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Abstract: When extracting features from image data, the
type of information that can be extracted may be strongly
dependent on the scales at which the feature detectors
are applied. This article presents a systematic methodol-
ogy for addressing this problem. A mechanism is presented
for automatic selection of scale levels when detecting one-
dimensional features, such as edges and ridges.

A novel concept of a scale-space edge is introduced, de-
�ned as a connected set of points in scale-space at which:
(i) the gradient magnitude assumes a local maximum in
the gradient direction, and (ii) a normalized measure of the
strength of the edge response is locally maximal over scales.
An important property of this de�nition is that it allows the
scale levels to vary along the edge.

Two speci�c measures of edge strength are analysed in
detail. It is shown that by expressing these in terms of 
-
normalized derivatives, an immediate consequence of this
de�nition is that �ne scales are selected for sharp edges

(so as to reduce the shape distortions due to scale-space
smoothing), whereas coarse scales are selected for di�use

edges, such that an edge model constitutes a valid abstrac-
tion of the intensity pro�le across the edge.

With slight modi�cations, this idea can be used for for-
mulating a ridge detector with automatic scale selection,
having the characteristic property that the selected scales
on a scale-space ridge instead re
ect the width of the ridge.

1 Introduction

One of the most intensively studied subproblems in
computer vision concerns how to detect edges from
image data. The importance of edge information for
early machine vision is usually motivated from the ob-
servation that under rather general assumptions about
the image formation process, a discontinuity in image
brightness can be assumed to correspond to a discon-
tinuity in either depth, surface orientation, re
ectance
or illumination.

A non-trivial aspect of edge based analysis of im-
age data, however, concerns what should be meant by
a discontinuity in image brightness. Real-world image
data are inherently discrete, and for a function de�ned
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on a discrete domain, there is no natural notion of a
\discontinuity". This means that there is no inherent
way to judge what are the edges in a given discrete
image. Therefore, the concept of an image edge is only
what we de�ne it to be.

Since the pioneering work by Roberts (1965), a
large number of approaches have been developed for
detecting edges. Early schemes, such as the Sobel op-
erator and the Prewitt operator, focused on the de-
tection of points at which the gradient magnitude was
high, and computed derivative approximations either
directly from the pixels or using local least-squares �t-
ting (Haralick 1984). Torre and Poggio (1980) as well
as Marr and Hildreth (1980) motivated the need for a
smoothing operator to precede di�erentiation, Canny
(1986) considered the problem of determining an op-
timal smoothing �lter of �nite support constituting
the \best" trade-o� between detection and localiza-
tion properties, given a constraint on the probability
of obtaining multiple responses to a single edge. De-
riche (1987) extended this approach to �lters with in�-
nite support. Similar concepts were developed by Korn
(1988). Bergholm (1987) proposed to track edges from
coarse to �ne scales.

Today, one example of a state-of-the-art edge detec-
tor consists of pre-smoothing the image by a Gaussian
kernel followed by non-maximum suppression. The lat-
ter corresponds to detecting points at which the gra-
dient magnitude assumes a maximum in the gradient
direction, and can be given either an algorithmic or dif-
ferential geometric de�nition. In this way, edges can be
detected at any scale in scale-space (Lindeberg 1994).

The subject of this article is to extend the above-
mentioned ideas to include the scale dimension already

in the edge de�nition, to simultaneously allow for au-
tomatic determination of scale levels appropriate for
extracting a given edge. To illustrate the need for such
a mechanism, �g. 1 shows the result of computing edges
from an image at a number of di�erent scales. As can
be seen, di�erent types of edge structures give rise to
edge curves at di�erent scales. For example, the shadow
of the arm only appears as a connected edge curve at
coarse scales. If such coarse scales are used at the �nger
tip, however, the shape distortions due to scale-space
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Figure 1: Edges computed at di�erent scales in scale-space
(t = 1:0, 4:0 and 16:0 from top to bottom) using a di�er-
ential geometric formulation of non-maximum suppression.
(Image size: 256*256 pixels.)

smoothing will be substantial. Hence, to extract this
edge with a reasonable trade-o� between detection and
localization properties, the only reasonable choice is to
allow the scale levels to vary along the edge.

For this reason, and in view of the fact that the
choice of scale levels crucially a�ects the performance
of any edge detector, and di�erent scale levels will, in
general, be required in di�erent parts of the image, we
argue that it is essential to complement edge detectors

by explicit mechanisms which automatically adapts the

scale levels to the local image structure.

