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Abstract. This paper presents a set of image operators for de-
tecting regions in space-time where interesting events occur. To de-
fine such regions of interest, we compute a spatio-temporal second-
moment matrix from a spatio-temporal scale-space representation,
and diagonalize this matrix locally, using a local Galilean trans-
formation in space-time, optionally combined with a spatial rota-
tion, so as to make the Galilean invariant degrees of freedom ex-
plicit. From the Galilean-diagonalized descriptor so obtained, we
then formulate different types of space-time interest operators, and
illustrate their properties on different types of image sequences.

1. Introduction
For analysing the space-time structure of our environment,
the ability to detect regions of interest is an important pre-
processing stage for subsequent recognition. The presum-
ably simplest approach for constructing such a mechanism
is by regular frame differencing. The result of frame differ-
encing will, however, be very sensitive to the time interval
used for computing the differences. Moreover, such an op-
erator will be sensitive to motions relative to the camera.

An interesting approach for defining regions of inter-
est for motion patterns was taken by (Davis & Bobick
1997), who computed multiple temporal differences and
constructed a motion mask, which was then represented in
terms of moment descriptors to characterize the motion.
This approach, however, assumes a static background as
well as a stationary camera.

A general problem when interpreting spatio-temporal im-
age data originates from the fact that motion descriptors are
affected by relative motions between the objects and the
camera. It is therefore essential to aim at Galilean invari-
ant image descriptors. One approach to achieve Galilean in-
variance is to consider space-time receptive fields adapted
to local motion directions (Lindeberg 2002). A dual ap-
proach is to stabilize the space-time pattern locally, assum-
ing that the scene contains cues that allow for stabilization.
In the spatio-temporal recognition scheme developed by
(Zelnik-Manor & Irani 2001), global stabilization was used
when computing the spatio-temporal derivatives. (Laptev
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& Lindeberg 2004b) extended this approach to recognition
based on locally velocity adapted space-time filters.

The subject of this paper is to develop a set of space-time
interest operators, which build upon several of the above-
mentioned ideas, with emphasis on locally compensating for
relative motions between the world and the observer. These
operators are intended as region-of-interest operators for
subsequent recognition of spatio-temporal events, in a corre-
sponding manner as spatial interest points are used as a pre-
processing stage for spatial recognition (Lowe 1999, Miko-
lajczyk & Schmid 2002), see also the related notion of
space-time interest points in (Laptev & Lindeberg 2003).
The operators to be presented will be closely related to pre-
viously developed methods for computing spatio-temporal
energy (Adelson & Bergen 1985, Wildes & Bergen 2000)
or curvature descriptors (Zetzsche & Barth 1991, Niyogis
1995) in space-time, with specific emphasis on achieving
invariance to local Galilean transformations.

Besides the specific topic of spatio-temporal interest op-
erators, we shall also introduce a more general notion of
Galilean diagonalization, to make explicit the Galilean in-
variant degrees of freedom in a spatio-temporal second-
moment matrix, as a complement to the more traditional no-
tion of eigenvalue based analysis of spatio-temporal second-
moment matrices (Bigün et al. 1991, Jähne 1995).

2. Spatio-temporal scale-space
Let p = (x, y, t)T denote a point in 2+1-D space-time, and
let f : R3 → R represent a spatio-temporal image. Fol-
lowing (Lindeberg 1997, Lindeberg 2002), consider a multi-
parameter scale-space L : R3×G → R of f defined by con-
volution with a family h : R3 × G → R of spatio-temporal
scale-space kernels

L(·; Σ) = h(·; Σ) ∗ f(·)
parameterized by covariance matrices Σ in a semi-group G.
The covariance matrices may in turn be parameterized as

Σ =

(
λ1c

2 + λ2s
2 + u2λt (λ2 − λ1)c s + uvλt uλt

(λ2 − λ1)c s + uvλt λ1s
2 + λ2c

2 + v2λt vλt

uλt vλt λt

)

where (λ1, λ2, c, s) describe the amount of spatial (possi-
bly anisotropic) smoothing in terms of two eigenvalues and
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their orientation α in space with c = cosα and s = sinα,
λt gives the amount of temporal smoothing, and (u, v) de-
scribes the orientation of the filter in space-time. In the spe-
cial case when λ1 = λ2 and (u, v) = (0, 0), this multi-
parameter scale-space reduces to the scale-space obtained
by space-time separable smoothing with spatial scale pa-
rameter σ2 = λ1 = λ2 and temporal smoothing τ2 = λt.

