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Abstract. Local scale information extracted from visual data in a bottom-
up manner constitutes an important cue for a large number of visual
tasks. This article presents a framework for how the computation of such
scale descriptors can be performed in real time on a standard computer.

The proposed scale selection framework is expressed within a novel
type of multi-scale representation, referred to as hybrid multi-scale rep-
resentation, which aims at integrating and providing variable trade-offs
between the relative advantages of pyramids and scale-space representa-
tion, in terms of computational efficiency and computational accuracy.
Starting from binomial scale-space kernels of different widths, we de-
scribe a family pyramid representations, in which the regular pyramid
concept and the regular scale-space representation constitute limiting
cases. In particular, the steepness of the pyramid as well as the sampling
density in the scale direction can be varied.

It is shown how the definition of γ-normalized derivative operators
underlying the automatic scale selection mechanism can be transferred
from a regular scale-space to a hybrid pyramid, and two alternative def-
initions are studied in detail, referred to as variance normalization and
lp-normalization. The computational accuracy of these two schemes is
evaluated, and it is shown how the choice of sub-sampling rate provides
a trade-off between the computational efficiency and the accuracy of the
scale descriptors. Experimental evaluations are presented for both syn-
thetic and real data. In a simplified form, this scale selection mechanism
has been running for two years, in a real-time computer vision system.

1 Introduction

Recent works have shown how the notion of automatic scale selection consti-
tutes an essential complement to traditional scale-space representation. While a
scale-space representation provides a well-founded framework to represent image
structures at different scales, the scale-space representation by itself contains no
explicit information about what scales are relevant for further processing.

For addressing the problem of choosing interesting scale levels from image
data, a number of different approaches have been developed in the literature
� Shortened version in L. Griffin and M. Lillholm (Eds), Proc. Scale-Space’03 , Springer
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(see the review in section 2). If one aims at real-time performance, however, a
common problem of most present approaches for automatic scale selection, is
computational efficiency. Since scale selection is performed by either minimizing
or maximizing feature measures over scales, the algorithms involve explicit search
over scales. The purpose of this article is to show how these problems can be
remedied for a class of scale selection methods based on normalized derivatives,
and how real-time performance can be obtained on a standard PC.

2 Related work

An early approach to scale selection focused on the detection of blob-like image
features and scale levels were selected from local maxima over scales of a normal-
ized measure of blob strength (Lindeberg 1993a). Later, this idea was generalized
to a wide class of differential image features, by selecting scale levels from local
maxima over scales of differential invariants expressed in terms of normalized
derivatives (Lindeberg 1993b, Lindeberg 1994). This principle has been applied
to various problems relating to the detection of image features (Lindeberg 1998b,
Lindeberg 1998a, Chomat et al. 2000, Almansa & Lindeberg 2000, Pedersen &
Nielsen 2000, Nielsen & Lillholm 2001, Kadir & Brady 2001). In particular, and
motivated by the observation that single-scale ridge detection may be highly
sensitive to the choice of scale level, special emphasis has been on the detection
of ridges for medical image analysis (Pizer et al. 1994, Eberly et al. 1994, Koller
et al. 1995, Lorenz et al. 1997, Sato et al. 1998, Staal et al. 1999, Frangi
et al. 1999, Majer 2001). Moreover, for the purpose of obtaining zoom invariant
image features for further processing, scale selection mechanisms have proven
highly useful for interest point detection (Mikolajczyk & Schmid 2002) with
applications to object recognition (Lowe 1999, Hall et al. 2000) and tracking
(Bretzner & Lindeberg 1998, Laptev & Lindeberg 2001). Other approaches for
scale selection have also been presented from the behaviour of entropy measures
or error measures over scales (Jägersand 1995, Elder & Zucker 1996, Niessen &
Maas 1996, Yacoob & Davis 1997, Lindeberg 1998c, Sporring & Weickert 1999,
Pedersen & Nielsen 2001, Comaniciu et al. 2001, Hadjidemetriou et al. 2002).

