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Direct estimation of a�ne image deformations using visual

front-end operations with automatic scale selection

Tony Lindeberg
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KTH (Royal Institute of Technology), Stockholm, Sweden

Abstract: This article deals with the problem of esti-
mating deformations of brightness patterns using visual
front-end operations. Estimating such deformations
constitutes an important subtask in several computer
vision problems relating to image correspondence and
shape estimation. The following subjects are treated:

The problem of decomposing a�ne 
ow �elds into
simpler components is analysed in detail. A canonical
parametrization is presented based on singular value de-
composition, which naturally separates the rotationally
invariant components of the 
ow �eld from the rota-
tionally variant ones.

A novel mechanism is presented for automatic selec-
tion of scale levels when estimating local a�ne defor-
mations. This mechanism is expressed within a multi-
scale framework where disparity estimates are computed
in a hierarchical coarse-to-�ne manner and corrected
using iterative techniques. Then, deformation esti-
mates are selected from the scales that minimize a cer-
tain normalized residual over scales. Finally, the de-
scriptors so obtained serve as initial data for computing
re�ned estimates of the local deformations.

1 Introduction

In several computational vision models, the deforma-
tions of brightness patterns constitute an important
modelling step. When a camera �xates a surface
pattern in the world, the pattern is deformed when
mapped onto the camera by the perspective transfor-
mation. The structure of this deformation is deter-
mined both by the shape of the object and the orien-
tation of the object relative to the observer. In terms
of this framework a large number of visual modules
can be expressed, such as motion estimation, structure
from motion, stereo matching, vergence control, shape
estimation from binocular data, shape from texture,
etc. In general, these deformations can be modelled by
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projective transformations. Approximating the models
by local �rst-order approximations (derivatives) gives
rise to a�ne transformations.

This article deals with the problem of measuring
such local transformations between two-dimensional
images. Whereas this problem can be and has been
studied in the contexts of speci�c shape-from-X com-
petences and using the geometric information available
in any speci�c case, it is important to study the gen-
eral problem of estimating image deformations based
on two-dimensional image information only. One rea-
son is the generality of the approach and the potential
in expressing di�erent shape-from-X competences us-
ing a similar theoretical framework and similar image
operations. (Thereby decoupling speci�c geometric in-
formation or assumptions from image measurements.)
Another motivation is that disregarding oculomotoric
cues, this is the only information available to an uncom-
mitted vision system without speci�c knowledge about
the world.

To simplify the presentation, we shall throughout
consider the speci�c case with only two images, corre-
sponding to binocular stereo. When analysing motion
data, it is, of course, generally agreed upon that better
performance can be obtained by studying coherent data
over time than just two single time moments. In that
case, we assume that the raw spatio-temporal data have
already been pre-processed in a spatio-temporal scale-
space representation comprising averaging over both
space and time. The image pairs to this analysis will
then be image slices from adjacent time moments at
some temporal scale. This is in analogy with the situa-
tion in the regular (spatial) scale-space representation,
where nearest-neighbourhood operations are known to
be highly noise sensitive at the �nest levels of scale,
but nevertheless deliver highly useful and robust re-
sults when applied at su�ciently coarse scales.

Because of the generality of this problem domain,
these problems have been extensively studied in the lit-
erature, and it is impossible to make a fair review here.
Besides the explicit citations here, the reader is referred
to the recent overview by (Barron et al. 1994) and a
longer version of this manuscript (Lindeberg 1994b).
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The presentation is organized as follows: We �rst
analyse in detail the problem of decomposing and
parametrizing a�ne transformations. Then, we turn
to the problem of estimating these deformations.

