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Abstract

Recent work has shown that effective methods for recognizing objects and spatio-temporal events can be constructed
based on histograms of receptive field like image operations.

This paper presents the results of an extensive study of the performance of different types of receptive field like
image descriptors for histogram-based object recognition, based on different combinations of image cues in terms of
Gaussian derivatives or differential invariants applied to either intensity information, colour-opponent channels or
both. A rich set of composed complex-cue image descriptors is introduced and evaluated with respect to the problems
of (i) recognizing previously seen object instances from previously unseen views, and (ii) classifying previously unseen
objects into visual categories.

It is shown that there exist novel histogram descriptors with significantly better recognition performance compared
to previously used histogram features within the same class. Specifically, the experiments show that it is possible
to obtain more discriminative features by combining lower-dimensional scale-space features into composed complex-
cue histograms. Furthermore, different types of image descriptors have different relative advantages with respect to
the problems of object instance recognition vs. object category classification. These conclusions are obtained from
extensive evaluations on two mutually independent data sets.

For the task of recognizing specific object instances, combined histograms of spatial and spatio-chromatic deriva-
tives are highly discriminative, and several image descriptors in terms rotationally invariant (intensity and spatio-
chromatic) differential invariants up to order two lead to very high recognition rates.

For category classification, primary information is contained in both first- and second-order derivatives, where
second-order partial derivatives constitute the most discriminative cue.

Dimensionality reduction by principal component analysis and variance normalization prior to training and recog-
nition can in many cases lead to a significant increase in recognition or classification performance. Surprisingly high
recognition rates can even be obtained with binary histograms that reveal the polarity of local scale-space features,
and which can be expected to be particularly robust to illumination variations.

An overall conclusion from this study is that compared to previously used lower-dimensional histograms, the use
of composed complex-cue histograms of higher dimensionality reveals the co-variation of multiple cues and enables
much better recognition performance, both with regard to the problems of recognizing previously seen objects from
novel views and for classifying previously unseen objects into visual categories.

Keywords: image descriptor, histogram, object recognition, object categorization, Gaussian derivative,
spatio-chromatic derivative, differential invariant, spatio-chromatic differential invariant, image feature, colour
feature, scale-space, cue combination, multiple cues, multi-scale representation, computer vision.

1. Introduction

During recent years, the use of view-based rep-
resentations in terms of receptive field responses
(Koenderink and van Doorn [30]) has emerged as
a highly promising paradigm for visual recognition.
Three main groups of approaches have been de-
veloped, where receptive field responses are com-
puted either (i) globally or regionally in terms of

histograms (Swain and Ballard [56], Schiele and
Crowley [52], Zelnik and Irani [64], Linde and Lin-
deberg [38], Dalal and Triggs [14], (ii) locally at
sparse sets of interest points (Lowe [45], Bay et al.
[3], Csurka et al. [13], Laptev and Lindeberg [33]),
or (iii) locally at every point or at a dense grid of
points (Hall et al. [25], Jurie and Triggs [27], Lazeb-
nik et al. [34], Bosch et al. [5]).
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The goal of this paper is to address the area
of histogram-based recognition and to show that
there exist composed complex-cue image descrip-
tors, some of these of higher dimensionality, that
capture more of the information content in the local
image structure and give significantly better per-
formance compared to previously used histogram
features of lower dimensionality. Previous work
(except our initial work in [38]) has mainly been
based on histograms in two, three or six dimensions,
obtained by accumulating the statistics of either
colour channels (Swain and Ballard [56]), first-order
derivatives alternatively lower-order differential in-
variants (Schiele and Crowley [52]), gradient direc-
tions (Lowe [45]; Dalal and Triggs [14]) or wavelet
coefficients (Schneiderman and Kanade [53]).

From the view-point of local image measure-
ments, a histogram of first-order partial derivatives
captures the full first-order local grey-level struc-
ture, a histogram of the gradient magnitude and
the Laplacian captures the first-order rotationally
invariant structure as well as one component of the
second-order rotationally invariant grey-level struc-
ture. Similarly, a histogram of local gradient di-
rections captures other partial aspects of the first-
order structure, whereas an RGB colour histogram
can be seen as capturing the full zero-order colour
structure. Hence, each one of these descriptors cap-
tures partial aspects of the information that is avail-
able in the local image structure, while suppressing
or ignoring other aspects.

For the purpose of image-based recognition, it is
therefore of interest to consider image descriptors
that reflect more of the local information content.
For example, if we consider local differential struc-
ture up to order two, there is additional information
to be gained by considering complementary func-
tionally independent differential invariants, as well
as by using higher-order derivatives of grey-level in-
formation and spatio-chromatic derivates and dif-
ferential invariants derived from colour cues. A
main subject of this article is to explore the ap-
plicability of such more complex image descriptors
for object recognition, and to perform a systematic
evaluation of the relative performance of different
types of histogram-based image descriptors on es-
tablished image data sets.

The formulation of such composed image descrip-
tors, however, implies that the histograms may
be of higher dimensionality than previously used
histogram features, which means that some pre-
cautions must be taken. To handle such higher-

dimensional histograms, we will present an effi-
cient sparse method for computing and processing
higher-dimensional histograms. Based on this, we
will focus on comparing histogram-based recogni-
tion schemes for a rich set of image descriptors
that combine Gaussian derivative operators and
differential invariants computed from either grey-
level images, colour-opponent channels or both. It
will be shown that there exist composed complex-
cue histogram descriptors of higher dimensional-
ity that have significantly better performance com-
pared to the histogram features previously used by
Swain and Ballard [56] and Schiele and Crowley
[52], and that highly competitive recognition rates
can be achieved. For simplicity of presentation, we
shall in this paper restrict ourselves to global or
regional histogram features that are accumulated
over comparably large support regions. It seems
plausible, however, that the general idea of com-
posed complex-cue histograms should apply also to
local histogram features computed at sparse inter-
est points or at dense grids and we are investigat-
ing this issue in on-going work. With appropri-
ate extensions, a similar formulation of composed
histogram features in the spatio-temporal domain
should furthermore be expected to be applicable
for recognizing actions and events in video data.

Before starting, let us emphasize that the main
purpose of this paper is not to present a new system
for object recognition. Instead, the main purpose
is to perform an extensive investigation of what as-
pects of the information content in the local im-
age structure provide the most discriminative cues
for image-based recognition, based on a complete
classification of local receptive field like image op-
erations up to order two as can be obtained from
scale-space theory [43]. The intention is that these
results could then be used as a guide and reference
for future research in image-based recognition.

2. Related work

In this survey, we give an overview of work that
involves image features and image descriptors de-
fined from receptive field like image operations at
multiple scales, in the closely related areas of spa-
tial recognition and spatio-temporal recognition.

Swain and Ballard [56] initiated a direction of re-
search on histogram-based recognition methods by
showing how reasonable performance of an object
recognition scheme could be obtained by compar-
ing RGB colour histograms. Schiele and Crowley
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[52] generalized this idea to histograms of recep-
tive fields (Koenderink and van Doorn [30]) and
computed histograms of either first-order Gaussian
derivative operators or the gradient magnitude and
the Laplacian operator at three scales, leading to
6-D histograms. Schneiderman and Kanade [53]
showed that efficient recognition of faces and cars
could be performed from histograms of wavelet co-
efficients. Linde and Lindeberg [38] presented a
set of composed histogram descriptors of higher di-
mensionality that lead to better recognition perfor-
mance compared to previously used receptive field
like histogram descriptors.

With regard to approaches based on interest
points, Mikolajczyk and Schmid [46] combined the
ideas of scale selection and scale-adapted image
features (Lindeberg [42]) with affine normalization
(affine shape adaptation) (Lindeberg and G̊arding
[44]) to construct scale invariant and affine invari-
ant Harris operators for object recognition. Baum-
berg [2] as well as Tuytelaars and van Gool [58]
developed methods for affine normalisation of in-
terest point for image matching based on closely
related ideas. Lowe [45] combined the ideas of fea-
ture based and histogram based image descriptors,
and defined a scale invariant feature transform,
SIFT, which integrates the accumulation of statis-
tics of gradient directions in local neighbourhoods
of scale adapted interest points with summarizing
information about the spatial layout. Bay et al. [3]
presented an alternative approach with SURF fea-
tures that are instead expressed in terms of Haar
wavelets. Dalal and Triggs [14] extended the local
SIFT descriptor to the accumulation of regional his-
tograms of gradient directions over larger support
regions. Other closely related probabilistic meth-
ods have been presented by Fergus et al. [18], and
Ke and Suktankar [28]. An evaluation and compar-
ison of several spatial recognition methods has been
presented by Mikolajczyk and Schmid [47]. Dense
local approaches have in turn been investigated by
Jurie and Triggs [27], Lazebnik et al. [34], Bosch et
al. [5] and Agarwal and Triggs [1].

Histogram-based methods for recognizing spatio-
temporal events have been developed by Chomat
et al. [12], Zelnik-Manor and Irani [64], Laptev
and Lindeberg [33], Shechtman and Irani [54] and
Willems et al. [61].

Regarding colour-based object recognition, Slater
and Healey [55] presented histogram-like descrip-
tors that combine spatial moments with colour in-
formation. Gevers and Smeulders [22] investigated

the sensitivity of different zero-order colour spaces
for histogram-based recognition. Geusebroek et
al. [21] proposed a set of differential colour invari-
ants that are invariant to illumination based on a
reflectance model and the Gaussian colour model
proposed by Koenderink. Hall et al. [25] com-
puted partial derivatives of colour-opponent chan-
nels, leading to an N-jet representation up to order
one. Linde and Lindeberg [38] extended this idea by
showing that highly discriminative image descrip-
tors for object recognition can be obtained from
histograms of spatio-chromatic differential invari-
ants up to order two defined from colour-opponent
channels. Burghouts and Geusebroek [7] showed
that the performance of the SIFT descriptor can be
improved by complementing it with a set of colour
invariants. More recently, van de Sande et al. [59]
have presented an evaluation of different colour-
based image descriptors for recognition.

An early study of the sensitivity of histogram de-
scriptors to view variations was done by Schiele and
Crowley [51]. A theory for modelling multi-scale
histograms has been presented by Koenderink and
van Doorn [31].

Somewhat related to our approach [38], Broad-
hurst [6] proposed a texture classification method
based on histograms of Gaussian derivative filters of
different orders and at different orientations, from
which marginal distributions were estimated and
assumed to be independent. In our work, we on
the other hand explicitly register the co-variation
of different image features as obtained from multi-
dimensional histograms.

3. Image features and methodology

As a background for defining different types of
image descriptors for histogram-based recognition,
we will in this section summarize some main results
concerning multi-scale image measurements that we
will build upon, with emphasis on the types of lo-
cal image information that can be captured from
derivatives up to order two. Then, we will turn to
the experimental methodology that will be used for
comparing different types of image descriptors.

3.1. Scale-space features

Scale-space theory [62, 29, 30, 41, 40, 19, 57, 43]
provides a well-founded framework to formulate lo-
cal image operations at different scales. Given any
image f , its scale-space representation L is obtained
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by convolution with Gaussian kernels g(x, y; σ) =

1/(2πσ2) e−(x2+y2)/2σ2

of different widths (as mea-
sured by their standard deviations σ):

L(·, ·; σ) = g(·, ·; σ) ∗ f(·, ·). (1)

From this representation, Gaussian derivatives

Lxαyβ (·, ·; σ) = ∂xαyβL(·, ·; σ) (2)

are computed and scale normalized derivatives [42]
(with γ = 1) defined according to

Lξαηβ (·, ·; σ) = σα+β Lxαyβ (·, ·; σ) (3)

where α and β denote the order of differentiation.
In this study, we focus on spatial derivatives up to
order 2, obtained from the second-order N -jet:

(Lξ(·, ·; σ), Lη(·, ·; σ),

Lξξ(·, ·; σ), Lξη(·, ·; σ), Lηη(·, ·; σ)). (4)

This set of partial derivatives constitutes a complete
basis for all local differential image operations up to
order two at any image point.

The top two rows in figure 1 show the result of
computing such Gaussian derivatives from the grey-
level information in an image.

original image Lx Ly

Lxx Lxy Lyy

|∇L| ∇2L detHL

Figure 1: Partial derivatives and differential invariants up
to order two computed at scale σ = 4 from the grey-level
information in an image.

3.1.1. Scale-normalized differential invariants

From the above mentioned partial derivatives
expressed in a Cartesian reference frame, we

consider differential expressions that are invari-
ant to rotations in the image plane. We will
mainly use the scale normalized gradient magnitude
|∇normL|, the scale normalized Laplacian ∇2

normL
and the scale normalized determinant of the Hes-
sian detHnormL:

|∇normL| =
√
L2
ξ + L2

η = σ
√
L2
x + L2

y,

∇2
normL = Lξξ + Lηη = σ2 (Lxx + Lyy), (5)

detHnormL = LξξLηη − L2
ξη = σ4(LxxLyy − Lxy)2.

The gradient magnitude is the only rotationally in-
variant differential expression of first order, while
the Laplacian and the determinant of the Hessian
together span the space of second-order rotational
invariants. These differential expressions therefore
span three out of the four possible rotational in-
variants up to order two [43]. A complete set of
differential invariants up to order two can be ob-
tained by including a fourth degree of freedom in
terms of the normalized rescaled level curve curva-
ture κ̃norm = L2

xLyy + L2
yLxx − 2LxLyLxy, which

is a combination of first- and second-order deriva-
tives and corresponds to the product of the curva-
ture of level curves κ with the gradient magnitude
|∇normL| raised to the power of three. In initial
experiments, we have, however, not found comple-
mentary use of κ̃norm to improve the performance,
why we do not include this remaining degree of free-
dom in the presentation.

The bottom row in figure 1 show the result of
computing these differential invariants from grey-
level information.

3.1.2. Spatio-chromatic derivatives and differential
invariants

For colour images, we also define chromatic cues
(c(1), c(2)) from RGB images by red/green and yel-
low/blue colour-opponent channels according to
[25] f

c(1)

c(2)

 =

 1
3

1
3

1
3

1
2 − 1

2 0
1
2

1
2 −1

 R
G
B

 . (6)

from which a corresponding colour-opponent scale-
space representation (C(1), C(2)) is defined by Gaus-
sian convolution

C(1)(·, ·; t) = g(·, ·; t) ∗ c(1)(·, ·), (7)

C(2)(·, ·; t) = g(·, ·; t) ∗ c(2)(·, ·). (8)
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U Ux Uy

Uxx Uxy Uyy

|∇U | ∇2U detHU

V Vx Vy

Vxx Vxy Vyy

|∇V | ∇2V detHV

Figure 2: Spatio-chromatic derivatives and differential in-
variants up to order two computed at σ = 4 from the colour-
opponent channels U = C(1) and V = C(2) of a colour image.