The algorithms for automatic scale selection that will presented in this paper
bear close relations to previous work by (Crowley & Parker 1984) for detecting
peaks and ridges in a bandpass pyramid, as well as previous works performing
scale selection in a regular scale-space representation (Lindeberg 1994, Lindeberg
1998b) without spatial subsampling, although reformulated to be expressed in a
hybrid pyramid representation (Lindeberg 1995, Grostabussiat 1997, Niemenmaa
2001). Parallel developments of real-time algoritms for automatic scale selection
are being made by (Crowley 2002) and (Lowe 2002).

3 Hybrid pyramid representation

Both pyramids (Burt & Adelson 1983, Crowley & Parker 1984, Jähne 1995, Si-
moncelli & Freeman 1995) and scale-space representations (Witkin 1983, Koenderink
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1984, Lindeberg 1994, Florack 1997) have been developed from the idea of repre-
senting images at multiple scales in such a way that the resulting representation
can be used as input to a large number of visual processes. Computationally,
however, these concepts have their relative advantages and disadvantages.

A pyramid representation is highly efficient in the sense that it leads to
a rapidly decreasing image size, while a scale-space representation successively
becomes more redundant as the scale parameter increases. The highly discretized
nature of a pyramid can, however, lead to algorithmic problems at coarse scales,
while in scale-space representation the task of operating on the data will be
successively simplified at coarser scales.

When processing data at a coarse scale in a scale-space representation, it
thus seems natural that a certain amount of subsampling can be performed
without affecting the performance too seriously. On the other hand, one could
also consider decomposing the smoothing operation in a pyramid into a set of
smoothing stages, so as to obtain a denser sampling along the scale direction. In
this way, we obtain an oversampled pyramid , characterized by the fact that not
every smoothing step is followed by a subsampling operation.

The goal of this section is to describe a general class of multi-scale repre-
sentations, which comprises both regular pyramids, oversampled pyramids and
scale-space representation as special cases. Due to space limitations, however,
the presentation will sometimes be somewhat condensed. For a more extensive
description, see (Lindeberg and Bretzner 2003).

3.1 Reduction operators

Following (Burt & Adelson 1983, Crowley & Parker 1984), let us describe the
the transformation between two adjacent scale levels in a pyramid by a reduction
operator. For simplicity, let us assume that the pyramid is separable and that
the size N of the smoothing filter is odd. Then, the transformation from the
representation L(i) at the current scale level i, to the representation L(i+1) at
the next coarser level i+1 is for some set of filter coefficients c : Z → R given by

L(i+1) = ReduceCycle(L(i)) (1)

L(i+1)(x) =
(N−1)/2∑

n=−(N−1)/2

c(n)L(i)(sx− n). (2)

Next, let us assume that the smoothing operation can be decomposed into several
smoothing steps:

ReduceCycle := SubSample
Smooth+ (3)

where the notation Op+ means that several operators of the form Op may occur.
ReduceCycle is thus composed of one or more smoothing operations followed
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by a subsampling. The subsampling operation is here defined by

S = SubSample(L; s) (4)

S(x) = L(sx) (s ∈ Z+). (5)

(where we usually choose s = 2) and each smoothing step according to

S = Smooth(L) (6)

S(x) =
N∑

n=−N

c(n)L(x− n). (7)

For simplicity, let us assume that the coefficients of the smoothing operation
originate from a discretization of the diffusion operator repeated K times

Smooth(L) = DeltaSmooth(L; ∆t,K) = [DeltaSmooth(L; ∆t, 1)]K (8)

where in one dimension the DeltaSmooth(L; ∆t, 1) operator corresponds to
convolution with a binomial diffusion filter of the following form

T = DeltaSmooth(L; ∆t, 1) (9)

T (x) =
∆t

2
L(x− 1) + (1−∆t)L(x) +

∆t

2
L(x+ 1) (10)

Thus, we can construct kernels such as the binomial three-kernel

Bin3Kernel = DeltaSmooth(·; 1
2 , 1) = (

1
4
,

1
2
,

1
4
) (11)

and the binomial five-kernel

Bin5Kernel = DeltaSmooth(·; 1
2 , 2) = (

1
16

,
4
16

,
6
16

,
4
16

,
1
16

). (12)

Moreover, we can define different types of oversampled pyramid representations
as illustrated in figure 1. To index the levels in such a hybrid representations,
we shall henceforth use the index i ∈ [1 . . . I] for the subsampling levels and the
index j ∈ [1 . . . J ] within each subsampling level.

