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Abstract

This thesis, within the subfield of computer science known as computer vision,
deals with the use of scale-space analysis in early low-level processing of visual
information. The main contributions comprise the following five subjects:

• The formulation of a scale-space theory for discrete signals. Previously, the
scale-space concept has been expressed for continuous signals only. We pro-
pose that the canonical way to construct a scale-space for discrete signals
is by convolution with a kernel called the discrete analogue of the Gaussian
kernel, or equivalently by solving a semi-discretized version of the diffusion
equation. Both the one-dimensional and two-dimensional cases are cov-
ered. An extensive analysis of discrete smoothing kernels is carried out for
one-dimensional signals and the discrete scale-space properties of the most
common discretizations to the continuous theory are analysed.

• A representation, called the scale-space primal sketch, which gives a formal
description of the hierarchical relations between structures at different levels
of scale. It is aimed at making information in the scale-space representa-
tion explicit. We give a theory for its construction and an algorithm for
computing it.

• A theory for extracting significant image structures and determining the
scales of these structures from this representation in a solely bottom-up
data-driven way.

• Examples demonstrating how such qualitative information extracted from
the scale-space primal sketch can be used for guiding and simplifying other
early visual processes. Applications are given to edge detection, histogram
analysis and classification based on local features. Among other possible
applications one can mention perceptual grouping, texture analysis, stereo
matching, model matching and motion.

• A detailed theoretical analysis of the evolution properties of critical points
and blobs in scale-space, comprising drift velocity estimates under scale-
space smoothing, a classification of the possible types of generic events at
bifurcation situations and estimates of how the number of local extrema
in a signal can be expected to decrease as function of the scale parameter.
For two-dimensional signals the generic bifurcation events are annihilations
and creations of extremum-saddle point pairs. Interpreted in terms of blobs,
these transitions correspond to annihilations, merges, splits and creations.

Experiments on different types of real imagery demonstrate that the proposed
theory gives perceptually intuitive results.

Keywords: computer vision, low-level processing, scale-space, diffusion, Gaus-
sian filtering, discrete smoothing, primal sketch, segmentation, descriptive ele-
ments, scale detection, image structure, focus-of-attention, tuning low-level pro-
cessing, blob detection, edge detection, edge focusing, histogram analysis, junc-
tion classification, perceptual grouping, texture analysis, critical points, classifi-
cation of blob events, bifurcations, drift velocity, density of local extrema, multi-
scale representation, digital signal processing
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Sammanfattning
Denna avhandling, inom det delomr̊ade av datalogin som g̊ar under namnet

datorseende, behandlar användningen av skalrumsanalys i de första stegen av
tidig l̊agniv̊abearbetning av visuella bilddata. De huvudsakliga bidragen omfattar:

• Formulering av en skalrumsteori för diskreta signaler. Tidigare har skal-
rumsbegreppet uttryckts enbart för kontinuerliga data. Vi föresl̊ar att det
bara finns ett (kanoniskt) sätt att definiera ett skalrum för diskreta sig-
naler, nämligen genom att falta med den diskreta motsvarigheten till Gauss-
kärnan eller ekvivalent sett genom att lösa en semi-diskretiserad version av
diffusionsekvationen. B̊ade det endimensionella och det tv̊adimensionella
fallet behandlas. En omfattande analys av diskreta faltningskärnor med
utjämningsegenskaper genomförs för endimensionella signaler och de disk-
reta skalrumsegenskaperna hos de vanligaste diskretiseringarna av den kon-
tinuerliga teorin analyseras.

• En representation vid namn skalrumsskissen, vilken ger en formell beskrivn-
ing av de hierarkiska relationer som finns mellan strukturer p̊a olika skalor
i en bild. Den är avsedd att lyfta fram egenskaper i skalrumsrepresentatio-
nen s̊a att de blir explicita. Vi ger en teori för dess konstruktion och en
algoritm för att bygga upp den beräkningsmässigt.

• En teori för att extrahera signifikanta bildstrukturer och bestämma deras
skalniv̊aer fr̊an denna representation p̊a ett helt datadrivet sätt.

• Exempel som visar hur s̊adan kvalitativ information extraherad fr̊an skal-
rumsskissen kan användas för att vägleda och förenkla andra tidiga vi-
suella processer. Tillämpningar ges mot kantdetektion, histogramanalys
och klassificering baserad p̊a lokala egenskaper. Bland ytterligare möjliga
tillämpningar kan nämnas perceptuell gruppering, texturanalys, stereomatch-
ning, modellmatchning samt rörelse.

• En detaljerad analys av hur lokala extrempunkter och blobbar kan förväntas
bete sig i skalrummet, innefattande uppskattningar av deras drifthastighet,
en klassificering av vilka typer av händelser som är möjliga vid bifurka-
tionspunkter samt uppskattningar av hur antalet lokala extrempunkter i
en signal kan förväntas minska som funktion av skalparametern. För tv̊a-
dimensionella signaler utgörs de generiska bifurkationshändelserna av par
best̊aende av en lokal extrempunkt och en sadelpunkt som försvinner eller
skapas d̊a skalparametern ökar. Uttryckt i termer av extrempunktsregioner
svarar de möjliga överg̊angarna mot annihilationer, sammanslagningar, split-
tringar och skapanden.

Experiment p̊a olika typer av verkliga bilddata visar att den föreslagna teorin ger
perceptuellt sett intuitiva och rimliga resultat.

Nyckelord: datorseende, l̊agniv̊abearbetning, skalrum, diffusion, gaussfiltering,
diskret utjämning, primärskiss, segmentering, deskriptiva element, skaldetektion,
bildstruktur, fokusering av uppmärksamheten, styrning av l̊agniv̊abearbetning,
blobdetektion, kantdetektion, kantfokusering, histogramanalys, förgreningspunkts-
klassificering, perceptuell gruppering, texturanalys, kritiska punkter, klassificer-
ing av blobhändelser, bifurkationer, drifthastighet, densitet av lokal extrempunk-
ter, multiskalrepresentation, digital signalbehandling
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1

Introduction and Overview

Computer vision deals with the problem of deriving meaningful interpretations or descrip-
tions from visual data. What should be meant by meaningful is, of course, strongly de-
pendent on the goal of the analysis, i.e., the underlying purpose why we want to make use
of visual information. One reason can be that of machine vision — the desire to provide
machines and robots with visual abilities. Other common applications concern image pro-
cessing, where one can mention image enhancement, visualization and analysis of medical
data as well as remote sensing, data compression and the design of visual aids etc. A more
theoretical reason why computer vision is studied is the tremendously inspiring challenge
of trying to understand the workings of biological visual systems, which accomplish their
tasks in such a reliable way essential for the survival of most living creatures.

Some of the most basic questions that still remain to be answered concern what type
of information in images is relevant for accomplishing different tasks, how this information
is extracted from the sensory data and how such features can be related to properties of
environment. Then, what is vision? To the question “What does it mean to see?” Marr
[Mar82] answers:

... vision is the process of discovering from images what is present in the world
and where it is

emphasizing that vision is an information-processing task. He also stresses that the issue
of internal representation of information is of outmost importance. Only by representation
can information be captured and made available to decision processes. The purpose of
a representation is to make certain aspects of the information content explicit, that is,
immediately accessible without any need for additional processing.

There have been different opinions in the computer vision community about how a visual
system should be constructed. A long debate concerned the choice between bottom-up and
top-down based reasoning. It has been argued by many authors that a visual system should
be constructed in a modular way with different levels of processing. At the simplest level
of abstraction three layers can be distinguished, denoted low-level, intermediate level and
high-level. Although also other types of design strategies have been proposed such as active
vision, see Bajscy [Baj85], and “labyrinthic design”, see Aloimonos [Alo90], implying that it
is probably not as easy to clearly separate out different processing levels as would be needed
for a dogmatic interpretation of the three-layer description, the need for some kind of early
low-level processing and representation for providing a sparse but rich set of primitives for
other processing modules still remains highly motivated.

This thesis deals with the use of a certain type of approach, scale-space representation,
for analysing data at the lowest levels in such a chain of information processing. The aim
is to operate directly on the raw pixels values without any type of pre-processing. The
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suggested methodology can be said to be intended as a first confrontation between the
reasoning process and the raw image data. We will not make any specific assumptions
about how higher-level processes are to operate on the output. Therefore, we believe that
the approach should be applicable to a variety of reasoning strategies.

Computer vision is a cross-disciplinary field with research methodologies from several
scientific disciplines such as computer science, mathematics, neurophysiology, physics and
psychology. The approach taken here will be computational1. We will develop a theory and
a framework for how certain aspects of image information can be represented and analysed
at the very earliest processing stages of a machine visual system.

1.1. Goal

The goal we are aiming at is a methodology, where significant structures can be extracted
from an image in a solely bottom-up way, without any a priori information. We will suggest
a ranking of events in order of significance based on volumes of four-dimensional objects in
a scale-space representation where the scale dimension is treated as equally important as the
spatial and grey-level coordinates. The associated extraction method is based on a systematic
parameter variation principle where locally stable states are detected and abstractions are
determined from those. We will exemplify how qualitative scale and region information
extracted in this way can be used for guiding the focus-of-attention and tuning other early
visual processes as to simplify their tasks. The general principle is to adapt the low-level
processing to the local structure of an image. The leading idea of the thesis is to construct
a framework in which these operations can be formalized.

1.2. The Nature of the Problem

When given an image as obtained from a standard camera device, say a digitized video signal
or a scanned photograph, all information is in principle in the pixel values represented as
a matrix of numerical data. If this information is presented to a human observer with the
pixel values coded as grey-level intensities, then he or she will in general have no problems
in perceiving and interpreting what the image represents.

However, if the same pattern of grey-level values is coded as decimal digits, or as a
three-dimensional diagram with the grey-level values drawn as a function of the image
coordinates, the problem is no longer as easy for biological vision. A person not familiar
with the field often underestimates the difficulties in designing algorithms for interpreting
data on this numerical form. The problem with the matrix representation of the image is
that the information is only implicit in the data.

1.2.1. Ill-posedness

The task of a visual processing system can be said to be to extract meaningful information
about the outside world from a set of pixel values that are the result of light measurements
from a physical scene.

1Although there are neuropsysiological indications for the existence of processing at multiple scales in
biological vision systems, we will not make any claims that the methodology to be proposed here in any
way describes how processing is done in human perception. We will rather be concerned with what visual
information can be extracted by a computer. When biological vision is discussed it will be mainly as a source
of inspiration.
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In principle this vision problem is impossible to solve if it is stated as a pure mathematical
problem. Given a data set of grey-level values, there will always be an infinite number
of scenes that could have given rise to the same result. To realize that this is the case,
consider for instance a photograph on a paper or a slide projected onto a screen. We easily
interpret such light distributions on flat surfaces as corresponding to three-dimensional
objects with perceived depth. From this viewpoint the vision problem is ill-posed2 in the
sense of Hadamard, since it does not have any unique solution. A rigorous person without
plenty of unspoiled optimism would probably take this as a very good motivation to study
some other field of science where the pre-requisites could be more clearly stated and better
suited for formal analysis. Nevertheless, despite this, the human visual system as well as
other biological vision systems are capable of coping with the indeterminacy. Moreover, since
vision is generally regarded as our most important sense one can believe that there must
be some properties in the image data reaching the retina that make the visual perception3

possible.

1.2.2. Grouping

A main purpose of the low-level processing modules is to provide a reasonable set of primi-
tives that can be used for further processing or reasoning modules. A fundamental problem
in this context concerns which points in the image are related to each other and correspond
to objects in the scene, i.e., which pixels in the image belong together and form meaningful
entities. This is the problem of primitive grouping or perceptual organization. Before any
such grouping operations have been performed, the matrix of grey-level values is, from the
viewpoint of interpretation, in principle only an unstructured data set of numerical values.

The grouping problem has been extensively studied in psychology, especially by the
Gestaltists [Kof35], and in computer vision, see e.g. Lowe [Low85] or Ahuja and Tuceryan
[Ahu89] for an overview, and it seems to be generally agreed upon that the existence of
active grouping processes in the human perception can be regarded as established. Witkin
and Tenenbaum [Wit83b] discuss this property:

People are able to perceive structures in images, apart from the perception of
three-dimensionality, and apart from the recognition of familiar objects. We
impose organization on data ... even when we have no idea what it is we are
organizing. What is remarkable is the degree to which such naively perceived
structure survives more or less intact once a semantic context is established: the
naive observer often sees essentially the same thing as an expert does. ... It
is almost as if the visual system has some basis for guessing what is important
without knowing why.

Although the gestalt school of psychology formulated rules as those of proximity, similarity,
closure, continuation, symmetry and familiarity, we still have no satisfactory understanding
of how these mechanisms operate from a quantitative point of view.

2For a mathematical problem to be regarded as well-posed, Hadamard stated three criteria: (i) a solution
should exist (ii) the solution should be unique and (iii) the solution should depend continuously on the input
data. A well-posed problem is not necessarily well-conditioned.

3Of course, experiences and expectations are generally believed to play a very important role in the
perception process. However, also that information must be related to the incoming image data in some way.
Moreover, the experiences must have been acquired (learned) in some way, at least partially based on visual
data
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1.2.3. Operator Size

In order to be able to derive any information from an image it is necessary to operate on
the data with some operators. This leads to two simple but very fundamental problems:
One has to determine where to apply the operator and which operator size to use.

To illustrate this problem consider the task of detecting edges. It is generally agreed
upon that this type of image features represents important information, since edges in the
image often correspond to discontinuities in depth, surface orientation, reflectance properties
or illumination in the physical world. A standard way of extracting edges from an image is
by gradient computation followed by some type of post-processing step where “high values”
should be separated from “low values”, e.g. by detection of local maxima or by thresholding
on the gradient magnitude. For simplicity consider the one-dimensional case and assume
that the gradient is computed with a central difference operator. More sophisticated ap-
proaches exist, but they will face similar problems. The selection of step size leads to a
well-known trade-off question: A small step size will give a small truncation error but the
noise sensitivity might be severe. Conversely, a large step size reduces the noise sensitivity at
the cost of an increased truncation error. In the worst case we may even miss the interesting
slope and get meaningless results if the difference quotient is formed over a larger distance
than the object to be considered in the image, see Figure 1.1 for an illustration. Therefore,
only a certain interval of step sizes can be appropriate for extracting the main slope of the
signal that we perceive when looking at that figure. Note also that this slope may in fact
be interpreted as due to noise (or some other phenomena that should be neglected) if it is
a part superimposed onto some coarser scale structure (not visible here).

Figure 1.1. Illustration of the basic scale problem involved when computing the gradients that are to
form the basis for edge detection. The lines show the effects of computing derivative approximations
from noisy data (here represented as a set of dots) using a central difference operator with varying
step size. Note that a if the step size is selected too small then the noise sensitivity can be severe. A
larger step size on the other hand reduces the noise sensitivity at the cost of an increased truncation
error. In the worst case we may even miss the interesting slope and get meaningless results if the
difference quotient is formed over a larger distance than the object to be considered in the image.
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1.2.4. Scale

The problem falls back on the basic scale problem, namely that that objects in the world
and details in an image only exist and make sense over a limited range of scale4. A typical
example is the concept of a branch of a tree which makes sense only on the scale say from
a few centimeters to at most a few meters. It is meaningless to discuss the tree concept
at the nanometer or the kilometer level. At those levels of scale it is more relevant to talk
about the molecules, which form the leaves of the tree, or the forest, in which the tree grows.
Similarly, it is meaningful to talk about a cloud only at a coarse scale. At finer scales it
is more appropriate to talk about the individual droplets, which in turn consist of water
molecules, atoms etc.

For a finite image only structures within a certain range of scales can be resolved and
registered. This interval is delimited by the inner scale corresponding to the sampling
density, that is, the resolution of the image and the outer scale corresponding to the size of
the image.

These properties indicate that if one aims at describing the structure of an image, the
scale concept is of crucial importance. A methodology that has been suggested to deal
with this issue is by representing signals at multiple scales. Moreover, since in general
no particular levels of scale can be pre-supposed without strong a priori knowledge, it is
natural that all levels of scale have to be considered. The main idea of creating a multi-
scale representation of a signal is by generating a whole family of derived signals where the
fine-scale information is successively suppressed. Then a mechanism, which systematically
simplifies the data and removes the finer scale details or the high-frequency information, is
required. This operation, which will be termed scale-space smoothing, must be available at
any level of scale.

Figure 1.2. A multi-scale representation of a signal is an ordered set of derived signals intended to
represent the original signal at various levels of scale.

Why should one represent a signal at multiple scales or different levels of resolution when
all information is anyway in the original data? The reason for this is that we would like

4An important philosophical question in this context concerns if this property should be attributed to the
actual physical objects themselves or just to our subjective way of perceiving and categorizing them. For
instance, a table made out of wood certainly has a fine-scale texture with underlying fibral and molecular
structures that we usually suppress when dealing with it for everyday purposes. Obviously such finer scale
properties will always be there but anyway we almost always automatically disregard those. One may
speculate that the organization at multiple scales may in fact be just one of our ways of simplifying our
extremely complicated environment into a hierarchical structure as to be able to cope with it. However, even
if this standpoint would be the “true” one, it could still be the way that there are properties in image data
that make such hierarchical organization suitable and also, possibly, efficient.
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to explicitly cope with the scale aspect. Another aim is to simplify further processing by
removing unnecessary and disturbing details, such that the later stage processing tasks can
be simplified.

1.3. Scale-Space Representation

A methodology proposed by Witkin [Wit83a] and Koenderink, van Doorn [Koe84] to obtain
such a multi-scale representation is by embedding the original signal into a one-parameter
family of derived signals, the scale-space, where the parameter5 t, denoted scale parameter, is
intended to somehow describe the current level of scale6. Let us briefly review the procedure
as it is formulated for one-dimensional continuous signals: Given a signal f : R → R a
function7 L : R × R+ → R is defined by L(·; 0) = f(·) and convolution with the Gaussian
kernel g : R×R+\{0} → R

L(x; t) =
∫ ∞

ξ=−∞
1√
2πt

e−ξ2/2tf(x− ξ)dξ (1.1)

if t > 0. Equivalently, the family can be regarded as generated by the diffusion equation

∂L

∂t
=
1
2
∂2L

∂x2
(1.2)

with initial condition L(·; 0) = f(·). For a two-dimensional signal f : R2 → R the scale-
space L : R2 ×R+ → R is given by convolution with the two-dimensional Gaussian kernel

L(x, y; t) =
∫ ∞

ξ=−∞

∫ ∞
η=−∞

1
2πt

e−(ξ2+η2)/2tf(x− ξ, y − η)dξdη (1.3)

or equivalently as the solution to the two-dimensional diffusion equation

∂L

∂t
=
1
2

(
∂2L

∂x2
+

∂2L

∂y2

)
(1.4)

where the initial conditions are of the same type as in the one-dimensional case. Similar
ideas can be applied to higher dimensions. However, since the amount of generated data
in general increases rapidly with the number of dimensions, we will here be restricted to
one-dimensional and two-dimensional signals, since these cases (currently) have the highest
relevance to computer vision applications.

At first glance the task of designing a multi-scale signal representation could be regarded
as rather arbitrary. Would it suffice to carry out just any type of “smoothing operation”?
This is, however, not the case. A crucial problem is that the transformation from a fine
scale to a coarse scale really can be regarded as a simplification such that fine scale features

5The parameter t used in this presentation corresponds to σ2, where σ is the standard deviation of the
Gaussian kernel.

6We have not yet formally defined what we mean by scale. In principle there should be a correspondence
between the scale parameter and a characteristic length of a characteristic object in the scale-space repre-
sentation at that scale. However, so far the scale parameter should be interpreted only as an abstract scale
parameter implying a weak ordering property of objects of different size without any direct mapping from its
actual value to the size of features in a signal represented at that scale. Later in Section 8.6 we will specify
further what types of relations between the size of image features and the actual value of the scale parameter
that this definition leads to.

7R+ denotes the set of real non-negative numbers.
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Figure 1.3. The main idea with a scale-space representation of a signal is to generate a family
of derived signals where the fine-scale information is successively suppressed. This figure shows a
signal that has been successively smoothed by convolution with the Gaussian kernel. (Adapted from
Witkin (1983)).

disappear monotonically. If new artificial structures could be created at coarser scales, not
corresponding to important regions in the finer scale representations of the signal, then it
would be impossible to determine whether a feature at a coarse scale corresponded to a
simplification of some coarse scale structure from the original image or if it were just an
accidental phenomenon, say an amplification of the noise, created by the smoothing method
— not the data. Therefore, it is of outmost importance that artifacts are not introduced by
the smoothing transformation when going from a finer to a coarser scale.

1.3.1. Non-Creation of New Structure

Then, what should one mean by structure? When Witkin [Wit83a] coined the term scale-
space of a one-dimensional signal, he observed that the number of zero-crossings in the
second derivative of the signal decreased monotonically with scale and took that as a basic
characteristic of the representation. In fact this property holds for derivatives of arbitrary
order and also implies that the number of local extrema in any derivative of the signal cannot
increase with increasing scale. From this viewpoint convolution with a Gaussian kernel can
really be regarded as possessing a strong smoothing property.

Later, when Koenderink and van Doorn [Koe84] extended the scale-space concept to
two-dimensional signals they introduced the notion of causality, which means that new level
curves must not be created when the scale parameter is increased. In other words, it should
always be possible to trace a grey-level value existing at a certain level of scale to a similar
grey-level at any finer level of scale. The reverse statement does of course not need to be
true. Combined with homogeneity and isotropy constraints, which essentially mean that
all spatial points and all scale levels should be handled in a similar manner, it was shown
that these criteria necessarily and sufficiently lead to a formulation in terms of the diffusion
equation, both in one and two dimensions. A similar result, although based on slightly
different assumptions, was given by Yuille and Poggio [Yui86] regarding the zero-crossings
of the Laplacian. Yet another proof was provided by Babaud et al. [Bab86] who showed
that natural constraints on a one-dimensional smoothing kernel necessarily implied that the
kernel had to be a Gaussian.
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To summarize, it has been established that within the class of convolution transforma-
tions (which means that the blurring is given by shift-invariant linear filtering), the only
reasonable way of embedding a signal into one-parameter multi-scale family of representa-
tions is by the diffusion equation or equivalently by convolution with the Gaussian kernel.
It can by now be regarded as generally agreed upon that this formulation describes the
canonical way to construct a multi-scale signal representation.

1.3.2. Other Multi-Scale Approaches

The idea of representing signals at multiple scales is not new8. Early work in this direc-
tion has been performed by e.g. Rosenfeld and his co-workers, see e.g. [Ros71, Ros84],
and Klinger [Kli71] about the representation of signals at different levels of resolution9, in
particular using pyramids. A pyramid is a set of successively smoothed and sub-sampled
representations of the original signal, organized in such a way that the number of pixels
decreases with a constant factor (usually either 2 or 4) from one layer to the next.

These ideas have been developed further by e.g. Burt and Adelson [Bur83], Crowley and
his co-workers [Cro84a, Cro84b, Cro87] and others, see e.g. Meer et al. [Mee87] and Cantoni
and Levialdi [Can86]. Marr [Mar76] and Marr, Hildreth [Mar80] made use of difference of
Gaussians (DOG), which are approximations to the Laplacian of the Gaussian, at different
scales. Recently, a concept of anisotropic diffusion has been proposed by Perona and Malik
[Per90] and been developed further by Nordström [Nor90].

Among other types of representations involving multiple scales one can mention the
Gabor functions [Gab46] as well as the wavelet theory, see e.g Strömberg [Str83] and Meyer
[Mey88], which has been applied to image analysis by Mallat [Mal88, Mal89]. Multi-grid
methods, see e.g. Hackbush [Hac85], are receiving a growing interest in numerical analysis
together with techniques based on hierarchical basis functions for finite element spaces, see
Yserentant [Yse86] and Szeliski [Sze90]. Another interesting early work was done by Ehrich
and Lai [Ehr78]. They did not directly rely on multiple scales, but a different type of
hierarchical signal representation based on the inclusion of extremal regions into each other.

Multi-scale representations of curves have been studied by e.g. Bengtsson and Eklundh
[Ben86, Ben90], who define a sequence of polygons approximating the original data with
varying accuracy, Mokhtarian and Mackworth [Mok86, Mac88, Mok88], who smooth the
coordinate functions of a parameterized curve, Lowe [Low88] who suggests a way to com-
pensate for the shrinking problems in that type of smoothing, and Kimia et al. [Kim90],
who use a reaction-diffusion approach.

1.3.3. Multi-Scale v.s. Multi-Resolution

The main difference between a multi-scale and a multi-resolution representation is that a
multi-scale representation is defined by smoothing, where one in principle uses the same
number of grid points at all levels of scale, while in a multi-resolution representation the
main objective is to reduce the number of grid points from one layer to the next. In order to

8One of the most important contributions with Witkin’s and Koenderink and van Doorns’ scale-space
formulation was the systematic way to relate and interconnect representations at different scales.

9The scale and the resolution concepts are sometimes used interchangeably in the vision literature and
their precise meanings are not always clear. Worth emphasizing in this context is therefore that with
resolution in this thesis we mean just the spatial density of grid points used in the sampling of the image.
Scale on the other hands stands for the characteristic length over which variations in the image take place
and/or the operator size used for processing the image data.
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reduce the aliasing problems some pre-filtering must be performed before the sub-sampling
step is carried out. Different operators have been proposed for this task, see e.g. Burt and
Adelson [Bur83], Crowley et al. [Cro84a, Cro84b] or Meer et al. [Mee87].

Hence, a multi-resolution representation will be efficient in the sense that the number of
grid points will be rapidly decreased, while a scale-space representation will get more and
more redundant as the scale increases. A wavelet representation is in fact non-redundant
while a scale-space representation can be said to be maximally redundant. On the other
hand in a scale-space representation, the representations at all levels of scale are immediately
accessible without any need for further computations. The task of operating on the data will
be successively simplified, since a feature existing at a coarse scale will in general correspond
to a larger number of grid points than a feature at a fine scale. In pyramid representations,
however, this relation remains unchanged — there is a fixed relation between the scale
parameter and the resolution. Moreover, in contrast to the pyramids and the wavelets, the
scale-space representation is invariant to translations in space.

Another important property with the scale-space representation is that the behaviour of
structure across scales can be analytically described with a simple formalism. By definition it
is given as the solution to the diffusion equation, which means that features at different scales
can be related to each other in a precise manner. Moreover, the pyramid representations
imply a fixed sampling step in scale or resolution that cannot be decreased, while the scale-
space concept possesses a continuous scale parameter. Therefore, one can expect the task
of following or tracking features across scales to be easier in a multi-scale than in a multi-
resolution representation, since refinements of the scale sampling can be performed whenever
required. Finally, is is sometimes argued that the pyramid representations undersample the
signals along the scale direction.

1.3.4. Theoretical Scale-Space Properties

There have been thorough investigations about the theoretical properties of this representa-
tion. As was described above, the fundamental property of non introducing new “artificial”
structure has been given different formulations by different authors. The behaviour of
structures under this type of smoothing has been analysed by Koenderink and van Doorn
[Koe86]. Other studies concerning edges have been made by Bergholm [Ber87] and Clark
[Cla88]. Hummel [Hum86] investigated the information content in the zero-crossings of the
Laplacian. These properties together make the scale-space representation special and one
should therefore be careful of not using the term “scale-space” for other possible types of
multi-scale-like representations, like those that can be obtained, e.g. by varying regular-
ization parameters and error criteria in optimization methods, unless similar theoretical
properties can be proved.

1.4. Philosophies and Ideas behind the Approach

1.4.1. Making Information Explicit

This scale-space theory constitutes a well-founded framework for handling structures at
different scales. However, the information in the scale-space embedding is only implicit in
the grey-level values. The smoothed images in the raw scale-space representation contain no
explicit information about the features in them or the relations between features at different
levels of scale.

One of the main goals of this thesis is to present such an explicit representation, called
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the scale-space primal sketch, and to demonstrate that it enables extraction of significant
image structures in such a way that the output can be used for guiding later stage processes
in early vision as to simplify their tasks. We shall treat intensity images, the grey-level
landscape, and the objects will be blobs, that is, bright regions on dark backgrounds or vice
versa. However, the theory applies to any bounded function and is therefore useful in many
tasks occurring in computer vision, like the study of level curves and spatial derivatives in
general, depth maps, colour etc, and also of histograms and for point clustering and grouping
in one or several variables.

1.4.2. Scale and Segmentation

Many methods in image analysis implicitly assume that the problems of scale detection
and initial segmentation have been solved. Models based on spatial derivatives ultimately
rely upon the computation of difference approximations, which means that they will face
similar scale problems as were described in the discussion about edge detection from gradient
data in Section 1.2.4. Although we will here be concerned mainly with static imagery, the
same type of problems arise also when dealing with image sequences. In other words, when
computing derivatives from measured data we in general always fall back to a basic scale
problem, namely that of selecting a filter mask size10 for the approximation.

A commonly used technique to improve the results obtained in computer vision and
other branches of applied numerical analysis is by pre-processing the input data with some
amount of smoothing and/or careful tuning of the operator size or some other parameters.
In some situations the output result might depend strongly on these processing steps. For
some algorithms these so called tuning parameters can be estimated, in other cases they are
set manually. A robust image analysis method, intended to work in an autonomous robot
situation, must however be able to make such decisions. How should this be done? We
contend that these problems are in many situations nothing but disguised scale problems.

More generally, in order to be able to apply a refined mathematical model like a dif-
ferential equation or some kind of deformable template it is necessary to have some kind
of qualitative initial information, i.e., a domain where the differential equation is (assumed
to be) valid or an initial region for application of the raw deformable template. Examples
can be obtained from many “shape from X” methods, which in general assume that they
are applied to a domain in the image where the underlying assumptions are satisfied. A
commonly used assumption is that of smoothness implying that the region in the image, to
which the model is applied to, must correspond to, say, one physical object or one facet of
a surface etc. How should we select such regions automatically? Many methods cannot be
used unless this non-trivial part of the problem has been solved.

How do we detect appropriate scales and regions of interest when there is no a priori
information available? In other words, how to detect the scale of an object and where to
search for it before knowing what kind of object we are studying and before knowing where
it is located. This problem arises implicitly in many kinds of processes, e.g. dealing with
texture, contours etc. It all seems to boil down to an impossible chicken-in-the-egg problem.
The solution of the pre-attentive recognition problem requires the solution of the scale and
region problems and vice versa. However, in this work we will show that such scale and
region determination actually can be performed computationally from raw image data by
early low-level processing. The basic tool for the analysis will be the scale-space theory.

10Observe that it is not so much the actual size of the filter mask that is important but rather the
characteristic length over which the difference approximation is computed.
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We argue that once scale information is available and once we have extracted “regions
of interest” the remaining processing tasks can be much simpler. We will support this claim
by experiments on edge detection and classification based on local features.

1.4.3. Detection of Image Structure

The main features arising in the scale-space representation are smooth regions which are
brighter or darker than their background and stand out from the surrounding. We will call
them blobs (a precise definition will be given later). The purpose of the suggested scale-
space primal sketch representation is to make these blobs as well as their relations across
scales explicit. The idea is also that this representation should reflect the intrinsic shape
of the grey-level landscape — not be an effect of some externally chosen criteria or tuning
parameters. The theory should in a bottom-up fashion allow for a data-driven detection of
significant structures, their relations and the scales at which they occur. We will, indeed,
experimentally show that the proposed representation gives intuitively reasonable results,
in which salient structures are (coarsely) segmented out. Hence, this representation can
serve as a guide to subsequent, more finely tuned processing, that requires knowledge about
where and at which scales structure occurs. In this respect it can serve as a mechanism for
focus-of-attention.

As one application demonstrating the predictive power of our method we have integrated
the output from the scale-space primal sketch with an algorithm known as edge focusing, see
Bergholm [Ber87]. We let the extracted scale level and region information serve as to initiate
an edge focusing procedure starting at an adaptively determined local scale determined from
a relevant scale of a significant blob. The experiment shows that, at a proper level of scale,
edges can be detected without thresholding, however at the cost of possibly poor localization.
But, the localization can be considerably improved using the edge focusing method, which
tracks the safely detected edges at coarse levels of scale through scale-space to corresponding
and better localized edges at finer levels of scale.

Since the proposed representation tries to capture all the important structure with a
small set of primitives, it bears some similarity to Marr’s primal sketch, even though fewer
primitives are used. However, the central issue here is to explicitly represent also the scale
at which different events occur. In this respect our work addresses problems similar to
those studied by Bischof and Caelli [Bis88]. They try to parse the scale-space by defining
a measure of stability. However, their work focuses on zero-crossings of the Laplacian
and is therefore less general than our approach. Moreover, they overlook the fact that in
measuring significance or stability of structures we must treat the scale parameter properly.
The behaviour of structure over scale will be analyzed to give the basis of such measurements.

Of course, several other representations of the grey-level landscape have been proposed
without relying on scale-space theory. Let us also note that Pizer and his co-workers,
[Lif87, Piz87], indeed, have performed studies of the behaviour of local extrema in scale-
space. However, we will defer discussing the relations to these representations until we have
described our own methodology.

1.4.4. Computational Issues

The idea of scale-space representation of images, suggested by Witkin [Wit83a] has, in
particular, been developed by Koenderink and van Doorn [Koe84, Koe86]. Our work is aimed
at complementing this work by considering the computational aspects and by adding means
of making significant structures and scales explicit. It turns out that several problems have
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to be solved to this end. One basic problem is how to measure significant and insignificant
behaviour over scale. This involves questions about ”the amount of structure in an image
without structure” and the interference between salient structure and the inner and outer
scales. An observation in this context is that noise can survive for a long time during
scale-space blurring. In measuring significance we need an appropriate scaling of the scale
parameter. It turns out that these problems touch upon general issues about the appearance
of structure in images. We will show that they can be given well-founded solutions and that
the theoretical framework can be robustly implemented in a rigorous manner.

1.4.5. Consistency over Scales

The main idea with our approach is to link features at different levels of scales in scale-
space into (four-dimensional) higher order objects, called scale-space blobs, and to extract
significant image features based on the appearance and lifetime of the higher order objects in
scale-space. We argue that significant image features must be stable with respect to variations
in scale. Another important point with our work is that we treat the scale parameter as
equally important as the spatial and grey-level coordinates. This is directly reflected in the
fact that the primitives in our representation are objects having extent not only in space and
grey-level, but also in scale.

1.5. Relations to Traditional Numerical Analysis

In principle we are to derive information from image data by operating on it with certain
operators. An obvious question is then why this could not be seen as an ordinary standard
problem in numerical analysis and be solved with standard numerical techniques? Let us
point out several reasons to why the problem is hard.

1.5.1. Modelling, Simulation and Inverse Problem

Traditional numerical analysis is often concerned with the simulation of mathematical or
physical models, for example formulated as discrete approximations to continuous differen-
tial equations, which are rather good descriptions of the underlying reality. The problems
are usually well-defined, the models can often be treated as exact and the errors involved in
these types of computations are mainly due to discretization and round-off errors.

In computer vision we have a different situation. Given a signal, the task is to analyse
and extract information from it. We are trying to solve an inverse problem where the noise
level is generally substantially higher11 and the modelling12. aspect is still open. With
a precise model of the illumination situation as well as the reflectance properties of the
surfaces in the environment one could conceive solving for the surface geometry based on
the physical light characteristics. This is the subject of e.g. shape from shading. However,
it is well-known that this problem of reconstructing the world is extremely hard, to a large
extent because it is very difficult to formulate an accurate and useful physical model for the

11A rule of thumb sometimes used in this context is that when derivatives of order higher than two are
computed from raw image data, then the amplitude of the amplified noise will often be of the same order of
magnitude as the derivative of the signal, or be even higher.

12The geometry of image formation is quite simple and well understood, but our knowledge about the
complicated physical phenomena (comprising reflections etc) and how to model those from a computational
viewpoint is still rather vague. In addition, we have the problem of representing the enormous variety of
different situations that can occur in the real world as well the question of how cognitive aspects should be
incorporated into the process.

12



image formation process, but also because such a model would require a lot of additional
a priori knowledge in order to be computationally tractable. Although further attempts
to explore the situation in more detail are being made, see e.g. Forsyth and Zissermann
[For89a, For89b] or Nayar et al. [Nay90], most shape from shading and similar algorithms
still rely on very restrictive simplifying assumptions.

1.5.2. Scale and Resolution

Other aspects are those of scale and resolution. In numerical analysis the accuracy can
often be increased by a refinement in the grid sampling. The selection of a larger grid size
is often mainly motivated by efficiency reasons, since one is simulating exact equations.
In computer vision algorithms the number of grid points used for resolving structures in a
given image is sometimes very low, something that we believe makes a difficult problem even
more difficult. This restriction can be however be relaxed in an active vision situation as
will be developed in Section 9.3. A more serious problem is that of scale. In most standard
numerical problems the inner scale is zero, which means that the smaller grid size that is
being used, the higher will the accuracy be in the computations (compare again with the
example in Section 1.2.3). In easy problems, the solutions asked for often contain variations
taking place on essentially one single scale.

Problems having solutions with variations on different scales are more complicated and
require more advanced algorithms for their solution. Examples can be obtained from com-
puter fluid dynamics, where turbulence and very thin boundary layers are known to lead to
very hard numerical problems. These fine-scale phenomena cannot always be fully resolved
by the discrete approximations, and in fact some type of (sometimes artificial) smoothing
(dissipative terms) is often required. When the fine-scale phenomena are not properly dealt
with, they can interfere with and disturb the coarse-scale phenomena that usually are the
ones of interest in e.g. design applications. Moreover, the occurrences of discontinuities
in the solutions, which are also very frequent in image data, are known to complicate the
situation.

The idea with the scale-space representation is to separate out information at different
scales. Note however that we are confronted with a very difficult problem, since in general
we have just very little or no a priori knowledge at all about what types of structures we
are studying or at what scales they occur.

1.5.3. Interpreting the Results

If we apply some operator all over an image we will hopefully get reasonable answers in
those regions where the underlying assumptions for the method are valid (provided that
the operator size has been appropriately tuned). However we will also get false alarms
in regions where the assumptions are not satisfied. One could say that such a uniform
application of an operator enforces an answer in every point even though any well-defined
answer does not exist. In general it is very hard to distinguish, just from the output of such
an operation, which responses can be trusted as correct and which ones should be rejected.
Plain thresholding on the magnitude of the response is usually not sufficient. Therefore, a
conservative strategy is to rather aim at deriving a sparse set of safe and reliable cues at the
risk of “missing” a few ones that possibly should be included than to try to compute “every”
feature at the risk of including a large number of false responses. This is the motivation to
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why we would like to determine in advance where to apply13 refined operations.

1.5.4. Approximation and Regularization

It is sometimes argued that the main aims of approximation theory have already been
accomplished. Nevertheless, one is confronted with serious problems when applying this
theory to irregular and noisy measurement data as those obtained from images. Some of
the most basic problems concern how one should determine a region in space appropriate for
fitting a model to the data and how one should tune the associated parameters, such as the
filter weights. An approach that has been used extensively in computer vision during the
last decade is regularization. This technique has been applied to a variety of reconstruction
problems, see e.g. Terzopoulos et al. [Ter86, Ter87, Ter88, Kas87, Wit87], Pentland [Pen88,
Pen90], Blake and Zisserman [Bla87] and Aloimonos and Schulmann [Alo89]. The basic
methodology is to define some functional, which is a weighted combination of different error
criteria, and then try to compute the function within some restricted space that minimizes it.
These methods often contain a large number of parameters but the theory gives little or no
information about how they should be set without manual intervention, although attempts
have been made to learn them from examples [Alo89]. In addition we have a verification
problem, since the algorithm is forced to always find a solution within the given space. How
does one determine whether that function resembles the answer we actually want (to the
original problem). To summarize, both these types of methods require a careful setting of
their associated parameters as well as the regions in space to which they should be applied.

1.5.5. Principles behind the Work

A basic intention with the work presented here is to pre-process the data and to derive
context information from it in such a way that the output from these types of operations
can be well-defined. Although we do not claim that we have solved these problems and even
though further complications may appear on the way to the solution, we believe that the
framework to be developed here represents a significant step towards posing the questions
in a context where standard numerical techniques could be readily applied and give useful
answers.

1.6. Organization of the Presentation

The thesis deals with the very fundamental problems that are associated with the use of
scale-space analysis in early low-level processing of visual data. More specifically some of
the main questions we will address are:

• How should the scale-space model be implemented computationally? The scale-space
theory has been formulated for continuous signals while realistic signals are discrete.

• Can the scale-space representation be used for extracting information? How should
that be done?

• The scale-space representation in itself contains no information about preferred scales.
In fact, without any a priori scale information all levels of scale must be treated

13This is a problem arising mainly in an initialization phase of a reasoning process. In a situation where
the time aspect is present, this problem should be simplified, since then the context knowledge could be used
for predictions to the future. It is generally argued that problems become easier once the boot-strapping
step has been performed.
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similarly. Is it possible to determine a sparse set of appropriate scales for processing
the information?

• How can the scale-space concept interact and cooperate with other processing mod-
ules?

• What can happen in scale-space? What is the behaviour of structure in scale-space?
How will features evolve under scale-space smoothing? What types of events can take
place?

The presentation is divided into three parts. We start by developing a scale-space theory for
discrete signals. Then we present a representation called the scale-space primal sketch, which
is a formal representation of structures in scale-space at multiple scales aimed at making
information in the scale-space representation explicit. Finally we demonstrate how this
representation can be integrated with other visual modules. We illustrate how qualitative
scale and region information extracted from the scale-space primal sketch can be used for
guiding other low-level processes and simplifying their tasks. We will now, in the form of a
long abstract, give a brief overview of some of the main results to be presented in each one
of the different parts.

1.6.1. Part I: Scale-Space Theory for Discrete Signals

We start by formulating a scale-space theory for discrete signals. In one dimension it is
possible to completely characterize which linear transformations on the form

fout(x) =
∞∑

n=−∞
K(n)f(x− n) (1.5)

can be regarded as smoothing transformations. An exhaustive treatment is given, answering
the following two main questions:

1. Which linear transformations on that form remove structure in the sense that the
number of local extrema does not increase?

2. How should one create a multi-scale family of representations with the property that
a signal at a coarser level of scale never contains more structure than a signal at a
finer level of scale?

Qualitative properties of the relevant kernels are derived. We show that they necessarily
have to be non-negative and unimodal both in the spatial and the frequency domains. It is
also shown that all such kernels with finite support can be derived from generalized binomial
kernels having a generating function of the form

ϕK(z) = Czk
N∏

i=1

(1 + αiz) (k,N ∈ Z) (1.6)

We propose that there is only one reasonable way to define a scale-space for one-dimensional
discrete signals comprising a continuous scale parameter

L(x; t) =
∞∑

n=−∞
T (n; t)f(x− n) (1.7)
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namely by discrete convolution with the family of kernels called the discrete analogue of the
Gaussian kernel

T (n; t) = e−tIn(t) (1.8)

where In are the modified Bessel functions of integer order. Similar arguments applied in the
continuous case uniquely lead to the Gaussian kernel. Some obvious discretizations of the
continuous scale-space theory are discussed in view of the results presented. We show that
the scale-space family equivalently is given by the solution to the semi-discretized diffusion
equation:

∂L

∂t
=
1
2
∇2

3L (1.9)

with initial condition L(·; t) = f(·). The commonly adapted technique with a sampled
Gaussian can lead to undesirable effects, since scale-space violations might occur in the
corresponding representation. The result exemplifies the fact that properties derived in the
continuous case might be violated after discretization.

A two-dimensional theory, showing how the scale-space should be constructed for im-
ages, is given based on the requirement that local extrema must not be enhanced when the
scale parameter is increased continuously. We show that this requirement, combined with
linear shift-invariant smoothing and uniform treatment of all scale levels, by necessity and
sufficiency implies that the scale-space representation has to satisfy the equation

∂L

∂t
=

C

2

(
(1− γ)∇2

5L+ γ∇2
×L

)
(1.10)

for some C > 0 and γ ∈ [0, 1], where ∇2
5 and ∇2× denote the well-known discrete five-point

and cross-operators approximating the continuous Laplacian. In the separable case, corre-
sponding to γ = 0, the resulting scale-space representation can be computed by separated
convolution with the kernel T (n; t).

L(x, y; t) =
∞∑

m=−∞

∞∑
n=−∞

T (m; t)T (n; t)f(x−m, y − n) (1.11)

We outline how a discrete version of the N-jet representation, see Koenderink and van Doorn
[Koe87], with derivatives computed from the scale-space representation at different scales,
can be defined. The presented discrete theory has computational advantages compared
to a scale-space implementation based on the sampled Gaussian, for example in the sense
that discrete approximations to derivatives can be computed directly from the scale-space
representations at different scales, without any need for repeating the smoothing operation.
The main reason for this is that the discrete nature of the implementation has been taken
into account already in the theoretical formulation of the scale-space representation, which
means that the involved operators will commute.

1.6.2. Part II: Theory of the Scale-Space Primal Sketch

We present a multi-scale representation of grey-level shape, called scale-space primal sketch,
which makes explicit information in scale-space as well as the relations between certain
features at different levels of scale. The representation is based on blobs, that are regions
either brighter or darker than the background. We give a formal definition of what we
mean by a grey-level blob, which is a local extremum with extent in a grey-level image
at a certain scale, and a scale-space blob, which is a set of grey-level blobs linked across
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scales. The extent of a scale-space blob in the scale direction is delimited by bifurcations
between critical points, or equivalently, by bifurcations between blobs. These events also
define hierarchical relations between scale-space blobs at different scales. The scale-space
primal sketch can be interpreted as a tree-like data structure with the scale-space blobs as
vertices and the bifurcation events as arcs between those.

The representation is obtained in a completely bottom-up data-driven manner, without
relying on any specific parameters or error criteria. We treat grey-level images, but the
approach is valid for any bounded function, and can therefore be used for deriving properties
of e.g. spatial derivatives.

As to enable comparisons of significance between structures at different scales we need to
transform the coordinate axes in the scale-space representation in such a way that structures
at different scales will be treated in a uniform manner. We show that natural requirements
on a transformed scale parameter, effective scale τ , imply that there is in principle only one
reasonable way to define it, namely by

τ(t) = log
(

p0

p(t)

)
(1.12)

where p(t) is the expected density of local extrema at scale t in the scale-space representation
of a reference signal and p0 is a constant. From estimates of how the density of local extrema
can be expected to vary with scale we show that for continuous signals this function will be
a logarithm, while for discrete signals it will be approximately logarithmic at coarse scales
and approximately linear at fine scales. It turns out that the volumes of the grey-level blobs
must be transformed in a similar manner. That normalization is based on simulation results
accumulated from the evolution properties of grey-level blobs extracted from random noise
signals.

We investigate the theoretical properties of the representation by applying elementary
techniques from real analysis, singularity theory and statistics to derive analytical results
for the behaviour in scale-space of critical points and related entities.

The implicit function theorem for can be used for describing the general nature of the
trajectories that the critical points will form when the scale parameter in scale-space is
changed. We derive estimates for the drift velocity of critical points and straight edges. For
critical points we have

dr

dt
= −1

2
(HL)−1∇2(∇L) (1.13)

where HL denotes the Hessian matrix and ∇L the gradient vector. For a straight edge the
drift velocity in the normal direction to the edge is

dr

dt
= −1

2

∂4L
∂n4

∂3L
∂n3

(1.14)

These expressions show that the drift velocity momentarily may tend to infinity. Generically,
this occurs at bifurcation situations only.