2 A�ne image transformations

An a�ne image transformation of a point x 2 RN to a
new position x0 2 RN can be represented by

x0 = Ax + b: (1)

This transformation arises, for example, as the result
of truncating all terms of higher order than one in the
Taylor expansion of a general spatial transformation
x0 = T (x). Here, shall be throughout concerned with
the two-dimensional case. With x = (x1; x2)

T and x0 =
(x01; x

0
2)
T , the explicit coordinate representation is�
x01
x02

�
=

�
a11 a12
a21 a22

��
x1
x2

�
+

�
b1
b2

�
: (2)

A general assumption we make is that the deformations
are small, i.e. that the matrixA is close to the identity
matrix. In particular, we can hence exclude degenerate
transformations as well as re
ections.

2.1 Classi�cation based on the eigenvalues of A
If (1) is used for iterative movement of points,

x(k+1) = Ax(k) + b; (3)

then a discrete 
ow �eld is generated. This 
ow �eld
can be interpreted as a unit time step discretization of
the corresponding di�erential equation

_x(t) = (A� I)x(t) + b; (4)

where I denotes the identity matrix. Depending on
the eigenvalues �1 and �2 of A, qualitatively di�erent
types of 
ow �elds can be distinguished (see table 1 for
an illustration). In this respect, the eigenvalues of A
provide a taxonomy for classifying a�ne 
ow �elds.

Type Eigenvalues Representative A

Expansion
Contraction

Saddle

�1 > �2 > 1
�1 < �2 < 1
�1 > 1; �2 < 1

�
�1 0
0 �2

�

Jordan �1 = �2 real

�
� �� tan'
0 �

�

Rotation non-real: �e�i� �

�
cos� � sin�
sin� cos�

�

Table 1: Examples of characteristic a�ne 
ow �elds aris-
ing from a classi�cation based on the eigenvalues of A.

3 Parametrizing a�ne transformations

A classi�cation of 
ow �elds in terms of the eigenvalues
of A, however, re
ects only the linear structure of the
transformation. In geometric problems, where a met-
ric structure is present as well, such as orthogonality
and distances, singular value decomposition is a more
powerful tool for expressing linear transformations.

This section shows how a canonical representation of
two-dimensional retinal 
ow �elds can be introduced
based on this idea. The resulting representation is
closely related to the div{curl{def descriptors intro-
duced by (Koenderink and van Doorn 1975). An ad-
vantage of the proposed parametrization, however, is
that the singular value decomposition completely re-
veals the structure of the a�ne transformations. In
particular, it makes the distinction more explicit be-
tween the two di�erent cases when the relative torsion
states of two cameras are either known or unknown. In
certain literature, these notions have been confused.

3.1 Rotationally invariant descriptors of A
Consider the e�ect of performing arbitrary rotations of
the domains where x and x0 in (1) are de�ned: Let

u0 = R�x
0 and u = R�x; (5)

where R� and R� represent rotations by angles � and
� in the counter-clockwise direction respectively

R� =

�
cos� � sin�
sin� cos�

�
; R� =

�
cos � � sin �
sin� cos �

�
:

For u0 = A0u+ b0 to hold, A and b must transform as
A0 = R�AR�� and b0 = R� b. From ai;j introduce

T = (a11 + a22)=2; A = (a21 � a12)=2;

C = (a11 � a22)=2; S = (a12 + a21)=2: (6)

Then, these descriptors transform according to

�
T 0

A0

�
=

�
cos(�� �) � sin(�� �)
sin(�� �) cos(�� �)

��
T
A

�
�
C0

S0

�
=

�
cos(�+ �) � sin(�+ �)
sin(�+ �) cos(�+ �)

��
C
S

�
;

which corresponds to rotating (T;A)T and (C; S)T by
angles �� � and �+ �. In particular, the descriptors

P 2 = T 2 + A2; and Q2 = C2 + S2 (7)

are una�ected by rotations. In the special case when
the rotations are performed symmetrically, i.e. � = �,
also T 0 = T and A0 = A are rotationally invariant.
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This special case is relevant, for example, when con-
sidering a 
ow �eld over time in a given coordinate
system (e.g., motion seen from a single camera) or be-
tween di�erent coordinate systems for which the rela-
tive torsion states are known (e.g. calibrated stereo).