For simplicity, we shall here model the smooth-
ing operation by a 3-D Gaussian kernel with co-
variance matrix Σ, h(p; Σ) = g(x; Σ) =
exp(−xT Σ−1x/2)/((2π)3/2

√
detΣ), for which the space-

time separable case reduces to convolution with a 2-
D Gaussian g2D(x, y; σ2) = 1/(2πσ2) exp(−(x2 +
y2)/2σ2) in space and a 1-D Gaussian g1D(t; τ2) =
1/(

√
2πτ) exp(−t2/2τ2) over time.

Second-moment descriptor. For describing local image
structures and for estimating local image deformations, the
second-moment matrix (Bigün et al. 1991, Jähne 1995, Lin-
deberg & Gårding 1997) is a highly useful descriptor. In
2+1-D space-time, it can be defined as

µ(p; Σ) =
∫

q∈R3
(∇L(q))(∇L(q))T w(p − q; Σ) dq,

where ∇L = (Lx, Ly, Lt)T denotes the spatio-temporal
gradient, and w is a spatio-temporal window function, for
simplicity a Gaussian function, with covariance matrix Σ,
 µxx µxy µxt

µxy µyy µyt

µxt µyt µtt


 =

∫ 
 L2

x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t


 dw.

Galilean transformations. Given a spatio-temporal im-
age f , consider a Galilean transformation of space-time

p′ =


 x′

y′

t′


 = Gp =


 1 0 −u

0 1 −v
0 0 1





 x

y
t




and define a transformed im1¡age according to f ′(p′) =
f(p). Define scale-space representations of f and f ′ ac-
cording to L(·; Σ) = g(·; Σ) ∗ f(·) and L′(·; Σ′) =
g(·; Σ′) ∗ f ′(·). Then, it can be shown (Lindeberg 2002)
that L′(·; Σ′) = L(·; Σ) if Σ′ = GΣGT . Next, let us
define a transformed second-moment matrix as

µ′(p′; Σ′) =
∫

q′∈R3
(∇L′(q′))(∇L′(q′))T w(p′−q′; Σ′) dq′.

Then, from a general transformation property of
second-moment descriptors under linear transforma-
tions (Lindeberg & Gårding 1997), it can be shown that µ
and µ′ are related according to

µ′ = G−T µG−1 provided that Σ′ = GΣGT

In terms of the components of µ and µ′, we have

µ′
xx = µxx, µ′

xy = µxy, µ′
yy = µyy,

µ′
xt = uµxx + vµxy + µxt, µ′

yt = uµxy + vµyy + µyt,

µ′
tt = u2µxx + 2uvµxy + v2µyy + 2uµxt + 2vµyt + µtt.

3. Galilean diagonalization
Our goal is to define spatio-temporal image descriptors that
are stable under relative motions between the camera and the
scene. In this aim towards Galilean invariance, we shall fol-
low a specific convention of determining the velocity com-
ponents (u, v) in a local Galilean transformation G, such
that the transformed second moment matrix µ′ assumes a
block diagonal form with (µ′

xt, µ
′
yt) = (0, 0):

µ′ = G−T µG−1 =


 µ′

xx µ′
xy 0

µ′
xy µ′

yy 0
0 0 µ′

tt




This form of block diagonalization of a spatio-temporal
second-moment matrices can be seen as a canonical way of
extracting a unique representative of the family of second-
moment matrices µ′ = G−T µG−1 that will be obtained if
we for a given spatio-temporal pattern consider the whole
group of Galilean transformations G of space-time that rep-
resents all possible relative motions with constant velocity
between the camera and the scene. Specifically, this form
of block diagonalization implies a local normalization of
local space-time structures that is invariant under superim-
posed Galilean transformations (Lindeberg et al. 2004, Ap-
pendix A.1). It follows from the transformation property of
µ, that block diagonalization is achieved if (u, v) satisfies(