We analyse the qualitative behaviour of critical points in bifurcation situations and
classify what types of blob events are possible. In one dimension the generic bifurcation
events for critical points are annihilations of pairs consisting of one local maximum and one
local minimum. In the two-dimensional case, pairs consisting of a local extremum and a
saddle point can be both annihilated and created with increasing scale. Interpreted in terms
of blobs these events correspond to, in one dimension annihilations and merges, while in
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two dimensions the list of possible blob events comprises annihilations, merges, splits and
creations. A set of illustrative examples is presented, demonstrating how the blobs behave
in characteristic situations.

We describe an algorithm for actually computing the representation. It is based on
detection of grey-level blobs at different levels of scale. On that output data an adaptive
scale sampling algorithm operates and performs the actual linking of the grey-level blobs
into scale-space blobs as well as the registration of the bifurcations and the blob events.

1.6.3. Part III: Applications of the Scale-Space Primal Sketch

We develop a framework for how the scale-space primal sketch can be used for extracting
significant image structures and their scales and how this type of qualitative information
in turn can be used for guiding other early visual modules and simplifying their tasks.
From measurements of stability and significance in scale-space the representation gives a
qualitative description of the image structure with information about approximate location
and extent as well as appropriate scale for important regions in the image — allowing for
detection of stable scales and regions of interest.

In other words, it generates safe segmentation cues and can hence be seen as guiding the
focus-of-attention and preceding further processing, which can then be properly tuned. We
argue that once such scale and region information is available many other processing tasks
can become much simpler. The extraction method is based on the assumption that:

• Significant blobs in scale-space correspond to important structures in the image.

The actual ranking of events in order of significance is based on the volumes of the scale-
space blobs in the four-dimensional scale-space given by the space, grey-level and scale
coordinates. A scale-space blob in general exists over some interval in scale. As appropriate
scale for such a blob we take the scale where the blob response is as its highest, that is the
scale level for which the three-dimensional grey-level blob volume, treated as function of the
scale parameter, assumes its maximum. Two important principles behind this approach are
that:

• We link related features at different level of scale in scale-space and treat the scale
parameter as equally important as the spatial and grey-level coordinates. This is
directly reflected in the fact that the primitives of our representation are objects
having extent not only in space and grey-level but also in scale.

• We subject the image to a systematic parameter variation in order to detect important
image structures by registering locally stable states and determining abstractions from
those.

An important aspect here is that stable scale is a local property associated with objects,
not with entire images. Previous methods often face serious problems when assuming the
existence of a global stable scale. It is usually impossible to detect such a globally valid
scale, since the size of objects and also their distance to the camera will in general vary
substantially over an image.

Applications are given to edge detection, histogram analysis and junction classification
demonstrating how the proposed method can be used for guiding various sub tasks in early
visual processing.
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• When integrating the scale-space primal sketch with edge detection we detect edges
at a locally adapted scale determined from a significant scale-space blob. This will
simplify the detection problem at the cost of possibly poor localization. In fact we do
not do any thresholding on gradient magnitude. Then the localization can be improved
by following the edges to finer scales with a method known as edge focusing.

• For histogram analysis we use the scale-space primal sketch for automatic peak detec-
tion.

• We also describe how the scale-space primal sketch can be used for providing context
information necessary for an active focusing procedure aimed at classifying junctions.
We show how a range of window sizes can be set from the blob information as well as
how the blobs can serve to guide the focus-of-attention.

Finally, we briefly outline how the scale-space primal sketch can be applied to other visual
tasks such as texture analysis, perceptual grouping and matching problems. Experiments
on real imagery demonstrate that the proposed theory gives perceptually intuitive results.
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Part I

Discrete Scale-Space Theory
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2

Scale-Space for 1-D Discrete Signals

2.1. Introduction

The scale-space theory has been developed and well-established for continuous signals and
images. However, it does not tell us anything about how the implementation should be per-
formed computationally for real-life problems, i.e. discrete signals and images. In principle,
we believe that there are two approaches possible.

• Apply the results obtained from the continuous scale-space theory by discretizing the
occurring equations. For instance the convolution integral (1.1) can be approximated
by a sum using customary numerical methods. Or, the diffusion equation (1.2) can
be discretized in space with the ordinary five-point Laplace operator forming a set
of coupled ordinary differential equations, which can be further discretized in scale.
If the numerical methods are chosen with caution, we will certainly get reasonable
approximations to the continuous numerical values. But we are not guaranteed that
the original scale-space conditions, however formulated in a discrete situation, will be
preserved.

• Define a genuinely discrete theory by postulating suitable axioms.

The goal with the first part of this thesis is to develop the second item and to address
the formulation of a scale-space theory for discrete images. We will start with a one-
dimensional signal analysis. In this case it is possible to characterize exactly which kernels
can be regarded as smoothing kernels and a complete and exhaustive treatment will be
given. One among many questions which are answered is the following: If one performs
repeated averaging, does one then get scale-space behaviour? We will also present a family
of kernels, which are the discrete analogue of the Gaussian family of kernels. The set of
arguments, which in the discrete case uniquely leads to this family of kernels, do in the
continuous case uniquely lead to the Gaussian family of kernels.

The structure of the two-dimensional problem is more complex, since it is difficult to
formulate what should be meant by preservation of structure in this case. However, by slight
modification of the arguments used in the one-dimensional case, we will give an answer to
how the scale-space for two-dimensional discrete signals should be constructed. In the sep-
arable case it reduces to separated convolution with the presented one-dimensional discrete
analogue of the Gaussian kernel. The representation obtained in this way has computa-
tional advantages compared to the commonly adopted approach, where the scale-space is
based on different versions of the sampled Gaussian kernel. One of many spin-off products
which come up naturally is a well-conditioned and efficient method to calculate (a discrete
analogue of) the Laplacian of the Gaussian. It is well-known that the implementation of
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the Laplacian of the Gaussian has lead to computational problems, see e.g. Grimson and
Hildreth [Gri85].

The theory developed in this presentation does also have the attractive property that it is
linked to the continuous theory through a discretized version of the diffusion equation. This
means that continuous results may be transferred to the discrete implementation provided
that the discretization is done correctly. However, the important point with the scale-
space concept to be outlined here is that the properties we want from a scale-space hold
not only in the ideal theory but also in the discretization1, since the discrete nature of the
problem has been taken into account already in the theoretical formulation of the scale-space
representation. Therefore, we believe that the suggested way to implement the scale-space
theory really describes the proper way to do it.

The presentation is organized as follows: In Section 2.2 we define what we mean by
a scale-space representation and a one-dimensional discrete scale-space kernel. Then in a
straightforward and constructive manner Section 2.3 illustrates some qualitative properties
that must be possessed by scale-space kernels. A complete characterization as well as an
explicit expression for the generating function of all discrete scale-space kernels are given in
Section 2.4. Section 2.5 develops the concept of a discrete scale-space with a continuous scale
parameter. The formulation is equivalent to the previous scale-space formulation, which
in the continuous case leads to the Gaussian kernel. Section 2.6 discusses discrete scale-
space properties of some obvious discretizations of the convolution integral and the diffusion
equation. Section 3.1 describes some problems which occur due to the more complicated
topology in two dimensions. In Chapter 3 we develop the scale-space for two-dimensional
discrete images. Then in Chapter 4 we compare the discrete scale-space representation with
the commonly used approach, where the scale-space implementation is based on various
versions of the sampled Gaussian kernel. The numerical implementation of the discrete
scale-space is treated in Section 4.3. Finally, Section 4.5 gives a brief summary of the main
results.

The results presented should have implications for image analysis as well as other disci-
plines of digital signal processing.

2.2. Scale-Space Axioms

By a scale-space we mean a family of derived signals intended to represent the original
signal at various levels of scale. Each member of the family should be associated with a
value of a scale parameter intended to somehow describe the current level of scale. The
scale parameter, here denoted by t, may be either discrete (t ∈ Z+) or continuous (t ∈ R+)
and we obtain two different types of discrete scale-spaces — discrete signals with a discrete
scale parameter and discrete signals with a continuous scale parameter. However, in both
cases we start from the following basic assumptions:

• Every representation should be generated by a linear and shift-invariant transforma-
tion of the original signal. Therefore, the smoothing operator can be expressed as a
convolution operator.

1In a practical implementation we are of course faced with truncation and rounding errors due to finite
precision. But the idea with this approach is that we hope to improve our algorithms by including at least
the discretization effects already in the theory. In ordinary numerical analysis for simulation of physical
phenomena it is almost always possible reduce these effects by increasing the density of mesh points, if the
current grid is not fine enough to give a prescribed accuracy in the result. However, in computer vision we
are often locked to some fixed maximal resolution, beyond which additional image data are not available.
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• An increasing value of the scale parameter t should correspond to coarser levels of scale
and signals with less structure. Particularly, t = 0 should represent to the original
signal.

• All signals should be real-valued functions : Z → R defined on the same infinite grid;
in other words no pyramid representations will be used.

The essential requirement is that a signal at a coarser level of scale should contain less
structure than a signal at a finer level of scale. If one regards the number of local extrema
as one measure of the amount of structure it is thus necessary that the number of local
extrema in space does not increase as we go from a finer to a coarser level of scale. It can
be shown that the family of functions generated by convolution with the Gaussian kernel
possesses this property in the continuous case. We state it as the basic axiom for our
one-dimensional analysis and define:

Definition 2.1. (Discrete scale-space kernel (1D))
A one-dimensional discrete kernel K : Z → R is called a scale-space kernel if for all signals
fin : Z → R the number of local extrema in the convolved signal fout = K ∗ fin does not
exceed the number of local extrema in the original signal.

A minor complication is involved in this statement. If either fin or fout would happen to
have a plateau the question must be raised about how many local extrema the plateau
should be counted as. At this moment we will not go into the details of those peculiar cases.
We count a plateau as one local maximum (minimum) if there are strictly smaller (larger)
values bounding it both at the left and at the right, see Fig 2.1. An accurate treatment will
be given in Section 2.4.

Figure 2.1. Examples illustrating the definition of local extremum. (a) A local maximum (generic
case). (b) A plateau counted as one local maximum. (c) A plateau not counted as a local extremum.

An important observation to be made is that this definition equivalently can be expressed
in terms of zero-crossings just by replacing the string “local extrema” with “zero-crossings”.
The result follows from the facts that a local extremum in a discrete function f is equivalent
to a zero-crossing in its first difference ∆f , defined by (∆f)(x) = f(x+1)− f(x), and that
the difference operator commutes with the convolution operator.

However, the stated definition has further consequences. It means that the number of
local extrema (zero-crossings) in any n:th order difference of the convolved signal cannot be
greater than the number of local extrema (zero-crossings) in the n:th order difference of the
original signal. Actually, the result can be generalized to arbitrary linear operators.

Proposition 2.2. (General smoothing property of discrete scale-space kernels)
Let K : Z → R be a discrete scale-space kernel and L an operator (from the space of real-
valued discrete functions to itself), which commutes with K. Then for any f : Z → R (such
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that the involved quantities exist) the number of local extrema (zero-crossings) in L(K ∗ f)
cannot exceed the number of local extrema (zero-crossings) in L(f).

Proof. Let g = L(f). As K is a scale-space kernel the number of local extrema (zero-
crossings) in K ∗ g cannot be larger than the number of local extrema (zero-crossings) in g.
Since, K and L commute K ∗ g = K ∗ L(f) = L(K ∗ f) and the result follows. �

This shows that not only the function, but also all its “derivatives” will become smoother.
Accordingly, convolution with a discrete scale-space kernel can really be regarded as a
smoothing operation.

To realize that the number of local extrema or zero-crossings can increase even in a
rather uncomplicated situation consider the input signal

fin(x) =



−3 if n = 0
2 if n = ±1
0 otherwise

(2.1)

an convolve it with the kernels (1
3 ,

1
3 ,

1
3), (

1
2 ,

1
2) and (

1
4 ,

1
2 ,

1
4 ). The results are shown in

Figure 2.2 (b), (c) and (d) respectively. As we see, both the number of local extrema and
the number of zero-crossings have increased for the first kernel, but not for the two latter
ones. Thus, an operator which naively can be apprehended as a smoothing operator, might
actually give a less smooth result. Further, it can really matter if one averages over three
instead of two points and how the averaging is performed.

Figure 2.2. (a) Input signal. (b) Convolved with (1
3 ,

1
3 ,

1
3 ). (c) Convolved with (1

2 ,
1
2 ). (d)

Convolved with (1
4 ,

1
2 ,

1
4 ).

In order to get familiar with the consequences of the definition we will illustrate what this
scale-space property means. We start by pointing out a few general qualitative requirements
of a scale-space kernel that are necessarily induced by the given axiom. We will also show
that the two latter kernels indeed are discrete scale-space kernels.

2.3. Properties of Scale-Space Kernels

2.3.1. Positivity and Unimodality in the Spatial Domain

By considering the impulse response it is possible to draw some qualitative conclusions about
the properties of a discrete scale-space kernel. Let the input function be the discrete delta
function

fin(x) = δ(x) =

{
1 if x = 0
0 otherwise

(2.2)
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Then, the output signal will be identical to the kernel

fout(x) = (K ∗ δ)(x) = K(x) (2.3)

δ(x) has exactly one local maximum and no zero-crossings. Therefore in order to be a
scale-space kernel K must not have more than one extremum and no zero-crossings. Thus,

Proposition 2.3. (Positivity)
All coefficients of a scale-space kernel must have the same sign.

Proposition 2.4. (Unimodality)
The coefficient sequence of a scale-space kernel {K(n)}∞n=−∞ must be unimodal2.

Figure 2.3. The filter coefficient sequence K(n)∞n=−∞ of a discrete scale-space kernel must be
positive and unimodal.

Without loss of generality we can therefore restrict the rest of the treatment to positive
sequences where all K(n) ≥ 0.

It seems reasonable to require3 that K ∈ l1, i.e. that
∑∞

n=−∞ |K(n)| is finite. If fin is
bounded and K ∈ l1 then the convolution is well-defined and the Fourier transform of the
filter coefficient sequence exists. This requirement also allows us to normalize the coefficients
such that

∑∞
n=−∞K(n) = 1. Particularly, the filter coefficients K(n) must then tend to zero

as n goes to infinity.

2.3.2. Generalized Binomial Kernels

Consider a two-kernel with only two non-zero filter coefficients:

K(2)(n) =




p if n = 0
q if n = −1
0 otherwise

(2.4)

Assume that p ≥ 0, q ≥ 0 and p+ q = 1.
It is easy to verify that the number of zero-crossings (local extrema) in fout = K(2) ∗ fin

cannot exceed the number of zero crossings (local extrema) in fin. This result follows from
the fact that convolution of fin with K(2) is equivalent to the formation a weighted average
of the sequence {fin(x)}∞x=−∞, see Figure 2.4. The values of the output signal can be
constructed geometrically and will fall on straight lines connecting the values of the input
signal. The offset along the x-axis is determined by the ratio q/(p + q). It is obvious that
no additional zero-crossings can be introduced by this transformation. Thus, a kernel on
the form (2.4) is a discrete scale-space kernel.

2A real sequence is said to be unimodal if it is first ascending (descending) and then descending
(ascending).

3Some regularity requirement must be imposed on the input signal as well. Throughout our following
considerations we will stick to one general convention. If nothing else is explicitly mentioned we assume that
fin is sufficiently regular such that the involved quantities exist and are well-defined.
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Figure 2.4. To convolve a signal fin with a two-kernel K(2)(n) is equivalent to to form a weighted
average of the sequence {fin(x)}∞x=−∞. It is obvious that no new zero-crossings can be introduced
by this transformation.

Directly from the definition of a scale-space kernels it follows that if two kernels Ka and Kb

are scale-space kernels then also Ka ∗Kb is a scale-space kernel.

Lemma 2.5. (Repeated application of scale-space kernels)
If two kernels Ka and Kb are scale-space kernels then also Ka ∗Kb is a scale-space kernel

Repeated application of this result yields:

Proposition 2.6. (Repeated averaging leads to scale-space kernels)
All kernels K on the form ∗n

i=1K
(2)
i , with K

(2)
i according to (2.4), are discrete scale-space

kernels.

The filter coefficients generated in this way can be regarded as a kind of generalized binomial
coefficients. The ordinary binomial coefficients are obtained, except for a scaling-factor, as
a special case if all pi and qi are equal. Another formulation of Proposition 2.5 in terms of
generating functions is also possible.

Proposition 2.7. (Generating function of generalized binomial kernels)
All kernels with the generating function ϕK(z) =

∑∞
n=−∞K(n)zn on the form

ϕK(z) = C zk
N∏

i=1

(pi + qiz) (2.5)

where pi > 0, qi > 0 and k ∈ Z are discrete scale-space kernels.

Proof. The generating function of a kernel on the form (2.4) is ϕ
K

(2)
i

(z) = pi + qiz.
As convolution in the spatial domain corresponds to multiplication of generating functions
Proposition 2.5 gives that

ϕK(z) = ϕ
K

(2)
1

(z) ϕ
K

(2)
2

(z) ... ϕ
K

(2)
N

(z) (2.6)

is the generating function of a scale-space kernel. A constant scaling-factor C or a translation
ϕtransl(z) = zk cannot affect the number of local extrema. Therefore these factors can be
multiplied onto ϕK(z) without changing the scale-space properties. �

Another way to express this result is as follows:
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Proposition 2.8. (Sufficient criterion for scale-space kernels)
Let c−m, ..., c−1, c0, c1, ...cn be the coefficients of a discrete kernel with finite support. Then a
sufficient condition for the kernel to be a scale-space kernel is that all roots of the generating
function

ϕ(z) = c−mz−m + ...+ c−1z
−1 + c0 + c1z + ...+ cnz

n (2.7)

are real and non-positive.

Proof. Let k = −m, N = n +m in (2.5). If all roots of ϕ(z) are real and negative then
(2.5) in Proposition 2.6 must be the factorization of (2.7). �

2.3.3. Positivity and Unimodality in the Fourier Domain

The Fourier transform of a symmetric sequence on the form (2.5) has some interesting
properties. The most general generating function of such a sequence can be written as

ϕK(z) = c
N∏

ν=1

(pν + qνz)(pν + qνz
−1) (2.8)

Consider one factor (pν + qνz)(pν + qνz
−1). Its Fourier transform is

ψK(θ) =
∞∑

n=−∞
K(n)e−inθ = ϕK(eiθ) = (pν+qνe

iθ)(pν+qνe
−iθ) = p2

ν+q2
ν+2pνqν cos θ (2.9)

On the interval [−π, π] this function is non-negative. It assumes its maximum value (pν+qν)2

for θ = 0 and its minimum value (pν−qν)2 for θ = ±π. ψK(θ) is monotonically increasing on
[−π, 0] and monotonically decreasing on [0, π], in other words unimodal. It is easy to show

Figure 2.5. The Fourier transform of a (normalized) symmetric three-kernel with the coefficients
(a/2, 1−a, a/2) is ψ(θ) = 1−a(1−cos θ). If 0 ≤ a ≤ 1/2 this function is non-negative and unimodal
on the interval [−π, π]. In the special case a = 1/2 the Fourier transform tends to zero at the end
points of the interval.

that any finite product of non-negative increasing (decreasing) functions is also increasing
(decreasing). Consequently, the Fourier transform of a symmetric kernel on the form (2.5)
is non-negative and unimodal on the interval [−π, π]. In this section we will derive results
showing that the Fourier transform of any symmetric scale-space kernel must possess these
properties. The proofs, which sometimes are of a rather technical nature, can be skipped
by the hasty reader without loss of continuity.
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2.3.3.1. No Real Negative Eigenvalues of the Convolution Matrix

If the convolution transformation fout = K ∗ fin is represented on matrix form fout = Cfin
a matrix with constant values along the diagonals Ci,j = K(i − j) appears. Such a matrix
is called a Toeplitz matrix. If this matrix has a real and negative eigenvalue then the
corresponding kernel cannot be a scale-space kernel.

Proposition 2.9. (No real negative eigenvalues of the convolution matrix)
Let K : Z → R be a discrete kernel with finite support and filter coefficients cn = K(n). If
for some dimension N the N ×N convolution matrix

C(N) =




c0 c−1 · · · c2−N c1−N

c1 c0 c−1 · · · c2−N
...

. . . . . . . . .
...

cN−2 · · · c1 c0 c−1

cN−1 cN−2 · · · c1 c0




(2.10)

has a negative eigenvalue with a corresponding real eigenvector then K cannot be a scale-
space kernel. Particularly, if the kernel is symmetric then all eigenvalues must be real and
non-negative.

Proof. Because of Proposition 2.2 it is sufficient to study kernels having only non-negative
filter coefficients. Assume that C(N) has a real negative eigenvalue for some dimension N
and a corresponding real eigenvector v. Let IN be the index set 1..N . Create an input
signal fin, which is equal to the components of v for x ∈ IN and zero otherwise. Convolve
this signal with the kernel. Then for x ∈ IN the values of K ∗ fin will be equal to the
corresponding components of C(N)v (see Figure 2.6). As v is an eigenvector with a negative

Figure 2.6. (a) The eigenvector v. (b) The components of C(N) v having indices 1..N . (c) The
components of K ∗ fin.

eigenvalue the components of C(N) v and v have opposite signs. This means that v, C(N) v
and K ∗ fin all have the same number of internal zero-crossings provided that we observe
only the components in IN .

The reversal of these components and the positivity of the filter coefficients guarantee
that at least one additional zero-crossing will occur in the output signal. Let α denote the
index of the first non-zero component of fin. If fin(α) is positive (negative) then due to
the negative eigenvalue K ∗ fin(α) will be negative (positive). Since the filter coefficients
are non-negative the first non-zero component of K ∗ fin (at position β) will have the same
sign as fin(α), i.e. positive (negative). Consequently, we have found at least one additional
zero-crossing in K ∗ fin between these two positions (α and β). The same argument can be
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carried out at other end point producing another scale-space violation. This shows that K
cannot be a scale-space kernel. �

2.3.3.2. Positivity in the Frequency Domain

The eigenvalues of a Toeplitz matrix are closely related to the the Fourier transform of
the corresponding sequence of coefficients, see e.g. Grenander [Gre58] or Gray [Gra72]. A
theorem by Toeplitz [Toe11] relates the eigenvalues4 of an infinite Toeplitz matrix C with
elements Ci,j = ci−j to the the values of the generating function associated with the sequence
of filter weights. Assume that ϕ(z) =

∑∞
n=−∞ cnz

n is convergent in the ring r < |z| < R,
where 0 < r < 1 < R. Then the eigenvalues of C coincide with the set of complex values
that ϕ(z) assumes on the unit circle |z| = 1. This property allows us to derive an interesting
corollary from Proposition 2.8.

Proposition 2.10. (Non-negative Fourier transform)
The Fourier transform ψK(θ) =

∑∞
n=−∞K(n)e−inθ of a symmetric discrete scale-space

kernel K with finite support is non-negative.

Proof. Let λ
(N)
1 denote the smallest eigenvalue of the convolution matrix of dimension N

and let m denote the minimum value5 the Fourier transform ψK assumes on [−π, π]. As
a consequence of a theorem by Grenander [Gre58] Section 5.2 p65 about the asymptotic
distribution of eigenvalues of a finite Toeplitz matrix it follows that

lim
N→∞

λ
(N)
1 = m λ

(N)
1 ≥ m (2.11)

If m is strictly negative then as limN→∞ λ
(N)
1 = m it follows that λ

(N)
1 will be negative for

some sufficiently large N . According to Proposition 2.8 the kernel cannot be a scale-space
kernel. �

2.3.3.3. Unimodality in the Frequency Domain

If a linear transformation is to be regarded as a smoothing transformation it turns out to
be necessary that the low frequency components are not suppressed more than the high
frequency components. This means that the Fourier transform must not increase when the
absolute value of the frequency increases. The occurring unimodality property is easiest to
establish for circular convolution. In that case the convolution matrix becomes circulant6,
which means that its eigenvalues and eigenvectors can be determined analytically.

Proposition 2.11. (Unimodal Fourier transform; wrap-around)
Let {cn}∞n=−∞ be the filter coefficients of a symmetric discrete kernel with cn = 0 if |n| > N .
For all integers M ≥ N it is required that the transformation given by multiplication with
the (2M + 1) × (2M + 1) symmetric circulant matrix C

(M)
C (2.12), defined by (C(M)

C )i,j =
ci−j (i, j = 0..M) and circulant extension, should be a scale-space transformation. Then,
necessarily the Fourier transform ψ(θ) =

∑∞
n=−∞ cne

−inθ must be unimodal on [−π, π].
4λ is said to be an eigenvalue of an infinite matrix C if the matrix C − λI has no bounded inverse. I

denotes the unit matrix.
5Due to the symmetry of the kernel, ψK(θ) assumes only real values. The minimum value exists, since

ψ(θ) is a continuous function and the interval [−π, π] is compact.
6In a circulant matrix each row is a circular shift of the previous row except for the first row which is a

circular shift of the last row.
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C
(M)
C =




c0 c1 · · · cN cN · · · c1

c1 c0 c1 cN
. . .

...
...

. . . . . . cN

cN · . . .
cN · cN

. . . · cN

cN
. . . . . .

...
...

. . . cN c0 c1
c1 · · · cN cN · · · c1 c0




(2.12)

Proof. The core in the proof is to show that if a kernel has a non-unimodal Fourier
transform then there exists some low frequency component that disappears faster than
some other high frequency component. By considering a signal which is a superposition
of two such components will show that repeated application of the convolution operator
will eventually lead to an increase in the number of local extrema when the low frequency
component has died out and the high frequency component dominates, see also Figure 2.7.

Figure 2.7. (a) Input signal consisting of a low frequency component of high amplitude and a
high frequency component of low amplitude. (b) In the output signal the low frequency component
has been suppressed while the high frequency component remains unchanged. As we see, additional
zero-crossings have been introduced.

We will introduce a temporary definition. If x is a vector of length L let V (x) denote
the number of zero-crossings in the sequence of components x1, x2, ...xL, x1. By verification
one shows that the eigenvalues λm and eigenvectors vm of C(M)

C are

λm =
M∑

n=−M

cne
− 2πimn

2M+1 =
N∑

n=−N

cne
− 2πimn

2M+1 (m = −M..0..M) (2.13)

(vm)k = sin
(
2πmk

2M + 1

)
(m = −M..− 1, k = −M..0..M) (2.14)

(vm)k = cos
(
2πmk

2M + 1

)
(m = 0..M, k = −M..0..M)

We note that V (vm) increases as |m| increases. Further, the eigenvalues λm = ψ( 2πm
2M+1 )

of C
(M)
C are uniformly sampled values of the Fourier transform and a larger value of |m|

corresponds to a larger absolute value of the argument ψ.
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Now, assume that the Fourier transform is not unimodal. (Without loss of generality we
can presuppose that ψ is non-negative on [−π, π], because otherwise, according to Propo-
sition 2.9, the kernel cannot be a scale-space kernel.) Then, as ψ is a continuous function
of θ it is possible to find some sufficiently large integer M̃ such that there exist θα = 2πα

2M̃+1

and θβ =
2πβ

2M̃+1
satisfying ψ(θβ) > ψ(θα) for some integers β > α in [0, M̃ ].

To summarize, C
(M̃)
C has eigenvalues λβ > λα and corresponding eigenvectors with

V (vβ) > V (vα). We will show that this situation leads to a scale-space violation. The
scale-space properties are not affected by a scaling factor. Therefore, we can equivalently
study B = 1

λβ
C

(M̃)
C . For both eigenvectors we define the smallest and largest absolute values

v(absmin) and v(absmax) by

v(absmin) = min
k=1..N

|vk| ; v(absmax) = max
k=1..N

|vk| (2.15)

Let x = cvα + vβ where c is chosen large enough such that V (x) = V (vα). This can
always be achieved if |c| v(absmin)

α > v
(absmax)
β , since then the components of x and vα will

have pairwise same signs. (v(absmin)
α will be strictly positive as all components of vα are

non-zero.) Then consider Bx = 1
λβ
(cλαvα + λβvβ) and study

Bkx = c

(
λα

λβ

)k

vα + vβ (2.16)

For a fixed value of c we can always find a sufficiently large value of k such that V (Bkx) =

V (vβ). In a similar manner to above one verifies that the condition |c|
∣∣∣λα
λβ

∣∣∣kv(absmax)
α <

v
(absmin)
β suffices. Consequently, V (Bkx) > V (x) which shows that the transformation
induced by Bk is not a scale-space transformation. Therefore, B cannot be a scale-space
kernel since at least one scale-space violation must have occurred in the series of k successive
transformations. �

Figure 2.8. If the Fourier transform is not unimodal on [−π, π], i.e if there exist θ2 > θ1 in [0, π] such
that ψ(θ2) > ψ(θ1) then the corresponding transformation cannot be a scale-space transformation.

The result can be extended to comprise non-circular convolution as well. The idea behind
the proof is to construct an input signal consisting of several periods of the signal leading
to a scale-space violation in the proof of Proposition 2.10. Then, the convolution effect on
the “interior” periods will be identical to effect on one period by circular convolution. If
the signal consists of a sufficient number of periods the boundary effects will be negligible
compared to the large number of scale-space violations occurring in the inner parts. The
formal details are somewhat technical and can be found in Appendix A.1.1.
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Proposition 2.12. (Unimodal Fourier transform; general case)
The Fourier transform ψK(θ) =

∑∞
n=−∞K(n)e−inθ of a symmetric discrete scale-space

kernel K with finite support is unimodal on the interval [−π, π] (with the maximum value
at θ = 0).

2.3.4. Kernels with Three Non-Zero Elements

For a three-kernel K(3) with exactly three non-zero consecutive elements c−1 > 0, c0 > 0
and c1 > 0 it is possible to determine the eigenvalues of the convolution matrix and the
roots of the characteristic equation analytically. It is easy to verify that the eigenvalues λµ

of the convolution matrix

C(N)((c−1, c0, c1)) =




c0 c−1

c1 c0 c−1

c1 c0 c−1

· · ·
· · ·

c1 c0 c−1

c1 c0




(2.17)

are all real and equal to

λµ = c0 − 2
√
c−1c1 cos(

µπ

N + 1
) (µ = 1..N) (2.18)

and that the roots of generating function ϕK(3)(z) = c−1z
−1 + c0 + c1z are

z1,2 =
−c0 ±

√
c20 − 4c−1c1

2c1
(2.19)

From (2.18) we deduce that if c0 < 2√c−1c1 then for some sufficiently large N at least one
eigenvalue of C(N) will be negative. Thus, according to Proposition 2.8 the kernel cannot
be a scale-space kernel. However, if c20 ≥ 4c−1c1 then both the roots of ϕK(3) will be real
and negative. This means that the generating function can be written on the form (2.5)
and the kernel is a scale-space kernel. Consequently, we obtain a complete classification for
all possible values of c−1, c0 and c1. We conclude that:

Proposition 2.13. (Classification of general three-kernels)
A three-kernel with elements (c−1, c0, c1) is a scale-space kernel if and only if c20 ≥ 4c−1c1,
i.e., if and only if it can be written as the convolution of two two-kernels with positive
elements.

For explicitness we state the corresponding result in the symmetric case when c−1 = c1:

Corollary 2.14. (Classification of symmetric three-kernels)
A symmetric three-kernel with elements (c1, c0, c1) is a scale-space kernel if and only if
c0 ≥ 2c1 ≥ 0.

The necessity of this property can also be shown directly from the positivity and unimodality
properties in the spatial and Fourier domains. Observe that the usual binomial kernel with
the coefficients (1

4 ,
1
2 ,

1
4) is actually a boundary case.
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At this moment one could ask one-self if these results can be generalized to hold for
kernels with arbitrary numbers of non-zero filter coefficients. I.e. if all discrete scale-space
kernels with finite support have a generating function on the form (2.5). This question will
be answered in the next section.

2.4. Kernel Classification

Until now we have postulated an axiom in terms of local extrema or equivalently zero-
crossings and investigated some of its consequences for signal transformations expressed as
linear convolution with a shift-invariant kernel. We have seen that the sequence of filter
coefficients must be positive and unimodal and that its sum should be convergent. For
symmetric kernels the Fourier transform must be positive and unimodal on [−π, π].

In this section we will perform a complete characterization of the scale-space kernels. We
have studied the literature and seen that several interesting results can be derived from the
theory of total positivity. The proofs of the important theorems are sometimes of a rather
complicated nature for a reader with an engineering background. We will not burden the
presentation with them but give a brief background to the theory and a few summarizing
results without proof.

The pioneer in the subject of variation-diminishing transforms was I.J. Schoenberg. He
studied the subject in a series of papers from 1930 to 1953 [Sch30, Sch48, Sch53]. Later the
theory of total positivity has been covered in a monumental monograph by Karlin [Kar68].
A recent paper by Ando [And87] reviews the field using skew-symmetric vector products
and Schur complements of matrices as major tools. The questions issued in this treatment
constitute a new application of these not too well-known but very powerful results.

2.4.1. Background

Consider first a general linear transformation of discrete signal where the kernel does not
need to be shift-invariant.

fout(x) =
∞∑

y=−∞
K(x, y)fin(y) (x ∈ Z) (2.20)

Two notions of sign changes in vectors will be used, see e.g. Karlin [Kar68] or Ando [And87].
Let x = (x1, x2, ..., xn) be a vector of n real numbers. We denote by V −(x) the (minimum)
number of sign changes obtained in the sequence x1, x2, ..., xn if all zero terms are deleted
and by V +(x) the maximum number of sign changes possible in the sequence x1, x2, ..., xn

if each zero value is allowed to be replaced by either +1 or −1. We use a special convention
saying that the number of sign changes in the null vector is −1.

The interesting sequences and kernels will defined in terms of minors of the transfor-
mation matrix. Given a kernel K : X × Y → R we form minors of arbitrary order r by
selections of x1 < x2 < ... < xr from X and of y1 < y2 < ... < yr from Y . The determinant
of the resulting matrix with components {K(xi, yj)}i,j=1..r is called “a minor of order r”
and denoted by

K

(
x1, x2, ..., xr

y1, y2, ..., yr

)
=

∣∣∣∣∣∣∣∣∣∣∣

K(x1, y1) K(x1, y2) · · K(x1, yr)
K(x2, y1) K(x2, y2) · · K(x2, yr)

· · ·
· · ·

K(xr, y1) K(xr, y2) · · K(xr, yr)

∣∣∣∣∣∣∣∣∣∣∣
(2.21)
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A basic concept when dealing with variation-diminishing properties is sign-regularity:

Sign-regularity:
A discrete kernel K : Z × Z → R is said to be sign-regular (SR∞) if all its
r-order minors have same sign for every order r from 1 through ∞, i.e. if there
exists a sequence of constants ε1, ε2, ... each +1 or −1 such that

εrK

(
x1, x2, ..., xr

y1, y2, ..., yr

)
≥ 0 (2.22)

for all choices of x1 < x2 < ... < xr and y1 < y2 < ... < yr from Z.

In other words, sign-regularity means that it is impossible to find two minors of same order
having opposite signs. If strict inequality holds for all r then K is said to be strictly sign-
regular (SSR∞). General linear transformations (not necessarily shift-invariant) possessing
variation-diminishing properties in the sense that they never increase the number of sign
changes in a vector, can be fully characterized in terms of sign-regularity.

Classification of general variation-diminishing transformations I:
Let A be an n×m real matrix with n ≥ m. Then the linear map A from Rm to
Rn diminishes variations in sign in the sense that

V +(Ax) ≤ V −(x) for all x ∈ Rm x �= 0 (2.23)

if and only if A is strictly sign-regular (SSR∞).

The original proof of this powerful theorem, forming the foundation of the theory for
variation-diminishing transforms, can be found in Schoenberg [Sch53]. Ando [And87] de-
rives it using skew-symmetric vector products. Another formulation is possible [And87] if
A is known to be of full rank.

Classification of general variation-diminishing transformations II:
Let A be an n×m real matrix of rank m. Then

V −(Ax) ≤ V −(x) (2.24)

holds for all x ∈ Rm (x �= 0) if and only if A is sign-regular (SR∞).

We note that the condition (2.24) is equivalent to the formulation we expressed in Defini-
tion 2.1. Consequently, sign-regularity and full rank are the necessary and sufficient condi-
tions for a kernel to be a potential scale-space kernel. A narrower class of transformations
is obtained if all minors are required to be non-negative, see e.g. Karlin [Kar68].

Total positivity:
A discrete kernel K : Z × Z → R is said to be totally positive (TP∞) if all its
minors are nonnegative; i.e. if

K

(
x1, x2, ..., xp

y1, y2, ..., yp

)
≥ 0 (2.25)

x1 < x2 < ... < xp; y1 < y2 < ... < yp; p = 1, 2, ...,∞

34



An important subclass of totally positive kernels appears if the discrete kernel is required
to be shift-invariant i.e. if K(x, y) can be written as k(x− y) = cx−y.

Pólya frequency sequence:
A sequence {cn}∞n=−∞ is said to be a Pólya frequency sequence if all minors of
the infinite Toeplitz matrix

C =




· · · · · · ·
· · · · · · ·
· · c0 c−1 c−2 · ·
· · c1 c0 c−1 · ·
· · c2 c1 c0 · ·
· · · · · · ·
· · · · · · ·




(2.26)

are non-negative.

The importance of the Pólya frequency sequences becomes apparent when we require that
the generating function converges, which for instance holds if the sum of the filter coefficients
is convergent.

Normalized Pólya frequency sequence:
A Pólya frequency sequence {cn}∞n=−∞ having a generating function ϕ(z) =∑∞

n=−∞ cnz
n which converges in an annulus r < |z| < R (0 < r < 1 < R)

such that ϕ(z) �= 0 is called a normalized Pólya frequency sequence.

According to a theorem by Schoenberg [Sch48] sign-regularity combined with the Toeplitz
structure implies total positivity. Consequently,

Classification of variation-diminishing convolution transformations:
The convolution transformation

fout(x) =
∞∑

n=−∞
cnfin(x− n)

is variation-diminishing i.e.

V −(fout) ≤ V −(fin)

holds for all fin if and only if the sequence of filter coefficients {cn}∞n=−∞ is a
normalized Pólya frequency sequence.

In other words, every shift-invariant discrete scale-space kernel corresponds to a normalized
Pólya frequency sequence.

There exists a remarkably explicit characterization theorem for the generating function
of a PF∞-sequence. It has been proved in several steps by Edrei and Schoenberg, see [Sch53]
or [Kar68].

Classification of Pólya frequency sequences:
An infinite sequence {cn}∞n=−∞ is a Pólya frequency sequence if and only if its
generating function ϕ(z) =

∑∞
n=−∞ cnz

n is of the form

ϕ(z) = c zk e(q−1z−1+q1z)
∞∏

i=1

(1 + αiz)(1 + δiz
−1)

(1− βiz)(1 − γiz−1)
(2.27)
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c > 0; k ∈ Z q−1, q1, αi, βi, γi, δi ≥ 0;
∞∑

i=1

(αi + βi + γi + δi) < ∞

The sequence {cn}∞n=−∞ is normalized if and only if it in addition holds that βi < 1 and
γi = 1, see [Kar68].

2.4.2. Classification of Discrete Scale-Space Kernels

The results from the previous section allow us to completely classify which kernels are scale-
space kernels. To summarize, we can state two criteria; one in terms of minors of the
convolution matrix and one in terms of the generating function of the convolution kernel.

Theorem 2.15. (Classification of discrete scale-space kernels I)
A discrete kernel K : Z → R is a scale-space kernel if and only if the corresponding sequence
of filter coefficients {K(n)}∞n=−∞ is a normalized Pólya frequency sequence, i.e. if all minors
of the infinite matrix 



· · · · · · ·
· · · · · · ·
· · K(0) K(−1) K(−2) · ·
· · K(1) K(0) K(−1) · ·
· · K(2) K(1) K(0) · ·
· · · · · · ·
· · · · · · ·




(2.28)

are non-negative.

Theorem 2.16. (Classification of discrete scale-space kernels II)
An discrete kernel K : Z → R is a discrete scale-space kernel if and only if its generating
function ϕK(z) =

∑∞
n=−∞K(n)zn is of the form

ϕK(z) = c zk e(q−1z−1+q1z)
∞∏

i=1

(1 + αiz)(1 + δiz
−1)

(1− βiz)(1 − γiz−1)
(2.29)

c > 0; k;∈ Z; q−1, q1, αi, βi, γi, δi ≥ 0

βi, γi < 1;
∞∑

i=1

(αi + βi + γi + δi) < ∞

Note that we get the Fourier transform of the kernel by replacing z by e−iθ.
The product structure of this expression corresponds to the previously mentioned prop-

erty that if Ka and Kb are scale-space kernels then also Ka ∗ Kb is a scale-space ker-
nel. The meanings of the leading factors C and zk are just rescaling and translation. In
(1+αiz) and (1+ δiz

−1) we recognize rewritten versions of the generating functions of two-
kernels. The factors in the denominator are Taylor expansions of geometric series, which
correspond to moving average processes of the forms fout(x) = fin(x) + βifout(x − 1) and
fout(x) = fin(x) + γifout(x + 1). The exponential factor describes infinitesimal smooth-
ing. Its interpretation will become clearer in the next section, when we derive the discrete
scale-space with a continuous scale parameter. To conclude, this classification implies that
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Corollary 2.17. (Primitive discrete smoothing transformations)
For discrete signals Z → R there are exactly five primitive types of linear and shift-invariant
smoothing transformations, of which the last two ones are trivial:

• two-point weighted average or generalized binomial smoothing

fout(x) = fin(x) + αifin(x− 1) (α ≥ 0) (2.30)
fout(x) = fin(x) + δifin(x+ 1) (δ ≥ 0) (2.31)

• moving average or first order recursive filtering

fout(x) = fin(x) + βifout(x− 1) (β ≥ 0) (2.32)
fout(x) = fin(x) + γifout(x+ 1) (γ ≥ 0) (2.33)

• infinitesimal smoothing or diffusion smoothing, see Section 2.5.2 for further explana-
tion.

• rescaling

• translation

Moreover we have that

Corollary 2.18. (Decomposition property of scale-space kernels)
A convolution transformation is a smoothing transformation with discrete scale-space prop-
erties if and only if it can be decomposed into primitive transformations, which are all
smoothing transformations possessing scale-space properties.

This means that the inverse statement of Lemma 2.4 is true and that once a non-smoothing
transformation has been performed, that step it is impossible to fully compensate for by
further smoothing. Of course, one could in general expect that such further smoothing leads
to a signal with a smaller number of local extrema. However, there will always exist some
signals for which this is not possible.

For kernels with finite support q−1, q1, βi and γi must be zero and the infinite product
must be replaced with a finite one. Then, the generating function will be reduced to ϕK(z) =
c zk ∏N

i=1(1+αiz)(1+δiz
−1), for some finite N , which except for rescaling and translation is

the generating function of the class of generalized binomial kernels in Proposition 2.5 and 2.6.
Hence,

Theorem 2.19. (Classification of discrete scale-space kernels with finite support)
The kernels on the form ∗n

i=1K
(2)
i , with K

(2)
i according to (2.4), are (except for rescaling

and translation) the only discrete scale-space kernels with finite support.

An immediate consequence of this result is that convolution with a finite scale-space kernel
can be decomposed into convolution with kernels having two strictly positive consecutive filter
coefficients. This gives further emphasis to the statement that the generalized binomial
kernels are, except for a trivial translation, the only discrete scale-space kernels with finite
support. In the symmetric case the generating function can be further reduced to ϕK(z) =
c

∏N
i=1(1 + αiz)(1 + αiz

−1), which shows that
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Corollary 2.20. (Symmetric discrete scale-space kernels with finite support)
Every symmetric discrete scale-space kernel can be decomposed into convolutions with sym-
metric three-kernels of type

(ai, bi, ai) where bi ≥ 2ai > 0 (2.34)

In other words, every symmetric discrete scale-space kernel with finite support has a Fourier
transform of the form

ψK(θ) =
N∏

i=1

(bi + 2ai cos(θ)) (2.35)

The representation (2.29), which gives a catalogue of all one-dimensional discrete smooth-
ing kernels, can sometimes be very convenient for further analysis. For example, starting
from (2.29) it is almost trivial to show that the Fourier transform of a symmetric discrete
scale-space kernel is unimodal and non-negative on the interval [−π, π]. Due to the sym-
metry we have q−1 = q1, αν = δν and βν = γν . As a first step one replaces z with e−iθ

(which gives the Fourier transform) and shows that each one of the factors e(q−1z−1+q1z),
(1 +ανz)(1 + δνz

−1) and ((1− βνz)(1− γνz
−1))−1 is a non-negative and unimodal function

of θ on [−π, π]. The remaining details are left to the reader.

2.5. Axiomatic Scale-Space Construction

2.5.1. Discrete Scale-Space with Discrete Scale Parameter

With the classification result from the previous section in mind an apparent way to get a
multi-scale representation of a discrete signal f is by defining a set of discrete functions
Li (i = 0..n) where L0 = f and each coarser level is calculated by convolution from the
previous one Li = Ki←i−1 ∗ Li−1 (i = 1..n). The kernels Ki←i−1 should be appropriately
selected scale-space kernels corresponding to suitable amounts of blurring. The scale-space
condition for each kernel guarantees that signals at coarser levels of scale (larger value of
i) do not contain more structure than signals at finer levels of scale. This leads to a so-
called sampled scale-space with a discrete scale parameter. Combined with a sub-sampling
operator it provides a possible theoretical basis for the pyramid representations7. However,
one problem arises. How should one select the kernels/scale-levels a priori in order to achieve
a sufficiently dense sampling in scale?

2.5.2. Discrete Scale-Space with Continuous Scale Parameter

The goal in this section is to tie together scale-space kernels corresponding to different
degrees of smoothing in a systematic manner such that a continuous scale parameter can
be introduced. The concept of a continuous scale parameter is of considerable importance,
since we will no longer be locked to fixed pre-determined discrete levels of scale. It allows
us to defocus signals with an arbitrary amount of blurring, which will certainly make it
easier to locate and trace events in scale-space. Of course, it is impracticable to generate
the representations at all levels of scale in a real implementation. However, the important
idea is that, in contrast to the pyramid representations where the scale levels are fixed,

7Note that when dealing with pyramids there are other problems arising due to the lower number of grid
points, aliasing and the fixed scale sampling that might influence the design criteria. Those issues are not
covered by this treatment.
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Figure 2.9. Given the classification of discrete scale-space kernels it is straightforward, at least in
principle, to construct a scale-space representation associated with a discrete scale parameter: Start
from the original signal and select a set of kernels Ki+1←i, each one describing the transformation
from a scale level i to the next coarser level i + 1, where every such kernel should be a discrete
scale-space kernel. Then one is guaranteed that any coarser level of scale j does not contain more
local extrema any a finer level of scale i provided that j ≥ i. However, there is still one problem that
needs to be solved. How should the kernels be selected in order to achieve an appropriate sampling
in scale?

with a continuous scale parameter the scale-space representation at any level of scale can
be calculated if desired.