3.2 Equivalent convolution and derivative approximation kernels

Since the representation at each level is constructed from a set of repeated
smoothing and subsampling operations, which are all linear operations, the com-
posed operation can equivalently be modeled as the result of applying one kernel
C(i,j), termed equivalent convolution kernel , to the original image, followed by
a pure subsampling step. If we define a dual operator to the ReduceCycle
operator according to

ExpandCycle := Smooth+

Enlarge
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Bin3ReduceCycle := SubSample
Bin3Kernel

Bin5ReduceCycle := SubSample
Bin5Kernel

Bin3Reduce6Cycle := SubSample
Bin3Kernel
Bin3Kernel
Bin3Kernel
Bin3Kernel
Bin3Kernel
Bin3Kernel

Bin5Reduce3Cycle := SubSample
Bin5Kernel
Bin5Kernel
Bin5Kernel

Fig. 1: Examples of regular and oversampled pyramids as generated using the notation
for hybrid multi-scale representations defined in (3)–(12). By applying these reduc-
tion cycles repeatedly, we obtain pyramids that will be referred to as Bin3Pyramid,
Bin5Pyramid, Bin3(6)Pyramid and Bin5(3)Pyramid, respectively.

where the Enlarge operation enlarges any D-dimensional image by a factor s

E = Enlarge(L) (13)

E(x) =
{

sDL(x/s) if all indices in x are multiples of s
0 if any index in x is not a multiple of s (14)

the equivalent convolution kernel corresponding to level (i, j) can be written

C(i,j) = ExpandAll(δ(i,j)) (15)

where δ(i,j) is a discrete delta function at level (i, j) and ExpandAll denotes
the ExpandCycle operators corresponding to the set of all the ReduceCycle

Level 3, order 0 Level 3, order 1 Level 3, order 2

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Level 2, order 0 Level 2, order 1 Level 2, order 2

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Fig. 2: Examples of equivalent convolution kernels and equivalent derivative approxi-
mation kernels for the Bin5Pyramid derived from the Bin5ReduceCycle in figure 1.
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operators used for reaching this level. Similarly derivative approximations are
computed by taking the grid spacing h at the current into explicit account

∂xr ≈ Dxr =
1

h|r| δxr , (16)

at any level with resolution h in the pyramid, the corresponding equivalent
derivative approximation kernel is given by

C
(i,j)
xr = ExpandAll(δ(i,j)

xr ) (17)

where higher dimensional difference approximations δxr = δx1
r1 δx2

r2 ..δxD
rD are

expressed in terms of the one-dimensional rth order difference operator

δxr =
{
(δxx)r/2 if r is even
δx δxr−1 if r is odd

(18)

and δx and δxx denote the first-order symmetric difference operators with com-
putational molecules (− 1

2 , 0,
1
2 ) and (1, −2, 1), respectively (see figure 2).

3.3 Measuring the scale parameter and the subsampling rate

For measuring the scale parameter t(i,j) at any level (i, j) in a hybrid pyramid,
we will start from the covariance matrix of the equivalent convolution kernel:

t(i,j) = (detV (C(i,j)))1/D = (detV (Expand(δ(i,j))))1/D (19)

where V (C) represents the spatial covariance matrix of a kernel C and D is the
dimension of the signal. At coarser levels of resolution with grid spacing h ∈ Z+,
the operator DeltaSmooth(L; ∆t,K) in (8) corresponds to scale values at
levels k and k + 1 that are related according to t(i,j+1) − t(i,j) = K h2 ∆t.

Table 1 shows the scale values for each level computed in this way for some
of the pure and oversampled pyramids defined in figure 1.

