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Abstract:

This paper reviews a systematic methodology for formulating mechanisms for automatic scale

selection when performing feature detection. An important property of the proposed approach

is that the notion of scale is included already in the definition of image features.

1 Introduction

Computer vision algorithms for interpreting image data usually involve a feature detection

step. The need for performing early feature detection is usually motivated by the desire of

condensing the rich intensity pattern to a more compact representation for further processing.

If a proper abstraction of shape primitives can be computed, certain invariance properties can

also be expected with respect to changes in view direction and illumination variations.

The earliest works in this direction were concerned with the edge detection [22, 21]. While

edge detection may at first to be a rather simple task, it was empirically observed that it can be

very hard to extract edge descriptors reliably. Usually, this was explained as a noise sensitivity

that could be reduced by pre-smoothing the image data before applying the edge detector [25].

Later, a deeper understanding was developed that these difficulties originate from the more

fundamental aspect of image structure, namely that real-world objects (in contrast to idealized

mathematical entities such as points and lines) usually consist of different types of structures

at different scales [27, 11]. Motivated by the multi-scale nature of real-world images, multi-

scale representations such as pyramids [4] and scale-space representation [27, 11, 16] were

constructed. Theories were also formed concerning what types of image features should be

extracted from any scale level in a multi-scale representation [13, 8, 16, 7].

1)This paper was first presented in D. Chetverikov and T. Szirányi (eds) Proc. Fundamental Structural
Properties in Image and Pattern Analysis FSPIPA’99 , (Budapest, Hungary), September 6-7, 1999. Schriften-
reihen der Österreichischen Computer Gesellschaft, volume 130, pp 9–23. The support from the Swedish
Research Council for Engineering Sciences, TFR, is gratefully acknowledged.



The most common way of applying multi-scale representations in practice has been by selecting

one or a few scale levels in advance, and then extracting image features at each scale level

more or less independently. This approach can be sufficient under simplified conditions, where

only a few natural scale levels are involved and provided that the image features a stable over

large ranges of scales. Typically, this is the case when extracting edges of man-made objects

viewed under controlled imaging conditions. In other cases, however, there may be a need for

adapting scale levels individually to each image feature, or even to adapt the scale levels along

an extended image feature, such as a connected edge. Typically, this occurs when detecting

ridges (which turn out to be much more scale sensitive than edges) and when applying an

edge detector to a diffuse edge for which the degree of diffuseness varies along the edge.

To handle these effects in general cases, we argue that it is natural to complement feature

detection modules by explicit mechanisms for automatic scale selection, so as to automatically

adapt the scale levels to the image features under study. The purpose of this article is to

present such a framework for automatic scale selection, which is generally applicable to a rich

variety of image features, and has been successfully tested by integration with other visual

modules. For references to the original sources, see [18, 17, 19] and the references therein.

An attractive property of the proposed scale selection mechanism is that in addition to au-

tomatic tuning of the scale parameter, it induces the computation of natural abstractions

(groupings) of image shape. In this respect, the proposed methodology constitutes a natural

pre-processing stage for subsequent interpretation of visual scenes.

2 The need for a scale-selection mechanism for feature detection

To demonstrate the need for an automatic scale selection mechanism, let us consider the prob-

lems of detecting edges and ridges, respectively, from image data. Figure 1 shows two images,

from which scale-space representations have been computed by convolution with Gaussian

kernels, i.e. given an image f : RD → R, its scale-space representation L : RD × R+ → R is

L(x; t) =

∫
ξ∈RN

f(x− ξ) g(ξ) dξ. (1)

where g : RN × R+ → R denotes the Gaussian kernel

g(x; t) =
1

(2πσ2)D/2
e−(x2

1+···+x2
D)/2t (2)

and the variance t of this kernel is referred to as the scale parameter.

Edge detection. At each scale level, edges are defined from points at which the gradient

magnitude assumes a local maximum in the gradient direction [5, 15]. In terms of local



directional derivatives, where ∂v denotes a directional derivative in the gradient direction, this

edge definition can be written{
L̃vv = L2

v Lvv = L2
xLxx + 2LxLyLxy + L2

yLyy = 0,

L̃vvv = L3
v Lvvv = L3

xLxxx + 3L2
xLyLxxy + 3LxL

2
yLxyy + L3

yLyyy < 0,
(3)

Such edges at three scales are shown in the left column in figure 1. As can be seen, sharp

edge structures corresponding to object boundaries give rise to edge curves at both fine and

coarse scales. At fine scales, the localization of object edges is better, while the number of

spurious edge responses is larger. Coarser scales are on the other hand necessary to capture

the shadow edge, while the localization of e.g. the finger tip is poor at coarse scales.