We will not consider the question about how to choose a suitable set of scale levels in
a practical case. Imagine for instance that we want to trace events, like local extrema,
zero-crossings, edges [Ber87] or convex and concave regions, as the blurring proceeds in
scale-space. In order to analyze scale-space behaviour, the continuum of multi-scale repre-
sentations must be sampled at some levels of scale. It is certainly a non-trivial problem to
make an appropriate selection of these levels, and it seems plausible that the sampling rate
along the scale direction should depend upon the signal under study. If in some scale scale
interval the representation varies relatively smoothly we should be able to allow a larger scale
step than if it were strongly varying. We will thus be lead to methods that automatically
regulate the scale step, based on the local structure of the signal as function of the spatial
and scale coordinates, compare also with the drift velocity estimates in Chapter 6.1.1 and
the linking algorithm across scales in Chapter 7.2. The point with a scale-space with a con-
tinuous scale parameter is that it provides a theoretical framework for the development of
such algorithms, in which the scale steps can be varied arbitrarily. We do not need to select
any set of scale levels in advance, but can leave the decision open to the actual situation.

We start from the axioms given in Section 2 and postulate that the scale-space should
be generated by convolution with a one-parameter family of kernels, i.e. L(x; 0) = f(x)
and

L(x; t) =
∞∑

n=−∞
T (n; t)f(x− n) (t > 0) (2.36)

This form of the smoothing formula reflects the requirements about linear shift-invariant
smoothing and a continuous scale parameter. The amount of structure in a signal must not
increase with scale. This means that for any t2 > t1 the number of local extrema in L(x; t2)
must not exceed the number of local extrema in L(x; t1). Particularly, by setting t1 to zero
we realize that each T (·; t) must be a scale-space kernel.

In order to simplify the analysis a semi-group requirement T (·; s) ∗ T (·; t) = T (·; s +
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t) is imposed on the family of kernels. This property makes it possible to calculate the
representation L(·; t2) at a coarser level t2 from the representation L(·; t1) at a finer level
t1 (t2 > t1) by convolution with a kernel from the one-parameter family. In summary,

L(·; t2) = {definition} = T (·; t2) ∗ f = {semi-group} = (2.37)

= (T (·; t2 − t1) ∗ T (·; t1)) ∗ f = {associativity} =
= T (·; t2 − t1) ∗ (T (·; t1) ∗ f) = {definition} = T (·; t2 − t1) ∗ L(·; t1)

As each T (·; t) is required to be a scale-space kernel, the semi-group property ensures that
the scale-space property holds between any two levels of scale. It also means that all scale
levels will be treated in a uniform manner.

We will show below that the conditions mentioned, combined with a normalization cri-
terion

∑∞
n=−∞ T (n; t) = 1 and a symmetry constraint T (−n; t) = T (n; t), determine the

family of kernels up to a positive scaling parameter8 α. One obtains,

T (n; t) = e−αtIn(αt) (2.38)

where In are the modified Bessel functions of integer order. These functions with real
arguments are except for an alternating sign sequence equal to the ordinary Bessel functions
Jn of integer order with purely imaginary arguments.

In(t) = I−n(t) = (−1)nJn(it) (n ≥ 0, t > 0) (2.39)

Theorem 2.21. (Scale-space for discrete signals; Necessity and sufficiency)
Given any one-dimensional signal f : Z → R let L : Z×R+ → R be a one-parameter family
of functions defined by L(x; 0) = f(x) (x ∈ Z) and

L(x; t) =
∞∑

n=−∞
T (n; t)f(x− n) (2.40)

(x ∈ Z, t > 0), where T : Z × R+ → R is a one-parameter family of symmetric functions
satisfying the semi-group property T (·; s) ∗ T (·; t) = T (·; s + t) and the normalization
criterion

∑∞
n=−∞ T (n; t) = 1. For all signals f it is required that if t2 > t1 then the number

of local extrema (zero-crossings) in L(x; t2) must not exceed the number of local extrema
(zero-crossings) in L(x; t1). Then necessarily (and sufficiently),

T (n; t) = e−αtIn(αt) (2.41)

for some non-negative real α, where In are the modified Bessel functions of integer order.

Proof. As mentioned above, every kernel T (n; t) must be a scale-space kernel. A theorem
by Karlin [Kar68] states that the only semi-group of normalized Pólya frequency sequences
has a generating function of the form

ϕ(z) = et(az−1+bz) (2.42)

where t > 0 and a, b ≥ 0. This result, which forms the basis of the proof can be eas-
ily understood from Theorem 2.15. If a family h(·; t) possesses the semi-group property

8For simplicity, the parameter α, which only affects the scaling of the scale parameter, will be set to 1
after the end of this section.
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h(·; s) ∗ h(·; t) = h(·; s+ t) then its generating function must necessarily obey the relation
ϕh(·; s)ϕh(·; t) = ϕh(·; s+t) for all non-negative s and t. This excludes the factors zk, (1+αiz),
(1 + δiz

−1), (1− βiz) and (1− γiz
−1) from (2.27). What remains are the constant and the

exponential factors. The argument of the exponential factor must also be linear in t in order
to fulfill the adding property of the scale parameters of the kernels under convolution.

Due to the symmetry the generating function must satisfy ϕh(z−1) = ϕh(z), which in
our case leads to a = b. For simplicity, let a = b = α

2 , and we get the generating function for
the modified Bessel functions of integer order, see Abramowitz and Stegun [Abr64] (9.6.33).

ϕt(z) = e
αt
2

(z−1+z) =
∞∑

n=−∞
In(αt)zn (2.43)

We obtain a normalized kernel if we let T : Z×R+ → R be defined by T (n; t) = e−αtIn(αt).
Set z to 1 in the generating function e

αt
2

(z−1+z) =
∑∞

n=−∞ In(αt)zn. Then it follows that∑∞
n=−∞ In(αt) = eαt, which means that

∑∞
n=−∞ T (n; t) = 1. The semi-group property is

trivially preserved after normalization. �

This theorem, which is one of the main results of this chapter, provides us with an
explicit controlled method to preserve structure in the spatial domain as we let a discrete
signal erode by smoothing it to coarser level of scales. The kernel T (n; t) = e−αtIn(αt)
possesses similar properties in the discrete case as those who make the ordinary Gaussian
kernel special in the continuous case. Therefore it is natural to refer to it as the discrete
analogue of the Gaussian kernel, see also Norman [Nor60].

Definition 2.22. (Discrete analogue of the Gaussian kernel)
The kernel T : Z × R+ → R given by T (n; t) = e−αtIn(αt) is called the discrete analogue
of the Gaussian kernel, or shorter, the discrete Gaussian.

2.5.2.1. Properties of the Discrete Analogue of the Gaussian Kernel

We will now point out some elementary properties of this kernel. In the special case t = 0
it holds that

In(0) = I−n(0) = δ(n) =

{
1 if n = 0
0 otherwise

(n ≥ 0) (2.44)

which means that T (·; 0) = δ(·) and the convolution expression (2.40) with T according
to (2.41) is valid for t = 0 as well. Observe that when the scale parameter tends to zero
the continuous Gaussian kernel tends to the continuous delta function while the discrete
analogue of the Gaussian kernel instead tends to the discrete delta function.

For large t on the other hand it holds that the discrete analogue of the Gaussian kernel
approaches the continuous Gaussian. This can be understood by studying an asymptotic
expression for the modified Bessel functions for large t, see Abramowitz and Stegun [Abr64]
(9.7.1).

In(t) =
et

√
2πt

(
1− 4n2 − 1

8t
+O(

1
t2
)

)
(2.45)

which shows that

T (n; t)− g(n; t) = e−tIn(t)−
1√
2πt

e−
n2

2t =
1√
2πt

(
1
8t
+O(

1
t2
))
)

(2.46)

If the relation (2.43) is multiplied with the factor e−t and if z is replaced with e−iθ one gets
the analytical expression for the Fourier transform of T (n; t).
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Proposition 2.23. (Fourier transform of the discrete Gaussian kernel)
The Fourier transform of the kernel T (n; t) = e−αtIn(αt) is

ψT (θ) =
∞∑

n=−∞
T (n; t)e−inθ = eαt(cos θ−1) (2.47)

For completeness, we give the variance of this kernel as well

Proposition 2.24. (Variance of the discrete analogue of the Gaussian kernel)
The variance of the kernel T (n; t) = e−αtIn(αt) is

∞∑
n=−∞

n2T (n; t) = t (2.48)

Proof. This can be easily shown from a recurrence relation for the modified Bessel functions,

In−1(t)− In+1(t) =
2n
t
In(t) (2.49)

see e.g Abramowitz and Stegun [Abr64], and the normalization condition. We have

∞∑
n=−∞

n2T (n; t) =
∞∑

n=−∞
n2e−tIn(t) =

∞∑
n=−∞

n2e−t t

2n
(In−1(t)− In+1(t)) = (2.50)

te−t

2

( ∞∑
n=−∞

nIn−1(t)−
∞∑

n=−∞
nIn+1(t)

)
=

te−t

2

( ∞∑
m=−∞

(m+ 1)Im(t)−
∞∑

m=−∞
(m− 1)Im(t)

)
=

te−t

2

∞∑
m=−∞

(m+ 1−m+ 1)Im(t) = te−t
∞∑

m=−∞
Im(t) = t

∞∑
m=−∞

T (m; t) = t (2.51)

�

Compare with the variance of the continuous Gaussian kernel, which is σ2 = t. All moments
of odd order are of course zero due to symmetry.

2.5.3. Equivalent Formulation for Continuous Signals

If similar arguments are applied in the continuous case we obtain the Gaussian kernel. In
order to give a background to the analysis, we will first briefly review some important the-
orems from the theory of variation-diminishing convolution transformations for continuous
signals. Then we will use those results to give a new and equivalent formulation of the
scale-space for continuous signals.

2.5.3.1. Background

Let S−(f) denotes the number of sign changes in a function f defined by

S−(f) = supV −(f(t1), f(t2), ..., f(tm)) (2.52)

where the supremum is extended over all sets t1 < t2 < ... < tm (ti ∈ R), m is arbitrary but
finite and V −(x) denotes the number of sign changes in a vector x defined in Section 2.4.1.
The transformation

fout(η) =
∫ ∞

ξ=−∞
fin(η − ξ)dG(ξ) (2.53)
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where G is a distribution function, is said to be variation-diminishing if

S−(fout) ≤ S−(fin) (2.54)

holds for all continuous and bounded fin. The continuous correspondence to Pólya frequency
sequences is called Pólya frequency functions. Also this concept is defined in terms of total
positivity and shift invariance, see e.g. Karlin [Kar68].

Total positivity (continuous case):
A continuous kernel K(x, y) : R×R → R is said to be totally positive (TP∞) if
all minors, of every order r from 1, 2 to infinity, are non-negative, i.e. if there
for all choices of x1 < x2 < ... < xr and y1 < y2 < ... < yr from R holds that

K

(
x1, x2, ..., xr

y1, y2, ..., yr

)
≥ 0 (2.55)

x1 < x2 < ... < xr; y1 < y2 < ... < yr; r = 1, 2, ...,∞

Pólya frequency functions:
A function k : R → R is said to be a Pólya frequency function if the function
K : R×R → R given by K(x, y) = k(x− y) is totally positive.

The variation-diminishing property of continuous convolution transformations on the form
(2.53) can be completely characterized in terms of Pólya frequency functions. The following
results are due to Schoenberg [Sch50], see also Hirschmann and Widder [Hir55] or Karlin
[Kar68].

Classification of continuous variation-diminishing transformations I:
The transformation (2.53) is variation-diminishing if and only if G is either, up
to a sign change, a cumulative Pólya frequency function

G(t) = ε

∫ t

u=−∞
k(u)du (2.56)

where ε = ±1 and k(u) is a Pólya frequency function, or else G is a step function
with only one jump.

Classification of continuous variation-diminishing transformations II:
The transformation (2.53) is variation-diminishing if and only if G has a bilateral
Laplace-Stieltjes transform of the form

∫ ∞
ξ=−∞

e−sξdG(ξ) = Ceγs2+δs
∞∏

i=1

eais

1 + ais
(−c < Re(s) < c) (2.57)

for some c > 0, where C �= 0, γ ≥ 0, δ and ai are real and
∑∞

i=1 a
2
1 is convergent.

Interpreted in the spatial domain, these results imply that for continuous signals there are
four primitive types of linear and shift-invariant smoothing transformations; convolution
with the Gaussian kernel,

h(ξ) = e−γξ2
(2.58)
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convolution with the truncated exponential functions,

h(ξ) =

{
e−|λ|ξ ξ ≥ 0
0 ξ < 0

h(ξ) =

{
e|λ|ξ ξ ≤ 0
0 ξ > 0

(2.59)

as well as trivial translation and rescaling. Moreover, it means that a shift-invariant linear
transformation is a smoothing operation if and only if it can be decomposed into these
primitive operations.

2.5.3.2. Continuous Scale-Space with Continuous Scale Parameter

These results show that the Pólya frequency functions are the natural functions to start
from when defining a scale-space representation for continuous signals, or equivalently, that
the Pólya frequency functions are the continuous scale-space kernels. If again a semi-group
requirement and a symmetry constraint are imposed on these kernels the Gaussian kernel
will remain as the only candidate.

Theorem 2.25. (Scale-space for continuous signals; Necessity and sufficiency)
Given any one-dimensional continuous signal f : R → R let L : R × R+ → R be a one-
parameter family of functions defined by L(·; 0) = f(·) and

L(x; t) =
∫ ∞

ξ=−∞
g(ξ; t)f(x− ξ)dξ (2.60)

(x ∈ R, t > 0), where g : R × R+ → R is a one-parameter family of symmetric functions
satisfying the semi-group property g(·; s) ∗ g(·; t) = g(·; s + t) and the normalization
criterion

∫∞
ξ=−∞ g(ξ; t)dξ = 1. For all signals f it is required that if t2 > t1 then the number

of local extrema9 (zero-crossings) in L(x; t2) must not exceed the number of local extrema
(zero-crossings) in L(x; t1). Suppose also that g(ξ; t) is Borel-measurable as a function of
t. Then necessarily (and sufficiently),

g(ξ; t) = (2παt)−1/2exp(−ξ2/2αt) (2.61)

for some non-negative real α.

Proof. According to the above treatment every kernel g(·; t) must be a continuous scale-
space kernel, that is a Pólya frequency function. A theorem by Karlin [Kar68] shows that
these conditions uniquely define the Gaussian family of kernels.

Classification of semi-groups of Pólya frequency functions:
Let g : X×R+ → R denote a one-parameter family of Pólya frequency functions
integrable on the real axis and fulfilling the semi-group property

g(·; t1) ∗ g(·; t2) = g(·; t1 + t2) (2.62)

Suppose also that g(x; t)) is Borel-measurable as a function of t. Then, neces-
sarily

g(x; t) =
1√
2παt

e−(x−δt)2/2αt −∞ < x < ∞; t > 0 δ ∈ R (2.63)

9In the continuous case, the variation-diminishing property is normally expressed in terms of zero-
crossings. Thus, this formulation is valid only if the differentiation operator commutes with the convolution
operator. If problems occur we prefer to base the discussion on zero-crossings instead.
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Because of the symmetry constraint the constant δ must be zero. The constant α only affects
the scaling of the scale parameter. Hence, it can be set to one without loss of generality. �

Consequently, this theorem provides a new formulation of the one-dimensional scale-
space theory for continuous signals, leading to the same result as the work by Koenderink
and van Doorn [Koe84] and Babaud et.al. [Bab86], as well as further support for the firm
belief that Theorem 2.20 states the canonical way to define a scale-space for discrete signals.
The assumption of Borel-measurability means no important restriction. It is well-known that
all continuous functions are Borel-measurable.

2.6. Discrete Scale-Space Properties of Some Numerical Approximations of
the Continuous Scale-Space Theory

In this section we will consider some numerical approximations, which are close at hand for
the convolution integral (1.1) and the diffusion equation (1.2). Using the classification results
derived in previous sections we will investigate if the occurring transformations possess
scale-space properties in the discrete sense. One aim is to analyze the previously commonly
adapted approach where the filter coefficients are set to sampled values of the Gaussian
kernel. We show that some undesired effects occur, mainly due to the fact that the semi-
group property does not hold after discretization. We also show that the transformation
obtained by convolution with the presented discrete analogue of the Gaussian kernel is
equivalent to the solution of a discretized version of the diffusion equation. This result as
well as some other interconnections between the scale-space formulations for continuous and
discrete signals provide further motivation for the selection of T as the canonical discrete
scale-space kernel. The rendering is of necessity somewhat technical and the details can be
skipped by the hasty reader without loss of continuity.

2.6.1. Sampled Gaussian Kernel

Maybe the most obvious way to approximate the convolution integral

L(x; t) =
∫ ∞

ξ=−∞
1√
2πt

e−ξ2/2tf(x− ξ)dξ (x ∈ R, t > 0) (2.64)

numerically is by the rectangle rule of integration. Provided that no truncation of the infinite
integration interval is performed this leads to the approximation formula.

L̃(x; t) =
∞∑

n=−∞

1√
2πt

e−n2/2tf(x− n) (2.65)

i.e. discrete convolution with the sampled Gaussian kernel. We will show that this rep-
resentation might lead to undesirable effects. From the definitions of PF∞-functions and
PF∞-sequences in terms of minors it is clear that

Lemma 2.26. (A sampled PF∞-function is a PF∞-sequence)
Uniform sampling of a continuous scale-space kernel gives a discrete scale-space kernel.

Therefore, since the Gaussian kernel is a PF∞ function it follows that the transformation
from the zero level L(·; 0) to a higher level never increases the number of local extrema (zero-
crossings). However, we will show below that the transformation from an arbitrary low level
L̃(·; t1) to an arbitrary higher level L̃(·; t2) is in general not a scale-space transformation.
Thus, we are not always guaranteed that the amount of structure will decrease monotonically
with scale. More precisely,
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Proposition 2.27. (Scale-space properties of the sampled Gaussian kernel)
The transformation from a low level t1 ≥ 0 to an arbitrary higher level t2 > t1 in the
representation (2.65), generated by discrete convolution with the sampled Gaussian kernel,
is a scale-space transformation if and only if either t1 is zero or the ratio t2/t1 is an odd
integer.

Proof. Assume that we construct the “scale-space” for a discrete signal by convolution with
the sampled Gaussian kernel, i.e. given a discrete signal f : Z → R we define the family of
functions L̃ : Z ×R+ → R by L̃(x; 0) = f(x) (x ∈ Z) and

L̃(x; t) =
∞∑

n=−∞
g(n; t)f(x− n) (x ∈ Z, t > 0) (2.66)

where
g(n; t) =

1√
2πt

e−
n2

2t (n ∈ Z, t > 0) (2.67)

We will make use of an expression for the generating function for the discrete kernel corre-
sponding to the sampled Gaussian. For simplicity we let qt = e−

1
2t . One can show, see e.g.

Mumford [Mum83], that

ϕt(z) =
∞∑

n=−∞
g(n; t) zn =

1√
2πt

∞∑
n=−∞

qn2

t zn = Ct

∞∏
n=0

(1 + q2n+1
t z)(1 + q2n+1

t z−1) (2.68)

where

Ct =
1√
2πt

∞∏
n=1

(1− q2n
t ) (2.69)

Comparison with the complete characterization of the generating function of a discrete
scale-space kernel (16) in Theorem 2 shows that the sampled Gaussian kernel is a discrete
scale-space kernel. This constitutes another proof of the property that for any signal f the
number of local extrema in L̃(x; t) (t > 0) does not exceed the number of local extrema
in f . However, we will now show that this scale-space property does not hold between two
arbitrary levels.

Let t1 and t2 be two levels (t2 > t1 > 0) of the representation (2.66) and let ϕin be
the generating function of the input signal. Then the generating functions of L̃(x; t1) and
L̃(x; t2) are

ϕL̃1
(z) = ϕt1(z) ϕin(z) ϕL̃2

(z) = ϕt2(z) ϕin(z) (2.70)

Let ϕdiff describe the transformation from L̃(x; t1) to L̃(x; t2). Thus,

ϕL̃2
(z) = ϕdiff (z) ϕL̃1

(z) (2.71)

Combination of (2.70), (2.71) and (2.69) gives

ϕdiff (z) =
ϕL̃2

(z)
ϕL̃1

(z)
=

Ct2

Ct1

·
∏∞

m=0(1 + q2m+1
t2 z)(1 + q2m+1

t2 z−1)∏∞
n=0(1 + q2n+1

t1 z)(1 + q2n+1
t1 z−1)

(2.72)

According to the complete characterization of scale-space kernels it follows that the corre-
sponding kernel is a scale-space kernel if and only if (2.72) can be written on the form (2.27).
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Then, for each factor (1 + q2n+1
t1 z±1) in the denominator there must exist a corresponding

factor in the numerator (1 + q2m+1
t2 z±1), i.e for each n there must exist an m such that

q2n+1
t1 = q2m+1

t2 (2.73)

Insertion of qti = e
− 1

2ti and reduction gives the necessary and sufficient requirement

2m =
t2
t1
(2n + 1)− 1 (2.74)

It is clear that this relation cannot hold for all n ∈ Z if t1 and t2 are chosen arbitrarily. The
transformation from L̃(x; t1) to L̃(x; t2) (t2 > t1) is a scale-space transformation if and
only if the ratio t2

t1
is an odd integer. �

The result constitutes an example of the fact that properties derived in the continuous
case might be violated after discretization. The main reason why the scale-space property
fails to hold between two arbitrary levels is because the semi-group property of the Gaussian
kernel is not preserved after discretization10.

scale-spacetransformations

t = t

t = t

t = 0

NOTscale-spacetransformation

2

1

Figure 2.10. In the “scale-space representation” produced by discrete convolution with the sampled
Gaussian kernel the transformation from the zero level to any coarser level of scale is always a scale-
space transformation. However, the transformation between two arbitrary levels is in general not a
scale-space transformation.

2.6.2. Discretized Diffusion Equation

The scale-space family generated by (2.36) and (2.38) can be interpreted in terms of a
discretized version of the diffusion equation.

Theorem 2.28. (Diffusion formulation of the scale-space for discrete signals)
Given a discrete signal f : Z → R in l1 let L : Z × R+ → R be the discrete scale-space
representation given by

L(x; t) =
∞∑

n=−∞
T (n; t)f(x− n) (2.75)

10This means that if a representation at a level t2 > 0 is computed via an intermediate level t1 (0 < t1 < t2)
by application of the approximation formula (2.66) in two steps, the computation does yield the same result
as if it would have been computed directly from the original signal.
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where T : Z × R+ → R is the discrete analogue of the Gaussian kernel. Then L is the
solution of the system of ordinary differential equations

∂L(x; t)
∂t

=
1
2
(L(x+ 1; t)− 2L(x; t) + L(x− 1; t)) (x ∈ Z) (2.76)

with initial conditions L(x; 0) = f(x), i.e. the system of differential equations obtained if
the diffusion equation (1.2) is discretized in space but solved analytically in time.

Proof. From the relation
2I ′n(t) = In−1(t) + In+1(t) (2.77)

for modified Bessel functions, see e.g Abramowitz and Stegun [Abr64], one easily shows that
T (n; t) = e−tIn(t) satisfies:

∂T (n; t)
∂t

=
∂

∂t

(
e−tIn(t)

)
= e−tI ′n(t)− e−tIn(t) = (2.78)

e−t In−1(t) + In+1(t)
2

− e−tIn(t) =
1
2
(T (n− 1; t)− 2T (n; t) + T (n+ 1; t)) (2.79)

which in turn means that

∂L(x; t)
∂t

=
∂

∂t

∞∑
n=−∞

T (n; t)f(x− n) =
∞∑

n=−∞

∂T (n; t)
∂t

f(x− n) = (2.80)

∞∑
n=−∞

1
2
(T (n − 1; t)− 2T (n; t) + T (n+ 1; t))f(x− n) =

1
2
(L(x− 1; t)− 2L(x; t) + L(x+ 1; t))

The regularity condition on f justifies the change of order between differentiation and infinite
summation. �

This provides another motivation for the selection of T (n; t) = e−tIn(t) as the canonical
discrete scale-space kernel. If (2.76) is further discretized in scale using Eulers method we
obtain the iteration formula

Lk+1
i =

∆t

2
Lk

i+1 + (1−∆t)Lk
i +

∆t

2
Lk

i−1 (2.81)

where the subscripts denote the spatial coordinates and the superscripts the iteration indices.
Equivalently one iteration with this formula can be described as discrete convolution with
the three-kernel (

∆t

2
, 1−∆t,

∆t

2

)
(2.82)

Proposition 2.12 states that this kernel is a scale-space kernel if and only if

∆t ≤ 1
2

(2.83)

which is a stronger condition on ∆t than induced by the stability criterion for Euler’s forward
method, see e.g. Strang [Str86]. From Corollary 2.19 we have that all symmetric scale-space
kernels with finite support can be derived from kernels of this latter form. Hence, they
provide a possible set of primitive kernels for the scale-space with a discrete scale parameter
discussed in Section 2.5.1.
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Proposition 2.29. (Diffusion equation and discrete scale-space kernels)
All symmetric discrete scale-space kernels with finite support arise from repeated application
of the discretization of the diffusion equation (2.81), using if necessary different ∆tk ∈ [0, 1

2 ].

In many applications the scale step in multi-scale representations with discrete scale param-
eter has selected such that ∆t = 1

2 . Note, however, that for any 0 ≤ ∆t ≤ 1
2 the kernel

given by (2.82) is a discrete scale-space kernel. Hence, it enables a finer sampling in scale
also for the scale-space with discrete scale parameter.

It is not too difficult to derive the analytical solution to the system of scale-continuous
equations (2.76). Assume that we want to compute the scale-space representation for a fixed
value of t. We can use the discretization (2.81) with n steps in the scale-direction such that
the step size ∆t = t/n satisfies (2.83). As each iteration step consists of a linear convolution
the final solution can equivalently be obtained by convolution with the composed kernel
Kcomposed = ∗n

i=1Kstep. Let us derive an asymptotic expression for its generating function.
The generating function for the transformation corresponding to one iteration with the
formula (2.81) is

ϕstep(z) =
∆t

2
z−1 + (1−∆t) +

∆t

2
z (2.84)

and the generating function of the composed kernel describing the transformation from the
scale zero to scale t is

ϕcomposed,n(z) = (ϕstep(z))n = (
∆t

2
z−1 + (1−∆t) +

∆t

2
z)n (2.85)

which can be written as

ϕcomposed,n(z) =

(
1 +

t

n
(
z−1

2
− 1 +

z1

2
)

)n

(2.86)

after substitution of t
n for ∆t. Since limn→∞(1 + αn

n )
n = eα if limn→∞ αn = α it follows

that
lim

n→∞ϕcomposed,n(z) = e−
t
2
(1−z−1)e−

t
2
(1−z) = e−te

t
2
(z−1+z) (2.87)

We recognize the generating function of the family of discrete kernels we arrived at when we
constructed the discrete scale-space in Section 2.5.2. e−t is the normalization factor. Con-
sequently, this provides a more constructive proof of the property that the transformation
obtained by convolution with the discrete analogue of the Gaussian is equivalent11 to the
analytical solution of the system of equations obtained by discretizing the diffusion equation
on a fixed equidistant grid in space.

Proposition 2.30. (Repeated averaging and the diffusion equation)
The discrete scale-space generated by convolution with the discrete Gaussian kernel (2.41)
or equivalently by the semi-discretized version of the diffusion equation (2.76) describes the
limit case of repeated iteration of the recurrence relation (2.81) as the scale step tends to
zero.

This is not surprising bearing Theorem 2.23 in mind. These essence of this treatment is
that when one applies the scale-space theory to discrete signals one should discretize what
is necessary, namely along the spatial coordinate. The continuous scale parameter can be
left untouched.

11The conclusion is valid only if the solution to the discretization (2.81) converges to the solution of the
continuous equations (2.76) when ∆t → 0. This does for instance hold if f ∈ l1 or f ∈ l2.

49



2.6.3. Integrated Gaussian Kernel

Another way of discretizing the convolution integral (2.64) is by integrating the continuous
Gaussian kernel over each pixel support region. This method can be regarded as giving “a
more true approximation”12 than the method with the sampled Gaussian, especially at fine
scales (compare also with Chapter 4). The resulting approximation formula corresponds to
discrete convolution with the kernel given by

ci =
∫ i+ 1

2

i− 1
2

1√
2πt

e−ξ2/2tdξ (2.88)

This choice of filter coefficients is equivalent to the continuous formulation (2.64) if we let
the continuous signal f be a piecewise constant function, which is equal to the discrete pixel
value over each pixel support region. Another possibility is to let f in (2.64) be defined by
linear interpolation between the discrete values, which leads to

ci =
∫ i

i−1
(ξ − i+ 1)

1√
2πt

e−ξ2/2tdξ +
∫ i+1

i
(i− ξ + 1)

1√
2πt

e−ξ2/2tdξ (2.89)

According to a theorem by Karlin [Kar68] it holds that that a kernel, given by the difference
operator applied to uniformly sampled values of an integrated Pólya frequency function, is
a Pólya frequency sequence.

Uniform sampling of integrated PF∞ functions:
Let f(x) be a PF∞ sequence and form

g(x) =
∫ ∞

ξ=−∞
f(ξ)dξ (2.90)

Then (∆g)(n) = g(n + 1)− g(n) constitutes a PF∞ sequence.

This means that the transformation from the original signal (t = 0) to an arbitrary level
of scale (t1 > 0) is always a scale-space transformation. However, we cannot expect any
semigroup property to hold exactly and will probably arrive at similar scale-space problems
as with the sampled Gaussian kernel when considering transformations between arbitrary
scale levels. We leave it is an open problem to judge whether the second kernel (2.89) is a
scale-space kernel or not.

Proposition 2.31. (Scale-space properties of the integrated Gaussian kernel)
The transformation from the zero level to a coarser level in the representation generated
by discrete convolution with the integrated Gaussian kernel, given by (2.88), is a discrete
scale-space transformation.

12This issue actually comes down to philosophical questions in the image formation process. What do
the recorded pixel values actually represent ? Often they are implicitly without notice regarded as sampled
values of the underlying physical light intensity in the real world. In reality this is certainly not true, but
under that assumption the formula (2.65) should be a proper discretization. (Except for the fact that the grid
is not dense enough to resolve the rapid variations in the integrand.) Presumably, a more correct statement
is that the pixel values should be regarded as the result of first applying a continuous convolution operator
to the physical light intensity and then as a second step sampling that output uniformly. The integration
formula defined by (2.88) is an example of the latter model. In that case the kernel function is assumed to be
one within the whole pixel support region and zero outside. Probably, a bell-shaped kernel would be more
realistic.
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2.7. Summary and Discussion

The aim of this treatment has been to investigate the discrete aspects of the one-dimensional
scale-space theory. We have studied linear and shift-invariant transformations and stated a
requirement on kernels saying that the number of local extrema in a convolved signal must
not exceed the number of local extrema in the original signal. As an immediate consequence
we saw that the coefficient sequence must be non-negative and unimodal. For symmetric
kernels the same requirements hold for the Fourier transform. We saw that the interesting
kernels could be completely classified in terms of total positivity — all shift-invariant discrete
scale-space kernels are equivalent to normalized Pólya frequency sequences. The generating
function of such a sequence/kernel possesses a very simple characterization, implying that
there are only three non-trivial types of primitive smoothing transformations; repeated
averaging, recursive smoothing and diffusion smoothing.

Then we introduced a continuous scale parameter and showed that the only reasonable
way to define a scale-space for discrete signals is by convolution with the one-parameter
family of kernels T (n; t) = e−tIn(t), where In are the modified Bessel functions of integer
order. When similar arguments were applied in the continuous case we were uniquely lead to
the Gaussian kernel. The kernel T does also have the attractive property that it is equivalent
to the limit case of a certain discretization of the diffusion equation. The idea of a continuous
scale parameter even for discrete signals is of considerable importance, since it permits
arbitrary degrees of smoothing, i.e. we are no longer restricted to specific predetermined
levels of scale. Due to the semi-group property, the scale-space condition holds between
any two levels of representation. We showed that the commonly used technique, where the
“scale-space” is constructed by convolution with the sampled Gaussian kernel, might lead
to undesirable effects, since in general the transformation from an arbitrary fine level to a
randomly selected coarser level is not a scale-space transformation.

Let us finally point out some other aspects of the presented theory that have not been
mentioned elsewhere.

2.7.1. Ideal Low-Pass Filters and Block Average Filters

The unimodality requirement on discrete scale-space kernels implies that an “ideal low-
pass filter” is not a smoothing kernel in this sense because of the ringing phenomena in
the spatial domain. This means that the first pre-filtering step that is often carried out
in digital signal processing in order to guarantee band-limited signals actually violates the
scale-space conditions. Neither does a block average filter possess scale-space properties,
unless its width is either 1 or 2. This can be easily understood from the ringing phenomena
and the non-negative values introduced in the frequency domain.

2.7.2. Positivity and Unimodality is Necessary but not Sufficient

Note that the positivity and unimodality requirements for discrete scale-space kernels are
necessary but not sufficient requirements. In other words, there exist kernels, which are non-
negative and unimodal both in the spatial and the frequency domain but are not discrete
scale-space kernels. This can be easily shown, for instance by considering a symmetric
five-kernel having a generating function with only complex roots, see Appendix A.1.2.

Observation 2.32. (Positivity and unimodality not sufficient)
The positivity and unimodality requirements in the spatial and the frequency domain are
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necessary but not sufficient conditions for a one-dimensional discrete kernel Z → R to be a
discrete scale-space kernel.

2.7.3. Recursive Filters

According to the classification of discrete scale-space kernels, it follows that the recursive
filters suggested by Deriche [Der87a, Der87b] possess discrete scale-space properties if and
only if they can be implemented as a series of first order smoothing filters, i.e., if and only
if their generating function

Ha,b(z) =
b0 + b1z

−1 + ...+ b
−(n−1)
n−1

1 + a1z−1 + ...+ a−n
n

(2.91)

can be factorized to the form

ϕK(z) = c
n∏

k=1

1 + δkz
−1

1− γkz−1
(2.92)

where c > 0, γk, δk ≥ 0 and γk < 1, compare with (2.29).

2.8. Conclusion: Scale-Space for 1-D Discrete Signals

The results from this one-dimensional treatment seem to point all in the same direction. The
natural way to apply the scale-space theory to discrete signals is apparently by discretizing
the diffusion equation, not the convolution integral.
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3

Scale-Space for 2-D Discrete Signals

3.1. From One to Two Dimensions

The extension of the previous one-dimensional theory to two and higher dimensions is not
obvious, since it is possible to show that there do not exist any non-trivial kernels on R2

or Z2 with the property that they never introduce new local extrema. Lifshitz and Pizer
[Lif87] present an illuminating counter-example:

Imagine a two-dimensional image function consisting of two hills, one of them somewhat
higher than the other one, see Fig. 3.1. Assume that they are smooth, wide, rather bell-
shaped surfaces situated some distance apart clearly separated by a deep valley running
between them. Connect the two tops by a narrow sloping ridge without any local extrema,
so that the top point of the lower hill no longer is a local maximum. Let this configuration
be the input image. When the operator corresponding to the diffusion equation is applied
to the geometry, the ridge will erode much faster than the hills. After a while it has eroded
so much that the lower hill appears as a local maximum again. Thus, a new local extremum
has been created.

The same argument can be carried out in the discrete case. Of course, we have to consider
connectivity when we define what we mean by local extrema. But this question is only of
a formal nature. Given an arbitrary non-trivial convolution kernel it is always possible to
create a counter-example where the number of local extrema can increase, provided that
the peaks are located sufficiently wide apart and the valley between them is sufficiently
deep. Therefore, it is not clear what we should mean with a scale-space property in two
space dimensions. We cannot generalize the formulation in terms of zero-crossings of the
Laplacian either. From the counter-example it is apparent that a level curve may split
into two during erosion. Consequently, we cannot expect to find a nontrivial kernel never
increasing the number of zero-crossing curves either1.

Anyway, we should not be too surprised. In some sense the decomposition of the scene
is intuitively quite reasonable. The narrow ridge is a fine-scale phenomenon and should
therefore disappear before the coarse-scale peaks. In this case it is rather the measure on
structure than the smoothing method that is the decisive factor.

The property that new local extrema can be created by linear smoothing seems inherent
and inescapable in two and higher dimensions. Also other types of features, which are
possible candidates for being “measures of structure”, like zero-crossings, convex and concave
regions etc. may be created, see e.g. Yuille [Yui88].

Therefore, when extending the theory to higher dimensions, we should not be too locked
to the previously given definition of a discrete scale-space kernel. In one dimension the

1However, new zero-crossings of the Laplacian, not arising from splits of previously existing zero-crossings
of the Laplacian, cannot be created due to the causality property.

53



Figure 3.1. New local extrema can be created by the diffusion equation in the two-dimensional case

number of local extrema is a natural measure of structure on which a theory can be founded
— in two dimensions obviously not. Instead the previously given treatment should be
understood in a wider sense as a characterization of which one-dimensional convolution
transformations can be regarded as smoothing transformations.

Is it true that the discrete analogue of the Gaussian kernel used as a separated kernel
is the natural discrete kernel in two dimensions? If one, due to computational considera-
tions, wants to use separable discrete kernels, one could, of course, heuristically argue that
the kernel should at least have a good performance in one dimension. Another indication
in that direction is obtained if one studies a discretized version of the two-dimensional
diffusion equation. In Appendix A.2.1 it is shown that separated convolution with the one-
dimensional discrete analogue of the Gaussian kernel describes the solution of the system
of ordinary differential equations, which appears if the diffusion equation is discretized in
space but not in time (scale).

In this chapter we will develop a two-dimensional theory based on somewhat modified
axioms, which however in one dimension turns out to give the same result as the previous
formulation. In a special case, the resulting scale-space representation can be reduced to the
representation given by separated convolution with the discrete analogue of the Gaussian
kernel.

3.2. Selecting Two-Dimensional Scale-Space Axioms

From the discussion in the previous section it is clear that the one-dimensional treatment
cannot be generalized directly to higher dimensions. However, an important point about
the study we have performed, is that we have acquired a deep understanding on what one-
dimensional linear transformations can be regarded as smoothing transformations. We have
also shown that the only reasonable way to convert the one-dimensional scale-space theory
from continuous signals to discrete signals is by discretization of the diffusion equation.

54



Koenderink, van Doorn [Koe84] derive the two-dimensional scale-space for continuous
images from three assumptions — causality, homogeneity and isotropy. The leading idea
is that every grey-level at a coarse level of scale should be possible to trace from the same
grey-level at a finer level of scale. In other words, no new grey-level surfaces2 should be
created in the scale-space representation when the scale parameter increases, see Fig. 3.2.
Using differential geometry they show that these requirements uniquely lead to the diffusion
equation, or equivalently to convolution with the Gaussian kernel.

Figure 3.2. Grey-level surfaces L(x, y; t) = z0. (a) Causal (and generic) grey-level surface. (b)
Non-causal (and impossible) grey-level surface. (c) Grey-level surface corresponding to the example
in Fig. 4 where one grey-level curve splits into two.

It is of course impossible to apply these ideas directly, since there do not exist any direct
correspondences to level curves and differential geometry in the discrete case. However, an
alternative way to express the previous ideas is by requiring that if for some scale level t0
a point (x0, y0) is a local maximum for the scale-space representation at that level (regarded
as a function of the space coordinates only) then its value must not increase when the scale
parameter increases. Analogously, if a point is a local minimum then its value must not
decrease when the scale parameter increases.

It is clear that this formulation is equivalent to the formulation in terms of grey-levels
for continuous images, since if the grey-level value at a local maximum (minimum) would
increase (decrease) a new grey-level curve would be created. Inversely, if a new grey-level
curve is created then some local maximum must have increased or some local minimum
must have decreased.

An intuitive description of this requirement is that it prevents local extrema from being
enhanced and from “popping up out of nowhere” when the scale parameter increases. As
we have seen earlier, we can never ever prevent the number of local extrema from being
increased. However the idea is that those creation events should be “few”.

In the next section we will show that this condition combined with a continuous scale
parameter means a strong restriction on the smoothing method also in the discrete case,
and we will again obtain a discretized version of the diffusion equation. In a special case
the resulting scale-space representation will be reduced to the family of functions generated
by separated convolution with the discrete analogue of the Gaussian kernel, T (n; t).

3.2.1. Basic Definitions

Before getting into the detailed scale-space formulation we will need to make a few defini-
tions. The eight-neighbours of a point (x, y) ∈ Z2 will be denoted N8(x, y). If the central

2By a grey-level surface we mean an iso-surface in scale-space i.e. a connected set of points (x, y; t) ∈
R2 ×R such that L(x, y; t) = z0 for some grey-level value z0.
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point is included as well we will use the notation N+
8 (x, y). The notion of extremum points

will be as follows:

Definition 3.1. (Discrete local maximum)
A point (x, y) is said to be a (weak) local maximum point for a function g : Z2 → R if
g(x, y) ≥ g(ξ, η) for all (ξ, η) ∈ N8(x, y).

Definition 3.2. (Discrete local minimum)
A point (x, y) is said to be a (weak) local minimum point for a function g : Z2 → R if
g(x, y) ≤ g(ξ, η) for all (ξ, η) ∈ N8(x, y).

It is also useful here to introduce two common discrete operators, approximating the two-
dimensional Laplace operator ∂2

∂x2 + ∂2

∂y2 , namely the five-point operator ∇2
5 and the cross

operator ∇2×, defined by3:

(∇2
5f)(x, y) = f(x− 1, y) + f(x+ 1, y) + f(x, y − 1) + f(x, y + 1)− 4f(x, y) (3.1)

(∇2
×f)(x, y) =

1
2
(f(x−1, y−1)+f(x−1, y+1)+f(x+1, y−1)+f(x+1, y+1)−4f(x, y)) (3.2)

The corresponding one-dimensional operator is the three-point operator, ∇2
3, given by

(∇2
3f)(x) = f(x− 1)− 2f(x, y) + f(x+ 1) (3.3)


 1
1 −4 1

1





 1/2 1/2

−2
1/2 1/2


 (

1 −2 1
)

Figure 3.3. Computational molecules for (a) the five-point operator ∇2
5 (b) the cross operator ∇2

×
and (c) the three-point operator ∇2

3. (Throughout this treatment we use a unit step size.)

3.3. Axiomatic 2D Discrete Scale-Space Construction

When we construct the scale-space for two-dimensional discrete images we follow the ideas
from the one-dimensional case, see Section 2.5.2. We start by postulating that the scale-space
should be generated by convolution with a one-parameter of kernels, i.e. L(x, y; 0) = f(x, y)
and

L(x, y; t) =
∞∑

m=−∞

∞∑
n=−∞

T (m,n; t)f(x−m, y − n) (t > 0) (3.4)

As mentioned earlier, this form on the smoothing formula corresponds to the requirements
about linear shift-invariant smoothing and a continuous scale parameter. We want both
coordinate directions to be processed identically. Therefore all kernels should be symmetric.
We will also impose a semi-group condition on the family T . This means that all scale levels
will be treated similarly, i.e. the smoothing operation does not depend on the scale value,
and that the transformation from a lower scale level to a higher scale level will be given by
convolution with a kernel from the family, compare with (2.37).

3In our considerations the step size h is set to 1.
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The smoothing criterion will be the requirement about local extrema indicated in the
previous section. It is convenient to express it as a condition on the derivative of the scale-
space family with respect to the scale parameter. In order to ensure a proper statement
of this condition, where differentiability is guaranteed, we will need to state a series of
preliminary definitions leading to the desired scale-space formulation.

3.3.1. Definitions

We start by summarizing the basic properties we would like a family of kernels to satisfy in
order to be a candidate family for the generation of a scale-space representation.

Definition 3.3. (Pre-scale-space family of kernels)
A one-parameter family of kernels T : Z2 × R+ → R is said to be a pre-scale-space family
of kernels if it satisfies

• T (·, ·; 0) = δ(·, ·)

• the semi-group property T (·, ·; s) ∗ T (·, ·; t) = T (·, ·; s+ t)

• the symmetry properties4 T (−x, y; t) = T (x, y; t) and T (y, x; t) = T (x, y; t) for all
(x, y) ∈ Z2.

• the continuity requirement ‖ T (·, ·; t)− δ(·, ·) ‖1→ 0 when t ↓ 0

Definition 3.4. (Pre-scale-space representation)
Let f : Z2 → R be a discrete signal and T : Z2×R+ → R a pre-scale-space family of kernels.
Then the one-parameter family of signals L : Z2 ×R+ → R given by

L(x, y; t) =
∞∑

m=−∞

∞∑
n=−∞

T (m,n; t)f(x−m, y − n) (3.5)

is said to be the pre-scale-space representation of f generated by T .

Provided that the input signal f is sufficiently regular, these conditions on the family of
kernels T guarantee that the representation L is differentiable and satisfies a system of
linear differential equations.

Lemma 3.5. (A pre-scale-space representation is differentiable)
Let L : Z2 × R+ → R be the pre-scale-space representation of a signal f : Z2 → R in l1.
Then L satisfies the differential equation

∂L

∂t
= AL (3.6)

for some linear and shift-invariant operator A.

Proof. If f is sufficiently regular, e.g. if f ∈ l1, we can define a family of operators
{Tt, t > 0}, here from from l1 to l1, by Ttf = T (·, ·; t) ∗ f . Due to the conditions imposed
on the kernels it will satisfy the relation

lim
t→t0

‖ (Tt − Tt0)f ‖1= lim
t→t0

‖ (Tt−t0 − I)(Tt0f) ‖1= 0 (3.7)

4T (x,−y; t) = T (x, y; t) is implied from the two other properties.
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where I is the identity operator. Such a family is called a strongly continuous semigroup of
operators, see Hille and Philips [Hil57] p58-59. A semi-group is often characterized by its
infinitesimal generator A defined by,

Af = lim
h↓0

Thf − f

h
(3.8)

The set of elements f for which A exists is denoted D(A). This set is not empty and it
never reduces to the zero element. Actually, it is even dense in l1, se Hille and Philips [Hil57]
p307. If this operator exists we obtain

lim
h↓0

L(·, ·; t+ h)− L(·, ·; t)
h

= lim
h↓0

Tt+hf − Ttf

h
= (3.9)

lim
h↓0

Th(Ttf)− (Ttf)
h

= A(Ttf) = AL(·, ·; t)

According to a Theorem by Hille and Phillips [Hil57] p308 strong continuity implies that
∂
∂t(Ttf) = ATtf = TtAf for all f ∈ D(A). Hence, the scale-space family L must obey the
differential equation

∂L

∂t
= AL (3.10)

for some linear operator A. Since L is generated from f by a convolution operation it follows
that A must be shift-invariant. �

This property allows us to formulate the previously indicated scale-space property in terms
of derivatives of the scale-space representation with respect to the scale parameter. In every
local maximum point we require the grey-level value not to increase and in every local
minimum point the value not to decrease.

Definition 3.6. (Pre-scale-space property: Non-enhancement of local extrema)
A differentiable one-parameter family of signals L : Z2 × R+ → R is said to possess pre-
scale-space properties, or equivalently not to enhance local extrema, if for every value of the
scale parameter t0 ∈ R+ it holds that if (x0, y0) ∈ Z2 is a local extremum point for the
mapping (x, y) �→ L(x, y; t0) then the derivative of L with respect to t in this point satisfies

∂L

∂t
(x0, y0; t0) ≤ 0 if (x0, y0) is a local maximum point (3.11)

∂L

∂t
(x0, y0; t0) ≥ 0 if (x0, y0) is a local minimum point (3.12)

Now we can state that a pre-scale-space family of kernels is a scale-space family of kernels
if it satisfies this property for any input signal.

