation of a saddle-extremum pair with increasing scale (which constitutes the basic in 
gredient in a blob split or a blob creation) then neither the swallowtail nor the butterfly 
unfolding from Thorn's classification theorem will be applicable, since they describe singu
larities with extent only in one (essential) coordinate direction. The elliptic umbilic does , 
however, contain a singularity appropriate for such an analysis. The general unfolding in 
this case is given by 

G5(x,y; u,v,w) = x2y- y3 + wx2 +vy +ux (6 .112) 

In order to obtain a polynomial satisfying the diffusion equation, we again replace every 
monomial xmyn with a corresponding polynomial Pm,n(x, y) satisfying the diffusion equation. 
In other words, we replace the x2y term with y(x2+ t), the y3 term with y3 + 3yt and the 
wx2 term with w(x2+ t ), see also Appendix A.5.1 , and get 

L(x , y; t) = x 2 y- y3 +wx2 +(v- 2t)y +ux +wt (6.113) 

which is an unfolding still of the same type as G 5 . One observes that t he v parameter will 
not affect the qualitative nature of the singularity set. It corresponds just to a t ranslation 
along the t axis and can therefore be set to zero without loss of generality. To summarize, 
the polynomial to be studied is: 

L(x, y; t ) = x2y- y3 +wx2 - 2ty +ux +wt (6.114 ) 

Its singularity set is given by 

&L = 2x(y + w) + u = 0 
{ 2 	 (6 .115) *= x - 3y

2 
- 2t = 0 

and the types of the critical points determined by 

(AL) = ~ = 2(y+w)
2 X a L - 2xaxay  (6.116)&2L 

{ 	 a::"- -6y 

(HL )=fJ2LfJ2L_ &2L &2L =-4(3y(y+w)+x2)
a;;'!" a,;r oxoy ~ 

The solution to this system of equations is analysed in Appendix A.5.3. There it is shown 
that bifurcations can occur provided that 

2/fllullwl >wo=- -	 (6.117) 
3 3 
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If w > w0 the unfolding describes the creation of a pair with a saddle point a minimum 
point with increasing t. If t is increased further t he minimum point joins with another saddle 
point and minimum-saddle pair will be anni hilated with increasing t, see also Figure 6.15 
and Figure 6.16. On the other hand if w < -w0 we will have a creation of a maximum
saddle pair followed by the annihilation of another maximum-saddle pair. In both cases the 
same extremum point is involved in the two bifurcations. 

(a) ro>roo (b) ro<-roo (c) 

s 
i.. 
i 

Figure 6.15: (a) When w > w0 the elliptic umbilic unfolding L(x,y; t ) = x 2 y- y3 + wx2 

2ty + ux + wt describes the creation of a minimum-saddle pair with increasing scale. If the scale 

parameter is increased further then the created minimum point will merge with another saddle point 

and minimum-saddle pair will be annihilated. {The { coordinate is a coordinate along one of the 
two branches of the hyperbola in the next figure.) (b) If w < -w0 then the elliptic umbilic instead 

describes the creation of a maximum-saddle pair followed by the annihilation of a maximum-saddle 

pair. {c) Interpreted in terms of blobs these evwts correspond to the creation of a dark (bright) blob 

followed by a the annihilation of a dark (bright) blob {provided that all th e saddle points invo/-ued in 

the process are non-shared) . 

(c) ro<-roo(a) - roo< ro < ro0 

y 

X X X 

Figure 6.16: The trajectories and the qualitative behaviour of the critical points described by the 

elliptic umbilic unfolding in the case when u < 0. (a) If -w0 < w < w 0 then L describes two saddle 

points. (b) If w > wo then L describes the creation of a pair with a saddle point and a minimum point 

under· the influence of another saddle point. Later· the minimum point annihilates with the other 

saddle point and there is only one saddle point left. In this figure the arrows indicate increasing 

valu es of the scale parameter while the marked dots show the bifurcation point. (c) If w < -wo 

then L instead describes the creations of a maximum-saddle pair followed by the annihilation of a 
maximum-saddle pair. 

Interpreted in terms of blobs these events correspond to the creation of a dark (bright) 
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blob followed by the annihilation of the same dark (bright) blob provided that the delim
iting saddle points involved in the processes are non-shared. If instead the saddle point 
in the created minimum-saddle (maximum-saddle) pa.ir would have been shared, then the 
corresponding blob event would have been one dark (bright) blob splitting into two dark 
(bright) blobs. To summarize, 

O bservatio n 6.21 (Evol ution propert ies, Elliptic u m bilic ca se (2D)) 

The unfolding in the two-dimensional elliptic umbilic case L(x , y; t) = x 2 y- y3 + wx2 

2ty + ux + wt describes the creation of a minimum (maximum) point and a saddle point 

followed by the annihilation of a minimum (maximum) and a saddle point. In other words, 

it describes the creation of a dark (bright) blob followed by the annihilation of a dark blob 

(or, possibly, a dark (bright) blob splitting into two followed by a merge of two dark {bright) 

blobs if the saddle points involved in the process are shared). 


The singularity in the elliptic umbilic unfolding contains essential variations taking place 
in two (or more) (essential) coordinate directions. Therefore, there do not exist any one
dimensional analogies to these blob events. 

6 .4 .4 Sum mary 

T horn's classification theorem provides a catalogue of elementary catastrophes. In this 
section we have investigated a few of those, the fold, the cusp and the elliptic umbilic 
and observed that when restricted to satisfy the diffusion equation they describe a blob 
annihilation, a blob merge and either of a blob creation or a blob split respectively. When 
considering t he zero-crossings of the Laplacian of the Gaussian we have noticed that in two 
dimensions there is no simple relation between the locations of these curves and the locations 
of the local extrema. 

6 .5 D e n s ity of Local Extrema as Function of Scale 

In some applications it is of interest to know how the density of local extrema can be expected 
to vary with scale. One example is the derivation of the effective scale, a transformed scale 
parameter in tended to capture the concept of "scale-space lifetime" in a proper manner, see 
Section 5.5. Of course, this question seems to be very difficult or even impossible to answer 
to generally, since such a quantity can be expected to vary substantially from one image 
to another. How should one then be able to talk about "expected behaviour" ? Should one 
consider all possible (realistic) images, study how this measure evolves with scale and then 
form some kind of average? 

In this section we will perform a simple study. We will consider random noise data 
with normal distribution. Under these assumptions it turns out to be possible to derive a 
compact closed form expression for this quantity. We wiU base the analysis on a t reatment 
by Rice [Ric45] about the expected density of zero-crossings and local maxima of stationary 
normal processes, see also Papoulis [Pap72] or Cramer and Leadbetter [Cra67]. 
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6.5.1 Continuous Analysis 

The density of local maxima Jl for a stationary normal process is given by the second and 
fourth derivatives of the autocorrelation function R ([llic45) Section 3.6 or [Pap72)): 

1 
Jl = 211'" 

R(4)(0) 
- R"(O) (6.118) 

This expression can also be written as [llic45, Pap72] 

J~00 w4S(w)dw 

J~00 w2 S(w)dw 
(6.119) 

where S is the spectral density 

S(w) =i: e-iwT R(r)dr (6 .120) 

Since the scale-space representation L is generated from the input signal f by a linear 
transformation, the spectral density of L , denoted SL , is given by 

(6 .121) 

where S1 is the spectral density off and H ( iw) the system function 

(6.122) 

that is the Fourier transform of the the impulse response h. In the scale-space case, h is of 
course the Gaussian kernel 

(6.123) 

which has the Fourier transform 

G(w; t) = ~e-w2t/2 (6.124) 

Assuming that f is generated by white noise with S1(w) = 1 this gives 

(6.125) 

Using the formula 

roo xme- ax2 dx = r(~) (6.126)
lo 2a¥ 

(see e.g. Spiegel [Spi68]15.77) we can calculate a closed form expression for the density of 
local maxima of a continuous signal, Pc(t): 

1 
(6.127)Pc(t) = 21r 

Of course an identical result applies to local minima. To summarize, 
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Proposition 6.22 (Density of local extrema in scale-space (white noise, lD)) 
In the scale-space representation of a one-dimensional continuous signal generated by a 
white noise stationary normal process, the expected density of local maxima (minima) in 

a smoothed signal at a certain scale decreases with scale as C ~. Interpreted in terms of 
q = ,ji the expected density of local extrema is inversely proportional to q. 

This scale dependence implies that a graph showing the density of local maxima (minima) 
as function of scale can be expected to be a straight line in a log-log diagram. 

1 3 1 1 
log(pc(t)) = 21og(2") -log(211')- 21og(t) =constant- 21og(t) (6.128) 

Of course one cannot expect that a graph showing this curve for a particular signal to be 
a straight line. This would require some type of ergodicity assumption that in general not 
will be satisfied. However, the average behaviour over many different types of imagery could 
be expected to be close to this situation. In Section 5.5.2 we showed that a natural way to 
convert the ordinary scale parameter t into a transformed scale parameter called effective 
scale r is by r(t) = A+ B log(p(t)) where p(t) again denotes the expected density of local 
extrema at a certain scale t and A and B are arbitrary constants. This result shows that 

Corollary 6.23 (Effective scale as function of the ordinary scale parameter (lD)) 
For continuous one-dimensional signals the effective scale parameter Tc as function of the 
ordinary scale parameter t is (up to an arbitrary affine transformation) given by a logarithmic 
transformation 

Tc(t) =A'+ B'log(t) (6.129) 

where A' and B' are arbitrary constants. 

An interesting question concerns what will happen if the uncorrelated white noise model for 
the input signal is changed. A spectral density applicable to e.g. fractals, see e.g. Barnsley 
et.al. [Bar88] or Garding [Gar88], is given by SJ(w) = w-13 . For one-dimensional signals, 
reasonable values of (3 are obtained between 1 and 3 [Bar88]. Of course, such a distribution 
is somewhat non-physical since SJ(w) will tend to infinity as t tends to zero and neither 
one of the spectral moments will be convergent. However, when multiplied by a Gaussian 
function the second and fourth order moments used in (6.119) will converge provided that 
(3 < 3. We obtain, 

J~oo w(4 -/3)e- w2tdw1 
(6.130)Pc,p(t) = 271' f~oo w(2- 13)e- w'itdw = 

r(~l
2~ - 1 ~ 1 ( 3) (6.131) = 

1 r($) - 271' V 2-,ji~- {3 <271' 2 
2t 

Proposition 6.24 (Density of local extrema in scale-space (fractal noise, lD)) 
Tn the scale-space representation of a one-dimensional continuous signal generated by a 
stationary normal process with spectral density w-13 the expected density of local maxima 
(minima) in a smoothed signal at a certain scale decreases with scale as C ~. 
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Note t hat also this graph will be a straight line in a log-log diagram . 

1 3-(3 1
log(Pc,,a(t )) = 2 log(--) - log(27r)- 21og(t) (6.132)

2

T he slope will be the same as in the case with uncorrelated white noise, but the dependence 
on f3 means t hat t he graph has been translated by H log(3) - log(3 - [3)) in the negative 
vertical direction or equivalently by log(3) - log(3- [3) in the negative horizontal direction. 
This corres ponds to a multiplicat ion of t he t-value by (1- ~)-1 . 

6.5.2 Discrete Analysis 

From t he previous continuous analysis we have that the density of local extrema may tend 
to infinity as the scale parameter tends to zero. It is obvious that this result is not applicable 
to discrete signals, since in this case t he density of local extrema will have an upper bound 
because of the finite sampling. Hence, in order to to capture what will happen in this 
case, a genuinely discrete treatment is necessary. We will base t he analysis on the discrete 
scale-space concept from Chapter 2: 

L(x ; t) = L
00 

T(n; t )J (x- n) (6.133) 
n=-oo 

where T ( n; t) = e-t I n(t) is the discrete analogue of the Gaussian kernel and I n are the 
modified Bessel functions of integer order. 

The probability that a poin t at a certain scale is say a local maximum point is equal to 
the probability that its value is greater than (or possibly equal to)3 the values of its nearest 
neighbours. In one-dimension we have: 

p(x; is a local maximum at scale t) = 
p((L(x;; t) 2:: L(xi- I i t)) 1\ ( L(x;; t) 2:: L(xi+Ii t))) (6.134) 

If we assume t hat the in put signal f is generated by a stationary normal process then also 
L will be a stationary normal process and the distribution of any triple (L;_ 1 ,L;,L;+1 )T, 
fr om now on denoted by € = (6 ,6,6)T, will be jointly normal, whi ch means t hat its 
statistics will be completely determined by the mean vector and the autocovariance matrix. 
Tri vially, we have that the mean of € is zero provided that the mean off is zero. Since t he 
transformation from f to Lis linear, the autocovariance CL for t he smoothed signal L will 
be given by 

CL(·; t ) = T(-; t) * T(-; t) * C1(·) =T(-; 2t) *C1(·) (6.135) 

where c, denotes the autocovariance of f. In t he last equality we have made use of the 
semigroup property T(-; s) * T (-; t ) = T(-; s + t) for the family of convolution kernels. 
If the input signal consists of white noise then C1 will be t he discrete delta function and 
CL(·; t) =T(-; 2t). Taki ng the symmetry p roper ty T ( - n; t ) =T(n; t) into accoun t as well, 

3 There are actually several ways to defi ne a local extremum of a discrete signal using different combinations 
of "strictly greater than" and "greater t han or equal to". However , those distinctions are not important in 
the expression below since they will differ only for non-generic signals and in addition the numerical value 
o f the integral below will an yway be the same if some of t he ;;:: signs are replaced by >. 
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the distribution of ~ will be jointly normal with mean vector m3D and covariance matrix 
C3D given by: 

T(O; 2t) T(l; 2t) T(2; 2t) ) 
C3D = T(l; 2t) T(O ; 2t) T(l; 2t) (6 .136) 

( T(2; 2t) T(l; 2t) T(O; 2t) 

Using the probability density for multivariate normal random variables, see e.g. Papoulis 
[Pap72], we can express 

Pd(t) ={probability that at scale t a certain point is a local maximum} (6.137) 

as 

(6.138) 

where JC3DJ denotes the determinant of C3D and C3}:; its inverse. 
To reduce the dimensionality of the integral we introduce new variables T/1 = 6-6 and 

172 = 6 - 6· Then also 1J = ( 171 , 172)T will be jointly normal and its statistics completely 
determined by 

C _ ( ao(t) a1(t) ) (6.139)2D- a1(t) ao(t) 

From well-known rules for the covariance C(·, ·) of a linear combination of stochastic vari
ables it follow s that 

ao(t) = C(7Jt, 1JJ) = C(% 172) = 2(T(O; 2t)- T(1; 2t)) (6 .140) 

a 1 (t) = C(7J1 ,772) = C(1J2,1Jl) =T(O; 2t)- 2T(1; 2t) + T(2; 2t) (6.141) 

From a0 ( t) - a1 ( t) = T(O; t)- T(2; t) and the unimodality property ofT (T( i; t) > T(j; t) 
if JiJ > Jjl) it follows that ao(t) > a1(t) and trivially a0 (t) > 0 for all t. Now Pd(t) can be 
expressed in terms of a two-dimensional integral 

(6.142) 

Here JC2DI does not depend on T/ and can thus be moved out of the integral. After some 
calculations, see Appendix A.5.4 , it follows that 

1 1 ( a1(t) )Pd(t) = - + - arctan (6.143) 
4 2

7r Ja6(t) - ai(t) 

Observe that for any a0 (t) and a1(t) this value is guaranteed to never be outside the interval 
[0, H With our expressions for a0 (t) and a 1(t) , given by smoothing with the discrete 
analogue of the Gaussian kernel, the maximum value over variations in t is obtained for 
t = 0: 

1 
Pd(O) = - (6.144)

3 
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Proposition 6.25 (Density of local extrema in discrete scale-space (lD)) 
In the scale-space representation (6.133} of a one-dimensional discrete signal generated by 
a white noise stationary normal process the expected density of local maxima (minima) in a 
smoothed signal at a certain scale t is given by 

Pd(t) = ~ + ~arctan ( at(t) ) (6.145) 
4 21r Ja~(t) - ai(t) 

where a0 (t ) = 2(T(O; 2t) - T (1; 2t)), a1 (t) =T(O; 2t) - 2T(1; 2t) +T(2; 2t) and T in turn 
denotes the discrete analogue of the Gaussian kernel. 

It is interesting to compare this discrete expression with the earlier continuous results. The 
scale value where the continuous estimate gives a density equal to the discrete density at 
t = 0 is given by the equation Pc(t) = Pd(O) , that is by 

(6.146) 

which has the sol ution 
27 

le-d = 1!"2 :::::: 0.3420 (6. 147) 
8

This corresponds to a 0'-value of about 0.5848. Below this scale the continuous analysis is, 
from that point of view, definitel y not a valid approximation of what will happen to discrete 
signals. 

6.5.2.1 Asymptotic Behaviour at Fine Scales 

A second order Taylor expansion of Pd( t ) around t = 0, see Appendix A.5.5, yields 

1 1 1 2 3 
Pd( t ) = - - M t+ M t +O(t) (6.148)

3 2v 37r 6v 37r 

This means that the effective scale Td(t) can be Taylor expanded around t = 0 and, see 
Appendix A.5.5, 

(6.149) 

In other words, at fine scales the effective scale increases approximately linearly with the 
ordinary scale parameter t. 

Corollary 6.26 (Asymptotic behaviour of the effective scale at fine scales (lD)) 
For one-dimensional discrete signals the effective scale is approximately a linear function of 
the ordinary scale parameter t for small t. 

6.5.2.2 Asymptotic Behaviour at Coarse Scales 

A Taylor expansion of Pd(t) at coarse scales, see Appendix A.5.6, gives 

1J[1( 1 1)Pd(t)= - - - 1+-+0(-) (6.150)
27r 2 .jt 8t t2 
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0.25 

which asymptotically agrees with the continuous result in (6.127). By inserting this expres
sion into the expression for effective scale and using Pd(O) = ~ we get 

(6.151)rd(t) =log(::~~?) = log C; If) + ~ log(t) +log ( 1- ;t + O(t~)) 
which shows that at coarse scales the effective scale increases approximately logarithmically 
with the ordinary scale parameter t . 

Corollary 6.27 (The effective scale at coarse scales (ID)) 
For one-dimensional discrete signals the effective scale is approximately (and up to an ar
bitrary affine transformation) a logarithmic function of the ordinary scale parameter t for 
large t. 

The term log(1- £t + O(fr)) expresses how much the effective scale derived for discrete 
signals differs from the effective scale derived for continuous signals, provided that the same 
values of the (arbitrary) constants A and B are selected in both cases. 

6.5 .3 Comparisons Between the Continuous and Discrete Results 

In order to illustrate the difference between the density of local maxima in the scale-space 
representation of a continuous and a discrete signal we show the graphs of Pc and Pd in 
Figure 6.17 (linear scale) and Figure 6.18 (log-log scale). As expected, the curves differ sig
nificantly for small t and approach each other as t increases. Numerical values quantifying 

0 .3 

0 .2 

0 .15 

20. 40 . 60. eo. 100 . 2. 4. 6. e. 10. 

Figure 6.17: The density of local maxima of a discrete signal Pd(t) as function of the ordinary scale 

parameter t in linear scale . (a) Graph fort E [0, 100] . (b) Enlargement of the interval t E [0, 10] . 
For comparison the graphs showing the density of local extrema for a continuous signal Pc(t) and 

the second order Taylor expansion of Pd(t) around t = 0 have also been drawn. As expected, the 
continuous and discrete results differ significantly for small values oft but approach each other as t 
mcreases. The MacLaurin expansion is a valid approximation only in a very short interval around 

t =0. 

this diffe rence for a few values oft are given in Table 6.1. We have tabulated the ratio 

(6 .152) 
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log p (tl 
~-2 ~ 2~.---7 ~---loq t~.----~1-.---+--~1 .--~ 3-.---4 .

Figure 6.18: The density of local maxima of a continuous Pc and a discrete Pd signa l as fun ction 
of the ordinary scale paramet er t in log-log scale (t E [0, 100]). T he straight line shows Pc(t) and 
th e other curve Pd(t) . One observes Pc and Pd approach each other as the scale parameter increases. 
When t tends to zero Pc(t) tends to infinity whi le Pd(t) t ends to a cons tant (~). 

which is a natural measure for how much the effective scale obtained from a continuous 
analysis differs from a discretely determined effective scale. The quantity is normalized such 
that one unit in Tdif1 corresponds to the increase in Tc induced by an increase in t with a 
factor of two. 

6.5 .4 Extension to Two Dimensions 

The same type of analysis can, in principle, be carried out also for two-dimensional signals. 
The probability that a specific point at a certain scale is a local maximum point is again equal 
to the probability that its value is greater than the values of its neighbours. Depending on 
the connectivity concept (four-connectivity or eight-connectivity for a square grid) we then 
obtain either a four-dimensional or an eight-dimensional integral to solve. However, because 
of the dimensionality of the integrals we have not made any attempts to calculate explicit 
expressions for the variation of the density as function of scale. Instead , for imple mentational 
purpose, the behaviour over scale has been simulated for various uncorrelated random noise 
signals, see Section 5.5.2.2 for more details. From those experiments it has been empirically 
demonstrated that the t--r dependence of the density of local extrema as fun ction of scale 
constitutes a reasonable approximation at coarse levels of scale. 

6.6 Summary 

We have analysed the behaviour of critical points in scale-space and shown that non
degenerate critical points will in general form regular curves across scales. Along those we 
have provided generally valid estimates of the drift velocity. At degenerate critical points the 
behaviour is more complicated and bifurcations may take place. For one·dimensional signals, 
the only bifurcation events possible when the scale parameter increases , are annihilations of 
pairs of local maxima and minima, while for two-dimensional signals both annihilations and 
creations of pairs of local extrema and saddle points can occur. Applied to grey-level and 
scale-space blobs only annihilations and merges will take place in the one-dime nsional case, 
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t TdiJJ(t) 
0 00 

0.0625 250.30% 
0.25 67.46 % 
1.0 -41.82% 
4.0 -10.47% 
16.0 -2.32 % 
64.0 -0.56 % 
256.0 -0.14 % 

00 0 

Table 6.1: Indications abo1d how th e effectiv e scale obtained from a discret e analysis differs from 
th e effect ive scale give n by th e continuous scale-space th eory. The quantity Tdif1(t) expresses the 
difference between rd(t) and r, (t) normalized such that one unit {100%) in TdiJJ(t) corresponds to 
the increase in r, induced by an increase in t with a factor of two. 

while the list of possibilities in two-dimensions comprises four types: annihilations, merges, 
splits and creations. 

Let us finally point out that this analysis has been mainly concerned with the scale-space 
concept for continuous signals. When one is to implement this theory computationally it 
is obvious that one has to consider sampled, that is, discrete data. At coarse scales, when 
a characteristic length of features in the image can be regarded as large compared to the 
distance between adjacent grid points, it seems plausible that the continuous results should 
constitute a reasonable approximation to what will happen in the scale-space representation 
of a discrete signal and vice versa. However, as indicated above in Section 6.5 this similarity 
will not necessarily hold4 at fine scales. In those cases a genuinely discrete theory might be 
needed. We believe that a thorough understanding of what happens to continuous signals 
under scale-space smoothing constitutes a first step towards this goal. 

4 There are also some conceptual complications ansmg in this context , for instance, concerning what 
should be meant by drift velocity for discrete signals. It seems very difficult to estimate suc h a quantity 
accurately, especially at fine scales, since in the discrete case local extrema will not move continuously 
but rather in steps; from one pixel to the next. Thus, one cannot talk about velocity, but rather about how 
long time it takes until an extremum point moves, say one pixel. An alternative approac h to t his problem 
would be by analysi ng the featu re points wit h sub-pixel accuracy although t his idea has not been carried out. 
Other conceptual problems concern what s hould be meant by singularities or degenerate and nondegenerate 
critical points in the discrete case? One possibility is to define those in terms of transitio ns, say e.g. blob 
bifurcations. But, will t he classification of possible blob e vents still be valid in the d iscre te case? 
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Chapter 7 

Computing the Representation 

When building a representation of the proposed type, there are several computational as
pects that must be considered in addition to those already dealt with. We need algorithms 
for 

• detecting grey-level blobs in smoothed grey-level images 

• registering bifurcations 

• linking grey-level blobs across scales into scale-space blobs 

• computing the scale-space blob volumes. 

In this chapter we will briefly describe how this can be done. Some algorithmic descriptions 
will by necessity be somewhat technical, and as a general guideline t hose details can be 
skipped by the hasty reader. 

7 .1 Grey-Level Blob Detection 

We start b y outlining an algorithm for detecting blobs in a grey-level image. We will 
describe the case with bright blobs on a dark background only. The case with dark blobs 
on a bright background can be solved by application of the bright-blob detection algorithm 
on the inverted grey-level image. 

7.1.1 The One-Dimensional Case 

Detecting grey-level blobs in a one-dimensional discrete signal is trivial. In this case it 
suffices to start from each local maximum point a nd initiate search procedures in each one 
of the two possible directions, see Figure 7 .1. Every search procedure contin ues until it finds 
a local minimum point , i.e ., as long as t he grey-level values are decreasing. As soon as a 
minimum point has been found the search procedure is stopped and the grey-level value is 
registered. The base-level of the blob is then given by the maximum value of t he these two 
registered grey-levels. From this information the grey-level blob is given by those pixels that 
can be reached from the local maximum point without descending below the base-level. 