Then, spatio-chromatic derivatives and differential
invariants in colour-opponent scale-space are de-
fined in a corresponding manner as from grey-levels:

(Cξ, Cη) = (C
(1)
ξ , C

(2)
ξ , C(1)

η , C(2)
η )

|∇normC| = (|∇normC(1)|, |∇normC(2)|),

(Cξξ, Cξη, Cηη) = (C
(1)
ξξ , C

(2)
ξξ , C

(1)
ξη , C

(2)
ξη , C

(1)
ηη , C

(2)
ηη )

∇2
normC = (∇2

normC
(1),∇2

normC
(2)),

detHnormC = (detHnormC(1),detHnormC(2)).

(9)

Whereas we do not exclude the possibility of also
defining image descriptors based on other types

colour features, the motivations for using these
spatio-chromatic derivatives and differential invari-
ants as basic features in this work are that (i) a
representation in terms of colour-opponent chan-
nels is chosen because of its similarity to biological
vision, where a separation into red/green and yel-
low/blue colour-opponent channels is performed at
a very early stage in the visual pathway (see e.g.
Goldstein [23, pages 197–198]) and (ii) the spatio-
chromatic derivatives and differential invariants are
computed from the colour-opponent channels in a
similar way as grey-level derivatives and differential
invariants are computed from intensity information,
without need for any illumination model.1

Figure 2 shows the result of computing these
spatio-chromatic entities from a colour image.

3.1.3. Rotationally invariant vs. rotationally vari-
ant image features

In the choice between image features based on
partial derivatives vs. rotationally invariant differ-
ential invariants, the latter imply that the corre-
sponding image descriptors will automatically be
invariant to rotations in the image plane. Rota-
tionally variant image features may on the other
hand capture more of the local information con-
tent in the image data, since information about lo-
cal image orientations may be lost in the definition
of rotationally invariant image features. To inves-
tigate the relative advantages of these alternative
approaches, we will in this work specifically inves-
tigate how different types of rotationally invariant
vs. rotationally variant image descriptors perform
on different types of benchmark problems.

1Concerning the choice of colour representation, this
colour-opponent model implies that both the grey-level val-
ues L and the chromatic channels (U, V ) are proportional to
luminance. With both the (grey-level and spatio-chromatic)
Gaussian derivatives and the differential invariants trans-
formed to be linear in terms of luminance (after the transfor-
mation of the determinant of the Hessian in equation (10)
performed next), this means that both the image features
and the principal components to be computed from these in
section 5.1 form a cone under illumination variations.

As will be shown in later sections, for higher-dimensional
histogram descriptors it can in many cases be sufficient to
use as few as r = 2 to r = 5 bins per dimension. To a major
extent, the corresponding quantized image descriptors will
therefore not be very much affected by uniform rescalings
with scaling factors close to one, which in combination with
automatic exposure control of the camera will imply certain
robustness properties with respect to illumination variations.
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3.1.4. Dependency on intensity and chromaticity
transformations

When choosing image features as the basis for
a computer vision system, it is also essential to
consider the behaviour of the image features un-
der illumination transformations. Under uniform
rescalings of the intensity and chromaticity val-
ues in the original signal, f ′(x, y) = a f(x, y) and
c′(x, y) = a c(x, y), as implied e.g. by a uniform
rescaling of the RGB values, corresponding Gaus-
sian smoothed intensities L and colour-opponent
channels C are transformed by the same scaling
factor, as are all Gaussian derivatives Lxα and Cxα ,
gradient magnitudes |∇L| and |∇C| as well as the
Laplacian responses ∇2L and ∇2C. The determi-
nants of the Hessians detHL or detHC are, how-
ever, not transformed in the same way, unless we
transform the latter entities to be proportional to
the image intensities, which can be achieved by a
transformation of the form

h(detHL) = sign(detHL)
√
|detHL|. (10)

Under additive intensity transformations of the
original signal, f ′(x, y) = af+f(x, y) and c′(x, y) =
ac+c(x, y), the values of the explicit zero-order im-
age intensities L and chromaticity channels C are
transformed by the same offset, whereas the value
of any Gaussian derivative Lxα or Cxα will be unaf-
fected, and so will any differential invariant be that
is defined in terms of Gaussian derivatives. Second-
order differential operators are also preserved under
linear illumination gradients, f ′(x, y) = f(x, y) +
af x + bf y and c′(x, y) = c(x, y) + ac x + bc y. In
these respects, higher-order differential features can
be expected to be more robust to illumination vari-
ations than zero-order cues.

3.2. Histogram descriptors

For every image point (x, y), a set of N different
scalar image features will be computed, resulting
in an N -dimensional histogram. Each feature di-
mension is quantized into r bins, determined from
the maximum and minimum values of the feature
values over the data set. The Gaussian derivatives
Lxαyβ as well as the differential invariants |∇L| and
∇2L are quantized on a linear scale, while the de-
terminant of the Hessian detHL is transformed to a
parameterization proportional to image intensities
(10) prior to quantization. Concerning the quanti-
zation step, one could conceive using different num-
bers of bins r for different types of scale-space fea-
tures. Since we will perform extensive comparisons

for different values of r, however, we will here use
the same number of bins for all the image features
in a histogram, to delimit the search space.

3.3. Efficient handling of higher-dimensional his-
tograms

A histogram of an N -dimensional set of image
features that are quantized using r bins for each
feature dimension may contain up to rN cells. With
N set to the maximum dimensionality of our image
descriptors N = 35 and r = 10, this means that
an N -dimensional histogram may contain up to the
order of 1035 cells. Usually, however, a vast ma-
jority of these cells will be empty. Specifically, the
number of non-zero entries will always be limited
by the number of pixels in the image, and if we
consider histograms of the scale-space features in
section 3.1 computed from images of man-made or
natural environments, the image measurements will
usually be clustered to a significantly smaller sub-
set of histogram bins. From tables 2, 6 and 7 to be
presented later, it can be seen that for the image de-
scriptors and datasets considered here, the number
of non-zero cells n is usually in the range between
300 and 60 000. The receptive field based image
measurements can therefore be interpreted as being
localized to a submanifold of much, much lower di-
mensionality than a worst-case estimate would give.
Hence, it is natural to handle higher-dimensional
histograms using a sparse representation.

For an N -dimensional histogram, with r1, . . . , rN
quantization levels for the N different dimensions,

we enumerate the cells from 0 to
(∏D

ri

)
− 1,

such that a quantized local measurement M =
(m1, . . . ,mN ), 0 ≤mi < ri, will correspond to the
cell with index

c =

N∑
i=1

mi

i−1∏
j=1

rj

 . (11)

A histogram, H, with n non-zero cells c1 . . . cn,
with values v1 . . . vn, respectively, will then be
stored as an interleaved array of size 2n, H =
(c1, v1, c2, v2, . . . , cn, vn), sorted in such a way that
c1 < c2 < . . . < cn.

The sorted property of the stored histograms
makes it possible to define efficient operations on
them. When accumulating a histogram, we first
create an array with one entry for each pixel in the
image, and use efficient sorting to simultaneously
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solve the indexing and updating steps when accu-
mulating the histogram. In this way, it takes about
1.5 ms for a single-threaded process to accumulate a
sixteen-dimensional histogram of a 256×256 image
on a 2.66 GHz Intel Core i7TMprocessor.

3.4. Dissimilarity measures and classification

To measure the similarity between histograms h1

and h2 of images from the training and test data,
respectively, we use the χ2-measure:

χ2(h1, h2) =
∑
i

(h1(i)− h2(i))2

h1(i) + h2(i)
(12)

(where terms with h1(i)+h2(i) = 0 are set to zero).
Based on such χ2-comparisons, we use a support
vector machine2 for comparing higher-dimensional
histogram descriptors, following the approach by
[11, 4, 9] with a kernel of the form

K(h1, h2) = exp(−γχ2(h1, h2)). (13)

From initial experiments, we set γ = 1. The penalty
constant C on over-training was set to C = 100.
No other optimization was made of the SVM. The
histograms were normalized to unit mass prior to
SVM-based training and recognition. The actual
implementation of the SVM was done based on the
libSVM software [10].

To handle k > 2 classes, we use the one-against-
one method [20, 32], which constructs k(k − 1)/2
classifiers, with each one trained to separate two dif-
ferent classes. When deciding which of the k classes
an unknown sample belongs to, it is tested on all
k(k − 1)/2 classifiers, and each classifier votes for
one of two classes. The class with the greatest vote
is regarded as the predicted class.

3.5. Benchmark problems: Object recognition and
object classification

In this work, we shall investigate the performance
of image descriptors for two types of recognition
problems: (i) recognition of known objects from
previously unseen views of a set of known objects
and (ii) classification of previously unseen objects,
given images of similar objects from the same cat-
egory. For these purposes, we will make use of the
COIL-100, ETH-80 and CalTech-4 data sets.

2In our pre-study [38] we showed that histogram classifi-
cation with a kernel-based support vector machine performs
significantly better than nearest-neighbour classification.

Figure 3: Sample images from the COIL-100 dataset.

Figure 4: Sample images from the ETH-80 dataset.

Figure 5: Sample images from the CalTech-4 dataset.

The Columbia Object Image Library, COIL-100
[48] consists of colour images of 100 objects with
72 images per object, corresponding to viewpoints
obtained by rotating the objects through 360◦ at
5◦ increments (see figure 3). For the task of object
instance recognition, we will use training data with
differences in viewing directions of either 30◦ or 60◦.
Then, the intermediate views middle in between
will be used in the recognition step, which means
that the differences in viewing direction between
the training and testing data will be 15◦ or 30◦,
respectively. These experiments are then repeated
with different offsets in the viewing direction, i.e.,
5 more times for a 30◦ viewsphere sampling and 11
more times with a 60◦ viewsphere sampling.

The ETH-80 dataset [35] contains images of 80
objects from 8 categories (apples, pears, tomatoes,
cups, cars, dogs, horses and cows; see figure 4). For
this data set we consider both a recognition task,

7



which will be regarded as correct if the system rec-
ognizes the specific object instance, i.e., a specific
car or a specific apple, and a classification problem
in which all images of the test object are removed.
For the classification task, a result is regarded as
correct if the classification leads to the same object
category as the test object, with all the views of the
test object removed from the training set.

For the object recognition task on the ETH-80
dataset, we will use training data with differences
in viewing directions of either 45◦ or 90◦, implying
differences in viewing directions between the train-
ing data and the test data of 22.5◦ or 45◦, respec-
tively. These experiments are repeated once more
with a different offset in the case of a 45◦ view-
sphere sampling and for three different offsets with
90◦ differences. For the object classification task,
however, the experiment does not explicitly test for
differences in viewing direction, since the training
set contains images of other objects from the object
category with similar viewing directions.

For the images in the ETH-80 dataset, the back-
ground pixels were set to zero, motivated by an
initial companion study for local histogram descrip-
tors [36, 37], which shows that there are background
cues in the images in this dataset that may simplify
the task of classifying objects into the predefined
categories. By enforcing a black background, we
suppress the influence of such background cues.

The CalTech-4 dataset is a subset of the Cal-
Tech dataset [18], which contains images from 4
object categories: 800 motorcycles, 800 air-planes,
435 faces and 800 cars (rear) (see figure 5). The im-
ages have varying resolution and varying complex
backgrounds in real environments. This dataset is
used for object categorization, where it is divided
into a training set and a testing set of equal size.

The reasons why we have chosen to use these
datasets for evaluating image descriptors in this
work are that the COIL-100 and ETH-80 datasets
contain images of objects taken with a rather dense
set of viewing directions and that the CalTech-4
dataset contains a large number of objects from
each object category, with only one object in each
image. This means that the importance of low-
level image cues can be expected comparably higher
than for e.g. the CalTech-101 [17] or the PASCAL
[16] datasets. Specifically, we avoid the localiza-
tion/segmentation issue, which is important for this
study, where the focus is on evaluating and com-
paring the information content in different types of
image descriptors.

4. Primitive histogram descriptors

The scale-space features listed in section 3.1 con-
stitute a complete basis for the types of local im-
age operations that can be defined at any im-
age point from either image intensities or colour-
opponent channels. Specifically, we can classify the
different types of image features depending upon
(i) whether they are based on either pure grey-level
cues or spatio-chromatic cues, (ii) whether they are
rotationally invariant or rotationally variant, and
(iii) the maximum order of differentiation; see ta-
ble 1 for a classification of the types of image fea-
tures that we will consider.

Rotationally invariant features

Order Grey-level Spatio-chromatic

0 L C
1 |∇L| |∇C|
2 ∇2L, detHL ∇2C, detHC

Rotationally variant features

Order Grey-level Spatio-chromatic

1 (Lx, Ly) (Cx, Cy)
2 (Lxx, Lxy, Lyy) (Cxx, Cxy, Cyy)

Table 1: Basic types of scale-space features used for defining
histogram descriptors.

In this section, we shall investigate the informa-
tion content in such scale-space features, by com-
puting the image features at a set of scales in
scale-space, and then defining multi-dimensional
histograms of image features over these scales.
For simplicity, we shall restrict ourselves to a set
of fixed scale levels and all image primitives will
be computed at some subset of the scale levels
σ ∈ {1, 2, 4, 8, 16}. For the COIL-100 and ETH-
80 datasets, this choice is reasonable, since there
are no major scale variations in these datasets. For
the CalTech-4 dataset, we will also make use of a
fixed set of scale levels, although the presence of
scale variations in this dataset could warrant the
use of an explicit scale selection mechanism. The
situation with the CalTech-4 dataset is, however,
improved by the fact that both the training set and
the test set contain similar ranges of scale varia-
tions. In this way, we can avoid the scale selection
problem and focus on evaluating the information
content in different types of image descriptors.