Figure 1: Edges and bright ridges detected at scale levels t = 1.0, 16.0 and 256.0, respectively.

Ridge detection. The right column in figure 1 show corresponding results of multi-scale

ridge extraction. A (bright) ridge point is defined as a point where the intensity assumes a

local maximum in the main eigendirection of the Hessian matrix [9, 14]. In terms of local

(p, q)-coordinates with the mixed directional derivative Lpq = 0, this ridge definition can be

written 
Lp = 0,

Lpp < 0,

|Lpp| ≥ |Lqq|,
or


Lq = 0,

Lqq < 0,

|Lqq| ≥ |Lpp|,
(4)



while in terms of a local (u, v)-system with the v-direction parallel to the gradient direction

and the u-direction perpendicular, the ridge definition assumes the form{
Luv = LxLy (Lxx − Lyy)− (L2

x − L2
y)Lxy = 0,

L2
uu − L2

vv = (L2
y − L2

x) (Lxx − Lyy)− 4LxLyLxy > 0.
(5)

As can be seen, the types of ridge curves that are obtained are strongly scale dependent. At

fine scales, the ridge detector mainly responds to spurious noise structures. Then, it gives rise

to ridge curves corresponding to the fingers at t = 16, and a ridge curve corresponding to the

arm as a whole at t = 256. Notably, these ridge descriptors are much more sensitive to the

choice of scale levels than the edge features in figure 1(a). In particular, no single scale level

is appropriate for describing the dominant ridge structures in this image.

3 Proposed scale selection mechanism

The experimental results in figure 1 emphasize the need for adapting the scale levels for feature

detection to the local image structures. How should such an adaptation be performed without

a priori information about what image information is important? The subject of this section

is to give an intuitive motivation of how size estimation can be performed, by studying the

evolution properties over scales of scale-normalized derivatives . The basic idea is as follows:

At any scale level, we define a normalized derivative operator by multiplying each spatial

derivative operator ∂x by the scale parameter t raised to a (so far free) parameter γ/2:

∂ξ = tγ/2 ∂x (6)

Then, we propose that automatic scale selection can be performed by detecting the scales at

which γ-normalized differential entities assume local maxima with respect to scale. Intuitively,

this approach corresponds to selecting the scales at which the operator response is as strongest.

Local frequency estimation I: For a sine wave

f(x) = sin ω0x. (7)

the scale-space representation is given by

L(x; t) = e−ω2
0t/2 sin ω0x. (8)

and the amplitude of the mth-order normalized derivative operator is

Lξm,max(t) = tmγ/2 ωm
0 e−ω2

0t/2. (9)

This function assumes a unique maximum over scales at

tmax,Lξm =
γ m

ω2
0

, (10)



implying that the corresponding σ-value (σ =
√

t) is proportional to the wavelength λ = 2π/ω0

of the signal. In other words, the wavelength of the signal can be detected from the maximum

over scales in the scale-space signature of the signal (see figure 2). In this respect, the scale

selection approach has similar properties as a local Fourier analysis, with the difference that

there is no need for explicitly determining a window size for computing the Fourier transform.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

scale t

Lξ,max(t)

ω3 = 2.0 ω2 = 1.0

ω1 = 0.5

Figure 2: The amplitude of first-order normalized derivatives as function of scale for sinusoidal
input signals of different frequency (ω1 = 0.5, ω2 = 1.0 and ω3 = 2.0).

Scale invariance property of the scale selection mechanism. If a local maximum over

scales in the normalized differential expression Dγ−normL is detected at the position x0 and

the scale t0 in the scale-space representation L of a signal f , then for a signal f ′ rescaled by

a scaling factor s such that

f(x) = f ′(sx) (11)

the corresponding local maximum over scales is assumed at

(x′0, t
′
0) = (sx0, s

2t0). (12)

This property shows that the selected scales follow any size variations in the image data, and

this property holds for all homogeneous polynomial differential invariants (see [18]).

Necessity of the γ-normalization. In view of the abovementioned scale invariance result,

one may ask the following. Imagine that we take the idea of performing local scale selection

by local maximization of some sort of normalized derivatives (not specified yet). Moreover,

let us impose the requirement that the scale levels selected by this scale selection mechanism

should commute with size variations in the image domain according to equation (11) and (12).