Definition 3.7. (Scale-space family of kernels)
A one-parameter family of pre-scale-space kernels T : Z2 × R+ → R is said to be a scale-
space family of kernels if for any signal f : Z2 → R ∈ l1 the pre-scale-space representation
of f generated by T possesses pre-scale-space properties, i.e. if for any signal local extrema
are never enhanced.
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Definition 3.8. (Scale-space representation)
A pre-scale-space representation L : Z2 × R+ → R of a signal f : Z2 → R generated by a
family of kernels T : Z2×R+ → R, which are scale-space kernels, is said to be a scale-space
representation of f .

We will now develop how these requirements strongly restrict the possible class of kernels
and scale-space representations.

3.3.2. Necessity

We start by showing that these conditions necessarily imply that the family L satisfies a
semi-discretized version of the diffusion equation.

Theorem 3.9. (Scale-space for 2-D discrete signals: Necessity)
A scale-space representation L : Z2×R+ → R of a signal f : Z2 → R satisfies the differential
equation

∂L

∂t
= α∇2

5L+ β∇2
×L (3.13)

with initial condition L(·, ·; 0) = f(·, ·) for some constants α ≥ 0 and β ≥ 0.

Proof. The proof consists of two parts. The first step has already been established in
Lemma 3.1, where we showed that the requirements on the kernels imply that the family L
obeys a linear differential equation. Because of the shift invariance AL can be written

(AL)(x, y; t) =
∞∑

m=−∞

∞∑
n=−∞

am,nL(x−m, y − n; t) (3.14)

In the second step we construct counterexamples from various simple test functions in order
to delimit the class of possible operators.

The extremum point conditions (3.11), (3.12) (combined with Definitions 3.6-3.7) mean
that A must be local, i.e. that am,n = 0 if |m| > 1 or |n| > 1. This is easily understood by
studying the following counterexample: First, assume that am̃,ñ > 0 where either |m̃| > 1
or |ñ| > 1 (or both), and define a function f1 : Z2 → R by

f1(x, y) =




ε > 0 if (x, y) = (0, 0)
0 if (x, y) ∈ N8(0, 0)
1 if (x, y) = (m̃, ñ)
0 otherwise

(3.15)

Obviously, (0, 0) is a local maximum point for f1. From (3.6) and (3.14) we get that
∂L
∂t (0, 0; 0) = εa0,0 + am̃,ñ. It is clear that this value can be positive provided that ε has
been chosen small enough. Hence, L cannot satisfy (3.11). In a similar manner one shows
that also am̃,ñ < 0 leads (let ε < 0) to a violation against the extremum point condition
(3.12). Consequently, am̃,ñ must be zero if either of |m̃| or |ñ| is larger than one. Thereby,
(3.6) will be reduced to

∂L

∂t
(x, y; t) =

∑
(m,n)∈N+

8 (0,0)

am,nL(x−m, y − n; t) (3.16)
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where N+
8 (0, 0) denotes the set of eight-neighbours to the origin including the origin. Due

to the symmetry conditions, opposite coefficients must be equal, i.e. a−m,n = am,n and
an,m = am,n. Thus, (3.16) can be written

∂L

∂t
=


 a b a

b c b
a b a


L (3.17)

for some a, b and c. Then, consider the function

f2(x, y) =

{
1 if (x, y) ∈ N+

8 (0, 0)
0 otherwise

(3.18)

With the given (weak) definitions of local extremum points it is clear that (0, 0) is both a
local maximum point and a local minimum point. Hence ∂L

∂t (0, 0; 0) must be zero and we
obtain the relation 4a+4b+c = 0. This means that (3.17) can be split into two components.

∂L

∂t
=


 a b a

b c b
a b a


L = α


 1
1 −4 1

1


L+ β


 1/2 1/2

−2
1/2 1/2


L (3.19)

provided that α = b and β = 2a. The condition 4a+4b+ c = 0 is trivially satisfied. Finally,
by considering the test function

f3(x, y) =




ε > 0 if (x, y) = (0, 0)
1 if (x, y) = (m̃, ñ)
0 otherwise

(3.20)

for some (m̃, ñ) in N8(0, 0) one easily realizes that am,n must be non-negative if (m,n) ∈
N8(0, 0). This shows that α ≥ 0 and β ≥ 0 in the differential equation. The initial condition
follows directly from the definition of pre-scale-space kernel. �

3.3.3. Sufficiency

The reverse statement of Theorem 3.2 is also true. This sufficiency is much easier to estab-
lish:

Theorem 3.10. (Scale-space for 2-D discrete signals: Sufficiency)
Let f : Z2 → R be a discrete signal in l1 and let L : Z2 × R+ → R be the representation
generated by the solution to differential equation

∂L

∂t
= α∇2

5L+ β∇2
×L (3.21)

with initial condition L(·, ·; 0) = f(·, ·) for some fixed α ≥ 0. Then L is a scale-space
representation of f .
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Proof. It follows almost trivially that L possesses pre-scale-space properties, i.e. that L
does not enhance local extrema, if we rewrite the differential equation on the form

∂L

∂t
(x, y; t) =

α[L(x, y − 1; t)− L(x, y; t)]+
α[L(x, y + 1; t)− L(x, y; t)]+
α[L(x− 1, y; t)− L(x, y; t)]+
α[L(x+ 1, y; t)− L(x, y; t)]+

1
2β[L(x− 1, y − 1; t)− L(x, y; t)]+
1
2β[L(x+ 1, y − 1; t)− L(x, y; t)]+
1
2β[L(x− 1, y + 1; t)− L(x, y; t)]+
1
2β[L(x+ 1, y + 1; t)− L(x, y; t)]

(3.22)

If for some scale level t a point (x, y) is a local maximum point then all differences (within
brackets) are non-positive, which means that ∂L

∂t (x, y; t) ≤ 0 provided that α ≥ 0 and β ≥ 0.
Similarly, if a point is a local minimum point then the differences are all non-negative and
∂L
∂t (x, y; t) ≥ 0.

What remains to verify is that L actually satisfies the requirements for being a pre-scale-
space representation. Since L is generated by a linear differential equation it follows that L
can be written as the convolution of f with some kernel T , i.e. L(·, ·; t) = T (·, ·; t)∗ f . The
requirements on pre-scale-space kernels can be shown to hold by letting the input signal f be
the discrete delta function. The semi-group property of the kernels follows from the fact that
the coefficients α and β are constant and the solution at a time s+ t hence can be computed
from the solution at an earlier time s by letting the time increase by t. The symmetry
properties of the kernel are obvious from the symmetry of the differential equation. The
continuity at the origin follows directly from the differentiability. �

These results show that a one-parameter family of signals is a scale-space representation
if and only if it satisfies the differential equation (3.13).

3.3.4. Equivalent One-Dimensional Formulation

From the proofs it is apparent that if similar arguments are applied in the one-dimensional
case, we are uniquely lead to the one-dimensional scale-space concept developed earlier in
Theorem 2.20 and Theorem 2.26. To summarize,

Theorem 3.11. (Scale-space for 1-D discrete signals: Necessity)
A scale-space representation L : Z ×R+ → R of a signal f : Z → R satisfies the differential
equation

∂L

∂t
= α∇2

3L (3.23)

with initial condition L(·; 0) = f(·) for some constant α ≥ 0.

Theorem 3.12. (Scale-space for 1-D discrete signals: Sufficiency)
Let f : Z → R be a discrete signal in l1 and let L : Z × R+ → R be the representation
generated by the solution to differential equation

∂L

∂t
= α∇2

3L (3.24)

with initial condition L(·; 0) = f(·) for some fixed α ≥ 0 and β ≥ 0. Then L is a scale-space
representation of f .
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For completeness the corresponding relevant definitions are given in Appendix A.2.2. These
results show that, combined with the requirements about a continuous scale parameter and
semi-group structure, the condition about suppression of local extrema is in one dimension
equivalent to the condition about decreasing number of local extrema.

Consequently, also this formulation in terms of local extrema has lead to a discretized
version of the diffusion equation. But here in the two-dimensional case there is apparently
another degree of freedom left in the class of possible smoothing operators, since a linear
combination of the two common discrete Laplacian operators ∇2

5 and ∇2× is admitted on the
right hand side of the the differential equation. The effects of combining those in different
ways will be illuminated in the next section.

3.4. Parameter Determination

If (3.13) is rewritten on the form

∂L

∂t
= C

(
(1− γ)∇2

5L+ γ∇2
×L

)
= C∇2

γL (3.25)

one realizes that the interpretation of the parameter C is just a trivial rescaling of the
scale parameter. Thus, without loss of generality5 we may set C to 1

2 in order to get the
same scaling constant as in the one-dimensional case (2.76). What is left to investigate
is how the remaining degree of freedom in the parameter γ ∈ [0, 1] affects the scale-space
representation.

If γ = 1 then a undesirable situation appears. Since the cross-operator only links diagonal
points, the system of ordinary differential equations given by (3.25) can then be split into
two uncoupled systems, one operating on the points with even coordinate sum x + y and
the other operating on the points with odd coordinate sum. It is clear that this is really an
unwanted behaviour, since then even after a substantial amount of “blurring”, for certain
types of input signals the “smoothed” grey-level landscape may still have a rather saw-
toothed shape.

3.4.1. Derivation of the Fourier Transform

Further arguments showing that γ must not be too large can be obtained if one studies the
Fourier transform of the corresponding scale-space family of kernels. Using a methodology
similar to the derivation of the generating function of the solution to the one-dimensional
semi-discretized diffusion equation in Section 2.6.2, we can derive the generating function
of the kernel describing the transformation from the original image to the scale-space rep-
resentation at a certain scale, which in turn gives us the Fourier transform.

Proposition 3.13. (Fourier transform of the discrete scale-space)
Let L : Z2 × R+ → R be the scale-space representation of a discrete signal f : Z2 → R
generated by the differential equation (3.25) with initial condition L(·, ·; 0) = f(·, ·). Assume
that f ∈ l1. Then the generating function of the kernel describing the transformation from
the original signal to the representation at a certain scale t is given by

ϕT (z,w) =
∞∑

m=−∞

∞∑
n=−∞

T (m,n; t)zmwn = e−(2−γ)+
(1−γ)

2
(z−1+z+w−1+w)+ γ

4
(z−1w−1+z−1w+zw−1+zw)

(3.26)
5The case when C = 0 is obviously not interesting since then all scale-space representations would be

equal.
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Its Fourier transform is

ψT (u, v) =
∞∑

m=−∞

∞∑
n=−∞

T (m,n; t)e−i(mu+nv) = e−(2−γ)t + (1−γ)(cos u+cos v)t + (γ cos u cos u)t

(3.27)

Proof. If (3.25) is discretized further is scale using Euler’s explicit method with scale step
∆t, we get an iteration formula of the form

Lk+1
i,j = (1− (2− γ)∆t) Lk

i,j +

(1− γ)∆t

2
(Lk

i−1,j + Lk
i+1,j + Lk

i,j−1 + Lk
i,j+1) +

γ∆t

4
(Lk

i−1,j−1 + Lk
i−1,j+1 + Lk

i+1,j−1 + Lk
i+1,j+1) (3.28)

where the subscripts i and j denote the spatial coordinates x and y respectively and the
superscript k denotes the iteration index. The generating function describing one iteration
with this transformation is

ϕstep(z,w) = (1− (2− γ)∆t) +
(1− γ)∆t

2
(z−1 + z + w−1 + w) +

γ∆t

4
(z−1w−1 + z−1w + zw−1 + zw) (3.29)

Assume that we want to compute the scale-space representation at a scale level t using n
iterations with a scale step ∆t = t

n . Then the generating function describing the composed
transformation can be written

ϕcomposed,n(z,w) = (ϕstep(z,w))n = (3.30)(
1 + t

n(−(2 − γ) + (1−γ)
2 (z−1 + z + w−1 + w) + γ

4 (z
−1w−1 + z−1w + zw−1 + zw))

)n

after substitution of ∆t for t
n . Since limn→∞(1 + αn

n )
n = eα if limn→∞ αn = α it follows

that

lim
n→∞ϕcomposed,n(z) = e−(2−γ)+

(1−γ)
2

(z−1+z+w−1+w)+ γ
4
(z−1w−1+z−1w+zw−1+zw) (3.31)

provided that the discretization (3.28) converges to the actual solution of (3.25). From this
expression the Fourier transform is directly obtained by replacing z with e−iu and w with
e−iv. �

3.4.2. Unimodality in the Fourier Domain

It is easy to verify that the Fourier transform is unimodal if and only if γ ≤ 1
2 .

Proposition 3.14. (Unimodality of the Fourier transform)
The Fourier transform (3.27) of the kernel describing the transformation from the original
signal to the smoothed representation at a coarser level of scale is unimodal if and only if
γ ≤ 1

2 .
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Proof. We would like the Fourier transform to decrease with |u| and |v| for all u and v in
[−π, π]. Differentiation of (3.27) gives

∂ψ

∂u
= −ψ(u, v) sin u (1− γ(1 + cos v)) t (3.32)

∂ψ

∂v
= −ψ(u, v) sin v (1− γ(1 + cosu)) t (3.33)

The partial derivatives ∂ψ
∂u and ∂ψ

∂v have opposite signs to the variables u and v respectively
if and only if the factors (1− γ(1 + cos v)) and (1− γ(1 + cos u)) are non-negative for all u
and v, i.e. if and only if γ ≤ 1

2 . If this condition is satisfied then any directional derivative
in a direction away from the origin will be negative. �

3.4.3. Separability

The transformation kernel is separable if and only if its Fourier transform is separable, i.e.
if and only if ψT (u, v) can be written on the form UT (u)VT (v) for some functions UT and
VT . From (3.27) we realize that this separation is possible if and only if γ = 0. Hence,

Proposition 3.15. (Separability of the 2-D discrete scale-space)
The convolution kernel associated with the scale-space representation defined by L(x, y; t) =
f(x, y) and

∂L

∂t
=
1
2

(
(1− γ)∇2

5L+ γ∇2
×L

)
(3.34)

is separable if and only if γ = 0. Then L is given by

L(x, y; t) =
∞∑

m=−∞
T (m; t)

∞∑
n=−∞

T (n; t)f(x−m, y − n) (t > 0) (3.35)

where T (n; t) = e−tIn(t) and In are the modified Bessel functions of integer order.

Proof. The Fourier transform ψT (u, v) can be written on the form UT (u)VT (v) for some
functions UT and VT if and only if the term with cos u cos v can be eliminated from the
argument of the exponential function, i.e. if and only if γ is zero. In that case the Fourier
transform reduces to

ψT (u, v) = e(−2+cos u+cos v)t = e(−1+cos u)te(−1+cos v)t (3.36)

which corresponds to separated smoothing with the one-dimensional discrete analogue of the
Gaussian kernel, first along one coordinate direction and then along the other one. It can also
be verified directly that (3.35) satisfies (3.34) by differentiating the kernel T (m; t)T (n; t)
with respect to t and then carrying out similar calculations as in the proof of Theorem 2.26,
see Appendix A.2.1. �

In other words, in the separable case the resulting two-dimensional discrete scale-space
corresponds to repeated application of the one-dimensional scale-space concept along each
coordinate direction.
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3.4.4. Discrete Iteration

If as indicated in the proof of Proposition 3.6 the differential equation (3.25) is further
discretized in scale using Euler’s explicit method with scale step ∆t, we get an iteration
kernel with the coefficients.


γ∆t
4

(1−γ)∆t
2

γ∆t
4

(1−γ)∆t
2 1− (2− γ)∆t (1−γ)∆t

2
γ∆t
4

(1−γ)∆t
2

γ∆t
4


 (3.37)

Clearly, this kernel is unimodal if and only if γ ≤ 2
3 . One can show that it is separable if

and only if γ = ∆t, see below. In that case the corresponding one-dimensional kernel is
a discrete scale-space kernel in the sense given in Definition 2.1 if and only if ∆t ≤ 1

2 , see
(2.83). This gives a further indication that γ should not exceed 1

2 .

Observation 3.16. (Separability of the iteration kernel)
The iteration kernel (3.37), corresponding to discrete forward iteration with Euler’s explicit
method, is separable if and only of γ = ∆t. In that case, the corresponding one-dimensional
kernel is a discrete scale-space kernel if and only if 0 ≤ γ ≤ 1/2.

Proof. Since the kernel is symmetric and the coefficients sum to one, the kernel is separable
if and only if it can be written as a kernel (a, 1 − 2a, a) convolved with itself, i.e. if and
only if there exists an a ≥ 0 such that

a2 =
γ∆t

4
(3.38)

a(1− a) =
(1− γ)∆t

2
(3.39)

(1− a)2 = 1− (2− γ)∆t (3.40)

The first equation has one non-negative root a =
√

γ∆t
2 . Insertion into the second equation

gives two conditions on ∆t, either ∆t = 0 or ∆t = γ. One verifies that these roots satisfy
the third equation. �

It is worth mentioning, that if the extremum definitions, Definition 3.1 and Definition 3.2,
would have been based on four-neighbours instead of eight-neighbours then γ = 0 would
have appeared as a necessary condition in Theorem 3.2.

3.4.5. Spatial Isotropy

Another aspect which might affect the selection of γ is spatial isotropy. It is not clear that
rotational invariance is a primary quality to be aimed at in the discrete case, since we are
anyway locked to a fixed square grid. It is also far from obvious what should be meant by
spatial isotropy in a discrete situation. Possibly, it is better to talk about the lack of spatial
isotropy, spatial anisotropy or rotational asymmetry. However, since the Fourier transform
is a continuous function of u and v, one can regard its variation as a function of the polar
angle, given a fixed value of the radius, as one measure of this property6. If one expresses
ψT (u, v) in polar coordinates u = ω cosφ, v = ω sinφ and examines the resulting expression,

ψT (ω cosφ, ω sinφ) = eh(ω cos φ,ω sin φ)t (3.41)
6This measure describes how much the amplitude of a sampled planar sine wave eiω·x is suppressed as a

function of the propagation direction ω.
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where

h(ω cosφ, ω sinφ) = −(2− γ) +
(1− γ)(cos(ω cosφ) + cos(ω sinφ)) +
γ cos(ω cosφ) cos(ω sinφ) (3.42)

one realizes that the value of γ, which gives the smallest angular variation for a fixed value
of ω, depends on ω. Hence, with this formulation, the “rotational invariance” is scale
dependent.

If γ = 1
3 we get the nine-point operator ∇2

9, see Figure 3.4 and e.g Dahlquist [Dah74]. As
we will see later it is not difficult to show that for large spatial scales, this value of γ gives
the “most” isotropic second order approximation of the continuous Laplacian operator at
the cost of a non-separable convolution kernel. But if we use a non-zero value of γ, it should
be noted that the discrete scale-space representation can always be computed efficiently in
the Fourier domain, using (3.27). 

 1/6 2/3 1/6
2/3 −10/3 2/3
1/6 2/3 1/6




Figure 3.4. Computational molecule for the nine-point operator h2∇2
9 corresponding to γ = 1

3 .
At coarse scales this value of γ gives the spatially least anisotropic approximation of the continuous
diffusion equation.

Proposition 3.17. (Rotational invariance in the Fourier domain)
The value of γ that gives the least rotational invariance for large scale phenomena in the
solution to the differential equation (3.25) is γ = 1

3 .

Proof. Express ψT (u, v) on the form ψT (u, v) = eh(u,v)t and introduce polar coordinates
(ω, φ) by {

u = ω cosφ
v = ω sinφ

(3.43)

Then the Taylor expansion of h for small values of ω is, see Appendix A.2.3,

h(ω cosφ, ω sinφ) = −1
2
ω2 +

1
24
(1 + (6γ − 2) cos2 φ sin2 φ)ω4 +O(ω6) (3.44)

where the O(ω6) term depends on both φ and γ. Observe that if γ = 1
3 then the φ-

dependence decreases with ω as ω6 instead of as ω4. �

This means that γ = 1
3 asymptotically, i.e. with increasing spatial scale, gives the most

isotropic smoothing effect on coarse scale events. The reason why we desire spatial isotropy
at coarse scales rather than at fine scales is because the grid effects become smaller for
coarse scale phenomena, which in turn makes it more meaningful to talk about rotational
invariance. In this context it should be noted that, if we use a non-zero value of γ, the discrete
scale-space representation can always be calculated efficiently in the Fourier domain using
(3.27).
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3.4.6. Remaining Degree of Freedom

We leave the question about definite selection of γ open. However, from a computational
point of view it seems very plausible that γ = 0 should not be a too bad choice. As we
will see in the next chapter, the closed-form expressions for some derived quantities will also
become simple in this case. A possible disadvantage with that approach is that it emphasizes
the x- and y-directions as being special directions.

3.5. 2D Summary and Discussion

The proper way to apply the scale-space theory to two-dimensional discrete images is ap-
parently by discretization of the diffusion equation. Starting from a requirement that local
extrema must not be enhanced when the continuous scale parameter is increased we have
shown that a necessary and sufficient condition for a family of derived representations to be
a scale-space family is that it satisfies the differential equation

∂L

∂t
=

C

2

(
(1− γ)∇2

5L+ γ∇2
×L

)
(3.45)

for some real constants C and γ where γ ∈ [0, 1]. Our recommendation is that γ should
not exceed 1

2 . γ = 0 gives a separable convolution kernel, while γ = 1
3 leads to a spatially

more isotropic smoothing effect on coarse scale objects. In the separable case the scale-
space representation can be calculated by separated convolution with the presented one-
dimensional discrete analogue of the Gaussian kernel, T (n; t).

3.6. Possible Extensions

The treatment so far has been restricted to one- and two-dimensional signals defined on
infinite and uniformly sampled square grids using uniform smoothing of all grid points,
because this is the natural special case we have been interested in when dealing with image
data generated from standard camera devices. However, there is nothing in principle that
prevents those restrictions from being removed.

3.6.1. Anisotropic Smoothing

In a recent paper, Perona and Malik [Per90] propose the use of anisotropic smoothing.
The motivation behind their approach is to try to avoid or to reduce the shape distortions
introduced by scale-space smoothing across object boundaries, particularly with application
to edges. The way they suggest to prevent this from happening is by modifying the diffusion
coefficients such as to favour intraregion smoothing to interregion smoothing.

Using the maximum principle they show that the resulting anisotropic scale-space repre-
sentation satisfies a similar suppression property for local extrema as was the basis for Koen-
derink and van Doorns [Koe84] continuous scale-space formulation and this two-dimensional
discrete treatment. From the proofs of Theorem 3.2 and Theorem 3.3 it is obvious that the
ideas behind the discrete scale-space concept can be easily extended to such anisotropic dif-
fusion if we let the coefficients of the linear operator A vary with both the scale parameter,
the grey-level values and the spatial coordinates. However, when introducing an anisotropic
diffusion equation we have to sacrifice the convolution form of smoothing as well the semi-
group property. Therefore, when proving the necessity of the representation a certain form
of the smoothing formula may have to be assumed, e.g. of the form (3.6) where A depends
on the scale parameter and is no longer shift invariant.
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In this work we have throughout made use of uniform smoothing all over the image at
the possible cost of such smoothing across “object boundaries”. The motivation behind this
choice is that we are mainly interested in using the scale-space representation for actually
detecting image structures. Therefore, we would like to introduce as few commitments as
possible into the process. The approach we instead have adopted is to first detect candidate
regions of interest. Then, once such a candidate has been detected as a region in an image, its
localization can be improved in various ways. For an example, compare with the integration
of blob detection and edge detection in Section 9.1.

Modifying the diffusion coefficient requires some kind of a priori information concerning
which structures in the image should be smoothed and which structures should not. In
Peronas and Maliks case there is a tuning function, giving the diffusion coefficient as function
of the gradient magnitude, that needs to be determined.

There is also another aspect of the approach we find somewhat dubious. When the scale
parameter t tends to infinity the solution to the anisotropic diffusion equation will tend
to a function that is not constant, but contains various sharp edges. Hence, the choice of
the tuning function in the method somehow implies an implicit assumption about a “final
segmentation” of the image. It is not clear that such a concept exists or can be defined
rigorously.

3.6.2. Higher Dimensions

In Section 3.3.4 we showed that the ideas behind the two-dimensional scale-space concept
could be directly applied to one-dimensional signals. Similarly, they can be extended to
arbitrary n-dimensional discrete signals Zn → R, although the amount of data generated in
a practical application may increase dramatically with the number of dimensions. Analogies
to the definitions given in Section 3.3.1 can be obtained almost directly just by replacement
of Z2 by Zn. All we have to take care of is that the symmetry condition in Definition 3.3 is
stated properly. One can require that

T (−x1, x2, ..., xn; t) = T (x1, x2, ..., xn; t) (3.46)

T (Pn
k (x1, x2, ..., xn); t) = T (x1, x2, ..., xn; t) (3.47)

hold for all (x1, ..., xn) ∈ Zn, all t ∈ R+ and for all possible permutations Pn
k of n elements.

The proof of Lemma 3.1 is independent of the number of dimensions. In the analogies
of Theorem 3.2 and Theorem 3.3 we will have to replace the operator α∇2

5 + β∇2× with a
corresponding n-dimensional discrete operator ∇2

nD approximating the continuous Lapla-
cian. Only the coefficients in ∇2

nD corresponding to the nearest neighbours of a point can
be non-zero because of the locality requirement induced by the non-enhancement of local
extrema. Moreover, by studying a piecewise constant signal one verifies that the sum of
the coefficients must be zero. When the symmetry constraints have been applied to this
operator there will be n remaining parameters left to be determined. One of those can be
removed since it will only affect the scaling of the scale parameter. In the separable case
the corresponding scale-space representation can be computed by separated convolution
with the one-dimensional discrete analogue of the Gaussian kernel along each coordinate
direction.

3.6.3. Finite Data

A practical problem that always arises when implementing linear filtering concerns what to
do with those pixels near the image boundary for which a part of the filter mask stretches
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outside the current image. In this treatment we have throughout assumed the signals to be
defined for all the points in an infinite square grid and not gone into the complications that
occur due to the boundary effects if the signal function is defined only for a finite subset of
the integers.

The most conservative outlook is, of course, to regard the output as undefined as soon
as a computation requires some image data outside the available domain. In the case with
scale-space smoothing this approach would, however, lead to a rapidly decreasing image
size, something hardly desirable, since the peripheral coefficients decrease towards zero very
rapidly and the (untruncated) convolution masks actually have infinite support. A variety
of ad hoc methods have been used/proposed to solve for this problem; zero value extension,
periodic wrap-around, mirroring at the boundaries, subtraction of the steady-state compo-
nent, solving the diffusion equation with adiabatic boundary conditions etc. However, we
believe that neither of these techniques can give a desired results in all situations. The re-
sult depends too much on how the image behaves near the boundary. For some very simple
cases it might be enough do an ad hoc extension. But this requires some kind of a priori
information about what can be expected to be in the scene.

There is no getting away from the fact that all finite images have boundaries and that
problems arise if one tries to analyze objects near them. By necessity, the peripherical image
values of a smoothed finite image will be less reliable than the central ones. Instead we think
that if one really needs accurate values near the boundary of an image then one should
instead try to acquire additional image data such that the convolution operation becomes
well-defined. This can be easily achieved within the active vision paradigm simply by moving
the camera such that image values become available in a sufficiently large neighbourhood
of the object of interest. We think that the task of analysing an object manifesting itself at
a certain scale requires input data in a region around the object. The width of this frame
depends both on the current level of scale and the prescribed accuracy of the analysis.

If one because of computational efficiency and simplicity uses the extension approach
there is is one aspect we would like to emphasize. If one wants the semi-group property to
hold exactly between arbitrary scale levels (except for numerical rounding and truncation
errors) it is necessary that the representations at all scales are generated directly from
the original extended signal using the approximation (4.20). If cascade smoothing is used
then the truncation of the intermediate representations at the boundaries implies that the
semi-group property will be violated unless the size of the intermediate representations is
increased.

Of course, a genuinely finite approach is also possible. In this presentation we have
chosen not to develop the subject, since the associated problems are somehow artificial and
difficult to handle in a consistent manner, although in the one-dimensional case the concepts
of sign-regularity and semi-groups of totally positive matrices in principle provide possible
tools for handling this issue.

One way of avoiding both the infiniteness and the boundary problems could be by
using a spherical camera. Then, the ordinary planar camera geometry would appear as an
approximate description for foveal vision, i.e. small solid angles in the central field of vision.

3.6.4. Other Types of Grids

Neither is the assumption of a square grid any necessary restriction. The same type of treat-
ment can be carried out on e.g. a hexagonal grid with the semi-group property preserved,
and also in principle on a grid corresponding to non-uniform spatial sampling provided that
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the diffusion coefficients are modified accordingly. In the latter case some a priori form
of the smoothing formula may have to be assumed when proving the necessity of the rep-
resentation. An interesting case to consider might actually be the non-uniformly sampled
spherical camera.

3.6.5. Further Work

Let us finally point out that there is one main issue that we have not considered in this
treatment, namely scale dependent spatial sampling. This issue is certainly of importance
in order to improve the computational efficiency both when computing the representation
and for algorithms working on the data. The scale-space concept outlined here uses the
same spatial resolution at all levels of scale. The pyramid representations on the other hand
imply a fixed relation between scale and resolution as well as a fixed scale step that one
cannot go below. In fact, the scale is given directly by the resolution.

Since the smoothed images at coarser scales will get more and more redundant is seems
plausible that some kind of subsampling could be done at the coarser scales without very
much loss of information. It would be interesting to carry out an analysis about how
much information would be lost by such an operation and regarding to which extent the a
subsampling operator could be introduced in this representation, anyway maintaining the
continuous scale parameter and without introducing any severe discontinuities along the
scale direction that could lead be a potential source to numerical difficulties for algorithms
working on the output from the representation.
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4

Implementational Implications and Conclusions

In this chapter we will first describe some computational and implementational implications
of the presented discrete scale-space theory and then conclude this overall treatment by
summarizing the main results.

4.1. Discrete Definitions of “Derivatives”

The scale-space representation obtained from the discrete theory has some implementational
advantages compared to the commonly adapted approach, where the scale-space implemen-
tation is based on different versions of the sampled Gaussian kernel. It allows for discrete
definitions of the derivatives of the Gaussian arising in the N-jet representation suggested
by Koenderink and van Doorn [Koe87].

4.1.1. The Laplacian of the Gaussian

Consider for instance the computation of the Laplacian of the Gaussian ∇2G of an image
f . It is well-known that ∇2G is not a separable kernel — a clear disadvantage in terms of
computational efficiency, unless the convolutions are carried out in the frequency domain.
It is also known that the straightforward implementation consisting of smoothing with the
sampled Gaussian kernel followed by application of a discrete Laplacian gives unsatisfactory
results, since the values obtained in this way deviate too much from the sampled values
of ∇2G. A common approach to circumvent this problem has been by the calculation of
difference of Gaussians (DOG) instead, see e.g. Marr and Hildreth [Mar80]. However, this
method will only give approximate results, and the selection of the scale-step ∆t leads to
a numerical trade-off between cancellation of digits and accuracy in the representation. It
also requires the computation of two smoothed representations instead of one.

4.1.1.1. Approximations based on the Continuous Theory

To summarize, we have that there are several possible ways to get a discrete approximation
of the Laplacian of the Gaussian of a signal; discrete convolution with the sampled Gaussian
kernel

( ˜∇2L)(x, y; t) =
∞∑

m=−∞

∞∑
n=−∞

(∇2G)(m,n; t)f(x−m, y − n) (x, y) ∈ Z2 (4.1)

corresponding to the application of the rectangle rule of integration to the convolution
integral

(∇2L)(x, y; t) =
∫ ∞

ξ=−∞

∫ ∞
η=−∞

(∇2G)(ξ, η; t)f(x− ξ, y − η)dξdη (x, y) ∈ R2 (4.2)
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discrete convolution with the sampled Gaussian kernel followed by the discrete Laplacian

( ˜∇2L)(x, y; t) = ∇2
γ

( ∞∑
m=−∞

∞∑
m=−∞

G(m,n; t)f(x−m, y − n)

)
(x, y) ∈ Z2 (4.3)

corresponding to a two-step discrete approximation of at first the convolution integral

L(x, y; t) =
∫ ∞

ξ=−∞

∫ ∞
η=−∞

G(ξ, η; t)f(x− ξ, y − η)dξdη (x, y) ∈ R2 (4.4)

using the rectangle rule of integration and then the Laplacian operator applied to that result

(∇2L)(x, y; t) = ∇2
(∫ ∞

ξ=−∞

∫ ∞
η=−∞

G(ξ, η; t)f(x− ξ, y − η)dξdη
)

(x, y) ∈ R2 (4.5)

as well as difference of sampled Gaussians

( ˜∇2L)(x, y; t) =
∞∑

m=−∞

∞∑
n=−∞

2(G(m,n; t+∆t1)−G(m,n; t−∆t2))
∆t1 +∆t2

f(x−m, y−n) (x, y) ∈ Z2

(4.6)
corresponding to discretization of the derivative with respect to the scale parameter in the
diffusion equation

(∇2L)(x, y; t) = 2
∂L

∂t
(x, y; t) ≈ L(x, y; t+∆t1)− L(x, y; t−∆t2)

∆t1 +∆t2
(x, y) ∈ R2 (4.7)

where L in turn is given by the convolution integral (4.4). Of course, the sampled Gaussian
kernel may in all these cases be replaced by the integrated Gaussian kernel in order to yield
“more true approximations” at fine scales, compare also with Section 2.6.3.

In the continuous case the various expressions (4.2), (4.5) and (4.7) will all be equivalent
when ∆t1 and ∆t2 tend to zero provided that the signal f is sufficiently regular. However,
the different discrete approximations (4.1), (4.3) and (4.6) will not give the same but different
output results, not even in the limit case. The main reason why these expressions are no
longer equivalent is because the operators involved, which commute in the continuous case,
do not commute after discretization.

4.1.1.2. Discrete Definition of the Laplacian of the Gaussian

The discrete scale-space concept outlined in the previous chapters allows for a discrete
definition of the Laplacian of the Gaussian of an image, for which the discrete analogies of
(4.2), (4.5) and (4.7) are all maintained equal. From the diffusion equation (3.25) we have
that

∂L

∂t
=
1
2
((1− γ)∇2

5L+ γ∇2
×L) =

1
2
∇2

γ(T ∗ f) =
1
2
T ∗ (∇2

γf) =
1
2
(∇2

γT ) ∗ f (4.8)

In this discrete case ∇2
γ commutes with the smoothing operator and we can compute the

discrete analogue of the Laplacian of the Gaussian of an image in several ways. We take
the output of those equivalent operations as the discrete definition of this concept. When
implementing this operation we have several possibilities to compute the output:

• in two sweeps — a smoothing step with the discrete analogue of the Gaussian kernel
followed by the application of the discrete Laplacian operator ∇2

γ .
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• a discrete Laplacian step applied to the original signal followed by smoothing.

• by computation of the Laplacian of the smoothing kernel as a first step and then by
convolving the signal with that kernel.

• as the limit case of differences of discrete Gaussians, compare with (4.7).

Note again that all methods give exactly the same result, since the (discrete) smoothing
operator commutes with the (discrete) Laplacian, provided that the same value of γ is used
in all discrete Laplacian operators. With the first method the amount of computational
work required to compute the discrete analogue of the Laplacian of the Gaussian of an
image is, if γ = 0, just one separable two-dimensional smoothing step followed by an efficient
application of the discrete Laplacian. The second method can be slightly advantageuos for
algorithms where only the Laplacian of the Gaussian is required, since then the Laplacian
step needs to be carried out just once. The third method destroys the separability1 and
should probably be avoided. The first method is really the one to prefer in situations where
both the smoothed image and its spatial derivatives are required.

4.1.2. The Gradient of the Gaussian

The discrete scale-space does also provide a convenient formulation of gradient calculations.
For simplicity, consider the separable case when γ = 0. Then a one-dimensional analysis
is sufficient. Let δx denote the well-known central difference operator in the x-direction
defined by

(δxf)(x, y) =
1
2
(f(x+ 1, y)− f(x− 1, y)) (4.9)

Similarly to the previous case, δxL can be computed either by application of δx on the
smoothed image, the original image or on the smoothing kernel. The effect of this gradient
calculation is given by the effect δx has on the one-dimensional kernel applied in the x-
direction. From a recurrence relation for the modified Bessel functions (4.22) we get an
explicit analytical expression for (δxT )(x; t), namely

(δxT )(x; t) =
1
2
e−t(Ix+1(t)− Ix−1(t)) =

1
2
e−t(−2x

t
Ix(t)) = −x

t
T (x; t) (4.10)

Note the similarity with the derivative of the continuous Gaussian kernel

(
∂

∂x
G)(x; t) = −x

t
G(x; t) (4.11)

4.1.2.1. Approximations of the Continuous Equations

If one instead would have used the approach based on the sampled Gaussian kernel it is
clear that convolution with the sampled x-gradient of the Gaussian

( ˜δxL)(x, y; t) =
∞∑

m=−∞

∞∑
n=−∞

∂G

∂x
(m,n; t)f(x−m, y − n) (x, y) ∈ Z2 (4.12)

corresponding to the rectangle rule of integration approximation applied to the integral

(
∂

∂x
L)(x, y; t) =

∫ ∞
ξ=−∞

∫ ∞
η=−∞

(
∂G

∂x
)(ξ, η; t)f(x− ξ, y − η)dξdη (x, y) ∈ R2 (4.13)

1As mentioned earlier, the convolution kernel is separable if and only if γ = 0
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would not have given the same result as application of δx on the “scale-space representation”
generated by smoothing with the sampled Gaussian kernel

( ˜δxL)(x, y; t) = δx

( ∞∑
m=−∞

∞∑
m=−∞

G(m,n; t)f(x−m, y − n)

)
(x, y) ∈ Z2 (4.14)

corresponding to a two-step discrete approximation of at first the convolution integral (4.4)
using the rectangle rule of integration and then the x-gradient operator applied to that
result

(
∂

∂x
L)(x, y; t) =

∂

∂x

(∫ ∞
ξ=−∞

∫ ∞
η=−∞

G(ξ, η; t)f(x− ξ, y − η)dξdη
)

(x, y) ∈ R2 (4.15)

Gradient approximations of type suggested in (4.9), although based on binomial kernels in
pyramids, have been used e.g. by Crowley [Cro87].

Second order derivatives can be obtained either by application of δx twice or by using
the well-known discrete approximation to the second derivative ∇2

3. The first approach is
advantageous in the sense that the discrete analogue to a derivative of any order can be
obtained by repeated application of the δx operator. The second approach gives a higher
accuracy and also preserves the coupling between the second order spatial derivative with the
first order derivative with respect to the scale parameter as required in the diffusion equation.
Higher order “discrete derivatives” can be formed by combinations of these operators.

4.1.3. Normalization

Another disadvantage with the sampled Gaussian kernel appears for small values of t. Then,
as the continuous Gaussian kernel tends towards the continuous delta function when t tends
to zero, the central coefficient may get very dominant. Even though the integral of the
continuous kernel is normalized to one, the central peak can drive the sum of the filter
coefficients to a value substantially greater than one2. This negative effect at fine scales
is further amplified when derivatives of the Gaussian and/or when difference operators are
applied to the smoothed grey-level images. Such problems do not occur with the discrete
analogue of the Gaussian kernel, since this kernel tends to the discrete delta function as t
tends to zero and the filter coefficients always sum up to one.

∞∑
n=−∞

T (n; t) = 1 (4.16)

Other normalization conditions that are trivially satisfied are

∞∑
n=0

(δxT )(n; t) = −T (0; t) (4.17)

∞∑
n=−∞

(∇2
3T )(n; t) = 0 (4.18)

2It has been suggested that this effect should be compensated for by renormalization of the filter coefficient
sequence. But this operation does not solve the major problem since the mutual relation between the
coefficients remains unchanged anyway. It only leads to a rescaling of the output image. The problem with
the sampled Gaussian kernel for small values of t is rather that it appears as having a smaller t-value than
it should.
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4.1.4. Summary

The effects mentioned in this section are all due to the difference between continuous theory
and discrete implementation. As indicated above, the main reason why they arise is because
the involved operators, which commute in the continuous case, do not commute when the
discretization operator is involved, compare also with violated semi-group property discussed
in Section 2.6.1. With the discrete scale-space theory presented in this treatment we feel
that we have accomplished a structured way to eliminate this kind of problems.

4.2. Kernel Graphs

In order to illustrate the difference between the discrete analogue of the Gaussian kernel and
the continuous Gaussian kernel we have drawn their graphs at a few levels of scale together
with corresponding results for the first and second order derivatives and differences, see
Figures 4.1-4.5. For comparison the sampled Gaussian kernel and the integrated Gaussian
kernel have been shown next to these graphs. As we see, the difference between the two
kernels is largest at fine levels of scale and becomes smaller as the kernels approach each
other at coarser levels of scale.

4.3. Implementing Scale-Space Smoothing

According to the definition of the scale-space for discrete signals, the representation of a
one-dimensional signal f at a scale-level t is given by,

L(x; t) =
∞∑

n=−∞
T (n; t)f(x− n) (x ∈ Z, t > 0) (4.19)

where T (n; t) = e−tIn(t). When this transformation is to be implemented computationally
there are a few numerical problems that must be considered:

• The infinite convolution sum must be replaced with a finite one.

• Normally, the modified Bessel functions are not available as standard library routines.
Therefore, we must design an algorithm to generate the required filter coefficients
T (n; t) for a given value of t.

• A realistic signal is finite, but a finite approximation of (4.19) might need additional
values.

In this section we will discuss the first two items. We will not go into the complications,
which arise from finite signals. Instead we assume that f is defined for all those integers,
where signal values are required for our algorithms.
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4.3.1. Truncation and Filter Coefficient Generation

A reasonable approach to approximate (4.19) is to truncate3 the infinite sum for some
sufficiently large value of N ,

L(x; t) ≈
N∑

n=−N

T (n; t)f(x− n) (x ∈ Z, t > 0) (4.20)

chosen such that the absolute error in L due to truncation does not exceed a given error
bound ε̃. If we assume that f is bounded (|f(x)| ≤ M) we get the sufficient condition

2
∞∑

n=N+1

T (n; t) ≤ ε̃

M
= εtrunc (4.21)

An easy way to generate the filter coefficients is to use the recurrence relation, see Abramowitz
[Abr64] (9.6.26),

In−1(t)− In+1(t) =
2n
t
In(t) (4.22)

One can use Miller’s algorithm, see e.g. Press et al. [Pre86] p142, and start the recurrence
with an arbitrary seed INstart = 1 and INstart+1 = 0 for a sufficiently large start index
Nstart. As n decreases the iterates obtained from (4.22) will successively approach the
correct solution. The sequence of iterates can be normalized if I0(t) is computed by a
separate routine. Once a sufficient number of filter coefficients has been computed, it is
easy to determine how many that are actually needed from the condition

∑N
n=−N T (n; t) ≥

1 − 2εtrunc. A more detailed investigation as well as an algorithm generating the filter
coefficients T (n; t) can be found in [Lin88] Section 5 and Appendix A.3.

Another possibility is of course to start from the expression for the Fourier transform
(2.47) and perform the convolutions in the frequency domain instead. At coarse scales
this method will be computationally far more efficient than convolutions carried out in the
spatial domain. Then also, the truncation error in the convolution integral can be expected
to be substantially reduced, since the only truncation that occurs in the frequency domain
is because of the finite size of the actual image subject to the Fourier transformations.
However, some precautions may have to be taken in order to reduce the wrap-around effects,
for instance by extending the signal before the fast Fourier transform is carried out.

In the separable case when γ = 0 the two-dimensional scale-space smoothing can be
implemented by application of the one-dimensional smoothing formula along each coordinate
direction. For square filter masks the truncation error ε2D in the two-dimensional case is
related to the truncation error ε1D in the one-dimensional case by

1− ε2D = (1− ε1D)2 (4.23)
3Observe that by truncating the infinite kernel we actually violate the scale-space conditions and can no

longer assume the scale-space property to hold exactly between two scale levels. Actually, we are not even
guaranteed that the truncated convolution kernel is a dicrete scale-space kernel. One possible approach to
reduce this problem might be by trying to find the generalized binomial kernel of given size that in some
sense is the closest approximation to the infinite support discrete analogue of the Gaussian kernel. Also the
possible ringing in the Fourier domain introduced by truncation in the spatial domain might cause problems,
and it could possibly be better to “round off” the kernels at the tails. In order to avoid these complications
we instead assume that the upper bound on the truncation error εtrunc is selected small enough such that
those effect can be readily ignored.

76



4.3.2. Application to the N -jet

Let us again point out that once the scale-space smoothing step has been carried out,
the “discrete derivatives” can be computed directly from the smoothed grey-level images
by application of their corresponding filter masks (containing just a small number of non-
zero coefficients) on the smoothed data. Hence, there is no need to redo any smoothing
by convolving the image with any large size filter masks derived from derivatives of the
Gaussian kernel.

Note, however, that the absolute error due to truncation of the infinite discrete analogue
of the Gaussian kernel increases by this operation, with a factor of 2 when computing first
order differences and a factor of 8 when computing the discrete analogue of the Laplacian
of the Gaussian. Therefore the truncation error should be selected small enough in the
smoothing approximation.

4.4. Summary and Discussion

We have seen that the discrete scale-space representation given by discretization of the dif-
fusion equation has computational advantages compared to the commonly used approach,
where the scale-space implementation is based on various versions of the sampled Gaussian
kernel. It can be expected that the difference is largest for small values of the scale param-
eter, when the sampled Gaussian kernel and the discrete analogue of the Gaussian kernel
deviate as most. When the scale parameter increases these two kernels approach each other,
see also Section 2.5.2, and we might expect that the difference becomes smaller. This effect
can also be understood from another point of view. At coarse levels of scale the large scale
phenomena dominate in the scale-space representation, which means that the grid effects
become smaller, since a characteristic length in the smoothed image will be large compared
to the distance between adjacent grid points. It is difficult to say generally how large the
numerical effects are in an actual implementation and how seriously they affect the output
result, since this is very much determined by the algorithms working on the scale-space
representation and the goal of the analysis in which the scale-space part is just one of the
modules. However, in Figures 4.6-4.7 we have tried to visualize how some measures of the
difference between the sampled Gaussian kernel and the discrete analogue of the Gaussian
kernel behave as a function of the scale parameter. Tabulated values for a few values of t are
given in Appendix A.3.1. The graphs verify that the difference is largest for small values of
t and show that it increases with higher order differences. Do also note the large difference
between the sampled second derivative of the Gaussian kernel and the second difference of
the sampled Gaussian kernel.

Finally, it should be explicitly stressed that the discrete scale-space theory is closely
linked to the continuous scale-space theory through the discretization of the diffusion equa-
tion. This means that continuous results can be transferred to discrete implementation
provided that the discretization is done correctly. The discussion in the previous section is
intended to exemplify the technique.

4.5. Conclusions: Scale-Space for Discrete Signals

The first part of this thesis gives a basic and extensive treatment of discrete aspects of the
scale-space theory. A genuinely discrete scale-space theory is developed and its connection
to the continuous scale-space theory is explained. Special attention is given to discretization
effects, which occur when results from the continuous scale-space theory are to be imple-
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mented computationally. The one-dimensional problem is solved completely in an axiomatic
manner. The two-dimensional problem is more complex, but we answer the question about
how the two-dimensional discrete scale-space should be constructed. The main results can
be summarized as follows (References to central theorems and appropriate sections of the
thesis are given within parenthesis):

• The proper way to apply the scale-space theory to discrete signals is by discretization
of the diffusion equation, not the convolution integral (Thms. 2.20, 2.26, 3.2, 3.3,
Prop. 2.25, and Secs. 4.1, 2.6).