µxx µxy

µxy µyy

) (
u
v

)
= −

(
µxt

µyt

)

i.e., structurally similar equations as for computing optic
flow according to (Lukas & Kanade 1981). Hence, if the
local space-time structures represent a pure translational
model, the result of Galilean diagonalization will be a sta-
tionary pattern. The same form of normalization, however,
also applies to spatio-temporal events that cannot be mod-
elled by a pure translational model. In the latter case, the
result of this normalization will be a local spatio-temporal
pattern that satisfies∫

x,y,t∈R3
Lx Lt g(x, y, t; Σ) dx dy dt = 0,∫

x,y,t∈R3
Ly Lt g(x, y, t; Σ) dx dy dt = 0.

In other words, after Galilean diagonalization the elements
Lx, Ly and Lt in the local spatio-temporal pattern will be
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scattered according to a non-biased distribution, such that
the spatial and temporal derivatives are locally uncorrelated
with respect to (here) a Gaussian window function. In sit-
uations when the constant brightness assumption is satis-
fied, there is an interpretation of this property in terms of
the weighted average of local normal flow vectors (u‖, v‖)
being zero, using the product of the window function and
the magnitude of the spatial gradient vector ∇spaceL =
(Lx, Ly)T as weight (Lindeberg et al. 2004, Appendix A.2):

E

(
(∇spaceL)(∇spaceL)T

(
u
v

))
=

= E

(
|∇spaceL|2

(
u‖
v‖

))
= 0.

In this respect, Galilean diagonalization implies cancelling
of the average velocity also for spatio-temporal events that
cannot be locally modelled by a Galilean transformation.

Given that we have block diagonalized µ′, we can con-
tinue with a 2-D rotation Rspace that diagonalizes the re-
maining spatial components such that µ′′

xy = 0. In other
words, given any second moment matrix µ, we can deter-
mine a Galilean transformation G in space-time and a rota-
tion Rspace in space, such that

µ′′ = R−T
spaceG

−T µ G−1R−1
space =


 ν1

ν2

ν3




where (ν1, ν2, ν3) are the diagonal elements. There
is a close structural similarity between such a
Galilean/rotational diagonalization and the more com-
mon approach of using the eigenvalues of a spatio-temporal
second moment matrix for motion analysis (Bigün
et al. 1991, Jähne 1995). An eigenvalue-based analysis of µ
corresponds to determining a rotation matrix U such that

µ′′′ = U−T µ U−1 =


 λ1

λ2

λ3




There is, however, no physical correspondence to a rotation
in 2+1-D space-time. For a second-moment matrix defined
over a 3-D space (x, y, z), an eigenvalue analysis has a clear
physical interpretation, since it corresponds to determining
a 3-D rotation in space, such that µ will be a diagonal matrix
with the eigenvalues as entries. If similar algebraic manip-
ulations are applied to a second-moment matrix over space-
time, however, there is no physical analogue. For this rea-
son, we propose that a Galilean/rotational transformation is
a more natural concept for diagonalizing a spatio-temporal
second-moment matrix. This type of matrix diagonalization
is also easy to compute in closed form.

4. Spatio-temporal interest operators
The notion of Galilean diagonalization can be used for
defining spatio-temporal image descriptors that are either
fully invariant or approximately invariant under Galilean
transformations. Operators within the first class will be re-
ferred to as Galilean invariant, while operators within the
latter class will be referred to as Galilean corrected.