The two-dimensional case is more elaborate, since the search t hen may be performed 
in a variety of directions. In Section 7.1.4 we will describe a methodology that avoids the 
search problem and instead performs a global blob detection based on a pre-sorting of the 
grey-levels. However, we will first state some basic properties that turn out to be useful for 
the algorithm. 
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Figure 7.1: The blob detectio n algorithm for a one-dimensional discrete signal is trivial. The base

level of a bright blob is equal to the m aximum value of the grey-levels in the two local minimum points 

surrounding the local maximum point of the blob. 

7.1.2 Grey-Level Blob Invariants 

From the definition of a grey-level blob one easily realizes that the following basic properties 
hold in the classification of the bright blobs of a discrete signal, see also Figure 7.2. To 
simplify the presentation, let the notation "higher -neighbour" stand for "neighbour pixel 
having a higher grey-level value" . Further, t he concept "background" will mean a pixel that 
has been classified as not belonging to a blob. (Remember that the saddle point will not be 
included in the grey-level blob in the discrete case.) 

1. 	If a pixel has no higher-neighbour then it is a local maximum and will be t he seed of 
a blob. 

2. 	Else, if it has at least one higher-neighbour which is background then it cannot be 
part of any blob and must be background. 

3. Else, if it has more than one higher-neighbour and if those higher-neighbours are parts 
of different blobs then it cannot be a part of any blob, but must be background. 

4. 	E lse, it has one or more higher-neighbours, whi ch are all parts of the same blob. Then 
it must also be a part of that blob. 

Starting from these properties sequential or parallel blob detection algorithms can be easily 
con structed. 

(1) X => max (2) => B 

1 	 1 1 1 
(3) 2 X => B 	 (4) 1 X => 1 

Figure 7.2: Illustration of the grey-level blob invariants 11.umbered from 1 t o 4above. In these figures 

the symbol 'X ' denot es the central point that is to be classified, the s ym bol '- ' a pixel having a lower 

grey-level than the central point, 'B ' a pixel classified as background, 'B+ a background pixel w ith a 

higher grey-level than the central point, '1' and '2' pixels classifi ed as belonging t o regions labe/ed 1 
and 2 respectively and '· ' an arbitrary pixel. 
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7.1.3 Generic v.s. Non-Generic Signals 

One aspect to be considered in this context is generic v.s. non-generic signals. Actually, the 
properties stated in the previous section are valid only for generic signals, that is signals 
for which all pixel values are different. Non-generic signals, where connected pixels may 
have equal values, can lead to complications. Consider for instance the detection of a local 
extremum. There are several possible ways to define this concept in a discrete situation: 

Definition 7.1 (Weak local maximum) 
A point (x, y) is said to be a weak local maximum point for a discrete function g: Z 2 

-4 R 
if for g(~,1J)::::; g(x,y) holds for all neighbours (~,17) of(x,y). 

Definition 7.2 (Strict local maximum) 
A point (x, y) is said to be a strict local maximum point for a discrete function g: Z 2 

-4 R 
if g(~, 17) < g(x, y) holds for all neighbours(~, 17) of (x, y). 

Definition 7.3 (Semi-weak local maximum) 
A point (X' y) is said to be a semi-weak local maximum point for a discrete fu nction g : Z 2 

-4 

R if g(~, 7J) ::::; g(x, y) holds for all neighbours ((, 1J) of (x, y) and in addition g(~ , 7J) < g(x, y) 
for at least some neighbour (~,7]) of(x,y). 

Definition 7.4 (Region-based local maximum) 
A point (x, y) is said to be a region-based local maximum point for a discrete function 
g : Z 2 __. R if g(~, 1J) ::::; g( x, y) holds for all neighbours (~, 1J) of (x, y) and in addition, by 
following connected points having the same grey-level value as ( x, y), it is impossible to reach 
a neighbour having a higher grey-level value. 

For generic signals, all these formulations will be equivalent. On the other hand, in situations 
where adjacent pixeis have equal values, they can give quite different results, see Figure 7.3 
for an illustration. 

Figure 7.3: For non-generic signals, special care must be taken when defining the concept of a local 

maximum point. In this figure, point A represents a maximum point as it would appear in a generic 
signal and accordingly it satisfies all the definitions of a local maximum; it is a weak local maximum, 

a strict local maximum, a semi-weak local maximum as well as a region-based local maximum. B is 

a weak local maximum while C is both a weak local maximum and a semi-weak local maximum. D 

is both a weak local maximum, a semi-weak local maximum and a region-based local maximu m, while 
E is both a weak local maximum and a region-based local maximum. The only one of the definitions 

that gives reasonable results in all these cases is the region-based local maximum. 

Therefore when dealing with degenerate data, as will be the case when the grey-level 
values have been quantized, the region-based local maximum is apparently the appropriate 
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definition to work with. When implementing this concept computationally, it is convenient 
to pre-process the input data with the connected-component-labelling-algorithm, which as
signs a unique identifier to each set of connected pixels having the same value. Then, the 
comparisons between neighbouring grey-level values, which were earlier based on neighbour
ing pixels, can instead be made based on neighbouring regions. In other words, the use of 
"pixel" in the grey-level blob invariants in Section 7.1.2 can be replaced by "region". For 
instance, from this viewpoint a point is a region-based maximum if and only if it belongs to 
a region that only borders upon regions having a lower grey-level value. Of course, it is also 
possible to implement an algorithm for region-based maximum detection by first detecting 
weak local maxima and then carrying out a neighbourhood search in each individual degen
erate case. This method may in fact be faster if it is known in advance that the number 
of degenerate situations are few. However, here we have made use of the approach with 
connected regions because of its algorithmic simplicity. 

7.1.4 Sequential Implementation 

The idea with the algorithm is to initiate a blob seed in every local maximum point and 
then let each maximum region grow until it meets with some other maximum region. If 
the growth procedure is performed in descending grey-level order, we are guaranteed that 
no maximum region will grow too much. The case where adjacent points have equal values 
might lead to some practical problems and we avoid those by pre-processing the image with 
the connected-component-labelling-algorithm. Hence, given a finite discrete real-valued or 
integer-valued image perform the following steps: 

1. Run the connected-component-labelling-algorithm on the grey-level image in order to 
group connected points with equal values into regions1 . After this step connected 
pixels having same grey-level will be given the same unique region label. 

2. Sort the regions with respect to their grey-levels. For integer-valued images this may 
be done efficiently by indexing. 

3. For each region, create a list of its neighbour regions having a higher grey-level. 

4. 	 Group the regions into blobs, i.e., for each region in descending grey-level order: count 
how many references it has to neighbour regions with a higher grey-level. 

(a) 	If the region has no such neighbours, then it is a local maximum point and will be 
the seed of a blob. Set a flag allowing the blob to grow, and store the grey-level 
of the region as the maximum grey-level of the blob. 

(b) 	Else, if the region has a neighbour region with higher grey-level, which has been 
classified as background, then the current region cannot be a part of a bright 
blob and must also be classified as background. 

1 This step can be omitted if it is known in advance that no two connected pixels have equal values. Then 
every pixel can be regarded as a region in the description below. For data given by scale-space smoothing it 
can in general be assumed that adjacent pixels in fact have different values, provided that t he calculations are 
carried out in floating point precision and that the output image is stored on that format . Therefore t his step 
will in some situations be superfluous. Another possible way to ensure that the input data is non-degenerate 
is by modifying the least significant bits in the floating point numbers such that no pair of neighbouring 
pixels have equal values. The effects of such a modification should be neglible if the error introduced by this 
operation is kept below the nume rical error in the implementation of the scale-space smoothing. 
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(c) Else, if the region has more than one higher neighbour region, and if those neigh
bour regions are not parts of the same blob, then the region cannot be a part of 
a blob and must be set to background. For blob, containing any of the neighbour 
regions, carry out the following: 

• 	If the blob is still allowed to grow then clear the flag , which allows it to 
grow, and store the current grey-level as the base-level of the blob. Store 
this region as a 2 saddle region associated with the blob. 

(d) 	Else, if none of the previous conditions are true then the neighbour regions having 
a higher grey-level than the current region are all parts of the same blob . If that 
blob is still allowed to grow then the current region should be included as a part 
of that blob. Otherwise the region should be set to background. 

5. 	Create a blob image where all pixels in a region classified as blob are given the same 
(unique) label of the blob. 

6. Traverse 	the grey-level image and the blob image simultaneously and compute the 
contrast, area and volume for each blob. Store these values in a data structure together 
with the extremum regions and the saddle regions of the blobs. 

7 .1.4.1 Alternatives 

There are several simplifications that could be made if it is known for sure that the algorithm 
only needs to handle generic signals. Also the approach with a pre-sorting of the pixels with 
respect to their grey-level values can be changed. One can initiate a seed in each local 
maximum and let the classification propagate in a grass-fire-like way. Then, it will be 
sufficient to process only the frontier. The grey-level blob invariants can also form the basis 
of a parallel implementation, see [Lin91a] for a brief description. 

7.2 Linking Grey-Level Blobs into Scale-Space Blobs 

Linking blobs across scales could be a potential source to difficult matching problems, since 
blobs can move, disappear, merge, split or be created when the scale parameter changes. 
However, the notion of a scale-space with a continuous scale parameter gives us a simple 
way to circumvent these problems in many cases, since the scale step may be varied at will. 
If one is confronted with a problematic matching situation, then the matching difficulties 
can often be avoided by a refinement of the scale sampling. If the scale step is adaptively 
made just fine enough it should be trivial to judge which grey-level blobs belong to the same 
scale-space blob. 

According to the classification of blob events in the previous chapter, t here are four 
possible types of blob events for generic signals: annihilation, merge, split and creation. 
Assuming that this continuous property is valid for to discrete signals, all we have to look 
for are those four possibilities. This implies that if a situation is encountered with, say, 
three blobs at a fine scale, seeming all to belong to the same coarse scale blob, then the 
situation can (under the assumption of generic signals) be resolved into bifurcations of these 
types by a sufficient number of refinements of the sampling along the scale direction. This 

2 0bserve that for degenerate signals a grey-level blob can be delimited by more than one saddle point 
(where all such saddle points have the same grey-level), and that these "saddle points" in turn can be regions. 
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constitutes t he basic principle behind the adaptive scale linking algorithm, which essentially 
refines the scale sampling until all relations between blobs at adjacent levels of scales can 
be decomposed into those primitive transitions. 

7.2.1 Blob-Blob Matching 

Figure 7.4: T he blob linking between scale levels is based on spatial coincidence, i. e., if two grey

level blobs at adjacent le vels of scale have a spatial point in comm on they are regist ered as matching 

can did ates of ea ch other. In this example the left situation will be registered as a possible blob merge, 

while th e right situation will be a possible plain link within the same scale-space blob. 

Based on this idea, the blo b linking between two levels of scale can be performed based 
on spatial coincidence. A straightforward str ategy is to start with a relatively fine initial 
sampling in scale and t hen for each pair of scale levels traverse all pixels a nd for each point 
investigate if it is included in a blob both at t he lower scale and at the higher scale. If so, 
the lower blob is registered as a match candidate of t he higher blob, and the higher blob is 
registered as a match candidate of the lower blob. By inclusion in a blob , we here mean that 
a pixel belongs to the support region of the blob. It is convenient to introduce a notation 
formalizing t his statement: 

D efi nition 7.5 (Blob-blob matching candidate) 
Let SF and Se be the support regions of two grey-level blobs GF and Ge existing at two 
adjacent scale levels tF and te respectively where t F < te . GF is said to be a blob-blob 
matching candidate from above of G e denoted 

Gp /b- b (Ge ) (7.1 ) 

if there exists some pixel in Se that is contained in SF. Similarly Ge is said to be a blob-blob 
matching candidate of GF from below denoted 

Ge "\..b - b (GF) (7.2) 

if there exists some pixel in SF that is contained in Se. 

Obviously, the definition implies that matching candidates of this t ypes are bidirectional 

(GF /b-b (Ge)) <===> (Ge "\..b-b (GF)) (7.3) 

Given such relations between the grey-level blobs from t he scale-space representations at 
t wo adjacent levels of scale, we can discern the following primitive types of elementary 
matching situations; possible link within a scale-space blob, possible annihilation, possible 
merge, possible split and possible creation; see also Figure 7.5. 
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(a) (b) (c) (d) (e) 

9~ 
Figure 7. 5: Elementary matching situations given by matching relations between blobs at different 

scales. {a) plain link {b) annihilation {c) merge {d) split and {e) creation. 

As indicated above, the idea. behind the adaptive scale linking algorithm is basically that it 
should be possible to decompose all relations between blobs a.t adjacent levels of scale into 
primitive relations of the types listed above by successive refinements of the scale sampling. 
For instance, if a.ny blob ha.s more than two matching candidates then a. refinement should 
be made. 

Figure 7.6: An encountered situation with, say, three blobs at a fine scale that all seem to belong to 

the same coarse scale blob can generically be resolved in to a sequence of two successive blob merges 
by a refinement of the scale sampling. Observe that this figure shows only the support regions of th e 

blobs. 

7.2.2 Extremum-Blob Matching 

There are, however, some situations where this methodology might lead to a.n unnecessarily 
large number of refinements. Consider for instance a. pair of neighbouring blobs, that is 
two blobs sharing the same delimiting saddle point, which slowly drift with the scale-space 
smoothing, see Figure 7.7(a.). Then a. very large number of refinements might actually be 
needed in order to resolve the situation into two plain links. 

The efficiency in such situations can be su bstantially improved by allowing for extremum
blob matching. The idea. is to perform a.n additional gathering of matc hing candidates based 
on the inclusion of the extremum points at one level scale in the grey-level blobs at t he ot her 
level of scale. In other words, if the maximum point of a blob B at one scale is included in 
the support region of grey-level blob A at the other level of scale then blob A is registered 
as match candidate of blob B , see Figure 7. 7(b ). 

Definition 7.6 (Extremum-blob matching candidate) 

Let tp < tc be two scale levels and let GF be a grey-level blob at scale tF and Gc a grey

level blob at scale tc with blob support regions SF and Se and extremum points EF and Ec 
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Figure 7.7: (a) Basing the matching just on blob-blob matching candidates might lead to an unnec

essarily large number of refinements f or configurations with two neighbouring blobs that slowly drift 

du e to the scale-spa ce smoothing. (b) In such situations extremum-blob matching can be used f or 

improving the matching, especially at coarser levels of scale where pairs of double candidat es appear 

relatively frequently. The idea is to gather additional matching candidates based on inclusion of the 

lo cal maximum points at one level of s cale in the grey-level blobs at the other level of scale. If the 

matching candidates are uniqu e and mutual then a match will be accepted without refinement. 

respectively. GF is said to to be an extremum-blob matching candidate from above of Gc 
denoted 

GF /e-b (Gc ) (7.4) 

if E c is contained in SF. Similarly Gc is said to be an extremum-blob matching candidate 
of G F from below denoted 

(7.5) 

if EF is contained in Se. 

It is clear that these matching relations will not necessarily be bidirectional. The idea behind 
this construction is that if the extremum-blob matching candidates obtained in this way are 
mutual and if they resolve a situation with a pair of double candidates then the situation 
can be registered as a pair of possible plain links. It turns out that these types of situations 
are rather common at coarser levels of scale, compare with Figure 5.8 and Figure 5.9, where 
two blobs "hang together" but anyway drift slowly due to the scale-space blurring. As we 
shall see later , these relations can also be used for stating stronger matching conditions than 
the blob-blob coincidence requirements. 

7.2.3 Registering Bifurcations in Scale-Space 

What remains to decide is when a blob match should be accepted. In our current implemen
tation we, in principle, perform a scale refinement each time an unclear matching situation 
occurs, and accept matches in principle only when all blob events between the two scale 
levels can be classified as belonging to either one of the primitive cases: plain link within a 
scale-space blob, blob annihilation, blob merge, blob split or blob creation. 

7 .2.3.1 Notation 

There are several possible ways to define situations which are candidates of being bifurcation 
situations. In order to enable a clear statement of what we mean by that, we will first 
introduce some notation describing the number of matching relations associated with a 
certain grey-level blob G: 
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• 	 U ./b-b (G) denotes the total number of blob-blob matching relations from above, 
starting at G, that G is involved in. 

• 	 U \.b-b (G) denotes the total number of blob-blob matching relations from above, 
ending at G, that G is involved in. 

• 	 U./e-b (G) denotes the total number of extremum-blob matching relations from above, 
starting at G, that G is involved in. 

• 	 U \.e-b (G) denotes the total number extremum-blob matching relations from above, 
ending at G, that G is involved in. 

Similarly, the symbols U'\._b-b (G), # /b-b (G), U '\._e-b (G) and # '\._e-b (G) describe the 
number of matching candidates from below that are associated with a certain grey-level blob 
G. One observes that 

# ./b-b (G) U /'b-b (G) (7.6) 

U\.e-b (G) ::::; U\.b-b (G) (7.7) 

U./e-b (G) ::::; U./b-b (G) (7 .8) 

U./e-b(G) = either 0 or 1 for generic signals (7.9) 

(7.6) is a direct consequence of the property that blob-blob matching relations are bidirec
tional. (7.7) and (7.8) simply mean that the number of blob-extremum matching relations 
cannot exceed the number of blob-blob matching relations, since both these types of relations 
are obtained from spatial coincidence and the number of pixels that satisfy the definition of 
a region-based local extremum cannot exceed the number of pixels in the blob support re
gion. (7.9) is guaranteed to hold only for generic signals and simply means that a point that 
is an extremum point at one level of scale cannot be contained in more t han one grey-level 
blob at an other level of scale. 

7.2.3.2 Weak Conditions for Bifurcation Situations 

Given these relations we can state when a set of relations between blobs at adjacent scales 
should be interpreted as a candidate for being either a link within the same scale-space blob, 
a bifurcation situation or a complex situation to be subject to simplification by fur t her 
refinements. In the following definitions, grey-level blobs existing at the finer of the two 
scales will be throughout denoted GF, GF1 and GF2 , while grey-level blobs at the coarser 
scale level will be written Gc, Gc1 and Gc2: 

D efinition 7.7 (Weak link candidate) 
{GF, Gc} are said to form a weak link situation between tF and tc if 

(U '\.b-b (GF) = 1) 1\ (# ./b-b (Gc) = 1) 1\ (Gc '\._b-b (GF)) (7 .10) 

Definition 7.8 (Weak annihilation candidate) 
{GF} is said to form a weak annihilation situation between tF and tc if 

(7. 11) 
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Definition 7 .9 (Weak merge candidate) 

{GFl, G F2 , Ge} are said to form a weak merge situation between tF and te if 


(U ""-b-b (GFt) = 1) 1\ (U ""-b- b (GF2) = 1) 1\ (U /b-b (Ge) = 2) 1\ 

(Ge ""-b-b (GFt)) 1\ (Ge ""-b-b (GF2)) (7.12) 

Definition 7.10 (Weak split candidate) 

{G F, Get. Ge2 } are said to form a weak split situation between tF and te if 


(U ""-b- b (GF) = 2) 1\ (U /b-b (Get)= 1) 1\ (U /b- b (Ge 2) = 1) 1\ 

(GF /b-b (Get)) 1\ (GF /b -b (Ge2)) (7.13) 

Definition 7.11 (Weak creation candidate) 

{Ge} is said to form a weak creation situation between tF and tc if 


(U /b-b (Ge) = 0) (7.14) 

7.2.3.3 Strong Conditions for Bifurcation Situations 

In these statements there are, however, a lot of available information that we have not made 
use of. We have not taken the locations of the extremum points into account and not the 
relations between delimiting saddle points that hold in split and merge situations. Therefore 
it is natural to define the following (below Sdelimit(G) denotes the delimiting saddle point 
of a grey-level blob G, see Definition 6.3, and nonshared(S) means that the saddle point S 
is non-shared, see Definition 6. 7): 

Definition 7.12 (Strong link candidate) 
{Gp,Gc} are said to form a strong link situation between tp and te if they form a weak 
link situation between tF and te and in addition 

(Ge ""-e-b (GF)) 1\ (Ge /e- b (GF)) 1\ 

( nonshared( S delimit (G F))) 1\ (nonshared(S delimit(Ge))) (7.15) 

Definition 7.13 (Strong merge candidate) 
{GFt, G F2,Ge} are said to form a strong merge situation if between tF and te they form a 
weak merge situation between tF and te and in addition 

(Ge ""-e-b (GFl)) 1\ (Ge ""-e-b ( GF2)) 1\ 

(Sdelimit( G FI)Sdelimit (GF2)) (7.16) 

Definition 7.14 (Strong s plit candidate) 
{Gp,Get.Ge2} are said to form a strong split situation between tF and te if they form a 
weak split situation between tF and tc and in addition 

(GF /e-b (Get)) 1\ (GF /e-b (Ge2)) 1\ 

(Sdelimit(Get)Sdelimit ( Ge2)) (7 .17) 

Note that one cannot in general require that the extremum point of the coarser scale blob 
involved in a blob merge should necessarily belong to some of the blobs at the finer scale or 
that any corresponding relation should hold in a blob split. When formalizing the matching 
criterion for pairs of double candidates described in Figure 7.7 we get: 

168 




Definition 7.15 (Strong double link candidate) 

{GFl, GF2, Ge1, Ge2} are said to form a strong double link situation between iF and te if 


(tt "'-..b-b (GF l ) = 2) 1\ (tt "'-..b-b (GF2) = 2) 1\ 

(tt /b-b (Gel)= 2) 1\ (tt /b-b (Ge2) = 2) A 

(Gel "'-..b-b (GFl)) 1\ (Ge1 "'-..b-b (GF2)) 1\ 

(Ge2 "'-..b-b (GFI)) 1\ (Ge2 "'-..b-b (GF2)) 1\ 

(Ge1 "'-..e-b (GFl)) 1\ (Ge2 "'-..e-b (GF2)) 1\ 

(GFI / e-b (Gel)) 1\ (GF2 /e-b (Ge2)) 1\ 

(Sdetimit(GFI) = Sdetimit(GF2)) 1\ (Sdetimit(Gei) = Sdetimit(Ge2)) (7.18) 

When this condition is satisfied Ge1 will be regarded as belonging to the same scale-space 
blob as GF1 and Gc2 is regarded as belonging to the same scale-space blob as GF2· 

To express similar stronger conditions for blob annihilations and blob creations is not 
as easy, since in this case we have to ensure that we have not fail ed to find any relevant 
matching candidate that should have been registered. Of course , one could require that the 
delimiting saddle point (see Section 6.1.3) in such a situation should be non-shared. But 
such a condition will be far from sufficient. 

7.2.3.4 Extended Neighbourhood Search 

The conditions mentioned so far will however not be sufficient when tracking blobs covering 
just a small number of pixels. For example, the drift of a blob with an area of say one pixel 
will be impossible to capture with the previously outlined criteria, unless some additional 
gathering of matching candidates is carried out. This means that a situation that should 
have been registered as a plain link can give rise to one annihilation and one creation 
unless some additional precautions are taken. Therefore, in our current implementation, we 
perform an extended neighbourhood search in a region (of width one pixel) around every 
point involved in a weak creation situation. The purpose is to investigate if there are other 
blobs near it, which are involved weak annihilation situations. A blob creation is accepted 
only if no such blobs can be found and if, in addition, the same conclusion holds t hrough a 
small number of refinements. 

Another possible way of improving the performance could be by analysing the variation 
of the volume and contrast of the grey-level blobs and compare with analytical results as 
those derived in Section 6.4.1. One could also use drift velocity estimates as those derived 
in Section 6.4.2.3 or build up a model of the motion of the extremum point as function of 
scale. No such methods have, however, been implemented. 

7.2 .3.5 Bidirectional Matching 

Let us point that in contrast to many matching algorithms in e.g. motion analysis, where 
the matching is performed only in one direction, that is with increasing time, this matching 
procedure, in its current form, is purely geometric and bidirectional. The matching candi
dates are always registered from both directions. Therefore, the scheme can equivalently be 
started either at a fine scale or at a coarse scale. The first approach can be advantageous if 
the scale-smoothing is implemented as cascade smoothing. The second approach could on 
the other hand have advantages when focusing the attention, that is when zooming in to a 
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particular object, since significant image features are more often found at the coarser scales 
than at the very finest levels of scale. 

7.2.4 Delimiting the Refinement Depth 

The decomposition property, meaning that relations between grey-level blobs at different 
levels of scale can be resolved into relations of the five primitive types (shown in Figure 7.5), 
is guaranteed to hold only for generic signals. Therefore in order to avoid a possible infinite 
number of refinements in situations when the algorithm is presented with a degenerate 
signal, it is necessary to introduce an upper bound on the number of refinements allowed to 
take place. If this number is reached, t hen a complex bifurcation will be registered by the 
algorithm . Although we have not yet found this situation to occur in any realistic images 
we have sometimes seen it happening for highly regular and noise-free synthetic data. 

7.2.5 Scale Levels and Computation of the Refinement Scale 

The algorithm is initiated with a relatively fine sampling along the scale direction corre
sponding to about ! - t octave in t at coarse levels of scale, distributed such that the scale 
step measured in effective scale is approximately constant. The maximum scale is deter
mi ned from the size of the image (the outer scale) and the minimum scale is set to a low 
value3 (the inner scale). When refinements are needed, t he refinement scale is comp uted 
from the existing scale levels t1 and t2 based on the notion of effective scale 

(7.19) 

where r denotes the transformation function from the ordinary scale parameter to the 
effective scale parameter and r-1 its inverse. The function values are computed from in
terpolation in a table with simulation data accumulated from point noise images, compare 
with Section 5.5.2.2. 

7.2.6 Basic Blob Linking Algorithm 

To summarize, an algorithm for linking grey-level blobs across scales into scale-space blobs 
can be based on the following steps. In the treatment below we will base the matching on 
the weak matching relations only in order to illustrate the idea. It should be obvious how 
the strong criteria can be incorporated in an analog manner. 