• The discrete scale-space obtained in this way can be described by convolution with
the kernel T (n; t), which is the discrete analogue of the Gaussian kernel (Thm. 2.20,
Prop. 3.8 and Sec. 3.4).

• A scale-space implementation based on the sampled Gaussian kernel might lead to un-
desirable effects and computational problems, especially at fine levels of scale (Prop. 2.25
and Sec. 4.1).

• The one-dimensional discrete smoothing transformations can be characterized exactly
and a complete catalogue is given (Thms. 2.14, 2.15).

• All one-dimensional discrete smoothing transformations with finite support arise from
repeated averaging over two adjacent elements (Thm. 2.18 and Props. 2.5, 2.6). The
kernel T (n; t) describes the limit case of such an averaging process (Prop. 2.28).

• The symmetric one-dimensional discrete smoothing kernels are non-negative and uni-
modal, both in the spatial and the frequency domain (Props. 2.2, 2.3, 2.9, 2.11 and
Sec. 2.4). These conditions are necessary but not sufficient (Obs. 2.30).

The important idea with the scale-space concept suggested in this paper is that the dis-
crete nature of the implementation has been taken into account already in the theoretical
formulation of the scale-space representation.

4.6. Philosophy

The formulation in terms of the diffusion equation appears to be a natural unification of
the existing scale-space theory for continuous signals and the presented scale-space theory
for discrete signals. One could say that the primary formulation of the scale-space theory
is by the diffusion equation. Then,

• the Gaussian kernel appears as the fundamental solution of the continuous diffusion
equation.

• the discrete analogue of the Gaussian kernel is the fundamental solution of the discrete
diffusion equation.

During recent years “Gaussian smoothing” has become a wide-spread concept in the com-
puter vision society. In view of these results one should rather say “diffusion smoothing”.
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Discrete Gauss Sampled Gauss Integrated Gauss

Figure 4.1. t = 0.25: Comparisons between the discrete analogue of the Gaussian kernel (left
column), the sampled Gaussian kernel (middle column) and the integrated Gaussian kernel (right
column). The upper row shows the raw smoothing kernel, the middle row the first order differ-
ences/derivatives and the lower row the second order difference/derivatives. The block diagrams
indicate the discrete kernels and the smooth curve the continuous Gaussian.
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Discrete Gauss Sampled Gauss Integrated Gauss

Figure 4.2. t = 1.0: Comparisons between the discrete analogue of the Gaussian kernel (left
column), the sampled Gaussian kernel (middle column) and the integrated Gaussian kernel (right
column). The upper row shows the raw smoothing kernel, the middle row the first order differ-
ences/derivatives and the lower row the second order difference/derivatives. The block diagrams
indicate the discrete kernels and the smooth curve the continuous Gaussian.
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Discrete Gauss Sampled Gauss Integrated Gauss

Figure 4.3. t = 4.0: Comparisons between the discrete analogue of the Gaussian kernel (left
column), the sampled Gaussian kernel (middle column) and the integrated Gaussian kernel (right
column). The upper row shows the raw smoothing kernel, the middle row the first order differ-
ences/derivatives and the lower row the second order difference/derivatives. The block diagrams
indicate the discrete kernels and the smooth curve the continuous Gaussian.
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Discrete Gauss Sampled Gauss Integrated Gauss

Figure 4.4. t = 16.0: Comparisons between the discrete analogue of the Gaussian kernel (left
column), the sampled Gaussian kernel (middle column) and the integrated Gaussian kernel (right
column). The upper row shows the raw smoothing kernel, the middle row the first order differ-
ences/derivatives and the lower row the second order difference/derivatives. The block diagrams
indicate the discrete kernels and the smooth curve the continuous Gaussian.
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Discrete Gauss Sampled Gauss Integrated Gauss

Figure 4.5. t = 64.0: Comparisons between the discrete analogue of the Gaussian kernel (left
column), the sampled Gaussian kernel (middle column) and the integrated Gaussian kernel (right
column). The upper row shows the raw smoothing kernel, the middle row the first order differ-
ences/derivatives and the lower row the second order difference/derivatives. The block diagrams
indicate the discrete kernels and the smooth curve the continuous Gaussian.
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‖ T (·; t)−G(·; t) ‖1 ‖ G(·; t)−G(·; t) ‖1 ‖ T (·; t)−G(·; t) ‖1

‖ δxT (·; t)− ∂
∂xG(·; t) ‖1 ‖ δxG(·; t)− ∂

∂xG(·; t) ‖1 ‖ δxT (·; t)− δxG(·; t) ‖1

‖ ∇2
3T (·; t)− ∂2

∂2xG(·; t) ‖1 ‖ ∇2
3G(·; t)− ∂2

∂2xG(·; t) ‖1 ‖ ∇2
3T (·; t)−∇2

3G(·; t) ‖1

Figure 4.6. l1 norms of some differences between the sampled Gaussian kernel G(·; t) and the
discrete analogue of the Gaussian kernel T (·; t) in the one-dimensional case. The left column
shows comparisons between differences of the discrete analogue of the Gaussian kernel and sampled
derivatives of the Gaussian kernel, the middle column comparisons between sampled derivatives of
the Gaussian kernel and differences of the sampled Gaussian kernel and finally the right column
differences of the discrete analogue of the Gaussian kernel compared with differences of the sampled
Gaussian kernel. The top row displays the result for zero order differences/derivatives, the middle
row for first order differences/derivatives and the bottom row shows the result for second order
differences and derivatives. As we see, the magnitude of the error increases with the order of the
derivatives/differences. The scaling of the x-axis is logarithmic with range between t equals 0.01 and
10000. The range of the y-axis is shown below each graph.
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‖ T (·; t)−
∫̃
G(·; t) ‖1 ‖ G(·; t)−

∫̃
G(·; t) ‖1 ‖ G(·; t)−

∫̃
G(·; t) ‖1

‖ δxT (·; t)−
∫̃

∂
∂xG(·; t) ‖1 ‖ ∂

∂xG(·; t)−
∫̃

∂
∂xG(·; t) ‖1 ‖ δxG(·; t)− δx

∫̃
G(·; t) ‖1

‖ ∇2
3T (·; t)−

∫̃
∂2

∂2xG(·; t) ‖1 ‖ ∂2

∂2xG(·; t)−
∫̃

∂2

∂2xG(·; t) ‖1 ‖ ∇2
3G(·; t)−∇2

3

∫̃
G(·; t) ‖1

Figure 4.7. l1 norms of some differences between the integrated Gaussian kernel
∫̃
G(·; t) and

the discrete analogue of the Gaussian kernel T (·; t) or the sampled Gaussian G(·; t) in the one-
dimensional case. Here, the modified integration sign

∫̃
stands for integration over each pixel sup-

port region. The left column shows comparisons between differences of the discrete analogue of
the Gaussian kernel and integrated derivatives of the Gaussian kernel, the middle column compar-
isons between sampled derivatives of the Gaussian kernel and integrated derivatives of the sampled
Gaussian kernel and finally the right column differences of the sampled Gaussian kernel compared
with differences of the integrated Gaussian kernel. The top row displays the result for zero order
differences/derivatives, the middle row for first order differences/derivatives and the bottom row
shows the result for second order differences and derivatives. As we see, the magnitude of the error
increases with the order of the derivatives/differences. The scaling of the x-axis is logarithmic with
range between t equals 0.01 and 10000. The range of the y-axis is shown below each graph.

85



Part II

The Scale-Space Primal Sketch: Theory
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5

Definition of the Representation

The scale-space theory provides a well-founded framework for dealing with image structures,
which naturally occur at different scales. According to this theory one can from a given
signal generate a family of derived signals by successively removing features when moving
from fine to coarse scale. In contrast to other multi-scale or multi-resolution representations,
scale-space is based on a precise mathematical definition of causality, and the behaviour of
structure as scale changes can be analytically described. However, the information in the
scale-space embedding given by the diffusion equation is only implicit in the grey-level values.
The smoothed images in the raw scale-space representation contain no explicit information
about features or the relations between features at different levels of scale.

The goal of the second part of this thesis is to present a theory for constructing such an
explicit representation on the basis of formal scale-space theory. This material constitutes
the framework for the third part, where we will demonstrate that the suggested represen-
tation enables extraction of significant image structure and that it can serve as a guide to
other processes in early vision.

We shall treat intensity images, the grey-level landscape, and the objects will therefore be
blobs, that is bright regions on dark backgrounds or vice versa. However, the theory applies
to any bounded function and is therefore useful in many tasks occurring in computer vision,
such as the study of level curves and spatial derivatives in general, depth maps, colour etc,
and also histograms and point clustering and grouping in one or several variables.

From experiments one can (visually and subjectively) observe that the main features
arising in the scale-space representation seem to be blob-like, i.e., they are smooth regions
either brighter or darker than the background. Especially regions which appear to stand out
from the surroundings in the original image seem to be further enhanced by the scale-space
smoothing. In the suggested scale-space primal sketch we will focus on this aspect of image
structure with the purpose of building a formal representation to make such information in
scale-space explicit. Therefore, there is a need to formalize what should be meant with a
“blob”.

5.1. Grey-Level Blobs

What properties do we require from a blob definition? Intuitively, one would generally like
a blob to be a connected region that is either significantly brighter or significantly darker
than its neighbourhood. It should have a sufficiently large area and be stable over some
sufficiently large interval in scale-space. One would also like a blob to have some kind of
natural significance measure associated with it.

It is clear that a blob should be a region associated with at least one (or possibly more)
local extremum point. However, it is essential to define the spatial extent of the blob region
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around the extremum. Ehrich and Lai [Ehr78] considered this problem. They allowed peaks
to extend to valleys, a definition that will give unintuitive results e.g. for small peaks on
large slopes. Koenderink and van Doorn [Koe84] briefly touch upon the problem and our
definition is related to their argument.

5.1.1. Definition of Grey-Level Blob

The blob definition we base this work on should be evident from Figure 5.1. The basic idea is
to let the blob extend “until it would merge with another blob”. To intuitively illustrate this
notion, consider a grey-level image at a fixed level of scale, and study the case with bright
blobs on a dark background. Imagine the image function as a flooded grey-level landscape.
If the water level sinks gradually, peaks will appear. At some instances two different peaks
become connected. The corresponding elevation levels or grey-levels are called the base-
levels of the blobs and are used for delimiting the spatial extent of the blobs. The support
region of the blob is defined to consist of those points that have a grey-level exceeding the
base-level and can be reached from the local maximum point without descending below the
base-level of the blob.

Figure 5.1. Illustration of the grey-level blob definition for (a) a one-dimensional signal and (b) a
two-dimensional signal. This figure shows bright blobs on a dark background. In one dimension a
bright grey-level blob is given by a pair consisting of a local maximum and a local minimum, in two
dimensions generically by a pair consisting of a maximum and a saddle.

Hence, a bright blob will grow and include points having lower grey-levels until it would
meet with another blob. As soon as it has got confronted with the other blob the blob
region stops growing, not only in the region around the neighbour blob but also in all other
directions. In this sense the blob definition can be regarded as rather conservative.

From this construction we may also proceed and define the grey-level blob as the region
delimited by the grey-level surface and the base-level and the blob contrast as how deep one
has to descend from the maximum point in order to climb another blob. Consequently, a
grey-level blob is a 3D object with extent both in space and grey-level, whose size is called
grey-level blob volume and comprises both the amplitude and the spatial extent of the blob,
see Figure 5.2.

5.1.2. Mathematical Definition

To give a precise mathematical definition the concepts introduced above consider again
the case with bright blobs on dark background and assume a continuous grey-level signal
f : R2 → R at a fixed level of scale. Consider two local maxima, A and B. They are
connected by an infinite set of paths, PA,B . On each path, pA,B, the grey-level function
assumes a minimum. To reach another maximum from A, one must at least descend to the
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Figure 5.2. Some descriptive quantities of a grey-level blob in the two-dimensional case: volume,
area, contrast. Note that the grey-level blob has extent both in space (x, y) and grey-level z.

grey-level
zbase(A) = sup

B∈M
sup

pA,B∈PA,B

min
(ξ,η)∈pA,B

f(ξ, η) (5.1)

where M is the set of all local maxima. In the compact case to be considered later, we may
replace sup with max and inf with min and write:

zbase(A) = max
B∈M

max
pA,B∈PA,B

min
(ξ,η)∈pA,B

f(ξ, η) (5.2)

zbase(A) is the grey-level value of the delimiting saddle point associated with the local
maximum A. The support region Dsupport(A) of the blob is the region

Dsupport(A) = {r ∈ R2 : sup
pA,r∈PA,r

inf
(ξ,η)∈pA,r

f(ξ, η) ≥ zbase(A)} (5.3)

The difference in grey-level between the extremum point and the base-level gives the blob
contrast.

Cblob(A) = f(A)− zbase(A) (5.4)

Finally the grey-level blob associated with the local maximum A is the set of points

Gblob(A) = {(x, y, z) ∈ R2 ×R : ((x, y) ∈ Dsupport(A)) ∧ (zbase(A) ≤ z ≤ f(x, y))} (5.5)

To summarize,

Definition 5.1. (Bright grey-level blob of a continuous signal (2D))
Given a continuous signal f : R2 → R let A ∈ R2 be a local maximum point, zbase(A)
its associated base-level as given by (5.1) and Dsupport(A) its associated support region as
defined in (5.3). Then the bright grey-level blob associated with A, denoted Gblob(A), is the
region

Gblob(A) = {(x, y, z) ∈ R2 ×R : ((x, y) ∈ Dsupport(A)) ∧ (zbase(A) ≤ z ≤ f(x, y))} (5.6)

It is worth stressing that with this blob concept we regard a grey-level blob as an object
with extent both in space and grey-level. The definition is expressed for a two-dimensional
continuous function, but applies in any number of dimensions. Similarly, it can be extended
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to comprise discrete signals by replacement of R2 with Z2 and by letting the paths pA,B

be given by a suitable connectivity concept, e.g., eight-connectivity for a square grid. For
discrete signals it is, however, because of algorithmic reasons more suitable to define the
support region of the blob as those pixels that have a grey-level (strictly) exceeding the
base-level of the blob in order to obtain grey-level blobs that are disjunct objects. In the
two-dimensional discrete case we get:

Definition 5.2. (Bright grey-level blob of a discrete signal (2D))
Given a discrete signal f : Z2 → R let A be a local maximum point, zbase(A) its associated
base-level as given by (5.1) (where the connectivity is defined based on eight-connectivity)
and Dsupport(A) its associated support region defined by (5.3). Then, the bright grey-level
blob associated with A, denoted Gblob(A), is the region

Gblob(A) = {(x, y, z) ∈ Z2 ×R : ((x, y) ∈ Dsupport(A)) ∧ (zbase(A) ≤ z ≤ f(x, y))} (5.7)

Local minima can be treated analogously and every local minimum point will give rise to
dark blob on bright background. Hence, each local extremum point will be associated with
a region in two-space and a volume in three-space.

5.1.3. Properties

It can easily be verified that a blob will be connected. Moreover, in one dimension the base
level of a bright blob will be attained at a local minimum point, in two dimensions generically
at a saddle point, see Figure 5.1. In other words, a grey-level blob of a one-dimensional
signal is generically given by a pair consisting of one local maximum and one local minimum.
A grey-level blob of a two-dimensional blob is given by a similar pair of a local extremum
and a saddle. Consequently, the blobs are directly determined from geometric properties of
the grey-level landscape, namely the first order singularities of the grey-level function.

These blobs are not purely local features, as are extrema, but regional. In fact, this is
not only because they are defined as regions. An inherent property of the stated definition is
that it leads to a competition between parts. The presence of a nearby blob might neutralize
it or reduce its size. In other words, things manifest themselves only compared to their
background. These aspects reflect important principles of the approach.

We will see later that the blobs are easier to trace across scales than are local extrema.
This is because they will be stable over some scale interval, a property considered important
also by Bischof and Caelli [Bis88] and Koenderink and van Doorn [Koe84]. In fact, our
definition is closely related to their measurement of shape based on relative densities. The
grey-level function can be seen as a mass distribution in the plane.

5.1.4. Relations Between Bright and Dark Blobs

Note that this definition leads to separate systems for bright blobs on dark background and
dark blobs on bright background. This implies that a spatial point may belong both to a
bright blob and a dark blob and that some points will also be left unclassified. Consequently,
the given definition will, in contrast to, e.g., the sign of the Laplacian of the Gaussian, only
attempt to make a partial (and hopefully safer) classification of the grey-level landscape.

In one dimension the dark and bright blobs of a signal will be strongly related since a
minimum point, which delimits the extent of a bright blob, can also be the seed of a dark
blob. This gives a natural coupling between blobs of reverse polarity, see Figure 5.3(a). In
two dimensions the situation is slightly different, since a saddle point that delimits the extent
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Figure 5.3. In one dimensions the bright and dark blobs of a signal will be closely coupled, since
an extremum point which delimits the extent of a blob will in general be the seed of a blob of the
reverse polarity.
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Figure 5.4. Example showing that in two dimensions some points may actually be classified as
belonging to both a dark blob and a bright blob. This phenomenon can be prevented from happening
if the blob definition is modified such that a blob delimits its own extent in this type of situations.
Then it will be guaranteed that no points belong to both dark and bright blobs.

of a bright blob will in general not delimit the extent of any dark blob, unless the signal
is degenerate. Therefore, in two dimensions a point will in general belong to either a dark
blob or a bright blob but not both. However, for certain types of situations it may indeed
happen that some points are classified as belonging to both a dark blob and a bright blob,
see Figure 5.3(b), which shows a dark blob “contained” in a bright blob. If for some reasons
this type of phenomenon is not desired then it can be easily prevented from happening if
the blob definition is modified slightly so that a blob can be allowed to “delimit its own
extent”.

Finally, let us point out that what we have defined here is a grey-level blob at one level
of scale. When we link grey-level blobs over scales we will obtain scale-space blobs, which
will be described after the next section.

5.2. Motivations for a Multi-Scale Hierarchy

The concept of a blob at a single level of scale is not powerful enough for extraction of
relevant image structure. It is easy to realize that it leads to strong noise sensitivity, since
two closely situated local extrema will neutralize each other, see Figure 5.5. This means that
a large peak distorted by a few local extrema with low amplitude will not be detected as one
unit, only the fine scale blobs will be found. This kind of problem has been considered also by
Ehrich and Lai [Ehr78]. They suggest the use of a so-called relational-tree, in order to obtain
the spatial relations between superimposed blobs, without developing that concept further.
However, their relational-tree will still be noise sensitive, since the hierarchical relations
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between blobs are determined directly by the grey-levels in the valleys of the original signal.

Figure 5.5. A high-contrast large scale peak with two superimposed low-contrast fine-scale peaks
will not be detected if the signal is considered at one scale only.

5.2.1. Blob Detection and Scale-Space Smoothing

To some extent the noise sensitivity in such a situation can be reduced with a suitable
amount of smoothing. However, at a fine level of scale (without smoothing) it is difficult
to detect that the configuration consists of two large peaks with small superimposed low-
amplitude peaks. A naive observer might say that the situation can be resolved easily with
thresholding, but how does one select a proper threshold automatically?

One possible way of designing a blob detector that could “handle” such a configuration
and detect the underlying large peaks could be “by making the blob detector more intel-
ligent”. Such an approach would still face a difficult and undefined question: How deep
may the valley between the superimposed blobs be before they are regarded as belonging
to different blobs? To avoid such dilemmas we will in this work instead take a contrary
approach.

The idea with our method is to use a simple blob definition based on distinct geometrical
properties of the signal. Then, we use the scale-space embedding to integrate local properties
into regional descriptors, and to make the hierarchical relations between features at different
levels of scale explicit. Applied to the previous example it means that the fine-scale peaks
will disappear after some degree of scale-space smoothing and the underlying coarse scale
peak will appear as one unit. Hence, in a multi-scale representation of the signal it will be
made explicit that the configuration in Figure 5.5 consists of a coarse scale blob with two
superimposed fine scale blobs.

The method to achieve this is by linking grey-level blobs over several levels of scale into
higher-order objects, called scale-space blobs, which in addition to extending in space and
grey-level have extent also in scale. How those objects are constructed will be described in
the next section.

5.3. Scale-Space Blobs—Linking Grey-Level Blobs across Scales

In general, a grey-level blob existing at one level of scale in scale-space will correspond
to a similar blob both at a finer level of scale and at a coarser level of scale. By linking
together such grey-level blobs across scales we obtain four-dimensional objects, which we
call scale-space blobs1.

At some levels of scale in scale-space it might be impossible to a accomplish a plain
link between a grey-level blob at the current level of scale to a similar grey-level blob at a

1A formal definition of this concept is given in Section 6.1.3
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Figure 5.6. (a) By linking together similar grey-level blobs at adjacent levels of scale we obtain
(b) scale-space blobs, which are objects having extent both in space, scale and grey-level. (In this
figure we have omitted the grey-level coordinate. The slices illustrate the blob support regions of
the grey-level blobs.)

coarser or finer scale — a catastrophe affecting the connectivity of the blobs has occurred.
The generic situations telling how blobs may behave with scale will be classified in Chapter 6.
According to that treatment four possible types of blob events may occur when the scale
parameter increases:

• annihilation — a blob disappears

• merge — two blobs merge into one

• split — one blob splits into two

• creation — a new blob appears

The scale levels where these singularities take place are used for delimiting the extent in the
t-direction of the scale-space blobs. Consequently, every scale-space blob will be associated
with a a minimum scale and a maximum scale, denoted the appearance scale and the disap-
pearance scale respectively, see Figure 5.6. The difference2 between the disappearance scale
and the appearance scale yields the scale-space lifetime of the blob. Precise mathematical
definitions of these concepts are given in Section 6.1.3.

Figure 5.7. Common blob events in scale-space: (a) annihilation (b) merge (c) split (d) creation

2It turns out that some transformation of the scale parameter is necessary in order for the difference
between scale values to capture the concept of scale-space lifetime “properly”. This issue is considered in
Section 5.5.
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In merge situations and split situations we regard the involved grey-level blobs existing
before the bifurcation event as belonging to different scale-space blobs than the grey-level
blobs existing after the bifurcation. In special configurations it may happen that a blob
without a hole forms a torus, or that a torus fills in its hole. These events are also stable
in the sense of singularity theory, but we will not let them affect the scale-space blobs.
The grey-level blobs involved in such processes will be treated as belonging to the same
scale-space blob.

The scale values where these blob events occur define the previously mentioned appear-
ance scales and disappearance scales for the involved scale-space blobs. This means that
the scale-space lifetime of a scale-space blob is directly determined by the singularities in
scale-space.

These objects will constitute the fundamental primitives in our proposed scale-space
primal sketch. The idea with this representation is to detect the scale-space blobs in scale-
space and to build a data structure that makes them as well as their relations between
scales explicit. This implies that grey-level blobs must be detected at all levels of scale, the
actual linking of grey-level blobs between scales into scale-space blobs must be performed
and that the bifurcations taking place in scale-space must be registered. The computational
aspects of these tasks will be briefly described in Section 7.1 and Section 7.2. However,
in order to get acquainted with the blob concepts just defined, we will first present some
experimental results illustrating the effects of detecting grey-level blobs at various levels of
scale in scale-space.

5.4. Grey-Level Blob Extraction: Experimental Results

In Figure 5.8 we give an example with a realistic toy block image showing how (the support
regions of) the extracted grey-level blobs3 behave with increasing scale together with the
raw grey-level images in the scale-space representation. We see that at fine levels of scale
mainly small blobs due to noise and surface texture are detected. When the scale increases
the noise blobs disappear gradually, although much faster in regions near steep gradients.
Notable in this context is that blobs due to noise can survive for a long time in scale-space if
they are located in regions with slowly varying grey-level intensity. This observation shows
that scale-space lifetime alone cannot be used as the basis for a significance measure, since
then the significance of such blobs due to noise would be substantially overestimated4. At
coarse levels of scale, the toy blocks appear at single blob objects. Finally, at very coarse
levels of scale, adjacent blocks become grouped into larger entities.

Figure 5.9 shows a similar scale-space sequence for a telephone and calculator image.
In this case as well, one can notice that at the finest levels of scale only blobs due to noise
are detected, and that some blobs in the background actually survive over a relatively large
range of scale. Moreover a hierarchical behaviour between grey-level blobs at different scales
appears again. The buttons on the telephone keyboard manifest themselves as blobs after
a small amount of smoothing. At coarser levels of scale they merge into one unit (the
keyboard). One can also observe that some other dark details in the image, the calculator,
the cord and the receiver, appear as single blobs at coarser level of scale.

3Each one of these blob images has been obtained directly from the scale-space representation at a single
level of scale. In other words, no scale linking was performed in the generation of these images. An algorithm
for extracting grey-level blobs from a discrete image will be described in Section 7.1.

4Of course, the contrast of such noise blobs decreases, but it is far from clear that it is possible to set a
threshold on objective grounds.
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Figure 5.8. Grey-level and (dark) grey-level blob images of a toy block image at scale levels
t = 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 (from top left to bottom right).
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Figure 5.9. Grey-level and (dark) grey-level blob images of a telephone and calculator image at
scale levels t = 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 (from top left to bottom right).
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Figure 5.10. Low-contrast blobs in regions with slowly varying intensity may have long lifetime in
scale-space. However, low-contrast blobs located near steep gradients will have short lifetime. This
means that blob A will disappear before blob B in this example.

One could say that the grey-level blob concept shows an extreme degree of noise sen-
sitivity, which can be circumvented by the scale-space smoothing. But it is certainly a far
from trivial problem to determine a proper amount of smoothing automatically, based on
existing conventional methods.

The aim with the suggested blob linking between scales is to determine which blobs in
the scale-space representation can be regarded as significant, without any prior information
about neither scale, spatial location nor the shape of the primitives5. As we will see later,
the output from the linking procedure also enables determination of a relevant scale for each
blob, i.e., a suitable amount of blurring for treating that individual6 blob.

5.4.1. Remarks

As stated earlier the idea behind this combination of grey-level blobs and scale-space smooth-
ing is that instead of trying to design “an intelligent blob detector” to handle difficult
situations as the case above with superimposed local extrema, we establish a simple blob
definition based on distinct topological properties of the signal. Then, we use the scale-space
embedding to integrate local properties into regional descriptors, and to make the hierarchical
relations between features at different levels of scale explicit.

Another aspect of this definition of a scale-space blob is that we treat blobs not just
as entities within an image at a given level of scale, but as objects in the four-dimensional
scale-space parameterized by the two spatial coordinates, the grey-level coordinate and the
scale parameter. In other words, we treat the scale parameter as equally important as the
spatial and grey-level coordinates, and the primitives of our representation are objects having
extent not only in grey-level and space, but also in scale.

5Except for the previously mentioned fact that the scale-space blurring favours blob-like or Gaussian-
shaped objects

6We emphasize the word individual since we believe that stable scales (if they exist) are in general asso-
ciated with objects — not with entire images. For the toy block image one could possibly say that the scales
t = 128 and t = 1024 are stable in the sense that the grey-level blob detection algorithm finds blobs all
with meaningful interpretation in the smoothed grey-level images at these levels of scale. However, for more
general images of moderate complexity such “stable scales” will not exist. From experiments one quickly
learns that a scale level well fit for one part of an image will in general not be useful for treating other parts
of the image (compare with the blob behaviour at fine scale levels in the toy block image and the overall
appearance in the telephone and calculator image).

However, the assumption about a globally stable scale for an image is sometimes used implicitly in many
computer vision algorithms — for instance when edge detection is performed using the same amount of
smoothing all over an image. Instead we believe that better performance can be obtained if the scale levels
are adapted to the local image structure, compare with the integration of the output from the scale-space
primal sketch with the edge focusing method, developed in Section 9.1.
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It will be demonstrated later that this is a powerful approach, particularly since our
notion of scale-space blobs gives us a natural geometric measure of significance, namely the
volume of the scale-space blob in the four-dimensional scale-space7. Before going into the
experimental results, which will be presented in Section 8, we will however first describe
some normalization aspects that are necessary when computing the representation.

5.5. Measuring Significant Image Structure

Since our ultimate goal of the analysis is to extract important regions in the image based on
the significance of scale-space blobs in the scale-space representation, there is an absolute
need for some methodology for comparing blob significance between different levels of scale.
In other words, what we actually desire is a mechanism to judge if a blob, existing only
at coarse levels of scale, can be regarded as more significant or less significant than a blob,
with extent primarily at fine levels of scales.

The approach we propose is to use the volumes of the scale-space blobs defined in
Section 5.2. We suggest that it is a useful quantity for such a significance measure, since it
comprises both the grey-level blob volume, which is a combination of the contrast, spatial
extent and lifetime of the blob in scale-space, see also Section 8.2. However, if one is to base
a significance quantity on this quantity, it is of crucial importance that the scale parameter
and grey-level blob volume are measured in proper units, since in principle the x, y, z and
t axes could be transformed by arbitrary monotone functions.

5.5.1. Measuring Scale-Space Lifetime

Consider for instance the measurement of scale-space lifetime. According to a wide-spread
paradigm the scale-space should be sampled logarithmically in scale, i.e., the ratio between
successive scale values should not vary with scale. Based on this idea one could be inspired
to define the scale-space lifetime as log tD − log tA, where tD and tA are disappearance and
appearance scales of the scale-space blob respectively. It seems reasonable that this would
give a good description at coarse levels of scale, since it is well-known that “things happen
approximately logarithmically with scale”. However, such an approach would certainly lead
to unreasonable results for discrete signals at fine levels of scale, since then a blob existing
at t = 0 would be given an infinite lifetime. Similarly, one can observe that tD − tA will
not work either, since then the lifetime of blobs existing at coarse levels of scale would be
substantially overestimated. Consequently, there is a need to introduce a transformed more
realistic scale parameter τ , which will be called effective scale, such that scale-space lifetime
measured by τD − τA gives a proper description of the behaviour in scale-space. This new
scale parameter should neither favour coarse scales to fine scales nor the opposite.

In this section we will first give a formal treatment showing how the notion of “effective
scale” can be defined in a precise way. We will also give experimental results showing how
the major blob descriptors (volume, area, contrast) are expected to behave with scale, and
explain how these results can be used to rescale the descriptors in question. Some other
facts that will be illuminated are that the inner scale and the outer scale of an image really
must be taken into account in an actual implementation.

7Note that in this context we regard the scale-space not merely as a plain set of gradually smoothed
(but anyway relatively disparate or just loosely connected) grey-level images, but as an intimately connected
entity.

98



5.5.2. Transformation of the Scale Parameter: Effective Scale

At first glance the problem of transforming the scale parameter might seem rather ad hoc.
What properties do we want from an “effective scale parameter? Assuming that we have a
measure for the amount of structure in an image then a natural requirement would be that
the amount of structure, which is destroyed if the scale parameter increases with one unit,
should not depend on the current scale. In other words, if we plot the amount of structure
as a function of the effective scale parameter, we should expect the curve to be a straight
line. However, what does one mean with the amount of structure in an image? Moreover,
even if we had a definition of the measure of structure it would be possible to transform
it and then the effective scale could also be transformed in a similar way, while the graph
would remain a straight line. Hence, if one is to define a measure of structure one still has
a transformation function to determine.

Another natural requirement is that the expected lifetime of a scale-space blob in scale-
space should not vary with scale. Assuming that we know how the number of blobs depends
on the scale, this condition will actually determine the transformation of the scale parameter,
except for an arbitrary but unimportant affine transformation.

5.5.2.1. Definition and Derivation of Effective Scale and Effective Structure

Assume that we know how the expected number of extremum points per unit length, i.e.,
the density of grey-level blobs, behaves over scale. In other words, assume that we know
how

p(t) = {the expected density of extremum points at scale t} (5.8)

varies with t. Assume that the amount of structure in an image can be measured with the
expected number of local extrema8 per unit length. What we want to define is a transformed
scale τ and a transformed measure of structure m, such that the new coordinate system
becomes “natural”, i.e., we want to define transformation functions h and g such that the
new coordinates τ = h(t) and m = g(p) capture the concepts of structure and scale in a
“natural sense”. From this discussion the following requirements seem reasonable to pose
on the new coordinate system:

Requirement 5.3. (Uniform decrease in the amount of structure)
The expected amount of effective structure dm, which is destroyed if the effective scale is
increased with dτ , should be independent of both the current effective scale and the current
amount of effective structure. In other words,

dm

dτ
=

dg

dh
= A = constant (5.9)

Requirement 5.4. (Uniform decay intensity for local extrema)
The probability that an extremum point (or a blob) disappears after a small increment dτ in
effective scale should be independent of both the effective scale τ and the current amount of

8In one dimension the number of local extrema seems to be a reasonable measure of the amount of
structure, since a whole scale-space theory can be founded on this basis, see Chapter 2. In two dimensions
the situation is more elaborate, since in this case the number of local extrema in an image may actually
increase with scale due to blob splits. However, the expected number of local extrema, as an average over
many images, will always be expected to decrease.
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structure m in the image. That is

dp
dτ

p
=

dp
dh

p
=

d(log p)
dh

= B = constant (5.10)

Integration of (5.9) and (5.10) gives:

g(h) = Ah+C (5.11)

log p = Bh+D (5.12)

where C and D are integration constants. Reasonable boundary conditions state that if the
scale t is zero then also the effective scale h should also be zero. Let p0 denote9 p(0) and g0

the amount of structure at scale t = 0. After a few calculations it then follows that

g(p) = g0 +
A

B
log

p

p0
(5.13)

h(t) =
1
B
log

p

p0
(5.14)

Since A, B and g0 are arbitrary constants we set A = −1, B = −1 and g0 = 0. Then

g(p) = log
p

p0
(5.15)

h(t) = log
p0

p(t)
(5.16)

Equation (5.15) describes how the measure of effective structure should be computed from
the measured density of local extrema, while (5.16) gives the relation between the effective
scale parameter τ and the ordinary scale parameter t. To summarize,

Theorem 5.5. (Effective scale)
Assume that we know how the expected density of local extrema p behaves as a function of
scale t, let τ and m be the effective scale and the effective measure of structure given by
Requirement 5.1 and Requirement 5.2. Then the transformation function h from t to τ and
the transformation function g from p̃ to m̃ are, except for an arbitrary affine transformation,
given by

m̃ = g(p̃) = log
p̃

p̃0
(5.17)

τ = h(t) = log
p0

p(t)
(5.18)

where p(t) is the expected density of local extrema at scale t and p̃(t) is the measured density
of local extrema at scale t.

This concept of effective scale, which is the natural unit for measurements of scale, will be
of crucial importance in the extraction of significant blobs. What is now left to determine
is how the density of extrema can be expected to behave with scale. Experimental results
will be given the next section. But we will first illustrate some consequences of the stated
definition.

9For continuous signals it might be more convenient to set p0 = 1, since p(0) may be infinite and/or
difficult to estimate.
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5.5.2.2. Examples and Experimental Results

For continuous signals it is known that the number of local extrema in a signal decreases ap-
proximately as tα with scale, where α is approximately −1

2 . This relation has been discussed
by other authors, see e.g. Müssigmann [Müs89], and can be motivated theoretically, at least
for one-dimensional signals generated by white noise or fractal noise normal processes, see
Section 6.5. Hence, we have p(t) = constant/tα which means that

m(t) = log p(t) = log constant− α log t (5.19)

and the curve giving the number of local extrema as a function of scale will be a straight
line in a log-log-diagram.

For discrete signals the number of extrema will also show the same qualitative behaviour
at coarse levels of scale, when the grid effects are negligible. However, at fine levels of scale
the t−α-behaviour cannot hold, since it is based on the assumption that the original signal
contains equal amount of structure over all levels of scale. The discrete signal is limited
by its inner scale given by the sampling density. These ideas are illustrated in Figure 5.11,
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Figure 5.11. Experimental results showing the number of local extrema as function of the scale
parameter t in log-log scale (a) measured values (b) accumulated mean values. The dashed line
indicates the value at t = 0. Note that a straight-line approximation is valid only in the interior part
of the scale interval. At the lower end point of the interval we have interference with the inner scale,
given by the sampling density of the image, and the higher end point there is interference with the
outer scale, given by the size of the image.

where we show the logarithm of the number of extrema as a function of the logarithm of
the scale parameter. The left diagram shows simulated results for a large number of point
noise images (see below). The right curve shows the average of these results. Note that
the straight line approximation is valid only in an interior scale interval. At fine scales we
have interference with the inner scale, given by the sampling density of the image, and at
coarse scales there is interference with the outer scale, given by the size of the image. A
theoretical analysis for one-dimensional signals generated by white noise and fractal noise
normal processes will be carried out in Section 6.5.

The notion of effective scale takes the inner scale into account and guarantees that we
have a precise definition of scale-space lifetime at fine levels of scale. Combined with the
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notion of a scale-space for discrete signals, which takes the discrete nature of implementation
into account, it gives us the necessary tool to investigate the fine scale structures.

In this presentation we have chosen not to treat the behaviour at very coarse levels of
scale, since there the treatment of the image boundaries will affect the scale-space behaviour
substantially. Also, if one wants to study objects at such a coarse scale that the boundary
effects become important, then the problem is undefined, and one should instead try to
acquire additional image data in a region around the current image, such that the scale-
space smoothing becomes well-defined.

5.5.3. Transformation of the Blob Volumes

Similarly to the scale parameter, the grey-level blob volumes need to be rescaled, since
the size of the grey-level blob volumes will vary substantially with scale. When the scale
parameter increases in scale-space the peaks in the grey-level landscape will erode and the
fine scale details will be successively removed. This means that we can expect the mean
value of the grey-level blob contrasts to decrease and the mean value of the grey-level blob
area to decrease, when the scale parameter increases. But, what about the mean value of
the grey-level blob volumes, will it increase or decrease? Experimental results, which will
be given later, show that the mean value of the blob volumes actually decreases with scale
at fine scales and increases with scale at coarser scale.

Hence, if these effects are not taken into account then the significance of the coarse-scale
blobs will be substantially over-estimated compared to the significance of fine-scale blob. In
other words if no compensation is performed non-significant structures at coarse levels of
scale may be ranked as more important than important structures at fine levels of scale.

It is clear that the blob behaviour depends very much on the image (since we actually
want to use it for segmentation). Is it then possible to talk about some kind of average
behaviour. It might happen that the blob behaviour varies substantially from one image to
another. How should one then be able to talk about expected behaviour?

5.5.3.1. Simulation Results

A conservative approach to the problem is to study point noise images, that is images with
no spatial structure, i.e., images with no simple relations between the grey-levels of different
pixels. If we accumulate statistics about how blobs in such images are expected to behave
with scale, we will get an estimate of how much structure the multi-scale blob detection
algorithm will find in images without spatial structure. In this way we get an estimate of
the extent of accidental groupings in scale-space.

We have made experiments on several point-noise images with normal distribution, rect-
angle distribution and exponential distribution. The results are shown in Figure 5.11 and
Figure 5.12. As we see, the qualitative behaviour is not very much affected by the image
synthesis process. The number of extrema and the expected blob area turn out to be quanti-
ties very insensitive to the image synthesis method. The blob contrast and the blob volume
must be rescaled in order for the curves to fit, since these latter quantities are proportional
to the amplitude of the signal.

Note that in the intermediate scale interval the curves can be approximated with straight
lines. This means that the blob descriptors vary with scale approximately as powers of tα.
Fits to straight lines in the interval t ∈ [4, 64] for 256 ∗ 256-images give that the exponents
are approximately 0.5, 1.0 and −0.5. Hence the blob descriptors behave approximately in
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Figure 5.12. Experimental results for point noise images showing how the grey-level blob descriptors
vary with scale (in log-log scale). (a) the mean value of the blob volumes, Vm(t) (b) the standard
deviation of the blob volumes, Vσ(t) (c) the mean value of the blob areas, Am(t) (d) the standard
deviation of the blob areas, Aσ(t) (e) the mean value of the blob contrasts, Cm(t) (f) the standard
deviation of the blob contrasts, Cσ(t). The outliers at the very coarse scales are due to interference
with the outer scale of the image.
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the following way for large values of t.

Vm(t) ∼
√
t Vσ(t) ∼

√
t (5.20)

Am(t) ∼ t Aσ(t) ∼ t (5.21)

Cm(t) ∼
1√
t

Cσ(t) ∼
1√
t

(5.22)

5.5.3.2. Effective Grey-Level Blob Volume

Based on these results we will have a basic tool to differentiate between significant and
non-significant structure across scales. If a grey-level blob has a blob volume smaller than
the expected blob volume for point noise images it can hardly be regarded as significant. On
the other hand, if at some level of scale the blob volume is much larger than the expected
blob volume, and if the difference in blob volume is much larger than the expected variation
around the expected standard deviation then blob may be regarded as significant. A natural
normalization to perform is to subtract by the mean value and divide by the standard
deviation. Hence, an effective blob volume at scale t could be defined as

Veff,prel(t) =
V (t)− Vm(t)

Vσ(t)
(5.23)

where V (t) is the measured grey-level blob volume at scale t, Vm(t) the mean value of the
grey-level blob volumes at scale t for point noise images and Vσ(t) the standard deviation
of the grey-level blob volumes at scale t for point noise images. However, note that this
definition implies a few problems. Since the blob volumes depend strongly on the amplitude
of the signal this quantity may be sensitive to the scaling of Vm(t). Another negative aspect
is that, since this quantity may assume negative values it is not suited for integration. In
the current implementation we have chosen to define the effective grey-level blob volume in
the following way, which empirically turns out to give reasonable results.

Veff (t) =

{
1 + Veff,prel if Veff,prel ≥ 0
eVeff,prel otherwise

(5.24)

Hence, the effective volume of the mean value will be one. For larger volumes it will be grow
affinely with Veff,prel. Thus, Veff and Veff,prel will show the same qualitative behaviour for
significant grey-level blobs. For smaller volumes it will decay to zero, and the qualitative
difference will increase gradually as the significance decreases. However, note that we get a
correct behaviour in the important situations, namely for the significant blobs. Therefore,
we may expect that this solution should not affect the result too seriously. It should also
be mentioned, that in order to adapt to the current amplitude of the signal, Vm and Vσ

are rescaled linearly from a least-squares fit between the actual behaviour and expected
behaviour of these quantities.

5.5.3.3. Other Possibilities

If the mean value and the standard deviation would show the same qualitative behaviour
over all levels of scale it would suffice to divide the current grey-level blob volume with the
expected value of grey-level blob volume. Then the variation around this rescaled quantity
would show the same behaviour at all levels of scale, and the information about standard
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deviation would not be necessary. Moreover, the rescaling to the current amplitude of
the signal could be ignored, since it would affect all scale levels similarly. However, from
Figure 5.13, where we have plotted the standard deviation of the blob volume as “function”
of the mean value of the blob volumes, we see that the situation is not that simple. In

 log(volume sdev)

log(volume mean)

0.00

1.00

2.00

3.00

0.00 1.00 2.00 3.00

Figure 5.13. Standard deviation Vσ of grey-level blob volume as “function” of the mean value Vm

of grey-level blob volumes in log-log scale.

later work we will instead investigate if it is possible to normalize the grey-level volumes by
division with the Vm only, and then define a significance measure as in (5.23) based on the
scale-space volumes instead. Since these volumes need not be accumulated, negative values
will not be any problem. However, then also the underlying statistics must be based on
scale-space volumes instead of grey-level volumes. As scale value for normalization we may
choose the representative scale value defined in Chapter 8.

Another approach to determine a significance level for the grey-level blob contrast and
the grey-level blob volume could be by estimation of characteristic variation amplitude
in the image, similar to the method used by Voorhees and Poggio [Vor87]. The basic
idea is to accumulate a histogram over the grey-level differences in the image over some
characteristic length corresponding to the current level of scale, and extract the peak(s)
from the histogram. If the contrast of a grey-level blob is lower than the estimated variation
level then the blob can be regarded as non-significant. Similarly, if its contrast is much
larger than the variation level in the image it may be regarded as significant. However, this
approach assumes that there is a global grey-level variation level valid for the entire image,
an assumption that is often violated in realistic imagery.

5.5.4. Resulting Representation — The Scale-Space Primal Sketch

To summarize, the data structure we propose is a tree-like multi-scale representation of
blobs at all levels of scale in scale-space including the relations between blobs at different
levels of scales. Grey-level blobs should be extracted at all scales, the bifurcations occurring
in scale-space be explicitly registered and grey-level blobs stable over scales be linked across
scales into the higher-order objects called scale-space blobs.

Since the representation tries to capture the significant features and events occurring in
scale-space with a small set of primitives we call it a scale-space primal sketch. In the result-
ing data structure constructed according to this description, every scale-space blob contains

105



explicit information about which grey-level blobs it consists of. The grey-level blobs are
given at (sampled) scale levels obtained from an adaptive scale linking and refinement pro-
cedure to be outlined in Chapter 7. Further, the (normalized) scale-space blob volume, the
appearance scale, the disappearance scale and the scale-space lifetime have been computed
(using straightforward numerical techniques). The scale-space blobs “know” about the type
of bifurcations (annihilation, split, merge, creation) that have taken place at the appearance
and disappearance scales. They also have links to the other scale-space blobs involved in
the bifurcation processes. Hence, the representation10 we have computed explicitly describes
the hierarchical relations between blobs at different levels of scale.

The intention with this representation is to capture inherent geometric properties of
the underlying grey-level image and we suggest that the representation as such is useful in
itself. Worth emphasizing is that the involved quantities (grey-level blobs and scale-space
blobs) are defined solely in terms of singularities, namely local extrema, saddle points and
bifurcations in scale-space and completely free from tuning parameters.

In Chapter 8 we will show how some directly available information from this scale-space
primal sketch can be used for extraction of significant image structure. Before that we will
in the next chapter investigate some of the theoretical properties of the representation and
then in Chapter 7 describe an algorithm for actually computing it.

10More detailed information about what type of information can be contained in a data structure repre-
senting the scale-space primal sketch is given in Appendix A.6.3.
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Figure 5.14. The scale-space primal sketch is a tree-like multi-scale representation of blobs with
the scale-space blobs as basic primitives (nodes) and the relations (bifurcations) between scale-space
blobs at different levels of scale as branches.
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6

Evolution Properties in Scale-Space: Drift Velocities and

Bifurcation Events

It is well-known that scale-space smoothing leads to shape distortions. For example, features
like local extrema, edges, blobs etc can be expected to drift when the underlying grey-level
image is subject to blurring.

Aspects of this phenomenon have been studied by other authors from different view-
points. Canny [Can86] discussed the general trade-off problem between detection and lo-
calization occurring in edge detection. Bergholm [Ber87] estimated the drift velocity of
edges for a set of plausible configurations with the aim of estimating a step size for scale
changes in the edge focusing algorithm. Berzins [Ber84] has analyzed the localization error
for zero-crossings of the Laplacian of the Gaussian.

Other kinds of phenomena affecting the topology may also occur. Blobs can disappear,
merge and split as developed by Koenderink and van Doorn [Koe86]. Similar transitions
apply to edges, zero-crossings of the Laplacian, corners etc. Such events are usually called
bifurcations.