4.1. Evaluation of primitive histogram descriptors

Table 2 show the result of computing the perfor-
mance of two different types of primitive histogram

8



Image features 30◦ COIL-100 45◦ ETH-80 ETH Class.
60◦ r n 90◦ r n CalTech r n

3-D (Lxx, Lxy , Lyy ; 95.6 55 465 96.3 36 760 93.5 80 2644
σ=1) 84.5 55 460 87.0 60 1798 99.5 140 19247

3-D (Lxx, Lxy , Lyy ; 95.0 36 374 97.7 36 1099 92.1 16 213
σ=2) 85.8 55 798 89.5 50 1990 99.1 40 2406

6-D (Lxx, Lxy , Lyy ; 96.6 36 1787 97.2 19 1766 96.0 30 4188
σ=1, 2) 89.5 25 774 90.0 29 3756 99.8 24 11117

6-D (Lxx, Lxy , Lyy ; 97.7 25 1000 98.6 15 1383 96.3 30 5813
σ=1, 4) 89.8 21 671 89.5 30 5996 99.5 24 14078

6-D (Lxx, Lxy , Lyy ; 96.8 20 923 98.5 17 2039 95.9 14 1448
σ=2, 4) 88.8 15 404 89.5 15 1558 99.4 20 7616

9-D (Lxx, Lxy , Lyy ; 97.8 15 756 98.4 15 3133 96.1 14 4516
σ=1, 2, 4) 90.5 17 989 91.4 17 4012 99.5 10 6805

12-D (Lxx, Lxy , Lyy ; 95.7 12 4648 98.3 15 5584 95.9 2 5245
σ=1, 2, 4, 8) 89.8 19 2388 89.6 21 9103 99.5 6 11055

15-D (Lxx, Lxy , Lyy ; 95.0 2 5731 97.0 7 1579 96.9 2 11884
σ=1, 2, 4, 8, 16) 87.3 13 1587 86.9 15 7925 99.2 12 86939

2-D (∇2C; 97.2 195 344 98.6 255 662 78.4 195 438
σ=1) 92.0 125 173 92.3 195 440 91.7 255 598

2-D (∇2C; 98.7 155 390 98.5 255 731 77.9 100 166
σ=2) 94.6 125 275 93.8 255 737 93.4 255 1336

4-D (∇2C; 99.1 125 1924 98.5 60 651 81.7 30 191
σ=1, 2) 95.1 95 1210 95.3 155 3660 96.9 195 7346

4-D (∇2C; 99.3 100 2042 99.6 195 6414 81.8 75 1102
σ=1, 4) 95.9 75 1209 96.2 125 3099 96.3 155 8957

4-D (∇2C; 99.2 80 1563 98.7 60 724 81.6 95 1707
σ=2, 4) 96.2 100 2169 96.6 195 6290 96.9 255 27712

6-D (∇2C; 99.1 95 3974 99.1 60 2720 75.5 2 128
σ=1, 2, 4) 96.0 75 2786 95.1 75 3313 97.0 195 39846

8-D (∇2C; 99.2 36 2586 98.8 30 2195 76.2 80 10231
σ=1, 2, 4, 8) 96.0 40 2945 93.9 75 6967 97.5 75 21070

Table 2: The performance of two examples of primitive histogram descriptors for the 6 different benchmark problems described
in section 3.5 and using different combinations of scale levels for computing the scale-space features. For each experiment, the
number of bins r that gave the best performance is shown, as is the average number n of non-zero bins n for the corresponding
histograms. The first two columns show results for object instance recognition, while the third column shows results for object
category classification. Corresponding results for a larger set of primitive histogram descriptors are presented in [39].

descriptors obtained by combining the responses of
single grey-level and spatio-chromatic cues at multi-
ple scales for the image features (Lxx, Lxy, Lyy) and
∇2C. Corresponding results for a larger set of grey-
level features L, (Lx, Ly), |∇L|, (Lxx, Lxy, Lyy),
∇2L and detHL as well as the colour-opponent fea-
tures C, (Cx, Cy), |∇C|, (Cxx, Cxy, Cyy), ∇2C and
detHC are presented in [39].

Results from six types of recognition problems
are reported: (i) recognition of individual objects in
the COIL-100 dataset using 30◦ and 60◦ differences
in the viewing direction, (ii) recognition of individ-
ual objects in the ETH-80 dataset using 45◦ and 90◦

differences in the viewing direction, and (iii) classifi-
cation of previously unseen objects into object cate-
gories in the ETH-80 and CalTech-4 datasets (with-
out additional variations in the viewing direction).
To investigate the influence of the choice of scale

levels on the performance, we show results for differ-
ent subsets of the scale levels σ ∈ {1, 2, 4, 8, 16} for
each type of scale-space feature. In addition to the
actual performance values p, we also show the num-
ber of histogram bins r that leads to the best result
under variations of the bin size as well as the aver-
age number of non-zero bins n for the correspond-
ing histograms over all images in the dataset. To
emphasize which descriptor performs best within
each group of similar descriptors, the best result is
marked in boldface, while a few results just below
the best are indicated with slanted font.

As can be seen from table 2 as well as the more
extensive results in [39], the combination of scale
levels σ ∈ {1, 2, 4} lead to results that are generally
good for the histogram descriptors that are based
on pure grey-level features. For chromatic features,
good results are often obtained at the scale level
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σ = 2 as well as the pairs of scale levels σ ∈ {1, 2}
and σ ∈ {1, 4}.3

Image features COIL-100 ETH-80 Classification
V Rate V Rate Rate

L 30◦ 98.4 45◦ 99.0 ETH 91.3
60◦ 89.9 90◦ 92.4 CT 97.5

Lx, Ly 30◦ 98.5 45◦ 99.1 ETH 93.9
60◦ 92.2 90◦ 92.1 CT 99.6

|∇L| 30◦ 99.1 45◦ 97.0 ETH 90.9
60◦ 92.0 90◦ 90.8 CT 98.0

Lxx, Lxy , Lyy 30◦ 97.8 45◦ 98.6 ETH 96.9
60◦ 90.5 90◦ 91.4 CT 99.8

∇2L 30◦ 98.9 45◦ 97.4 ETH 94.0
60◦ 92.5 90◦ 90.4 CT 98.9

detHL 30◦ 98.8 45◦ 94.9 ETH 92.0
60◦ 91.9 90◦ 85.2 CT 99.2

C 30◦ 99.7 45◦ 99.8 ETH 76.4
60◦ 97.8 90◦ 98.7 CT 96.5

Cx, Cy 30◦ 99.0 45◦ 98.5 ETH 85.5
60◦ 95.9 90◦ 94.5 CT 98.6

|∇C| 30◦ 99.2 45◦ 98.8 ETH 80.5
60◦ 96.4 90◦ 95.7 CT 96.5

Cxx, Cxy , Cyy 30◦ 98.1 45◦ 98.2 ETH 87.9
60◦ 94.0 90◦ 94.0 CT 98.5

∇2C 30◦ 99.3 45◦ 99.6 ETH 81.8
60◦ 96.2 90◦ 96.6 CT 97.5

detHC 30◦ 98.4 45◦ 97.7 ETH 86.6
60◦ 94.9 90◦ 92.2 CT 97.0

Table 3: Summary of the best recognition scores for each
type of primitive histogram descriptor in table 2 as well as
a more extensive evaluation in [39] under variations of the
sets of scale levels used for computing the histograms.

Table 3 gives a more compact summary of the
results from this initial evaluation, by showing the
best results for each type of primitive histogram de-
scriptor under variations of the scale levels. From
this table we can see that discriminative cues for ob-
ject recognition can be obtained from a variety of lo-
cal scale-space features. Notably, for these datasets
the strongest single histogram cues for recogniz-
ing object instances are obtained from chromatic
and spatio-chromatic information, specifically the
colour-opponent channels C, the colour-opponent
gradient magnitudes |∇C| and the colour-opponent
Laplacians ∇2C. For classifying previously unseen
objects into categories, however, the strongest sin-
gle histogram cues are obtained from pure grey-level

3These scale levels have been selected from experiments
with the COIL-100 and ETH-80 data sets. Depending on
the conditions under which the image data are acquired, one
could conceive that other combinations of scale levels could
be better for other data sets. In a general setting, it is there-
fore natural to consider using e.g. automatic scale selection
[42]. The restriction to these scale levels is made here solely
to reduce the number of degree of freedom in the study.

information, in particular the second-order partial
derivatives (Lxx, Lxy, Lyy), the first-order partial
derivatives (Lx, Ly), and the second-order differen-
tial invariants ∇2L and detHL.
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Figure 6: Dependency of the recognition rate on the number
of bins per dimension, r, when recognizing object instances
using different types of primitive histogram descriptors ap-
plied to reduced subsets of the COIL-100 data set. Each
graph has been computed for the combination of scale levels
that gave the best performance according to table 2 and the
complementary results in [39].

4.2. Dependency on the number of histogram bins

Figure 6 gives a more detailed study of how the
recognition performance depends upon the number
of bins, r, in the histogram for a subset of lower-
dimensional histograms, for the problem of recog-
nizing specific object instances on reduced subsets
of the COIL-100 dataset. As can be seen from the
graphs, the recognition rates can be strongly depen-
dent on the number of bins used for accumulating
the histograms. The choice of bin width is there-
fore an important parameter for histogram-based
recognition methods. To avoid having the compar-
isons between image descriptors biased by a specific
choice of r, we have therefore decided to perform
experiments for a wide range of bin sizes and then
comparing the performance of different types of im-
age descriptors using the bin size that gives the best
result for each image descriptor.

A particular observation that can be made here is
that some of the graphs have a saw-toothed shape.
Such phenomena occur for polarity dependent im-
age descriptors, such as partial derivatives, Lapla-
cians and determinants of Hessians. The reason for
this is that depending on whether the number of
bins is odd or even, there is a qualitative difference
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in the handling of values close to zero. With an
even number of bins, values close to zero fall in dif-
ferent bins depending on the sign of the differential
expression. If we use an odd number of bins, all
values close to zero fall into the same bin.

5. Composed complex-cue histograms

In previous section, we investigated a set of prim-
itive image descriptors formulated in terms of his-
tograms of receptive field like responses defined
from partial derivatives and differential invariants
up to order two, computed from either grey-level
images or colour-opponent channels. The results
showed that important cues for object recognition
can be obtained from a variety of different low-level
cues. Specifically, we can expect different types of
performance depending on the order of the image
descriptors, whether the image descriptors are ro-
tationally invariant or not, and if the recognition is
based on either pure shape information or combi-
nations between shape and colour information.

A simplifying assumption that is commonly
used in vision applications, is to consider image
measurements as independent, thereby simplifying
subsequent statistical analysis. With regard to
histogram-based recognition, such an assumption
corresponds to the computation of separated lower-
dimensional histograms for each type of image de-
scriptor. In this work, we are interested in investi-
gating composed image descriptors of higher dimen-
sionality, that explicitly reflect the co-variation of
different types of primitive image measurements, so
as to obtain more distinctive image measurements
for recognition. To study this problem, we shall
therefore complement the above mentioned general
theory for multi-scale receptive field based image
measurements with an empirical study of the per-
formance of different non-separable combinations
of lower-dimensional image primitives. Specifically,
we shall in this section define a rich set of complex-
cue histogram descriptors, usually of higher dimen-
sionality, that are formed from combinations of
lower-dimensional image measurements and then
evaluate the performance of these image descrip-
tors on our benchmark problems.

When defining such composed image descriptors,
where some may be of rather high dimensionality
(often between 10 and 15 dimensions, but some-
times as high as 25 or 35), this raises a general
issue concerning how much image data are needed

to produce sufficient statistics for comparing his-
tograms. Specifically, one may ask how many of
the histogram dimensions carry essential informa-
tion, which would then reveal the effective dimen-
sionality of the histogram. Hence, it is natural to
complement the higher-dimensional histograms by
some mechanism for dimensionality reduction.

The use of complementary dimensionality reduc-
tion can also be motivated from a machine learning
perspective. Since the kernel-based support vector
machine [11] we use for classifying the histograms
is not guaranteed to preserve the theoretical opti-
mality results that hold for a regular support vec-
tor machine [60], one may ask if the overall perfor-
mance of object recognition or object classification
can be improved by reducing the dimensionality of
the histograms prior to learning and classification.

5.1. PCA-reduced histograms

Since the scale-space features, from which the his-
tograms are defined, may assume values in different
ranges, we start with an optional initial variance
normalization of the image descriptors. The mean
mDL and the standard deviation σDL for each nor-
malized scale-space feature DL are computed over
a subset of the image data.4 Then, variance nor-
malized image features DWL are defined as

DWL =
DL−mDL

σDL
. (14)

Given a set of N normalized image features D =
{(DWL)n : n = 1..N}, the covariance matrix Σ of
the normalized data is computed over the data set.
Then, a singular value decomposition is computed
of the covariance matrix

Σ = U ΛUT (15)

where U is orthogonal, Λ = diag(λ1, λ2, . . . , λN )
and λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. Finally, a trans-
formed feature subset F is defined by

F = UTD, (16)

the first M ≤ N components are extracted and an
M -dimensional histogram is computed. Quantiza-
tion is then performed over a range of 5 standard
deviations in the transformed data and values be-
yond this range are truncated.

4For polarity dependent image features for which the ex-
pected value would be zero, such as the partial derivatives
(Lx, Ly , Lxx, Lxy , Lyy) and (Cx, Cy , Cxx, Cxy , Cyy) or the
differential invariants (∇2L, detHL) and (∇2C,detHC), the
mean m is set to zero.
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Image features COIL-100 ETH-80
V Rate r n V Rate r n

13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), 60◦ 97.6 12 2409 45◦ 99.2 8 2780
13-PC (|∇C|,∇2C;σ=2) 60◦ 98.5 3 2314 45◦ 99.8 2 5953
12-PC 60◦ 98.8 3 1903 45◦ 99.8 2 4015
10-PC 60◦ 99.0 3 1189 45◦ 99.5 2 1658
8-PC 60◦ 98.8 3 650 45◦ 99.3 2 510
6-PC 60◦ 98.4 3 306 45◦ 98.9 2 165
5-PC 60◦ 97.5 3 140 45◦ 98.8 3 383
4-PC 60◦ 96.8 3 84 45◦ 99.3 4 351
3-PC 60◦ 95.4 5 118 45◦ 98.8 7 511
2-PC 60◦ 91.3 15 213 45◦ 97.3 21 731
1-PC 60◦ 69.5 25 31 45◦ 82.7 155 239

7-D (∇2L;σ=1, 2, 4, 8, 16), 60◦ 94.0 12 1145 45◦ 99.1 10 1915
7-PC (∇2C;σ=2) 60◦ 95.1 5 1421 45◦ 99.5 4 3228
6-PC 60◦ 95.5 5 804 45◦ 99.5 3 760
5-PC 60◦ 95.7 5 411 45◦ 99.6 4 822
4-PC 60◦ 95.2 5 224 45◦ 99.6 4 349
3-PC 60◦ 95.1 5 87 45◦ 99.0 5 228
2-PC 60◦ 90.4 13 127 45◦ 97.0 18 508
1-PC 60◦ 76.8 50 72 45◦ 90.5 125 274

Table 4: Dependency of the recognition performance on the number of principal components in PCA-reduced histograms of a
non-linear and a linear histogram descriptor. The results show the recognition rates obtained for two of the object recognition
benchmark problems, i.e., COIL-100 with 60◦ viewsphere sampling and ETH-80 with 45◦ viewsphere sampling. The top row
in each box shows results without variance normalization and without PCA. All PCA-reduced histograms have been computed
with variance normalization. The number prior to PC in the leftmost column indicates the number of principal components.