1. 	Determine an initial set of scale levels , from some minimum scale value t min, given by 
the inner scale of the image, to some maximum value t max, which is given by the outer 
scale of the image. Distribute the intermediate scale levels such that the scale step, 
measured in effective scale is approximately constant. At coarse scales this means 
that the ratio between successive scale values will be about constant . At fine scales 
instead t he differences between successive scale values will be approximately equal. 
Push these scales onto a stack of scale levels to be processed later. 

2. 	Extract the grey-level blobs from the image at the finest scale using the grey-level blob 
detection algorithm. 

3 This scale value may be zero, but because of computational aspects it might be pr ac tical to use a higher 
value. During our experiments we have consequently let it be either 0, 1 or 2. 
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3. 	Get the next scale-level from the stack of scale levels. 

(a) 	Extract the blobs at the current level of scale. 

(b) For each grey-level blob at the current scale level, determine how many matching 
candidates it finds at the previous scale level. Similarly, for each grey-level blob 
at the previous scale level determine how many matching candidates it finds at 
the current scale level. 

(c) 	If some grey-level blob has more than two match candidates then the matching 
is non-trivial. Similarly, if there is a pair of double candidates4 , i.e., if there is 
a blob having two matching candidates and one if its matching candidates in its 
turn also has two possible match candidates, then the matching is also difficult. 
In these cases perform a refinement, i.e., 

i. 	 push the current scale level into the set of scale levels to be calculated. 

ii. compute a refinement scale between the current scale level and the previous 
one. 

iii. 	 Continue with Step 3. 

(d) 	Else, if some grey-level blob at the coarser level does not find a match candidate 
at the finer level then the situation is more complicated . According to the scale
space theory this situation may in fact occur (but not very often). There could 
also be some other natural explanations why we may fail to find match candidates: 

1. 	 The blob may have moved outside the spatial region it covered at the previous 
level of scale. This phenomenon applies mostly to blobs with small areas 
particularly blobs consisting of one pixel only. Such blobs will always be lost 
when moving if the matching is based on common pixels only. 

ii. Numerical errors may have violated the scale-space properties. 

In this implementation we perform an extended search in a small neighbourhood 
(of distance 1) around the coarse-scale blob in order to gather more matching 
candidates. If exactly one such candidate has been found and if that blob has no 
other match candidates, then a blob match will be accepted and the two grey
level blobs will be linked into the same scale-space blob. Otherwise, a refinement 
will be performed. However, if the refinement depth is too deep then a blob 
creation will instead be registered. 

(e) Else, each blob has either one 	or two matching candidates, and the matching 
candidates will be accepted. 

1. 	 If a blob at the fine scale has exactly one match candidate at the coarse scale, 
and if that candidate in turn has exactly one match candidate to the fine 
scale then link the grey-level blobs into the same scale-space blob. 

ii. 	 If a grey-level blob at the finer level does not have a match candidate at t he 
coarser level then register a blob annihilation. 

111. 	 If a blob at the coarser level find s two match candidates at the finer level and 
if these blobs in turn have exactly one match candidate each at the coarser 
level then register a blob merge. 

4 Many situations of this type can, as indicated above, be resolved with an extended extremum-blob 
matc hing -especially at coarser levels of scale. Then the refinement step will not be necessary. 
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iv. 	If a blob at the finer level finds two match candidates at the coarser level and 
if these blobs in turn have one match candidate each, then register a blob 
split. 

4. Store the registered relations between grey-level blobs at different scales . Then traverse 
all the scale levels and compute the scale-space blob volume and the scale-space lifetime 
for each scale-space blob (see Section 7.3 for the details). 

7.2.7 Continuous Scale Parameter v.s. Fixed Scale Sampling 

Note that this refinement principle cannot be applied as easily in pyramid representations 
where the scale levels have been set in advance. Then there is a fixed scale step beyond 
which refinements are no longer possible. Often, the pyramid representations also imply 
quite a coarse sampling in scale (a factor of 2 or V2 in a that is a factor of 4 or 2 in t), that 
makes the matching problem more difficult . 

7.2.8 Blob Linking v.s. Extremum Linking 

It should be stressed that the grey-level blobs are much easier to trace across scales than 
are local extrema. T his is mainly because the blob concept associates a region with every 
local extremum point. If one instead would have based the scale-level analysis on local 
extrema only, then the matching problem would often be more difficult, since local extrema 
may move much faster than the blobs. Ambiguous situations could easily occur. Especially 
bifurcation situations would be harder to identify. If at some level of scale one has lost the 
track of a local extremum point , then it is hard to say if it is because the extremum point has 
moved much faster than expected, been annihilated or because it has merged with another 
extremum point. It is in this context the blob regions are important, since they give natural 
spatial regions in which there are no other local extrema. They also define natural regions, 
to search for blobs in, at the next level of scale, compare also with Observation 6. 15. 

7.3 Computing the Scale-Space Blob Volumes 

Once the scale linking has been performed and the bifurcations have been registered, it 
is straightforward to compute t he scale-space blob volumes. At first every grey-level blob 
volu me, as computed by t he grey-level blob detection algorithm, is transformed according 
to t he relation 

Ve (t) = { 1 + Vejj,prel if Vejj,~rel ~ 0 (7.20)f f ev•JJ.prel otherwise 

where 
V(t) - Vm(t)

Vejj,pr et(t ) = Vu(t) (7 .21) 

and Vm(t) and Vu(t) denote interpolated values from the tables of the mean values and 
standard deviations of the grey-level blob volumes for point noise data. In order to reduce 
the sensitivity of these values for the actual scaling of t he grey-level values in the image , the 
tabulated values of Vm are rescaled with a uniform scaling factor determined from a least 
squares fit between the experimental values and t he tabulated values at the finest levels 
of scale. Given these normalized grey-level blob volumes, the scale-space blob volumes 
are computed from the trapezoid rule of integration using the effective scale as in tegration 
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variable. The scale of a bifurcation is localized to the mean value (computed in effective 
scale) of the nearest coarser and finer scale around the bifurcation. The grey-level blob 
volume at a bifurcation is set to zero for annihilations and creations as well as for the two 
smaller blobs involved in merges and splits. As grey-level blob volume for the larger blob 
involved in a blob merge or blob split is taken the value of the grey-level blob volume in the 
nearest scale level included in that scale-space blob. 

7.4 Data Structure 

In order to give a rough idea of what information can be available in a data structure 
representing the scale-space primal sketch, we have in Appendix A.6.3 briefly described 
what kinds of objects could be defined in an actual implementation of this concept and also 
what types of data can be stored in those. 

7.5 Possible Improvements of the Algorithm 

The main concern behind this implementation has been to compute the representation as 
accurately as possible. We have not focu sed very much upon the computational efficiency of 
the algorithm5 , since the main objective with this work has been to investigate what type of 
information can be obtained once a representation of the proposed type has been computed. 
In this section we will briefly describe some obvious improvements that could be made in 
order to speed up the performance. 

7.5.1 Local Refinements 

Currently, the refinements are made globally. In other words when a difficult situation has 
been encountered , necessitating refinements, then all grey-level blobs at the involved scales 
are subject to this process. One of t he main improvements that could be made to the 
algorithm would be by restricting those refinements to comprise only the grey-level blobs 
involved in the ambiguous situation . Then only a window instead of the entire image needs 
to be processed. 

7 .5.2 Drift Velocity Estimates 

The success of the linking algorithm depends very much on the fact that it is initiated with 
a fine initial sampling in scale. In later work we hope to incorporate an estimate of the drift 
of the blobs in order to get further verification of the bifurcation situations and the blob 
matches, compare also with Section 7.2.3.4. Such an estimate could also give more precise 
information about how dense the scale sampling really needs to be, possibly implying that 
a fewer number of scale levels needs to be treated. Observe that some discrete aspects may 
have to be int roduced if such an approach is taken, see also Section 6.6. 

7.5.3 Approximate Description 

As was said earlier. we have throughout this work tried to in troduce as few computational 
and numerical errors as possible when computing the representation. However, it often 

~ Coarse estimates about the performance of the algorithm are given in Append ix A.6.1. 
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turns out that many of the situations leading to refinements, correspond to structures later 
on rejected as being non-significant. Therefore, it seems plausible that the performance 
could be improved if those refinements could be avoided. In other words, if just an ap
proximate description could be computed. However , such approximations require extensive 
experimentations and have not carried out. 

7.5.4 Subsampling at Coarser Scales 

The representations at coarser levels of scale are highly redundant. Another approximation 
to make would be by subsampling the images at coarser levels of scales, as is done in pyra
mids, in order to reduce the number of pixel values that need to be computed. An important 
issue to consider if such an approach is taken is to ensure that "no severe discontinuities" 
are introduced in the scale direction, compare also with Section 3.6.5. 

7.5.5 Other Normalization Methods 

As indicated above, the subtraction by the mean value carried out when computing the 
normalized grey-level blob volumes is sensitive to the actual scaling of the data. The trans
formation performed by scaling the tabulated data with a constant determined from a least 
squares fit to the experimental data is intended to compensate for this phenomenon. A 
possible way to avoid this rescaling would be by computing the normalized grey-level blob 
volumes from 

V(t) 
(7.22)Veff(t) = Vm(t) 

and then integrate those values into scale-space blob volumes. As significance values for 
comparisons across scales one could conceive taking the ratio 

S ( ) _ S(t)- Sm(t) (7.23)elf t - Su(t) 

where Sm and Su denote mean values and standard devia tions for scale-space blobs computed 
from point noise data (based on the same normalization (7.22)). As scale values for the scale
space blobs we could take their appropriate scale, that is the scale where they assume their 
maximum grey-level blob volumes, see Chapter 8 for further explanation. This method has 
not yet been implemented, mainly because the amount of simulation work required when 
building the tables is much larger. 
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Chapter 8 

Detecting Image Structures 

8.1 Detecting Significant Image Structures and Their Scales 

One motivation for this research was to investigate if the scale-space model really allows 
for determination and detection of global and stable phenomena. In this section we will 
demonstrate that this is indeed possible and that the proposed representation can be used for 
extraction of important regions from an image, in a solely data-driven way. The treatment 
is based on the assumption that: 

• 	 Features, which are significant in scale-space, correspond to relevant details in the 
image. 

More precisely, since the primitives we intend to use are scale-space blobs we formulate the 
assumption as follow s: 

Assumption 8-1 (Significant image structure) 
A scale-space blob having a large scale-space volume in scale-space corresponds to a relevant 
region in the image. 

A scale-space blob will in general exist over some scale interval in scale-space. When there 
is a need to reduce the amount of data represented and to select an appropriate scale and 
a spatial region for a scale-space blob, we make use of the following postulates: 

Assumption 8.2 (Scale selection) 
The scale-level, at which a scale-space blob assumes its maximum grey-level blob volume, is 
a relevant scale for treating that individual blob. 

Assumption 8-3 (Spatial representative) 
The spatial extent of a scale-space blob can be represented by the blob support region corre
sponding to its grey-level blob at the relevant scale. 

The ranking of events in order of significance depends on the actual scaling of t he four co
ordinate axes in the scale-space representation. Therefore, the extraction method implicitly 
relies upon the assumption that it is sufficient to transform the coordinate axes once and 
for all as was done in Section 5.5, and that this normalization can be carried out based on 
the behaviour in scale-space of point noise signals. 

Assumption 8.4 (Normalization) 
The coordinate axes .in the scale-space representation can be normalized based on the be
haviour in scale-space of point noise data. 
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Below, we will give experimental results showing that t hese assumptions, combined with a 
careful computational treatment of the scale-space, really segment out perceptually relevant 
regions in the image. 

8.2 Motivation for the Assumptions 

A central issue in low-level vision concerns what should be meant with "image structure". In 
other words, which features in an image can be regarded as important, and which ones should 
be rejected as noise. Notably, Lowe [Low85] defines structure based on non-accidentalness. 
However, such an approach requires a probabilistic model of the situation. It is well-known 
that it is difficult to find a statistical model generally valid for the image formation process. 

8 .2.1 Transformational Invariance: Structure 

In this work we take an alternative viewpoint and suggest a defin ition of structu re based 
on f eatures, which are stable with respect to (appropriately selected) transformations andjor 
parameter variations. For this specific treatment the transformation family of interest is the 
semi-group of convolution transformations associated with the scale-space smoothing. The 
parameter we vary is the scale parameter. We think that features stable or invariant with 
respect to variations in scale can be regarded as significant. In more general situations one 
could also im agine t he probing transformation as given by variations in viewing distance 
(focusing), spatial resolution, regularization parameters etc. 

One can motivate such a standpoint by a pragmatic argument . If a feature is to be useful 
for recognition, it must necessarily be stable with respect to small disturbances. Otherwise 
it can hardly be practically useful , since then, it inherently cannot be computed accurately. 
This definition of structure in terms of transformational invariance also induces a straight
forward and general method for detecting significant image features, namely by subjecting 
the image to systematic parameter variations. In line with that idea we believe that those 
features, that are the most stable ones during such a parameter variation process, can be 
regarded a strong candidates for being useful for later processing and possibly recogni tion. 

T he reverse statement does of course not hold. T here are many other sources of infor
mation, i.e., lines in line-drawings, that are not captured by a blob concept and scale-space 
smoothing. In this work we focus mainly on one aspect of image structure, namely regions 
that are brighter or darker than the background and stand ou t from the surrounding. 

Note, that this use of transformational invariance is different t han to what is usually 
meant by invariance in the algebraic or geometric sense. Here, we consider invariance as 
stability over a finite interval, that is a limited range of parameter values, and define features 
based on th is property. 

8 .2.2 Stability in Scale-Space: P erceptual Salience 

The approach is closely related to Witkin's [Wit83a] observation about corres pondence 
between stabili ty in scale-space and perceptual salience. However, here we base t he stability 
measure on the scale-space blob volumes instead of the scale-space lifetime. The intention 
is that this choice also should reflect the size of the blobs and how strongly they manifest 
themselves with respect to the background. As mentioned in Section 5.4 we have observed 
that small blobs due to noise can survive over a large range of scales if they are located 
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in regions with slowly varying grey-level, which shows that scale-space lifetime alone is not 
sufficient as a significance measure. 

8.2.3 Reduction of the Representation: Abstraction 

Because of complexity arguments, the entire parameter variation information from the low
level modules cannot not be transferred to modules intended to perform higher-level pro
cessing tasks. Instead we think that low-level modules working after this paradigm should 
be able to extract stable intervals, and that it should suffice to determine a represen tative 
descriptor for each important stability region . 

The second and third assumptions express such a desire to represent a scale-space blob 
with a grey-level blob at a single level of scale in order to give a more compressed representa
tion , an abstraction, for further processing. We believe that a relevant scale of a scale-space 
blob should be a scale where the grey-level blob manifests itself "as its best", i.e., it should 
be the scale level where the blob response "is maximally strong". This selection method 
is similar to Marr's, (Mar76], idea about the choice of an appropriate mask size for edge 
detection. Empirically we have found that this suggested scale value will give a good de
scription of the situation. It turns out that it often will be close to the appearance scale of 
the scale-space blob, except at blob splits and blob creations, for which the grey-level blob 
volume at the appearance scale will be zero. 

Worth noting is that Assumption 8.2 implies a projection from a four-dimensional scale
space blob to a three-dimensional scale-space blob and that Assumption 8.3 implies a projec
tion from that three-dimensional grey-level blob to its two-dimensional blob support region. 

8.3 Basic Extraction Method for Image Structures 

The basic methodology, in our suggested algorithm for extraction of important image struc
ture, should be obvious from the previous presentation. 

• 	 Generate the suggested multi-scale representation, where blobs are extracted at all 
levels of scale and linked across scales into scale-space blobs. 

• 	 Compute the scale-space volume for each scale-space blob based on the notion of 
effective scale and transformed grey-level blob volumes. 

• 	 For each scale-space blob determine the scale where it assumes its maximum grey-level 
blob volume, and extract the blob support region of the grey-level blob at that level 
of scale. 

• 	 Sort the scale-space blob in descending significance order, i.e. , with respect to their 
scale-space blob volumes. 

8.4 Experimental Results 

In Figure 8.1, Figure 8.2 and Figure 8.3 we show the results of applyi ng this procedure 
to three different images with t oy blocks, a telephone and a calculator and a dot pattern. 
The reader is encouraged to study these images carefully. 

For display purpose we have extracted the N dark scale-space blobs having the largest 
blob volumes. Each blob is represented at its representative scale, that is the previously 
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'Figure 8.1: The 50 most significant dark blobs from a toy block image. (Note how these images 

have been produced - th ey are not just blob images at a few levels of scale. Instead every blob has 
been marked at i ts representative scale. Finally, the blobs have been drawn in different images as to 

avoid overlap.) 
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Figure 8.2: The 50 most significant dark blobs from a telephone and calculator image. 
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Blob label Scale Significance 
1760 32.00 1450.55 
1767 64.00 1266.43 
1764 50.80 1030.53 
1768 80.60 591.16 
1770 812.90 297.60 
1769 645.10 284.72 
1761 45.25 150.64 
1758 28.51 131.99 
1763 45.25 73.69 
1065 35.91 63.51 
1759 28.51 35.92 
1753 22.65 35.42 
1703 8.00 20.45 
1702 8.99 17.43 
1723 11.99 12.84 
1757 28.51 9.94 
1256 4.00 6.84 
1708 9.53 6.20 
1725 14.25 5.33 
1440 2.00 5.10 
1471 1.40 4.85 
1610 2.87 4.03 
1731 16.00 3.84 
1679 4.73 2.41 
1078 1.00 2.30 
1265 1.10 2.27 
1713 10.10 2.21 
1706 8.99 2.21 
251 1.22 2.07 

1072 1.00 2.02 
1070 1.00 1.98 
1187 1.00 1.96 
1243 2.65 1.95 
1686 5.00 1.95 
1371 1.05 1.93 
1611 6.40 1.87 
1286 1.00 1.83 
1183 1.00 1.83 
1083 1.00 1.79 
1336 1.00 1.75 
1393 1.10 1.72 
212 1.00 1.71 

Table 8 . 1: Table over the relevant scales and significance values of the 40 most significant blobs 

obtained from the scale-space primal sketch representation of the toy block image. Note that a fe w 

blobs have significance values clearly standing out from the other ones. 
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Figure 8.3: The 50 most significant dark blobs from a dot pattern image . 

mentioned scale where the scale-space blob has its maximum grey-level blob volume. Finally, 
the spatial region of each blob (which is the blob support region at its representative scale) 
has been marked in a binary image, where black indicates the existence of a significant blob 
and white represents background. In order to avoid overlap in the display, we have shifted to 
a new fresh image each time the addition of a new blob would have implied overlap between 
two different blobs. 

We can see that the blocks are extracted from the toy block scene. Also, at coarser 
scales, adjacent blocks become grouped into coarser scale units and t he imperfections of the 
image acquisition near the boundaries are pointed out. In the telephone scene, the buttons, 
the keyboard, the calculator, the cord and the receiver are detected as single units. Finally, 
in the dot pattern image the algorithm finds at first all the dots and t hen also performs 
those groupings we find perceptually reasonable. 

In order to show the spatial relations between the blobs at the various levels of scale 
we have also drawn the blob boundaries for the images from the previous examples in 
Figures 8.4-8.5. 

Let us conclude by stressing that we extract the intrinsic shape of the grey-level landscape 
in a completely bottom-up data-driven way without any assumptions about the shape of the 
primitives (except for the fact that the scale-space smoothing favours blob-like objects, since 
it is equivalent to correlation with a Gaussian-shaped kernel). 

We get a segmentation that is coarse in the sense that the localization of object bound
aries may be poor, due to the natural distortions of shape which occur in scale-space. 
However, the segmentation is safe in the sense that those regions, which are given by the 
scale-space blobs with large scale-space volume, really serve as landmarks of significant 
structure in the image, with information about 

• t he approximate location and extent of relevant regions in t he image. 

• an appropriate scale for treating those regions. 
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Figure 8.4: Boundaries of the dark blobs extracted from the toy block image. (a) The 50 most 

significant dark blobs. (b) Low threshold on the significance measure set in one of the "gaps " (b etween 

74 and 131) in the sequence of significance values. (c) High threshold on the significance measure 

set in another "gap" (between 298 and 591). (The significance values are shown in Table 8. 1) . 

D 

Figure 8.5: Boundaries of the dark blobs extracted from the telephone and calculator image. (a) 

The 50 most significant dark blobs. (b) Low threshold on the significance m easure s et in one of the 

"gaps " in the sequence of significance values. (c) High threshold on the significance m easu re set in 

another "gap ". 
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Figure 8.6: B ounda ries of the dark blobs extracted f ro m the dot pattern image. (a) The 50 most 

significant dar k blobs. (b) Low threshold on the significance m eas ure set in one of the "gaps" in the 

sequence of significan ce valu es. (c) High threshold on the significance m easu re set in another "gap ". 
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This is exactly the kind of coarse information 1 that is necessary for many higher-level pro
cesses, see e.g. the application to edge detection in Section 9.1. 

8 .5 Further Treatment of the Generated Blob Hypotheses 

The number of scale-space blobs selected for display above is, of course, rather a rbitrary. 
However , note that there is a well-defined ranking between the blobs. If one studies t he 
significance values of the blobs, (see Table 8.1 regarding the toy block image), one can 
observe that those blobs we regard as the most significant ones have significance values 
standing out from the significance values of the other ones. 

Hence, it seems plausible that a few image regions could be extracted just from the 
criterion that their significance values should stand o ut from the significance values of the 
other ones. In more general situations there is a need for feed-back or reasoning. 

The output information from this algorithm should not be over-estimated. Since it is 
a low-level processing module, the output results should be interpreted as such, namely as 
indicators signalling that "there might be something there of about that size - now some 
other module should take a closer look ". From this viewpoint it can be noted how well the 
extracted blobs describe the images in the previou s examples, considering that the blobs 
have been extracted almost without any a priori information. 

In principle we think that a reasoning process, working on the output from the scale
space primal sketch, could operate in either of two possible modes: 

1. Use a threshold on the sign ificance measure. In a real system such a threshold could 
in some applications be set from given context information and expectations. 

2. Evaluate 	the generated hypothesis in decreasing order of significance, i.e., first try 
to interpret the first hypothesis in a feed-back loop. Then consider t he second one 
etc. Continue as long as t he hypotheses delive r meani ngful interpretations for the 
higher-level modules. 

Note also that the output from t he scale-space primal sketch can work both in a static 
a nd a dynamic mode. Consequently, we believe that it can really serve as a guide to the 
focus-of-atte nt ion. In Chapter 9 will show how such integration of this kind of information 
wit h later st age processing modules can be done. 

Anot her inhe rent property wi th this representation is that it does not have a ny limiting 
requirement that there is just one possible interpretation of a situation. In stead it generates 
a variety of hypot heses. Given some region in space, several hypotheses m ay be active for 
it (or parts of it ) concerning structures at different levels of scale. 

8.6 About the Selection of Appropriate Scale 

In this section we will now describe some consequences of the suggested definition of ap
propriate scale of a scale-space blob. The presentation to be given is not intended to be 
theoretically rigorous in any way, but rather to convey an intuitive understandi ng for what 
qualitative properties the stated assump tion leads to. 

1 T he scale-space primal sketch contains much more informatio n t han is presented in this r ud imentary 
o utput. For instance, we have not illus trated the registered blob bifu rcations in scale-space. Nor have we 
shown or made use of the hierarchical relations between blobs at different levels of scale induced by the blob 
events. T his information is however explicit in the computed re presentation . 
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8.6.1 Relations between Appropriate Scale and Object Size 

The scale value given by Assumption 8.2 does not necessarily reflect the size of the blob 
region in the image. Although large values of the scale parameter in general will lead to 
images with large size features, there is no direct relation between the size of an object and its 
associated appropriate scale. In certain situations large size objects may in fact be assigned 
relatively small values of t as their appropriate scale (although the opposite situation can 
be expected not to occur). The scale value given by Assumption 8.2 should therefore rather 
be interpreted as an abstract scale parameter or as giving the smallest amount of smoothing 
for which a region in the image manifests itself as a single blob entity. 

Consider for example an image with, say, a few squares of fixed size. The scale value, 
where for the first time one of the squares appears as a blob , can vary substantially depending 
on the noise level in the image and on where the squares are located relative to each other. 
In the ideal noise-free and texture-free case, i.e. when there are no interfering fine-scale 
structures present, the appropriate scale for each one of the squares will be zero. Only for 
coarse scale structures, which only exist as groupings of other primitive fine scale structures, 
will the appropriate scale be non-zero in the ideal noise-free case. (For example, a letter 
formed by arranging the blocks in a certain pattern with some spacing between them). 

8.6.2 Partial Ordering 

Hence, these scale values do not induce any total ordering of regions with respect to their 
relative size, but rather a partial ordering. By and large the following property holds: If t wo 
structures overlap, i.e., if a fine scale structure is superimposed onto a coarser scale structure, 
then the coarser scale structure will be given a greater scale value than its superimposed fine 
scale structure. On the other hand, if similar structures are located sufficiently far apart 
from each other in an image then the reverse relation may actually hold . 

However, the situation is even further complicated. At blob spli ts, the blob existing 
after the bifurcation will be larger than the blobs existing before the bifurcation. Therefore, 
the scale values2 given by Assumption 8.2 give useful information about the relative size3 

of two objects only when the objects overlap and in addition they can be related to each 
other through a series of bifurcations free from blob splits and blob creations. 