3.2 Parameters from singular value decomposition

The singular value decomposition of A is de�ned by

A = U �VT ; (8)

where U and V are orthogonal matrices and � is a di-
agonal matrix. In the general case, U and V are not
guaranteed to represent rotations, since orthogonal ma-
trices also comprise re
ections. Since the deformations
are assumed to be close to the identity transformation,
however, we can require U and V to represent rotations,
U = R� and V = R�. Then, in the general case, � is
not guaranteed to be a diagonal matrix with positive
diagonal elements. For small deformations, however,
that will be the case, and

A = R��R�� (9)

with � = diag(�1; �2) and �1; �2 > 0. When ex-
pressed in terms of the TACS coordinates and the de-
rived PQ entities, the closed form expression for the
singular value decomposition is particularly simple. It
is straightforward to verify that

�1 = P + Q; tan(� � �) = A=T; (10)

�2 = P � Q; tan(� + �) = S=C; (11)

and that the inverse relationships are

T = P cos �; A = P sin �; (12)

C = Q cos ; S = Q sin ; (13)

where the directional information is represented by

� = �� � and  = �+ �: (14)

In summary, this decomposition corresponds to

A = R =2R�=2 diag(�1; �2)R�=2R� =2: (15)

Alternatively, to obtain a maximally symmetric expres-
sion, we can rewrite the diagonal matrix as

diag(�1; �2) =
p
�1�2 diag(

r
�1
�2
;

r
�2
�1

): (16)

It is illuminating to compute these descriptors for the

ow �elds in table 1. In summary, the geometric inter-
pretations of these entities are as follows:

� �1�2 = P 2 �Q2 gives the amount of expansion.

� Q (or �1=�2) measures the anisotropy of the
transformation. Q = 0 (or �1=�2 = 1) for trans-
formations in the similarity group (translations,
rotations, and uniform expansions/contractions).

� � = � � � re
ects the average amount of rota-
tion. � = 0 for expansions, contractions, saddles
and translations. For rotations, � is equal to the
rotation angle, while for Jordan (skew) transfor-
mations, it is a trigonometric average of the max-
imally and minimally rotated directions.

�  =2 = (�+�)=2 gives the direction of a preferred
symmetry axis of the transformation. This sym-
metry axis is undetermined when Q = 0.

3.3 Summary and discussion

The singular value decomposition gives rise to a canon-
ical decomposition and parametrization of small defor-
mation a�ne 
ow �elds, for which the rotationally in-
variant information in the singular values is completely
decoupled from the rotationally dependent � and  in-
formation. This property is important, for example,
when computing a�ne transformations between images
obtained from two metric cameras with unknown rela-
tive torsion states. If a calibration of the relative tor-
sion states can be performed, then the information that
can be extracted is perfectly captured by the singular
values and �. If on the other hand the cyclotorsion is
unknown, �1 and �2 are the only invariant components.

Related representations. (Koenderink and van Doorn
1975) proposed a decomposition of motion 
ow �elds in
terms of three components called div, curl and def. Ba-
sically, these entities correspond to T , A and Q above,
and to decomposing A into

A = T

�
1 0
0 1

�
+A

�
0 �1
1 0

�
+QM;

where M is a matrix containing directionally depen-
dent information. As pointed out by (Koenderink and
van Doorn 1975), the div, curl and def entities are un-
a�ected by rotations of a common coordinate system
(� = �). Geometrically, this corresponds to the rel-
ative orientation states of the cameras being known
(calibrated stereo) or the motion �eld registered from
a camera in a �xed torsion state. In that case, the
choice of primitives is, of course, arbitrary and the div{
def{curl decomposition is functionally equivalent to the
P 2Q2� and �1�2� parametrizations. The advantage
of the latter systems in these cases is that the transition
to an unknown torsion state is a simple projection.
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The decompositions induced by the TACS and the
PQ� parameters also have the conceptual advantages
that the TACS decomposition is purely linear and the
PQ� decomposition is a pure matrix product. In this
respect, the algebraic structure is cleaner.