Then, what types of scale normalizations are possible? Interestingly, it can then be shown

that the form of the γ-normalized derivative normalization (6) arises by necessity , i.e., with

the free parameter γ it spans all possible reasonable scale normalizations (see [18] for a proof).



Interpretation of normalized Gaussian derivative operators. The idea is that the

normalized scale-space derivatives will be used as a basis for expressing a large class of im-

age operations, formulated in terms of normalized differential entities. Equivalently, such

derivatives can be computed by applying γ-normalized Gaussian derivative operators

gxm
i ,γ−norm(x; t) = tm γ/2∂xi

(
1

(2πσ2)D/2
e−(x2

1+···+x2
D)/2t

)
(13)

to the original D-dimensional image. It is straightforward to show that the Lp-norm of such

a γ-normalized Gaussian derivative kernel is

‖hξm(·; t)‖p =
√

t
m(γ−1)+D(1/p−1) ‖hξm(·; t)‖p, (14)

which means that the γ-normalized derivative concept can be interpreted as a normalization

to constant Lp-norm over scales, with p given by

p =
1

1 + m
D

(1− γ)
. (15)

The special case γ = 1 corresponds to L1-normalization for all orders m.

Another interesting interpretation can be made with respect to image data f : R2 → R having

self-similar power spectra of the form

Sf(ω) = Sf(ω1, . . . , ωD) = (f̂ f̂ ∗)(ω) = |ω|−2β = (ω2
1 + · · ·+ ω2

D)−β. (16)

Let us consider the following class of energy measures, measuring the amount of information

in the mth order γ-normalized Gaussian derivatives

Em =

∫
x∈RD

∑
|α|=m

tmγ |Lxα|2 dx. (17)

In the two-dimensional case, this class includes the following differential energy measures:

E0 =

∫
x∈R2

L(x; t)2 dx, (18)

E1 =

∫
x∈R2

tγ(L2
ξ + L2

η) dx, (19)

E2 =

∫
x∈R2

t2γ(L2
ξξ + 2L2

ξη + L2
ηη) dx, (20)

E3 =

∫
x∈R2

t3γ(L2
ξξξ + 3L2

ξξη + 3L2
ξηη + L2

ηηη) dx. (21)

It can be shown that the variation over scales of these energy measures is given by

Em(·; t) ∼ tβ−D/2−m(1−γ), (22)



and this expression is scale independent if and only if

β =
D

2
+ m(1− γ). (23)

Hence, the normalized derivative model is neutral with respect to power spectra of the form

Sf (ω) = |ω|−D−2m(1−γ). (24)

Empirical studies on natural images often show a qualitative behaviour similar to this [6].

4 The automatic scale selection mechanism in operation

The results presented so far apply generally to a large class of image descriptors formulated

in terms of differential entities derived from a multi-scale representation. The idea is that

the differential entity D used for automatic scale selection, together with its associated nor-

malization parameter γ should be determined for the task at hand. In this section, we shall

present several examples of how this scale selection mechanism can be expressed in practice

for various types of feature detectors.

Edge detection. Let us first turn to the problem of edge detection, using the differential

definition of edges expressed in equation (3). A natural measure of edge strength that can be

associated with this edge definition is given by normalized gradient magnitude

Eγ−norm = tγL2
v = tγ(L2

x + L2
y). (25)

If we apply the edge definition (3) at all scales, we will sweep out an edge surface in scale-

space. On this edge surface, we can define a scale-space edge as a curve where the edge

strength measure assumes a local maximum over scales
∂t(Eγ−normL(x, y; t)) = 0,

∂tt(Eγ−normL(x, y; t)) < 0,

Lvv(x, y; t) = 0,

Lvvv(x, y; t) < 0.

(26)

To determine the normalization parameter γ, we can consider an idealized edge model in the

form of a diffuse step edge

f(x, y) =

∫ x

x′=−∞
h(x′; t0) dx′, (27)

It is straightforward to show that the edge strength measure is maximized at

tEγ−norm =
γ

1− γ
t0. (28)



original grey-level image all scale-space edges the 100 strongest edge curves

Figure 3: The result of edge detection with automatic scale selection based on local maxima
over scales of the first order edge strength measure EL with γ = 1

2 . The middle column shows all
the scale-space edges, whereas the right column shows the 100 edge curves having the highest
significance values. Image size: 256× 256 pixels.