Bin3Pyramid

0.0
0.5
2.5
10.5
42.5
170.5

Bin5Pyramid

0.0
1.0
5.0
21.0
85.0
341.0

Bin5(3)Pyramid

0.0 1.0 2.0
3.0 7.0 11.0

15.0 31.0 47.0
63.0 127.0 191.0

255.0 511.0 767.0
1023.0 2047.0 3071.0

Table 1: Scale values for the different levels of two pure and one oversampled pyramid
as defined in figure 1.

Then, to describe how the grid spacing h depends on the scale parameter t
in a hybrid pyramid let us introduce a subsampling factor ρ from the relation

hmax = ρ σ = ρ
√
t (20)
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where for reasons of computational efficiency we define the actual grid spacing
as the maximum power of two that does not exceed this upper bound

h(t, ρ) =
{
maxh′=2i−1 : i∈Z+\{0} h′ : h′ < hmax(t, ρ) if hmax ≥ 1
1 otherwise (21)

Thus, a subsampling factor of ρ = 0 corresponds to preserving the original
resolution at all levels of scales, while increasing values of ρ correspond to higher
degrees of subsampling at coarser scales.

In this context, self-similarity over scales (implying that h ≤ ρ
√
t holds with

equality at the lowest pyramid level for any amount of subsampling) is obtained
only if we precede the computation of the pyramid by a certain amount of pre-
smoothing. If the total amount of smoothing in the composed Smooth+ stage
between two sub-sampling stages in (3) corresponds to a variance of h2∆tcycle,
where for hybrid pyramids generated according to (8) and (9) we have h2∆tcycle =
h2 J K ∆t, then it can be shown that the requirement of self-similarity over scales
implies that the pre-smoothing tstart (i.e the scale of the first level) and the sub-
sampling factor ρ must be given by

ρ =

√
3

∆tcycle
, tstart =

∆tcycle

3
(22)

Table 2 shows values of ρ and tstart computed in this way for a few pyramids. In
addition, this table also lists a measure of the average sampling density in the
scale direction defined as dmean = (τ(t(i+1,1))− τ(t(i,1)))/J where τ(t) = log2(t).

Pyramid t(i,j+1) − t(i,j) Levels ρ tstart dmean

Bin3Pyramid h2/2 1
√

6 1/6 2

Bin5Pyramid h2 1
√

3 1/3 2
Bin5(3)Pyramid h2 3 1 1 2/3

Bin5(6)Pyramid h2 6 1/
√

2 2 1/3

Table 2: The subsampling rate ρ and the amount of pre-smoothing tstart for a few
self-similar pyramids.

4 Scale selection in hybrid multi-scale representation

Our next goal is to express a scale selection mechanism within a hybrid pyramid
representation. In previous works, it has been shown that a powerful principle
for automatic scale selection consists of selecting interesting scale levels from the
scales at which (possibly non-linear) combinations of γ-normalized derivatives

∂ξi = tγ/2 ∂xi , (23)

assume local maxima over scales (see section 2). Intuitively, this corresponds to
selecting scale levels at which the normalized feature response is locally strongest.
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General scale invariance property. A basic property of this scale selection method
is as follows: If D(L) is a homogeneous differential expression, and if a local max-
imum of a signal f is detected at scale tlocmax, then under a rescaling of f by a
factor s, this local maximum over scale is transferred to the scale level s2tlocmax.

Interpretation in terms of Lp-norms. With respect to the computation of deriva-
tives of the scale-space representation, it can be shown that γ-normalization
corresponds to normalizing the corresponding γ-normalized Gaussian derivative
operators gξm(·; t) = tmγ/2gxm(·; t) to constant Lp-norms

‖gξm(·; t)‖p =
(∫

x∈RD

|gξm(·; t)|pdx
)1/p

(24)

over scales, where the parameter p in the Lp-norm is related to the parameter γ
in the γ-normalized derivative concept according to

p =
1

1 + m
D (1− γ)

, (25)

where m is the order of differentiation and D denotes the dimension of the signal.
Specifically, γ = 1 corresponds to p = 1 and thus to L1-normalization of all the
Gaussian derivative kernels.