A related representation for symmetric positive
semide�nite matrices has been considered in (Linde-
berg and G�arding 1993). In that representation, a PCS
system is de�ned by P = a11+ a22, C = a11� a22 and
S = 2a12 = 2a21. The main di�erence compared to the
TACS system is that the symmetry requirements are
relaxed and the e�ects of arbitrary rotations analysed.

Comparison with eigenvalue decomposition. Let us
conclude this analysis by noting the di�erence between
a singular value decomposition and a decomposition in
terms of eigenvalues and eigenvectors. As remarked
in the introduction, the eigenvalues and the eigenvec-
tors depend only on the linear structure of the trans-
formation and are as such independent of any metric.
The singular value decomposition, on the other hand,
is based on the existence of inner products and the no-
tion of metric entities, such as distances and angles. If
we are to capture the latter information, the singular
value decomposition is the natural choice of these two.

4 Measuring a�ne transformations

Let us now turn to the problem of measuring image de-
formations. A common approach for stereo matching
and computing three-dimensional shape cues has been
to compute image features, such as points and lines, in
an initial processing step, and then using these descrip-
tors as primitives. Whereas a substantial simpli�cation
of the subsequent processing stages may be the result
if reliable image features can extracted, the selection
step crucially determines what results can be obtained
and is often non-trivial. Therefore, it is of interest to
consider methods that operate on the image intensities
directly, using only �lter-based operations and archi-
tecturally simple combinations of their outputs.

A fundamental problem in this context concerns
what image operations to use. Is any operation fea-
sible? A systematic approach that has been developed
to restrict the class of possibilities is to assume that
the �rst stages of visual processing should be as un-
committed as possible and have no particular bias. The
essence of the results from scale-space theory (Witkin
1983; Koenderink and van Doorn 1990; Florack et al.
1992; Lindeberg 1994a) is that within the class of lin-
ear operations, convolution with Gaussian kernels and
their derivatives is singled out as a canonical choice.

In this section, we shall consider a hierarchical dif-
ferential 
ow �eld estimation approach closely related

to (Bergen et al. 1992); see also (Werkhoven and
Koenderink 1990; Jones and Malik 1992; Proesmans
et al. 1994; Manmatha 1994; Sato and Cipolla 1994).
We start by outlining a multi-scale disparity estima-
tion framework that in addition to iterative corrections
comprises bidirectional matching and explicit usage of
con�dence measures. Then, a scale selection mech-
anism is introduced based on the minimization of a
certain normalized residual over scales. An attractive
property of this approach is that the in
uence of dis-
parity estimates at the �nest scales is suppressed for
noisy data that cannot be matched at �ne scales.

4.1 Deformation measurements in scale-space

The scale-space representation L of a signal f is ob-
tained by convolving f with Gaussian kernels g(x; t) =
1=(2�t) exp(�xTx=2t) at di�erent scales t. From this
representation, Gaussian derivatives are de�ned by
Lx�(�; t) = @x�L(�; t) where @x� = @x�1

1

@x�2
2

.

Transformations in the similarity group. This repre-
sentation is closed under transformations in the simi-
larity group, i.e., if two signals are related by fL(�) =
fR(�R'�+ b), where R' is a rotation matrix, � repre-
sents a positive scaling factor, and b a translation, the
scale-space representations of fL and fR are related by
L(�; t) = R(�R'�+ b; �

2t). Hence, for these transfor-
mations, the scale-space representations of fL and fR
can always be perfectly matched.