Dependency on the number of principal compo-
nents. Table 4 shows recognition rates obtained by
performing object recognition using PCA-reduced
histograms of (i) a 13-D non-linear image descrip-
tor with (|∇L|,∇2L,detHL) at three scales and
(|∇C|,∇2C) at one scale, and (ii) a 7-D linear im-
age descriptor with ∇2L at five scales and ∇2C at
one scale. For each descriptor the performance on
the COIL-100 60◦ and ETH-80 45◦ object recogni-
tion problems have been computed for all numbers5

M ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 25, N} of princi-
pal components between 1 and the dimensionality
N of the descriptor. The table also shows the influ-
ence of variance normalization, by comparing the
results of the N -dimensional variance normalized
descriptor to the performance without using PCA.
As can be seen from the tables, the use of vari-
ance normalization by itself can increase the per-
formance of histogram-based recognition, although
this normalization is not guaranteed to always have
a positive effect. We can also clearly see that we
obtain higher recognition performance for values of
M lower than N . Notably, the optimized number
of bins r is often close to a minimum for the number
of principal components that give rise to the best
performance. Thus, principal component analysis

5In the experiments to be presented later, we investigate
M ∈ {1 . . . 12, 15, 20, 25, N} principal components.

should also reduce the risk for over-training. These
examples show that the performance of histogram-
based recognition methods can be significantly im-
proved by the use of dimensionality reduction prior
to using a kernel-based support vector machine for
recognition and learning.

Interpretation of the principal components. When
computing PCA-reduced histograms, it is inter-
esting to interpret the principal components F in
equation (16) in terms of equivalent image oper-
ators. Such an interpretation is particularly il-
luminating for image features constructed from
linear operations, such as the partial derivatives
(Lx, Ly, Lxx, Lxy, Lyy) and (Cx, Cy, Cxx, Cxy, Cyy)
and the differential invariants ∇2L and ∇2C.

Table 5 shows the principal components of the
5-D histogram of the grey-level Laplacians ∇2L at
five scales. As can be seen from the data, the princi-
pal components with indeces m > 1 correspond to
differences between corresponding scale-space de-
scriptors at different scales and can hence be inter-
preted as reflecting approximations of derivatives
with respect to scale6, δt ≈ ∂t, with t = σ2. The
principal component u1 is essentially the average

6In this respect, a multi-scale representation with linear
features of order N at S adjacent scale levels can be seen as
implicitly encoding information up to order N + 2(S − 1).
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Rate 30◦ Rate 60◦ λm
98.2 97.3 2.71
98.1 97.4 1.46
98.2 97.9 0.57
97.7 96.8 0.19
91.7 88.5 0.07

u1 u2 u3 u4 u5
0.37 0.54 0.55 -0.44 0.28
0.49 0.43 -0.06 0.51 -0.55
0.53 -0.01 -0.59 0.07 0.60
0.47 -0.46 -0.11 -0.58 -0.47
0.33 -0.56 0.57 0.44 0.21
≈

∫
t ≈ ∂t ≈ ∂tt ≈ ∂t3 ≈ ∂t4

Table 5: The principal components um of the 5-D grey-level
descriptor with ∇2L at five scales σ = 1, 2, 4, 8, 16 for the
COIL-100 data set together with the principal values λm
and the recognition scores obtained with PCA-reduced his-
tograms using M = 5...1 principal components with view-
sphere samplings of 30◦ and 60◦.

of the different channels over scale, the principal
component u2 corresponds to a first-order differ-
ence over scales and the principal component u3

can be interpreted as a second-order difference, etc.
For this 5-D grey-level descriptor with Laplacians

∇2L at five scales, the best performance is obtained
using M = 3 principal components. In terms of
corresponding principal components, an interpreta-
tion of this is that scale differences up to order two
are useful for improving the performance of object
recognition using this 5-D grey-level descriptor.

From the fact that the scale-space derivatives sat-
isfy the diffusion equation

∂tLxαyβ =
1

2
∇2Lxαyβ (17)

it follows that a first-order derivative with respect
to scale t can be transformed into second-order
derivative with respect to space x and y using the
Laplacian operator. The summation of filter re-
sponses over scales can, however, be interpreted as
an integration over scales, and will therefore reduce
the effective order of differentiation.

5.2. Composed histograms of pure grey-level cues

In our investigation of composed complex-cue
histograms of scale-space features up to order two,
let us first restrict ourselves to image descriptors
formed from grey-level cues only. Of order zero, we
have the image intensity L; of order one the im-
age gradient (Lx, Ly) and the gradient magnitude
|∇L|; and of order two the components of the Hes-
sian matrix (Lxx, Lxy, Lyy) as well as the Laplacian
∇2L and the determinant of the Hessian detHL.

By computing these descriptors at scale levels
σ ∈ {1, 2, 4}, motivated by the observation in sec-
tion 4.1 that this combination of scale levels gives
results that are among the best for primitive his-
tograms formed from scale-space features defined
from single grey-level cues, we obtain a set of prim-
itive image descriptors as well as a set of combined
descriptors as listed in table 6. These composed
image descriptors have been constructed by com-
bining primitive scale-space features that are ei-
ther rotationally invariant or rotationally variant
for different orders of differentiation. This table
also shows performance values for object recogni-
tion and object classification on our six benchmark
problems, including the best number of principal
components in PCA-reduced histograms, the num-
ber of histogram bins r and the number of non-zero
cells n. We will analyze these results in section 5.5.

5.3. Composed histograms from chromatic channels

Given the above mentioned definitions of grey-
level descriptors, we can also define correspond-
ing descriptors from the colour-opponent channels
(C(1), C(2)). Motivated by the observation in sec-
tion 4.1 that the single scale σ = 2 gave results that
are either among or near the best for the chromatic
image descriptors, we will evaluate composed chro-
matic image descriptors at this scale only, to reduce
the degrees of freedom in the experiments.

In [39] we present a detailed evaluation of such
purely chromatic histogram descriptors, where a
6-D histogram of (C,Cx, Cy) at σ = 2 and
2-D histogram of the chromatic channels C at
σ = 2 have the best performance for object
instance recognition and a 10-D histogram of
(Cx, Cy, Cxx, Cxy, Cyy) has the best performance
for category classification. Some chromatic descrip-
tors will later be included in summaries of the best
performing descriptors.

5.4. Composed histograms of combined grey-level
and spatio-chromatic cues

By the combination of grey-level features with
spatio-chromatic colour-opponent cues, we can also
define a set of composed descriptors that capture
the joint distribution of grey-level cues and chro-
matic cues as shown in table 7. This set of com-
posed image features basically follows the organi-
zation of the above mentioned descriptors for pure
grey-level cues or chromatic cues, with the minor
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|∇L|(1) |∇L|(2) |∇L|(4) |∇L|(1) |∇L|(2) |∇L|(4)

∇2L(1) ∇2L(2) ∇2L(4) ∇2L(1) ∇2L(2) ∇2L(4)

detHL(1) detHL(2) detHL(4) detHL(1) detHL(2) detHL(4)

|∇U |(2) |∇V |(2) |∇U |(2) |∇V |(2)

∇2U(2) ∇2V (2) ∇2U(2) ∇2V (2)

detHU(2) detHV (2) detHU(2) detHV (2)

Figure 7: Illustration of some the underlying image features in the view variation experiments, where composed multi-cue
histograms of local scale-space features are computed for a subset of views on the view-sphere and then matched to previously
unseen views. This figure shows the rotationally invariant differential invariants for grey-levels (|∇L|,∇2L,detHL) at scale
levels σ = 1, 2, 4 and the corresponding rotationally invariant spatio-chromatic differential invariants for the colour-opponent
channels (|∇C|,∇2C,detHC) at σ = 2 computed for two different views of a a three-dimensional object rotated by 30◦ in the
COIL-100 data set.
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Image features 30◦ COIL-100 45◦ ETH-80 ETH Class.
60◦ r PC n 90◦ r PC n CalTech r PC n

3-D (L;σ=1, 2, 4) 99.4 18 3 1118 99.0 11 3 857 91.9 25 3 4235
93.1 14 3 681 94.1 19 3 2667 98.0 13 3 1497

6-D (Lx, Ly ;σ=1, 2, 4) 99.1 45 6̃ 1755 99.3 5 6 4399 94.8 6 6 6003
93.8 7 5 1517 93.1 5 5 2478 99.6 10 6 49605

3-D (|∇L|;σ=1, 2, 4) 99.4 10 3 403 98.0 12 3 1329 92.2 195 3̃ 3121
94.3 100 3̃ 435 91.6 155 3̃ 2123 98.4 195 3̃ 5681

9-D (Lxx, Lxy , Lyy ;σ=1, 2, 4) 97.9 100 3̃ 1288 99.0 4 4 593 96.1 14 − 4516
91.8 95 3̃ 1171 92.5 45 3̃ 1199 99.6 10 9̃ 7908

3-D (∇2L;σ=1, 2, 4) 98.9 40 − 909 97.4 13 3 2903 92.7 75 3̃ 1601
93.7 95 3̃ 751 90.9 13 3 2924 98.9 30 − 3245

3-D (detHL;σ=1, 2, 4) 99.0 7 3 445 95.2 20 3̃ 1379 93.0 10 3̃ 386
91.6 9 3 733 85.8 19 3̃ 1274 99.2 50 − 2393

6-D (∇2L, detHL;σ=1, 2, 4) 99.5 5 5 1014 99.0 6 5 4384 95.7 6 − 320
95.8 7 4 933 92.5 17 − 2440 99.4 25 6̃ 6459

9-D (L,Lx, Ly ;σ=1, 2, 4) 99.2 3 9 1098 99.4 8 4 1787 94.7 10 9̃ 1340
94.2 7 7 2953 94.1 5 6 3223 99.6 4 8 14328

6-D (L, |∇L|;σ=1, 2, 4) 99.7 7 5 920 99.1 12 − 1431 93.3 7 6 4541
95.4 11 5 2266 95.1 11 4 2496 98.8 155 6̃ 13185

15-D (Lx, Ly , Lxx, Lxy , Lyy ;σ=1, 2, 4) 99.0 45 5̃ 1064 99.4 5 6 4504 96.6 8 1̃0 3200
94.6 55 6̃ 2429 93.8 45 5̃ 4703 99.7 6 1̃2 10377

6-D (|∇L|,∇2L;σ=1, 2, 4) 99.7 8 4 826 98.7 6 6 4896 94.2 4 5 1003
95.7 75 5̃ 1808 94.4 4 6 2076 99.2 24 − 22358

6-D (|∇L|, detHL;σ=1, 2, 4) 99.7 6 5 1427 98.3 5 6 4802 94.0 5 5 2395
96.0 5 6 1647 93.6 4 6 2609 99.1 8 5 14164

9-D (|∇L|,∇2L, detHL;σ=1, 2, 4) 99.7 4 5 457 98.6 4 8 6017 96.6 14 − 4664
96.2 5 5 761 94.6 4 7 4195 99.5 12 − 12307

9-D (L, |∇L|,∇2L;σ=1, 2, 4) 99.7 5 6 921 99.3 4 6 1502 93.9 60 7̃ 5565
95.9 5 6 907 95.4 8 4 1324 99.2 95 7̃ 32582

12-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4) 99.8 5 7 1905 99.1 3 10 5215 94.8 95 5̃ 3996
96.9 3 8 862 95.2 4 8 5324 99.3 55 8̃ 34419

Table 6: The performance of PCA-reduced composed complex-cue histogram descriptors formed from pure grey-level structure
for the 6 different benchmark problems described in section 3.5 and using different combinations of scale levels for computing
the scale-space features. For each experiment, the number of principal components PC and the number of bins r that gave the
best performance are shown, as is the average number n of non-zero bins for the corresponding histograms. A tilde over the
number of principal components PC means that the best result was obtained without variance normalization prior to PCA. A
dash “–” in the PC column denotes that the best result was obtained without PCA or variance normalization. The first two
columns show results for object instance recognition, whereas the third column shows results for object category classification.

difference that we have here also included few addi-
tional descriptors that correspond to the suppres-
sion of certain cues. In next section, we will analyse
the results of these composed histogram descriptors
and compare them to the earlier defined histogram
descriptors in terms of either grey-level cues or chro-
matic cues.

Figure 7 shows an illustration of computing the
underlying grey-level and colour features from two
different views of an object in the COIL-100 dataset
concerning the rotationally invariant scale-space
features ∇L, ∇2L, detHL, ∇C, ∇2C and detHC.

5.5. Comparisons between different descriptors

The above mentioned experimental setup pro-
vides an exhaustive catalogue of the different types
of image descriptors that are natural to construct

from the differential image structure up to order
two. Taken together, we have defined 6+6 = 12
types of primitive histogram descriptors and 15 +15
+19 = 49 composed histogram descriptors; see also
[39] for further experimental results and a more de-
tailed analysis. Table 8 and table 9 show summa-
rizing rankings of the 5 or 10 best image descriptors
for each one of the six benchmark task.