The context we consider is that the spatio-temporal sec-
ond moment matrix is computed at every point p in space-
time for a set of scale parameters Σ. Two main ap-
proaches can be considered: (i) Consider the full family
of spatio-temporal scale-space kernels, parameterized over
both the amount of spatial smoothing, the amount of tempo-
ral smoothing, and the orientation of the filter in space-time.
(ii) Restrict the analysis to space-time separable scale-space
kernels only. A motivation for using the first approach is that
the spatio-temporal scale-space will be truly closed under
Galilean transformations only if the full family of covari-
ance matrices is considered. Thus, this alternative has ad-
vantages in terms of robustness and accuracy, while the sec-
ond alternative will be more efficient on a serial architecture.
In the first case, (ν1, ν2, ν3) will be truly Galilean invariant,
while in the second case the effect of the Galilean diagonal-
ization is to compensate for the motion relative to the cam-
era. In comparison with the related notions of affine shape-
adaptation in space (Lindeberg & Gårding 1997, Mikola-
jczyk & Schmid 2002) or velocity adaptation in space-
time (Nagel & Gehrke 1998, Lindeberg 2002, Laptev &
Lindeberg 2004b), we can interpret the combination of
Galilean diagonalization with space-time separable scale-
space as an estimate of the first step in an iterative velocity
adaptation procedure.

Galilean diagonalized motion descriptors. A first ap-
proach we shall follow is to use I1 = ν3 = µ′

tt as a ba-
sic measure for computing candidate regions of interest. If
the space-time structures are locally constant over time, or
if the local space-time structure corresponds to a translation
with constant velocity, then in the ideal case (of using veloc-
ity adapted filters) the value of this descriptor will be zero.
Hence, I1 can be regarded as a measure of how much the
local space-time image structure deviates from a pure trans-
lation. Note that compared to a more traditional stabilization
scheme, there is no need for warping the space-time image
according to a local motion estimate. Instead, we use the
closed-form expression for (u, v) for evaluating I1 from the
components of µ at every point according to

I1 = µ′
tt = µtt −

µxxµ2
yt + µyyµ

2
xt − 2µxyµxtµyt

µxxµyy − µ2
xy

The operator I1 will respond to rather wide classes of space-
time events. If we are interested in more restrictive space-
time interest operators, we can, for example, consider two
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f L I1 = µ′
tt µtt

√
I2

3
√

I3

Figure 1: Maps of the Galilean-diagonalized interest operators I1, I2 and I3, computed from space-time separable spatio-temporal scale-
space representations L of different image sequences f . From top to bottom: (i) walking person, (ii) jumping person, (iii) pedestrian lights
turning green, (iv) two walking persons with camera stabilized on right person, (v) walking person with camera stabilized on the person.

extensions of the Harris operator (Harris & Stephens 1988)
to space-time that will be described below. Given a spatial
second moment matrix µ2D with eigenvalues (λ1, λ2), the
traditional Harris operator is defined as

H = λ1λ2 − C(λ1 + λ2)2 = detµ2D − C(trace µ2D)2

where C is usually chosen as C = 0.04, and values of H be-
low zero are thresholded away. For images on a 2-D spatial
domain, this operator will give high responses if both the
eigenvalues of µ2D are high, and the image thus contains
significant variations along both of the two dimensions.

We can build upon this idea for defining two space-time
operators of different forms, either by treating the spatial
dimensions together or separately. By treating the spatial
diagonal elements together, it is natural to let λ1 = ν1 + ν2

and λ2 = ν3, and we can define an operator of the form

I2 = (ν1 + ν2)ν3 − C2(ν1 + ν2 + ν3)2,

= (µxx + µyy)µ′
tt − C2(µxx + µyy + µ′

tt)
2

By treating all the diagonal elements individually, we can
define the following modification of the spatio-temporal in-
terest operator in (Laptev & Lindeberg 2003)

I3 = ν1ν2ν3 − C3(ν1 + ν2 + ν3)3

= (µxxµyy − µ2
xy)µ′

tt − C3(µxx + µyy + µ′
tt)

3

In both cases, C2 and C3 are parameters to be determined.
Initially, we use C2 = 0.04 and C3 = 0.005 in analogy with
(Harris & Stephens 1988, Laptev & Lindeberg 2003). The
requirement for I1 to respond is that there are significant
variations in the image structures over the temporal dimen-
sion beyond those that can be described by a local transla-
tion model. For I2 to respond, it is necessary that there are
strong image variations over at least one spatial dimension
in addition to the temporal dimension. For I3 to respond,
there must be significant variations over both of the two spa-
tial dimensions in addition to the temporal dimension.