A�ne transformations and a�ne scale-space. To en-
able exact measurements of a�ne transformations with
distinctly di�erent singular values (i.e., Q 6= 0), it is
natural to generalize to non-symmetric Gaussians

g(x; �t) =
1

2�
p
det �t

e�x
T��1

t
x=2; (17)

whose shapes are controlled by covariance matrices �.
For any function f the a�ne Gaussian scale-space rep-
resentation (Lindeberg 1994a) L of f is de�ned as

L(�; �t) = g(�; �t) � f(�): (18)

Given two intensity patterns fL and fR : R
2 ! R re-

lated by fL(�) = fR(A� + b), the corresponding a�ne
scale-space representations are related by

L(�; �L) = R(A� + b; �R) where �R = A�LA
T :

Compared to the non-linear a�ne invariant evolution
schemes proposed by (Sapiro and Tannenbaum 1993;
Alvarez et al. 1993) the advantage of this linear scale-
space concept is that the scale-space properties transfer
to all derivatives. The disadvantage is that it leads to
a three-parameter variation.
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4.2 Establishing correspondence

A fundamental problem when estimating image defor-
mations concerns how to establish correspondence be-
tween di�erent images of the same scene. Whereas the
commonly used constant brightness assumption su�ers
from inherent limitations, we shall nevertheless use it
for establishing an initial correspondence. (Then, it
can be applied to other di�erential descriptors, such as
the Laplacian.) Hence, assume that

fR(�) = fL(� +��) = fL(�) + (rfL)(�)�� + O(j��j2)
and consider only the �rst-order terms. This gives rise
to (the discrete form of) the well-known motion con-
straint equation (Horn and Schunck 1981)

(rfL)(�)T (��) + (fL(�) � fR(�)) = O(j��j2):
Since this analysis is compatible with brightness mea-
surements in scale-space, at any scale t we also have

(rL)(�; t)T (��) + (L(�; t)� R(�; t)) = O(j��j):

Least-squares estimation. Assume that the motion
�eld can be approximated by a constant 
ow �eld v
over the support region of a window function w. Fol-
lowing (Bergen et al. 1992; Barron et al. 1994) and sev-
eral others, integrate the square of this relation using
w as window function. After expansion (and dropping
the arguments) this gives the least squares problem

min
v2R2

vTAv + 2bTv + c; (19)

where A, b, and c are de�ned by

A =

Z
�2R2

(rL)(rL)T w d� (20)

b =

Z
�2R2

(R� L) (rL)w d� (21)

c =

Z
�2R2

(R� L)2 wd�: (22)

Ambiguity. Of course, when treated pointwise, the
motion constraint equation only determines the normal

ow parallel to rL. If, however, the support region of
w contains a su�ciently rich distribution of (coherently
moving) gradient directions, the solution to (19) may
give an estimate close to the true 
ow �eld. A natural
measure of how scattered the gradient directions are is
given by the normalized anisotropy (derived from A)

~Q = Q=P: (23)

When all gradient directions are parallel, we have ~Q =
1, whereas ~Q = 0 for maximally scattered distributions.
Hence, the indeterminacy in the tangential component
of v can be expected to increase with ~Q.

Closed-form solution. Assuming that A according to
(20) is non-degenerate, the explicit solution is

v = �A�1b (24)

and the residual

r = c� bTA�1b: (25)

For reasons to be explained in section 4.6, we also de�ne
the normalized residual as

~r =
r

traceA
=
c� bTA�1b

traceA
: (26)

If A is singular, or close to singular, it is preferable to
use the pseudo inverse. In this 2-D case, it is given by

Ay =
1

(traceA)2
A: (27)

The pseudo inverse is preferred when the ratio between
the singular values is su�ciently small, or equivalently
the normalized anisotropy is su�ciently close to one.

In practice, the window function is chosen as a Gaus-
sian kernel (with integration scale s), since then and
only then the components ofA satisfy scale-space prop-
erties under variations of s (which propagate to the
distribution of gradient directions described by A as
a composed object). Concerning the relation between
s and the local scale t for computing derivatives, one
should, in principle, consider a two-parameter varia-
tion. In the experiments to be presented, we have
throughout used s = 
2t with 
 = 2.