8 .6.3 Several Instances of a Region 

As can be seen e.g. with the calculator in Figure 8.2 it may happen that given some 
region in the image, several instances of blobs can be detected corresponding to that region. 
This is a common phenomenon in the scale-space primal sketch, arising because a large 
(significant) blob merges with a small (insignificant) blob and thus forms a new scale
space blob. From the definition of a scale-space blob, we have that it is delimited by two 

2 However, the scale interval between the appearance scale and the disappearance scale, during which an 
object exists, should be applicable for such determination and it see ms plausible that there should exist some 
scale level within the scale interval that could b e mapped to the size of the object, at least for regions of 
relatively round shape. The appearance scale of a blob is mainly determined by t he interaction between 
the blob and interfering finer scale structures. When no fine-scale struc tures are present, the appearance 
scale will be zero. Similarly, the disappearance scale of a blob is determined by the interference between t he 
blo b and the coarser scale structures in the surrounding. When no coarser scale structures are present, t he 
disappearance scale will be infinite. 

3 0 n the other hand it is not even clear that it is desirable to use the scale values for size comparisons, 
since the size of a region can be easily estimated from the size of its blob support region. 
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scales where bifurcations occur. This means that every time a bifurcation takes place, the 
(involved) grey-level blobs existing before the bifurcation will be treated as belonging to 
different scale-space blobs than the (involved) grey-level blobs existing after the bifurcation. 

8.6.4 Number of Layers: Complexity 

Observe that the number of layers in the output gives a coarse measure on the complexity of 
an image. A relatively simple image will in general give rise to fewer layers than a complex 
one. In the case when all significant blobs of an image can be drawn in the same layer 
without overlap, it is natural to say that to every point in the image there corresponds just 
one stable scale, or shorter, that there is only one scale level in the image, (even though 
the actual value of the scale parameter may vary substantially between different blobs). 
Similarly, the keyboard of the telephone can be said to have two scales- one for the set of 
buttons and one for the keyboard as a whole. 

8.7 Additional Experiments 

In order to further demonstrate the properties of the scale-space primal sketch and the 
suggested way to extract image structures from this representation, we give some more 
experi mental results4 in Figures 8.8-8.27. See also Section 9.4 for an application to the 
analysis of aerosol images and Section 9.5 for examples with textures and medical data. 

Figure 8.8 and Figure 8.9 show an indoor table scene and the 50 most significant bright 
and dark blobs extracted from the grey-level image. In Figures 8.10·8.13 we display the 
boundaries of these blobs and also the results of superimposing the blob boundaries onto 
the original image. In order to give a rough idea of the signifi cance values, we have manually 
set different thresholds in "gaps" in the sequences of significance values. One can observe 
that in this scene, most of the meaningful objects are brighter than the background and 
that t hose objects are found. In addition, the bright blobs respond also to illumination 
phenomena on the table, in the background as well as to specularities. The detected dark 
blobs correspond to the two background regions and various shadows due to the objects on 
the table. 

For one object, the curved pipe in the right part of the image, only the specularity on 
its s urface is detected. The object fails to stand out as a single blob unit. This illustrates 
a characteristic property of the representation, namely that a region, which borders upon 
both a darker region and a brighter region, cannot be expected to be detected as a single 
blob region by this method. According to the blob definition (compare with Figure 5.1 and 
Figure 5.6), only regions that are either brighter or darker than their background will be 
treated as "blobs", see Figure 8.7 . In order to be able to detect regions also of this latter 
type it seems necessary to include more information into the analysis. This issue will be 
considered in further work. 

Figures 8.14-8.17 show similar results from a scattered office scene, where most of the 
important objects are darker than their background. One can see that the handle of the 

4 All t hese experiments have been performed with images of size 256 x 256 pixels. The scale-space con
volutions were carried out with floating point calculations and the image boundaries were treated in t he 
following way: When detecting bright blobs on dark background t he image was extended using its minimum 
image value. Con versely, when looking fo r dark blobs on bright background the image was extended with its 
maximum grey-level value. The infinite support convolution kernel (the discrete analogue of the Gaussian 
kernel) was truncated at the tails such that the truncation error c was guaranteed not to exceed 0.0005. 
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dark blob 

Figure 8.7: According to the definition of grey-level blob, only regions that are either brighter or 

darker than their background will be classified as blobs. A region, which borders upon both a darker 

and a brighter region, does not satisfy the blob definition , which m eans that the plateau in the figure 

will not be detected as one unit by the algorithm. In order to extract such regions it seems necessary 

to include some kind of gradi ent information into the analysis. 

hammer, the heap of screws, the black tape reel, the label of the hammer and some other 
dark regions are all detected as dark blobs. The grey tape r~el is not detected as a blob, 
since it bounds upon both a region that is darker and a region that is brighter. One can 
observe that the blob corresponding to the handle of the hammer spreads relatively far from 
the boundary of the actual object. This phenomenon occurs for isolated objects far away 
from other competing blobs of the same polarity. However, this effect does not imply any 
severe problems and can be easily compensated for, for instance when matching blobs to 
edges, see Section 9.1.2.5 for a description. As bright blobs we find the holes in the two tape 
reels as well as various regions on the table. 

Figure 8.18 and Figure 8.20 display the extracted dark and bright blobs from an outdoor 
image of a house, a scene where there are both dark and bright objects with meaningful 
interpretation. Figure 8.19 and Figure 8.21 show the boundaries of these blobs. One can 
observe that the windows of the house are detected as well as various parts of the wall, the 
sky and parts of the tree. 

Finally, as a test of the stability of the representation, Figures 8.22-8.25 display the 
results from another image of the same telephone and calculator as in Figure 8.2, where we 
have changed the background to a textured piece of cloth and also moved the camera and the 
objects in the scene. One can observe that the important regions (receiver, cord, keyboard, 
buttons, calculator) are still being found . The bright blobs respond to the telephone, the 
hole in the cord, other regions delimited by dark objects, various illumination phenomena 
in the background, the bright buttons of the calculator and, actually, the regions between 
the buttons of the telephone. 

For comparison , corresponding results for the original telephone and calculator image 
are shown in Figures 8.26-8.27. One observes that similar types of regions are extracted in 
the two cases, both for the dark and the bright blobs, although the interference effects for 
the coarse scale blobs are different, mainly because the distance between the telephone and 
the calculator has been changed. 
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Figure 8.8: The 50 most significant bright blobs from a table scene. {In the last case the whole 
image has been classified as one blob). 
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F ig ure 8 .9: The 50 most significant dark blobs from a table scene. 
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Figure 8.10: Boundaries of the bright blobs extracted f rom the table scene. (a) The 50 most 

signifi cant bright blobs. (b) Low threshold on the significan ce measure set in one of the "gaps" in the 

sequence of significance values. {c) High threshold on the significance measure set in another "gap". 

Figure 8 .11: Boundaries of the extracted bright blobs superimposed onto the original grey-level 

image. The lower threshold has been used on the significance values. 

190 




Figure 8.12: Boundaries of th e dark blobs extracted from the table scene. (a) T he 50 most significant 

dark blobs. (b) Low threshold on the significance measure set in one of the "gaps" in the sequence of 

significance values. (c) High threshold on the significance measure set in another "gap ". 

Figure 8 .13: Boundaries of the extra cted dark blobs superimposed onto the original grey-level image. 

T he lower threshold has been used on the significance values. 
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Figure 8.14: The 50 most significant dark blobs from a scattered offi ce scen e. 

Figure 8 .15: Boundaries of the dark blobs extra cted from the scattered office scene. ( a) T he 50 

m ost significant blobs. (b) L ow thresh old on th e significan ce m eas ure set in one of the "gaps" in the 

sequence of signific ance values. (c) High threshold on the significance meas ure set in another "gap ". 
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Figure 8.16: The 50 most significant bright blobs from a scattered office scene. 

Figure 8.17: Boundaries of the bright blobs extracted from the scattered office s cene. ( a) The 50 

most significant blobs. {b) Low threshold on the significance measure set in one of the "gaps " in th e 

sequence of significance values. (c) High threshold on the significance m easure set in another "gap ". 
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Figure 8.18: The 50 most significant dark blobs from an image of the Godthem Inn at Djurgarden, 

S to ckholm. 

Figure 8.19: Boundaries of the dark blobs extracted from the Godthem Inn image. (a) The 50 

most significant blobs. (b) Low threshold on the significance measure set in one of th e "gaps" in th e 

sequence of significance values. (c) High threshold on the significance measure set in another «gap". 
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Figure 8.20: The 50 most significant bright blobs from an image of the Godthem Inn at Djurgarden, 

Stockholm. 

Figure 8.21: Boundaries of the bright blobs extracted from the Godthem Inn image. (a) The 50 
most significant blobs. (b) Low threshold on the significance measure set in one of the "gaps" in the 
sequence of significance values. (c) High threshold on the significance measure set in another "gap". 
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Figure 8 .22: T he 50 most significant dark blobs from a teleph one and calculator im age. The 

background is t extured. 
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Figure 8 .23: B oundaries of the dark blobs extracted from the telephone and calculator image with 

t extured background. {a) The 50 m ost signifi cant blobs. {b) Low threshold on th e significance measure 

set in one of the "gaps " in the sequence of significance values. (c) High threshold on the significance 
m easure set in another "gap". 
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Figure 8.24: The 50 most significant bright blobs from a telephone and calculator image . The 
background is textured. 

Figure 8.25: Boundaries of the bright blobs extra cted from the telephone and calculator image with 

textured background. {a) The 50 most significant blobs. (b) Low threshold on the significance measure 

set in one of the "gaps" in the sequence of significance values. (c) High threshold on the significance 

m easure set in another "gap". 

197 



Figure 8.26: The 50 most significant bright blobs from the telephone and calculator image with 

smooth background. (The dark blobs were shown in Figure 8.2.) 

Figure 8.27: Boundaries of the dark and bright blobs extracted from the telephone and calculator 

image with smooth background. (a) The 50 most significant dark blobs. (b) The 50 most significant 
bright blobs. 
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Chapter 9 

Guiding Early Visual Processes 

Many methods in computer vision and image analysis implicitly assume that the problems 
of scale detection and initial segmentation have already been solved. One example is in 
edge detection, where the selection of step size for the gradient computations leads to a 
trade-off problem. A small step size gives a small truncation error, but the noise sensitivity 
might be severe. Conversely, a large step size will in general reduce the noise sensitivity, 
but at the cost of an increased truncation error. In the worst case case one may even miss 
the slope of interest and get meaningless results if the difference quotient approximating 
the gradient is formed over a wider distance than the size of the object in the image. The 
problem originates from the basic scale problem, namely that the issue of inherent scale 
must be considered when selecting a mask size for computing spatial derivatives. Other 
examples can be obtained from most "shape from X" methods, which in general assume 
that they are applied to a domain in the image where the underlying assumptions are valid, 
corresponding to e.g. a region in the image corresponding to one facet of a surface etc. 

The methodology we will develop in this section states that the qualitative scale and 
region information extracted from the scale-space primal sketch can be useful for guiding 
othe1· visual processes and will simplify their tasks. More specifically, we propose that when 
spatial derivatives are needed, they can be computed from the scale-space representation at 
the scale given by a scale-space blob. Furthermore, the blob support regions can provide 
coarse size information to other algorithms. We suggest that this type of information can be 
used for delimiting the search space for further processing, for example such that matching 
could be carried out regionally in a neighbourhood of a blob instead of globally over the 
entire image. 

Of course, the amplitude of spatial derivatives can in general be expected to decrease 
by the scale-space smoothing. Therefore, one cannot expect the actual numerical values 
of derivatives computed from the coarse scale representations to be quantitatively accurate. 
However, for finding qualitative features, not depending on the actual scaling of the intensity, 
like e.g. edges, local extrema, singularities in general etc, the detection step can be carried 
out at a coarse scale. Then, once the existence of a feature has been established, if precise 
numerical values are required, it should be possible to compute those in a second step e.g . 
by fitting an appropriate model, to the original data. 

9.1 Application to Edge Detection 

As a. first example of the suggested way to use the scale-space primal sketch , for guiding other 
processes in early vision, we present an integration of the output from this representation 
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with an edge detection method known as edge focusing, developed by Bergholm [Ber87, 
Ber89]. 

The leading idea is to use the output scale information to guide an edge detection scheme 
working at an adaptively determined level of scale. We demonstrate that this task can be 
relatively easy and that there is no need for thresholding on gradient magnitude, since the 
image has been subjected to an appropriately selected amount of blurring. Hence, the detec
tion step will be safe. The localization could on the other hand be poor due to t he natural 
shape distortions that occur at coarser levels of scale in scale-space. However, the local
ization can be improved using the edge focusing method, which traces t he safely detected 
edges at coarse scales to corresponding and better localized edges at finer scales. Hence, 
the resulting method will achieve a good compromise between the two conflicting goals in 
edge detection, namely eliminating the noise without distorting the localization of the edges. 
Another way to phrase this property is that we circumvent the problems connected with 
simultaneous detection and localization, that have been discussed by e.g. Canny [Can86]. 
Thus, we do not only perform edge detection without any need for thresholding. We are 
also more likely to get edge elements with meaning, since they correspond to boundaries of 
objects, which have given rise to significant blobs in the scale-space primal sketch. 

scale information edge focusing 

blobs from the edge detection + localized edges 
scale-space matching at at finer scales 
primal sketch coarse scale 

Figure 9.1: Schematic view over the proposed integration of the scale-space primal sketch module 

with edge detection. Given a significant scale-space blob, edge detection is performed at the appropri

ate scale of the blob scale-space blob. Then a matching step between the support region of th e blob and 

the edges is carried out. Finally, the matched edges are localized to finer scales using edge fo cusing. 

We do not maintain that this part of the presentation describes any "optimal way" to 
solve every occurring subproblem. Instead, the intention is to illustrate how a connection 
between the scale-space primal sketch with other modules can be done. The application 
supports the claim we make, that if the image contains significant structures, which stand 
out from the surrounding, then they are extracted in such a way that the output information 
from the scale-space primal sketch is useful for further processing. We will now describe the 
actions of the different submodules in more detail. 

9.1.1 Edge Detection at a Proper Scale 

The edge detection method used here is by intention simple, since we want to illustrate 
that edge detection becomes easier once the earlier mentioned scale and region information 
is available. The image is smoothed to the scale level given by a significant blob from the 
scale-space primal sketch . Then x- and y-gradients are computed with the Sobel operator 
and a non-maximum-suppression step is performed to get thin edges. In order to suppress 
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spurious noise points at the finest levels of scale we accept only edge segments having a 
length exceeding, say, 2 pixels. 

9.1.2 Matching Blobs to Edges 

Associating blobs with edges leads to a matching situation. However, we argue that also 
this task becomes simpler when performed at a proper level of scale. The matching criterion 
we have made use of in this work is based on spatial coincidence, and is a combination of 
three different conditions: 

9.1.2.1 Geometric Coincidence 

The edge segment should "encircle" or be "included" in the blob. A convenient way to 
formulate such a criterion is a follows. Let B be the set of pixels contained in the support 
region of a blob and let E be the set of pixels covered by an edge segment. Further , given 
any region R define the quantities Xmin' Xmax by 

Xmin(R) = min Xj Xmax(R) = max Xj (9.1)
(x,y)ER (x,y)ER 

and the quantities Ymin, Ymax analogously. Now, an edge segment E will be regarded as a 
matching candidate of a blob B if1 

Xmin(E) :5 Xmax(B)i Xmax(E) ~ Xmin(B) (9.2)
Ymin(E) :5 Ymax(B)i Ymax(E) ~ Ymin(B) 

In order to reduce the directional sensitivity of this criterion it is suitable to require that 
similar conditions hold also in a coordinate system rotated by 45 degrees. This criterion 
constitutes an approximation to the property that it should be impossible to draw a straight 
line separating the edge from the blob, see Figure 9.2 for an illustration. The lat ter property 
is satisfied if (9.2) holds in an arbitrarily rotated coordinate system. We define 

Definition 9.1 (Extreme coordinate blob-edge matching candidate) 
An edge E is said to be a (four-directional) extreme-coordinate matching candidate of a blob 
B if the conditions in (9.2} hold in the standard xy-coordinate system as well as in a similar 
coordinate system rotated by 45 degrees. 

9.1.2.2 Proximity 

The edge segment should not be too far away from the blob boundary. In other words the 
edge segment should comprise at least some pixel located near the boundary of the blob. 
We state the necessary condition 

(9.3) 

where d(t) is a typical spatial length at the current level scale2 • To summarize, 

1This condition is not the sa.me requirement a.s En B "f. 9. 
2 Here, we ha.ve set this dista.nce to the squa.re root of a.n experimentally determined typical blob a.rea., 

Am(t), a.t the current level of scale, (see Section 5.5.3.1 for further deta.ils). 
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(a) 

Figure 9.2: (a) The geometric extreme-coordinate condition means that the edge should eithe r· 

surround the blob or be included in it. In this example edges E1 and E2 are treated as matching 

can didates of the blob while E 3 and E 4 are not. (b) This criterion is an approximation to the 

requirement that it should be impossible to draw a straight line separating the line from th e blob. 

Definition 9.2 (Proximity blob-edge matching candidate) 
An edge E at scale t is said to be a (weak) proximity blob-edge matching candidate of a 
blob B at the same scale if the minimum distance between the blob and the edge is less than 
d(t) / 2, where d(t ) is a characteristic length at scale t . 

The main purpose of the stripe around the boundary of the blob is to avoid edges corre
sponding to the interior of a. blob from being interpreted as belonging to the blob boundary. 
It will prevent interior edges corresponding to e.g. surface markings from being matched to 
the blob boundary and also rule out edges far outside the blob. The width of this stripe is 
not critical, since at coarse scales the edges will usually have a. substantial width and there 
will be an interval around the edge where there are no other edges. 

9.1.2.3 Voronoi Diagram of the Grey-Level Blobs 

The edge segment should not be too strongly associated with other blobs. We compute a. 
Voronoi diagram of the grey-level blob image at the given level of sca.le, using a distance 
transformation. An edge segment is regarded as a. matching candidate of a. blob if it has at 
least have one pixel in common with the Voronoi region associated with the grey-level blob, 
see Figure 9.3(b ). We define 

Definition 9 .3 (Voronoi blob-edge matching candidate) 
Given a blob B at a certain scale, let V be the Voronoi region corresponding to B in the 
Voronoi diagram of the grey-level blob image at that scale. Then, an edge E at the same 
scale is said to be a (weak) voronoi blob-edge matching candidate of B if the edge has at 
least one pixel in V. 

This condition prevents edges, which are closely related to one particular blob, from being 
associated with other blobs. For instance, if two grey-level blobs share the same delimi ting 
saddle point, then the stripe around one of the blobs will cover a. part of the other blob. 

9.1.2.4 Resulting Matching Procedure 

For an edge segment to be accepted as a matching candidate of a. blob, it must be a. 
matching candidate with respect to all these three criteria.. Hence, the matching is relatively 
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(a) 
E 

Figure 9.3: (a} The main purpose with the stripe around the blob is to prevent edges corresponding 
to th e interior of the blob and edges far away from the blob from being associated to the blob boundary. 
{b) The purpose with the Voronoi region is to prevent edges strongly related to one blob from being 
associated with other nearby blobs. 

restrictive. But again, the situation is improved by the fact that it is performed at a coarser 
scale. Once we know that a spatial region has given rise to a large blob at some level of scale, 
it seems very improbable that conflicting edges could appear at the same level of scale, since 
most interfering fine-scale structures ought to be suppressed by the scale-space smoothing. 
Figure 9.4 and Figure 9.5 illustrate two such matching situations from the toy block image 
and the telephone and calculator image respectively. We display the blob to be matched, 
the extracted edges at the scale level given by the blob, t he grey-level blobs at the same 
level of scale, the Voronoi diagram of t he grey-level blob image and the matched edges. 

The main problem with this matching procedure is that it does not include any mech
anism for breaking up long edge segments into shorter ones. The edge segment grouping 
is based just on connectivity between adjacent edge pixels. This means that t he edge seg
ments at coarser levels of scale may be very long , and spread far away from the boundary 
of the actual blob, see Figure 9.5 and also the examples in Figure 9.8 and Figure 9.10. It 
seems probable that further clues for distinguishing which edges should be associated with a 
certain blob could be obtained by studying the behaviour and the connectivity of the edges 
during the focusing procedure, see also Figure 9.10. 

Another situation where the matching could fail is for severely fragmented edges. Then 
the matching may be rejected by Definition 9.1 if the edge segments encircle but are located 
outside the blob support region. However, we have not found any such problems to occur 
in any experiments. 

More generally, we find the regions defined by the Voronoi diagram of the grey-level blob 
image and the region around the blob boundary as useful spatial regions (see Figure 9.4(e-f) 
and Figure 9.5( e-f )) to be associated with the blobs also for other types of matching purposes, 
see e.g. the work with junction classification in Section 9.3 and the more extensive discussion 
in Section 9.1.5 . 

9.1.2.5 Improving the Localization of the Blob Boundary 

For single isolated blobs, the proximity matching criterion in its original formulation can lead 
to problems. In such cases the boundary of the grey-level blob support region can spread 
far away from t he boundary of the actual "object" in t he image, since there will be no 
competing blobs in its neighbourhood delimiting its growth. Hence, the blob might extend 
far beyond the "actual boundary", but with a relatively fiat intensity slope (compare with 
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Figure 9.4: Illus trat ion of the matching procedure between blobs and edges for a blob from the 

telephone and calculator image. (a) A dark blob from the scale-space primal sketch which is to be 

matched (marked with black). ( b) Extracted edges (non-maximum suppression without thresholding) 

at th e scale /eve / given by the blob. (c) The grey-level blobs at the same level ofscale, i. e. all grey-level 

blobs at that scale level. (d) Voronoi diagram of the previous gre y-level blob image . ( e) The region in 

the Voronoi diagram corresponding to the treated blob. (Used in Criterion 3). (f) The stripe around 

the blob edge. Its width has been set to a characteristic length at the current level of scale . (Used in 

Criter ion 2). (g) T he resulting matched edges, that is the edges that have at least one pixel in both of 

the regions marked in Figures (e) and (f) and in addition satisfy the min-max coordinate criterion 

(Criterion 1} above about geometric coincidence with the blob. 
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Figure 9.5: Similar illustration of the matching procedure as above but for a blob from the toy 

block image. Note that one of the edge segments spreads far away from the blob since the matching 

algorithm does not include any mechanism for breaking up long edge segments into shorter ones. 

However, we will demonstrate below that the focusing procedure itself provides a cue for such deter

mination - at finer levels of scale the elongated edge will break up into two well s eparat ed sets of 

edges (see Figure 9.13) . 

the shape of the Gaussian at the tails) . This means that the edge matching by Definition 9.2 
might fail. In the extreme case, when there is just one local extremum in an image, the 
corresponding blob will actually get an infinite support region. In order to compensate for 
t his effect we clip3 the grey-level blob at a higher grey-level for bright blobs (and a lower 
level for dark blobs) than the previously defined base level, as to obtain a better localized 
blob boundary. This modified blob is then used for determining the stripe around the blob 
for matching according to (9.3). Empirically we have found that a clipping level4 of about 
35% (:::::: ~) of t he range between the minimum and maximum grey-levels within the blob 
gives a reasonable improvement in localization without seriously affecting blobs actually 
having nearby competitors. In this region the slope of the grey-level intensity function of 
t he blob is normally relatively steep and we will obtain a smaller blob with a better localized 
boundary. For blobs that are not isolated the effect of this clipping will usually be minor. 

T he actual value of the clipping level is not critical for the matching, since the stripe 
around the blob boundary is anyway intended just as a coarse descriptor of a region around 
the blob boundary for guiding the blob-edge matching. During all our experiments t his 
parameter has been kept unchanged. Other possible ways of overcoming this problem could 
be using a more advanced reasoning process in the matching step or by applying e.g. a snake 
(Kas87] attracted by high values of gradient magnitude in order to obtain the better localized 
"blob boundary" for matching. The initial position of the snake can be determined from 

3 T his clipping is performed only for the purpose of computing the blob boundary for matching. In all 
other situations we stick to the origina l definition of a grey-level blob. 

'In t hese units a clipping level of 0% corresponds to the original definition of grey-level blob and a clipping 
level of lOO% to clipping at the extremum point of the blob. 
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Figure 9.6: In the extreme case, a single isolated blob will have an infinite support region. In 

order to compute a spatial representative more useful for matching purpose, the blob boundary must 

be modified. A straightforward way is to clip the blob at a grey-level corresponding to a posit ion 

closer to the edge. For a Gaussian intensity profile the position of an edge defin ed by non-maximum 

suppression corresponds to a clipping level of about 61% (~ e- 112 ). H ere we use a clipping level of 

about 35% (~ e- 1) . 

-• 
Figure 9. 7: Illustration of the effect of clipping. {a) Original grey-level image (b) The ( unclipped) 

blob corresponding to the tape reel in the lower left corner. (c) The effect of clipping that blob. {d) 

The edges matched to the clipped blob. 

the position and the extent of the (possibly clipped) blob. However, in this implementation 
we have used the clipping method because of its algorithmic simplicity. 

9.1.3 Edge Focusing 

Edge focu sing, developed by Bergholm [Be r87, Ber 89), is a method for tracing edges t hrough 
scale-space. T he basic principle is to detect edges at a coarse scale in scale-space and then 
trace them to finer scales. Hence, the method achieves a good compromise between the 
two conflicting goals in edge det ection, namely; eliminating noise wit hout distorting the 
localization of the edges. 

It has been shown [Ber87, Ber89) that if the focusing p rocedure is performed such that t he 
scale step 6..a , expressed in a = ../i, is less than t t he n for most common edge configur a tions 
the edges are guaranteed to move not more tha n one pixel from one level to the next . In 
that case the matching will be trivial - to find the corresponding edges at the finer level of 
scale, it suffi.ces5 to perform edge detection in a one-pixel neighbourhood a round the edges 
at the coarser scale. 