5. Experiments
Figure 1 shows snapshots of computing I1, I2 and I3 for dif-
ferent types of spatio-temporal image patterns. For compar-
ison, we also show µtt without Galilean-correction, as well
as sample frames from the original image sequence f and its
spatio-temporal scale-space representation L, for simplicity
computed by space-time separable filtering.

The rows show from top to bottom: (i) a walking person
with approximately stabilized camera, (ii) a person jumping
with the camera slowly following the person, (iii) pedestrian
lights turning green, (iv) two people walking in different di-
rections with the camera stabilized on the right person, (v) a
walking person with the camera stabilized on the person.
All sequences have been taken with a handheld camera.
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As can be seen from the results, there is a substantial dif-
ference between the output from the Galilean diagonalized
I1 = µ′

tt and the corresponding non-diagonalized entry µtt,
with I1 being much more specific to motion events in the
scene. For the pedestrian light scene, a small camera mo-
tion results in responses of µtt at object edges, while µ′

tt

gives relatively stronger responses to the lights switching to
green. In the case of two persons walking in different di-
rections, I1 = µ′

tt gives responses of similar magnitude for
the two persons, while for µtt the response of one person
dominates. In the case of a walking person against a mov-
ing background (the camera following the person), the built-
in Galilean correction in I1 = µtt effectively suppresses a
major part of the background motion compared to µtt. In
comparison with I1, the operators I2 and I3 give somewhat
stronger responses at edges and corners, respectively.

To quantitatively evaluate the stability of these descrip-
tors under relative motions, we subjected a set of image se-
quences to synthetic Galilean transformations u ∈ {1, 2, 3},
and computed the following correlation error measure

E(M) = C(Mf , MGuf ) =

P
p↔p′(Mf (p) − MGuf (p′))2qP

p Mf (p)2
qP

p′ MGuf (p′)2

between the maps Mf and MGuf of these descriptors com-
puted from the original image sequence f as well as its cor-
responding Galilean transformed image sequence Guf at
corresponding points p ↔ p′ in space-time (see table 1).
As can be seen, the Galilean-corrected spatio-temporal in-
terest operators I1, I2 and I3 give a better approximation
to Galilean invariance than the corresponding non-corrected
entities Ĩ1, Ĩ2 and Ĩ3.

C(Mf , MGuf ) I1 Ĩ1 I2 Ĩ2 I3 Ĩ3
u = 1 0.03 0.07 0.03 0.05 0.06 0.51
u = 2 0.11 0.31 0.10 0.11 0.19 1.17
u = 3 0.21 0.77 0.20 0.18 0.36 2.13

C(Mf , MGuf ) I1 Ĩ1 I2 Ĩ2 I3 Ĩ3
u = 1 0.08 0.30 0.06 0.27 0.08 0.48
u = 2 0.27 1.44 0.26 0.71 0.31 1.22
u = 3 0.44 1.63 0.36 0.89 0.40 1.49

Table 1: Correlation error measures between interest operators re-
sponses under Galilean transformations for two image sequences.

Then, we formed ratios between these measures of de-
viations from Galilean invariance for (I1, I2, I3) and their
corresponding non-diagonalized descriptors (Ĩ1, Ĩ2, Ĩ3); the
geometric average and the geometric standard deviations for
seven image sequences are given in table 2.