2 Principle for scale selection

The scale-space representation L of a given signal f
is obtained by convolving f by Gaussian kernels g of

various widths t = �2 (Witkin 1983, Koenderink 1984,
Florack et al. 1992, Lindeberg 1994). From this repre-
sentation, a scale-space derivative is de�ned by

Lx�y� (�; t) = @x�y� (g(�; t) � f) = gx�y� (�; t) � f:
The output from these operators can be used as a ba-
sis for expressing a large number of visual operations,
such as feature detection, matching, and computation
of shape cues. A particularly convenient framework for
expressing these is in terms of multi-scale di�erential
invariants or singularities of these.

A basic problem for any such feature detector, how-
ever, concerns at what scales the image features should
be extracted, and what image features should be re-
garded as signi�cant. Early work addressing this prob-
lem was presented in (Lindeberg 1993a) for blob-like
image structures. Then, in (Lindeberg 1993b, 1994)
an extension was presented to other aspects of image
structure. A general heuristic principle was proposed
stating that local maxima over scales of (possibly non-
linear) combinations of normalized derivatives,

@� =
p
t @x; (1)

serve as indicators re
ecting the spatial extent of cor-

responding image structures. Speci�cally, it was sug-
gested that this idea could be used as a guide for scale
selection algorithms, which automatically adapt the lo-
cal scale of processing to the local image structure.

The subject of this article is to develop in more
detail how this scale selection principle applies to the
detection of one-dimensional image features, such as
edges and ridges. For reasons that will become apparent
later, we shall also extend this notion to scale selection
based on 
-parameterized normalized derivatives

@x;
�norm = t
=2 @x: (2)

3 Scale selection for edge detection

At any image point, introduce a local coordinate sys-
tem (u; v) with the v-axis parallel to the gradient direc-
tion at that point, and the u-direction is perpendicular.
Then, at any scale in scale-space, an edge point can
be de�ned as a point at which the second directional
derivative Lvv in the v-direction is zero, and the third
directional derivative Lvvv is negative:�

Lvv = 0;
Lvvv < 0;

(3)

If this de�nition is applied at all scales in scale-space,
it sweeps out an edge surface. In view of the scale selec-
tion principle reviewed in the previous section, a natu-
ral extension of non-maximum suppression is by de�n-
ing a scale-space edge as a curve on this surface, such



that some suitably selected measure of edge strength
E
�normL assumes locallymaximawith respect to scale
on this curve. In di�erential geometric terms, a scale-
space edge is thus de�ned as a connected set of points
f(x; y; t) 2 R2�R+g (a curve �) that satis�es

8>><
>>:

@t(E
�normL(x; y; t)) = 0;
@tt(E
�normL(x; y; t)) < 0;
Lvv(x; y; t) = 0;
Lvvv(x; y; t) < 0:

(4)

Of course, there are several ways of expressing the con-
dition that E
�normL should assume local maxima over
scales on the edge curve. In (4), this condition is formu-
lated as in terms of the partial derivatives of E
�normL

with respect to the scale parameter. A natural alterna-
tive is to consider a directional derivative in the tangent
plane to the edge surface, and to choose this direction
as the steepest ascent direction of the scale parameter.

What remains to turn this idea into an opera-
tionally useful de�nition is to de�ne the measure of
edge strength. Based on the 
-parameterized normal-
ized derivative concept in (2), we shall here consider
the following two di�erential expressions:

G
�normL = t
 (L2
x + L2

y);

T
�normL = �t3 
 (L3
x Lx3 + 3L2

x Ly Lx2y

+ 3Lx L
2
y Lxy2 + L3

y Ly3):

The �rst entity, the square gradient magnitude, is the
presumably simplest measure of edge strength to think
of. The second entity originates from the sign condition
in the edge de�nition. These entities are both useful in
practice, but have slightly di�erent properties.

Qualitative properties. For a di�use step edge, de�ned
as the primitive function of a one-dimensional Gaus-
sian, ft0 (x; y) =

R x
x0=�1 g(x0; t0) dx

0, each of these
measures of edge strength assume a unique maximum
over scales at tG
�norm = tT
�norm = 


1�

t0 (for x = 0).

Requiring this maximum to occur at t0 gives 
 = 1
2
.