As can be seen from table 8, for the COIL-
100 data set with 30◦ viewsphere sampling, as
many as 12 histogram descriptors reached a per-
formance of 100.0 % and 20 histogram descrip-
tors (not all shown) were above 99.9 %. No-
tably, a clear majority of these image descriptors
are based on different combinations of image in-
tensities L, colour-opponent channels C, grey-level
differential invariants |∇L|, ∇2L, detHL and the
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Image features 30◦ COIL-100 45◦ ETH-80 ETH Class.
60◦ r PC n 90◦ r PC n CalTech r PC n

5-D (L;σ=1, 2, 4), (C;σ=2) 99.9 13 4 297 99.8 6 − 188 87.3 11 − 513
98.4 30 3 241 99.1 255 5̃ 750 98.7 8 5 1964

10-D (Lx, Ly ;σ=1, 2, 4), 99.8 3 10 900 99.4 4 8 4214 94.0 2 10 2188
(Cx, Cy ;σ=2) 97.6 21 8̃ 732 97.1 9 6 6659 99.9 10 5 18107

5-D (|∇L|;σ=1, 2, 4), 100.0 6 5 490 99.9 15 4 4038 91.3 140 − 11915
(|∇C|;σ=2) 98.6 5 5 312 98.3 9 5 3888 98.7 10 5 10644

15-D (Lxx, Lxy , Lyy ;σ=1, 2, 4), 99.3 12 9̃ 1926 99.8 3 12 6782 94.8 24 5̃ 3270
(Cxx, Cxy , Cyy ;σ=2) 95.3 13 9̃ 1104 96.1 4 8 5876 99.9 4 8 14749

5-D (∇2L;σ=1, 2, 4), 100.0 11 4 1399 99.8 13 5̃ 988 91.2 95 4̃ 8602
(∇2C;σ=2) 97.9 29 5̃ 501 98.5 7 4 1905 99.4 36 5̃ 8146

5-D (detHL;σ=1, 2, 4), 99.7 7 5 2079 99.1 6 5̃ 2711 92.7 8 3̃ 255
(detHC;σ=2) 97.2 9 5̃ 577 95.0 5 5 3334 99.3 40 − 4629

10-D (∇2L, detHL;σ=1, 2, 4), 99.9 21 7̃ 1271 99.7 4 8 6522 93.8 30 2 1954
(∇2C,detHC;σ=2) 98.6 3 9 1157 97.3 3 9 4901 99.6 10 9̃ 12909

8-D (∇2L, detHL;σ=1, 2, 4), 100.0 5 7 2139 99.8 4 6 2506 93.5 10 7̃ 2335
(∇2C;σ=2) 98.4 3 7 625 98.0 5 6 4453 99.7 5 8 26669

15-D (L,Lx, Ly ;σ=1, 2, 4), 99.9 2 − 2390 99.8 2 11 1680 93.8 35 8̃ 1230
(C,Cx, Cy ;σ=2) 98.4 6 − 3962 97.7 6 10 8034 99.8 4 10 17049

10-D (L, |∇L|;σ=1, 2, 4), 100.0 7 8 1510 99.9 2 1̃0 518 87.8 3 10 1824
(C, |∇C|;σ=2) 98.3 7 7 731 99.4 19 4 2193 99.1 6 1̃0 1834

25-D (Lx, Ly , Lxx, Lxy , Lyy ;σ=1, 2, 4), 99.4 9 − 1172 99.5 3 9 3127 95.9 14 9̃ 4277
(Cx, Cy , Cxx, Cxy , Cyy ;σ=2) 96.0 9 − 1140 97.3 3 12 5905 99.9 4 9 20548

10-D (|∇L|,∇2L;σ=1, 2, 4), 100.0 2 10 1160 99.8 4 6 1388 92.3 95 3̃ 1144
(|∇C|,∇2C;σ=2) 98.8 5 8 1476 98.8 4 8 3560 99.3 6 1̃0 4292

8-D (|∇L|,∇2L;σ=1, 2, 4), 100.0 4 8 1606 100.0 4 5 822 94.2 60 5̃ 3880
(∇2C;σ=2) 98.2 35 6̃ 779 98.3 4 6 1662 99.4 24 − 37221

8-D (|∇L|,∇2L;σ=1, 2, 4), 100.0 8 5 1082 99.9 4 7 2574 94.1 8 8 10290
(|∇C|;σ=2) 98.9 5 6 674 98.3 8 5 3435 99.4 4 7 5288

10-D (|∇L|,detHL;σ=1, 2, 4), 100.0 20 7̃ 1631 99.6 2 1̃0 2113 93.1 24 7̃ 7348
(|∇C|, detHC;σ=2) 98.8 3 9 1064 97.0 6 9̃ 2953 99.3 11 1̃0 16783

15-D (|∇L|,∇2L, detHL;σ=1, 2, 4), 100.0 2 1̃1 1552 99.8 4 7 3656 94.8 75 4̃ 2806
(|∇C|,∇2C,detHC;σ=2) 98.8 3 10 1257 97.6 2 1̃5 11170 99.6 5 9 30440

13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), 100.0 2 1̃2 2380 99.8 2 1̃2 3178 94.9 75 4̃ 2793
(|∇C|,∇2C;σ=2) 99.0 3 11 1520 98.3 4 9 6327 99.7 2 1̃3 12982

15-D (L, |∇L|,∇2L;σ=1, 2, 4), 100.0 2 1̃5 2371 99.9 2 15 5305 92.7 100 5̃ 1634
(C, |∇C|,∇2C;σ=2) 98.6 29 1̃1 1023 98.7 8 7 6166 99.7 2 1̃2 5284

20-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4), 100.0 2 1̃0 561 99.8 2 15 6998 93.2 35 8̃ 2279
(C, |∇C|,∇2C,detHC;σ=2) 98.9 3 10 1014 98.0 20 1̃1 5837 99.6 2 1̃5 26029

Table 7: The performance of PCA-reduced composed complex-cue histogram descriptors formed from combinations of grey-level
and chromatic structures for the 6 different benchmark problems described in section 3.5 and using different combinations of
scale levels for computing the scale-space features. (See caption of figure 6 for details regarding the notation.)

spatio-chromatic differential invariants |∇C|, ∇2C
and detHC. With 60◦ viewsphere sampling, the
best results were obtained for histogram descriptors
involving different combinations of the grey-level
differential invariants |∇L|, ∇2L, detHL and the
spatio-chromatic differential invariants |∇C| and
∇2C, for one descriptor also including raw image
intensities L and colour-opponent channels C.

For object recognition on the ETH-80 data set
with 45◦ viewsphere sampling, we get 100.0 %
performance for two histogram descriptors and 8
histogram descriptors reach a performance above
99.9 %. Many of the best image descriptors are
based on image intensities L, colour-opponent chan-

nels C, grey-level differential invariants |∇L| and
∇2L and the spatio-chromatic differential invari-
ants |∇C| and ∇2C. A difference compared to
the results for the COIL-100 data set, however, is
that the determinants of the Hessians detHL and
detHC are no longer included among the best im-
age descriptors. Moreover, we also get very good
performance with a PCA-reduced 22-dimensional
histograms of the partial derivatives Lx, Ly, Cx and
Cy reduced to 8 dimensions. With 90◦ viewsphere
sampling on the ETH-80 data set, the best perfor-
mance is obtained with a 10-D histogram of image
intensities L, chromatic channels C and image gra-
dients |∇L| and |∇C| reduced to 4 dimensions.
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Object instance recognition COIL-100 30◦

Image features PC r Raw Norm. Best
5-D (|∇L|;σ=1, 2, 4), (|∇C|;σ=2) 5 6 99.9 100.0 100.0

10-D (L, |∇L|;σ=1, 2, 4), (C, |∇C|;σ=2) 8 7 99.8 100.0 100.0
10-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 10 2 99.7 100.0 100.0
15-D (L, |∇L|,∇2L;σ=1, 2, 4), (C, |∇C|,∇2C;σ=2) 1̃5 2 99.8 100.0 100.0
20-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4), (C, |∇C|,∇2C,detHC;σ=2) 1̃0 2 99.8 99.7 100.0
10-D (|∇L|,detHL;σ=1, 2, 4), (|∇C|,detHC;σ=2) 7̃ 20 99.7 99.9 100.0
15-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C,detHC;σ=2) 1̃1 2 99.8 99.9 100.0
13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 1̃3 2 99.8 100.0 100.0
5-D (∇2L;σ=1, 2, 4), (∇2C;σ=2) 4 11 99.8 99.9 100.0
8-D (∇2L, detHL;σ=1, 2, 4), (∇2C;σ=2) 7 5 99.6 99.9 100.0
8-D (|∇L|,∇2L;σ=1, 2, 4), (∇2C;σ=2) 8 4 99.7 100.0 100.0
8-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|;σ=2) 5 8 99.8 99.9 100.0

Object instance recognition COIL-100 60◦

Image features PC r Raw Norm. Best
13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 11 3 97.6 98.5 99.0
8-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|;σ=2) 6 5 97.0 98.6 98.9

20-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4), (C, |∇C|,∇2C,detHC;σ=2) 10 3 97.3 97.1 98.9
10-D (|∇L|,detHL;σ=1, 2, 4), (|∇C|,detHC;σ=2) 9 3 97.6 98.7 98.8
15-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C,detHC;σ=2) 10 3 96.7 98.2 98.8
10-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 8 5 98.1 98.1 98.8

Object instance recognition ETH-80 45◦

Image features PC r Raw Norm. Best
8-D (|∇L|,∇2L;σ=1, 2, 4), (∇2C;σ=2) 5 4 99.3 99.8 100.0
5-D (|∇L|;σ=1, 2, 4), (|∇C|;σ=2) 4 15 99.4 99.8 99.9

10-D (L, |∇L|;σ=1, 2, 4), (C, |∇C|;σ=2) 9 4 99.8 99.9 99.9
8-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|;σ=2) 7 4 98.6 99.6 99.9

15-D (L, |∇L|,∇2L;σ=1, 2, 4), (C, |∇C|,∇2C;σ=2) 15 2 99.8 99.9 99.9
14-D (|∇L|,∇2L;σ=1, 2, 4, 8, 16), (|∇C|,∇2C;σ=2) 6 5 98.8 99.9 99.9
22-D (Lx, Ly ;σ=1, 2, 4, 8, 16), (Cx, Cy ;σ=1, 2, 4) 8 5 98.8 99.0 99.9
4-D (C;σ=1, 2) 4̃ 255 99.7 99.9 99.9

Object instance recognition ETH-80 90◦

Image features PC r Raw Norm. Best
10-D (L, |∇L|;σ=1, 2, 4), (C, |∇C|;σ=2) 4 19 98.2 99.1 99.4
5-D (L;σ=1, 2, 4), (C;σ=2) 5̃ 255 97.4 99.1 99.1

10-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 8 4 97.2 98.3 98.8
15-D (L, |∇L|,∇2L;σ=1, 2, 4), (C, |∇C|,∇2C;σ=2) 7 8 98.0 97.8 98.7
4-D (C;σ=1, 2) – 75 98.7 98.1 98.7

Table 8: The 5 to 10 best PCA-reduced histogram descriptors when performing object instance recognition on the COIL-100
and ETH-80 data sets. The column labelled “Best” shows the result for the best number of principal components shown in
the column labelled “PC”. A tilde ˜ over the number of principal components PC indicates that the result without variance
normalization was better than the result obtained with variance normalization. A dash “–” in the PC column indicates that
PCA did not lead to any improvement in performance.

Classification of object categories. Table 9 shows a
corresponding ranking of the 5 best histogram de-
scriptors for the category classification tasks. For
object classification on the ETH-80 data set, we
can see that several of the image descriptors are
improved by variance normalization and that some
of the histogram descriptors are improved by PCA,
but not all. The best results are obtained from par-
tial derivatives of grey-levels (Lxx, Lxy, Lyy) or the

second-order differential invariants of grey-levels
(∇2L,detHL) complemented by the colour Lapla-
cian ∇2C. Notably, the best descriptor reaches a
performance of 97.7 % and the four following de-
scriptors a performance of 96.6–96.9 %. Hence, one
may ask if there are inherent difficulties in the data.

Table 10 show the confusion matrix for one of
the second best image descriptors on this bench-
mark problem, i.e., the 12-D histogram with
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Object category classification ETH-80

Image features PC r Raw Norm. Best

25-D (Lx, Ly , Lxx, Lxy , Lyy ;σ=1, 2, 4, 8, 16) 2̃0 2 95.3 97.1 97.7
15-D (Lxx, Lxy , Lyy ;σ=1, 2, 4, 8, 16) – 2 96.9 96.7 96.9
12-D (∇2L, detHL;σ=1, 2, 4, 8, 16), (∇2C;σ=2) 12 2 94.8 96.9 96.9
10-D (Lx, Ly ;σ=1, 2, 4, 8, 16) 10 2 93.9 96.6 96.6
9-D (|∇L|,∇2L, detHL;σ=1, 2, 4) – 14 96.6 94.7 96.6

Object category classification CalTech-4

Image features PC r Raw Norm. Best
10-D (Lx, Ly ;σ=1, 2, 4), (Cx, Cy ;σ=2) 5 10 99.6 99.6 99.9
15-D (Lxx, Lxy , Lyy ;σ=1, 2, 4), (Cxx, Cxy , Cyy ;σ=2) 8 4 99.6 99.8 99.9
25-D (Lx, Ly , Lxx, Lxy , Lyy ;σ=1, 2, 4), (Cx, Cy , Cxx, Cxy , Cyy ;σ=2) 9 4 99.5 99.3 99.9
15-D (L,Lx, Ly ;σ=1, 2, 4), (C,Cx, Cy ;σ=2) 10 4 98.6 99.6 99.8
6-D (Lxx, Lxy , Lyy ;σ=1, 2) 4 17 99.8 99.6 99.8

Table 9: The 5 best PCA-reduced histogram descriptors when performing object category classification on the ETH-80 and
CalTech-4 data sets. The column labelled “Best” shows the result for the best number of principal components shown in
the column labelled “PC”. A tilde ˜ over the number of principal components PC indicates that the result without variance
normalization was better than the result obtained with variance normalization. A dash “–” in the PC column indicates that
PCA did not lead to any improvement in performance.

apple pear tomato car cup cow horse dog
apple 160 0 0 0 0 0 0 0
pear 0 160 0 0 0 0 0 0
tomato 0 0 160 0 0 0 0 0
car 0 0 0 160 0 0 0 0
cup 0 0 0 0 160 0 0 0
cow 0 0 0 0 0 155 4 1
horse 0 0 0 0 0 11 139 10
dog 0 0 0 0 0 9 5 146

Table 10: Confusion matrix for the ETH-80 dataset using
the 12-D descriptor with (∇2L, detHL) at σ= 1, 2, 4, 8, 16)
and ∇2C at σ=2 transformed using PCA with 12 principal
components. The overall performance is 96.9 %. With the
cows, horses and dogs grouped into the super-category “plas-
tic toy animals”, the performance on the simplified category
classification task is 100.0 %.

airplane car face motorbike
airplane 398 0 0 2
car 0 400 0 0
face 0 0 217 0
motorbike 0 0 0 400

Table 11: Confusion matrix for the CalTech-4 dataset us-
ing the 15-D descriptor with (Lxx, Lxy , Lyy) at σ = 1, 2, 4
and (Cxx, Cxy , Cyy) at σ=2 transformed using PCA with 8
principal components. The overall performance is 99.9 %.