In this work we will perform a study of critical points, that is local extrema and saddle
points, and investigate in detail what happens to those features when the underlying image
undergoes scale-space smoothing. We will essentially

• develop how these feature points can be expected to behave generically when the scale
parameter in scale-space changes

• derive an expression for their drift velocity

• classify their behaviour at bifurcation situations into a discrete set of generic situations

• give a coarse estimate to the global problem of how the number of local extrema can
be expected to vary with scale.

The results we will arrive at are not based on any specific models for the intensity variations
in the image but are generally valid under rather weak a priori assumptions. Although the
results are expressed in a general form the primary intention with the study is to provide a
further theoretical basis of the scale-space primal sketch concept. In this context the results
to be presented will find their main application to

• the formal construction and definition of the primitives (scale-space blobs) in the scale-
space primal sketch. The scale-space blobs are defined as families of grey-level blobs,
which in turn are directly determined by pairs of critical points. This treatment allows
for precise mathematical definitions of those concepts.

• providing a theoretical basis for the linking algorithm necessary when computing the
representation.
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• giving further motivations for the normalization process with respect to “expected
scale-space behaviour”, which is necessary when defining the significance measures of
the scale-space blobs.

In other words, we will try to explain what happens when scale changes in scale-space,
especially with application to the scale-space primal sketch. Therefore, special attention
will be given to the objects called grey-level blobs and scale-space blobs.

Before starting, let us point out that some of the results to be presented are (at least
partly) known or touched upon before, see e.g. Koenderink and van Doorn [Koe84, Koe86]
and Koenderink [Koe90a]. Bifurcations in scale-space have also been studied by Johansen
et.al. [Joh86], who have shown that a band-limited one-dimensional signal up to a multi-
plicative constant is determined by its “toppoints”, that is the points in scale-space where
bifurcations take place.

The purpose of this treatment is to develop systematically and comprehensively what can
be said about the behaviour in scale-space of critical points using elementary mathematical
techniques and to convey an intuitive feeling for the qualitative behaviour in the different
generic cases. Detailed calculations will also be given showing the behaviour of blobs in a
set of “characteristic examples”.

The scale-space concept we will deal with is the traditional diffusion based scale-space for
continuous signals developed by Witkin [Wit83a], Koenderink, van Doorn [Koe84, Koe86]
and Babaud et al. [Bab86], which is given by the solution to the diffusion equation, in one
and two dimensions respectively,

∂L

∂t
=
1
2
∂2L

∂x2
(6.1)

∂L

∂t
=
1
2

(
∂2L

∂x2
+

∂2L

∂y2

)
(6.2)

with initial condition L(·; 0) = f(·) where f indicates the original signal.
The chapter is organized as follows: In Section 6.1 we start by analysing the evolution

of non-degenerate critical points as scale changes. This results in drift velocity estimates
useful both for extremum points and straight edges as well as precise definitions of the
notions of extremum paths, saddle paths and scale-space blobs. Then Section 6.2 gives a
classification of the generic behaviour around degenerate critical points, which also leads
to a classification of which blob events are possible in scale-space. Further illustrations to
these results are given in Section 6.3 and Section 6.4 where detailed calculations are carried
out for a set of characteristic examples. In Section 6.5 we study another problem, arising
for instance when defining the concept of effective scale, concerning how the density of local
extrema in a signal in scale-space can be expected to vary with scale. The analysis is carried
out both for continuous and discrete signals and the results from the two approaches are
compared. Finally, Section 6.6 gives a brief summary of the main results.

6.1. Trajectories of Critical Points in Scale-Space

In many situations it is of interest to estimate the drift velocity of critical points when
the scale parameter varies. Such information is useful for instance when estimating the
localization error of feature points due to blurring or when tracking local extrema or related
entities between scales as done for instance by Lifshitz and Pizer [Lif87] or in the scale-
space primal sketch. In non-degenerate situations, that is when the second differential is
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a non-degenerate quadratic form, we can base such an analysis on the implicit function
theorem.

Definition 6.1. (Critical point (2D))
A point (x0, y0) is a critical point of a mapping f : R2 → R if the gradient in this point

(∇f)(x0, y0) =

(
∂f
∂x
∂f
∂y

)
(x0,y0)

(6.3)

is zero. The critical point is said to be non-degenerate if the Hessian matrix in this point

(Hf)(x0, y0) =


 ∂2f

∂x2
∂2f

∂y∂x
∂2f

∂x∂y
∂2f
∂y2




(x0,y0)

(6.4)

is non-singular. Otherwise it is called degenerate.

Lemma 6.2. (Behaviour of critical points in continuous scale-space (2D))
Let L : R2 × R+ → R be the scale-space representation of a two-dimensional continuous
signal given by the diffusion equation (6.2). Assume that at some scale level t0 > 0 the point
(x0, y0) is a non-degenerate critical point for the mapping (x, y) �→ L(x, y; t0).
Then there exist an open set S(x0,y0; t0) ⊂ R2 × R+ and an open interval It0 ⊂ R with

(x0, y0; t0) ∈ S(x0,y0; t0) and t0 ∈ It0 having the following property: To every t1 ∈ It0

there corresponds a unique (x1, y1) such that (x1, y1; t1) ∈ S(x0,y0; t0) and (x1, y1) is a non-
degenerate critical point for the mapping (x, y) �→ L(x, y; t1).
If this (x1, y1) is defined to be r(t1) then r is a continuously differentiable mapping

It0 → R2 such that

• r(t0) = (x0, y0)

• r(t1) is for every t1 ∈ It0 a non-degenerate critical point for the mapping (x, y) �→
L(x, y; t1).

• the derivative of r with respect to t in the point (x0, y0) is given by

dr

dt
(t0) = −1

2

(
∂2L
∂x2

∂2L
∂y∂x

∂2L
∂x∂y

∂2L
∂y2

)−1

(x0,y0)

[(
∂2

∂x2
+

∂2

∂y2

)(
∂L
∂x
∂L
∂y

)]
(x0,y0)

(6.5)

Proof. The result can be proved directly by a straight-forward application of the implicit
function theorem to the current situation. For the sake of clarity we review its formulation
as expressed and proved by Rudin, [Rud76]. We will adapt the following notation: Assume
that ξ ∈ Rn and η ∈ Rm. The derivative of a mapping f : Rn+m → Rn in a point (ξ0; η0)
is given by the n× (n+m) matrix

A =
[
f ′(ξ0; η0)

]
=




∂f1

∂ξ1
· · · ∂f1

∂ξn
∂f1

∂η1
· · · ∂f1

∂ηm
...

. . .
...

...
. . .

...
∂fn
∂ξ1

· · · ∂fn
∂ξn

∂fn
∂η1

· · · ∂fn
∂ηm




(ξ0; η0)

(6.6)
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which can be decomposed into one n× n matrix B and one n×m matrix C, where

B =




∂f1

∂ξ1
· · · ∂f1

∂ξn
...

. . .
...

∂fn
∂ξ1

· · · ∂fn
∂ξn




(ξ0; η0)

and C =




∂f1

∂η1
· · · ∂f1

∂ηm
...

. . .
...

∂fn
∂η1

· · · ∂fn
∂ηm




(ξ0; η0)

(6.7)

Implicit function theorem:
Let f be a continuously differentiable mapping of an open set E ⊂ Rn+m into Rn,
such that f(a; b) = 0 for some point (a; b) ∈ E. Put A =

(
B C

)
= [f ′(a; b)]

and assume that B is invertible. Then there exist open sets U ⊂ Rn+m and
W ⊂ Rm, with (a; b) ∈ U and b ∈ W , having the following property: To every
η ∈ W corresponds a unique ξ such that

(ξ; η) ∈ U and f(ξ; η) = 0 (6.8)

If this ξ is defined to be g(η), then g is a continuously differentiable mapping of
W into Rn satisfying

g(b) = a and f(g(η); η) = 0 (η ∈ W ). (6.9)

The derivative of g with respect to η in b is given by

g′(b) = −B−1C (6.10)

Moreover, we can directly observe that, since here, L is a solution of the diffusion equa-
tion (6.2) for strictly positive t it follows that L and hence also the mapping (x, y) �→
L(x, y; t) will be continuously differentiable (in fact infinitely continuously differentiable)
for all (x, y) and t. Hence, the existence of derivatives of low order will be no problem in
our treatment.

Given the scale-space representation L : R2 × R+ → R, we define an auxiliary function
h : R2 ×R+ → R2 by

h(x, y; t) =

(
h1(x, y; t)
h2(x, y; t)

)
=

(
∂L
∂x (x, y; t)
∂L
∂y (x, y; t)

)
(6.11)

Then a point (x1, y1) is a critical point of the mapping (x, y) �→ L(x, y; t1) if and only if
h(x1, y1; t1) = 0. The derivative of h in (x0, y0; t0) is given by

A =
[
h′(x0, y0; t0)

]
=

(
∂h1
∂x

∂h1
∂y

∂h1
∂t

∂h2
∂x

∂h2
∂y

∂h2
∂t

)
(x0,y0; t0)

=
(

B C
)

(6.12)

where

B =

(
∂h1
∂x

∂h1
∂y

∂h2
∂x

∂h2
∂y

)
(x0,y0; t0)

=

(
∂2L
∂x2

∂2L
∂y∂x

∂2L
∂x∂y

∂2L
∂2y

)
(x0,y0; t0)

(6.13)

C =

(
∂h1
∂t

∂h2
∂t

)
(x0,y0; t0)

=

(
∂2L
∂t∂x
∂2L
∂t∂y

)
(x0,y0; t0)

(6.14)
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In the last equations we have also replaced h1 with ∂L
∂x and h2 with ∂L

∂y . Since (x0, y0) is a non-
degenerate critical point of the mapping (x, y) �→ L(x, y; t0) we have that h(x0, y0; t0) =
0 and that B is non-singular. Hence, we can apply the implicit function theorem and
accordingly there exist open sets U ⊂ R2 × R+ and W ⊂ R with (x0, y0; t0) ∈ U and
t0 ∈ W such that there to every t ∈ W corresponds a unique (x, y) satisfying (x, y; t) ∈ U
and h(x, y; t) = 0. In other words, there exists an open neighbourhood U around (x0, y0; t0)
such that for every t ∈ W there exists a unique critical point (x, y) that we can define as
r(t). The derivative of this mapping r :W → R2 is

dr

dt
(t0) = −B−1C = −1

2

(
∂2L
∂x2

∂2L
∂y∂x

∂2L
∂x∂y

∂2L
∂2y

)−1

(x0,y0; t0)

(
∂2L
∂t∂x
∂2L
∂t∂y

)
(x0,y0; t0)

(6.15)

Moreover, since L satisfies the diffusion equation (6.2) we can replace the derivatives with
respect to t by derivatives with respect to x and y via

∂

∂t
=
1
2

(
∂2

∂x2
+

∂2

∂y2

)
(6.16)

to obtain the result in Equation (6.5).
With the formulation so far, nothing ensures the critical point to be non-degenerate.

Since, however, the Hessian (HL) = ∂2L
∂x2

∂2L
∂y2 − ∂2L

∂x∂y
∂2L
∂y∂x is a continuous function of (x, y; t)

and is non-zero in (x0, y0; t0) it follows that there exists some open neighbourhood V ⊂ U
with (x0, y0; t0) ∈ V where (HL) is non-zero. If we let S(x0, y0; t0) = V and It0 =
r−1(V ) ∩W we are guaranteed that the critical points given by the mapping r : It0 → R2

are non-degenerate. The uniqueness property will be trivially preserved. �

A corresponding result does of course also hold in one dimension. For the sake of
clarity we state the necessary definitions and the result. The proof is obvious from the
two-dimensional case.

Definition 6.3. (Critical point (1D))
A point x0 is a critical point of a mapping f : R → R if the first derivative in this point
df
dx(x0) is zero. The critical point is said to be non-degenerate if the second derivative in this
point d2f

dx2 (x0) is non-zero, otherwise degenerate.

Lemma 6.4. (Behaviour of critical points in continuous scale-space (1D))
Let L : R×R+ → R be the scale-space representation of a one-dimensional continuous signal
given by the diffusion equation (6.1). Assume that at some scale level t0 > 0 the point x0 is
a non-degenerate critical point for the mapping x �→ L(x; t0).
Then there exist an open set S(x0; t0) ⊂ R × R+ and an open interval It0 ⊂ R+ with

(x0; t0) ∈ S(x0; t0) and t0 ∈ It0 having the following property: To every t1 ∈ It0 there
corresponds a unique x1 such that (x1; t1) ∈ S(x0; t0) and x1 is a non-degenerate critical
point for the mapping x �→ L(x; t1).
If this x1 is defined to be r(t1) then r is a continuously differentiable mapping It0 → R

such that

• r(t0) = x0

• r(t1) is for every t ∈ It0 a non-degenerate critical point for the mapping x �→ L(x; t1).
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• the derivative of r with respect to t in the point x0 is given by

dr

dt
(t0) = −1

2

∂3L
∂x3 (x0; t0)
∂2L
∂x2 (x0; t0)

(6.17)

6.1.1. Interpretation: Drift Velocity Estimates

These lemmas express how critical points in general can be expected to behave in scale-
space. As indicated above, one of the most immediate interpretations is that they give
straightforward estimates of the drift velocity of critical points in under scale-space smooth-
ing.

Proposition 6.5. (Drift velocity of critical points in scale-space (2D))
Given the scale-space representation L : R2×R+ → R, assume that for some scale level t0 >
0 the point (x0, y0) is a non-degenerate critical point for the mapping (x, y) �→ L(x, y; t0).
Then the drift velocity of that critical point when the scale parameter changes is given by

dr

dt
(t0) = −1

2

(
∂2L
∂x2

∂2L
∂y∂x

∂2L
∂x∂y

∂2L
∂y2

)−1

(x0,y0)

[(
∂2

∂x2
+

∂2

∂y2

)(
∂L
∂x
∂L
∂y

)]
(x0,y0)

(6.18)

= − 1

2
(

∂2L
∂x2

∂2L
∂y2 − ( ∂2L

∂x∂y )
2
)
(

∂2L
∂y2

∂3L
∂x3 + ∂2L

∂y2
∂3L

∂x∂y2 − ∂2L
∂y∂x

∂3L
∂x2∂y

− ∂2L
∂y∂x

∂3L
∂y3

− ∂2L
∂x∂y

∂3L
∂x3 − ∂2L

∂x∂y
∂3L
∂x3 + ∂2L

∂x2
∂3L

∂x2∂y +
∂2L
∂x2

∂3L
∂y3

)
(x0,y0)

Proof. Follows directly from Lemma 6.1 above. In the last line we have used the well-known
inversion formula for 2× 2 matrices

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
(6.19)

for writing down an explicit expression for the drift velocity in terms of spatial derivatives
of the smoothed grey-level data. �

Note that the drift velocity actually can become infinite when the the Hessian becomes
singular. At such points bifurcations can occur, as will be developed in Sections 6.2-6.4.

Corollary 6.6. (Unbounded drift velocity of critical points)
The drift velocity of critical points may tend to infinity near bifurcations.

These conclusions are of course valid also in one dimension. The expression for the drift
velocity is, however, much simpler in this case:

Proposition 6.7. (Drift velocity of critical points in scale-space (1D))
Given the scale-space representation L : R × R+ → R, assume that for some scale level
t0 > 0 the point x0 is a non-degenerate critical point for the mapping x �→ L(x; t0). Then
the drift velocity of that critical point as the scale parameter changes is given by

dr

dt
(t0) = −1

2

∂3L
∂x3 (x0; t0)
∂2L
∂x2 (x0; t0)

(6.20)
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This estimate can easily be extended to comprise edges as well. For simplicity, assume that
the edge under study is sufficiently long and sufficiently close to a straight line such that
a one-dimensional analysis is a valid approximation. Further, without loss of generality
assume that the coordinate system is oriented such that the edge is perpendicular to the
x-axis. Then, we can use for instance non-maximum suppression to define the location of
the edge as those points where the first derivative along the gradient direction (that is here
the x-direction) has a local maximum. In other words, the edge is defined by those points
where the second derivative along the gradient direction is zero. Now, since under these
conditions, critical points are given by zeros in the first derivative and edge points by zeros
in the second derivative, we can apply Proposition 6.5 to this situation just by replacing L
by ∂L

∂x . Hence,

Proposition 6.8. (On the drift velocity of straight edges in scale-space (2D))
Given the scale-space representation L : R2 × R+ → R, assume that for some scale level
t0 > 0 the point (x0, y0) is an edge point along a long straight line. Moreover, assume that
the coordinate system is aligned to the edge such that the x-direction is perpendicular to
the edge and further that the third derivative in this direction is non-zero. Then the drift
velocity of the edge point as the scale parameter changes is given by

dr

dt
(t0) = −1

2

∂4L
∂x4 (x0, y0; t0)
∂3L
∂x3 (x0, y0; t0)

(6.21)

A similar idea, although with just an approximate derivation, has been expressed by Zhuang
and Huang [Zhu86].

This analysis is applicable also to edges given by zero-crossings, provided that the second
derivative along the edge direction (here the y-direction) is sufficiently small to be neglected.
Trivially, an identical result holds for the edges of a one-dimensional signals. Note also,
that we have not made any specific assumptions about the shape of the intensity profile
perpendicular to the edge. Hence, the result is valid for any configuration that can be
described by a one-dimensional analysis.

Corollary 6.9. (Unbounded drift velocity of straight edges)
The drift velocity of edges may tend to infinity when two adjacent parallel edges are just
about to merge into one.

This result can, for instance, be used for explaining a recent observation by Zhang and
Bergholm [Zha91], where they noted that configurations consisting of two adjacent edges,
a so-called “staircase edge” — see Figure 6.1, can lead to a rapid edge drift when the scale
changes, which in turn violates the assumptions behind the step size estimate used in the
edge focusing algorithm [Ber87]. In this situation the third derivative is in fact very close
to zero.

Finally, regarding the drift velocity estimates for local extrema and edges, let us point out
that although the drift velocity momentarily may tend to infinity, the total drift (integrated
over a scale interval of finite length) will always be finite. What the results mean, is that
it is not possible to derive any uniform upper bound for the drift velocity of these features.
Given any scale interval of length ∆t and any distance ∆x it is always possible to find a
signal such that the total drift of a feature during the time ∆t exceeds ∆x. This property
emphasizes the need for algorithms based on adaptive sampling along the scale direction.
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Figure 6.1. (a) A “staircase edge” can lead to a rapid edge drift. This behaviour can be explained
by noting that (b) after sufficient amount of blurring the configuration will tend to a “diffuse step
edge” and by studying the derivatives of (c) the original signal (d) the signal after strong smoothing.
(e) By considering the paths the zero-crossings of the Laplacian will describe as scale changes it is
easy to realize that when the edge points tend to each other the drift velocity will tend to infinity.
See also Sections 3-5 for a more detailed description of the behaviour at bifurcation situations, in
particular Section 5.2 concerning this configuration.

6.1.2. Interpretation: Extremal Paths

Another consequence of Lemma 6.1 and Lemma 6.2 is that a non-degenerate critical point
existing at a certain level of scale in general can be traced to a similar critical point both at
a slightly coarser and a slightly finer scale. By continuation, such local paths obtained from
the implicit function theorem can be extended to curves as long as the Hessian determinant
remains non-zero. Hence, we get trajectories of critical points that in general will be regular
curves, delimited from above and below by some scale values, tmin and tmax, at which the
Hessian is zero and the critical point hence degenerate. One easily shows, that the type of
critical point will not change along such a path, see below. Therefore, we have:

Proposition 6.10. (Extremal paths and saddle paths (2D))
Given the scale-space representation L : R2×R+ → R, assume that for some scale level t0 >
0 the point (x0, y0) is a non-degenerate maximum (minimum/saddle) point for the mapping
(x, y) �→ L(x, y; t0). Then there exists a unique trajectory of maximum (minimum/saddle)
points r : It0 → R2 with t0 ∈ It0 such that r(t0) = (x0, y0) and that r(t) for every t is a local
maximum (minimum/saddle) point for the mapping (x, y) �→ L(x, y; t). This trajectory is
called the extremal (extremal/saddle) path through (x0, y0; t0) and is denoted by M+

(x0,y0; t0)

(M−(x0,y0; t0)/S(x0,y0; t0)). The associated scale interval, where the path is defined, is delimited
by a minimum scale tmin and a maximum scale tmax. At those scales the critical paths end
up in degenerate critical points unless the minimum scale is zero or the maximum scale
infinite. At all interior points the associated critical points are non-degenerate,

Proof. The existence of trajectories of critical points is evident from Lemma 6.1 and
the previous discussion about continuation. What remains to verify is that the nature of
the critical point does not change under scale-space smoothing. It is obvious that a local
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maximum (minimum) cannot be transformed into a saddle point or vice versa, because if the
Hessian would change sign then it would first become zero, since it is a continuous function
of the scale parameter. However, then, by definition, the trajectory would be cut off by a
degenerate critical point into two separate segments.

Moreover, a maximum point cannot be transformed into a minimum point or opposite,
since then (at least) the partial derivative ∂2L

∂x2 would need to change sign. However, such
a sign change implies that this derivative would first become zero (because of continuity),
which in turn means that the quadratic form would become indefinite, i.e. the point would
get transformed into a saddle point. Above we have shown that such a transition has to go
through a degenerate critical point which means that the trajectory would be cut off into
at least two parts. �

The one-dimensional situation is similar, although simpler, since there are no stable
saddle points in this case.

Proposition 6.11. (Extremal paths (1D))
Given the scale-space representation L : R×R+ → R, assume that for some scale level t0 > 0
the point x0 is a non-degenerate maximum (minimum) point for the mapping x �→ L(x; t0).
Then there exists a unique trajectory of maximum (minimum) points r : It0 → R with
t0 ∈ It0 such that r(t0) = x0 and r(t) is for every t local maximum (minimum) point for
the mapping x �→ L(x; t). This trajectory is called the extremal path through (x0; t0) and
is denoted by M+(x0; t0) (M−(x0; t0)). The associated scale interval, where the path is
defined, is delimited by a minimum scale tmin and a maximum scale tmax. At those scales
the critical paths end up in degenerate critical points unless the minimum scale is zero or
the maximum scale infinite. At all interior points the associated extremum points are non-
degenerate,

6.1.3. Formal Definition of Scale-Space Blob

The treatment of extremal paths above allows for a more formal definition of scale-space
blobs — the basic primitives in the scale-space primal sketch. In Chapter 5 grey-level
blobs were defined as local extrema with extent and scale-space blobs in turn as families
of those. More precisely, a grey-level blob of a two dimensional signal was given by a pair
consisting of a local extremum and a saddle point and in one dimension by a maximum and
minimum point, implying a one-to-one correspondence between local extrema and grey-level
blobs. The previous definition of scale-space blob was, however, intuitive: “similar blobs at
adjacent levels of scale were linked into scale-space blobs”. The linking process proceeded
until no such linking could be performed, i.e., until a bifurcation was encountered. The idea
behind this construction was to identify and group similar features at different scales into
higher order and unified objects.

The notion of extremal paths makes it possible to express this linking criterion in a more
formal way. Consider the two-dimensional case and study a non-degenerate local extremum
point at some level of scale. Then, by Proposition 6.8 there exists a unique trajectory of local
extrema associated with this point such that all points along this path are local extrema
of the same kind and this path is delimited by two scales, tmin and tmax. At all interior
scales of this interval the associated extremum points will be non-degenerate, while at the
end points they will, by definition, be degenerate. The scale-space blob associated with the
local extremum point we originally started with, will be defined as a subset of the union of
all grey-level blobs corresponding to the local extrema along the extremum path through
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the original extremum point. To be more precise we first define a natural concept:

Definition 6.12. (Delimiting saddle point (2D))
Let E be an extremum point and S a saddle point together defining the extent of a grey-level
blob. Then S is said to be the delimiting saddle point of E, denoted Sdelimit(E).

The delimiting saddle points associated with the extremum points of an extremum path
need of course not all be on the same saddle path, but may jump between different saddle
paths. Generically this occurs at a discrete set of scales at which the extremum point and
the (two) involved saddle points are non-degenerate.

If the delimiting saddle point (or the extremum point) is involved in a bifurcation then
we say that a blob event has occurred for the scale-space blob associated with (the segment
of) the extremum path. It is therefore natural to proceed with the linking as long as the
extremum points and their delimiting saddle points are non-degenerate critical points and
to stop it when either of the critical points degenerates. Hence, a scale-space blob will be
given as the union of the grey-level blobs along a subset [t′min, t

′
max] of the previous scale

interval [tmin, tmax]. In order to obtain a closed object it might however be convenient to
define the scale-space blob as the closure of the previously suggested set. To summarize:

Definition 6.13. (Scale-space blob (2D))
Given the scale-space representation L : R2×R+ → R of a two-dimensional signal f : R2 →
R, let r : [tmin, tmax] → R2 be an extremal path as formulated in Proposition 6.8 such that
r(tmin) and r(tmax) are degenerate critical points. Further let [t′min, t

′
max] ⊂ [tmin, tmax] be

a scale interval where for all interior scales the delimiting saddle points of the extremum
points along the extremum path are non-degenerate and at the end points, either of r(t′min)
and Sdelimit(r(t′min)) and also either of r(t

′
max) and Sdelimit(r(t′max)) are degenerate critical

points. Then the scale-space blob associated with the segment r̄ : [t′min, t
′
max] → R2 of the

extremal path is defined as the set

Sblob(r) = Closure({ (x, y, z; t) ∈ R2 ×R+ ×R :
(t′min < t < t′max) ∧ ((x, y, z) ∈ Gblob(r(t)))}) (6.22)

where the symbol Gblob(r(t)) denotes the grey-level blob associated with the extremum point
r(t).

It is natural to define the support region of the scale-space blob as

Ssupport(r) = Closure({ (x, y; t) ∈ R2 ×R+ :
(t′min < t < t′max) ∧ ((x, y) ∈ Gsupport(r(t)))}) (6.23)

One easily verifies that this construction implies that

Ssupport(r) = {(x, y; t) ∈ R2 ×R+ : (x, y, z; t) ∈ Sblob(r) for some z} (6.24)

In most figures presented in earlier papers it is this projection of the four-dimensional scale-
space blob that has been illustrated.

Strictly, in this original coordinate system the scale-space blob volume is given by

Svolume(r) =
∫ ∫ ∫ ∫

Sblob(r)
dxdydzdt =

∫ t′max

t=t′min

Gvolume(r(t))dt (6.25)
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where Gvolume(r(t)) is the grey-level blob volume of the grey-level blob associated with
the extremum point r(t)). However, when the scale-space blob volume is to be used as a
significance measure in the scale-space primal sketch it turns out that some transformations
need to be done in order to enable a uniform treatment of structures over scale. The aim
with that normalization is to achieve a significance measure that neither favours fine scales
to coarse scales nor the opposite. Therefore, we define a normalized scale-space blob volume
as

Svolume,norm(r) =
∫ t′max

t=t′min

Vtrans(Gvolume(r(t)); t)d(τeff(t)) (6.26)

where teff : R → R is a transformation function mapping the ordinary scale parameter
into a transformed scale parameter called effective scale and Vtrans : R × R+ → R is a
corresponding transformation function normalizing the grey-level blob volumes into a more
uniform behaviour over scale, see Chapter 5 for details.

For one-dimensional signals the treatment is similar and a scale-space blob associated
with a segment of an extremum path is defined as follows: We express the definition for
bright blobs only. The case with dark blobs is similar.

Definition 6.14. (Delimiting minimum point (bright blobs 1D))
Let M+ be a maximum point and M− a minimum point together defining the extent of a
bright grey-level blob. Then M− is said to be the delimiting minimum point of M+, denoted
M−delimit(M

+).

Definition 6.15. (Scale-space blob (bright blobs in 1D))
Given the scale-space representation L : R×R+ → R of a one-dimensional signal f : R → R,
let r : [tmin, tmax] → R be a maximum path as formulated in Proposition 6.9 such that
r(tmin) and r(tmax) are degenerate critical points. Further let [t′min, t

′
max] ⊂ [tmin, tmax] be

a scale interval where for all interior scales the delimiting minima of the maximum points
along the maximum path are non-degenerate and at the end points, either of r(t′min) and
M−delimit(r(t

′
min)) and also either of r(t

′
max) and M−delimit(r(t

′
max)) are degenerate critical

points. Then the scale-space blob associated with the segment r′ : [t′min, t
′
max] → R of the

extremal path is defined as the set

Sblob(r) = Closure({(x, z; t) ∈ R×R×R+ : (t′min < t < t′max) ∧ ((x, z) ∈ Gblob(r(t)))})
(6.27)

where the symbol Gblob(r(t)) denotes the grey-level blob associated with the extremum point
r(t).

It should be obvious how the related entities, support region and scale-space blob volume,
should be defined in an analog manner.

6.2. Behaviour Near Singularities: Classification

The results so far describe the evolution properties in scale-space of non-degenerate criti-
cal points. When we want to investigate the behaviour of degenerate critical points, the
approach with the implicit function theorem is no longer applicable, since at those points
the Hessian matrix is singular. One can show that the critical points of a solution to the
diffusion equation will, in general, be non-degenerate and that, generically, critical points
will be degenerate at isolated points only.
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Useful methods for analysing the behaviour around these points, where bifurcations can
occur, can be obtained from a branch of mathematics known as singularity or catastrophe
theory. In this treatment we will make use of some existing results from this field to express
what kind of behaviour can be expected at the singularities in the scale-space representation
of a one-dimensional or two-dimensional signal. We will not make any attempt to summarize
the full theory behind the important theorems, but instead just briefly review some of the
definitions and results of highest relevance to this application. We refer the reader to e.g.
Poston and Stewart [Pos78], Gibson [Gib79] or Bruce and Giblin [Bru84] for an application-
oriented introduction and to e.g. Arnold et al. [Arn81, Arn85, Arn88], Golubitsky and
Schaeffer [Gol85] or Lu [Lu76] for a more rigorous treatment of the subject.

6.2.1. Background

The main purpose with the analysis in singularity or catastrophe theory is to deal with the
qualitative behaviour of functions in the neighbourhoods of points where singularities occur.
An important concept in this context is the notion of equivalence. Two functions and or
two families of functions are said to be equivalent if they show the same kind of qualitative
behaviour. More precisely, the notion of equivalence of means that functions (or families of
functions) are similar up to a diffeomorphic change of variables:

Equivalence of functions:
Two functions f1, f2 : Rn → R are said to be (right) equivalent around 0 if there
is a local diffeomorphism y : Rn → Rn around 0 and a constant γ such that

f2(x) = f1(y(x)) + γ (6.28)

in some neighbourhood around the point 0.

Equivalence of families of functions:
Two r-parameter families of functions L1, L2 : Rn × Rr → R are said to be
equivalent if there exist

• a diffeomorphism e : Rr → Rr

• a smooth map y : Rn × Rr → Rn such that for each s ∈ Rr the map
ys : Rn → Rn defined by ys(x) = y(x; s) is a diffeomorphism

• a smooth map γ : Rr → R

defined in a neighbourhood around the point 0 such that

g(x, s) = f(ys(x), e(s)) + γ(s) (6.29)

for all (x; s) ∈ Rn ×Rr in that neighbourhood.

In other words, two r-parameter families of functions are treated as equivalent if there exists
a set of diffeomorphisms such that one of the families can be smoothly transformed into the
other one. This notion of equivalence implies that the singularity sets of the families, which
are the sets of points where the first differential with respect to the state variable x ∈ Rn is
zero,

SL1 = {(x; u) ∈ Rn ×Rr : (DxL1)(x; u) = 0} (6.30)

SL2 = {(x; u) ∈ Rn ×Rr : (DxL2)(x; u) = 0} (6.31)
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will also be equivalent sets up to a diffeomorphic change of variables. In this sense the
concept of equivalence can be seen as capturing the property of qualitative similarity.

The equivalence concept is closely linked to the concept of structural stability. Intuitively
a function or a family of functions is structurally stable if a sufficiently small perturbation
does change the qualitative behaviour of the function or the family. This property is more
formally expressed in terms of transversality:

Transverse intersection:
Let X and Y be affine subspaces of Rn of dimensions s and t respectively. They
are said to meet transversely if either

• their intersection X ∩ Y is empty, or

• s+ t ≥ n and dim(X ∩ Y ) = s+ t− n

Two submanifolds of Rn meet transversely at a given point provided either they
do not meet or their tangent affine hyperplanes meet transversely.

One of the fundamental results in singularity theory is that the typical qualitative behaviour
of families given by a small number of parameters can be expressed completely by the
qualitative behaviour of a finite set of families. A famous theorem by Thom classifies the
generic behaviour of families of functions with the number of parameters r ≤ 4 into seven
elementary catastrophes. We cite a summarizing result as expressed by Poston and Stewart
[Pos78]:

Thom’s classification theorem:
Typically an r-parameter family Rn×Rr → R of smooth functions Rn×Rr → R,
for any n and r ≤ 4, is structurally stable and is in every point (locally) equivalent
to one of the following forms:

• non-critical: x1

• non-degenerate critical, or Morse: x2
1+ ...+x2

i −x2
i+1− ...−x2

n (0 ≤ i ≤ n)

• degenerate critical — catastrophe
– fold (A2): x3

1 + u1x1 + (M)
– cusp (A3): ±(x4

1 + u2x
2
1 + u1x1) + (M)

– swallowtail (A4): x5
1 + u3x

3
1 + u2x

2
1 + u1x1 + (M)

– butterfly (A5): ±(x6
1 + u4x

4
1 + u3x

3
1 + u2x

2
1 + u1x1) + (M)

– elliptic umbilic (D−4 ): x
2
1x2 − x3

2 + u3x
2
1 + u2x2 + u1x1 + (N)

– hyperbolic umbilic (D+
4 ): x

2
1x2 + x3

2 + u3x
2
1 + u2x2 + u1x1 + (N)

– parabolic umbilic (D5): ±(x2
1x2+x4

2+u4x
2
2+u3x

2
1+u2x2+u1x2)+(N)

The symbols A2, A3, etc. denote the types of singularities of which the families constitute
generic unfoldings while (M) and (N) indicate Morse functions on the forms

(M) = x2
2 + ...+ x2

i − x2
i+1 − ...− x2

n (2 ≤ i ≤ n) (6.32)

(N) = x2
3 + ...+ x2

i − x2
i+1 − ...− x2

n (2 < i ≤ n) (6.33)

which must be added on to the previously mentioned expressions to match up the dimen-
sions. This is in strong analogy with the Morse splitting lemma, which states a singularity
at a degenerate critical point can be separated into two components:
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Splitting lemma for families:
Let L : Rn × Rr → R be smooth. Denote a point in Rn × Rr by (x; u) =
(x1, ..., xn, u1, ..., ur). Suppose that the Hessian

HL =

{
∂2L

∂xi∂xj

}
1≤i,j≤n

(6.34)

has corank m at (x; u) = 0. Then L is equivalent to a family of the form

L̃(y1(x; u), ..., ym(x; u), u)± y2
m+1 ± ...± y2

n (6.35)

If the Hessian is non-degenerate, i.e. has corank zero, this result reduces to the Morse
Lemma for families, containing the ordinary Morse lemma as a special case:

Morse lemma for families:
Let L : Rn ×Rr → R be smooth and assume that the Hessian

HL =

{
∂2L

∂xi∂xj

}
1≤i,j≤n

(6.36)

is non-degenerate at (x; c) = 0. Then L is equivalent to a family of the form

±y2
1 ± y2

2 ± ...± y2
n (6.37)

If the number of parameters in the family is increased to five, then a few more catas-
trophes, not mentioned in Thom’s original treatment, will also be possible, see e.g. Poston
and Stewart [Pos78]:

– wigwam (A6) x7
1 + u5x

5
1 + u4x

4
1 + u3x

3
1 + u2x

2
1 + u1x1 + (M)

– second elliptic umbilic (D−6 ): x2
1x2−x5

2+u5x
3
2+u4x

2
2+u3x

2
1+u2x2+u1x1+(N)

– second hyperbolic umbilic (D+
6 ): x

2
1x2+x5

2+u5x
3
2+u4x

2
2+u3x

2
1+u2x2+u1x1+(N)

– symbolic umbilic (E6): ±(x3
1+x4

2+u5x1x
2
2+u4x

2
2+u3x1x2+u2x2+u1x1)+ (N)

According to Poston and Stewart [Pos78] the latter four cases contain geometry not signif-
icantly altered from the previous cases, however comprising interchanges between maxima
and minima that may be important in certain situations. Material on the classification of
singularities of higher order can be found in for instance Arnold et.al. [Arn81, Arn85, Arn88].

6.2.2. Application to Scale-Space Representation: One-Parameter Families

Treating the scale-space embedding of a two-dimensional signal, we can restrict the treat-
ment to one-parameter families. Then the only possible catastrophe will be the one of fold
type. To summarize,

Thom’s classification theorem applied to one-parameter families:
Typically a one-parameter family Rn×R → R of smooth functions Rn → R, for
any n, is structurally stable and is in every point (locally) equivalent to one of
the following forms:

• non-critical: x1
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• non-degenerate critical, or Morse: x2
1+ ...+x2

i −x2
i+1− ...−x2

n (0 ≤ i ≤ n)

• degenerate critical — fold catastrophe (A2): x3
1 + u1x1 ± x2

2 ± ...± x2
n

The A2 type of singularity in the fold singularity means that the first and second derivatives
in one direction are zero while the third derivative in that direction is non-zero. At the
singularity point the function is locally equivalent to the function x3 ± y2 and from the
concept of equivalence between families of functions it follows that any transversal unfolding
through a singularity of this type will be equivalent to the family G1(x, y; u) = x3+ux±y2,
where x and y should be interpreted as state variables and u serve as the parameter.

Therefore, if one is interested in the behaviour of the critical points of a signal during the
evolution of the diffusion equation, it should in principle be sufficient to study this situation.
For two-dimensional signals the singularity set is given by the solutions of

∂G1

∂x
(x, y; u) = 3x2 + u = 0 (6.38)

∂G1

∂y
(x, y; u) = ±2y = 0 (6.39)

and the bifurcation set by the solution of

∂G1

∂x
(x, y; u) = 3x2 + u = 0 (6.40)

∂G1

∂y
(x, y; u) = ±2y = 0 (6.41)

∂2G1

∂x2
(x, y; u) = 6x = 0 (6.42)

We easily observe that the singularity set is given by (x1(u), y1(u)) = (−
√
−u

3 , 0) and

(x2(u), y2(u)) = (+
√
−u

3 , 0) (u ≤ 0) and that the bifurcation is an isolated point (x, y; u) =
(0, 0; 0). From the sign of the Hessian determinant |(HG1)|(x, y; u) = ±12x it follows that
(x1(u), y1(u)) are saddle/maximum points and (x2(u), y2(u)) are minimum/saddle points
for every u < 0. At u = 0 the points merge and then disappear, see also Figure 6.2.

By similar arguments the scale-space representation of a one-dimensional signal will at a
bifurcation point be locally equivalent to the unfolding G1(x; u) = x3+ ux. The same type
of calculations as above show that in this case the fold catastrophe instead describes the
merging of a maximum point and a minimum point with increasing u, see also Figure 6.2.
To summarize,

Corollary 6.16. (Generic behaviour at singularities in scale-space (2D))
The typical behaviour to be expected at singularities in a one-parameter family of two-
dimensional continuous signals are annihilations or creations of pairs of local extrema and
saddle points.

Corollary 6.17. (Generic behaviour at singularities in scale-space (1D))
The typical behaviour to be expected at singularities in a one-parameter family of one-
dimensional continuous signals are annihilations or creations of pairs of local maxima and
local minima.
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Observe in this context that in the scale-space representation of a one-dimensional signal the
number of local extrema cannot increase when the scale parameter increases. This means
that creations of pairs of local maxima and minima with increasing scale are impossible if
the special structure of the diffusion equation is taken into account. However, as will be
demonstrated below, creations of saddle-extremum pairs with increasing scale are possible
in the scale-space representation of a two-dimensional signal.

Figure 6.2. (a) The generic behaviour at a singularity of a one-parameter family of two-dimensional
functions is described by the unfolding G1(x, y; u) = x3+ux± y2. The singularity set of this family,
that is the set of critical points to the mapping given by x �→ G1(x, y; u), describes an extremum point
and a saddle point that merge along a parabola and then disappearing. (b) For a one-parameter
family of one-dimensional functions the behaviour is instead given by G1(x; u) = x3 + ux. The
singularity set corresponds to a similar merge of a maximum point and a minimum point.

6.2.3. Interpretations

By comparisons with earlier theoretical and experimental results we know that these corol-
laries describe the qualitative behaviour of critical points in scale-space. However, when
to give a more detailed interpretation of those results there is one apparent complication.
From the equivalence concepts we know that there exist diffeomorphisms such that the sin-
gularity set of a solution to the one-dimensional diffusion equation around a bifurcation
point (x0; t0) in scale-space can be transformed into the singularity set of G1 around (0; 0).
However, there is obviously some directional information lost in the equivalence concept:
In which direction should we interpret the u parameter? If we treat u and t as increasing
simultaneously, then the situation describes a local minimum and a local maximum merg-
ing with increasing t. On the other hand, if u runs in a direction opposite to t then the
interpretation would be that a pair with a local maximum and a local minimum would be
created when t increases. However, as indicated above, we know from the scale-space theory
for continuous signals that the latter phenomenon is impossible, since the number of local
extrema in a solution to the one-dimensional diffusion equation cannot increase when the
scale parameter increases.

The diffusion equation apparently introduces a directional preference to its solutions
(due to the causality requirements), which makes such creations impossible. How should
this information be incorporated into the analysis of the singularities in scale-space? One
way of avoiding the previous blindness of the equivalence concept to the structural property
of the diffusion equation is by requiring the previous polynomial unfoldings in Thom’s
transversality lemma to satisfy the diffusion equation. Then we are ensured that artifacts
cannot be introduced. In the one-dimensional case this can be accomplished by interpreting
the parameter u as a rescaled scale parameter, i.e. by replacing u by 3t. Then the unfolding
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of a one-dimensional signal would be1,

G̃1(x; t) = x3 + 3xt (6.43)

which satisfies the one-dimensional diffusion equation. Obviously, with this interpretation,
creations of pairs of local maxima with increasing t are no longer possible. Moreover, since
the family is still on the generic form it seems as if we could treat it as a general representative
of the solutions to the diffusion equation and the only possible bifurcation events would be
pairs of local maxima and minima merging with increasing scale.

On the other hand, if similar heuristic arguments are applied to the two-dimensional
case, the corresponding unfolding would instead be

G̃1(x, y; t) = x3 + 3xt± (y2 + t) (6.44)

We have added a t term to the previous expression for G1 in order to have G̃1 satisfying the
diffusion equation. Adding such a term does not affect the equivalence concept, since the t
term can be treated as a constant with respect to the state variables (x, y) and, hence, be
included in the γ term in the definition of equivalence of families of functions.

However, there is more complexity in the two-dimensional situation, since in this case,
pairs of extremum and saddle points actually can be created with increasing scale, see e.g.
the example in Figure 6.4. Obviously this kind of phenomenon is not captured by the
unfolding in (6.44). Therefore, the directional constraint on the parameter u in terms of t
implies that we can no longer treat the catastrophe of fold type as exhausting all possible
types of behaviours at a singularity in a solution to the diffusion equation.

One way of addressing this problem could possibly be by trying to develop results similar
to Thom’s classification theorem, which instead of being expressed in terms of the ordinary
standard basis of polynomials could be expressed in terms of polynomials satisfying the
diffusion equation. A possible set of candidates for such a treatment in the two-dimensional
case is listed in Appendix A.5.1.

Another approach is to use the previous classifications in Corollary 6.10 and Corol-
lary 6.11 to state which configurations are possible in general one-parameter families of
functions. Then, after this classification has been performed the special structure of the
diffusion equation can be taken into account for judging which of the resulting possibili-
ties apply to the scale-space representation when the directional constraint of the diffusion
equation has been added. Such a treatment will be the subject of the next section.

6.2.4. Classification of Blob Events at Bifurcations in Scale-Space

A natural question that arises in connection with the scale-space primal sketch concerns
which types of blob events are possible in bifurcation situations. Since scale-space blobs
are defined in terms of paths of critical points, the behaviour of a scale-space blob at a
singularity will be solely determined by the behaviour of those paths during a short scale
interval around the bifurcation moment.

Compared to the previous treatment where we were analysing the behaviour of critical
points only there is, however, an additional factor that must be taken into account when
dealing with scale-space blobs, namely the fact that saddle points, delimiting the extent of
grey-level blobs involved a bifurcation, can be associated with other grey-level blobs as well.
This leads to natural coupling between scale-space blobs sharing the same saddle path (of
delimiting saddle points) in a neighbourhood of a bifurcation. We define:

1Analyses of this type have been carried out by e.g. Koenderink and van Doorn [Koe84, Koe86].

124



Definition 6.18. (Non-shared saddle path (2D))
Given a saddle path involved in a structurally stable bifurcation of a two-dimensional signal
we say that the saddle path is non-shared before (after) the bifurcation if there exists some
scale interval before (after) the bifurcation during which every saddle point of the saddle
path is not contained in more than one grey-level blob. Otherwise, the saddle path is said to
be shared.

More formally, a saddle path is called non-shared before (after) a bifurcation at tbifurc

if there exists some ε > 0 such that for all scales in the interval t ∈]tbifurc − ε, tbifurc[
(t ∈]tbifurc, tbifurc + ε[) the saddle point of the saddle path at that scale does not belong to
more than one grey-level blob, see also Figure 6.3. Another way to express this property is
that a shared saddle point is the delimiting saddle point of two (or more) grey-level blobs
of the same polarity, while a non-shared saddle point either is the delimiting saddle point
of one or no grey-level blobs.

Figure 6.3. Illustration of the definition of grey-level blob for a two-dimensional signal. Every local
extremum gives rise to a blob and the extent of the blob is given by a saddle point. A saddle point
is said to be shared if it is contained in more than one grey-level blob, i.e. if it is a delimiting saddle
point of two (or more) grey-level blobs of the same polarity.

This definition implies that a non-shared saddle path participating in, say, an extremum-
saddle pair disappearing with increasing scale describes an isolated blob that disappears.
We call this event a blob annihilation. On the other hand, a shared saddle path involved
in a similar event describes a blob disappearing under the influence of a neighbour blob, a
blob merge. Similarly, a shared saddle point taking part in an extremum-saddle pair that is
created with increasing scale describes a blob split, while a non-shared saddle path partici-
pating in a similar event describes a blob creation. From the classification of the canonical
behaviour of the critical points of one-parameter families of functions in Corollary 6.10 we
therefore have: (Below, the term annihilation (creation) of an extremum-saddle pair will
mean that a pair consisting of an extremum path and a saddle path disappears (appears)
when the scale parameter increases.)

Theorem 6.19. (Classification of scale-space blob events (2D))
In the scale-space representation of two-dimensional continuous signal, the following blob
events are possible at a structurally stable bifurcation:

• blob annihilation — annihilation of an extremum-saddle pair where the saddle path is
non-shared before the bifurcation.

• blob merge — annihilation of an extremum-saddle pair where the saddle path is shared
with another scale-space blob before the bifurcation.

125



• blob split — creation of an extremum-saddle pair where the saddle path is shared with
another scale-space blob after the bifurcation.

• blob creation — creation of an extremum-saddle pair where the saddle path is non-
shared after the bifurcation.

These four cases constitute the definitions of the terms annihilation, merge, split and creation
with respect to grey-level blobs and scale-space blobs in the two-dimensional case.