For a Gaussian blob with L(x; y; t) = g(x; y; t0+ t)
with edges at x2 + y2 = t0 + t, the selected scales are
tG
�norm = 


3�
 t0 and tT
�norm = 6

13�6
 t0.

Finally, for a local model of an edge bifurcation,
expressed as L(x; t) = 1

4
x4 + 3

2
x2(t� tb) +

3
4
(t � tb)

2,

with edges at x1(t) = (tb � t)1=2 when t � tb, we have
(G
�normL)(x1(t); t) = 4 t
 (tb � t)3, and the selected
scales are tG
�norm = 


3+
 tb and tT
�norm = 3

5+3
 tb.

In summary, this short investigation shows that the
scale selection method has the qualitative property of
re
ecting the degree of di�useness of the edge. More-
over, since the edge strength decreases rapidly at a bi-

furcation, this prevents the selected scale from being
too close to the bifurcation scale.

Figure 2: Results of edge detection with automatic scale
selection based on local maxima over scales of G
�normL

(with 
 = 1

2
). Image size: 256 � 256 pixels.

Figure 3: The 50 and 10 most signi�cant edges from the
arm image as ranked on the integrated 
-normalized gradi-
ent magnitude along the scale-space edge.

4 Experiments: Edge detection

Let us now apply the integrated edge detection scheme
to di�erent real-world images. In brief, edges are ex-
tracted as follows (Lindeberg 1996): The di�erential
descriptors in the edge de�nition (4) (rewritten in
terms of partial derivatives in Cartesian coordinates)
are computed at a number of scales in scale-space.
Then, a polygon approximation is constructed of the in-



Figure 4: Three-dimensional view of the 10 most signi�-
cant scale-space edges from the arm image drawn as curves
in three-dimensional scale-space with the selected scale rep-
resented as the height over the image plane.

Figure 5: Three-dimensional view of the three strongest
scale-space edges extracted from a detail of a table in which
the edges are subject to out-of-focus blur.

tersections of the two zero-crossing surfaces of Lvv and
@t(E
�norm) that satisfy the sign conditions Lvvv < 0
and @t(E
�norm) < 0. Finally, a signi�cance measure is
computed for each edge by integrating the normalized
edge strength measure along the curve

G(�) =

Z
(x; t)2�

q
(G
�normL)(x; t) ds;

T (�) =

Z
(x; t)2�

4

q
(T
�normL)(x; t) ds:

Fig. 2 shows the result of applying this scheme to
two real-world images. As can be seen, the sharp edges
due to object boundaries are extracted as well as the
di�use edges due to illumination e�ects (the occlusion
shadows on the arm and the cylinder, the cast shadow
on the table, as well as the re
ection on the table).
(Recall from �g. 1 that for this image it is impossible
to capture the entire shadow edge at one scale without
introducing severe shape distortions at the �nger tip.)

Fig. 3 illustrates the ranking on signi�cance ob-
tained from the integrated edge strength along the
curve. Whereas there are inherent limitations in us-
ing such an entity as the only measure of saliency, note
that this measure captures essential information.

Fig. 4 gives a three-dimensional illustration of how
the selected scale levels vary along the edges. The
scale-space edges have been drawn as three-dimensional
curves in scale-space, overlayed on a low-contrast copy
of the original grey-level image in such a way that
the height over the image plane represents the selected
scale. Observe that coarse scales are selected for the
di�use edge structures due to illumination e�ects and
that �ner scales are selected for the sharp edge struc-
tures due to object boundaries. Fig. 5 shows another
example, from a detail of table, for which the e�ects of
focus blur are strong. Note how the selected scales cap-
ture the amount of out-of-focus blur along the edges.

Fig. 6 shows the result of applying edge detection
with scale selection based on local maxima over scales
of T
�normL to an image containing a large amount of
�ne-scale information. From a �rst view, these results
may appear very similar to the result of traditional edge
detection at a �xed (very �ne) scale. A more detailed
study, however, reveals that a number of shadow edges
are extracted, which would be impossible to detect at
the same scale as the dominant �ne-scale information.
In this context, it should also be noted that the �ne-
scale edge detection in this case is not the result of any
manual setting of tuning parameters. It is a direct con-
sequence of the scale-space edge concept, and is the re-
sult of applying the same mechanism as extracts coarse
scale levels for di�use image structures.