Figure 4: Three-dimensional view of the 10 most significant scale-space edges extracted from the
arm image. From the vertical dimension representing the selected scale measured in dimension
length (in units of

√
t), it can be seen how coarse scales are selected for the diffuse edge structures

(due to illumination effects) and that finer scales are selected for the sharp edge structures (the
object boundaries).



If we require that this maximum is assumed at t0, implying that we use a similar derivative

filter for detecting the edge as the shape of the differentiated edge, then we obtain γ = 1/2.

Figure 3 shows the results of detecting edges from two images in this way. The middle column

shows all scale-space edges that satisfy the definition (26), while the right column shows

the result of selecting the most significant edges by computing a significance measure as the

integrated normalized edge strength measure along each connected edge curve

E(Γ) =

∫
(x; t)∈Γ

√
(EL)(x; t) ds. (29)

Figure 4 shows a three-dimensional view of the 10 most significant scale-space edges from the

hand image, with the selected scales illustrated by the height over the image plane. Observe

that fine scales are selected for the edges corresponding to object boundaries. This result

is consistent with the empirical finding that rather fine scales are usually appropriate for

extracting object edges. For the shadow edges on the other hand, successively coarser scales are

selected with increasing degree of diffuseness, in agreement with the analysis of the idealized

edge model in (28).

Ridge detection. Let us next turn to the problem of ridge detection, and sweep out a

ridge surface in scale-space by applying the ridge definition (4) at all scales. Then, given the

following ridge strength measure

RnormL = Aγ−normL = (Lpp,γ−norm − Lqq,γ−norm)2 = t2γ ((Lxx − Lyy)
2 + 4 L2

xy). (30)

which is the square difference between the eigenvalues Lpp,γ−norm and Lqq,γ−norm of the nor-

malized Hessian matrix, let us define a scale-space ridge as a curve on the ridge surface where

the normalized ridge strength measure assumes local maxima with respect to scale
∂t(RnormL(x, y; t)) = 0,

∂tt(RnormL(x, y; t)) < 0,

Lp(x, y; t) = 0,

Lpp(x, y; t) < 0.

(31)

To determine the normalization parameter γ, let us consider a Gaussian ridge

f(x, y) = g(x; t0). (32)

The maximum over scales in Rγ−normL is assumed at

tRγ−norm =
2 γ

3− 2 γ
t0, (33)

and by requiring this scale value to be equal to t0 (implying that a similar rotationally aligned

Gaussian derivative filter is used for detecting the ridge as the shape of the second derivative

of the Gaussian ridge) we obtain γ = 3/4.



original grey-level image100 strongest bright ridges10 strongest bright ridges

Figure 5: The 100 and 10 strongest bright ridges respectively extracted using scale selection
based on local maxima over scales of Aγ−norm (with γ = 3

4). Image size: 128 × 128 pixels in the
top row, and 140× 140 pixels in the bottom row.

backprojection of ridge 1 backprojection of ridges 2–5

Figure 6: Alternative illustration of the five strongest scale-space ridges extracted from the
image of the arm in figure 5. Each ridge is backprojected onto a dark copy of the original image
as the union of a set of circles centered on the ridge curve with the radius proportional to the
selected scale at that point.

Figure 5 shows the result of applying such a ridge detector to an image of an arm and an aerial

image of a suburb, respectively. The ridges have been ranked on significance, by integrating

the normalized ridge strength measure along each connected ridge curve.

R(Γ) =

∫
(x; t)∈Γ

√
(RL)(x; t) ds, (34)

Observe that descriptors corresponding to the roads are selected from the aerial image. More-

over, for the arm image, a coarse-scale descriptor is extracted for the arm as a whole, whereas

the individual fingers give rise to ridge curves at finer scales.



Blob detection. The Laplacian operator ∇2L = Lxx + Lyy is a commonly used entity for

blob detection, since it gives a strong response at the center of blob-like image structures.

To formulate a blob detector with automatic scale selection, we can consider the points in

scale-space at which the the square of the normalized Laplacian

∇2
normL = t(Lxx + Lyy) (35)

assumes maxima with respect to space and scale. Such points are referred to as scale-space

maxima of (∇2
normL)2.