Proof. From Corollary 6.10 we have that the typical behaviour at singularities are pairwise
annihilations and creations of extremum-saddle pairs. Combined with the definition of
shared saddle path this means that the class of possible blob events is restricted to the
given four types, provided that we deal with structurally stable bifurcations.

What remains to verify is that all these four types can be instantiated and that they also
are structurally stable. It is well-known that blob annihilations and blob merges can take
place in scale-space, see also Section 6.4 for illustrative examples. The fact that splits can
occur is known as well, see e.g. the example given by Lifshitz and Pizer [Lif87] illustrated in
Figure 6.4(a) and also Figure 3.1. The latter configuration can also be modified to describe
a blob creation as well, if the higher one of the two peaks is replaced by a double peak,
see Figure 6.4(b). Then the extent of the two smaller blobs at the higher peak will be
delimited by the grey-level in the valley between them, which means that when the narrow
ridge has eroded and given rise to the creation of a saddle-extremum pair the saddle path
in the created saddle-extremum pair will not be shared by any other blob. �

Figure 6.4. (a) Example illustrating the property that new local extrema can be created with
increasing scale in the scale-space representation of a two-dimensional signal. Interpreted in terms of
blobs the configuration describes a blob split. (b) By modifying the example slightly (by replacing
the higher one of the two peaks with a double peak) one realizes that blob creations can occur as
well. The base levels of the different grey-level blobs have been indicated.

The assumption of structural stability is important in this context, since otherwise,
there is an infinite variety of possible events. For instance, three or more blobs could merge
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Figure 6.5. Illustration of the various events possible for the scale-space blobs of a two-dimensional
signal: (a) blob annihilation (b) blob merge (c) blob split (d) blob creation.

into one blob at the same moment. Such events will however be unstable, since a slight
perturbations of the input signal would perturb such a simultaneous merge of three blobs
into a sequence of two successive pairwise merges. Note in this context that for Morse
functions, see e.g. Arnold [Arn81], no pair of critical points will have the same values. In
other words, for generic functions all critical points will be distinct. Although, by definition,
the grey-level function will not be Morse at a bifurcation, we can, in general, assume this
latter property to hold at bifurcations, which means that situations with three or more blobs
simultaneously merging into one can be expected not to occur.

Algorithmically, this means that an encountered actual situation with, say, three blobs
at a fine scale seeming to belong all to the same blob at a coarser scale, can in general be
decomposed into transitions of the four primitive types. This principle forms the idea behind
the automatic scale refinement algorithm to be described in Chapter 7, which essentially
refines the scale sampling until all relations between scale-space blobs in scale-space can be
decomposed into events of the previously listed types.

For one-dimensional signals the analogies of Definition 6.7 and Proposition 6.12 will be
as follows: We express the formulations for bright blobs only. The case with dark blobs is
similar.

Definition 6.20. (Non-shared extremum path (bright blobs in 1D))
Consider the case with bright blobs in the scale-space representation of a one-dimensional
signal. Given an extremum path of minimum points involved in a structurally stable bifur-
cation we say that the extremum path is non-shared before (after) the bifurcation if there
exists some scale interval before (after) the bifurcation during which every minimum point
of the extremum path is contained only one bright grey-level blob. Otherwise the saddle path
is said to be shared.

Theorem 6.21. (Scale-space blob events (bright blobs in 1D))
Typically, in the scale-space representation of one-dimensional continuous signal, the fol-
lowing blob events are possible at a structurally stable bifurcation:

• blob annihilation — annihilation of a minimum-maximum pair where the extremum
path of minimum points is non-shared before the bifurcation.

• blob merge — annihilation of an extremum-saddle pair where the extremum path of
minimum points is shared with another bright scale-space blob before the bifurcation.
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Proof. From Corollary 6.11 we have that the typical behaviour at singularities in a
one-parameter family of functions are pairwise annihilations and creations of minimum-
maximum pairs. However, as discussed above the number of local extrema cannot increase
with scale in the scale-space representation of a one-dimensional signal if follows that new
minimum-maximum pairs cannot arise with increasing scale. This means that blob splits
and blob creations are impossible in the one-dimensional case because of the causality re-
quirements. �

These bifurcations between scale-space blobs define the hierarchical relations across
scales between scale-space blobs at different scales in the tree-like representation scale-
space primal sketch. The generated data structure will, however, not constitute a strict tree
because of the blob annihilations and the blob splits.

6.3. Behaviour Near Singularities: Examples in 1D

In the previous section we classified the qualitative behaviour at bifurcation points. In
this section we will illustrate the quantitative behaviour at singularities and give examples
demonstrating how the blob descriptors vary with scale for a set of characteristic examples.

We will start by exploring the one-dimensional situation in more detail and show how one
with very simple techniques can arrive at an expression similar to the generic representative
of the fold unfolding (6.43) just by studying a third order Taylor expansion of the scale-space
embedding. Then we will investigate the consequences of some of the other unfoldings in
Thom’s classification theorem with application to grey-level blobs and scale-space blobs.

Since the main intention with this section is to mediate an intuitive feeling for what will
happen at bifurcations in scale-space we will in most cases, for the sake of clarity, display
the full calculations and sometimes also redo calculations carried out in previous sections.
The technical details can be skipped by the hasty reader without loss of continuity.

6.3.1. Third Order Taylor Expansion of the Scale-Space Embedding

Given a scale-space embedding L : R × R+ → R of a one-dimensional signal f : R → R
consider a third order Taylor expansion of the mapping x �→ L(x; t0) around a given point
x0 at some scale level t0:

ft0(x) = α+ β(x− x0) + γ(x− x0)2 + ε(x− x0)3 (6.45)

where

α = L(x0, y0; t0); β =
∂L

∂x
(x0, y0; t0); γ =

1
2
∂2L

∂x2
(x0, y0; t0); ε =

1
6
∂3L

∂x3
(x0, y0; t0)

(6.46)
Requiring this function to satisfy the diffusion equation

∂L

∂t
=
1
2
∂2L

∂x2
(6.47)

with initial condition L(x; t0) = ft0 (x ∈ Z) we obtain

L(x; t) = α+ β(x− x0) + γ(x− x0)2 + ε(x− x0)3 + δ1(t− t0) + δ2(x− x0)(t− t0) (6.48)

where δ1 = γ and δ2 = 3ε. For simplicity, introduce new (offset) variables by

u = x− x0; v = t− t0 (6.49)
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Then,
L̃(u; v) = L(u+ x0; v + t0) = α+ βu+ γ(u2 + v) + ε(u3 + 3uv) (6.50)

The critical points of the function u �→ L̃(u; t) are given by

∂L̃

∂u
(u; v) = β + 2γu+ 3ε(u2 + v) = 0 (6.51)

If ε = 0 we get one single root x = − b
2γ , whose location is independent of t. Obviously, this

case is not interesting, since it implies a totally stationary solution. Therefore, from now
on, we will only consider the solutions when ε �= 0. Then we get two trajectories of critical
points

u1(v) = − γ

3ε
+

√
γ2

9ε2
− (v +

β

3ε
) (6.52)

u2(v) = − γ

3ε
−

√
γ2

9ε2
− (v +

β

3ε
) (6.53)

These paths only exist when the argument of the root function γ2

9ε2
−(v+ β

3ε) is non-negative,
i.e. if and only if v ≤ γ2

9ε2 −
β
3ε . The critical paths meet and a bifurcation takes place at

(ubifurc; vbifurc) =

(
− γ

3ε
;

γ2

9ε2
− β

3ε

)
(6.54)

From the second derivative ∂2L̃
∂u2 (u; v) = 2γ + 6εu = 0 we obtain:

∂2L̃

∂u2
(u1(v); v) = +6ε

√
γ2

9ε2
− (v +

β

3ε
) (6.55)

∂2L̃

∂u2
(u2(v); v) = −6ε

√
γ2

9ε2
− (v +

β

3ε
) (6.56)

i.e. the second derivative has different sign in the two critical points (provided that ε �= 0).
Thus, the bifurcation consists of one maximum point and minimum point that meet and
annihilate, see also Figure 6.6. At the bifurcation ∂2L̃

∂u2 is of course zero. Note that, as
expressed in Corollary 6.4, the drift velocity actually tends to infinity as the critical points
approach the singularity. At v = 0 the drift velocity is

∂u1

∂v
(0) = −3ε

γ
= −1

2

∂3L̃
∂x3 (0; 0)
∂2L̃
∂x2 (0; 0)

= −1
2

∂3L
∂x3 (x0; t0)
∂2L
∂x2 (x0; t0)

(6.57)

which agrees with the result (6.20) in Proposition 6.5.
Now, assume that for the scale level t0 the point x = x0 is a critical point for the

mapping x �→ L(x; t0), i.e. that for v = 0 the point u = 0 is a critical point for the mapping
u �→ L̃(u; 0). Then β = 0 and we can estimate the time ∆vbifurc as well as the distance
∆ubifurc until bifurcation by

∆ubifurc = |u1(vbifurc)− u1(0)| =
∣∣∣∣ γ3ε

∣∣∣∣ =
∣∣∣∣∣∣

∂2L̃
∂u2 (0; 0)
∂3L̃
∂u3 (0; 0)

∣∣∣∣∣∣ =
∣∣∣∣∣

∂2L
∂x2 (x0; t0)
∂3L
∂x3 (x0; t0)

∣∣∣∣∣ (6.58)
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Figure 6.6. Third order Taylor expansion of the scale-space embedding: Schematic view over the
loci of the critical points as scale changes. The bifurcation consists of a maximum point and a
minimum point that meet and annihilate.

∆vbifurc =
(

γ

3ε

)2

=


 ∂2L̃

∂u2 (0; 0)
∂3L̃
∂u3 (0; 0)




2

=

(
∂2L
∂x2 (x0; t0)
∂3L
∂x3 (x0; t0)

)2

(6.59)

where we have also inserted the actual expressions for γ and ε. To summarize,

Observation 6.22. (Coarse estimate of the scale-step when linking grey-level
blobs into scale-space blobs (Distance to a bifurcation) (1D))
A coarse estimate of the scale-step when linking grey-level blobs to into scale-space blobs is
given by (6.58) and (6.59).

So far we have not made any numerical experiments testing the feasibility of using this
estimate as the basis for the step size selection in the actual blob linking. Note, however,
that despite the pessimistic upper bound on the drift velocity induced by Proposition 6.5,
the local extremum will hardly escape far outside the support region of its associated grey-
level blob. This property has proved to be very useful in the blob linking algorithm to be
described in Section 7.2

Observation 6.23. (Coarse bound on the drift of local extrema (1D))
Although the drift velocity of a local extremum point may momentarily be very large (tend
to infinity near a bifurcation), when scale changes, the grey-level blob support region defines
a natural spatial region to search for blobs in at the next level of scale.

To simplify our further considerations we introduce new coordinates again by

ξ = u+
γ

3ε
; τ = v +

β

3γ
− γ2

9ε2
(6.60)

Then, the expressions for the scale-space representation reduces to

˜̃L(ξ; τ) = L̃(ξ − γ

3ε
; τ − β

3γ
− γ2

9ε2
) = . . . = εξ3 + 3εξτ + (α− γβ

3ε
+
2γ3

27ε2
) (6.61)

Finally, we let

λ(ξ; τ) = ˜̃L(ξ; τ)− (α− γβ

3ε
+
2γ3

27ε2
) = ε(ξ3 + 3ξτ) (6.62)
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These coordinate shifts from (x; t) to (u; v) and at last (ξ; η) only mean that we have
translated the coordinate axes such that the bifurcation occurs for (ξ; τ) = (0; 0) and
subtracted a constant to achieve λ(0; 0) = 0. Therefore, no derivatives are affected, which
in turn means that λ : R×R+ → R satisfies

∂λ

∂τ
=
1
2
∂2λ

∂ξ2
(6.63)

and can be regarded as the general third order approximation to the solution of the original
diffusion equation. Moreover, the calculations show that for one-dimensional functions any
third order polynomial satisfying the diffusion equation can be reduced to the canonical
form (6.43) just by a simple translation and rescaling of the coordinate axes. This property
cannot, however, be expected to hold in higher dimensions.

In the next section, we will develop how one from this analytically simple expression can
derive closed form results for the evolution properties of grey-level blobs and scale-space
blobs over scale.

6.3.2. Evolution Properties of Local Extrema, Grey-Level Blobs and Scale-Space Blobs in
1D Continuous Scale-Space

Consider again the generic unfolding of the scale-space embedding in the neighbourhood of
a bifurcation.

λ(x; t) = G̃1(x; t) = x3 + 3xt (6.64)

where x and t can be interpreted local coordinates in a coordinate system centered at the
bifurcation point. As mentioned above, the critical points of this function are given by

∂λ

∂x
(x; t) = 3(x2 + t) = 0 (6.65)

that is by
ξ1(t) = −

√
−t; ξ2(t) = +

√
−t (6.66)

Moreover, from this analytically simple expression one can easily analyze what happens to

x x x

z z z

(a)  t < 0 (b)  t = 0 (c)  t > 0

Figure 6.7. Fold unfolding in one dimension: Schematic view of the smoothed signal (a) before the
bifurcation (b) at the bifurcation (c) after the bifurcation.

the grey-level blobs of a one-dimensional continuous signal as scale changes. The critical
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values, λ1 and λ2, in the two extremum points are given by

λ1(t) = λ(ξ1(t); t) = +2(−t)
3
2 ; λ2(t) = λ(ξ2(t); t) = −2(−t)

3
2 (6.67)

Hence, the contrasts, C1 and C2, of the two blobs have equal magnitude given by

C1(t) = C2(t) =| λ2(t)− λ1(t) |= 4(−t)
3
2 (6.68)

The level crossings, ρ1 and ρ2, for the grey-level blob associated with the extremum points
ξ1 and ξ2 respectively are given by the roots of single multiplicity to the equations

λ(ρ1, t) = λ2(t) ; λ(ρ2, t) = λ1(t) (6.69)

One easily shows that these equations have the set of roots {−
√
−t,−

√
−t, 2

√
−t} and

{−2
√
−t,

√
−t,

√
−t} respectively, which leads to

ρ1(t) = +2
√
−t ; ρ2(t) = −2

√
−t (6.70)

The support regions of the two blobs are the intervals

Gsupport(r1(t)) = {x : ρ2(t) ≤ x ≤ ξ2(t)} (6.71)

Gsupport(r2(t)) = {x : ξ1(t) ≤ x ≤ ρ1(t)} (6.72)

Hence, the magnitudes of the blob support regions are

A1(t) = ‖Gsupport(r1(t))‖ = |ξ2(t)− ρ2(t)| = 3
√
−t (6.73)

A2(t) = ‖Gsupport(r1(t))‖ = |ρ1(t)− ξ1(t)| = 3
√
−t (6.74)

The grey-level blobs are the two sets

Gblob(r1(t)) = {(x, ζ) : (ρ2(t) ≤ x ≤ ξ2(t)) ∧ (λ2(t) ≤ ζ ≤ λ(x; t))} (6.75)

Gblob(r2(t)) = {(x, ζ) : (ξ1(t) ≤ x ≤ ρ1(t)) ∧ (λ(x; t) ≤ ζ ≤ λ1(t))} (6.76)

Finally, the grey-level blob volumes, V1 and V2, of the two blobs are given by

Figure 6.8. The situation before the bifurcation occurs. Illustration of the definitions of ξ1, ξ2, λ1,
λ2, ρ1 and ρ2.
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V1(t) = ‖Gblob(r1(t))‖ =
∫ ξ2(t)

x=ρ2(t)
|λ(x; t)− λ2(t)|dx = . . . =

27(−t)2

4
(6.77)

V2(t) = ‖Gblob(r2(t))‖ =
∫ ρ1(t)

x=ξ1(t)
|λ1(t)− λ(x; t)|dx = . . . =

27(−t)2

4
(6.78)

There is a natural dimensionless quantity associated with these blob measures:

V1

A1C1
=

V2

A2C2
=

9
16

(6.79)

Assuming that the scale-space blob has some minimum scale tmin (of course less than zero)
we can compute its scale-space blob volume by

S1 =
∫ 0

tmin

V1(t)dt =
9(−tmin)3

4
(6.80)

From the previous discussion it follows that we can treat this situation as a general repre-
sentative of the generic behaviour around a structurally stable singularity in a solution to
the one-dimensional diffusion equation.

Proposition 6.24. (Generic behaviour at singularities in scale-space (1D))
The generic behaviour at a singularity in the scale-space representation of a continuous signal
can be represented by the fold unfolding G̃1(x; t) = x3 + 3xt. This singularity describes a
maximum point and a minimum point that meet with increasing scale along the two branches
of a parabola and then disappear. Interpreted in terms of blobs the situation describes a
blob annihilation (or, possibly, a blob merge if the delimiting saddle point is shared before
bifurcation). Above we have illustrated how the blob descriptors contrast, support region and
blob volume evolve with scale near the bifurcation in this case.

6.4. Behaviour Near Singularities: Examples in Two Dimensions

The analysis in the previous section can in a sense be said to be complete, since the restricted
unfolding G̃1(x; t) = x3 + 3xt exhausts the possible events between critical points in the
scale-space representation of a one-dimensional signal. In this section we will examine the
more difficult two-dimensional case and investigate the consequences of some of the other
unfoldings in Thom’s classification theorem with application to the diffusion equation.

6.4.1. Fold

As mentioned several times above the general unfolding in the fold case is on the form

G1(x; u) = x3 + ux (6.81)

Earlier we have said that in order for this function to satisfy the diffusion equation it is
necessary that u = 3t. Another way of reaching to the same conclusion is by replacing every
monomial in G1 by a corresponding polynomial satisfying the diffusion equation. Hence, we
replace the x3 term by x3 +3xt (and the x term by x), see also Appendix A.5.1. Moreover,
since we are here interested in the two-dimensional case we have to add a ±y2 term, which
then because of the diffusion equation leads to a ±t term. We get the unfolding

L(x, y; t) = x3 + (u+ 3t)x± (y2 + t) (6.82)
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which is still of the same type as G1. Here, one can observe that the u parameter will not
affect the qualitative behaviour2 of the singularity set, since a change of variable 3t′ = u+3t
would move the u-dependence to the constant term. Hence, without loss of generality, we
may set u to zero and study the polynomial:

L(x, y; t) = x3 + 3tx± (y2 + t) (6.83)

which, as earlier indicated, is the same one as we would have got just by setting the original
parameter u to 3t. For simplicity, first assume that the sign of the ±(y2 + t) is positive.
Then the scale-space family to be studied is

L(x, y; t) = x3 + 3xt+ y2 + t (6.84)

where x, y and t should again be interpreted as offset coordinates. The critical points of
this mapping are given by {

∂L
∂x = 3(x2 + t) = 0
∂L
∂y = 2y = 0 (6.85)

If t < 0 we obtain two solutions:

r1(t) = (x1(t), y1(t)) = (−
√
−t, 0); r2(t) = (x2(t), y2(t)) = (+

√
−t, 0) (6.86)

At t = 0 they degenerate into a double root (the bifurcation moment), and for t > 0
they cease to exist. Hence, the trajectories of the critical points will be similar to the
one-dimensional case described in Section 6.3.2. The Hessian of L is

(HL) =
∂2L

∂x2

∂2L

∂y2
− (

∂2L

∂x∂y
)2 = 12x (6.87)

Hence, (HL)(r1(t)) = −12
√
−t < 0 and (HL)(r2(t)) = +12

√
−t > 0. Further, ∂2L

∂x2 (r2(t)) =
6
√
−t > 0. Therefore,

r1 describes the trajectory of a saddle point and
r2 describes the trajectory of a minimum point.

Hence, for every t < 0 the point r2(t) gives rise to a dark grey-level blob. The values in the
critical points are

L1(t) = L(r1(t); t) = t− 2t
√
−t; L2(t) = L(r2(t); t) = t+ 2t

√
−t (6.88)

The dark grey-level blob associated with the minimum point r2(t) is delimited by the base-
level L1(t). At a fixed value of t we get the intersection curve between the base-level and
the grey-level surface by solving the equation:

L(x, y; t) = L1(t) (6.89)

which can be reduced to
x3 + 3tx+ y2 − 2(−t)

3
2 = 0 (6.90)

Hence, the curve is symmetric with respect to the y-axis. Solving for y as a function of x
and t we obtain two solutions:

y−(x; t) = −
√
2(−t)

3
2 − x3 − 3tx; y+(x; t) = +

√
2(−t)

3
2 − x3 − 3tx (6.91)
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Figure 6.9. The blob support region of the grey-level blob at a specific level of scale. Outside the
blob the level curve corresponding to the clipping level of the grey-level blob has been indicated with
a dashed line. This figure can be regarded as describing the general appearance of the support region
of a grey-level blob delimited by a non-shared saddle point.

Setting y = 0 and solving for x we obtain one single root at x = 2
√
−t and one double root

at x = −
√
−t. See also Figure 6.9. Equation (6.90) gives the equation for the boundary of

the support region of the grey-level blob provided that x ∈ [−
√
−t, 2

√
−t] and t < 0. Now

we can easily compute closed-form expressions for the blob descriptors.

Cblob(r2(t)) = L1(t)− L2(t) = 4(−t)
3
2 (6.92)

‖Gsupport(r2(t))‖ =
∫ ∫

Ablob(r2(t))
dxdy =

∫ 2
√−t

x=−√−t

∫ y=y+(x; t)

y=y−(x; t)
dydx = . . . = (6.93)

= 2
∫ 2
√−t

x=−√−t
(x+

√
−t)

√
2
√
−t− xdx = . . . =

24
√
3(−t)

5
4

5

‖Gblob(r2(t))‖ =
∫ ∫ ∫

Gblob(r2(t))
dxdydz =

∫ ∫
Gsupport(r2(t))

(L1(t)−L(x, y; t)) dxdy = (6.94)

∫ 2
√−t

x=−√−t

∫ y+(x; t)

y=y−(x; t)
(2(−t)

3
2 − 3tx− x3 − y2)dydx =

=
∫ 2
√−t

x=−√−t

4
3
(
√
−t+ x)3(2

√
−t− x)

3
2 dx = . . . =

3456
√
3u

11
4

385

These quantities give rise to a natural dimensionless ratio:

‖Gblob(r2(t))‖
Cblob(r2(t))‖Gsupport(r2(t))‖

=
36
77

(6.95)

If the sign of the (y2 + t) term in (6.83) instead would have been selected negative, the
trajectories of critical points would have been similar. The only difference would have been
that the minimum point would have been replaced by a saddle point and the saddle point
by a maximum point. Hence, the situation would have described the annihilation of a bright
blob instead of a dark one.

2The interpretation of the v parameter is that it translates the singularity along the t-axis.
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Observation 6.25. (Evolution properties, Fold case (2D))
The unfolding in the two-dimensional fold case L(x, y; t) = x3 + 3xt ± (y2 + t) describes
a minimum (maximum) point and a saddle point that merge along the two branches of a
parabola and disappear at t = 0. In other words, it describes the annihilation of a dark
(bright) grey-level blob.

Figure 6.10. The fold unfolding in two dimensions L(x, y; t) = x3 + 3xt± (y2 + t) describes (a) a
saddle point and a minimum (maximum) point that merge or equivalently (b) the annihilation of a
dark (bright) grey-level blob.

Finally, if we assume that the scale-space blob is from below by a minimum scale tmin we
can compute its scale-space blob volume. Then,

| Sblob(r2) |=
∫ 0

t=tmin

| Gblob(r2(t)) | dt = . . . =
4608

√
3(−tmin)

15
4

1925
(6.96)

6.4.1.1. Comparisons with Zero-Crossings of the Laplacian

In this context it is interesting to compare the results with the locations of the zero-crossings
of the Laplacian. Since the sign of the ±(y2 + t) term affects the qualitative behaviour, we
introduce a parameter α such that

Lα(x, y; t) = x3 + 3xt+ α(y2 + t) (6.97)

Then, the zero-crossings are given by

∂2Lα

∂x2
+

∂2Lα

∂y2
= 6x+ 2α = 0 (6.98)

Hence, under variations in scale, the zero-crossings of the Laplacian will always be on a
vertical straight line at x = −α

3 . Moreover, the zero-crossings will always be on the same
side of the local extremum, see also Figure 6.11. This property will, however, not hold in
the cusp unfolding to be considered in our next example.

6.4.2. Cusp

The general unfolding in the cusp case is given by

G2(x; u, v) = x4 + ux2 + vx (6.99)

In order to have this function satisfying the diffusion equation we replace x4 by x4+6tx2+3t3

and x2 by x2 + t. Moreover, we add a ±y2 term which also leads to a ±t term to get:

L(x, y; t) = x4 + (6t+ u)x2 + vx+ ut+ 3t2 +±(y2 + t) (6.100)
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Figure 6.11. Fold case unfolding: Locations of the zero-crossings over scale (marked with Z)
compared to the trajectories of the local extrema (marked with M− and M+) and the saddle points
(marked with S). (a) Positive α corresponding to +(y2 + t). (b) Negative α corresponding to
−(y2 + t).

Notable is that also this unfolding is of the same type as the previous one. The ut, 3t2 and
t terms can all be treated as constants with respect to x and y. Further, the u parameter
will not affect the singularity set since a translation of the t axis would eliminate the u-
dependence from the terms depending on x and y. Hence, we may set u to zero without
loss of generality. Thus,

L(x, y; t) = x4 + 6tx2 + vx+ 3t2 ± (y2 + t) (6.101)

First, we assume that the sign of the y2 term is positive. Then, the polynomial to be studied
is:

L(x, y; t) = x4 + 6x2t+ vx+ 3t2 + y2 + t (6.102)

where x, y and t should again be interpreted as offset coordinates, while v is a free parameter.
The critical points of this mapping are given by{

∂L
∂x = 4x3 + 12tx+ v = 0
∂L
∂y = 2y = 0 (6.103)

and their type by the sign of the Hessian

(HL)(x, y; t) = 24(x2 + t) (6.104)

The existence of roots to this system of equations can obviously be reduced to the existence
of roots to h(x) = 4x3+12tx+ v = 0. After some calculations, see Appendix A.5.2, one can
easily show the following:

• If t > −(v
8 )

2
3 then h(x) = 0 has only one real root and there exists a unique stationary

point. For t > 0 this point obviously has a strictly positive Hessian and is accordingly
a local minimum.

• If t < −(v
8)

2
3 then h(x) = 0 has three distinctly different roots. These roots satisfy

x1(t) < −
√
−t < x2(t) < +

√
−t < x3(t). Hence by (6.104) we have that x1(t) and

x3(t) are local minima and that x2(t) is a saddle point.
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• If t = −(v
8 )

2
3 then h(x) has either one root of multiplicity three or one root of multi-

plicity two and another root of multiplicity one. The root of multiplicity greater than
one is at x = (v

8 )
1
3 , and at this point a bifurcation occurs. The behaviour around this

point depends on the value of v, see also Figure 6.12:

– If v > 0 then x2 and x3 meet and disappear while x1 remains unaffected.
– If v < 0 then x1 and x2 meet and disappear while x3 remains unaffected.
– If v = 0 then all three roots meet in x = 0. This is obviously a degenerate case.

Hence, this situation describes a minimum point and a saddle point that meet and annihilate
under the influence of another maximum. In other words, it describes two dark grey-level
blobs merging into one. To summarize,

Observation 6.26. (Evolution properties, Cusp case (dark blobs, 2D))
The unfolding in the two-dimensional cusp case L(x, y; t) = x4 + 6x2t+ vx+ 3t2 + (y2 + t)
describes a minimum point and a saddle point that merge under the influence of another
minimum point. In other words, it describes two dark grey-level blobs merging into one.

t

M-

t

xx

MSMMS
M

x

(c) : v > 0(b): v = 0

-
---M-

M- S

t(a): v < 0

Figure 6.12. The cusp unfolding in two dimensions L(x, y; t) = x4+6x2t+vx+3t2+(y2+t) describes
a minimum point and a saddle point that merge under the influence of another minimum point
provided that α > 0. (a)-(c) Depending on the value of v different events may occur. Equivalently
the situation describes the two dark grey-level blobs merging into one.

Interpreted in terms of blobs all the bifurcation situations above correspond to two grey-level
blobs merging into one. In this sense the bifurcation relations between grey-level blobs at
different levels of scale will be more stable to small perturbations than bifurcation relations
between critical points only, since the blob bifurcation remains unaffected by a change in
the v parameter while expressed in terms of critical points only the topology of the situation
is completely changed with the sign of v.

If the sign of the ±(y2 + t) term in (6.101) instead would have been selected negative,
then x1(t) and x3(t) would have been saddle points and x2(t) a local maximum. In that case
the unfolding would have described a maximum point and a saddle point merging under the
influence of another saddle point.

Observation 6.27. (Evolution properties, Cusp case (bright blobs, 2D))
The unfolding in the two-dimensional cusp case L(x, y; t) = x4 + 6x2t+ vx+ 3t2 − (y2 + t)
describes a maximum point and a saddle point that merge under the influence of another
saddle point. In other words, it describes the annihilation of a bright grey-level blob.
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Figure 6.13. Independent of the value of v all the three situations above describe two dark grey-
level blobs merging into one. In this sense the bifurcation relations between grey-level blobs are
more stable than the corresponding relations between critical points, for which the topology of the
situation is in fact changed by a variation in the sign of v.

If instead the sign of the entire unfolding would have been changed, then, depending
on the sign of the ±(y2 + t) term, the situation would have described either a maximum
point and a saddle point merging under the influence of another maximum point or a local
minimum and a saddle merging under the influence of another saddle. Interpreted in terms
of blobs this corresponds to either two bright blobs merging into one or the annihilation of
a dark blob.

6.4.2.1. Comparisons with Zero-Crossings of the Laplacian

By introducing a parameter α such that

Lα(x, y; t) = x4 + 6x2t+ vx+ 3t2α(y2 + t) (6.105)

the zero-crossings of the Laplacian will in this case be given by

∂2Lα

∂x2
+

∂2Lα

∂y2
= 12x2 + 12t+ 2α = 0 (6.106)

which leads to two solutions x = −
√
−t− α

6 and x = +
√
−t− α

6 if t ≤ −α
6 . One can observe

that these curves do not give a correct subdivision around the local extrema for all t, see
also Figure 6.14.

This example shows that, strictly speaking, in two (and higher) dimensions there is
no absolute relation between the locations of the Laplacian zero-crossing curves and the
local extrema of a signal. We have seen that it may happen that a zero-crossing curve
encloses either no extremum, one extremum or more than one local extremum. In the
one-dimensional case, though, the zero-crossings of the Laplacian will always divide local
extrema correctly. In other words, between any two consecutive Laplacian zero-crossing
points of a one-dimensional signal there will always be exactly one local extremum point.

One could say that by summing up the second order derivatives as done in the Laplacian
operator we mix the behaviours from the different coordinate directions into a single scalar
quantity that cannot fully describe the geometry of the two-dimensional grey-level landscape.

6.4.2.2. Cusp Unfolding in One Dimension

If we restrict this treatment to the one-dimensional case the cusp unfolding will be

L(x, y; t) = x4 + 6x2t+ vx+ 3t2 (6.107)

139



M M

M

t

1

1

(a)   v = 0,  α > 0

Z ZS

- -

-

x

S S

S

Z Z

1

1

x

t(b)  v = 0,  α < 0

M+

1

1

t

M

M

-

-

Z ZS

x

(c)  v > 0, α > 0

t

1

1 x

S

Z

M

Z

S+

(d)  v > 0, α< 0

Figure 6.14. Cusp unfolding in the two-dimensional case: Locations of the zero-crossings over scale
compared to the trajectories of the local extrema. (a-b) The degenerate case when v = 0. (a) α > 0.
Note that during a certain scale interval the zero-crossings of the Laplacian fail to enclose isolated
local extrema — a property pointed out also by Koenderink and van Doorn (1984). (b) α < 0. Note
that during a certain scale interval there is no local extremum between the two zero-crossing curves.
(c-d) Similar examples for the non-degenerate case when v > 0. (c) α > 0. (d) α < 0.

and the singularity set be given by

∂L

∂x
= 4x3 + 12tx+ v = 0 (6.108)

From similar calculations as in the previous two-dimensional case it follows that this un-
folding describes a maximum point and a minimum point merging under the influence of
another minimum point.

Observation 6.28. (Evolution properties, Cusp case (1D))
The unfolding in the one-dimensional cusp case L(x, y; t) = x4+6x2t+ vx+3t2 describes a
minimum point and maximum merging under the influence of another minimum point. In
other words, it describes two dark grey-level blobs merging into one.

By changing the sign of the entire unfolding we will instead describe a maximum point and
a minimum point merging under the influence of another maximum point, or equivalently
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two bright blobs merging into one.

6.4.2.3. Drift Velocity Analysis

In order to analyse the drift velocity of the local extremum point not involved in the bifur-
cation we differentiate (6.108) with respect to t:

∂x

∂t
= − x

x2 + t
(6.109)

To find the scale where the drift velocity assumes its maximum value we differentiate again
and set the derivative to zero:

∂2x

∂t2
=

2xt
(x2 + t)3

= 0 (6.110)

Here, we are not interested in the case x = 0 since the behaviour at the bifurcation has
already been analysed. Thus, as expected, the maximum drift velocity occurs for t = 0. At
this scale we have x = (−v

4 )
1/3. Hence,∣∣∣∣∂x∂t

∣∣∣∣
max

= −1
x
= (

4
v
)

1
3 (6.111)

which shows that the maximum drift velocity of the extremum point increases towards
infinity as v decreases towards zero and the configuration tends to the non-generic case.
This exemplifies a further consequence of Proposition 6.3, namely that even for critical
points not directly involved in bifurcations there is no absolute upper bound one their drift
velocity, a conclusion valid both in one and two dimensions.

This analysis gives further explanation to some of the problems occurring when edge fo-
cusing is applied to “staircase edges”, see Figure 6.1 and the brief discussion in Section 6.1.1.
From experiments [Ber90] it is known that, in general, only one of the two edges in such a
configuration will be found by the focusing algorithm and that sometimes even that edge
might get lost when scale decreases. The fact that only one of the edges will be found is
obvious from the bifurcation diagram in Figure 6.12 provided that the focusing procedure
is initiated from a sufficiently coarse scale and the bifurcation takes places sufficiently far
away from the edge subject to tracking. The bifurcation diagram and the previous analysis
for local extrema also indicate that the drift velocity of an edge point may increase rapidly
even though the edge is not directly involved in any bifurcation, and hence exceed the finite
drift velocity estimate used by the edge focusing algorithm.

6.4.3. Elliptic Umbilic

If we are to find a polynomial that both satisfies the diffusion equation and captures the
creation of a saddle-extremum pair with increasing scale (which constitutes the basic in-
gredient in a blob split or a blob creation) then neither the swallowtail nor the butterfly
unfolding from Thom’s classification theorem will be applicable, since they describe singu-
larities with extent only in one (essential) coordinate direction. The elliptic umbilic does,
however, contain a singularity appropriate for such an analysis. The general unfolding in
this case is given by

G5(x, y; u, v,w) = x2y − y3 + wx2 + vy + ux (6.112)

In order to obtain a polynomial satisfying the diffusion equation, we again replace every
monomial xmyn with a corresponding polynomial pm,n(x, y) satisfying the diffusion equation.
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In other words, we replace the x2y term with y(x2 + t), the y3 term with y3 + 3yt and the
wx2 term with w(x2 + t), see also Appendix A.5.1, and get

L(x, y; t) = x2y − y3 + wx2 + (v − 2t)y + ux+ wt (6.113)

which is an unfolding still of the same type as G5. One observes that the v parameter will
not affect the qualitative nature of the singularity set. It corresponds just to a translation
along the t axis and can therefore be set to zero without loss of generality. To summarize,
the polynomial to be studied is:

L(x, y; t) = x2y − y3 + wx2 − 2ty + ux+ wt (6.114)

Its singularity set is given by {
∂L
∂x = 2x(y + w) + u = 0
∂L
∂y = x2 − 3y2 − 2t = 0 (6.115)

and the types of the critical points determined by


(AL) = ∂2L
∂x2 = 2(y + w)

∂2L
∂x∂y = 2x
∂2L
∂y2 = −6y
(HL) = ∂2L

∂x2
∂2L
∂y2 − ∂2L

∂x∂y
∂2L
∂y∂x = −4

(
3y(y + w) + x2

)
(6.116)

The solution to this system of equations is analysed in Appendix A.5.3. There it is shown
that bifurcations can occur provided that

|w| > w0 =
2
3

√
2|u|
3

(6.117)

If w > w0 the unfolding describes the creation of a pair with a saddle point a minimum
point with increasing t. If t is increased further the minimum point joins with another saddle
point and minimum-saddle pair will be annihilated with increasing t, see also Figure 6.15
and Figure 6.16. On the other hand if w < −w0 we will have a creation of a maximum-
saddle pair followed by the annihilation of another maximum-saddle pair. In both cases the
same extremum point is involved in the two bifurcations.

Interpreted in terms of blobs these events correspond to the creation of a dark (bright)
blob followed by the annihilation of the same dark (bright) blob provided that the delim-
iting saddle points involved in the processes are non-shared. If instead the saddle point
in the created minimum-saddle (maximum-saddle) pair would have been shared, then the
corresponding blob event would have been one dark (bright) blob splitting into two dark
(bright) blobs. To summarize,

Observation 6.29. (Evolution properties, Elliptic umbilic case (2D))
The unfolding in the two-dimensional elliptic umbilic case L(x, y; t) = x2y − y3 + wx2 −
2ty + ux + wt describes the creation of a minimum (maximum) point and a saddle point
followed by the annihilation of a minimum (maximum) and a saddle point. In other words,
it describes the creation of a dark (bright) blob followed by the annihilation of a dark blob
(or, possibly, a dark (bright) blob splitting into two followed by a merge of two dark (bright)
blobs if the saddle points involved in the process are shared).

The singularity in the elliptic umbilic unfolding contains essential variations taking place
in two (or more) (essential) coordinate directions. Therefore, there do not exist any one-
dimensional analogies to these blob events.
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Figure 6.15. (a) When w > w0 the elliptic umbilic unfolding L(x, y; t) = x2y − y3 + wx2 −
2ty + ux + wt describes the creation of a minimum-saddle pair with increasing scale. If the scale
parameter is increased further then the created minimum point will merge with another saddle point
and minimum-saddle pair will be annihilated. (The ξ coordinate is a coordinate along one of the
two branches of the hyperbola in the next figure.) (b) If w < −w0 then the elliptic umbilic instead
describes the creation of a maximum-saddle pair followed by the annihilation of a maximum-saddle
pair. (c) Interpreted in terms of blobs these events correspond to the creation of a dark (bright) blob
followed by a the annihilation of a dark (bright) blob (provided that all the saddle points involved
in the process are non-shared).

6.4.4. Summary

Thom’s classification theorem provides a catalogue of elementary catastrophes. In this
section we have investigated a few of those, the fold, the cusp and the elliptic umbilic
and observed that when restricted to satisfy the diffusion equation they describe a blob
annihilation, a blob merge and either of a blob creation or a blob split respectively. When
considering the zero-crossings of the Laplacian of the Gaussian we have noticed that in two
dimensions there is no simple relation between the locations of these curves and the locations
of the local extrema.

6.5. Density of Local Extrema as Function of Scale

In some applications it is of interest to know how the density of local extrema can be expected
to vary with scale. One example is the derivation of the effective scale, a transformed scale
parameter intended to capture the concept of “scale-space lifetime” in a proper manner, see
Section 5.5. Of course, this question seems to be very difficult or even impossible to answer
to generally, since such a quantity can be expected to vary substantially from one image
to another. How should one then be able to talk about “expected behaviour”? Should one
consider all possible (realistic) images, study how this measure evolves with scale and then
form some kind of average?

In this section we will perform a simple study. We will consider random noise data
with normal distribution. Under these assumptions it turns out to be possible to derive a
compact closed form expression for this quantity. We will base the analysis on a treatment
by Rice [Ric45] about the expected density of zero-crossings and local maxima of stationary
normal processes, see also Papoulis [Pap72] or Cramer and Leadbetter [Cra67].
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Figure 6.16. The trajectories and the qualitative behaviour of the critical points described by the
elliptic umbilic unfolding in the case when u < 0. (a) If −w0 < w < w0 then L describes two saddle
points. (b) If w > w0 then L describes the creation of a pair with a saddle point and a minimum
point under the influence of another saddle point. Later the minimum point annihilates with the
other saddle point and there is only one saddle point left. In this figure the arrows indicate increasing
values of the scale parameter while the marked dots show the bifurcation point. (c) If w < −w0

then L instead describes the creations of a maximum-saddle pair followed by the annihilation of a
maximum-saddle pair.

6.5.1. Continuous Analysis

The density of local maxima µ for a stationary normal process is given by the second and
fourth derivatives of the autocorrelation function R ([Ric45] Section 3.6 or [Pap72]):

µ =
1
2π

√
−R(4)(0)

R′′(0)
(6.118)

This expression can also be written as [Ric45, Pap72]

µ =
1
2π

√√√√∫∞
−∞ ω4S(ω)dω∫∞
−∞ ω2S(ω)dω

(6.119)

where S is the spectral density

S(ω) =
∫ ∞
−∞

e−iωτR(τ)dτ (6.120)

Since the scale-space representation L is generated from the input signal f by a linear
transformation, the spectral density of L, denoted SL, is given by

SL(ω) = |H(iω)|2Sf (ω) (6.121)

where Sf is the spectral density of f and H(iω) the system function

H(ω) =
∫ ∞
−∞

h(t)e−iωtdt (6.122)

that is the Fourier transform of the the impulse response h. In the scale-space case, h is of
course the Gaussian kernel

g(ξ; t) =
1√
2πt

e−ξ2/2t (6.123)
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which has the Fourier transform

G(ω; t) =
1
2
e−ω2t/2 (6.124)

Assuming that f is generated by white noise with Sf (w) = 1 this gives

SL(ω) =
1
4
e−ω2t (6.125)

Using the formula ∫ ∞
0

xme−ax2
dx =

Γ(m+1
2 )

2a
m+1

2

(6.126)

(see e.g. Spiegel [Spi68] 15.77) we can calculate a closed form expression for the density of
local maxima of a continuous signal, pc(t):

pc(t) =
1
2π

√√√√∫∞
−∞ ω4 1

4e
−ω2tdω∫∞

−∞ ω2 1
4e
−ω2tdω

=
1
2π

√√√√√√2Γ( 5
2
)

2t
5
2

2Γ( 3
2
)

2t
3
2

=
1
2π

√
3
2
1√
t

(6.127)

Of course an identical result applies to local minima. To summarize,

Proposition 6.30. (Density of local extrema in scale-space (white noise, 1D))
In the scale-space representation of a one-dimensional continuous signal generated by a
white noise stationary normal process, the expected density of local maxima (minima) in
a smoothed signal at a certain scale decreases with scale as t−

1
2 . Interpreted in terms of

σ =
√
t the expected density of local extrema is inversely proportional to σ.

This scale dependence implies that a graph showing the density of local maxima (minima)
as function of scale can be expected to be a straight line in a log-log diagram.

log(pc(t)) =
1
2
log(

3
2
)− log(2π)− 1

2
log(t) = constant− 1

2
log(t) (6.128)

Of course one cannot expect that a graph showing this curve for a particular signal to be
a straight line. This would require some type of ergodicity assumption that in general not
will be satisfied. However, the average behaviour over many different types of imagery could
be expected to be close to this situation. In Section 5.5.2 we showed that a natural way to
convert the ordinary scale parameter t into a transformed scale parameter called effective
scale τ is by τ(t) = A + B log(p(t)) where p(t) again denotes the expected density of local
extrema at a certain scale t and A and B are arbitrary constants. This result shows that

Corollary 6.31. (Effective scale as function of the ordinary scale parameter
(1D))
For continuous one-dimensional signals the effective scale parameter τc as function of the
ordinary scale parameter t is (up to an arbitrary affine transformation) given by a logarithmic
transformation

τc(t) = A′ +B′ log(t) (6.129)

where A′ and B′ are arbitrary constants.
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An interesting question concerns what will happen if the uncorrelated white noise model for
the input signal is changed. A spectral density applicable to e.g. fractals, see e.g. Barnsley
et.al. [Bar88] or G̊arding [G̊ar88], is given by Sf (w) = w−β. For one-dimensional signals,
reasonable values of β are obtained between 1 and 3 [Bar88]. Of course, such a distribution
is somewhat non-physical since Sf (w) will tend to infinity as t tends to zero and neither
one of the spectral moments will be convergent. However, when multiplied by a Gaussian
function the second and fourth order moments used in (6.119) will converge provided that
β < 3. We obtain,

pc,β(t) =
1
2π

√√√√∫∞
−∞ ω4 1

4e
−ω2tω−βdω∫∞
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(β < 3) (6.131)

Proposition 6.32. (Density of local extrema in scale-space (fractal noise, 1D))
In the scale-space representation of a one-dimensional continuous signal generated by a
stationary normal process with spectral density ω−β the expected density of local maxima
(minima) in a smoothed signal at a certain scale decreases with scale as t−

1
2 .

Note that also this graph will be a straight line in a log-log diagram.

log(pc,β(t)) =
1
2
log(

3− β

2
)− log(2π)− 1

2
log(t) (6.132)

The slope will be the same as in the case with uncorrelated white noise, but the dependence
on β means that the graph has been translated by 1

2(log(3) − log(3 − β)) in the negative
vertical direction or equivalently by log(3)− log(3− β) in the negative horizontal direction.
This corresponds to a multiplication of the t-value by (1− β

3 )
−1.

6.5.2. Discrete Analysis

From the previous continuous analysis we have that the density of local extrema may tend
to infinity as the scale parameter tends to zero. It is obvious that this result is not applicable
to discrete signals, since in this case the density of local extrema will have an upper bound
because of the finite sampling. Hence, in order to to capture what will happen in this
case, a genuinely discrete treatment is necessary. We will base the analysis on the discrete
scale-space concept from Chapter 2:

L(x; t) =
∞∑

n=−∞
T (n; t)f(x− n) (6.133)

where T (n; t) = e−tIn(t) is the discrete analogue of the Gaussian kernel and In are the
modified Bessel functions of integer order.

The probability that a point at a certain scale is say a local maximum point is equal to
the probability that its value is greater than (or possibly equal to)3 the values of its nearest

3There are actually several ways to define a local extremum of a discrete signal using different combinations
of “strictly greater than” and “greater than or equal to”. However, those distinctions are not important in
the expression below since they will differ only for non-generic signals and in addition the numerical value
of the integral below will anyway be the same if some of the ≥ signs are replaced by >.
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neighbours. In one-dimension we have:

p(xi is a local maximum at scale t) =
p((L(xi; t) ≥ L(xi−1; t)) ∧ (L(xi; t) ≥ L(xi+1; t))) (6.134)

If we assume that the input signal f is generated by a stationary normal process then also
L will be a stationary normal process and the distribution of any triple (Li−1, Li, Li+1)T ,
from now on denoted by ξ = (ξ1, ξ2, ξ3)T , will be jointly normal, which means that its
statistics will be completely determined by the mean vector and the autocovariance matrix.
Trivially, we have that the mean of ξ is zero provided that the mean of f is zero. Since the
transformation from f to L is linear, the autocovariance CL for the smoothed signal L will
be given by

CL(·; t) = T (·; t) ∗ T (·; t) ∗ Cf (·) = T (·; 2t) ∗ Cf (·) (6.135)

where Cf denotes the autocovariance of f . In the last equality we have made use of the
semigroup property T (·; s) ∗ T (·; t) = T (·; s + t) for the family of convolution kernels.
If the input signal consists of white noise then Cf will be the discrete delta function and
CL(·; t) = T (·; 2t). Taking the symmetry property T (−n; t) = T (n; t) into account as well,
the distribution of ξ will be jointly normal with mean vector m3D and covariance matrix
C3D given by:

m3D =


 0
0
0


 ; C3D =


 T (0; 2t) T (1; 2t) T (2; 2t)

T (1; 2t) T (0; 2t) T (1; 2t)
T (2; 2t) T (1; 2t) T (0; 2t)


 (6.136)

Using the probability density for multivariate normal random variables, see e.g. Papoulis
[Pap72], we can express

pd(t) = {probability that at scale t a certain point is a local maximum} (6.137)

as

pd(t) =
∫ ∫ ∫

{ξ=(ξ1,ξ2,ξ3):(ξ2≥ξ1)∧(ξ2≥ξ3)}
1√

(2π)3|C3D|
e−

1
2

ξTC−1
3Dξdξ1dξ2dξ3 (6.138)

where |C3D| denotes the determinant of C3D and C−1
3D its inverse.