Figure 6: The 1000 strongest scale-space edges extracted
using scale selection based on local maxima over scales of
T
�normL (with 
 = 1

2
). (Image size: 256� 256 pixels.)

5 Scale selection for ridge detection

By just slight modi�cation, ridge detection algorithms
can be formulated in a similar way. If we follow a di�er-
ential geometric approach, and de�ne a bright (dark)
ridge point as a point for which the brightness assumes
a maximum (minimum) in the main principal curva-
ture direction (Haralick 1983; Eberly et al. 1994; Koen-
derink and van Doorn 1994), then in a local (p; q)-
system characterized by the mixed second-order deriva-
tive being zero, this de�nition can be written
8<
:

Lp = 0;
Lpp < 0;
jLppj � jLqqj;

or

8<
:

Lq = 0;
Lqq < 0;
jLqq j � jLppj:

In analogy with section 3, let us �rst sweep out a ridge
surface in scale-space by applying this ridge de�nition

at all scales. Then, given a measure R
�normL of
normalized ridge strength, de�ne a scale-space ridge as
a curve on this surface along which the ridge strength
measure assumes local maxima with respect to scale.
Here, we have considered the following measures:

M
�normL = t
 max(jLppj; jLqqj);
N
�normL = t2 
 (L2

pp � L2
qq)

2;

A
�normL = t2 
 (Lpp � Lqq)
2:

For a Gaussian ridge de�ned by f(x; y) = g(x; t0), it
can be shown that for all these ridge strength measures
the selected scale will then be tR
�norm

= 2

3�2
 t0. Re-

quiring this scale to be tM
�norm
= t0,lp gives 
 = 3

4 .

Figure 7: The 10 strongest bright ridges extacted us-
ing scale selection based on local maxima over scales of
A
�norm (with 
 = 3

4
). (Image size: 140 � 140.)

Figure 8: Three-dimensional view of the �ve strongest
scale-space ridges extracted from the image in �g. 7.



Fig. 7 shows the result of applying such a ridge
detector to an image and selecting the 10 strongest
bright ridges, by integrating a measure of normalized
ridge strength along the curve. Fig. 8 shows a three-
dimensional illustration of the scale-space ridges so ob-
tained. Observe how a coarse-scale descriptor is ex-
tracted for the arm as a whole and that the individual
�ngers give rise to ridge curves at �ner scales.

6 Summary and discussion

We have presented a framework for automatic local
control of scale levels for edge detection and ridge de-
tection. Compared to a traditional approach of de�ning
and extracting such features from a grey-level image at
a �xed level of scale (or a set of such �xed scales), we
have proposed that it is more natural to de�ne the con-
cepts of edges and ridges as one-dimensional curves in
the three-dimensional scale-space representation of the
image (spanned by the spatial and scale dimensions).

A basic reason why such a de�nition is more use-
ful is that in general situations a vision system cannot
expect to know in advance what scales are appropriate
for analysing the image structures in a given image. For
these reasons we argue that a mechanism for automatic
scale selection is a necessary complement to traditional
multi-scale processing in general, and feature detec-
tion in particular. Speci�cally, concerning the edge de-
tection problem, the resulting approach extends the
notion of non-maximum suppression to a scale-space
representation, and uni�es this concept with several
of the aims of di�useness estimation schemes such as
(Zhang and Bergholm 1993; Mallat and Zhong 1992).
Concerning the ridge detection problem, the same type
of framework captures several of the ideas behind the
works in (Pizer et al. 1994; Eberly et al. 1994; Koller
et al. 1995), and is based on local operations only.

Because of lack of space, this presentation is heavily
condensed. A more extensive description can be found
in (Lindeberg 1996), including further theory, motiva-
tions, algorithmic descriptions, as well as more detailed
discussions about the relations to previous work.

Conclusion: Principles for scale selection. An
essential aspect of this work (combined with the re-
sults in (Lindeberg 1993b, 1994)) is that it shows that
detection of local maxima over scales of normalized dif-

ferential invariants provides a consistent framework for

automatic scale selection for detecting image features

such as blobs, corners, edges and ridges.
Concerning the problem of computing local image

deformations, such as optic 
ow and stereo matching,
a related methodology for automatic scale selection

is presented in (Lindeberg 1995). There, hypotheses
about appropriate scales are generated from the scales
at which normalized error measures assume local min-

ima over scales.
These suggested principles may be far more general

than the actual implementations presented so far.
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