4.1 Defining normalized derivatives with spatial subsampling

For transferring this notion of γ-normalized derivatives from a scale-space rep-
resentation to a hybrid pyramid, our next goal is to define normalization param-
eters γr such that normalized derivative approximations can be written:

Dxr ,norm = γr Dxr . (26)

Here, two approaches will be considered and evaluated:

– variance-based normalization: multiplying the equivalent derivative approx-
imation kernel (17) at any level in the pyramid by the variance (19) of the
equivalent convolution kernel at the corresponding level

γr,var =
(
t(i,j)

)|r|/2

=
(
det(V (C(i,j)))1/D

)|r|/2

(27)

– lp-normalization: requiring the lp-norm of the normalized equivalent deriva-
tive approximation kernel to be equal to the Lp-norm of the corresponding
Gaussian derivative operator ∂ξrg(x; t)

γr,l1‖C(i,j)
xr ‖p = ‖∂ξrg(x; t)‖p (28)
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Experiments: Scale-space signatures for Gaussian blobs. For a rotationally sym-
metric Gaussian blob with variance t0 in two dimensions f(x, y) = g(x, y; t0)
it can be shown that the evolution over scales of the γ-normalized Laplacian
response at the center of the blob is in the case when γ = 1 given by

(∇2
normL)(0, 0; t) = t (∂xx + ∂yy)L(0, 0; t) = − t

π(t0 + t)2
(29)

and there is a unique maximum over scales in −(∇2
normL)(0, 0; t) at t = t0.

Figure 3 shows a few examples of such scale-space signatures computed for
Gaussian blobs of different sizes, using a separable Bin3(6)Pyramid with an
initial pre-smoothing stage. As can be seen from these graphs, lp-normalization
(stars) gives a closer approximation of the continuous behaviour (the solid curve)
than variance-based normalization (crosses). Moreover, for variance-based nor-
malization there are a number of “kinks” in the graph at the scales where subsam-
plings occur. In these respects, lp-normalization has clear advantages compared
to variance-based normalization.

t0 = 10 t0 = 30 t0 = 100
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Fig. 3: Scale-space signatures of the (negative) normalized Laplacian response for ro-
tationally symmetric Gaussian blobs with variances t0 = 10, t0 = 30 and t0 = 100,
respectively, computed using a separable Bin3(6)Pyramid in two dimensions using
lp-normalization (stars) and variance-based normalization (crosses). For reference, the
corresponding continuous behaviour is shown as well (solid curve).

4.2 Detecting scale-space maxima

A method for complementary scale selection and detection of interest points
consists of simultaneously maximizing differential entities over both space and
scale. If DspaceL denotes the differential entity used for spatial selection and if
Dscale,normL is the γ-normalized differential entity used for scale selection, such
interest points with automatic scale selection can be characterized by


∇(DspaceL) = 0
H(DspaceL) negative definite
∂t(Dscale,normL) = 0
∂tt(Dscale,normL) ≤ 0

(30)
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where H(DspaceL) denotes the Hessian of DspaceL. In the special case when
DspaceL = Dscale,normL such points are referred to as scale-space maxima of
Dscale,normL. Our next goal is to investigate how the performance of a blob
detector with automatic scale selection depends on the choice of normalization
method as well as the subsampling rate ρ in the pyramid.