'Ob viously, t here are situations where such a fixed scale sampling can lead t o problems, see Section 6.1. 1 
for a descriptio n. 
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In this application we initiate the focusing procedure from several scale levels , since the 
significant blobs from the scale-space primal sketch manifest themselves at different levels 
of scale. Hence, we presort the significant blobs in decreasing scale order. We start with 
the coarsest scale blob, detect edges at that level of scale and match the obtained edges to 
the blob. This gives the input for the focusing procedure, which then follows these edges 
to the scale given by the second blob. The edge detection and matching steps are repeated 
at this new level of scale and the resulting edges are added to the output from the previous 
focusing step. This new edge image serves as input for another focusing procedure, tracing 
the edges to the next finer level of scale etc. 

9.1.4 Experimental Results 

In Figure 9.8 and Figure 9.9 we illustrate some steps from the composed edge detection, 
blob-edge matching and edge focusing procedure for the telephone and calculator image. The 
left column shows the blob support region of the blob. The blob considered at the current 
level of scale is black. The other blobs from the scale-space primal sketch are displayed in 
grey. The middle column shows the edge image at the same level of scale. The matched 
edges have been marked with black, while the other ones are grey. Finally, the right column 
shows the result after focusing, just before a new blob is considered. In order to reduce 
the number of blob hypotheses treated, we have used a threshold on the significance value. 
The final result of t he focu sing procedure is shown in the lower right corner of Figure 9.9. 
Figure 9.10 and Figure 9.11 show corresponding results for the toy block image. 

Let us again mention that this method, which we call blob-initiated edge focusing, is 
not just another edge detector, but that the edge elements obtained are more meaningful 
entities, since they are associated with blobs and explicit scale information. 

9 . 1.5 Alternative: Individual Treatment of the Blob Hypotheses 

Instead of treating all hypotheses generated by the scale-space primal sketch simultaneously 
during the edge focusing phase they can of course also be treated separately. I.e. one can let 
each blob start up its own focusing scheme, which processes the edge segments matching that 
blob independently of the edges corresponding to other blobs. Then the relations between 
blobs and edges will be obvious and the interference effects between edge segments from 
different blobs during the edge focusing will be eliminated. 

Note that such an approach need not require much more computations than the previ
ously described method, provided that the edge images used for the focusing procedure are 
pre-computed6 . Then, the part of the processing that is repeated for different blobs will be 
just the matching between the scale levels, which is computationally inexpensive, since it 
only comprises a search in the eight-neighbourhoods around the processed pixels. 

Figure 9.12 and Figure 9.13 show the results after such individual focusing schemes 
applied to the blobs used for the matching illustrations in Figure 9.4 and Figure 9.5. Observe 
that in the second case the focusing algorithm resolves the problem with the elongated edge 
segment that previously spread far from the blob. At a fine level of scale it has split into 
two distinctly separated (groups of) edge segments. 

With this individual blob-initiated edge focusing we achieve a way of avoiding the com
monly occurring step of tracking and grouping related edge elements into edge segments. 
The matching between a blob and the edges at coarse levels of scale has already induced 

6The edge focusing algorithm is normally implemented using a fixed set of scale levels (Ber90). 
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Figure 9.8: Illustration of the composed blob· edge focusing procedure for the telezJhone and calculator 

image. The left column shows the active blob hypothesis. Its blob support region has been marked 

with black. The middle column shows the edg e image at the le vel of scale given by the previous blob. 

The matching edg e segments have been drawn black while the other edge pixels are gre y. The r ight 

column shows the fo cused edge. The scale and significance values for the different blobs are from top 

to bottom {101.6, J4.1} , (50.8, £5£.8), (3£. 0, 11.4} respectively. 
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Figure 9.9: Illustration of the composed blob-edge focusing procedure for the t elephone and calculator 

image continued. The scale and significance values for the different blobs are from top to bottom (25.4, 

660.9), {J4.3, 40.8), {6.4, 63.6) and {1. 3, 13.2) respectively. 
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Figure 9.10: Illustration of the composed blob-edge focusing procedure for the toy block image. The 

left column shows the active blob hypothesis. Its blob support region has been marked with black. The 

middle column shows the edge image at the level of scale given by the previous blob. The matching 

edge segments have been drawn black while the other edge pixels are grey. The right column shows the 

f ocused edge. T he scale and significance values for the different blobs are from t op to bottom (203.2, 

15.5}, {161. 3, 10.7), {20.2, 20.3} respectively. 
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Figure 9.11: Illustration of the composed blob-edge focusing procedure f or the toy block image con

tinued. T he scale and significance values for the different blobs are from top to bottom {12. 7, 52.2) , 

{12. 7, 4.6), {12. 7, 95. 7) and {8.0, 48.9) respecti vely. 
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Figure 9.12: Illustration of the individual blob hypot hesis treatment for a blob from the telephone 

and calculator image. (a) A blob from the sca le-space primal sketch. (b) Matched edges according to 

the procedure described above. (c) The result after focusing the edge down to finer scales (t =1.0). 

Figu re 9.13: Illustration of the individual blob hypothesis treatmwt for the a blob from the toy block 

image. ( a) A blob from the scale-space primal sketch. (b) Matched edges according to the procedure 

described above. {c) The result after focusing the edge down to fin er scales (t = 1.0). Note that the 

long edge segment that spread far from the actual blob has split into two separate edge segments. 
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a coarse grouping of edge pixels into higher order units. In addition, we explicitly have the 
relation to the blob, which gives scale information and coarse spatial information. Simi
larly, this approach induces a way of actually verifying or rejecting various kinds of blob 
hypotheses generated by the blob detection module. For instance, blobs due to noise (or 
illumination variations) can probably be rejected by studying the behaviour of their corre
sponding edges under defocusing in a manner similar to the classification of diffuse edges 
by Sjoberg, Bergholm (Sjo88, Ber89] and Zhang, Bergholm [Zha91]. 

We also find it possible that this kind of coarse edge grouping, combined with the blob 
information (and possibly also the Voronoi diagram of the grey-level blob image), can be used 
for delimiting the search space for higher order interp retations. We see potential applications 
in various grouping and matching problems like model matching, Hough transforms, tests 
for parallel lines, abstractions of edge descriptors etc. In other words, we believe that this 
kind of coarse information lends itself naturally to qualitative reasoning. However, there is 
still more work to be done in order to explore these suggestions. 

9.1.6 Conclusions 

The result from these experiments can be interpreted in many ways. We have used the 
output from the scale-space primal sketch to control an edge focusing procedure. Hen ce, we 
have eliminated two of the tuning parameters used in the edge focusing algorithm, namely 
the initial scale for edge detection and the threshold on gradient magnitude. What remains 
undetermined is the stop scale, i.e., the scale down to which the edge focu sing should be 
performed. In this work it has throughout been set to t = 1, a scale where the sampling 
effects due to the discrete grid start to become important, (see e.g. the comparisons between 
different methods for implementing scale-space smoothing in Chapter 4). It seems plausible 
that some further guidance for this selection could be obtained by studying the behaviour of 
the focused edges in scale-space, compare with the classification of diffuse edges in Sjoberg, 
Bergholm (Sjo88, Ber89] and Zhang, Bergholm [Zha91]. 

This integration of the two algorithms exemplifies the previously mentioned guidance of 
the focus-of-attention. Note that the processing initiated by the scale-space primal sketch 
is performed only for a small subset of the image data. Hence, the resulting method relates 
to the idea of a "focused beam", derived by Tsotsos [Tso90] from complexity arguments. 

A more immediate interpretation of the result s is that we have selected a subset of the 
edges in the edge image at the finer level of scale. In contrast to the result from a raw edge 
detection scheme, we know that these edge elements are more meaningful entiti es. They 
are associated with significant blobs, and the scale information is explicit. Note that label 
information for the edge segments can be easily inherited during the edge focusing process. 
Hence, even if the different blob hypotheses are treated simultaneously in the same focu sing 
process, we can keep track of which blobs have given rise to a specific edge at an y level of 
scale during the edge focusing. 

T he experiment also illustrates that the dual concepts "region " and "edge" can be 
matched without severe difficulties , provided that the matching is performed at a proper 
level of scale. 

The most important conclusion one can draw from this experiment is that it clearly 
demonstrates that the qualitati ve output information from the scale-space primal sketch is 
useful in guiding and simplifying later stage processing. We shall now exemplify this in 
multi-spectral classification. 
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9.2 Application to Histogram Analysis 

The scale-space primal sketch is well s uited for automated cluster detection, since it is de
signed for detection of bright blobs on dark background and vice versa. Hence, it lends itself 
as a natural module for peak detection in algorithms based on histogramming techniques. 
Although it is well-known that histogram-based segmentation hardly can be expected to 
work globally on entire images (due to illumination variations, interference because of many 
regions etc), such methods can often give useful results locally in small windows where only 
a few regions of distinctly different characteristics (e.g. colour or grey-level) a re present. 

9.2.1 Experimental Results: Histogram-Based Colour Segmentation 

' \ 
\ ~ 

~ .J 
-·-·-

-.--

Figure 9.14: Histogram-based colour segmentation of a fr·uit bowl image: (a) Grey-level image. (b) 

Histogram over the chroma information. (c) Boundaries of the 6 most significant blobs detected by 

the scale-space primal sketch. (d)-(i) Backprojections of the different histogram blobs to the original 

image (in decreasing order of significance). The pixels correspo11ding to the various blobs have been 

marked in black. (The region in Figure (f) is the union of the regions in Figures (d), (e) and {i)) . 

In Figure 9.14 and Figure 9,15 we illustrate how the scale-space pri mal sketch can constitute 
a helpful tool in such histogram modality analysis of multi-spectral data. We have accu
mulated histograms7 over the chroma information and used the scale-s pace primal sketch 

7T he colour images have been converted from the usual RGB format to the CIEu*v* 1976 format, see 
e.g. (Bil82], which separates the intensity and the chro ma information . The histogram is form ed only over 
the chroma information, ignoring the inte nsity in formation . 
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Figure 9.15: Similar histogram-based colour segmentation of a detail from an office scene. The 

image s hows a small window from a bookcase with two binder:s (yellow and blue) on a shelf made of 

(yellowish} wood. (a) Grey- level image. (b) Histogram over the chroma information. (c) Boundaries 
of the 5 most significant blobs detected by the scale-space primal sketch . (d)-(h} Backprojections of 

the different histogram blobs to the original image (in decreasing order of significance). 
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for detecting peaks and clusters in the histograms. We see t hat the extracted blobs in
duce a meaningful partitioning of the histogram corresponding to regions in t he image with 
distinctly different colours. 

Of course, there is a decision finally to be made about which peaks in the histogram 
should be counted as being significant. However, we hypothesize that the significance values 
given by the scale-space blob volumes reflect the situation in a manner useful for such 
reasoning, especially since the regions around the peaks are extracted automatically. In these 
examples (single) thresholds have been set manually in "gaps" in the sequences of significance 
values. For the frui t bowl scene the accepted blobs had significance 42.6 (background) , 8.3 
(grapes), 3.6 (oranges), 3.1 (apples), 3.0 (bowl) while the significance values of the rejected 
blobs were 2.0 and less (in decreasing order 2.0, 1.9, 1.8, 1.4, 1.3, 1.1, 1.1, 1.1, 1.0, ... ). 

The significance values of the displayed blobs from the office scene were 187.9 (blue 
binder, large blob), 173.7 (blue binder, small blob), 170.1 (yellow binder), 80.6 (shelf) and 
66.7 (yellow binder and shelf). As we see, two blobs corresponding to the blue binder have 
been detected. This is a common phenomenon in the scale-space primal sketch, that arises 
because a large blob merges with a small (insignificant) blob and forms a new scale-space 
blob. Two such duplicate blobs corresponding to the yellow binder (significance 18.0) and 
the shelf (significance 17.9) have been suppressed. The remaining blobs had significance 
values 2.5, 2.0, 2.0, 2.0, 1.2, 1.2, 1.2, 1.1 and less . 

9.2.2 Sensitivity to Quantization Effects 

It can also be noted that this peak detection concept will be less sensitive to quantization 
effects in the histogram acquisition than many traditional peak detection methods. The 
problems due to too fine a quantization in the accumulator space will be substantially 
reduced, since the scale-space blurring will lead to a propagation of information between 
different accumulator cells. Thus, even though the original histogram might have been 
acquired using "too many and too small" accumulator cells, large scale peaks will be detected 
anyway, since the contents of their accumulator cells will merge to large scale blobs in scale
space after sufficient amounts of blurring. 

Finding peaks in histograms is a problem that arises in many contexts. Let us point 
out that the case with colour-based histogram segmentation has been considered just as one 
possible application of the scale-space primal to histogram analysis. Because of the general 
purpose nature of this tool we think that it could be applicable also to other types of similar 
techniques such as Hough transforms, texture classification etc. 

9.3 Application to Junction Classification 

Brunnstrom et al. [Bru89, Bru90a] have shown that a reliable classifi cation of junctions 
can be performed by analysing the modalities of local intensity and directional histograms 
during an active focusing process. 

In this section we will first briefly review the main ideas behind the approach and then 
outline how the scale-space primal sketch can be useful in providing context information 
necessary for this procedure. It should be emphasized that the treatment here describes 
on-going work. Anyway, we find the presentation useful in illustrating some basic ideas 
about how the scale-space primal sketch can interact with other processing modules in an 
active vision situation. 
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9.3.1 Background: Classifying Junctions by Active Focusing 

The basic principle of the junction classification method is to accumulate local histograms 
over the grey-level values and the directional information around candidate junction points 
(given by some interest point operator). Then, the numbers of peaks in the histograms can 
be related to the type of junction according to the following table: 

Intensity Edge direction Classification hypothesis 
unimodal 
bimodal 
bimodal 
trimodal 
trimodal 

any 
unimodal 
bimodal 
bimodal 
trimodal 

noise spike 
edge 

1-junction 
T-junction 
3-junction 

Table 9.1: Basic classification scheme for local intensity and directional distributions around a 

candidate junction point (adapted from Brunnstrom et a/ (J990b). 

The motivation for this scheme is that for example, in the neighbourhood of a point where 
three edges join, there will (generically) be three dominant intensity peaks corresponding to 
the three surfaces. If that point is a 3-junction (an arrow-junction or aY-junction) then the 
edge direction histogram will (generically) contain three main peaks, while for aT-junction 
the number of directional peaks will be two. Similarly, at an L-junction there will be two 
intensity and two directional peaks. Noise spikes and edges must be considered, since interest 
point operators like those proposed by Moravec (Mor77] or Kitchen and Rosenfeld (Kit82] 
tend to give false alarms near such points. Situations with more than three peaks in either 
the intensity or the directional histogram are treated as non-generic or as corresponding to 
surface markings. 

Of course, the result from this type of histogram analysis cannot be regarded as a 
final classification, since the spatial information will be lost in the histogram accumulation. 
One obtains a hypothesis that must be verified in some way, e.g. by backprojection into the 
original data. Therefore, this algorithm is embedded in a classification cycle, see Figure 9.16 
for an overview. More detailed information about the different submodules and how they 
communicate is given in (Bru90a, Bru90b]. 

9.3.2 Setting Window Size from Blob Information 

However, taking such local histogram properties as the basis for a classification scheme leads 
two obvious questions: Where should the window be located and how large should it be? We 
believe that the scale-space primal sketch can provide valuable clues for both these tasks. 

In order to estimate the number of peaks in the histogram , some minimum number of 
samples will be required. With a precise model for the imaging process as well as the noise 
characteristics , one could conceive deriving bounds on the resolution, at least in some simple 
cases. However, as will be developed further below, direct setting of a single window size 
immediately valid for correct histogram classification seems to be a very difficult or even 
impossible task . 

Therefore, what is made use of instead is the process of focusing. Focusing means that 
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Figure 9.16: Schematic view over the junction classification c ycle. A pair consisting of an interest 
point matched t o a blob from the scale-space primal sketch gives rise to a series of windows of different 
size and resolution over which histograms are accumulated. The modalities of these histograms are 

co mpared to th e generic cases and th eir stability measured. This gives a hypothesis about the possible 

nature of the junction candidate, which is tested by backprojection into the original image. If it 

cannot be verified then additional data are acquired, invoking a new analysis cycle in a closed-loop 
fashion. (From Brunnstrom et al. {1990b)). 

the resolution is increased8 locally in a continuous manner (even though we still have to 
sample at discrete resolutions). The method is based on the assumption that stable responses 
will occur for the models that best fit the data, which relates to t he systematic parameter 
variation principle described in Section 8.2.1. 

Assuming that we have found a point of interest , we are to invoke the focusing procedure 
analysing local histograms. This calls for some mechanism for actually setting an initial 
range of window sizes, since the size of a suitable neighbourhood region around a junction 
candidate will in general vary both within and between images. 

9.3.2.1 The Scale Problem in Junction Classification 

If the window is too large, then other structures than t he actual corner region around the 
point of interest might be inclu~ed in the window, and the histogram modality would be 
affected. Conversely, if it is too small then the directional histogram could be severely biased 
and deviate far from the ideal appearance in case the physical corner is slightly rounded 
a scale phenomenon t hat seems to be commonly occurring in realistic scenes9 • A too small 
window might also fall outside the actual corner if the interest point is associated with a 
localization er ror. An example illustrating these effect s for a rounded corner of a plastic 
detail is shown in Figure 9.17. 

8 Currently, for ex perimentatio n purpose, this process ha.s been 6imulated by c hangi ng the window size 
in a.n (already ta.ken ) ima.ge ha.ving a. sufficiently high resolution to clearly re6ol ve the structures we a.re 
inte rested in. Ho wever, the long term goal of the work is to integrate the a.na.lysis with a. ca.mera. system 
allowing the algorithm to acquire new images of higher resolution in situations where the current sampling 
density is not sufficient for resolving the stru~tures under study. 

9 This effect does not occur for a.n ideal (sha.rp) corner, for whic h the inner scale is zero. 
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Figure 9.17: Illustration of the scale problem in junction classification. We show the effects of 
varying the window size around a point near a rounded corner. The left column displays the treated 
subwindow, the middle column the intensity histogram and the right column th e directional histogram. 
One observes that a correct classification based on histogram modalities can be made only within a 
certain range of window sizes. {The directional histograms have been accumulated only for the edge 
pixels in the window.) 
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Therefore, the methodology we have adopted is to use the context information from the 
blobs for sett ing just coarse approximate values giving (genero us) upper and lower bounds 
on a focusing interval. Then, the intention is that the systematic variation of window size 
corn bined with the consistency check over parameter variation should allow for a more robust 
modality determination. 

9 .3 .2.2 Matching Interest Points to Blobs 

Associating blobs to interest points leads to a matching sit uation. The method we use here is 
based on similar criteria as the matching between blobs and edges described in Section 9.1.2. 
Currently, an interest point is related to a blob if the following two conditions about spatial 
coincidence are satisfied: 

1. 	The interest point should be at least coarsely associated with the blob, without being 
too strongly associated with other blobs. We compute a Voronoi diagram of the grey
level blob image at the given level of scale, using a distance transformation, and require 
the interest point to be included in the Voronoi region associated with the support 
region of the grey-level blob. This condition prevents points, which are closely related 
to one particular blob, from being associated to other blobs. 

2. 	The interest point should not be located too far away from the blob boundary. We 
require the minimum distance between the interest poin t and the blob not to exceed 
a typical spatial length at the current level of scale10 . 

However, compared to the previous blob-edge matching, this implementation suffers from a 
few shortcomings. One situation where this procedure will face problems is at sharp corners, 
see e.g. Figure 9.18 for an example. Because of the rapid edge drift in such cases, t he blob 

Figure 9.18: At sharp corners, the matching procedure between blobs and edges will face serious 

problems unless some additional precautions are taken. B ec ause of the rapid edge drift in such 

situations, the boundary of the blob may spread far away from the actual corner, which means that 

the matching may be rejected by the distance criter·ion. 

boundary may be ill localized at coarser scales. Hence, a n interest point located at a sharp 
corner could be missed, because the distance between the interest point and the boundary 
of the blob is too large. Of course, one could imagine increasi ng the width of the strip e, but 
then the number of false matches would increase. 

A possible way of explaining this weakness of the blob-point matching compared to the 
earlier mentioned blob-edge matching is that the scale information from the blobs is not 

10 Here, we nave (similarly to the blob-edge matching) set this paramete r to the square root of an experi
me ntally determined typical blob area, Am(t), at that scale level, (see Section 5.5.3.1) . 
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Figure 9.19: Illustration of the matching procedure between blobs and interest points for the toy 

block image. (a) The 50 most significant interest points obtained with the Moravec interest point 

operator. (b) A significant blob extracted by the scale-space primal sketch (black) and the other grey

level blobs (grey) at the scale level given by the scale-space blob. (c) Voronoi diagram of the previous 

grey-level blob image (Criterion 1). The boundaries between different regions are marked with black. 
(d) Stripe around the boundary of the blob. The width of the stripe has been set to a characteristic 

length at the current level of scale (Criterion 2). (e) The interest points matched t o the blob. (!) 
Resulting minimum and maximum window size around two of the interest points as set from the data 

given by the blob information. 
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used as extensively for the interest points as for the edges. In the case with edges, the 
detection step was performed at the same scale as the blob manifested itself, which meant 
that interfering structures at finer levels of scale had to a large extent been suppressed by the 
scale-space smoothing, something that simplified the matching problem considerably. Here, 
the interest points are detected directly from the raw grey-level image at the finest level of 
scale without any use of scale knowledge. However, we are currently investigating different 
promising approaches for including this information already in the phase of detecting the 
interest points, with the purpose of reducing the number of false blob-point matches and, 
possibly also, obtaining more reliable points of interest. By and large, we are considering 
three main strategies: 

• Incorporate some gradient information in 	the matching as well. One possibility could 
be to first compute edges at the scale given by the scale-space blob, follow the edges 
to finer scales using edge focusing and then carry out a matching between t he interest 
points and the edges, which in turn would give the matching relations between the 
interest points and the blobs. 

• 	 An extension of this method could be to start from t he edges delivered by the edge 
focusing algorithm and then detect interest points in a neighbourhood of appropriate 
size around those. Then, also the operator size for the interest point operator could 
be set from the coarse scale information. 

• Investigate if the interest points can be computed at the scale given by the scale-space 
blob. Some experiments with this approach will be described in Section 9.3.5. 

9.3.3 Computing Window Size from Blob Size 

Once we have a relation between a blob and an interest point, we fit an ellipse to the blob 
in order to get a characteristic length associated with the blob. The ellipse is given by a 
2 X 2 correlation matrix around the center of gravity of the blob support region. 

(9.4) 

The eigenvalues ~1 , ~2 of this matrix are extracted from 

(9.5) 

Then the minimum and maximum and window widths are set to some constants (amin ~ 
! - ~ and <l!mcu: ~ 2 - 3) times the lengths of the shorter and longer semi-axes re:,pec.tively. 

(9.6) 

Figure 9.19 shows a set of windows computed for a few interest points from the toy block 
image. This information constitutes the input data for the focusing procedure. 

9.3.4 Experimental Results 

Figure 9.20 shows the result of applying the composed classification procedure to a junction 
candidate near a corner of one of the dark blocks from the toy block image. We display the 
minimum and maximum window sizes as set from the blob information, together with the 
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Figure 9.20: Illustration of the results of applying the classification procedure to a junction candidate 

near a corner of one of the dark blocks from the toy block image. (a) Maximum and minimum window 

sizes as set from the blob information. (b) Enlargement of the corner for a window size takw as 

representative ofthe classification. (c) Backprojections of the various regions in the final classification 

(together with the edges superimposed). (d) Grey-level histogram. (e) Directional histogram. (f) 

Peak-sharpened directional histogram. This junction was classified as a 9-junction since both the 
grey-level and the directional histograms contained three prominent peaks. 

grey-level and directional histograms for a representative window size. For that window size, 
we also display an enlargement of the region around the corner as well as the back projections 
of the different histogram peaks together with the superimposed edges. Observe that the 
noise level is much higher in the directional histogram than in the grey-level histogram , since 
the number of samples for the directional statistics is substantially smaller. This junction 
candidate was classified as a 3-junction, since three prominent peaks were found in both the 
grey-level and the directional histograms. 

Figure 9.21 shows a more difficult situation with a detail from the hammer image. Here, 
the boundary between two of the regions in the corner is slightly curved, which implies 
that one of the directional peaks is relatively weak and widened. The poin t was classified 
as a T -junction, since three intensity peaks and two directional peaks were found in the 
histograms. More experiments with the method can be found in [Bru90b]. 

9.3.5 	 Detection of Candidate Junction Points Initiated by the Scale-Space 
Primal Sketch 

What has not really been considered in the treatment above is the problem of actually 
detecting candidate junction points. We used Moravec's interest point operator, which 
leads to thresholding problems if applied uniformly all over an image. In addition, there 
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Figure 9.21: Illustration of the results of applying the classification procedure to a junction candidate 

in the scattered laboratory scene . (a) The point under consideration is marked with a white pad {near 

the junction between the upper edge of the handle of the hammer and the left edge of the tape reel). 

(b) Enlargement of the corner for a representative window size. (c) Backprojections of the various 

regions in the final classification (together with the edges superimposed). (d) Grey-level histogram. 

(e) Directional histogram. (f) Peak-sharpened directional histogram. This junction was classified as a 

T -junction, since three peaks were found in the grey- level distribut ion and two peaks in the directional 

histogram. 

is one scale problem we have neglected , namely, that of the scale at which the il terest 
points should be detected. As we discussed in Section 9.3.2.1, realistic corners are usually 
rounded , which means tha t small size operators will have problems in detecting those from 
the original image. Moreover , we faced problems when matching interest points to blobs , 
to a la rge extent because no scale information was included in the matching procedure. 