For this data set, the use of Galilean diagonalization re-
duced the correlation errors with factors typically in the
range between 2 and 5, depending on the image contents
and the type of descriptor. As can be seen from the results,
the ratio between the error measures for Galilean-corrected
as opposed to corresponding uncorrected entities is largest
for small image velocities and decreases with increasing ve-
locity, indicating that in combination with a space-time sep-
arable smoothing kernels, the relative compensatory effect
of Galilean-diagonalization is largest for small image veloc-
ities and decreases with increasing image velocity.

velocity E(Ĩ1)/E(I1) E(Ĩ2)/E(I2) E(Ĩ3)/E(I3)
u = 1 3.2 (2.2) 4.5 (3.4) 4.6 (2.2)
u = 2 3.2 (1.6) 2.5 (2.3) 3.8 (1.9)
u = 3 2.6 (1.4) 1.7 (2.0) 3.9 (1.6)
all u 3.0 (1.7) 2.7 (2.5) 4.1 (1.9)

Table 2: Ratios between Galilean correlation errors for Galilean-
diagonalized vs. corresponding non-diagonalized descriptors com-
puted from a space-time separable spatio-temporal scale-space.

6. Extension to colour cues
With minor modifications, we can apply corresponding
ideas to colour images, to make use of the additional infor-
mation available in colour channels if there is poor contrast
in the pure grey-level information. Based on a derivation in
(Lindeberg et al. 2004, Section 7.1), we

1. compute second moment matrices µ(i) for all individ-
ual colour channels,

2. sum up the elements in these in order to form:

A =
∑

i

A(i) =

(
µ

(i)
xx µ

(i)
xy

µ
(i)
xy µ

(i)
yy

)
,

b =
∑

i

b(i) =

(
µ

(i)
xt

µ
(i)
yt

)
,

3. compute a joint velocity estimate u = (ux, uy)T ac-
cording to u = −A−1b,

4. for each colour channel insert this estimate into the ex-
pression for (µ′

tt)
(i), analogous to µ′

tt,
5. sum up these entities over all colour channels to define

the following analogue of the purely temporal diagonal
element: ν3 =

∑
i(µ

′
tt)

(i),
6. compute analogues to the spatial diagonal elements ν1

and ν2 from ν1 + ν2 = traceA and ν1ν2 = detA,
7. define I1, I2 and I3 from ν1, ν2 and ν3 in analogy with

the previously stated equations.

Figure 2 shows examples of computing spatio-temporal in-
terest operators in this way. As can be seen, the use of com-
plementary colour cues may give more prominent regions of
interest if there is poor contrast in the pure grey-level cues.
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grey-level features colour features

f

I1

I2

I3

Figure 2: The result of computing grey-level based as well as
colour-based spatio-temporal interest operator responses for an
image sequence with a walking person against a cluttered back-
ground, in which there is sometimes poor grey-level contrast be-
tween the moving object and the background.

7. Summary and discussion

We have presented a theory for how Galilean diagonaliza-
tion can be used for reducing the influence of local relative
motions on spatio-temporal image descriptors, and used this
theory for defining a set of spatio-temporal interest opera-
tors. In combination with velocity-adapted scale-space fil-
tering, these image descriptors are truly Galilean invariant.
Combined with space-time separable filtering, they allow
for a substantial reduction of the influence of Galilean mo-
tions. In this respect, these operators allow for more robust
regions of interest under relative motions of the camera.

Besides the application to spatio-temporal interest opera-
tors considered here, the notion of Galilean diagonalization
is of wider applicability and should be regarded as an inter-
esting conceptual tool also in the following contexts: (i) as
an alternative to local eigenvalue analysis of space-time im-
age structures, (ii) when extracting spatio-temporal features,
and (iii) when performing local normalization of space-time
structures for subsequent spatio-temporal recognition.

An integration of Galilei-diagonalization with velocity
adaptation for detecting Galilean invariant spatio-temporal
interest points is presented in (Laptev & Lindeberg 2004a),
including a more extensive evaluation. For real-time pro-
cessing, the scale-space model used here can be extended to
the time-causal scale-space concepts in (Koenderink 1988,
Lindeberg & Fagerström 1996, Lindeberg 1997, Florack
1997, ter Haar Romeny et al. 2001, Lindeberg 2002).
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