To quantify the difference between these two normalization approaches, 1000
Gaussian images were generated containing one blob each with random variance
between t0 = 10 and t0 = 100 and at a random position within a central 128×
128 window in the image. The global maximum over scales of the normalized
Laplacian response in the hybrid pyramid representation was detected, and a
quadratic interpolation over scales was performed to estimate the scale t̂ of
the peak in the scale-space signature. The relative error in the estimate was
computed

εn = log2

(
t̂n
t0,n

)
(31)

and the performance was measured in terms of the following descriptors

εmean =
1
N

N∑
n=1

εn, εspread =

√∑N
n=1 ε2

n

N
(32)

where N is the number of blobs. These error measures were then transformed
into relative error factors measured in dimension length σ =

√
t according to

rmean =
√
2εmean , rspread =

√
2εspread (33)

where the ideal case corresponds to rmean = 1 and rspread = 1. In addi-
tion, the absolute error in the estimated position (x̂, ŷ) was measured as δ =√
(x̂− x0)2 + (ŷ − y0)2 and a relative error measure in relation to the scale level

σ0 =
√
t0 was defined as δrel = δ/σ0. This procedure was repeated for different

types of separable two-dimensional pyramids as shown in tables 3–4.
As can be seen from the results, there is a substantial variation in the ac-

curacy of the estimate local maximum over scales depending on the type of
pyramid — the oversampled Bin3(6)Pyramid and the Bin5(3)Pyramid per-
form significantly better than the regular Bin3Pyramid and the Bin5Pyramid,
and further improvement is obtained if we increase the amount of oversampling
by using a Bin3(12)Pyramid or a Bin5(6)Pyramid. In all of these cases,
lp-normalization leads to better performance measures than variance-based nor-
malization. For this reason, we will henceforth prefer lp-normalization.

Concerning the spatial localization error, we can see how the error decreases
as we increase the degree of oversampling in the hybrid pyramid, by decreasing ρ
and hmax. For the Bin3(6)Pyramid, the Bin5(3)Pyramid, theBin3(12)Pyramid
and the Bin5(6)Pyramid, the average error in all cases corresponds to a fraction
of a pixel, and true sub-pixel accuracy is obtained for these data.



11

Pyramid type lp-normalization variance-based

rmean rspread rmean rspread

Bin3Pyramid 0.65 1.61 0.62 1.70
Bin5Pyramid 0.78 1.34 0.77 1.36
Bin3(6)Pyramid 0.93 1.11 0.93 1.15
Bin5(3)Pyramid 0.93 1.12 0.92 1.15
Bin3(12)Pyramid 0.96 1.08 0.95 1.13
Bin5(6)Pyramid 0.94 1.10 0.94 1.13

Table 3: Performance of the scale selection method when performing simultaneous
spatial and scale selection based on scale-space maxima of the normalized Lapla-
cian response using different types of hybrid multi-scale representations and either
lp-normalization or variance-based normalization.

Pyramid type lp-normalization variance-based

δ δrel δ δrel

Bin3Pyramid 1.86 0.32 1.76 0.29
Bin5Pyramid 1.21 0.21 1.21 0.21
Bin3(6)Pyramid 0.18 0.03 0.05 0.01
Bin5(3)Pyramid 0.19 0.03 0.07 0.01
Bin3(12)Pyramid 0.05 0.01 0.03 0.00
Bin5(6)Pyramid 0.05 0.01 0.02 0.00

Table 4: Measures of the spatial localization error when performing simultaneous spatial
and scale selection based on scale-space maxima of the normalized Laplacian response
using different types of hybrid multi-scale representations and either lp-normalization
or variance-based normalization.

4.3 Post-processing the scale-space maxima from a hybrid pyramid

While the previous results show that scale-space maxima can be detected in
a hybrid pyramid using conceptually very clean operations, there is a minor
complication with the previous approach. From the quantitative measure rmean

shown in table 3, it can be seen that there is a certain bias in the scale selec-
tion procedure that leads to an average underestimate of the scale estimate by
4 to 7 % for the sample types of oversampled hybrid pyramid representations
that have been evaluated here.

When analysing the image data in more detail, it can be observed that a
major reason for this scale bias is due to the detection of local maxima when
translational invariance has been violated by the subsampling step. If the po-
sition of the original blob is far away from the closest grid point at the scale
levels around the scale level t0 at which it would be detected without spatial
subsampling, the magnitude of the normalized Laplacian at the available grid
points at the desired scale level tk ≈ t0 may be significantly smaller than they
would have been without spatial subsampling. As a result of this, the values
of the normalized Laplacian at lower scale levels may be higher (since the grid
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sampling there is denser), which in turn means that a lower scale level is selected
than in the ideal case without spatial subsampling.