(∇2L,detHL) at five scales and ∇2C at one scale.
From an inspection of the errors, it can be seen that
the majority of the mistakes are due to mixing up
the different plastic toy animals “cows”, “horses”
and “dogs”. From inspection of the corresponding
images (see the last three rows in figure 4), we can
easily understand this by noting that these toy ani-
mals have been manufactured in a similar way and

been painted with similar patterns. If we group the
cows, horses and dogs into a joint category “plas-
tic toy animals”, then the performance on the sim-
pler category classification problem reaches 100.0 %
for this 12-D histogram with the second-order grey-
level differential invariants (∇2L,detHL) at five
scales, and also for the 25-D grey-level histogram
with the first- and second-order partial derivatives
(Lx, Ly, Lxx, Lxy, Lyy) at five scales.

For object categorization on the CalTech-4
dataset, we get significant increase in performance
by dimensionality reduction by PCA. The (i) 10-D
histogram of (Lx, Ly) at three scales and (Cx, Cy) at
one scale, the (ii) 15-D histogram of (Lxx, Lxy, Lyy)
at three scales and (Cxx, Cxy, Cyy) at one scale as
well as the (iii) 25-D histogram of the spatial 2-jet
(Lx, Ly, Lxx.Lxy, Lyy) and the 2-jet of the colour-
opponent channels (Cx, Cy, Cxx.Cxy, Cyy) at one
scale do all reach 99.9 % when reduced to 5, 8 or
9 dimensions respectively. Table 11 shows the con-
fusion matrix for one of the best descriptors. As
can be seen, only 2 out of 1417 images are mis-
classified and the mistakes correspond to classify-
ing two airplane images as motorbike images. Very
good results are also obtained for a 6-D histogram
of (Lxx, Lxy, Lyy) at three scales reduced to four
dimensions and for a 15-D histogram of the zero-
and first-order cues (L,Lx, Ly) at three scales and
(C,Cx, Cy) at one scale, when reduced to 10 di-
mensions. Compared to the ETH-80 data set most
of the best categorization results are obtained with
pure grey-level cues, most of the best category clas-
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sification results for the CalTech-4 data set are ob-
tained with combinations of grey-level and colour.

For both the ETH-80 and the CalTech-4 data
sets, we can conclude that also histogram-based
methods for visual object categorization can be
improved significantly by variance normalization
and/or dimensionality reduction by PCA.

Concerning the number of bins, we can also note
that many of the best image descriptors for ob-
ject categorization have been computed using as
few as 2 or 4 bins per dimension. For object in-
stance recognition with a rather dense sampling of
the view-sphere as in the COIL-100 30◦ and ETH-
80 45◦ benchmarks, many of the best image descrip-
tors were also obtained with as few as 2 or 4 bins.
With a less dense sampling of the view-sphere as
in the COIL-100 60◦ benchmark, the best results
were obtained with 3 or 5 bins. From these obser-
vations, we can conclude that a rather low number
of bins r is often sufficient to obtain good recogni-
tion or classification performance. By using such
low numbers of bins, the histograms can therefore
in combination with automatic exposure control be
expected to possess certain robustness properties to
illumination variations.

Combined ranking of the performance on the object
recognition tasks. For the four different types of ob-
ject recognition problems we have considered here,
it is clear that the results depend on the types of
objects in the dataset as well as the density of the
viewsphere sampling and thus the amount of im-
age deformations between the images in the train-
ing and the test sets. From this observation we can
conclude that which descriptor performs best on a
given task may in general depend on how well the
variability in the training data spans the variability
in the test data. To allow for a joint interpretation
of these results, table 12 shows the result of a sum-
marizing ranking the data on a single (logarithmic)
performance measure of the form

W (D) = − 1

K

K∑
k=1

log2(1− pk(D) + ε) (18)

for each image descriptor D, where k is an index
for each one of the K = 4 object recognition tasks,
pk(D) denotes the performance of the image de-
scriptor D in that experiment and ε ≈ 0.25 % is
a constant to avoid computing logarithms of val-
ues close or equal to zero when the performance
approaches 100.0 %.

As can be seen from the table, all the best im-
age descriptors on this ranking contain explicit
spatio-chromatic colour-opponent cues, where the
best result is obtained from a 10-D histogram that
combines grey-level values L, gradient magnitudes
|∇L|, colour-opponent channels C and colour-
opponent gradient magnitudes |∇C|. Somewhat
more surprisingly, however, zero-order cues in terms
of image intensities L and/or colour-opponent chan-
nels C are included in the two best histogram de-
scriptors. Even a 5-D histogram of grey-level gradi-
ent magnitudes |∇L| and colour-opponent gradient
magnitudes |∇C| leads to very good performance.

Table 13 shows a corresponding ranking where all
image descriptors involving explicit zero-order cues
have been suppressed. Such an exclusion can, for
example, be motivated by a requirement of having
the image descriptors being invariant to additive
transformations of image intensities and chromatic
channels. As can be seen from the results, all of the
best solely derivative based image descriptors are
based on combinations or subsets of the differential
invariants (|∇L|,∇2L) and (|∇C|,∇2C).

From both these summaries it is apparent that
with regard to the problem of recognizing previ-
ously seen objects from novel views, much bet-
ter results are obtained from rotationally invariant
image descriptors defined from differential invari-
ants compared to rotationally variant descriptors
defined from partial derivatives.

Combined ranking of the performance on the ob-
ject classification tasks. Table 14 shows the re-
sult of a corresponding joint ranking of the per-
formance on the object classification tasks. Here,
second-order grey-level cues in terms of the par-
tial derivatives (Lxx, Lxy, Lyy) are included in the
three best image descriptors. Specifically, the
best result is obtained for a 25-D rotationally
variant histogram based on the 2-jet of image
intensities (Lx, Ly, Lxx, Lxy, Lyy) at three scales
and the spatio-chromatic colour-opponent 2- jet
(Cx, Cy, Cxx, Cxy, Cyy) at one scale. The best ro-
tationally invariant descriptor turns out to be a
9-D histogram of the independent rotationally in-
variant differential invariants (|∇L|,∇2L,detHL)
computed from intensity information only, with its
combined performance value W = 4.1 just below
the five best rotationally variant image descriptors.
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Combined score for the object recognition tasks

Image features D r W
10-D (L, |∇L|;σ=1, 2, 4), (C, |∇C|;σ=2) 4–9 4–19 5.1
15-D (L, |∇L|,∇2L;σ=1, 2, 4), (C, |∇C|,∇2C;σ=2) 7–15 2–29 5.0
10-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 6–10 2–5 5.0
8-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|;σ=2) 5–7 4–8 5.0
5-D (L;σ=1, 2, 4), (C;σ=2) 3–5 6–255 4.9
5-D (|∇L|;σ=1, 2, 4), (|∇C|;σ=2) 4,5 5–15 4.9
8-D (|∇L|,∇2L;σ=1, 2, 4), (∇2C;σ=2) 5–8 4,35 4.9

13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 9–13 2–4 4.9
20-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4), (C, |∇C|,∇2C,detHC;σ=2) 10–15 2–20 4.9
15-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C,detHC;σ=2) 7–15 2–4 4.8

Table 12: The 10 best histogram descriptors according to the combined logarithmic performance measure W in equation (18)
for the 4 object instance recognition tasks for the COIL-100 and ETH-80 datasets.

Combined score for the object recognition tasks excluding 0-order cues

Image features D r W
10-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 6–10 2–5 5.0
8-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|;σ=2) 5–7 4–8 5.0
5-D (|∇L|;σ=1, 2, 4), (|∇C|;σ=2) 4,5 5–15 4.9
8-D (|∇L|,∇2L;σ=1, 2, 4), (∇2C;σ=2) 5–8 4,35 4.9

13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 9–13 2–4 4.9

Table 13: The 5 best histogram descriptors according to the combined logarithmic performance measure W in (18) for the 4
object instance recognition tasks for the COIL-100 and ETH-80 datasets. This table shows similar results as table 12, with the
difference that image descriptors involving explicit zero-order cues have been excluded.

Combined score for the category classification tasks

Image features D r W
25-D (Lx, Ly , Lxx, Lxy , Lyy ;σ=1, 2, 4), (Cx, Cy , Cxx, Cxy , Cyy ;σ=2) 9 4,14 4.3
15-D (Lx, Ly , Lxx, Lxy , Lyy ;σ=1, 2, 4) 10,12 6,8 4.3
6-D (Lxx, Lxy , Lyy ;σ=1, 2) 4,6 17,30 4.3

10-D (Lx, Ly ;σ=1, 2, 4), (Cx, Cy ;σ=2) 5,10 2,10 4.3
21-D (Lxx, Lxy , Lyy ;σ=1, 2, 4, 8, 16), (Cxx, Cxy , Cyy ;σ=2) 8,21 2,4 4.2
10-D (Lx, Ly ;σ=1, 2, 4, 8, 16) 5,10 2,13 4.2

Table 14: The 6 best histogram descriptors according to the combined logarithmic performance measure W in equation (18)
for the 2 object category classification tasks for the ETH-80 and CalTech-4 datasets.

6. Histograms of local binary information

An observation that can be made regarding
higher-dimensional histogram descriptors is that in
many cases a quite reasonable performance can be
obtained by using as few as r = 2 bins per dimen-
sion. For image descriptors that reflect the local po-
larity of the signal, such as the partial derivatives
(Lx, Ly, Lxx, Lxy, Lyy) and (Cx, Cy, Cxx, Cxy, Cyy)
or the differential invariants (∇2L,detHL) and
(∇2C, detHC), this means that object recognition
or category classification is performed using only
the sign of the differential expression. Therefore,
the classification will automatically be invariant to
uniform rescalings of the intensity values and the
chromaticity channels, f ′(x, y) = af f(x, y) and
c′(x, y) = ac c(x, y). Since differential scale-space

features are also invariant under additive intensity
and chromaticity transformations, we may there-
fore expect a particularly good robustness to illu-
mination variations. In particular, the histogram
descriptors will be invariant under affine intensity
and chromaticity transformations.

Interpretation. Using r = 2 bins for image in-
tensities L means that a distinction is only made
between bright or dark image point, and for the
colour-opponent channels that distinctions are only
made between red or green and between yellow or
blue. For the gradient magnitudes |∇L| and |∇C|, a
corresponding use of r = 2 bins means that classifi-
cations are only made between edge or non-edge im-
age structures in grey-level information and colour-
opponent information. Concerning the Laplacian
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Lxx σ = 8 Lxy σ = 8 Lyy σ = 8 Lxx σ = 8 Lxy σ = 8 Lyy σ = 8

Lxx σ = 4 Lxy σ = 4 Lyy σ = 4 Lxx σ = 4 Lxy σ = 4 Lyy σ = 4

Lxx σ = 2 Lxy σ = 2 Lyy σ = 2 Lxx σ = 2 Lxy σ = 2 Lyy σ = 2

Lxx σ = 8 Lxy σ = 8 Lyy σ = 8 Lxx σ = 8 Lxy σ = 8 Lyy σ = 8

Lxx σ = 4 Lxy σ = 4 Lyy σ = 4 Lxx σ = 4 Lxy σ = 4 Lyy σ = 4

Lxx σ = 2 Lxy σ = 2 Lyy σ = 2 Lxx σ = 2 Lxy σ = 2 Lyy σ = 2

Figure 8: Illustration of the quantized scale-space features that underlie the computation of binary histograms. This figure
shows the signs of the second-order partial derivatives (Lxx, Lxy , Lyy) computed at scale levels σ = 2, 4, 8 for two images of cups
and horses, respectively, from the ETH-80 data set. These quantized differential entities occur in the 15-D binary histogram
with (Lxx, Lxy , Lyy) at σ = 1, 2, 4, 8, 16, which leads to the best category classification results for the ETH-80 data set.
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Object instance recognition COIL-100 30◦

Image features PC r Raw Norm. Best
10-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 10 2 94.2 100.0 100.0
15-D (L, |∇L|,∇2L;σ=1, 2, 4), (C, |∇C|,∇2C;σ=2) 1̃5 2 99.1 100.0 100.0
20-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4), (C, |∇C|,∇2C,detHC;σ=2) 1̃0 2 99.2 99.6 100.0
14-D (∇2L, detHL;σ=1, 2, 4, 8, 16), (∇2C,detHC;σ=2) 1̃1 2 99.0 99.5 100.0
15-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C,detHC;σ=2) 1̃1 2 99.0 99.8 100.0
13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 1̃3 2 98.7 100.0 100.0
8-D (|∇L|,∇2L;σ=1, 2, 4), (∇2C;σ=2) 8 2 94.2 100.0 100.0

10-D (L, |∇L|;σ=1, 2, 4), (C, |∇C|;σ=2) 1̃0 2 90.8 100.0 100.0
8-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|;σ=2) 8̃ 2 55.6 99.9 99.9

15-D (L,Lx, Ly ;σ=1, 2, 4), (C,Cx, Cy ;σ=2) – 2 99.9 99.7 99.9

Object instance recognition COIL-100 60◦

Image features PC r Raw Norm. Best

15-D (L, |∇L|,∇2L;σ=1, 2, 4), (C, |∇C|,∇2C;σ=2) 1̃5 2 95.1 98.3 98.3
20-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4), (C, |∇C|,∇2C,detHC;σ=2) 1̃5 2 96.5 96.8 98.1
10-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 1̃0 2 85.5 98.1 98.1
13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 1̃1 2 93.2 97.5 97.9
15-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C,detHC;σ=2) 1̃1 2 95.0 96.8 97.9

Object instance recognition ETH-80 45◦

Image features PC r Raw Norm. Best

10-D (L, |∇L|;σ=1, 2, 4), (C, |∇C|;σ=2) 1̃0 2 92.2 99.9 99.9
15-D (L, |∇L|,∇2L;σ=1, 2, 4), (C, |∇C|,∇2C;σ=2) 15 2 98.7 99.9 99.9
14-D (|∇L|,∇2L;σ=1, 2, 4, 8, 16), (|∇C|,∇2C;σ=2) 1̃4 2 96.3 99.9 99.9
15-D (L,Lx, Ly ;σ=1, 2, 4), (C,Cx, Cy ;σ=2) 11 2 99.7 99.8 99.8
20-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4), (C, |∇C|,∇2C,detHC;σ=2) 15 2 99.3 99.5 99.8