Therefore, one would like to make use of the scale and region information already in the 
phase of detecting the interest points. In other words, we would like to detect the interest 
points at a coarser scale in order to simplify the detection and matching problems. Now, this 
poses a nother problem. Corners are usually treated as pointwise properties and are therefore 
regarded as v~ry fine scale features. At first glance, smoothing the image before detecting 
such points seems like a contradiction, because of the risk that important interest points 
disappear by this operation. However , for detecting coarse scale corners, corresponding to 
the rough outline of say a polygon-like object, this approach can be applicable for finding 
t he major corners, provided that the intensity contrast is sufficient. Therefore, it is desirable 
to have a n interest point operator with a good beh aviour in scale-space. A quantity with 

224 



" ~ 
'$. 

• *' 
'I ·' : :;· ~ 

"';·: 

C.J< 
' ' 

< ' 

< 

Figure 9.22: Illustration of the result of applying the level curve curvature operator at a co arse scale 
given by a significant blob from the s cale-space primal sketch. (a) A significant scale-spa ce blob from 

the s cale-space primal sketch (marked with black). ( b) The smoothed grey-level image at that level 

of scale. (c) The absolute value of the res caled level curve curvature. (The image has been inverted 

so that dark regions co rrespond to high values). (d) Raw grey-level blobs detected from that image. 

(Note the high noise s ensitivity in det ecting blobs from a single level of scale). (e) Boundaries of th e 

support regions of the 50 m ost significant scale-space blobs detected from the same image. 

reasonable such properties is the rescaled level curve curvature given by 

(9.7) 


This expression is basically equal to the curvature of a level curve, which can be expressed 
as 

Lx:rL~ + LyyL~ - 2LxyLxLy 
(9.8) "' = (L~ + L~)312 

The level cur ve curvature has, however, been multiplied with the gradien t magnitude11 as 
to give a stronger response where t he gradien t is high. The motivation behind this approach 
is that corners basically can be characterized by two properties: (i) high curvature in the 
grey-level landscape and (ii) high intensity gradient. Using just the level curve curvat ure is 
not sufficient, since then a large number of false alarms would be obtai ned in regions with 
smoothly varying grey-level intensity. By taking the absolute value of t he curvature, we 
treat positive and negative in the same way. Different versions of this operator, usually the 
level curve curvature multiplied by the gradient m agnitude raised to the power of one, have 

11 Raised to the power of 3 ( to avoid the division operation). 
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been used by several authors, see e.g. Kitchen , Rosenfeld (Kit82], Koenderink, Richards 
(Koe88], Noble (Nob88] , Blum (Blu90] , and Deriche, Giraudon (Der90]. 

Figure 9.22 shows the result of applying this procedure to a blob extracted from the toy 
block image. In (a) we show the treated blob, in (b) the grey-level image at the scale given 
by the scale-space blob and in (c) the rescaled level curve curvature computed in this way12 . 

Figure (d) displays the result of applying raw grey-level blob detection to the curvat ure 
image and (e) the boundaries of the 50 most significant scale-space blobs extracted from 
this data. One observes that curvature operation gives a relatively strong response near 
the corners of the treated blob, and that the blob-like regions detected from that data give 
coarse indications of where one search for candidate junctions points. A coarse estimate 
of the position of the candidate junction can be obtained from the curvature extremum 
in the blob region. In our further work we will inves tigate if it is possible to localize the 
interest point to finer scales in a way similar to edge focusing, or if the interest points can 
be computed within the blob support region directly from the data, given the coarse scale 
information. 

9.3.6 Summary and Discussion 

We have outlined how the scale-space primal sketch can be useful in dynamic situations 
like foc us-of-attention. We believe that such mechanisms are necessary in computer vision 
systems, if they are to perform their t asks in a complex, dynamic world. More specifically, we 
discussed how the scale-space primal sketch together with foveation , which means examining 
selected regions of the visual world at high resolution , can be incorporated in an active vision 
system. The main reason to why foveation is carried out is because the resolution in normal 
overview images will not always be sufficient to clearly resolve the fine-scale structures under 
study. Further motivations for this methodology are given in (Bru90b]. 

In this integration of the scale-space primal sket ch with junction classification, the scale
space blobs can be used for controlling the classification procedure as well as when detect
ing the junction candidates. The approach is similar to the blob-initiated edge focusing 
described in Section 9.1, in the sense that coarse hypotheses are generated about where to 
look, with associated coarse size information. However, there is still more work to be done 
in order to integrate these processing steps into a reasoning system. 

9.4 Example: Analysis of Aerosol Images 

As one example of how the scale-space primal sketch can be used for various image analysis 
t asks, we will in this section briefly describe a specific application that has arisen from a 
physical problem. We will be concerned with the analysis of a certain type of high-speed 
photographs of aerosols generated by nozzles for fluid atomization. A typical example of 
such an image is shown in Fig 9.23. What one perceives are some kind of clusters in the 
drop distribution, seemingly periodically spaced in the spread direction of the aerosol. If 
these events really exist , then the physical interpretation would be that there are periodical 

12 In the discre te implementation of this operation, the first o rder derivatives have been approximated by 
central differences, the second order derivatives with respect to x and y by the three-point operator V~ and 
the mixed derivative by repeated applicatio n of the central differe nces. In ot.her words, the discrete curvature 
is computed directly from the disc rete N-jet representation by pointwise operations (without any need for 
nearest-neighbour communications). 
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Figure 9.23: Photograph of an aerosol generated by a nozzle for fluid atomization (fuel injector). 

The time of exposure is approximately 20 nanoseconds. 

(or oscillatory) phenomena taking place in the fuel atomization process. This is a theo
retically interesting question, important for the deeper understanding of the combustion 
processes in combustors13 . Usually it is assumed that fuel injectors produce aerosols with a 
relatively uniform droplet distribution , but the high-speed photograph in Figure 9.23 seems 
to indicate that this is not always the case. One may speculate that the occurrence of such 
non-uniformities could represent a possible driver for abnormal combustion events, which 
in turn could result in a deteriorated emission situation possibly affecting the exhaust pro
duction and/or the fuel consumption. However, it is not easy to say directly that these 
periodic structures really are there, since they correspond to coarse scale phenomena while 
the dominating kind of objects in the image is small dark blobs, i.e., fine scale phenomena. 
Therefore it is of interest to develop objective methods for analysing these structures. 

Here we will demonstrate in a straightforward manner that: (1) these structures can 
be enhanced by a scale-space representation of the image and (2) they can be extracted 
automatically with the scale-space primal sketch. 

:Jcr een 
(film) 

Figure 9.24: Schematic view of a shadowgraph optical system used in the physical experiments for 

acquiring the aerosol images. The fluid, subjected to a pressure of about 0.1 MPa, enters the nozzle 

and becomes atomized. The short exposure time is accomplished by performing the experiments in a 

dark room and illuminating the test section with a short flash . 

9.4.1 Experimental Results 

13 Further information about the physical background to the problem can be found in (Lin90~ and (Va.l89a, 
Val89b, Va.l89c] . 
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Figure 9 .25: Grey-level and dar·k grey-level blob images of the aerosol image at scale levels t = 0, 
1, 2, 4, 8, 16, 92, 64 , 128, 256, 512 and 1024 (from top left to bottom right) . 
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It should be stressed that these data are extremely irregular with a very high noise level. 

Figure 9.26: Intensity variations in a central cross-section along the spread direction of the aerosol. 

Figure 9.26 displays the intensity variations in a cross-section of the image along the spread 
direction of the aerosol. Therefore, one could expect conventional segmentation techniques 
to have problems when applied to this type of data. 

In Figure 9.25 we show the resulting scale-space representations together with the ex
tracted blobs for a set of (logarithmically distributed) scale levels. As we can see, t he drop 
clusters, that we earlier perceived as periodic structures in the original image, now appear 
as large dark blobs at the coarser levels of scale ( t = 128,256, 512). Although the scale-space 
representation enhances these clusters, we still rely on a visual and subjective observer in or
der to extract and verify the existence of these periodic phenomena. Some natural questions 
that were raised from the application point of view were: 

• 	 Can any one(s) of these smoothed images be regarded as a proper description(s) of 
t he original image ? 

• 	 Which blobs can be regarded as significant structures in the image ? 

In Figure 9.27 we display the result of extracting the 50 most significant dark blobs from 
t his image together with the boundaries of the significan t blob. One can observe t hat t he 
periodically occurring drop clusters we perceived in the image are detected as significan t 
structures in the scale-space primal sketch. Since, in contrast to many other methods used 
in image analysis, this method is essentially free from ad hoc "tuning parameters", and 
arbi t rarily selected error criterions or thresholds, we feel that the features detected by this 
algorithm can be regarded as reflecting inherent properties of the image - they are not just 
enforced effects of t he analysis method. 

9.4.2 Conclusions 

We have seen that the scale-space primal sketch concept is a useful tool for automatic 
extraction of those periodic structures that were brought out by a scale-space representation 
of the aerosol image. Further experimen ts with this approach for analysing aerosol images 
are given in [Lin90~. This presentation is mainly intended to demonstrate the potential 
of using the scale-space primal sketch as a primary tool in this kind of image analysis 
applications. Of course, more work needs to be done in order to arrive at a fully automated 
analysis method for this particular problem . Nevertheless , we believe that there is a potential 
in the approach also for o ther kinds of very noisy or irregular data, as e.g. medical imagery. 
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Figure 9.27: Original aerosol image and the 50 most significant dark blobs determined from the 
scale-space primal s ket ch. 

Figure 9.28: The boundaries of the 50 most significant dark blobs in the aerosol image . 
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9 .5 Other Possible Applications 

Let us finally mention a few other problem areas, where we believe that this approach can 
also be applicable: 

9.5.1 Texture Analysis 

A basic problem in many shape from texture algorithms concerns how to detect texture 
elemen ts, texels. We believe that t he blobs extracted from the scale-space primal sketch can 
be useful for such extraction in cases when the texture elemen ts are blob-like. Compared 

Figure 9. 29: The result of applying the scale-space primal sketch to a synthetic texture image 

generated from perspective projection of a planar surface painted with a sinusoidal gre y-level (of the 

form f(~, TJ) = sin~ sin TJ) . (a) Grey-level image with 1 % added noise. (b) The 75 most significant 

dark blobs. (c) The 75 most significant bright blobs. {d) Grey-level image with 10 %add ed noise. 

(e-f) The 75 most significant dark blobs. (A few large blobs corresponding to coarse scale groupings 

have been suppressed as t o simplify the presentation.) (The noise levels refer to uncorrelated point 

noise with normal distribution, where the percentage values relate the standard deviatio n of the noise 

to the maximum range of grey-level values in the original image). 

to e.g. the approach by Blostein and Ahuja (Blo87] , where texture elements are detected 
based on the zero-crossings of the Laplacian of the Gaussian at a small set of pre-specified 
scale levels , this method does not require any such prior scale information. Further, the 
scale levels are automatically adapted to the size variations over the image. In Figure 9.29 
we show the result of applying this blob detection scheme to a synthetic regular texture13 . 

Figure 9.30 shows a less regular example, where the plane has been painted with a sum 

13The image has been generated from an infinite planar surface painted with a grey-level intensity of 
the fo rm f(e,f/) =sine sin fJ . After the perspective projection step, Gaussian noise of different amplitude 
has been added to the grey-level image. The extracted patterns consist of square-like regions, since in 
the ideal noise-free case the delimiting saddle points of the grey-level blobs will be located in the points 
((n, f/m) = (n1r, m1r) on the plane, and the level curves through these points will be straigh t lines. 
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Figure 9.30: The result of applying the scale-space primal sketch to a synthetic t ext ure image gen

erat ed from perspective projection of a planar surfa ce painted with an intensity distribut ion generated 

from a sum of sinusoidals of random phase. (a) Grey-level image. (b) Boundaries of the 75 most 

significant dark blobs. (c) Boundaries of the 75 most significant bright blobs . 
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Figure 9.31: The result of applying the scale-space primal sketch to two different views of a tex

tured wallpaper with squares of three different grey-levels. (a) Grey-level image. ( b-e) The 75 most 

significant dark blobs (marked either as blobs or as blob boundaries). (d) Grey-level image . (e -1) T he 

75 most significant dark blobs (marked eithe r as blobs or as blob boundaries). S imilar patterns are 

extracted when detecting bright blobs from these images. 
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of several sinusoidals of different amplitude and phase. Note that in both these cases the 
algorithm extracts a set of blobs with a size gradient that could provide a cue to the three
dimensional structure. 

Figure 9.31 show corresponding results for two different projections of the same wall
paper, with a texture consisting of squares of three different grey-levels. Observe that in t he 
first case the algorithm mainly ranks blobs corresponding to squares on the wall-paper as 
important, while in the second case both the individual squares and a set of blob groupings 
are extracted14 . Because of this phenomenon, some of the dark squares in the second image 
are no longer among the selected number of the most significant blobs. 

When using these blobs as primitive cues to the three-dimensional structure, there are 
a few problems that must be considered. Given a set of blobs obtained from the scale-space 
primal sketch, with varying size and different significance values, one has to determine 
whether the size of some reasonable subset of the blobs varies in a way consistent with the 
projection of a three-dimensional surface. Some coarse scale groupings or fine scale blobs 
due to noise may have to be suppressed from the analysis. Another problem is that t he scale
space smoothing can have introduced shape distortions of the blobs, which for instance will 
reduce the foreshortening effect. Therefore, some improvements of the localization of t he 
blob boundaries (e.g. by combination with edge detection) may be needed in order to reduce 
the systematic underestimation of the slant that would otherwise occur. See e.g. Carding 
(Gar91] for an extensive treatment of the shape from texture problem. 

9.5 . 2 Perceptual Grouping 

We have seen that the blobs extracted from the scale-space primal sketch induce a percep
tually reasonable grouping of various patterns. For example, in Figure 9.31(a) in principle 
only the individual squares were ranked as important, while in Figure 9.31( d-f) also the lines 
one perceives when looking at the image were found. See also the dot pattern in Figure 8.3. 
Note that the grouping operation is not given by any set of pre-specified logical rules, but 
by a process generated from a differential equation, which has been combined with a set of 
geometric constructions. 

9.5.3 Matching 

As we described in Section 9.1.5 above, we believe that the blobs delivered from the scale
space primal sketch can serve as coarse landmarks for different types of matching purposes. 
The relations given say by matches between a blob and a set of edges together with similar 
matches between the same blob and a set classified junctions provides a sparse feature set 
that could be used for simplifying e.g. object model matching. Another possible application 
is to use blobs for initiating deformable models like those proposed by e.g. Terzopoulos 
et al. (Ter86, Ter87, Ter88, Kas87, Wit87] or Pentland (P en88, Pen90]. In addition , t hese 
blobs could possibly serve as to establish a coarse correspondense between regions from 
different images of the same scene, a problem arising in stereo and motion analysis. In fact, 
a type of similar approach has been recently used for motion matching by Koller and Nagel 
(Kol90]. If these blobs are to be used for stereo matching, then of course, if actual disparity 
measurements are needed, the computations must be based on better localized features like 
e.g. edges or corners. 

HThese higher order groupings take place mainly along the line of sight, since objects are closer to each 
other in the image measured in this direction than in the perpendicular direction. 
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Figure 9.32: Extracted dark scale-space blobs from a stereo pair (an aerial photograph of a suburb) . 

(a) Left grey-level image. (b-e) Boundaries of the 50 most significant dark blobs extracted from 

the left image. (d) Right grey-level image. (e-f) Boundaries of the 50 most significant dark blobs 

extracted from the right image. (In order to simplify the presentation, the blob boundaries have been 

drawn in two different images instead of one.} (The upper row corresponds to the left image and th e 

lower row to the right image.) 
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Chapter 10 

Summary and Discussion 

10.1 The Scale-Space Primal Sketch 

The representation that we build is similar to the primal sketch suggested by Marr [Mar76, 
Mar82), in the sense that it is a two-dimensional representation of the significant grey-level 
structures in the image. It is also computed under extremely weak assumptions. However, 
besides that it is a region-based and not an edge-based representation it is more qualitative, 
without strong assumptions about the shape of the primitives. Moreover, the proposed 
representation consists of coarse features like blobs represented at multiple scales and allows 
for 

• Automatic detection of salient (stable) scales, if they exist. 

• Ranking of events in order of significance. 

• Generation of hypotheses for grouping and segmentation. 

This implies that candidate regions for further processing are generated , as well as informa
tion about their scale. We see that the representation gives clues to subsequent analysis and 
can , hence, guide focus-of-attention mechanisms and simplify later stage processing. At 
the same time it is obtained with no a priori assumptions and, in principle, with no tuning 
parameters. 

10.1.1 Qualitative Properties 

We have also tried to demonstrate the effects of one as we believe very promising method
ology, namely that simple methods and qualitative reasoning can perform surprisingly well 
if the treatment is performed at a proper scale and over an appropriately selected region 
in space, provided that the resolution is sufficient to clearly resolve the phenomena we .:;;rP 

studying1 • For instance, the primitives (grey-level blobs, scale-space blobs and edges from 
non-maximum suppression) used for extracting image structure were defined solely in terms 
of singularities and geometric properties in scale-space. These entities can be very noise 
sensitive when considered at a single level of scale only. However, here we have shown that 
they can give useful result s if combined with a careful treatment of the scale issue. 

1 ln a major part of the work we have assumed that the images have been acquired with a sufficient 
resolution. However, in Section 9.3 we indicated how this issue can be further coped with in an active vision 
context. 
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Of course the actual numerical values cannot be trusted, since the amplitude of the 
Gaussian derivatives will in general decrease by the scale-space smoothing. Therefore, in 
order to avoid a systematic bias if accurate values are required for computing quantitative 
properties related to the environment, as needed in many "shape from X" methods, we 
believe that a two-stage process could be applied: (1) First detect the qualitative type of 
actual situation. (2) Then fit a model, corresponding to the situation at hand, to the data 
(over a region in space determined from the first step). 

10.1.2 Extraction of Structure - Transformational Invariance 

The underlying principle we use when extracting image structures is that structure should 
be invariant under transformations in parameter space. Our method consists of three steps: 

• Vary the parameters systematically. 

• 	 Detect (locally) stable states (intervals). 

• 	 Choose a representative descriptor as an abstraction of each stable interval and pass 
only this information on to the higher level modules. 

In this specific case the parameter we vary is the scale parameter in the scale-space repre
sentation. However, we believe that a similar kind of methodology could be applicable also 
in other types of situations. 

10.2 Scale-Space Experiences 

Let us point to a few aspects of scale-space representations that have been given little or 
insufficient attention in the literature and that have to be dealt with in creating a represen
tation of the sort we want. 

10.2.1 Suppression of Local Extrema due to Noise 

First, it is noteworthy, that the amount of noise in real images usually leads to a large 
number of local extrema. These extrema may disappear rather early, provided that they 
are subsumed by some more prominent extremum. However, if they occur in a region with 
smoothly varying grey-levels, then they will exist over a large range of scale. This effect is 
alleviated, but not remedied, by annihilation between nearby noise extrema. Even though 
their amplitudes decrease rapidly, it is not clear that one can set a threshold on objective 
grounds. This problem is related to the issue of estimating the noise level in an image, which 
hardly can be addressed without some constraining assumptions, like e.g. in Voorhees and 
Poggio (Vor87]. 

10.2.2 Stable Scale is a Local Property 

Another property, indicated in Section 5.4, is that images of scenes of even moderate com
plexity rarely have a global scale , at which all structure above the noise level is present. 
This aspect is explicitly dealt with in our representation. Stable scales are local properties 
associated with objects not with entire images. Bischof and Caelli (Bis88] treat a similar 
question for zero-crossings. However, their measure of stability seems to be more arbitrary. 
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Figure 10.1: (a) An unusual situation, where one could possibly talk about a global scale for a whole 

image. {b) This property appears as a plateau in a graph showing the logarithm of the number of local 

extrema as function of {the effective) scale. (c) For images of moderate complexity it will, however, 

usually not be possible to find such globally stable states. Even if there were a number of prominent 

plateaus corresponding to local structures at different scales, by adding up several such profiles one 

will anyway obtain a relatively uniformly decreasing curve. The graph in (c) shows the logarithm of 

the number of local extrema as function of scale for the Godthem Inn image. 

10.2.3 Stable Scale is a Multi-Valued Function 

Moreover, given some region in space there may in fact be several stable scales associated 
with that region corresponding to structures on different scale. Therefore, if one attempts 
to assign a property "stable scale" to every point in an image, one will obtain a "function" 
that in principle m ay assume an arbitrary number of values in each point. Therefore, the 
task of finding "the best scale" for t reating a certain point in an image is in general an 
impossible problem, which cannot be solved except for very simple images, for which there 
is in fact only one such stable scale related to each point in t he image (within the scale 
interval delimited by the inner scale and the outer scale). 

10.2.4 Decreasing Amplitude of Feature Points 

The behaviour of local extrema in scale·space has been studied also by Lifshitz and Pizer 
[Lif87, Piz88]. They link points across scales based on iso-intensity similar to the projection 
between scales described in [Koe84] and define blob regions in terms of watersheds. However, 
this leads to a serious problem of non-containment, which basically means that a point, 
which at one scale has been classified as belonging to a certain region (associated with a 
local maximum), can escape from that region when the scale parameter increases. More 
precisely, what can happen is the following: Assume that a point A is contained in a region 
associated with an extremum B at a certain scale and that we follow these points by iso
intensity linking to corresponding point A' and B' at a coarser scale. Then, we are not 
guaranteed that A' is contained in the same region as B'. Even worse , these paths can be 
intertwined in a rather complicated way, which means that the relations between extremum 
regions across scales can hardly be regarded as hierarchical. 

These problems will not occur with our proposed way of linking blobs across scales, which 
is solely based on qualitative features. The main problem with the iso-in tensity linking is 
that the grey-level value associated with a feature, say a critical point , will in general be 
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changed by the scale-space smoothing. By connecting a feature point existing at one scale 
to the nearest point at an adjacent scale having the same grey-level value, one makes a small 
error , which will accumulate, and cannot be neglected2 • 

This is another illustration of the property that in general the magnitudes of grey-levels 
or derivatives cannot be trusted after scale-space smoothing, since the amplitude of a signal 
or its derivatives will in general decrease by this operation. Only qualitative features (or 
invariants) such as edges andlocal extrema, which can be defined in terms of singularities, 
can be used. 

10.3 Relations to Previous Work 

T here are, of course, earlier attempts to derive similar representations of the grey-level 
landscape. Rosenfeld and his eo-workers, see e.g. [Gro86, She86, She87] have studied blob 
detection in pyramids e.g. using relaxation methods. Blostein and Ahuja [Blo87] detect 
texture elements based on zero-crossings and use multiple scales and a significance measure 
based on a background noise assumption. There is also the wealth of literature on pyramids , 
see e.g. Levine [Lev80], Crowley and Parker [Cro84a], Crowley and Sanderson [Cro87] and 
Burt and Adelson [Bur83]. The texton theory proposed by Julesz, see [Jul83, Jul86] and 
[Vor87], essentially also treats the blob detection problem. There are finally a number of 
representations based on intensity changes, besides Marr [Mar82], Bergholm [Ber87, Ber89] 
and Watt [Wat88] and approaches working at higher levels like Saund's [Sau89, Sau90] token 
based symbolic grouping. Of interest is also the approach by Haralick et.al. [Har83], which 
allows a more detailed representation, but only at a single spatial scale. 

Our approach differs from these in three important aspects. First, our representation can 
be seen as preceding e.g. the edge-based schemes in that it selects the appropriate scales and 
regions, intrinsically defined by the image itself, in a complementary data-driven manner. 
Secondly, it is a hierarchic representation of the structure at all scales in the image with 
explicit information about their significance and relations, and a competition between parts 
at different locations and scales. Finally, it is derived in a formal way using the well-defined 
notions of scale-space, which allow a precise analysis of the behaviour of structure. Hence, 
we can study how events at different scales can be related in a well-defined manner. 

One can ask more generally what is the relation between our representation and zero
crossings of the second derivative. We suggest that our representation, with extrema and 
their extents, captures important structure. The zero-crossings will not always be localized 
in the same places and, therefore, not represent the same structure. Watt [Wat88], in fact 
argues that the extrema of the second derivative, and not the zero-crossings, should be used 
to pick up information about intensity discontinuities. We feel that this question should be 
investigated further. 

10.4 Conclusions 

We have presented a multi-scale representation of grey-level image structure similar to the 
primal sketch idea and shown that it can be used for detecting stable scales and extracting 

2 A similar problem arises with the motion constraint equation in optical flow, where it is usually assumed 
that the intensity value of a physical point is preserved under motion. Jn fact, Pentland (Pen90) has recently 
shown that unde r certain conditions the photometric distortions can be much greater than the geomel ric 
effects due to motion. 
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regions of interest from an image in a solely bottom-up data-driven way, without any a priori 
assumptions about the shape of the primitives. The representation , which is essentially free 
from tuning parameters and ad hoc error criteria gives a qualitative description of t he grey
level landscape with information about 

• approximate location , 

• spatial extent and 

• an appropriate scale 

for important regions in the image. In other words, it generates coarse but safe segmenta
tion cues, and can be used as a hypothesis generator for higher-level processes. We have 
demonstrated that this kind of information can serve as to control an edge detection scheme 
working at a proper level of scale and that it is useful for automatic cluster detection and 
modality analysis of histograms. More generally, we find this approach useful for 

• guiding the focus-of-attention and 

• tuning other low-level processes. 