For a Gaussian blob model defined by

f(x, y) = g(x, y; t0) =
1

2πt0
e−(x2+y2)/2t0 (36)

it can be shown that the selected scale at the center of the blob is given by

∂t(∇2
normL)(0, 0; t) = 0 ⇐⇒ t∇2L = t0. (37)

original image scale-space maxima overlay

Figure 7: Blob detection by detection of scale-space maxima of the normalized Laplacian op-
erator: (a) Original image. (b) Circles representing the 250 scale-space maxima of (∇normL)2

having the strongest normalized response. (c) Circles overlayed on image.

Figure 8: Three-dimensional view of the 150 strongest scale-space maxima of the square of the
normalized Laplacian of the Gaussian computed from the sunflower image.



Hence, the selected scale directly reflects the width t0 of the Gaussian blob.

Figures 7–8 show the result of applying this blob detector to an image of a sunflower field. In

figure 7, each blob feature detected as a scale-space maximum is illustrated by a circle, with

its radius proportional to the selected scale. Figure 8 shows a three-dimensional illustration of

the same data set, by marking the scale-space extrema by spheres in scale-space. Observe how

well the size variations in the image are captured by this structurally very simple operation.

Corner detection. A commonly used technique for detecting junction candidates in grey-

level images is to detect extrema in the curvature of level curves multiplied by the gradient

magnitude raised to some power [10, 12]. A special choice is to multiply the level curve

curvature by the gradient magnitude raised to the power of three. This leads to the differential

invariant κ̃ = L2
vLuu, with the corresponding normalized expression

κ̃norm = t2γL2
vLuu. (38)

Figure 9 shows the result of detecting scale-space extrema from an image with corner structures

at multiple scales. Observe that a coarse scale response is obtained for the large scale corner

structure as a whole, whereas the superimposed corner structures of smaller size give rise to

scale-space maxima at finer scales (see figure 10 for results on real-world data).

Figure 9: Three-dimensional view of scale-space maxima of κ̃2
norm computed for a large scale

corner with superimposed corner structures at finer scales.

5 Application to feature tracking and human computer interaction

We argue that a scale selection mechanism is an essential tool whenever our aim is to au-

tomatically interpret the image data that arise from observations of a dynamic world. For



example, if we are tracking features in the image domain, then it is essential that the scale

levels are adapted to the size variation that may occur over time.

Figure 10 shows a comparison between a feature tracker with automatic scale selection [2] and

a corresponding feature tracker operating at fixed scales. (Both feature trackers are based

on corner detection from local maxima of the corner strength measure (38), followed by a

localization stage [18] and a multi-cue verification [2].) As can be seen from the results in

figure 10, three out of the ten features are lost by the fixed scale feature tracker compared to

the adaptive scale tracker.

Initial frame with 14 detected corners Tracked features with automatic scale selection

Tracked features using fixed scales

Figure 10: Comparison between feature tracker with automatic scale selection and a feature
tracker operating at fixed scale. The left column shows a set of corner features in the initial
frame, and the right column gives a snapshot after 65 frames.

A brief explanation of this phenomenon is that if we use a standard algorithm for feature

detection at a fixed scale followed by hypothesis evaluation using a fixed size window for

correlation, then the feature tracker will after a few frames fail to detect some of the features.

The reason why this occurs is simply the fact that the corner feature no longer exists at the

predetermined scale. In practice, this usually occurs for blunt corners.

An attractive property of a feature detector with automatic scale selection is that it allows us

to capture less distinct features than those that occur on man-made objects. Specifically, we



have demonstrated how it makes it possible to capture features associated with human actions.

Figure 11 illustrates one idea we have been working on in the area of visually guided human-

computer-interaction. The idea is to have a camera that monitors the motion of a human

hand. At each frame blob and ridge features are extracted corresponding to the fingers and

the finger tips. Assuming rigidity, the motion of the image features allow us to estimate the

three-dimensional rotation of the hand [3]. These motion estimates can in turn be used for

controlling other computerized equipment; thus serving as a “3-D hand mouse” [20].

Controlling hand motion Detected ridges and blobs Controlled object

Figure 11: Illustration of the concept of a “3-D hand mouse”. The idea is to monitor the motion
of a human hand (here, via a set of tracked image features) and to use estimates of the hand
motion for controlling other computerized equipment (here, the visualization of a cube).

6 Summary

We have presented a general framework for automatic scale selection as well as examples of how

this scale selection mechanism can be integrated with other feature modules. The experiments

demonstrate how abstractions of the image data can be computed in a conceptually very simple

way, by analysing the behaviour of image features over scales (sometimes referred to as “deep

structure”). For applications in other areas as well as related works, see [18, 17, 19] and [1, 26].
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