4.3 Hierarchical and iterative 
ow �eld computations

By using scale-space operators at a certain scale t, it
is, in general, only possible to capture disparities of
the same order of magnitude as

p
t. This motivates

a coarse-to-�ne approach. Moreover, to reduce the ap-
proximation error in the local linearization, it is natural
to compute iterative disparity updates, using the cur-
rent disparity estimate v(k) when computing the bright-

ness di�erence R(�L + v
(k)
L (�L; t); t) � L(�L; t)), and

iterating until R and L are in su�cient alignment.
If the transformation is not locally a pure trans-

lation, a higher order (e.g., a�ne) model is required
to reduce the approximation error, and corresponding
compensations needed when computing the brightness
di�erences. These iterations can be driven either by
the a�ne scale-space and shape adaptation or by per-
forming local warping and solving an extension of (19)
with the locally constant 
ow model replaced by a local
a�ne (see (Bergen et al. 1992; Barron et al. 1994; Lin-
deberg 1994b) for details).
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4.4 Bidirectional matching and consistency measures

The previous matching scheme can be applied in both
directions, which gives independent 
ow �eld esti-
mates. A natural inconsistency measure is then

eL(xL; t) = vL(xL; t) + vR(xL + vL(xL; t); t);

and a natural measure of the strength of the response
RL(xL; t) = PL(xL; t)PR(xL + vL(xL; t); t), where
P is the average square gradient magnitude. These en-
tities and the normalized residual ~r are then combined
into the (heuristically chosen) con�dence measure

WL(xL; t) = RL(xL; t) exp(�!e2L=t)=(~r0 + ~rL=t):

The motivations for this choice are that the signi�cance
should increase with the strength of the response and
decrease with the inconsistency. The factors 1=t nor-
malize the spatial errors with respect to the current
scale, ! (here, � 0:1) determines how large disparity
inconsistencies are tolerated, and ~r0 (here, � 0:01) is a
non-essential threshold to avoid divisions by zero.

4.5 Flow �eld correction and 
ow �eld smoothing

To suppress spurious errors, only disparity updates
with jv(k+1)(x; t) � v(k)(x; t)j < �

p
t propagate un-

a�ected (� � 2). Larger updates are truncated.
Moreover, at each iteration, the 
ow �eld is

smoothed using the con�dence values W as weights

v0(x; t) =

R
�2R2 v(�; t)W (�; t)wx(�; s(t)) d�R

�2R2
W (�; t)wx(�; s(t)) d�

(28)

This leads to a rapid propagation of disparities from
regions with strong variations to the interior of smooth
regions. Moreover, spurious deviations are suppressed.

4.6 Scale selection

Within this framework, disparity estimates can be com-
puted at any scale, using conceptually simple front-end
operations. A fundamental problem, however, concerns
how to combine the information from di�erent scales.
Selecting disparity estimates from the �nest scales is
not su�cient. These estimates can be very sensitive to
noise and other interfering �ne-scale structures. Un-
less explicit knowledge is available about what are the
proper �nest scales, this coarse-to-�ne framework needs
to be complemented by a mechanism for scale selection.

Intuitively, such a scale selection mechanism should
select coarse-scale disparity �elds from noisy data, for
which �ne-scale correspondences may be impossible to
establish. Correspondingly, it should select �ne-scale
representatives from the disparity �elds from sharp
data that contain detailed information, so as to pro-
duce a maximally accurate disparity �eld.

Selection method. Clearly, the residual (25) depends
upon the local contrast and cannot be used for such
judgements. A straightforward but nevertheless pow-
erful approach is to select the scale that minimizes the
normalized residual (26) over scales. A basic motiva-
tion for the speci�c de�nition (26) is that the division
cancels the e�ect the local brightness variations and
traceA is a natural measure of the strength of the re-
sponse. Since the dimensions involved are as follows:

Entity Dimension
A [luminance]2/[length]2

b [luminance]2/[length]
c [luminance]2

the normalized residual has dimension [length]2 and
re
ects a spatial error in the disparity estimate.

Qualitative e�ects. Relating to the abovementioned
intuitive requirements, the qualitative e�ects of this
scale selection method are as follows:

At too coarse scales, a uniform deformation model
cannot be expected to hold over the entire region. Also,
the shape distortions can be expected to be stronger,
thereby increasing the normalized residual.