To reduce this problem, an additional post-processing stage is applied: If a
scale-space maximum is detected at a scale level where the next coarser scale
level is at lower resolution, then a computation of image values at (one level of)
finer resolution is initiated in a spatial 3×3 neighbourhood around the scale space
maximum at this pyramid level. If the magnitude of the normalized differential
entity is greater at this scale, then the scale-space maximum is translated to this
nearest coarser scale level. Moreover, a tri-quadratic interpolation is performed
in a 3× 3× 3 neighbourhood in space and scale to estimate the position and the
scale of the scale-space maximum with subpixel accuracy.

Table 5 shows the results obtained by adding these two post-processing stages
to the previously methodology. As can be seen from a comparison with table 3,
for the Bin5(3)Pyramid and the Bin5(6)Pyramid the average bias in the
scale estimate is reduced by basically one order of magnitude, from 6–7 % to
0.4–0.6 %. Moreover, the measure rspread of the spread in the scale values is
reduced from 10–12 % to 1–3 %.

Pyramid type lp-normalization variance-normalization

rmean rspread rmean rspread

Bin5Pyramid 1.196 1.250 1.182 1.239
Bin5(3)Pyramid 1.006 1.032 0.999 1.180
Bin5(6)Pyramid 0.996 1.019 0.999 1.082

Table 5: Performance of the scale selection method when adding extended coarser
scale level search and triquadratic interpolation to the previously developed method
for performing simultaneous spatial and scale selection based on scale-space maxima of
the normalized Laplacian response (see table 3). The numerical values show the mean
rmean and the spread rspread of the relative error according to (31) for 1000 Gaussian
blobs with random variances between t0 = 10 and t0 = 100.

5 Trade-off: Computational efficiency vs. accuracy

From the experiments on blob detection with automatic scale selection, we have
seen how decreasing the value of ρ improves the accuracy of the results. On
the other hand, increasing ρ improves the computational efficiency, since fewer
grid points are computed. Thus, the hybrid pyramid concept allows us to obtain
different trade-offs between computational efficiency vs. accuracy by varying ρ.

To quantify this trade-off, we started out by measuring the computational
efficiency in the following way: For a given image size of 384*288 pixels, a
threshold on the magnitude of the blob response was determined such that
around 500 blobs would be detected between tmin = 4 and tmax = 2000 in a
Bin5(6)Pyramid. Keeping this threshold fixed, blobs were then detected using
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the Bin5Pyramid, Bin5(2)Pyramid, . . .Bin5(5)Pyramid. A similar experi-
ment was performed using a lower threshold on the blob response, determined in
such a way that about 1000 blobs would be obtained in the Bin5(6)Pyramid.
Table 6 shows the computation time for detecting scale-space extrema in this
way, with and without using the additional localization stage described in sec-
tion 4.3. To allow for comparison, a denser estimation of the scale and localiza-
tion errors for Gaussian blob detection was also performed for the same types
of pyramids and using the methodology described in section 4.2 — see table 7.

Pyramid type ρ 500 blobs 1000 blobs

det det+loc det det+loc

Bin5Pyramid 1.73 16 32 17 45
Bin5(2)Pyramid 1.22 23 51 25 79
Bin5(3)Pyramid 1.00 39 66 43 97
Bin5(4)Pyramid 0.87 55 89 63 127
Bin5(5)Pyramid 0.77 72 105 81 153
Bin5(6)Pyramid 0.71 88 121 101 173

Table 6: Computation times (in ms) for blob detection in different hybrid pyramids with
and without the additional post-processing stage for scale localization. The timings
have been performed on a 2.4 GHz DELL PC with a Pentium 4 processor.