Object instance recognition ETH-80 90◦

Image features PC r Raw Norm. Best

15-D (L, |∇L|,∇2L;σ=1, 2, 4), (C, |∇C|,∇2C;σ=2) 1̃5 2 95.8 98.4 98.4
10-D (|∇L|,∇2L;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 1̃0 2 80.4 98.1 98.1
10-D (L, |∇L|;σ=1, 2, 4), (C, |∇C|;σ=2) 1̃0 2 82.1 98.0 98.0
13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 1̃3 2 88.7 97.9 97.9
20-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4), (C, |∇C|,∇2C,detHC;σ=2) 15 2 96.2 96.9 97.8

Table 15: The 5 or 10 best PCA-reduced histogram descriptors when performing object instance recognition using binary
histograms on the COIL-100 and ETH-80 data sets. The column labelled “Best” shows the result for the best number of
principal components shown in the column labelled PC. A tilde˜over the number of principal components PC indicates that
the result without variance normalization was better than the result with variance normalization. A dash “–” in the PC column
indicates that PCA did not lead to any improvement in performance.

operators ∇2L and ∇2C, the sign of the grey-level
Laplacian reflects whether the local image struc-
ture should be regarded as a bright or dark blob,
while the sign of the colour-opponent Laplacian de-
termines whether the local image pattern can be re-
garded as a red blob on a green background, green
blob on a red background, yellow blob on a blue
background or a blue blob on a yellow background,
respectively. For the determinant of the Hessian
detHL applied to grey-level information, the sign
determines whether the local image pattern is el-
liptic (the Hessian matrix is positive or negative
definite) or hyperbolic (the Hessian matrix is in-

definite). The sign of the Laplacian together with
the sign of the determinant of the Hessian do hence
characterize the qualitative type of local second-
order differential geometric structure. The sign of
the determinant of the Hessian detHC applied to
chromatic information makes corresponding judge-
ments for the red/green and yellow/blue colour-
opponent channels. Hence, binary classification of
such data, as implied of using r = 2 bins per dimen-
sion, means that a detailed qualitative judgement is
made of the local differential image structure at each
image point , optionally complemented by a charac-
terization in terms of bright/dark, red/green, yel-
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Object category classification ETH-80

Image features PC r Raw Norm. Best

25-D (Lx, Ly , Lxx, Lxy , Lyy ;σ=1, 2, 4, 8, 16) 2̃0 2 95.3 97.1 97.7
15-D (Lxx, Lxy , Lyy ;σ=1, 2, 4, 8, 16) – 2 96.9 96.7 96.9
12-D (∇2L, detHL;σ=1, 2, 4, 8, 16), (∇2C;σ=2) 12 2 90.8 96.9 96.9
10-D (Lx, Ly ;σ=1, 2, 4, 8, 16) 10 2 92.2 96.6 96.6
14-D (Lx, Ly ;σ=1, 2, 4, 8, 16), (Cx, Cy ;σ=2) 14 2 90.5 96.2 96.2

Object category classification CalTech-4

Image features PC r Raw Norm. Best

15-D (Lxx, Lxy , Lyy ;σ=1, 2, 4), (Cxx, Cxy , Cyy ;σ=2) 1̃5 2 99.5 99.8 99.8
25-D (Lx, Ly , Lxx, Lxy , Lyy ;σ=1, 2, 4), (Cx, Cy , Cxx, Cxy , Cyy ;σ=2) 12 2 97.2 98.1 99.8
13-D (|∇L|,∇2L, detHL;σ=1, 2, 4), (|∇C|,∇2C;σ=2) 1̃3 2 96.5 99.7 99.7
15-D (L, |∇L|,∇2L;σ=1, 2, 4), (C, |∇C|,∇2C;σ=2) 1̃2 2 97.4 99.6 99.7
10-D (Lx, Ly ;σ=1, 2, 4), (Cx, Cy ;σ=2) 10 2 97.5 99.6 99.6
15-D (L,Lx, Ly ;σ=1, 2, 4), (C,Cx, Cy ;σ=2) 15 2 98.1 99.6 99.6
20-D (L, |∇L|,∇2L, detHL;σ=1, 2, 4), (C, |∇C|,∇2C,detHC;σ=2) 1̃5 2 98.4 99.3 99.6

Table 16: The 5 best PCA-reduced histogram descriptors when performing object category classification using binary histograms
on the ETH-80 and CalTech-4 data sets. The column labelled “Best” shows the result for the best number of principal
components shown in the column labelled PC. A tilde˜over the number of principal components PC indicates that the result
without variance normalization was better than the result obtained with variance normalization. A dash “–” in the PC column
indicates that PCA did not lead to any improvement in performance.

low/blue and edge/non-edge in grey-level informa-
tion and/or the chromatic channels.

Figure 8 shows an example of computing such
binary features from the second-order grey-level
structure of two images from the ETH-80 data set.
Please, note how well the sign of the second-order
derivatives reflect the qualitative shape of a cup.
For the horse images, we get fragmentary represen-
tative shapes of different parts of a horse, where the
body of the horse is reflected at σ = 8, while the
individual legs become visible at σ = 4 and σ = 2.

Experimental results. Table 15 gives a summary of
performance values obtained using r = 2 bins for
the problem of recognizing previously seen objects
from novel views. Table 16 shows corresponding re-
sults for the two category classification benchmarks.

Table 17 gives a summary of the best perfor-
mance values for each one of the six different bench-
mark problems using either (i) regular composed
histograms without PCA, (ii) PCA-reduced his-
tograms as proposed in section 5.1, or (iii) binary
histograms. As can be seen from the table, with
dimensionality reduction by PCA even binary his-
tograms do often give a similar or even better per-
formance than regular histograms without dimen-
sionality reduction. The only exception is the ob-
ject recognition task on the ETH-80 90◦ data set,
where the error rate is about 25 % greater.

From a brief inspection, one may at first re-
gard the recognition performance of the binary his-

tograms as surprisingly high. Plain binary thresh-
olding at a single image point can neither be re-
garded as robust nor discriminative. In combina-
tion with higher-dimensional histograms of multi-
scale differential image features, however, these ex-
periments show that such information can be highly
discriminative. If we use a larger number of bins
r > 2 for accumulating the histograms, this sim-
ply means that a more fine-grained classification is
made at each image point prior to the computation
of the histograms.

In connection with these binary histograms it is
also worth noting that with regard to object in-
stance recognition, very good performance can also
be obtained with trinary histograms using r = 3
bins per dimension. A trinary histogram also im-
plies a qualitative judgement of the local image
structure in the sense that a polarity dependent im-
age feature is locally classified as either (i) clearly
positive, (ii) around zero or (iii) clearly negative.

In contrast to the binary histograms, the trinary
histograms are, however, not parameter free. They
depend on a threshold for distinguishing values that
are to be regarded as close to zero from values that
are either clearly positive or clearly negative. There
is a possibility of optimizing the level of this thresh-
old, although no such effort has been made in this
treatment. The trinary histograms will, however,
usually be more compact than binary histograms,
since values classified as around zero will fall into
the same bin (and such values are very common).
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Raw PCA-reduced binary PCA-reduced trinary PCA-reduced
COIL-100 30◦ 99.9 % 100.0 % 100.0 % 100.0 %
COIL-100 60◦ 98.4 % 99.0 % 98.3 % 99.0 %
ETH-80 45◦ 99.8 % 100.0 % 99.9 % 99.9 %
ETH-80 90◦ 98.7 % 99.4 % 98.4 % 98.9 %
ETH-80 Class 96.9 % 97.7 % 97.7 % 95.9 %
CalTech-4 Class 99.8 % 99.9 % 99.8 % 99.7 %

Table 17: Comparison of the best performance values obtained using the best histogram descriptors within the classes of
(i) regular histograms, (ii) PCA-reduced histograms, (iii) binary histograms of PCA-reduced scale-space features and (iv) trinary
histograms of PCA-reduced scale-space features.

Beyond binary and trinary histograms, we can
also note that if we include the cases with r = 4
or r = 5 bins per dimension,7 then we reach per-
formance values that are either among or near the
best for all these benchmark problems.

7. Dependency on viewsphere sampling

Due to the dense sampling of the viewing direc-
tions in the COIL-100 data set, we can use the im-
age data for evaluating the robustness of different
types of image descriptors under variations in the
viewing direction. In [39], we present results of such
view variation experiments that show that the log-
arithm of the error increases approximately linearly
with the viewsphere sampling ∆φ. Hence, we get
the following approximate error estimate

ε = 1− p ≈ 10C+∆φ/Φ (19)

where a least-squares fitting of a linear model to
log ε without PCA gives Φ ≈ 49◦ for the grey-level
descriptors and Φ ≈ 37◦ for the colour descriptors.
For the best grey-level descriptor on this data set
we have C ≈ −3.0 and for the best colour descriptor
C ≈ −4.0. When complemented by dimensionality
reduction, the errors become significantly lower.

8. Comparisons with other work

In this section, we compare the performance of
our complex-cue histogram descriptors to previ-
ously reported results for similar data sets.

7A histogram with r = 4 bins implies that a qualita-
tive judgement is made at every image point whether the
value is (i) strongly positive, (ii) weakly positive, (iii) weakly
negative, or (iv) strongly negative. With r = 5 bins im-
plies a qualitative judgement as either (i) strongly positive,
(ii) clearly positive, (iii) around zero, (iv) clearly negative,
or (v) strongly negative.

8.1. COIL-100

Table 18 shows how the performance of one of
our PCA-reduced histograms compares to other
methods when applied to object instance recogni-
tion using a viewsphere representation along the
equator for the COIL-100 data set. As represen-
tative for our rich set of histogram features, we
have chosen the 13-D histogram descriptor with
(|∇L|,∇2L,detHL) at σ = 1, 2, 4 and ∇2C at
σ = 2 and computed the recognition performance
with viewsphere samplings of 20◦, 45◦ and 90◦ using
all the intermediate views for recognition. Thus,
the recognition rates represent the average perfor-
mance in contrast to the previously reported results
in sections 4–5 that reflect the worst-case perfor-
mance. This 13-D descriptor was chosen because
it is had the best worst-case performance on the
COIL-100 data set with 60◦ viewsphere sampling.

As can be seen from the table, our 13-D his-
togram descriptor compares very favourably to pre-
viously reported results on this data set, such as lo-
cal affine frames (Obdržálek and Matas [50]), spin-
glass Markov random fields (Caputo et al. [8])
or sparse networks of linear units based on either
edges or intensities (Yang et al. [63]). The 13-
D histogram descriptor with PCA does also per-
form significantly better than the 14-D descriptor
we reported in [38]. Using a combination of multi-
dimensional receptive field histograms and colour
histograms that were classified by a support vec-
tor machine, Nilsback and Caputo [49] obtained a
98.2 % recognition rate with a viewsphere sampling
of 30◦. With such a 30◦ viewsphere sampling, the
performance of our 13-D histogram descriptor is
100.0 %. Hence, in all these cases our 13-D his-
togram descriptor performs better than previously
reported results on the COIL-100 data set.

8.2. ETH-80

For the ETH-80 data set, we are not aware of
any previously reported results regarding recogni-
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COIL-100
20◦ 45◦ 90◦

13-D (|∇L|,∇2L,detHL) (∇2C) PCA, 10 PC, r = 3 100.0 % 99.9 % 98.6 %
14-D (|∇L|,∇2L) (|∇C|,∇2C) r = 15 (Linde and Lindeberg [38]) 99.9 % 99.4 % 97.1 %
Local affine frames (Obdržálek and Matas [50]) 99.9 % 99.4 % 94.7 %
Spin-glass MRF (Caputo et al. [8]) 96.8 % 88.2 % 69.4 %
Nearest neighbour (Yang et al. [63]) 87.5 % 79.5 % 74.6 %

Table 18: Performance results obtained for object instance recognition on COIL-100 with viewsphere sampling rates of 20◦,
45◦ and 90◦, respectively. The number of training views were 18, 8 and 4 respectively and the number of test images 5400,
6400 and 6800 respectively.

ETH-80
25-D (Lx, Ly , Lxx, Lxy , Lyy) PCA, 20 PC, r = 2 97.7 %
Nilsback and Caputo [49] multi-cue decision tree 97.1 %
12-D (∇2L, detHL)(∇2C) PCA, 12 PC, r = 2 96.9 %
Nilsback and Caputo [49] dual cue voting 96.4 %
Nilsback and Caputo [49] single cue 93.9 %
Linde and Lindeberg [38] 6-D (Lx, Ly) r = 15 93.1 %
Leibe and Schiele [35] best multi-cue decision tree 93.0 %
Leibe and Schiele [35] best single-cue 86.4 %
Eichhorn and Chapelle [15] interest points + SIFT 85 %
Grauman and Darrell [24] Harris points + PCA-SIFT 83 %

Table 19: Performance results obtained for category classification on ETH-80 .

CalTech-4
10-D (Lx, Ly) (Cx, Cy) PCA, 6 PC, r = 6 99.9 %
15-D (Lxx, Lxy , Lyy) (Cxx, Cxy , Cyy) PCA, 8 PC, r = 4 99.9 %
15-D (Lxx, Lxy , Lyy) (Cxx, Cxy , Cyy) PCA, 15 PC, r = 2 99.8 %
8-D (∇2L, detHL)(∇2C) PCA, 8 PC, r = 5 99.7 %
Nilsback and Caputo [49] multi-cue decision tree 99.5 %
Linde and Lindeberg [38] 9-D (|∇L|,∇2L, detHL) r = 15 99.2 %
Nilsback and Caputo [49] multi-cue voting 98.5 %
Nilsback and Caputo [49] single cue 96.9 %

Table 20: Performance results obtained for category classification on CalTech-4 .

tion of specific object instances. Hence, we focus
on object category classification in this comparison
summarized in table 19.

As representatives for our histogram features,
we have chosen the 25-D rotationally variant his-
togram of (Lx, Ly, Lxx, Lxy, Lyy) at σ = 1, 2, 4, 6, 16
and the 12-D histogram of the rotationally invari-
ant differential invariants (∇2L,detHL) at σ =
1, 2, 4, 6, 16 and ∇2C at σ = 2. These descriptors
reach performance values of 97.7 % and of 96.9 %
respectively.

For this data set Leibe and Schiele [35] and Nils-
back and Caputo [49] got 86.4 % and 93.9 % per-
formance respectively using their best single cues,
93.0 % using the multi-cue decision tree in [35] and
96.4 % using the dual cue voting scheme in [49].
Notably, our best complex-cue histogram features,
which turn out to be binary histograms, give clas-
sification rates that are better than those multi-cue
schemes. With a multi-cue decision tree, Nilsback

and Caputo [49] reached a performance of 97.1 %,
i.e., below the performance of our best rotation-
ally variant descriptor but somewhat better than
our best rotationally invariant descriptor. Object
classification in terms of interest points lead to a
performance of about 85 % (Eichhorn and Chapelle
[15], Grauman and Darrell [24]), which is not at all
comparable to the performance of multi-scale his-
tograms on this data set.