The representation is based on a well-defined notion of blob, which gives a natural geometric 
measure of significance. It is also based on scale-space theory, which means a well-founded 
t reatment of structures at multiple scales. The principle we follow when extracting signifi
cant image structure from scale-space is based on transformational invariance and consists 
of the following steps: 

• Vary the parameters systematically and try to detect locally stable states (intervals) . 

• Choose a representative descriptor as an abstraction of each stable interval and pass 
only this information on to the higher level modules. 

In this specific case the parameter we vary is the scale parameter in the scale-space rep re
sentation. However, we believe that methodology can be applicable also in other types of 
situations. 

The computational aspects of scale-space are treated carefully. Particularly, the fact that 
realistic images are discrete is taken into account, and we use a scale-space concept specially 
designed for discrete signals. The evolution properties in scale-space of local extrema and 
blobs are analysed in detail. We also introduce the notion of effective scale, which is t he 
natural unit for measurement of scale-space lifetime. 

More detailed summaries and conclusions for the different subproblems have been given 
at the end of each independent treatment. 
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Appendix A 

Technical Details and More Examples 

A.l From Chapter 2 

A . l.l Unimodality of the Fourier Transform in the Non-Circulant Case 

We are to generalize the unimodality property in t he frequency domain , derived for circulant 
convolution, to non-circulant convolution transformations. Consider a finite support kernel 
J(: Z-> R, with K(i) = 0 if lil >M, having a non-unimodal Fourier transform. Will show 
that t his kernel cannot be a discrete scale-space kernel. 

From the proof of Proposition 2.10 (the circulant case) it is apparent that if a kernel 
has a non-unimodal Fourier transform, then for some sufficiently large (odd) integer T there 
exists aT-periodic signal /per (/per(x) = /per( x +T)), for which the number of zero-crossings 
in one period of !out = J( */per is strictly greater than the number of zero-crossings in a 
corresponding period of /per· The signal /per : Z -> R is constructed from the vector x (of 
length T = 2M + 1) used in the proof of Proposition 2.10 by /per(i) = Xi (i = o..T- 1) 
and periodic extension. By this construction, the effect of J( on one period of /per will be 

t he same as the effect on the vector x by the associated circulant mat rix C~M), which was 
used in the proof of Proposition 2.10. With the number of zero-crossings in one period of a 
signal j, we here mean the number of zero-crossings in the sequence f(O), f(l) , .. , f (T -1), 
f(O), including wrap-around. 

(a) 

(b) -.!.-. 
,,./\,.,. w \'"'~'"'"f''VV v-v v~ 

n (2n+1)T n 

Figure A.l: Construction of the finite support signal hn from the periodic function fpt r· 

Given this fun ction /per of period T = 2M + 1 let hM+1 be an interval with 2A/ + 1 
such consecutive periods and construct a new function /;n : Z -> R, which is equal to f ver 
on hM+J and at the M nearest points outside each boundary of ! 2111+1 , see Figure A.l. At 
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all other points fin should be zero. Due to the construction of fin and the finiteness of]( 
it follows that ]( *fin and ]( * /per will be equal on hM+1· Thus, provided that we only 
count the points in hM+l we have introduced at least 2M + 1 additional zero-crossings. 

Outside hM+1 we might expect to find more zero-crossings in ](*fin· The support region 
of](* fin is in general larger than the support region of fin· However, /;n cannot have more 
than a total of 2M additional zero-crossings since fin is non-zero only at 2M points outside 
hM+1· Consequently,](* fin contains at least one zero-crossing more than f;n , which shows 
that ]( cannot be a scale-space kernel. This completes the proof of Proposition 2.11. 

A.1.2 Positivity and Unimodality are Necessary but not Sufficient 

We will show by counterexample that the positivity and unimodality properties in the spatial 
and frequency domains do not necessarily guarantee a kernel to be a discrete scale-space 
kernel. We will demonstrate this fact by considering symmetric five-kernels. 

The case when at least one root is real and positive is not interesting, since then at least 
one filter coefficient would need to be negative. If one root is real and negative then also at 
least one more root must be real (since non-real roots occur pairwise) and can be assumed to 
be negative (because of the previous property). If the remaining second degree factor in the 
factorization of generating function has non-real roots, then the kernel cannot be positive 
in the Fourier domain (see the treatment in Section 2.3.3). The case we are interested in is 
when the generating function c.p(z) has only complex roots. Then c.p(z) can be written 

c.p( z) = (z + a + bi)( z + a - bi)( z + c + di)( z + c - di) = (A.1)
z2 

z4 + 2(a + c)z3 + (a2 + b2 + c2 + d2 + 4ac)z2 + (2a(c2 + d2 ) + 2c(a2 + b2 ))z + (a2 + b2)(c2 + d2 ) 

z2 

for some real a, b, c and d. To obtain a symmetric kernel we require (a2 + b2 )(c2 + d2 ) = 1. 
Introducing polar coordinates 

a=rcosa; b = rsin a (A.2) 

c = !. cos (3 ; d = !. sin (3 (A.3)r r 

we have that c.p(z) can be rewritten as 

cos (3 1 cos a2 2 1 2c.p(z) = z +2(rcosa+--)z+(r + 2 +4cosacosf3)+2(--+rcosf3)z- +z- (AA)
r r r 

If this kernel is to be symmetric then it is necessary that 

cos/3 cos a 
rcosa + -- = -- + rcos/3 (A.5) 

r r 

In other words, we get two cases from 

1
(cosa - cosf3)(r - - ) = 0 (A.6)

r 

Case 1: Consider first cos a = cos (3, which gives 

1 1 12 2c.p(z) =z + 2cos a(r +- )z + (r2 + 2 + 4 cos2 a)+ 2 cosa(r + - )z-1 + z - (A.7) 
r r r 
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The filter coefficients are positive if and only if cos a ~ 0. The unimodality requirement in 
the spatial domain 

1 1 
r2 + 2 + 4 cos2 a ~ 2 cos a(r + -) ~ 1 (A.8)

T T 

can always be satisfied for sufficiently large r if cos a f. 0. The Fourier transform is 

1 1
1/J(8) = ( r 2 + 2 + 4 cos2 a) + 4 cos a(r + -) cos 8 + 2 cos 28 (A.9)

r r 

Trivially we have 1/J(O) ~ 0. Positivity in the other end point of the interval [0, 1r] gives 

1 1
1/J(1r) = (r2 + 2 + 4cos2 a)- 4cosa(r + -) + 2 ~ 0 (A.10)

T T 

The unimodality requirement implies that the equation 

1/J'( 8) = -4 sin 8( cos a(r + ~) +2 cos 8) = 0 (A.ll) 
T 

must not have any real roots in the interior of [0, 1r] . Hence, one observes that 1/J is unimodal 
if and only if 

1 
cos a( r + -) + 2 cos 8 f. 0 (A.12) 

r 
for all 8 E]O, 1r[. A necessary and sufficient condition for unimodality is hence given by 

Icos al ( 1)--r+- > 1 (A.13)2 T 

To summarize, we have that the kernel is positive and unimodal both in the spatial and the 
frequency domains if these five inequalities are satisfied 

COSa ~ 0 (A.14) 

r 2 + -fr + 4 cos2 a - 2 cos a(r + ~) ~ 0 (A.15) 

2 cos a( r + ~) - 1 ~ 0 (A.16) 

lcosal(r + l) _ 1 > 0 
2 r (A.17)-

r 2 +~ + 4 cos2 a - 4 cos a(r + ~) + 2 ~ 0 (A.18) 

Obviously, (A.16) is comprised by (A.17) and can be omitted since cos a > 0. Similarly, by 
writing (A.18) on the form 

1 1 1 
r2 + 2 + 4 cos2 a - 2 cos a(r + -) - 2(cos a(r + -) - 1) ~ 0 (A.19) 

T T T 

one observes that, since the rightmost parenthesis is strictly positive (due to A.17) we have 
that (A.18) holds whenever (A.15) is satisfied. Moreover, (A.15) can be rewritten as 

( T + -1 +2 COS a? + 1 ~ 0 (A.20) 
T 

which shows that this inequality will always be satisfied. We conclude that a necessary and 
sufficient condition for such a kernel to be positive and unimodal both in the spatial and 
the frequency domains is that 

cos a ( 1) 1-- r+- > (A.21 ) 
2 T 
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Taking e.g. o: = i and r = 2v'2 we get 

a + bi = 2(1 + i) ; c +di = ~(1 + i) ( A.22) 

a nd 

cp( z ) = ( z + 2 + 2i)( z +2 - 2i)(z + t + t)(z + t - t)z-2 = (A.23) 
z2 + 36 z + !!.!. + ~z-1 + z-2 (A.24)8 8 8 

which obviously corresponds to a kernel that is positive and unimodal in t he spatial domain. 
From the Fourier transform 

1
'If;( 0) = 8(81 + 72 cos 0 + 16 cos 20) (A.25) 

and its derivative 
'If;'(0) = -sin 0(9 + 4 cos 0) ( A.26) 

one can verify that the kernel is positive and unimodal in the frequency domain as well. 

However, from t he characterization of discrete scale-space kernels in Section 2.4.2 we ha ve 

that this kernel cannot possess scale-space properties , since its generating function has non

real roots. 

Case Il: When r = 1 we have 


2cp( z) = z2 + 2( cos o: + cos (J)z1 + (2 + 4 cos o: cos (3) + 2( cos o: + cos (3) + z- (A.27) 

The positivity and unimodality requirements in the spatial domain lead to the inequalities 

cos 0: +cos (3 2: 0 (A.28) 

2 +4 cos 0: cos (3 2: 0 (A.29 ) 

2( cos 0: + cos (3) 2: 1 (A.30) 

2 + 4 cos 0: cos (3 2: 2( cos 0: +cos (3) (A.31) 

From the Fourier transform 

'If;( 0) = (2 + 4 cos 0: cos (3) + 4( cos 0: + cos (3) cos 0 + 2 cos 20 ( A.32) 

and its derivative 
'If;'(0) = -4 sin 0(cos o: + cos(J - 2 cos B) (A.33) 

we observe that the kernel is positive and unimod al in the Fourier domain if and only if 

'lj;(O) = 2 + 4 cos o: cos (3 + 4( cos o: + cos (3) + 2 2: 0 (A.34) 

'If;( 0) = 4( cos 0: cos (3 - cos 0: - cos (3) 2: 0 (A.35) 
Icos o+ cos PI > 12 - (A .36) 

One easily verifies that these sys tems of inequalities can be reduced to 

cos 0: cos (3 - cos 0: - cos (3 2: 0 ( A.37) 
coso+ cos.Q > 1 

2 - (A.38) 

Obviously, the last equat ion implies that cos o: a nd cos (3 mu st be equ al to one, which also sat
isfies the second equation. Then , the kernel will equal to the binomi al kernel (1, 4, 6, 4, 1). 
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A.2 From Chapter 3 

A.2.1 Separated Convolution with T(n; t) Satisfies the Diffusion Equation 

Consider the possible scale-space representation of a two-dimensional signal given by sepa
rated convolution with the one-dimensional discrete analogue of the Gaussian kernel. 

00 00 

L(x,y; t) = L L T2v(m, n; t)f(x- m, y- n) (t > 0) (A.39) 
m=-oon=-oo 

where 
T20(m, n ; t) = T(m ; t)T(n; t) (A.4 0) 

and T is the one-dimensional discrete analogue of t he Gaussian kernel given by T(n; t) = 
e-1In(t), where In (t ) are the modified Bessel functions of integer order. We will show that 
t his representation satisfies a discretized version of the two-dimensional diffusion equation. 

(A.41) 

by considering 

a aT aT 
atT2D(m, n; t) = 7ft(m; t)T(n; t) + T(m; t)7Jt(n; t) = (A.42) 

1= {Eq. (2.78)} = 2(T(m- 1; t) - 2T(m; t) +T(m + 1; t))T(n; t) + 
1

T(m; t)2 (T(n- 1; t)- 2T(n; t) +T(n + 1; t)) = (A.43) 

1 
2 (T(m- 1, n; t) +T(m +1, n ; t ) +T(m, n- 1; t) +T(m, n + 1; t) - 4T(m, n; t)) = 

~(V'~T)(m, n; t) (A.44) 

Provided that the differentiation and infinite summation operators commute we have that 
t he same relation holds for L, compare with the proof of Theorem 2.26. 

A.2.2 Equivalent 1-D Formulation of the 2-D Discrete Scale-Space 

For the sake of clarity, we state the definitions that are necessary for the one-dimensional 
equivalent formulation of the two-dimensional discrete scale-space concept given in Theo
rems 3.4-3.5. 

Definition A.l (Discrete local maximum (lD)) 
A point x is said to be a (we ak) local maximum point for a funct ion g : Z --+ R if g( x) ~ 


g(x- 1) and g(x) ~ g(x + 1). 


Definition A.2 (Discrete local minimum (lD)) 

A point x is said to be a (weak) local minimum point for a funct ion g : Z --+ R if g(x) ::; 

g(x - 1) and g(x)::; g(x + 1). 
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Definition A.3 (Pre-scale-space family of kernels (lD)) 
A one-parameter family of kernels T : Z x R+ --+ R is said to be a pre-scale-space family of 
kernels if it satisfies 

• T(·; 0) =6(·) 

• the semi-group property T(·; s) *T(·; t) = T(·; s + t) 

• the symmetry constraint T( -x; t ) =T(x; t) for all x E Z 

• the continuity requirement 11 T( ·; t) - 6( ·) ll1 --+ 0 when t l 0 

Definition A .4 (Pre-scale-space representation (lD)) 

Let f : Z --+ R be a discrete signal and T : Z x R --+ R a pre-scale-space family of kernels. 

Then the one-parameter family of signals L : Z X R --+ R given by 


L(x; t ) = L
00 

T(n; t)f(x- n) (A.45) 
n=-oo 

is said to be the pre-scale-space representation of f generated by T. 

Definition A.S (Scale-space property: Non-enhancement of local extrema (lD)) 
A differentiable one-parameter family of signals L : Z x R --+ R is said to possess pre
scale-space prope rties, or equivalently, not enhance local extrema if for every value of the 
scale parameter t 0 E R+ it holds that if x 0 E Z is a local extremum point for the mapping 
x ~--+ L(x; to) then the partial derivative of L with respect tot in this point satisfies 

8L 
Ft(xo; to) :::; 0 if xo is a local maximum point (A.46) 

8L 
Ft(xo; to)~ 0 if xo is a local minimum point (A.47) 

Definition A.6 (Scale-space family of kernels (lD)) 
A one-parameter family of pre-scale-space kernels T : Z x R --+ R is said to be a scale

space family of kernels if for any signal g : Z --+ R the pre-scale-space representation of g 


gen erated by T possesses pre-scale-space properties, i.e. if for any signal local extrema are 

never enhanced. 


Definition A.7 (Scale-space representation (lD)) 

A pre-scale-space representation L : Z x R+ --+ R of a signal f : Z --+ R generated by a 

family of kernels T : Z x R --+ R, which are scale-space kernels, is said to be a scale-space 

representation of f. 


A.2.3 Derivation of the MacLaurin Expansion of the Fourier Transform 

Given the expression for the Fourier transform on polar form (3.41) (3.42) 

1/!r(u,v) = eh(wcost/>,wsint/>)t (A.48) 
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where 

h(w,tj>) = h(wcos tj>,wsin 4>) = -(2 -1) + 

(1 -1)(cos(wcostj>) + cos(wsi n 4>)) + 

1 cos(w cos 4>) cos(w sin 4>) (A.49) 

we Taylor expand for small values of w 

h(w,tJ>)= -(2 -1')+ 


w2 cos2 4> w4 cos4 4> w 2 sin2 4> w4 sin4 4> 

(1 - 1')(1 - 2 + 24 + 1 - 2 + 24 + O (w6)) 

2 2A.. 4 4A, 2 • 2-/.. 4•4 A, 
_ w cos 	 '+' w cos '+' O( 6))(1 _ w sm '+' w sm '+' O(w6) )(1' 1 2 + 24 + w 2 + 24 + 

and simplify 

to 
2 4( 4 A.+ • 4 "-) 6 4 2 A. . 2 A.h( "-) = _~ + w cos '+' Sill '+' + w cos '+' sm '+' + O(w6) (A.51 )w, '+' 2 24 1' 24 

which in turn rewritten as 

2 4	 2h( "-) - w w (cos2 tf>+sin2 tj>)2 +(61'-2)cos tj>sin2 4> O( 6) (A.52) w,'+' - - 2 + 24 + w 

to give the desired result in (3.44). 

A.3 	 From Chapter 4 

A.3.1 	 The /1 Norms of the Difference between Various Discrete Imple
mentations of the Scale-Space Theory 

In this appendix we have tabulated t he [1 norms of the difference between various discrete 
kernels used for implementing the one-dimension al scale-space theory. The comparison 
comprises 

• differences of the discrete analogue of the Gaussian kernel, denoted T, 6xT and V5T 

• sampled derivatives of the Gaussian kernel, denoted a, lza and {ha 

• differences of the sampled Gaussian, denoted a, 6xa and V5a 

• integrated derivatives of the Gaussian kernel, den oted ja, j lza and j {ha 

• differences of the integrated Gaussian kernel, denoted ja, 6xja, and v5ja 
for orders 0, 1 and 2 of the differences and the derivatives. 
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t T-e T- Je e- Je 
0.01 
0.1 
1 
10 

100 
1000 
10000 

3.01· 10±U 
4.30. 10-1 

1.52. 10-1 

1.20. 10-2 

1.17. 10-3 

1.17. 10-4 

1.17. 10- 5 

1.99. 10 ·~ 
4.65 . 10-2 

1.78·10-1 

1.50. 10-2 

1.46. 10-3 

1.46 . 10-4 

1.46. 10-5 

2.99 ·10±U 
4.72. 10-1 

3.30 · 10- 2 

4.01·10-3 

4.03 ·10-4 

4.04 ·10-5 

4.03 ·10-6 

t 6~T- -#re 6.,e- -#re 6.,T-6.,e 6.,T- f -#re -#re- f fxe 6.,e- 6.,fe 
0.01 
0.1 
1 

10 
100 

1000 
10000 

9.95. 10-1 

7.82. 10-1 

1.15. 10-1 

4.27. 10-3 

1.35. 10- 4 

4.24. 10-6 

1.35. 10-7 

3.98 · 10±0 
1.10. 10±0 

1.91. 10-t 
7.78. 10- 3 

2.51. 10-4 

7.97. 10-6 

2.52 · 10-7 

3.00 ·10±0 

3.94. 10-1 

1.18. 10- 2 

7.30. 10-3 

2.45. 10- 4 

7.78. 10- 6 

2.46. 10-7 

9.95. 10-1 

2.30 ·10-1 

7.65 ·10- 2 

4.24 ·10- 3 

1.40. 10- 4 

4.43. 10- 6 

1.40. 10-7 

2.98 ·10 5 

5.53 ·10-1 

5.42 .IQ-2 

1.97. w-3 

6.28 ·10 5 

1.99. w-6 

6.28 .IQ-8 

2.99 · 10±0 
4.24. 10-1 

3.26 ·10-2 

1.87. 10-3 

6.25. 10- 5 

1.99. 10 6 

6.27 ·10-8 

0.01 
0.1 
1 

10 
100 

1000 
10000 

1.00 • 10±0 
8.21. 10- 1 

1.70. 10- 1 

1.11 . 10-2 

1.69. 10- 3 

1.69. 10- 4 

1.69. 10- 5 

4.01 · 10±0 
1.16. 10±0 
2.84. 10-1 

3.12. 10-2 

3.15. 10-3 

3.15. 10-4 

3.15. 10- 5 

3.02 ·10±0 

4.13. 10-1 

1.75. 10-1 

2.93 ·10-2 

3.07 ·10-3 

3.08 ·10- 4 

3.09 ·10- 5 

1.00 ·10±0 

2.41 ·10-1 

1.14 ·10-1 

1.10. 10- 2 

1.75 . 10- 3 

1.76 ·10-4 

1.76. 10- 5 

2.99 ·10 ·S 

5.81. w-1 

8.05 ·10-2 

7.90 ·10-3 

7.88 ·10 4 

7.89 ·10- 5 

7.88 ·10-6 

3.00 • 10±0 
4.45. 10-1 

4.83 ·10-2 

7.52 ·10-3 

7.84 ·10-4 

7.88. 10-5 

7.88 ·10-6 

t V5T- ere V5e  ere V5T - V5e V5T- f ere ere- Jere V5e-V5Je 
0.01 
0.1 
1 

10 
100 

1000 
10000 

3.99 ·lOH 
1.11. 10+1 
4.20. 10-1 

4.30 ·10-3 

4.07. 10-5 

4.05. 10-7 

4.05. 10-9 

3.99 · 10H 
1.11· 10+1 
2.18. 10-1 

2.33. 10- 3 

2.33. 10-5 

2.33. 10- 7 

2.33 ·10-9 

1.20. 10+1 

1.71 ·10±0 
5.35. 10-1 

5.70. 10- 3 

5.75. w-5 

5.76 ·10-7 

5.76 ·10- 9 

3.94 ·10±U 
3.96 · 10±0 

4.89 ·10-1 

4.99 ·10-3 

4.86 ·10-5 

4.86 ·10-7 

4.86 ·10-9 

3.99 ·10H 
1.11. 10+1 
1.19. 10-1 

1.18. 10-3 

1.17. w-5 

1.17. 10-7 

1.17. 10-9 

1.20 · 10+1 
1.89 · 10±0 

8.34. 10-2 

1.14. 10-3 

1.16. IQ-5 

1.17. 10- 7 

1.11. w-9 

0.01 
0.1 
1 
10 

100 
1000 

10000 

1.01. 10+~ 

3.21. 10+1 
4.07. 10- 1 

4.45. 10-2 

4.21. IQ-3 

4.19. 10- 4 

4.19. w-5 

1.01. 10+~ 
3.21. 10+1 

2.12. 10- 1 

2.41. 10- 2 

2.41. 10-3 

2.41· 10- 4 

2.41. 10- 5 

3.05 · 10±U 
4.95. 10- 1 

5.19 . 10- t 
5.90 ·10- 2 

5.95 . 10-3 

5.95. w-4 

5.95. w-s 

1.00 · 10±U 
1.15 · 10±0 

4.74. 10- 1 

5.17. 10- 2 

5.02 ·10- 3 

5.02 .IQ- 4 

5.02 .lQ-5 

1.01. w+~ 

3.21 ·10±0 

1.15. w-1 

1.22. w-2 

1.21 . w-3 

1.21. 10- 4 

1.21. w-s 

3.03 · 10±U 
5.48. 10 1 

8.08 ·10- 2 

1.18. 10- 2 

1.20 ·10-3 

1.21 .IQ- 4 

1.21 ·10-5 

Table A.l: The it norm of the difference between various discrete implementations of the zero, first 

and second order derivatives of the Gaussian kernel in one dimension. Two data sets are given fo r th e 

first and second order derivative approximations; the upper table giving the it norm of the differen ce, 

and the lower table giving th e same norm divided by the 11 norm of the same order difference of the 

discrete analogue of the Gaussian kern el. 
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AA From Chapter 5 

In order to give a further intuitive idea of the effects of extracting grey-level blobs at different 
levels of scale, Figures A.2-A.3 show some more examples in addition to those given in 
Figures 5.8-5.9. 

A.5 From Chapter 6 

A.5 .1 Polynomials Satisfying the Diffusion Equation. 

This appendix lists a set of polynomials satisfying the diffusion equation which are used 
in Section 6. Each polynomial Pm,n(x, y) has been generated from the monomial xmyn by 
adding suitable lower order terms containing powers oft, and if necessary x and y as well , 
such that Pm,n(x, y) satisfies the two-dimensional diffusion equation. 

Po,o(x, y; t ) 

Pt ,o(x , y; t) 

Po,l(x , y ; t) 

P2,o(x, y; t) 

Pt ,l(x,y; t ) 

P0,2(x, y; t ) 

P3,o(x, y ; t) 

P2,1(x, y; t) 

P1,2(x, y; t) 

P0,3(x, y; t) 

P4,o(x , y ; t) 

P3,1(x, Yi t ) 

P2,2(x , Yi t) 

P1 ,3(x , Yi t) 

Po,4(x, Yi t) 

= 1 

= X 

= y 
2 + t= x 

= xy 

= y2 + t 

= x 3 + 3xt 

= x 2y + yt 

= xy2 + xt 

= y3 +3yt 
4 + 6x2t +3t2= x 

= x 3y + 3xyt 

x2y2 + x 2t + y2t + t2= 
= xy3 + 3xyt 

4 +6y2t + 3t2= y

A .5.2 Investigation about the Roots to 4x3 + 12tx + v = 0 

Given a value of v, we will investigate for which t-values the equation h(x) = 4x3 +12tx+v = 
0 has real roots {in x ). Consider the derivative 

oh 
ox(x) = 12{x2 + t) (A.53) 

If t > 0 then this expression is > 0 for all x and the function is monotone, which means 
that the equation has one unique real root. 

On the other hand if t < 0 t hen this function has two critical points, 6 = -R and 
6 =+R, where 6 is a local maximum and 6 is a local minimum. T he equation has three 
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Figure A.2: Grey-level and da1·k grey-level blob images of the Godthem image at scale levels t 
0, 1, 2, 4, 8, 16, 32, 64, 128, 256,512 and 1024 (from top left to bottom right} . 
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levels t = 0, 1, 2, 4,8, 16, 32, 64, 128,256,512 and 1024 (from top left to bottom right}. 