Pyramid type ρ δ (pixels) rspread

Bin5Pyramid 1.73 1.72 1.250
Bin5(2)Pyramid 1.22 0.52 1.050
Bin5(3)Pyramid 1.00 0.29 1.032
Bin5(4)Pyramid 0.87 0.18 1.022
Bin5(5)Pyramid 0.77 0.12 1.022
Bin5(6)Pyramid 0.71 0.11 1.019

Table 7: The spatial and scale localization errors for different subsampling factors ρ
using lp-normalization. The experiments were performed on 1000 Gaussian blobs with
random position and random variances between 10 and 100.

If we regard these measures as representative indicators of the computational
effort and the computational accuracy in the scale estimates, we thus obtain the
trade-off curves in figure 4 for how ρ affects rspread and the computation time.

6 Stability of the scale descriptors

In addition to the abovementioned quantitative experiments on synthetic data
with ground truth, it is of particular interest to investigate the stability of the
scale descriptors on real-world images. To investigate this, we performed the
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scale localization error vs. time spatial localization error vs. time
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Fig. 4: Trade-offs between the localization error (vertical axis) and the computation
time (horizontal axis) for hybrid pyramids with different values of ρ: (left) scale local-
ization error, (right) spatial localization error.

following experiment: An image sequence was taken for a set of uniformly spaced
distances to an object. In each image, blob detection was performed by detecting
scale-space extrema of the normalized Laplacian response in a Bin5(6)-pyramid
using lp-normalization. Five scale-space maxima were selected manually in the
first frame, and these features were matched over time as illustrated in figure 5.

Image frame 0 Image frame 10            

*

ox
+

Fig. 5: Two out of eleven images in an image sequence used for testing the stability of
the scale descriptors over time. In each image, a set of detected image features is indi-
cated, out of which a subset has been matched over time and been used for measuring
variations in scale levels over time. In the last image, five scale-space maxima used for
scale measurements have been marked by corresponding symbols used in figure 6.

For each one of these five features, a straight line of the form 1√
t
= Aτ+B was

fit to the data (with τ denoting time), and the time to collision was estimated
by extrapolating the line to τ → ∞ (see figure 6). Here, the mean value of the
five different estimates of the time to collision was 14.89 time units and the
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standard deviation 0.30 time units. Considering that these estimates are based
on measurements at single points in scale-space, the results show how scale
descriptors computed from a hybrid multi-scale representation can be stable
enough to be used as a visual cue in its own right.
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Fig. 6: Graph showing the variation over time of 1/
√

t for five image features matched
over time as a camera approaches an object with uniform velocity.

7 Summary and discussion

We have presented a general framework for defining subsampled multi-scale rep-
resentations in such a way that the theory comprises both traditional pyramid
representations and discrete scale-space as limiting cases. Regular pyramids arise
as a special case when we have only one scale level between any pair of successive
subsampling stages (i.e. a reduction cycle with J = 1), while a regular discrete
scale-space representation is obtained as the limiting case if we let the scale in-
crement ∆t in the diffusion smoothing operator tend to zero, while keeping the
product of J∆t constant and equal to the maximum scale level tmax that needs
to be accessed. Since this family of multi-scale representations provides a way
to express different trade-offs between the relative advantages of pyramids and
scale-space representation, we refer to it as hybrid multi-scale representations.

Then, we presented a theory for how scale selection mechanisms based on the
maximization over scales of γ-normalized derivatives can be expressed within
this family of subsampled multi-scale representations. Two ways of defining nor-
malized derivatives in the presence of spatial subsampling have been studied,
and it has been shown that the approach referred to as lp-normalization per-
forms significantly better than the possibly more straightforward approach of
variance-based normalization. Specifically, we have quantified how the steepness
of a hybrid representation, parameterized by the subsampling rate ρ, allows us to
obtain different trade-offs between computational accuracy as enabled by dense
sampling and computational efficiency as promoted by sparse sampling.

We have also shown how the scale descriptors computed from a hybrid multi-
scale representation are stable enough to be used as a cue in its own right. Com-
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bined with a multi-scale tracking and recognition method described elsewhere
(Laptev & Lindeberg 2001), an integrated real-time computer vision based on a
simplified hybrid pyramid has been presented in (Bretzner et al. 2002).
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