8.3. CalTech-4

Table 20 shows a comparison with regard to cate-
gory classification on the CalTech-4 data set. Here,
we have chosen the rotationally variant 10-D his-
togram descriptor with (Lx, Ly) at σ = 1, 2, 4 and
(Cx, Cy) at σ = 2 and the 15-D rotationally vari-
ant histogram with (Lxx, Lxy, Lyy) at σ = 1, 2, 4
and (Cxx, Cxy, Cyy) at σ = 2. Both reach a perfor-
mance of 99.9 % when reduced to 6 and 8 dimen-
sions respectively using PCA. The performance of
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our best binary histogram on this data set, also with
(Lxx, Lxy, Lyy) at σ = 1, 2, 4 and (Cxx, Cxy, Cyy) at
σ = 2, is 99.8 %. With an 8-D rotationally invariant
histogram of the variance normalized scale-space
features (∇2L,detHL) at σ = 1, 2, 4 and ∇2C at
σ = 2 the classification performance is 99.7 %.

Nilsback and Caputo [49] obtained 96.9 % us-
ing their best single cue and 98.5 % using a vot-
ing scheme on multiple cues. With multi-cue deci-
sion tree they reached 99.5 %. Our single complex-
cues histogram features are significantly better than
this. Our best rotationally invariant histogram and
our best binary histogram are also better.

Qualitatively, we can also relate these results to
Fergus et al. [18], who report equal error rates from
an ROC curve in the range 90–96 % depending on
the object class. These error rates are, however, not
directly comparable, since our experiment concerns
a multi-category problem, whereas Fergus et al. [18]
consider a category detection problem, with explicit
modelling of the background class.

9. Summary and conclusions

We have introduced a rich set of histogram de-
scriptors for view-based object recognition and eval-
uated them with respect to two types of recognition
problems using three mutually independent data
sets. These histogram descriptors can be defined
and computed either globally, regionally or locally.
Moreover, they can be computed efficiently and be
classified with low computational cost.

The proposed image descriptors are formu-
lated in terms of different combinations of partial
derivatives and differential invariants up to order
two, computed from either grey-level information,
spatio-chromatic colour-opponent channels or both,
and capture the statistics of local differential geo-
metric image structure.

Whereas the histograms themselves treat the im-
age measurements at different points completely in-
dependently and without any explicit encoding of
relations between the image structures at different
points within the support region, the formulation of
histograms in terms of differential entities defined
from Gaussian derivatives implies that such rela-
tions between image structures at different points
are nevertheless encoded implicitly by the compar-
isons between neighbouring regions that are per-
formed when computing the underlying derivatives
and/or differential invariants.

9.1. Composed complex-cue histograms

Our motivation for studying composed descrip-
tors of higher dimensionality is to capture more of
the information content in the local image struc-
ture than is reflected in previously used histogram
features. From scale-space theory, we obtain a nat-
ural classification of local image operations, and we
have used this classification of local image features
to state an exhaustive catalogue of natural image
descriptors up to second-order. The experiments
have clearly shown that it is possible to define com-
posed complex-cue image descriptors that capture
the co-variation of different primitive image cues
and that these may lead to significant improve-
ments in recognition performance compared to pre-
viously used histogram descriptors of primitive im-
age cues, which in turn are of lower dimensionality.

9.2. Handling the bin size

The number of bins for accumulating the his-
tograms constitutes a free parameter, and the
choice of a suitable number of quantization levels
depends on both the distribution and the availabil-
ity of image measurements. Thus, there is a trade-
off between the accuracy of estimating the distribu-
tion and the availability as well as the accuracy of
the underlying image measurements.

In this work, we have performed a coarse opti-
mization over the number of histogram bins to op-
timize the performance and also to be able to com-
pare qualitatively different types of histogram de-
scriptors without having the comparison biased by
any ad hoc choice of bin size. We have also seen
that even binary histograms may give surprisingly
good performance and that such descriptors, which
reveal qualitative information in terms of the polar-
ity of image features, can be expected to have good
robustness properties under illumination variations.

For the task of object instance recognition, also
trinary histograms, which imply local classifica-
tions in terms of strongly positive, around zero or
strongly negative, lead to very good performance.
More generally, coarsely quantized histograms with
as few as r = 2 to r = 5 bins per dimension are
usually sufficient to obtain recognition or classifica-
tion performance among or near the best for these
datasets.

In the trade-off between a larger number of bins
or a larger number of dimensions in the descriptor,
it is worth noting that the experimental results of-
ten seem to favour higher-dimensional descriptors
with a low number of bins.
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9.3. General conclusions from the experiments

We have performed an extensive experimental
evaluation of a very rich set of image descriptors
on primarily six different benchmark problems with
regard to the problems of either (i) recognizing pre-
viously seen objects from novel views or (ii) clas-
sifying previously unseen objects into object cat-
egories. For both types of problems, we have pre-
sented several histogram descriptors with very good
performance. The set of image descriptors that per-
forms best for object recognition does, however, dif-
fer from the set of image descriptors that performs
best for object categorization.

A general result throughout the experiments is
that the recognition or classification performance
can be improved by combining primitive scale-space
features into composed image descriptors that cap-
ture the simultaneous co-variation of multiple cues
in terms of composed complex cue histograms, pro-
vided that a sufficient set of representative training
data is available for capturing the distributions of
the underlying the higher-dimensional histograms.

We have also showed that the performance of
histogram-based methods for recognition can be
significantly improved by performing dimensional-
ity reduction of the underlying image features prior
to the accumulation of histograms. For most combi-
nations of scale-space features, the performance can
also be improved by variance normalization prior to
principal component analysis.

9.4. Object instance recognition

When recognizing previously seen objects from
novel views, image descriptors that contain combi-
nations of grey-level information and explicit colour
cues in terms of higher-dimensional histograms that
combine Gaussian derivatives and spatio-chromatic
colour-opponent derivatives do in general lead to
a significant increase in performance compared
to more traditional approaches based on lower-
dimensional grey-level cues or regular colour his-
tograms. Indeed, all of the best image descrip-
tors for this task contain explicit spatio-chromatic
derivatives. Moreover, when there are variations in
the viewing direction between the training and the
testing data, image descriptors in terms of rotation-
ally invariant differential invariants lead to much
better performance compared to rotationally vari-
ant histogram descriptors. In relation to previous
work in this area, we have in particular emphasized

the usefulness of spatio-chromatic differential in-
variants defined from colour-opponent channels and
the importance of second-order image cues.

For the task of recognizing object instances on
the COIL-100 and ETH-80 datasets, image descrip-
tors based on zero-order image intensities and chro-
matic channels performed surprisingly well, where
the best results were obtained with (i) a 10-D his-
togram of the grey-level cues (L, |∇L|) at three
scales and the spatio-chromatic cues (C, |∇C|) at
one scale and (ii) a 15-D histogram of the grey-level
cues (L, |∇L|,∇2L) at three scales and the spatio-
chromatic cues (C, |∇C|,∇2C) at one scale (see ta-
ble 12). A possible explanation for this may be
that these datasets have been acquired under con-
trolled illumination conditions, which means that
image intensities and chromaticity values are pre-
served under large viewing variations, whereas the
values of higher-order derivative operators may be
more affected by larger image deformations.

Image descriptors that are based on raw image
intensities may, however, be very sensitive if the
illumination conditions are changed. In such situ-
ations, image descriptors that are based on spatial
and spatio-chromatic derivatives can be expected
to be more robust, since they are invariant under
additive illumination variations. For this subset of
image descriptors, the best results were obtained
with (i) a 10-D histogram of the mixed first- and
second-order differential invariants (|∇L|,∇2L) at
three scales and (|∇C|,∇2C) at one scale. Very
good performance was also obtained for other sub-
sets of these scale-space features (see table 13).

9.5. Object classification

When classifying previously unseen objects into
categories, pure grey-level cues are much stronger,
although spatio-chromatic derivatives may also be
valuable depending on the categories involved. A
new finding is also that second-order cues in terms
of partial derivatives and/or differential invariants
are highly discriminative, whereas zero-order cues
in terms of explicit intensity or chromaticity values
are not very useful, at least for these datasets.

When we allow for dimensionaity reduction of the
underlying scale-space features by PCA, the dom-
inance of second-order information becomes less
manifest. A possible explanation for this may be
that the principal components correspond to dif-
ferences between scale-space features at different
scales. By an interpretation of derivatives with
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respect to scale as spatial Laplacians, which fol-
lows from the diffusion equation, such differences
between scales can in turn be interpreted in terms
of higher order spatial derivatives. Nonwithstand-
ing this, we may nevertheless conclude that higher-
order spatial derivatives provide important cues for
category classification.

Moreover, provided that the orientations of
the objects are similar in the training and the
testing data, the performance is generally bet-
ter for rotationally variant image descriptors in
terms of partial derivatives compared to descrip-
tors based on rotationally invariant scale-space fea-
tures, where the best results were obtained for
different combinations of the partial derivatives
(Lx, Ly) and (Lxx, Lxy, Lyy) as well as the spatio-
chromatic colour-opponent derivatives (Cx, Cy) and
(Cxx, Cxy, Cyy) (see table 14).

There are, however, also rotationally invariant
image descriptors that also lead to very good perfor-
mance, where the best rotationally invariant image
descriptor is (i) a 9-D histogram of the indepen-
dent rotationally invariant differential invariants
(|∇L|,∇2L,detHL), computed from grey-level in-
formation only.

These conclusions have been obtained using three
mutually independent data sets, where two mutu-
ally exclusive data sets have been used for each type
of recognition problem (object recognition vs. cate-
gory classification) and the results are in agreement
between the mutually independent data sets.

9.6. Extensions and future work

Concerning possible limitations of the experimen-
tal part of work, our experiments in sections 4–
6 have all been concerned with global histograms,
motivated by our aim to evaluate the information
content in different types of image descriptors with-
out having the results influenced by the perfor-
mance of other visual modules, such as object lo-
calization or segmentation. For the image datasets
considered here, such an approach is reasonable,
since the objects to be recognized usually cover a
major part of the image. An extension of sparse
multi-cue histograms to a more general setting with
regional histograms is outlined in [39].

Concerning other extensions, the effectiveness of
composed higher-dimensional image cues revealed
by this study should be of interest also for view-
based recognition schemes based on local features,
as well as for related recognition tasks, such as tex-

ture analysis and spatio-temporal recognition. We
are addressing these topics in on-going work.

To conclude, the overall performance of the pro-
posed complex-cue histogram descriptors must be
regarded as highly competitive.
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Appendix A. Statistical analysis of signifi-
cance and confidence levels

To analyze the statistical significance of the results
for the different benchmark problems considered in this
paper, let us make the simplifying assumption that the
classifier can be viewed as a function that given a ran-
dom sample yields an incorrect classification with a
probability pe independent of all other factors. The
performance values presented previously can then be
regarded as estimates of 1− pe, given the observed out-
come of classifying a large number n of samples.

When n is large and pe is low, the actual number of
observed misclassifications u, which by the assumptions
follow a binomial distribution, can be approximated by
a Poisson distribution

f(u, λ) =
λue−λ

u!
, u = 0, 1, 2, . . . , λ > 0 (A.1)

with λ = pe n. Furthermore, if u errors are found in a
classification task, the maximum likelihood estimate of
λ is λ̂ = u.

Based on a series of observations of the assumed ran-
dom classification process, there is an inherent uncer-
tainty in the estimated λ̂, and therefore also in the de-
rived estimated error rate p̂e = λ̂/n. This uncertainty
can be quantified by the computation of a confidence
interval [a, b] that covers the true value of λ being esti-
mated with probability 1− α:

Pr {a ≤ λ ≤ b |u} = 1− α (A.2)

A central (approximate) confidence interval, i.e. an
interval where the tail area of the probability distribu-
tion outside of either edge of the interval [a, b] is α/2,
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Benchmark n u pL (%) p̂e (%) pU (%)
COIL-100 30◦ 7 200 0 0 0 0.05
COIL-100 60◦ 7 200 70 0.76 0.97 1.23
ETH-80 45◦ 1 280 0 0 0 0.28
ETH-80 90◦ 1 280 8 0.27 0.63 1.23
ETH-80 Class 1 280 29 1.52 2.27 3.25
CalTech-4 Class 1 417 1 0.00 0.07 0.39

Table A.21: 95 % central confidence intervals [pL, pU ] cover-
ing the maximum-likelihood estimate p̂e for the error rate of
the best descriptor on each benchmark problem. u denotes
the actual number of misclassified images and n the total
number of images tested.

may then be written as [26, page 96]:

0 ≤ a =
1

2
(χ2)−1

2u

(α
2

)
≤ λ ≤ 1

2
(χ2)−1

2(u+1)

(
1− α

2

)
= b

(A.3)
where (χ2)−1

d (v) is the v:th quantile of a χ2-
distribution with d degrees of freedom.

Table A.21 shows estimated 95 % confidence inter-
vals (α = 0.05) for the best results for each benchmark
problem. For COIL-100 the number of tested samples is
n = 7 200 and the number of classification errors u with
a 30◦ viewsphere is 0 for the best descriptors. An upper
limit pU for the probability pe = λ/n for the best image
descriptor is therefore pU ≈ 0.05 %. The results ex-
pressed as percentages are therefore statistically signifi-
cant up to the first decimal digit for performance values
close to 100.0 %, given the assumptions above. When
the viewsphere sampling is increased to 60◦, where the
best image descriptors have an≈ 1.0 % error rate, corre-
sponding calculations give that a 95 % confidence inter-
val for the error rate is given by 0.76 % ≤ pe ≤ 1.23 %.

For instance recognition on the ETH-80 dataset, the
number of tested samples is n = 1 280 and the corre-
sponding 95 % confidence upper limit for the estimated
probability is pU ≈ 0.28 % with a 45◦ viewsphere sam-
pling, which means that the relative ranking for results
≥ 99.7 % will be uncertain. With a 90◦ viewsphere sam-
pling, the corresponding upper bound is pU ≈ 1.2 %.

For category classification on the ETH-80 dataset,

the number of samples is 1 280 and a 95 % confidence

interval for the estimated probability becomes 1.5 % ≤
pe ≤ 3.3 %. For the Caltech-4 dataset, we use 1 417

test samples, and a 95 % upper confidence limit for the

estimated probability is pU ≈ 0.4 % for values close to

100 %.
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