At too �ne scales, where noise and other �ne-scale
structures are present, the likelihood that these struc-
tures obey the same motion model will be low. Hence,
the normalized residual can be expected to increase.

Selecting the minimum leads to a natural trade-o�
between these e�ects.

4.7 Experiments

Figure 1 shows the result of applying the composed
scheme to synthetic patterns transformed by a pure ex-
pansion and a pure rotation, respectively. 10% white
Gaussian noise added to each image after the trans-
formation. Notice, how well the 
ow �elds are cap-
tured. A numerical evaluation shows that the accuracy
in the estimates corresponds to sub-pixel accuracy. For
a more extensive evaluation, see (Lindeberg 1994b).

Figure 2 shows corresponding results for a detail of
a head subject to a rather large (unknown) rotation.
Note that except for the upper right corner, where
most points either correspond to occluded points or
points outside the image, a correct matching has been
obtained without any use of epipolar geometry.

4.8 Summary and discussion

We have considered the problem of estimating im-
age deformations using visual front-end operations,
i.e. scale-space smoothing, derivative computations
and pointwise combinations of these primitives. The
framework builds upon schemes for computing optic
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left image right image selected 
ow �eld compensated di�erences signi�cance

Figure 1: Flow �elds computed using the proposed scheme with automatic scale selection: (top row) synthetic expansion
with 10% noise, (bottom row) synthetic rotation with 10% noise. The columns show from left to right; (a) left image, (b)
right image, (c) estimated 
ow �eld (left), (d) compensated di�erences, (e) signi�cance measure. (Image size: 64� 64.)


ow with explicit mechanisms for hierarchical and iter-
ative updating, bidirectional matching, and con�dence
measurements. In addition to these components, a
method has been included for selecting the scales at
which the deformation estimates should be extracted.
This method is based upon minimizing a normalized
residual over scales and has the intuitively appealing
property of selecting coarser scale estimates in the pres-
ence of noise and locally inconsistent estimates.

An interesting aspect of the resulting approach is
that the computed information is contained in the con-
trol signals for bringing the image data into alignment.

In an active situation, these signals can serve as a
natural vergence mechanism. If the translation based
scheme is applied in the log-polar domain, it provides a
lower order approach for measuring the other primitive
transformations in the similarity group, i.e., rotations
and uniform size changes. When extended to local full
a�ne models, the scheme allows for unbiased estima-
tion of the invariant �rst-order 
ow components.

5 Enforcing consistency

For deformation estimates that have been computed in-
dependently, it is not guaranteed that shape descriptors
derived from them correspond to a coherent surface;
e.g., for a �eld of surface orientations to correspond to
a depth map, the rotation must be zero.

Figure 3 shows an example of enforcing such consis-
tency on monocular data by �tting a pointwise (and
hence parameter free) depth map to a �eld of surface
orientation estimates computed by a slight modi�ca-

tion of the shape from texture method in (Lindeberg
and G�arding 1993). For each point, the surface orienta-
tion estimate has been obtained from a centered second
moment matrix

� =

Z
�2R2

(rL)(rL)T w d� � (rL)(rL)T (29)

where rL =
R
�2R2

rLw d� and w is a Gaussian win-

dow function. (This descriptor obeys a similar linear
transformation property �L(q) = AT �R(p)A as the
non-centered second moment matrix �. The major dif-
ferences are that it is invariant to superimposed lin-
ear gradients L 7! L + c1 + cT2 x and less sensitive to
small perturbations of the centers of blob-like surface
structures.) From (a modi�cation of) the weak isotropy
assumption|that � in the surface should be a constant
times the unit matrix|the slant angle has been com-
puted as arccos(�2=�1) and the tilt direction from  =2.
(For more details about the algorithm, see (Lindeberg
1994b)). Observe how the qualitative shape of the torso
is captured by these very simple operations.
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