253 



real roots if and only if /(6) and /(6) have different signs, i.e., if and only if /(6)/(6) < 0. 
We have 

/(6)/(6) = ... = 64t3 + v 2 (A.54) 

Thus, the equation has three different real roots if and only if 

(A.55) 

One easily verifies that if t = -( ~)2 and v f. 0 then all roots are real and exactly two roots 
are equal. If v = 0 then for t = 0 the equation trivially has a root of multiplicity 3 at x = 0. 

In the cases when the equation has three real roots x1 , x2 and x3 the roots will be 
delimited by the critical points. Hence, we have 

(A.56) 

When t < -(~)2 strict inequalities hold in this set of relations. 

A.5.3 Detailed Investigation of the Singularity Set for the Elliptic Umbilic 

We are to investigate the singularity set of the elliptic umbilic unfolding modified to satisfy 
the diffusion equation. From Section 6.4.3 we have that it is given by the solu tions to 

8L=2x(y+w)+u = 0 
2 (A.57)

{ ~ =x - 3y2 
- 2t =0 

and that the types of the critical points determined by 

(AL) = ~ = 2(y + w)
2 X a L = 2x 
~ (A.58) 
fJ2 L = - 6y

{ (~L) = fJ2 L fJ2L- fJ2 L fJ2 L = - 4 (3y(y +w) + x2)
Payt' ~~ 

Consider first the case when u < 0, set u' = -u > 0 and introduce new variables ( and TJ by 

(=(y+w)fx 
(A.59) { TJ=x(y+w) 

Since u < 0 we have from (6.115) that x and y + w will always have the same sig n. T his 
means that (and TJ will both be non-negative. However , the mapping (x , y) ,_. ((, TJ ) is not 
globally bijective since the two points (x 1 ,yt) = (a,-w + b) and (x2 , y2 ) = (- a, - w- b) 
will both be mapped onto the same ((,TJ) value. This means that the cases (x > O,y > - w) 
and (x < 0, y < - w) must be treated separately. In these new coordinates (6.115) can be 
written 

2TJ - u' = 0 (A.60) 
{ TJ/( - 3(-w ± .fiilY - 2t = 0 

and simplified to 

u' ( 3( - z1) +3w2 + 2t = ±6wyM2 (A.61) 2 
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after observing that 1J = u/ f2. This equation describes the relation between~ and t for each 
one of the two arcs. The sign of the ± term is the same as the sign of x. For every ~ > 0 
there are two corresponding points (x1, y1) and (x2, Y2) given by 

(A.62) 

(A.63) 

Introduce t' by 2t' = 2t + 3w2 . Then 

(A.64)u' ( 3~ - (1) +2t' = ±6wyM 
22 

Solving for t' yields 

, u' ( 1) Mt = - 3~- ( ± 3wy 2 (A.65)4 

which by introduction of i = t'fu' can be written 

i = _.!._ - 3~ ± 3w ~ (A.66)4~ 4 V2;;; 

If w > 0 we let w = ...;:ut:Jj 

3t1 = _.!._- ~ + ~~ (w > 0) (A.67)
4~ 4 2 

- 1 3~ 3 ~ 
t2 = - - - - - v 2w~ (w > 0) (A.68)

4~ 4 2 

Else if w < 0 we let w = -...;:ut:Jj. Then 

- 1 3~ 3 ~ 
tt=-----v2w~ (w<O) (A.69)

4~ 4 2 

l2 = _.!._ -
3~ + ~~ (w < 0) (A.70)

4~ 4 2 

These functions describe howl depends on(. The two arcs t1 and t2 correspond to the two 
cases, ( Xt, yt) and (x2, Y2) respectively. Since w> 0 the curves are defined only for ( > 0. 
The critical points of these mappings, which are the bifurcation points of L, are given by 

(A.71) 

which can also be summarized into 

(A.72) 
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In order to find the number of roots to this equation we differentiate and set the derivative 

(A.73) 

to zero. This yields three roots 

~h,l = 0 (A.74) 

~h, 2 = ~ (w+ Jw 2 - ~) (A.75) 

~h.a = ~ (w- Jw2 
- ~~) (A.76) 

with 

h({h ,l) = 1 (A.77) 

27w2 
4 

- 243w4 + (~- 27wa) 
32 2 32 

v'81w2  48 (A.78) 

27w2 
4 

- 243w4- (~ 
32 2 

- 27wa) v'81w2 
32 

48 (A.79) 

~h,2 and ~h,a only exist when w~ J7a· Since h(~) is positive both when~ tends to zero and 
when ~ tends to infinity, the number of roots to the equation h = 0 is given by the signs of 
h(~h,2) and h(~h.a ). Setting h(~h,2) = 0 and h(~h,3) = 0 gives two equations, which can be 
summarized into the relation 

3	 2 

~ ( -8 + 9w)(8 + 9w) =o 	 (A.80) 

One easily shows that 

• 	 if w< 8/9 then both h(~h. 2) and h(~h,3) will be positive and the equation h(~) = 0 
will have no real roots. This means that i(~) has no critical points, and accordingly no 
bifurcations can take place (for positive {). Therefore the type of critical points will 
remain the same when the scale parameter t (or equivalently i) increases from -oo to 
oo . 

In the limit cases { -+ o+ and ~ -+ +oo the behaviours of the critical point s (X} ' yl) 
and (x2, Y2) (according to (A.62)), i 1 and i2 (from (A .67)) and t he Hessian 'H.L (see 
(6.116)) are as stated in Table A.2. By continuity it follows that (xll yl) and (x2, y2) 
will always be saddle point on their trajectories, see also Figure 6.16 for an illustration. 

• 	 if w > 8/9 then h({h,2) will be negative and h(~h,a) positive. Thus, the equation 
h({) = 0 will have exactly two real roots, {bifurc,l and {bifurc,2, delimited by {h,2 

(A.81) {bifurc,l < ~ ( W+ Jw2 
- ~~) < { bif urc,2 

At those points bifurcations take place. There are two different types of behaviours 
depending on the sign of w. 
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~ tl Xt Yt (HL)(xt , Yt) (AL )(X}, Yt) type 
+oo -oo o+ +oo - + saddle 
o+ +oo +oo -w+ - + saddle 

~ t2 X2 Y2 (HL)(x2, Y2) (AL)(x2, Y2) type 
+oo -oo 0 -oo - - saddle 
o+ +oo -oo -w  - - saddle 

Table A.2: The behaviour of the critical points (x1 , yt) and (x 2 , y2 ) in the limit cases~ -+ o+ and 

~-+ +oo. Observe that t decreases when { increases. 

Consider first the case when w > 0. For the arc corresponding to (x2, y2 ) it then 
holds that 

(A.82) 


This expression will always be strictly negative. Therefore, the two bifurcations 
must occur on the arc with (xt, y1) where 

(A.83) 


When ~tends to zero and when { tends to infinity this expression will be strictly 
negative. Moreover, since we know that the equation slit = 0 has exactly two 

roots of multiplicity one, it follows that *will undergo the sign sequence 
{-, 0, +, 0,-} when { increases. Hence, for small ~ and large { we have that 
it decreases with ~ while in an intermediate interval ){bifurc,t. {bifurc,2[ it holds 
that i1 increases with {. Figure A.4 shows the graph of it and i2 as fun ction of 
{ . 

•·' 

Figure A.4: i1 and i2 as functions of~ in the case when w> 8/9 (and w > 0). (a) Graph for 

w = 2, { E [0, 30). (b) Enlargement of the region around the critical points for i 1 (0. 
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To analyse the sign of the Hessian we observe that 'HL will change sign for the 

same 1 values of ~ as *. 
(1lL) = -4 (3y(y + w) + x 2) (A.84) 

When ~ tends to either 0 or oo the behaviour of the critical points will be the 
same as in the case when w< 8/9. However, when ~increases from 0 to infinity 
two sign changes for 'HL will occur on the arc given by (x11 yl). One verifies 
that ('HL)(x1 , y1) will undergo the sign sequence { -, 0, +, 0,-} when~ increases. 
Moreover, since AL = 2(y +w) > 0 it follows that the critical point given by 
(x11 y1 ) changes from a saddle into a minimum and then back into a saddle again 
when ~ increases. 

If we re-interpret this result in terms of increasing t (or equivalently increasing 
i) it means that for small values oft there are two saddle points in L. Then, at 
a certain scale a minimum-saddle pair is suddenly created. Later, the minimum 
point and the other saddle point on the same trajectory come together and anni
hilate, which means that at coarse scales there will again be two saddle points in 
L. Interpreted in terms of blobs this corresponds to the creation of a dark blob, 
which is then followed by an annihilation of the same dark blob (provided that 
the saddle points involved in the process are both non-shared). Note, however, 
that the minimum point will not have its delimiting saddle point on the same 
saddle path throughout the process. 

On the other hand if w < 0 we have that 

(A.85) 

and the bifurcations must occur on the arc with (x2, Y2) where 

(A.86) 

With similar arguments as above one shows that the Hessian will undergo the 
sign sequence {-, 0, +, 0, -} when ~ increases. However, here AL = 2( y +w) will 
be negative, which means that when ~ increases the critical point changes from 
a saddle into a maximum and then back into saddle. 

Interpreted in terms of increasing t this corresponds to the creation of maximum
saddle pair with increasing scale followed by the ann ihilation of another maximum
saddle pair, or equivalently, the creation of a bright blob followed by the annihi
lation of a bright blob. 

For the case with u > 0 the analog of (A.60) holds 

21) + u = 0 (A.87) 
{ TJ/~- 3(-w ± -.fiitY - 2t =o 

1T his property can also be shown algebraically by inserting the expressions fo r ( x 1, yl) and ( x2, y2) in to 
the expression fo r 'HL. 
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which can be simplified to 

~ (3( - f,) + 3w
2 + 2t = ±6wff-	 (A.88) 

after observing that fJ = -u/2 and introducing {' = -~. As ~ < 0 we have{' > 0. We 
observe that t his equation is similar to (A.61) although the new version of (A.62) holds 

(A.89) 

(A .90) 

A positive sign of the± operator in (A.88) corresponds to the (x 1 , y 1) point and a negative 
sign to the (x2, y2 ) point. Similar calculations as in the case when u < 0 show t hat bifurca
tions occur only when w> 8/9 and that the sign of w determines whether they take place 
on (x 1 , yt) or (x2, y2). To summarize, for u f. 0 we have that an extremum-saddle pair can 
be created if lwl > 8/9, that is if 

2ffJiullwl > wo = - -	 (A.9 1) 
3 3 

If w > 0 the extremum point is a minimum and if w < 0 the extremum point is a maximum. 

A.5.4 Derivation of Pd (t) in the Discrete Case 

We are to solve the integral 

(A.92) 

where 
C _ ( ao(t) a1(t) )

2	 (A.93)
D- ao(t) at(t) 

To simplify the notation a0(t) and a1(t) will from now on be denoted just by a0 and a1 
respectively. Using 

(A.94) 

we obtain 

(A.95) 

Introducing 

(A.96) 

this expression can be written 

1Pd(t) =J	f e-(bo.,?+boTI~-2blTIJTI2)drJtdTJ2 (A.97) 
j {TI=(Til .m):("fll ~O)i\("112~0)} 27r Jafi - ar 
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Observing that the argument to the exponential function is 

(A.98) 

and introducing new variables v1 and v2 by 

(A.99) 

which leads to 

0 

../50 
(A. lOO) 

we have that Pd(t ) can be written 

1Pd(t) = J { e-(v~+v?ldv1dv2 (A.lOl)
21r)a5- at)b5- bt }Dv1 "2 

where D 111 "2 is the region 

(A.l02) 

Using 
2 2 1

b2 b2 - ao al 
0 1 (A.l03)

- - 4(a5- ai)2 - 4(a5- ai)2 - ...,.4(-:-a-,..5--- a-,i"") 
this expression can be simplified further to 

Pd(t ) = e-(v?+v?)dv1dv2 (A.104) !_ J { 
1r 1Dv1 "2 

By introducing polar coordinates v1 = r cos</> and v2 = r sin</> we can rewrite the Pd(t) as 

(A.l05) 

where 

</>1 = arctan ( - a , ) (A.l06)Ja2 - a20 1 

This integral is easily solved 

1 e-r2] 00 7r/2 1 </>1
Pd(t) = 1r [--2- [</>]t/>=tl>t = ... = 4- 27r (A .107) 

r=O 

which shows that 

1 1 ( a1 )Pd (t) = - + -arctan (A. l 08) 
4 21r a2Ja20 - 1 
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In the special case t = 0 we get 

aolt=O = 2(T(O; 0)- T(1; 0)) = 2(1- 0) = 2 (A.109) 

allt=O = T(O; 0)- 2T(1; 0) + T(2; 0) = 1- 0 + 0 = 1 (A.llO) 

and 
1 1 (1) 1Pd(O) = - + -arctan - = - (A.111)
4 21r v'3 3 

A.5.5 Asymptotic Expression for Pd(t) at Fine Scales 

In order to obtain a Taylor expansions of T(O ; t), T(1; t) and T(2; t) for small values ofT 
we first observe that every T(n; t) satisfies, see (2. 78), 

ar 1
Bt(n; t) = 2(T(n- 1; t)- 2T(n; t) +T(n + 1; t)) (A.112 ) 

Moreover, the kernels are symmetric T( -n; t) = T(n; t) and we have T(n; 0) = S(n) where 
6 denotes the discrete delta function. From these relations one easily shows that the first 
order derivatives ofT(n; t) are 

~~ (o; o) = tcrc-1; o)- 2r(o; o) + T(1; o)) = tco- 2. 1 + o) = -1 (A.n3) 

~~ (1; 0) = t(T(O; 0)- 2T(1; 0) + T(2; 0)) = H1- 0 + 0) = t (A.114) 

ar 
{ft(n; 0) = 0 if 1nl~ 2 (A.115) 

and the second order ones 

H¥t<- 1; 0)- 2¥t(O; 0) + ¥tC1; 0)) = Ht - 2. ( - 1) + t) = ~A.116 ) 

tC¥t(o; 0)- 2¥t(l ; 0) + ¥t(2; 0)) = t(-1-2 · t + o) = -1 (A.117) 

!( 8T( 0· 0)- 2 8T(1· 0) + oT(2· 0))- !(! - 0 + 0)-! (A.118)2m• m• m• -22 -4 

0 if 1nl ~ 3 (A.119) 

which means that the second order Taylor expansions of T(O; t), T(1; t) and T(2; t ) are 

T(O; t) = 1- t + ~t2 + O(t3
) (A.120)

4 

T(1; t) = ~t- ~t2 + O(t3 ) (A.121)
2 2 

T(2; t) = -t
1 2 + O(t3

) (A. 122) 
8 

By inserting t hese results into the expressions for a0 (t) and a1(t) we get 

a0 (t) = 2(T(O; 2t) - T(l; 2t)) = 2- 6t + 10t2 + O(t3 
) (A.l23) 

1a1 (t) =T(O; 2t)- 2T(1; 2t) + T(2; 2t) =1- 4t + 5 t 2 + O(t3) (A .124)2 

a0 (t) + a1(t) = 3- lOt + '¥-t 2 + O(t3 ) (A.125) 


a0 (t)- a1(t) = 1- 2t + ~t 2 + O(t3 ) (A.l26) 


(a0 (t))2 - (a1 (t))2 = (a0(t) + a1(t))(a0(t)- a1(t)) = 3- 16t + 45t2 + O(t3 ) (A. l27) 
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and 
a1(t) = 1 1- 4t + Jft2 + O(t3 

) 

J(ao(t))2 - (a.(t))2 v'3 j1- •;t + ";t3 +O(t3) 
(A .128) 

Using the well-known MacLaurin expansion 

1(1 + x)-~ = 1 3 2 31- -x + -x + O(x )
2 8 

(A.129) 

this expression can be simplified to 

(A.130 ) 

By differentiation one easily shows that the second order MacLaurin expansion of arctan(a+ 
x) is 

arctan(a + x) = arctan(a) + -
1 
- x- ( a 2)2x2 + O(x3

) (A.131 ) 
1+a2 1+a 

In the special case a = ~ this implies 

( 1 ) 1T 3 3v'3 2 ( 3)arctan y'3 + x = 6 + 4x - 16x + 0 x (A.132 ) 

and 
a1 ( t) 1T 1 1

arctan( ) =- - -t + -t2 + O(t3 ) (A. 133 ) 
J(a0(t))2- (a1(t))2 6 y'3 3v'3 

By inserting this result into the expression for Pd(t) we obtain 

1 1 a1 ( t) 1 1 1 2 3
Pd(t) = 4 + 21T arctan( J(ao(t))2 _ (at(t))2) = '3 - 2y'31r t + 6v'31r t + O(t ) (A.134 ) 

which means that we can write down the MacLaurin expansion for the effective scale2 

r (t) = log (Pd((O))) = ... =-log (1- y'3t + ~ t 2 + O(t3 )) (A.135 ) 
Pd t 21r 2v 31T 

Using 

(A. 136) 

this expression can be simplified to 

v'3 (1 3)2 3 (A.1 37) r(t) = 21T t + y'31r + S1r2 t + O(t )2

2 We have selected values of the constants A and B such that t = 0 corresponds tor = 0 and the coefficien t 
of the logarithmic term is one. Above it has been shown that Pd(O) = !· 
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A.5.6 Asymptotic Expression for Pd(t) at Coarse Scales 

At coarse scales it holds that a1 (t) < 0 (see below). In that case it is convenient to use t he 
relation 

1 7r
arctan(x)+arctan(-) = -- (x < 0) 	 (A.138)

X 2 
for rewriting the expression for 

1 1 ( a 1 ( t) )Pd(t) = - + -arctan 	 (A.139 ) 
4 27r j(a0 (t))2- (a1(t))2 

into 
1 (J(ao(t))2- (at(t))2)( ) 	 (at(t) < 0) (A .l 40) Pd t = -arctan ( ) 

21r -a1 t 

According to Abramowitz and Stegun [Abr64] (9.7.I) for fixed nand large tit holds that 

I ()=~(I- 4n2 
- I (4n2 - I)(4n2 - 9) _ (4n2 -I)(4n2 - 9)(4n2 - 25) ) 

n t y'27rt 8t + 2!(8t)2 3!(8t)3 + ... 

(A.14I) 
which implies that 

-t 1 ( 1 9 225 1 )
T(O; t) = e Io(t) = y127rt 1 + 8t + 128t2 + 3072t3 + O( t4) (A .142) 

-t 1 ( 3 15 315 1 )
T(1; t ) = e It(t) = y127rt 1 - 8t- I28t2- 3072t3 + O(t4 ) (A.143) 

T(2 ) -t I ( ) 1 ( 1 15 105 945 O( I )) (A.144) ; t = e 2 t = y127rt - 8t + I28t2 + 3072t3 + t 4 

and 

- -2t], (2 ) - I (1 I 9 225 0( I ))T(O; 2t) 0 	 (A.145) - e 	 t - y'41rt + 16t + 5I2t2 + 245 76t3 + t4 

T(1; 2t) 	 _ e - 2tl
1 
(2t) _ _ I_ ( 1 - ~ _ ~ _ 315 0 (2_)) (A.l46 ) 

- - v'41rt 16t 512t2 24576t3 + t 4 

- -2tl(2t)- 1 (1 15 105 945 1) T(2; 2t) 2 	 (A.147) - e - y'41rt - 16t + 512t2 + 24576t3 + O ( t4) 

From these expressions one easily concludes tha t 

ao(t) = 2(T(O; 2t) - T(1; 2t)) = -kt (t + ~ + 101!13 + O(fr)) (A.I48 ) 

a1 (t) = T(O; 2t) - 2T(1; 2t) + T(2; 2t) = Jkt (--Jt + ~ + 10~~13 + O(f. )) <{J.l.149) 

1ao(t) + a1 (t) = dt81 2 ( 3 + 1:1 + 0( fr) (A.150 ) 

ao(t) - a1(t) = ;;kt (1- 1~1 + O(fr) (A .I51 ) 

(ao(t))2- (at(t))2 = 32!14 (I + -£t + O(fr)) (A.I52) 

which in turn leads to 

.j(ao(t))2 - (a1(t))2 = (3 .2_2 (1 + _I + 0( 
1 
2)) (A.153) V?:;4t I6t t 
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(A.154) 

and 

(A.155) 

which gives 

(A.156) 

From the MacLaurin expansion 

(A.157) 

we finally get 

Pd(t)=-1J[1( 1 (A.158)-- 1+-+0(-)1)
211" 2 .fi 8t t2 

which asymptotically agrees with result from the previous continuous analysis. 

A .6 From Chapter 7 

A.6.1 Algorithmic Performance 

In order to give a coarse estimate of the complexity of the algorithm it can be mentioned that 
on a Sun4 computer (Spare Station 1) our non-optimized implementation of the grey-level 
blob detection algorithm (handling non-generic cases) takes about 5 seconds for an integer 
256 *256 image and about 9 seconds for a floating point 256 *256 image. There are several 
optimizations that could be made if it is known for sure that the algorithm only needs to 
handle generic signals. The time required to compute the full scale-space representation 
(covering the scale range up tot= 1024) is about 30 minutes with the smoothing operation 
implemented as floating point convolutions in the spatial domain (with the truncation error 
e set to 0.0005). These numbers were valid at the time of implementation (1989). 

A.6.2 Bifurcation Statistics 

The number of registered bifurcations can of course vary substantially from one image to 
another. However, in order to give a coarse indication of how many blob events can be 
expected to take place, we can mention that for a 256 * 256 image treated in the scale 
interval t E [1, 1024] the following numbers can serve as guidelines: 

• blob annihilations: 1000 (250-2000) 

• blob merges: 300 (100-800) 

• blob splits: 50 (20-100) 

• blob creations: 30 (20-100) 
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A.6.3 Data Structure 

In order to give a rough idea of what information can be available in a data structure 
representing the scale-space primal sketch, we briefly describe what kind of objects could 
be defined in an actual implementation of this concept and also what types of data can be 
stored in those, see also Figure 5.5.4. 

grey-level blob : 
polarity: bright or dark 
scale level: pointer 
extremum point: pointer 
delimiting saddle point: pointer (Observe that in degenerate situations the extent of 
a grey-level blob could in fact be delimited by more than one saddle point.) 
support region: pointer 
grey-level blob volume 

extremum point : 
position: pixel coordinates (possibly several pixels for degenerate signals) 
grey-level value 
grey-level blob: pointer to the grey-level blob to which this saddle point serves as the 
seed. 

saddle point 
position: pixel coordinates (possibly several pixels for degenerate signals) 
grey-level value 
grey-level blobs: pointers to the grey-level blobs to which this saddle point serves as a 
delimiting saddle point. 

support region : 
extreme coordinates: the minimum and maximum coordinate values along the x - and 
y-axes as well as the skewed 45-degree directions x' and y'. 
blob area: number of pixels in the region. 
first order moments: giving the center of gravity. 
second order moments: allowing for an ellipse approximation giving the major and 
minor axes, which in turn give the orientation of the blob . 
pixel representation: can be encoded either as a bit map in a blob image with label 
data or in a more compact form as e.g. run-length coding row by row. 
boundary flag: telling whether the region belongs to the image boundary or not. 

scale-space blob : 
polarity: bright or dark 
significance: normalized scale-space blob volume 
bifurcation event at the appearance scale: pointer 
bifurcation event at the disappearance scale: pointer 
grey-level blobs: pointers to all the grey-level blobs the scale-space blob consists of. 
appropriate scale level: pointer 
grey-level blob at the appropriate scale level: pointer 
boundary flag: telling whether there is a grey-level blobs belonging to the image bound
ary or not. 
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bifurcation event : 
type of bifurcation: can be either 

• 	one of the generic bifurcation situations: annihilation, merge, split, creation 

• 	 a non-generic complex bifurcation, with more than three scale-space blobs in
volved, that cannot be resolved into primitive transformations of the previously 
listed types 

• 	 a flag indicating that the minimum or the maximum scale of the analysis has 
been reached 

participants from above: pointers to the scale-space blobs at the coarser scale that are 
involved in the bifurcation 
participants from below: pointers to the scale-space blobs at the finer scale that are 
involved in the bifurcation 
spatial position 

bifurcation scale 


scale level : 
scale value 
smoothed grey-level image: pointer 
bright blob image: with all the bright grey-level blobs coded in a label image 
dark blob image: with all the dark grey-level blobs coded in a label image 
bright grey-level blobs: pointers to all the bright grey-level blobs at this scale 
dark grey-level blobs: pointers to all the dark grey-level blobs at this scale 
next coarser scale level: pointer 
next finer scale level: pointer 

Finally, it is convenient to create an object that can ser ve as a handle to all these subobjects: 

scale-space primal sketch : 
scale Levels: it can be useful to represent all the scale levels accessed by the refinement 
algorithm both as a linked list and as a refinement tree. 
bright scale-space blobs: pointers to all the bright scale-space blobs. 
dark scale-space blobs: pointers to all the scale-space blobs. 
br·ight bifurcations: pointers to all the bifurcations in which bright scale-space blobs 
are involved. 
dark bifurcations: pointers to all the bifurcations in which dark scale-space blobs are 
involved. 

Of course, depending on the actual application it will in some sit uations be computationally 
more efficien t not to compute all this information when building the data structure and due 
to memory considerations, pieces of information may have to be thrown away during the 
process. For instance, regarding grey-level blobs it is in general sufficient to save only those 
blobs who correspond to the appropriate scale of a scale-space blob. 

A.7 Test Images 

In order to give a more detailed reproduction, Figure A.S and Figure A.6 show larger size 
copies of some of t he images used for the experiments in the thesis. 

266 



Figure A .5: Larger size copies of some of the original grey-level images used for the experiments. 
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Figure A.6: La1yer siz e copies of some of the o!'iginal grey-level images used for the expe!'iments . 

268 



F ig ure A.7: Larger· size copies of some of the original grey-level images used for the experiments. 
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