To reduce the dimensionality of the integral we introduce new variables η1 = ξ2− ξ1 and
η2 = ξ2 − ξ3. Then also η = (η1, η2)T will be jointly normal and its statistics completely
determined by

m2D =

(
0
0

)
; C2D =

(
a0(t) a1(t)
a1(t) a0(t)

)
(6.139)

From well-known rules for the covariance C(·, ·) of a linear combination of stochastic vari-
ables it follows that

a0(t) = C(η1, η1) = C(η2, η2) = 2(T (0; 2t)− T (1; 2t)) (6.140)

a1(t) = C(η1, η2) = C(η2, η1) = T (0; 2t)− 2T (1; 2t) + T (2; 2t) (6.141)

From a0(t)−a1(t) = T (0; t)−T (2; t) and the unimodality property of T (T (i; t) > T (j; t)
if |i| > |j|) it follows that a0(t) > a1(t) and trivially a0(t) > 0 for all t. Now pd(t) can be
expressed in terms of a two-dimensional integral

pd(t) =
∫ ∫

{η=(η1,η2):(η1≥0)∧(η2≥0)}
1√

(2π)2|C2D|
e−

1
2

ηTC−1
2D

ηdη1dη2 (6.142)
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Here |C2D| does not depend on η and can thus be moved out of the integral. After some
calculations, see Appendix A.5.4, it follows that

pd(t) =
1
4
+

1
2π
arctan


 a1(t)√

a2
0(t)− a2

1(t)


 (6.143)

Observe that for any a0(t) and a1(t) this value is guaranteed to never be outside the interval
[0, 1

2 ]. With our expressions for a0(t) and a1(t), given by smoothing with the discrete
analogue of the Gaussian kernel, the maximum value over variations in t is obtained for
t = 0:

pd(0) =
1
3

(6.144)

Proposition 6.33. (Density of local extrema in discrete scale-space (1D))
In the scale-space representation (6.133) of a one-dimensional discrete signal generated by
a white noise stationary normal process the expected density of local maxima (minima) in a
smoothed signal at a certain scale t is given by

pd(t) =
1
4
+

1
2π
arctan


 a1(t)√

a2
0(t)− a2

1(t)


 (6.145)

where a0(t) = 2(T (0; 2t)− T (1; 2t)), a1(t) = T (0; 2t)− 2T (1; 2t) +T (2; 2t) and T in turn
denotes the discrete analogue of the Gaussian kernel.

It is interesting to compare this discrete expression with the earlier continuous results. The
scale value where the continuous estimate gives a density equal to the discrete density at
t = 0 is given by the equation pc(t) = pd(0), that is by

1
2π

√
3
2
1√
t
=
1
3

(6.146)

which has the solution
tc−d =

27
8π2

≈ 0.3420 (6.147)

This corresponds to a σ-value of about 0.5848. Below this scale the continuous analysis is,
from that point of view, definitely not a valid approximation of what will happen to discrete
signals.

6.5.2.1. Asymptotic Behaviour at Fine Scales

A second order Taylor expansion of pd(t) around t = 0, see Appendix A.5.5, yields

pd(t) =
1
3
− 1
2
√
3π

t+
1

6
√
3π

t2 +O(t3) (6.148)

This means that the effective scale τd(t) can be Taylor expanded around t = 0 and, see
Appendix A.5.5,

τd(t) = log
(
pd(0)
pd(t)

)
=
√
3

2π
t+

(
1

2
√
3π

+
3
8π2

)
t2 +O(t3) (6.149)

In other words, at fine scales the effective scale increases approximately linearly with the
ordinary scale parameter t.
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Corollary 6.34. (Asymptotic behaviour of the effective scale at fine scales (1D))
For one-dimensional discrete signals the effective scale is approximately a linear function of
the ordinary scale parameter t for small t.

6.5.2.2. Asymptotic Behaviour at Coarse Scales

A Taylor expansion of pd(t) at coarse scales, see Appendix A.5.6, gives

pd(t) =
1
2π

√
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2
1√
t
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1
8t
+O(

1
t2
)
)

(6.150)

which asymptotically agrees with the continuous result in (6.127). By inserting this expres-
sion into the expression for effective scale and using pd(0) = 1

3 we get

τd(t) = log
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= log
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(6.151)

which shows that at coarse scales the effective scale increases approximately logarithmically
with the ordinary scale parameter t.

Corollary 6.35. (The effective scale at coarse scales (1D))
For one-dimensional discrete signals the effective scale is approximately (and up to an ar-
bitrary affine transformation) a logarithmic function of the ordinary scale parameter t for
large t.

The term log(1 − 1
8t + O( 1

t2 )) expresses how much the effective scale derived for discrete
signals differs from the effective scale derived for continuous signals, provided that the same
values of the (arbitrary) constants A and B are selected in both cases.

6.5.3. Comparisons Between the Continuous and Discrete Results

In order to illustrate the difference between the density of local maxima in the scale-space
representation of a continuous and a discrete signal we show the graphs of pc and pd in
Figure 6.17 (linear scale) and Figure 6.18 (log-log scale). As expected, the curves differ sig-
nificantly for small t and approach each other as t increases. Numerical values quantifying
this difference for a few values of t are given in Table 6.1. We have tabulated the ratio

τdiff (t) =
τd(t)− τc(t)
τc(2t)− τc(t)

=
τd(t)− τc(t)

log(2)
2

(6.152)

which is a natural measure for how much the effective scale obtained from a continuous
analysis differs from a discretely determined effective scale. The quantity is normalized such
that one unit in τdiff corresponds to the increase in τc induced by an increase in t with a
factor of two.

6.5.4. Extension to Two Dimensions

The same type of analysis can, in principle, be carried out also for two-dimensional signals.
The probability that a specific point at a certain scale is a local maximum point is again equal
to the probability that its value is greater than the values of its neighbours. Depending on
the connectivity concept (four-connectivity or eight-connectivity for a square grid) we then
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Figure 6.17. The density of local maxima of a discrete signal pd(t) as function of the ordinary scale
parameter t in linear scale. (a) Graph for t ∈ [0, 100]. (b) Enlargement of the interval t ∈ [0, 10].
For comparison the graphs showing the density of local extrema for a continuous signal pc(t) and
the second order Taylor expansion of pd(t) around t = 0 have also been drawn. As expected, the
continuous and discrete results differ significantly for small values of t but approach each other as t
increases. The MacLaurin expansion is a valid approximation only in a very short interval around
t = 0.
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Figure 6.18. The density of local maxima of a continuous pc and a discrete pd signal as function
of the ordinary scale parameter t in log-log scale (t ∈ [0, 100]). The straight line shows pc(t) and
the other curve pd(t). One observes pc and pd approach each other as the scale parameter increases.
When t tends to zero pc(t) tends to infinity while pd(t) tends to a constant (1

3 ).

obtain either a four-dimensional or an eight-dimensional integral to solve. However, because
of the dimensionality of the integrals we have not made any attempts to calculate explicit
expressions for the variation of the density as function of scale. Instead, for implementational
purpose, the behaviour over scale has been simulated for various uncorrelated random noise
signals, see Section 5.5.2 for more details. From those experiments it has been empirically
demonstrated that the t−γ dependence of the density of local extrema as function of scale
constitutes a reasonable approximation at coarse levels of scale.
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t τdiff (t)
0 ∞

0.0625 250.30 %
0.25 67.46 %
1.0 -41.82 %
4.0 -10.47 %
16.0 -2.32 %
64.0 -0.56 %
256.0 -0.14 %
∞ 0

Table 6.1. Indications about how the effective scale obtained from a discrete analysis differs from
the effective scale given by the continuous scale-space theory. The quantity τdiff (t) expresses the
difference between τd(t) and τc(t) normalized such that one unit (100 % ) in τdiff (t) corresponds to
the increase in τc induced by an increase in t with a factor of two.

6.6. Summary

We have analysed the behaviour of critical points in scale-space and shown that non-
degenerate critical points will in general form regular curves across scales. Along those we
have provided generally valid estimates of the drift velocity. At degenerate critical points the
behaviour is more complicated and bifurcations may take place. For one-dimensional signals,
the only bifurcation events possible when the scale parameter increases, are annihilations of
pairs of local maxima and minima, while for two-dimensional signals both annihilations and
creations of pairs of local extrema and saddle points can occur. Applied to grey-level and
scale-space blobs only annihilations and merges will take place in the one-dimensional case,
while the list of possibilities in two-dimensions comprises four types: annihilations, merges,
splits and creations.

Let us finally point out that this analysis has been mainly concerned with the scale-space
concept for continuous signals. When one is to implement this theory computationally it
is obvious that one has to consider sampled, that is, discrete data. At coarse scales, when
a characteristic length of features in the image can be regarded as large compared to the
distance between adjacent grid points, it seems plausible that the continuous results should
constitute a reasonable approximation to what will happen in the scale-space representation
of a discrete signal and vice versa. However, as indicated above in Section 6.5 this similarity
will not necessarily hold4 at fine scales. In those cases a genuinely discrete theory might be
needed. We believe that a thorough understanding of what happens to continuous signals
under scale-space smoothing constitutes a first step towards this goal.

4There are also some conceptual complications arising in this context, for instance, concerning what
should be meant by drift velocity for discrete signals. It seems very difficult to estimate such a quantity
accurately, especially at fine scales, since in the discrete case local extrema will not move continuously —
but rather in steps; from one pixel to the next. Thus, one cannot talk about velocity, but rather about how
long time it takes until an extremum point moves, say one pixel. An alternative approach to this problem
would be by analysing the feature points with sub-pixel accuracy although this idea has not been carried out.
Other conceptual problems concern what should be meant by singularities or degenerate and nondegenerate
critical points in the discrete case? One possibility is to define those in terms of transitions, say e.g. blob
bifurcations. But, will the classification of possible blob events still be valid in the discrete case?
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7

Computing the Representation

When building a representation of the proposed type, there are several computational as-
pects that must be considered in addition to those already dealt with. We need algorithms
for

• detecting grey-level blobs in smoothed grey-level images

• registering bifurcations

• linking grey-level blobs across scales into scale-space blobs

• computing the scale-space blob volumes.

In this chapter we will briefly describe how this can be done. Some algorithmic descriptions
will by necessity be somewhat technical, and as a general guideline those details can be
skipped by the hasty reader.

7.1. Grey-Level Blob Detection

We start by outlining an algorithm for detecting blobs in a grey-level image. We will
describe the case with bright blobs on a dark background only. The case with dark blobs
on a bright background can be solved by application of the bright-blob detection algorithm
on the inverted grey-level image.

7.1.1. The One-Dimensional Case

Detecting grey-level blobs in a one-dimensional discrete signal is trivial. In this case it
suffices to start from each local maximum point and initiate search procedures in each one
of the two possible directions, see Figure 7.1. Every search procedure continues until it finds
a local minimum point, i.e., as long as the grey-level values are decreasing. As soon as a
minimum point has been found the search procedure is stopped and the grey-level value is
registered. The base-level of the blob is then given by the maximum value of the these two
registered grey-levels. From this information the grey-level blob is given by those pixels that
can be reached from the local maximum point without descending below the base-level.

The two-dimensional case is more elaborate, since the search then may be performed
in a variety of directions. In Section 7.1.4 we will describe a methodology that avoids the
search problem and instead performs a global blob detection based on a pre-sorting of the
grey-levels. However, we will first state some basic properties that turn out to be useful for
the algorithm.
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Figure 7.1. The blob detection algorithm for a one-dimensional discrete signal is trivial. The base-
level of a bright blob is equal to the maximum value of the grey-levels in the two local minimum
points surrounding the local maximum point of the blob.

7.1.2. Grey-Level Blob Invariants

From the definition of a grey-level blob one easily realizes that the following basic properties
hold in the classification of the bright blobs of a discrete signal, see also Figure 7.2. To
simplify the presentation, let the notation “higher-neighbour” stand for “neighbour pixel
having a higher grey-level value”. Further, the concept “background” will mean a pixel that
has been classified as not belonging to a blob. (Remember that the saddle point will not be
included in the grey-level blob in the discrete case.)

1. If a pixel has no higher-neighbour then it is a local maximum and will be the seed of
a blob.

2. Else, if it has at least one higher-neighbour which is background then it cannot be
part of any blob and must be background.

3. Else, if it has more than one higher-neighbour and if those higher-neighbours are parts
of different blobs then it cannot be a part of any blob, but must be background.

4. Else, it has one or more higher-neighbours, which are all parts of the same blob. Then
it must also be a part of that blob.

Starting from these properties sequential or parallel blob detection algorithms can be easily
constructed.

(1)
− − −
− X −
− − −

=> max (2)
· B+ ·
· X ·
· · ·

=> B

(3)
· · 1
2 X ·
· · ·

=> B (4)
1 1 1
1 X −
− − −

=> 1

Figure 7.2. Illustration of the grey-level blob invariants numbered from 1 to 4 above. In these figures
the symbol ’X ’ denotes the central point that is to be classified, the symbol ’−’ a pixel having a
lower grey-level than the central point, ’B’ a pixel classified as background, ’B+ a background pixel
with a higher grey-level than the central point, ’1’ and ’2’ pixels classified as belonging to regions
labeled 1 and 2 respectively and ’·’ an arbitrary pixel.
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7.1.3. Generic v.s. Non-Generic Signals

One aspect to be considered in this context is generic v.s. non-generic signals. Actually, the
properties stated in the previous section are valid only for generic signals, that is signals
for which all pixel values are different. Non-generic signals, where connected pixels may
have equal values, can lead to complications. Consider for instance the detection of a local
extremum. There are several possible ways to define this concept in a discrete situation:

Definition 7.1. (Weak local maximum)
A point (x, y) is said to be a weak local maximum point for a discrete function g : Z2 → R
if for g(ξ, η) ≤ g(x, y) holds for all neighbours (ξ, η) of (x, y).

Definition 7.2. (Strict local maximum)
A point (x, y) is said to be a strict local maximum point for a discrete function g : Z2 → R
if g(ξ, η) < g(x, y) holds for all neighbours (ξ, η) of (x, y).

Definition 7.3. (Semi-weak local maximum)
A point (x, y) is said to be a semi-weak local maximum point for a discrete function g : Z2 →
R if g(ξ, η) ≤ g(x, y) holds for all neighbours (ξ, η) of (x, y) and in addition g(ξ, η) < g(x, y)
for at least some neighbour (ξ, η) of (x, y).

Definition 7.4. (Region-based local maximum)
A point (x, y) is said to be a region-based local maximum point for a discrete function
g : Z2 → R if g(ξ, η) ≤ g(x, y) holds for all neighbours (ξ, η) of (x, y) and in addition, by
following connected points having the same grey-level value as (x, y), it is impossible to reach
a neighbour having a higher grey-level value.

For generic signals, all these formulations will be equivalent. On the other hand, in situations
where adjacent pixels have equal values, they can give quite different results, see Figure 7.3
for an illustration.

Figure 7.3. For non-generic signals, special care must be taken when defining the concept of a local
maximum point. In this figure, point A represents a maximum point as it would appear in a generic
signal and accordingly it satisfies all the definitions of a local maximum; it is a weak local maximum,
a strict local maximum, a semi-weak local maximum as well as a region-based local maximum. B
is a weak local maximum while C is both a weak local maximum and a semi-weak local maximum.
D is both a weak local maximum, a semi-weak local maximum and a region-based local maximum,
while E is both a weak local maximum and a region-based local maximum. The only one of the
definitions that gives reasonable results in all these cases is the region-based local maximum.

Therefore when dealing with degenerate data, as will be the case when the grey-level
values have been quantized, the region-based local maximum is apparently the appropriate
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definition to work with. When implementing this concept computationally, it is convenient
to pre-process the input data with the connected-component-labelling-algorithm, which as-
signs a unique identifier to each set of connected pixels having the same value. Then, the
comparisons between neighbouring grey-level values, which were earlier based on neighbour-
ing pixels, can instead be made based on neighbouring regions. In other words, the use of
“pixel” in the grey-level blob invariants in Section 7.1.2 can be replaced by “region”. For
instance, from this viewpoint a point is a region-based maximum if and only if it belongs to
a region that only borders upon regions having a lower grey-level value. Of course, it is also
possible to implement an algorithm for region-based maximum detection by first detecting
weak local maxima and then carrying out a neighbourhood search in each individual degen-
erate case. This method may in fact be faster if it is known in advance that the number
of degenerate situations are few. However, here we have made use of the approach with
connected regions because of its algorithmic simplicity.

7.1.4. Sequential Implementation

The idea with the algorithm is to initiate a blob seed in every local maximum point and
then let each maximum region grow until it meets with some other maximum region. If
the growth procedure is performed in descending grey-level order, we are guaranteed that
no maximum region will grow too much. The case where adjacent points have equal values
might lead to some practical problems and we avoid those by pre-processing the image with
the connected-component-labelling-algorithm. Hence, given a finite discrete real-valued or
integer-valued image perform the following steps:

1. Run the connected-component-labelling-algorithm on the grey-level image in order to
group connected points with equal values into regions1. After this step connected
pixels having same grey-level will be given the same unique region label.

2. Sort the regions with respect to their grey-levels. For integer-valued images this may
be done efficiently by indexing.

3. For each region, create a list of its neighbour regions having a higher grey-level.

4. Group the regions into blobs, i.e., for each region in descending grey-level order: count
how many references it has to neighbour regions with a higher grey-level.

a. If the region has no such neighbours, then it is a local maximum point and will be
the seed of a blob. Set a flag allowing the blob to grow, and store the grey-level
of the region as the maximum grey-level of the blob.

b. Else, if the region has a neighbour region with higher grey-level, which has been
classified as background, then the current region cannot be a part of a bright
blob and must also be classified as background.

1This step can be omitted if it is known in advance that no two connected pixels have equal values. Then
every pixel can be regarded as a region in the description below. For data given by scale-space smoothing it
can in general be assumed that adjacent pixels in fact have different values, provided that the calculations are
carried out in floating point precision and that the output image is stored on that format. Therefore this step
will in some situations be superfluous. Another possible way to ensure that the input data is non-degenerate
is by modifying the least significant bits in the floating point numbers such that no pair of neighbouring
pixels have equal values. The effects of such a modification should be neglible if the error introduced by this
operation is kept below the numerical error in the implementation of the scale-space smoothing.

155



c. Else, if the region has more than one higher neighbour region, and if those neigh-
bour regions are not parts of the same blob, then the region cannot be a part of
a blob and must be set to background. For blob, containing any of the neighbour
regions, carry out the following:

• If the blob is still allowed to grow then clear the flag, which allows it to
grow, and store the current grey-level as the base-level of the blob. Store
this region as a2 saddle region associated with the blob.

d. Else, if none of the previous conditions are true then the neighbour regions having
a higher grey-level than the current region are all parts of the same blob. If that
blob is still allowed to grow then the current region should be included as a part
of that blob. Otherwise the region should be set to background.

5. Create a blob image where all pixels in a region classified as blob are given the same
(unique) label of the blob.

6. Traverse the grey-level image and the blob image simultaneously and compute the
contrast, area and volume for each blob. Store these values in a data structure together
with the extremum regions and the saddle regions of the blobs.

7.1.4.1. Alternatives

There are several simplifications that could be made if it is known for sure that the algorithm
only needs to handle generic signals. Also the approach with a pre-sorting of the pixels with
respect to their grey-level values can be changed. One can initiate a seed in each local
maximum and let the classification propagate in a grass-fire-like way. Then, it will be
sufficient to process only the frontier. The grey-level blob invariants can also form the basis
of a parallel implementation, see [Lin91a] for a brief description.

7.2. Linking Grey-Level Blobs into Scale-Space Blobs

Linking blobs across scales could be a potential source to difficult matching problems, since
blobs can move, disappear, merge, split or be created when the scale parameter changes.
However, the notion of a scale-space with a continuous scale parameter gives us a simple
way to circumvent these problems in many cases, since the scale step may be varied at will.
If one is confronted with a problematic matching situation, then the matching difficulties
can often be avoided by a refinement of the scale sampling. If the scale step is adaptively
made just fine enough it should be trivial to judge which grey-level blobs belong to the same
scale-space blob.

According to the classification of blob events in the previous chapter, there are four
possible types of blob events for generic signals: annihilation, merge, split and creation.
Assuming that this continuous property is valid for to discrete signals, all we have to look
for are those four possibilities. This implies that if a situation is encountered with, say,
three blobs at a fine scale, seeming all to belong to the same coarse scale blob, then the
situation can (under the assumption of generic signals) be resolved into bifurcations of these
types by a sufficient number of refinements of the sampling along the scale direction. This
constitutes the basic principle behind the adaptive scale linking algorithm, which essentially

2Observe that for degenerate signals a grey-level blob can be delimited by more than one saddle point
(where all such saddle points have the same grey-level), and that these “saddle points” in turn can be regions.
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refines the scale sampling until all relations between blobs at adjacent levels of scales can
be decomposed into those primitive transitions.

7.2.1. Blob-Blob Matching

Figure 7.4. The blob linking between scale levels is based on spatial coincidence, i.e., if two grey-
level blobs at adjacent levels of scale have a spatial point in common they are registered as matching
candidates of each other. In this example the left situation will be registered as a possible blob
merge, while the right situation will be a possible plain link within the same scale-space blob.

Based on this idea, the blob linking between two levels of scale can be performed based
on spatial coincidence. A straightforward strategy is to start with a relatively fine initial
sampling in scale and then for each pair of scale levels traverse all pixels and for each point
investigate if it is included in a blob both at the lower scale and at the higher scale. If so,
the lower blob is registered as a match candidate of the higher blob, and the higher blob is
registered as a match candidate of the lower blob. By inclusion in a blob, we here mean that
a pixel belongs to the support region of the blob. It is convenient to introduce a notation
formalizing this statement:

Definition 7.5. (Blob-blob matching candidate)
Let SF and SC be the support regions of two grey-level blobs GF and GC existing at two
adjacent scale levels tF and tC respectively where tF < tC . GF is said to be a blob-blob
matching candidate from above of GC denoted

GF ↙b−b (GC) (7.1)

if there exists some pixel in SC that is contained in SF . Similarly GC is said to be a blob-blob
matching candidate of GF from below denoted

GC ↖b−b (GF ) (7.2)

if there exists some pixel in SF that is contained in SC .

Obviously, the definition implies that matching candidates of this types are bidirectional

(GF ↙b−b (GC))⇐⇒ (GC ↖b−b (GF )) (7.3)

Given such relations between the grey-level blobs from the scale-space representations at
two adjacent levels of scale, we can discern the following primitive types of elementary
matching situations; possible link within a scale-space blob, possible annihilation, possible
merge, possible split and possible creation; see also Figure 7.5.
As indicated above, the idea behind the adaptive scale linking algorithm is basically that it
should be possible to decompose all relations between blobs at adjacent levels of scale into
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(e)(d)(c)(b)(a)

Figure 7.5. Elementary matching situations given by matching relations between blobs at different
scales. (a) plain link (b) annihilation (c) merge (d) split and (e) creation.

primitive relations of the types listed above by successive refinements of the scale sampling.
For instance, if any blob has more than two matching candidates then a refinement should
be made.

Figure 7.6. An encountered situation with, say, three blobs at a fine scale that all seem to belong to
the same coarse scale blob can generically be resolved in to a sequence of two successive blob merges
by a refinement of the scale sampling. Observe that this figure shows only the support regions of the
blobs.

7.2.2. Extremum-Blob Matching

There are, however, some situations where this methodology might lead to an unnecessarily
large number of refinements. Consider for instance a pair of neighbouring blobs, that is
two blobs sharing the same delimiting saddle point, which slowly drift with the scale-space
smoothing, see Figure 7.7(a). Then a very large number of refinements might actually be
needed in order to resolve the situation into two plain links.

The efficiency in such situations can be substantially improved by allowing for extremum-
blob matching. The idea is to perform an additional gathering of matching candidates based
on the inclusion of the extremum points at one level scale in the grey-level blobs at the other
level of scale. In other words, if the maximum point of a blob B at one scale is included in
the support region of grey-level blob A at the other level of scale then blob A is registered
as match candidate of blob B, see Figure 7.7(b).

Definition 7.6. (Extremum-blob matching candidate)
Let tF < tC be two scale levels and let GF be a grey-level blob at scale tF and GC a grey-
level blob at scale tC with blob support regions SF and SC and extremum points EF and EC

respectively. GF is said to to be an extremum-blob matching candidate from above of GC

denoted
GF ↙e−b (GC) (7.4)
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Figure 7.7. (a) Basing the matching just on blob-blob matching candidates might lead to an
unnecessarily large number of refinements for configurations with two neighbouring blobs that slowly
drift due to the scale-space smoothing. (b) In such situations extremum-blob matching can be used
for improving the matching, especially at coarser levels of scale where pairs of double candidates
appear relatively frequently. The idea is to gather additional matching candidates based on inclusion
of the local maximum points at one level of scale in the grey-level blobs at the other level of scale. If
the matching candidates are unique and mutual then a match will be accepted without refinement.

if EC is contained in SF . Similarly GC is said to be an extremum-blob matching candidate
of GF from below denoted

GC ↖e−b (GF ) (7.5)

if EF is contained in SC .

It is clear that these matching relations will not necessarily be bidirectional. The idea behind
this construction is that if the extremum-blob matching candidates obtained in this way are
mutual and if they resolve a situation with a pair of double candidates then the situation
can be registered as a pair of possible plain links. It turns out that these types of situations
are rather common at coarser levels of scale, compare with Figure 5.8 and Figure 5.9, where
two blobs “hang together” but anyway drift slowly due to the scale-space blurring. As we
shall see later, these relations can also be used for stating stronger matching conditions than
the blob-blob coincidence requirements.

7.2.3. Registering Bifurcations in Scale-Space

What remains to decide is when a blob match should be accepted. In our current implemen-
tation we, in principle, perform a scale refinement each time an unclear matching situation
occurs, and accept matches in principle only when all blob events between the two scale
levels can be classified as belonging to either one of the primitive cases: plain link within a
scale-space blob, blob annihilation, blob merge, blob split or blob creation.

7.2.3.1. Notation

There are several possible ways to define situations which are candidates of being bifurcation
situations. In order to enable a clear statement of what we mean by that, we will first
introduce some notation describing the number of matching relations associated with a
certain grey-level blob G:

• N ↙b−b (G) denotes the total number of blob-blob matching relations from above,
starting at G, that G is involved in.

• N ↘b−b (G) denotes the total number of blob-blob matching relations from above,
ending at G, that G is involved in.
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• N ↙e−b (G) denotes the total number of extremum-blob matching relations from above,
starting at G, that G is involved in.

• N ↘e−b (G) denotes the total number extremum-blob matching relations from above,
ending at G, that G is involved in.

Similarly, the symbols N ↖b−b (G), N ↗b−b (G), N ↖e−b (G) and N ↖e−b (G) describe the
number of matching candidates from below that are associated with a certain grey-level blob
G. One observes that

N↙b−b (G) = N↗b−b (G) (7.6)
N ↘e−b (G) ≤ N↘b−b (G) (7.7)
N ↙e−b (G) ≤ N↙b−b (G) (7.8)
N ↙e−b (G) = either 0 or 1 for generic signals (7.9)

(7.6) is a direct consequence of the property that blob-blob matching relations are bidirec-
tional. (7.7) and (7.8) simply mean that the number of blob-extremum matching relations
cannot exceed the number of blob-blob matching relations, since both these types of relations
are obtained from spatial coincidence and the number of pixels that satisfy the definition of
a region-based local extremum cannot exceed the number of pixels in the blob support re-
gion. (7.9) is guaranteed to hold only for generic signals and simply means that a point that
is an extremum point at one level of scale cannot be contained in more than one grey-level
blob at an other level of scale.

7.2.3.2. Weak Conditions for Bifurcation Situations

Given these relations we can state when a set of relations between blobs at adjacent scales
should be interpreted as a candidate for being either a link within the same scale-space blob,
a bifurcation situation or a complex situation to be subject to simplification by further
refinements. In the following definitions, grey-level blobs existing at the finer of the two
scales will be throughout denoted GF , GF1 and GF2, while grey-level blobs at the coarser
scale level will be written GC , GC1 and GC2:

Definition 7.7. (Weak link candidate)
{GF , GC} are said to form a weak link situation between tF and tC if

(N ↖b−b (GF ) = 1) ∧ (N ↙b−b (GC) = 1) ∧ (GC ↖b−b (GF )) (7.10)

Definition 7.8. (Weak annihilation candidate)
{GF } is said to form a weak annihilation situation between tF and tC if

(N ↖b−b (GF ) = 0) (7.11)

Definition 7.9. (Weak merge candidate)
{GF1, GF2, GC} are said to form a weak merge situation between tF and tC if

(N ↖b−b (GF1) = 1) ∧ (N ↖b−b (GF2) = 1) ∧ (N ↙b−b (GC) = 2) ∧
(GC ↖b−b (GF1)) ∧ (GC ↖b−b (GF2)) (7.12)
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Definition 7.10. (Weak split candidate)
{GF , GC1, GC2} are said to form a weak split situation between tF and tC if

(N ↖b−b (GF ) = 2) ∧ (N ↙b−b (GC1) = 1) ∧ (N ↙b−b (GC2) = 1) ∧
(GF ↙b−b (GC1)) ∧ (GF ↙b−b (GC2)) (7.13)

Definition 7.11. (Weak creation candidate)
{GC} is said to form a weak creation situation between tF and tC if

(N↙b−b (GC) = 0) (7.14)

7.2.3.3. Strong Conditions for Bifurcation Situations

In these statements there are, however, a lot of available information that we have not made
use of. We have not taken the locations of the extremum points into account and not the
relations between delimiting saddle points that hold in split and merge situations. Therefore
it is natural to define the following (below Sdelimit (G) denotes the delimiting saddle point
of a grey-level blob G, see Definition 6.3, and nonshared(S) means that the saddle point S
is non-shared, see Definition 6.7):

Definition 7.12. (Strong link candidate)
{GF , GC} are said to form a strong link situation between tF and tC if they form a weak
link situation between tF and tC and in addition

(GC ↖e−b (GF )) ∧ (GC ↙e−b (GF )) ∧
(nonshared(Sdelimit (GF ))) ∧ (nonshared(Sdelimit (GC))) (7.15)

Definition 7.13. (Strong merge candidate)
{GF1, GF2, GC} are said to form a strong merge situation if between tF and tC they form a
weak merge situation between tF and tC and in addition

(GC ↖e−b (GF1)) ∧ (GC ↖e−b (GF2)) ∧
(Sdelimit (GF1)Sdelimit(GF2)) (7.16)

Definition 7.14. (Strong split candidate)
{GF , GC1, GC2} are said to form a strong split situation between tF and tC if they form a
weak split situation between tF and tC and in addition

(GF ↙e−b (GC1)) ∧ (GF ↙e−b (GC2)) ∧
(Sdelimit(GC1)Sdelimit(GC2)) (7.17)

Note that one cannot in general require that the extremum point of the coarser scale blob
involved in a blob merge should necessarily belong to some of the blobs at the finer scale or
that any corresponding relation should hold in a blob split. When formalizing the matching
criterion for pairs of double candidates described in Figure 7.7 we get:

Definition 7.15. (Strong double link candidate)
{GF1, GF2, GC1, GC2} are said to form a strong double link situation between tF and tC if

(N ↖b−b (GF1) = 2) ∧ (N ↖b−b (GF2) = 2) ∧
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(N ↙b−b (GC1) = 2) ∧ (N ↙b−b (GC2) = 2) ∧
(GC1 ↖b−b (GF1)) ∧ (GC1 ↖b−b (GF2)) ∧
(GC2 ↖b−b (GF1)) ∧ (GC2 ↖b−b (GF2)) ∧
(GC1 ↖e−b (GF1)) ∧ (GC2 ↖e−b (GF2)) ∧
(GF1 ↙e−b (GC1)) ∧ (GF2 ↙e−b (GC2)) ∧

(Sdelimit (GF1) = Sdelimit(GF2)) ∧ (Sdelimit (GC1) = Sdelimit (GC2)) (7.18)

When this condition is satisfied GC1 will be regarded as belonging to the same scale-space
blob as GF1 and GC2 is regarded as belonging to the same scale-space blob as GF2.

To express similar stronger conditions for blob annihilations and blob creations is not
as easy, since in this case we have to ensure that we have not failed to find any relevant
matching candidate that should have been registered. Of course, one could require that the
delimiting saddle point (see Section 6.1.3) in such a situation should be non-shared. But
such a condition will be far from sufficient.

7.2.3.4. Extended Neighbourhood Search

The conditions mentioned so far will however not be sufficient when tracking blobs covering
just a small number of pixels. For example, the drift of a blob with an area of say one pixel
will be impossible to capture with the previously outlined criteria, unless some additional
gathering of matching candidates is carried out. This means that a situation that should
have been registered as a plain link can give rise to one annihilation and one creation
unless some additional precautions are taken. Therefore, in our current implementation, we
perform an extended neighbourhood search in a region (of width one pixel) around every
point involved in a weak creation situation. The purpose is to investigate if there are other
blobs near it, which are involved weak annihilation situations. A blob creation is accepted
only if no such blobs can be found and if, in addition, the same conclusion holds through a
small number of refinements.

Another possible way of improving the performance could be by analysing the variation
of the volume and contrast of the grey-level blobs and compare with analytical results as
those derived in Section 6.4.1. One could also use drift velocity estimates as those derived
in Section 6.4.2 or build up a model of the motion of the extremum point as function of
scale. No such methods have, however, been implemented.

7.2.3.5. Bidirectional Matching

Let us point that in contrast to many matching algorithms in e.g. motion analysis, where
the matching is performed only in one direction, that is with increasing time, this matching
procedure, in its current form, is purely geometric and bidirectional. The matching candi-
dates are always registered from both directions. Therefore, the scheme can equivalently be
started either at a fine scale or at a coarse scale. The first approach can be advantageous if
the scale-smoothing is implemented as cascade smoothing. The second approach could on
the other hand have advantages when focusing the attention, that is when zooming in to a
particular object, since significant image features are more often found at the coarser scales
than at the very finest levels of scale.
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7.2.4. Delimiting the Refinement Depth

The decomposition property, meaning that relations between grey-level blobs at different
levels of scale can be resolved into relations of the five primitive types (shown in Figure 7.5),
is guaranteed to hold only for generic signals. Therefore in order to avoid a possible infinite
number of refinements in situations when the algorithm is presented with a degenerate
signal, it is necessary to introduce an upper bound on the number of refinements allowed to
take place. If this number is reached, then a complex bifurcation will be registered by the
algorithm. Although we have not yet found this situation to occur in any realistic images
we have sometimes seen it happening for highly regular and noise-free synthetic data.

7.2.5. Scale Levels and Computation of the Refinement Scale

The algorithm is initiated with a relatively fine sampling along the scale direction corre-
sponding to about 1

3 -
1
2 octave in t at coarse levels of scale, distributed such that the scale

step measured in effective scale is approximately constant. The maximum scale is deter-
mined from the size of the image (the outer scale) and the minimum scale is set to a low
value3 (the inner scale). When refinements are needed, the refinement scale is computed
from the existing scale levels t1 and t2 based on the notion of effective scale

trefine(t1, t2) = τ−1(
τ(t1) + τ(t2)

2
) (7.19)

where τ denotes the transformation function from the ordinary scale parameter to the
effective scale parameter and τ−1 its inverse. The function values are computed from in-
terpolation in a table with simulation data accumulated from point noise images, compare
with Section 5.5.2.

7.2.6. Basic Blob Linking Algorithm

To summarize, an algorithm for linking grey-level blobs across scales into scale-space blobs
can be based on the following steps. In the treatment below we will base the matching on
the weak matching relations only in order to illustrate the idea. It should be obvious how
the strong criteria can be incorporated in an analog manner.

1. Determine an initial set of scale levels, from some minimum scale value tmin, given by
the inner scale of the image, to some maximum value tmax, which is given by the outer
scale of the image. Distribute the intermediate scale levels such that the scale step,
measured in effective scale is approximately constant. At coarse scales this means
that the ratio between successive scale values will be about constant. At fine scales
instead the differences between successive scale values will be approximately equal.
Push these scales onto a stack of scale levels to be processed later.

2. Extract the grey-level blobs from the image at the finest scale using the grey-level blob
detection algorithm.

3. Get the next scale-level from the stack of scale levels.

a. Extract the blobs at the current level of scale.
3This scale value may be zero, but because of computational aspects it might be practical to use a higher

value. During our experiments we have consequently let it be either 0, 1 or 2.
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b. For each grey-level blob at the current scale level, determine how many matching
candidates it finds at the previous scale level. Similarly, for each grey-level blob
at the previous scale level determine how many matching candidates it finds at
the current scale level.

c. If some grey-level blob has more than two match candidates then the matching
is non-trivial. Similarly, if there is a pair of double candidates4, i.e., if there is
a blob having two matching candidates and one if its matching candidates in its
turn also has two possible match candidates, then the matching is also difficult.
In these cases perform a refinement, i.e.,

i. push the current scale level into the set of scale levels to be calculated.
ii. compute a refinement scale between the current scale level and the previous

one.
iii. Continue with Step 3.

d. Else, if some grey-level blob at the coarser level does not find a match candidate
at the finer level then the situation is more complicated. According to the scale-
space theory this situation may in fact occur (but not very often). There could
also be some other natural explanations why we may fail to find match candidates:

i. The blob may have moved outside the spatial region it covered at the previous
level of scale. This phenomenon applies mostly to blobs with small areas —
particularly blobs consisting of one pixel only. Such blobs will always be lost
when moving if the matching is based on common pixels only.

ii. Numerical errors may have violated the scale-space properties.

In this implementation we perform an extended search in a small neighbourhood
(of distance 1) around the coarse-scale blob in order to gather more matching
candidates. If exactly one such candidate has been found and if that blob has no
other match candidates, then a blob match will be accepted and the two grey-
level blobs will be linked into the same scale-space blob. Otherwise, a refinement
will be performed. However, if the refinement depth is too deep then a blob
creation will instead be registered.

e. Else, each blob has either one or two matching candidates, and the matching
candidates will be accepted.

i. If a blob at the fine scale has exactly one match candidate at the coarse scale,
and if that candidate in turn has exactly one match candidate to the fine
scale then link the grey-level blobs into the same scale-space blob.

ii. If a grey-level blob at the finer level does not have a match candidate at the
coarser level then register a blob annihilation.

iii. If a blob at the coarser level finds two match candidates at the finer level and
if these blobs in turn have exactly one match candidate each at the coarser
level then register a blob merge.

iv. If a blob at the finer level finds two match candidates at the coarser level and
if these blobs in turn have one match candidate each, then register a blob
split.

4Many situations of this type can, as indicated above, be resolved with an extended extremum-blob
matching — especially at coarser levels of scale. Then the refinement step will not be necessary.
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4. Store the registered relations between grey-level blobs at different scales. Then traverse
all the scale levels and compute the scale-space blob volume and the scale-space lifetime
for each scale-space blob (see Section 7.3 for the details).

7.2.7. Continuous Scale Parameter v.s. Fixed Scale Sampling

Note that this refinement principle cannot be applied as easily in pyramid representations
where the scale levels have been set in advance. Then there is a fixed scale step beyond
which refinements are no longer possible. Often, the pyramid representations also imply
quite a coarse sampling in scale (a factor of 2 or

√
2 in σ that is a factor of 4 or 2 in t), that

makes the matching problem more difficult.

7.2.8. Blob Linking v.s. Extremum Linking

It should be stressed that the grey-level blobs are much easier to trace across scales than
are local extrema. This is mainly because the blob concept associates a region with every
local extremum point. If one instead would have based the scale-level analysis on local
extrema only, then the matching problem would often be more difficult, since local extrema
may move much faster than the blobs. Ambiguous situations could easily occur. Especially
bifurcation situations would be harder to identify. If at some level of scale one has lost the
track of a local extremum point, then it is hard to say if it is because the extremum point has
moved much faster than expected, been annihilated or because it has merged with another
extremum point. It is in this context the blob regions are important, since they give natural
spatial regions in which there are no other local extrema. They also define natural regions,
to search for blobs in, at the next level of scale, compare also with Observation 6.15.

7.3. Computing the Scale-Space Blob Volumes

Once the scale linking has been performed and the bifurcations have been registered, it
is straightforward to compute the scale-space blob volumes. At first every grey-level blob
volume, as computed by the grey-level blob detection algorithm, is transformed according
to the relation

Veff (t) =

{
1 + Veff,prel if Veff,prel ≥ 0
eVeff,prel otherwise

(7.20)

where
Veff,prel(t) =

V (t)− Vm(t)
Vσ(t)

(7.21)

and Vm(t) and Vσ(t) denote interpolated values from the tables of the mean values and
standard deviations of the grey-level blob volumes for point noise data. In order to reduce
the sensitivity of these values for the actual scaling of the grey-level values in the image, the
tabulated values of Vm are rescaled with a uniform scaling factor determined from a least
squares fit between the experimental values and the tabulated values at the finest levels
of scale. Given these normalized grey-level blob volumes, the scale-space blob volumes
are computed from the trapezoid rule of integration using the effective scale as integration
variable. The scale of a bifurcation is localized to the mean value (computed in effective
scale) of the nearest coarser and finer scale around the bifurcation. The grey-level blob
volume at a bifurcation is set to zero for annihilations and creations as well as for the two
smaller blobs involved in merges and splits. As grey-level blob volume for the larger blob
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involved in a blob merge or blob split is taken the value of the grey-level blob volume in the
nearest scale level included in that scale-space blob.

7.4. Data Structure

In order to give a rough idea of what information can be available in a data structure
representing the scale-space primal sketch, we have in Appendix A.6.3 briefly described
what kinds of objects could be defined in an actual implementation of this concept and also
what types of data can be stored in those.

7.5. Possible Improvements of the Algorithm

The main concern behind this implementation has been to compute the representation as
accurately as possible. We have not focused very much upon the computational efficiency of
the algorithm5, since the main objective with this work has been to investigate what type of
information can be obtained once a representation of the proposed type has been computed.
In this section we will briefly describe some obvious improvements that could be made in
order to speed up the performance.

7.5.1. Local Refinements

Currently, the refinements are made globally. In other words when a difficult situation has
been encountered, necessitating refinements, then all grey-level blobs at the involved scales
are subject to this process. One of the main improvements that could be made to the
algorithm would be by restricting those refinements to comprise only the grey-level blobs
involved in the ambiguous situation. Then only a window instead of the entire image needs
to be processed.

7.5.2. Drift Velocity Estimates

The success of the linking algorithm depends very much on the fact that it is initiated with
a fine initial sampling in scale. In later work we hope to incorporate an estimate of the drift
of the blobs in order to get further verification of the bifurcation situations and the blob
matches, compare also with Section 7.2.3. Such an estimate could also give more precise
information about how dense the scale sampling really needs to be, possibly implying that
a fewer number of scale levels needs to be treated. Observe that some discrete aspects may
have to be introduced if such an approach is taken, see also Section 6.6.

7.5.3. Approximate Description

As was said earlier, we have throughout this work tried to introduce as few computational
and numerical errors as possible when computing the representation. However, it often
turns out that many of the situations leading to refinements, correspond to structures later
on rejected as being non-significant. Therefore, it seems plausible that the performance
could be improved if those refinements could be avoided. In other words, if just an ap-
proximate description could be computed. However, such approximations require extensive
experimentations and have not carried out.

5Coarse estimates about the performance of the algorithm are given in Appendix A.6.1.
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7.5.4. Subsampling at Coarser Scales

The representations at coarser levels of scale are highly redundant. Another approximation
to make would be by subsampling the images at coarser levels of scales, as is done in pyra-
mids, in order to reduce the number of pixel values that need to be computed. An important
issue to consider if such an approach is taken is to ensure that “no severe discontinuities”
are introduced in the scale direction, compare also with Section 3.6.5.

7.5.5. Other Normalization Methods

As indicated above, the subtraction by the mean value carried out when computing the
normalized grey-level blob volumes is sensitive to the actual scaling of the data. The trans-
formation performed by scaling the tabulated data with a constant determined from a least
squares fit to the experimental data is intended to compensate for this phenomenon. A
possible way to avoid this rescaling would be by computing the normalized grey-level blob
volumes from

Veff (t) =
V (t)
Vm(t)

(7.22)

and then integrate those values into scale-space blob volumes. As significance values for
comparisons across scales one could conceive taking the ratio

Seff (t) =
S(t)− Sm(t)

Sσ(t)
(7.23)

where Sm and Sσ denote mean values and standard deviations for scale-space blobs computed
from point noise data (based on the same normalization (7.22)). As scale values for the scale-
space blobs we could take their appropriate scale, that is the scale where they assume their
maximum grey-level blob volumes, see Chapter 8 for further explanation. This method has
not yet been implemented, mainly because the amount of simulation work required when
building the tables is much larger.
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Part III

The Scale-Space Primal Sketch:

Applications
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8

Detecting Image Structures

8.1. Detecting Significant Image Structures and Their Scales

One motivation for this research was to investigate if the scale-space model really allows
for determination and detection of global and stable phenomena. In this section we will
demonstrate that this is indeed possible and that the proposed representation can be used for
extraction of important regions from an image, in a solely data-driven way. The treatment
is based on the assumption that:

• Features, which are significant in scale-space, correspond to relevant details in the
image.

More precisely, since the primitives we intend to use are scale-space blobs we formulate the
assumption as follows:

Assumption 8.1. (Significant image structure)
A scale-space blob having a large scale-space volume in scale-space corresponds to a relevant
region in the image.

A scale-space blob will in general exist over some scale interval in scale-space. When there
is a need to reduce the amount of data represented and to select an appropriate scale and
a spatial region for a scale-space blob, we make use of the following postulates:

Assumption 8.2. (Scale selection)
The scale-level, at which a scale-space blob assumes its maximum grey-level blob volume, is
a relevant scale for treating that individual blob.

Assumption 8.3. (Spatial representative)
The spatial extent of a scale-space blob can be represented by the blob support region corre-
sponding to its grey-level blob at the relevant scale.

The ranking of events in order of significance depends on the actual scaling of the four co-
ordinate axes in the scale-space representation. Therefore, the extraction method implicitly
relies upon the assumption that it is sufficient to transform the coordinate axes once and
for all as was done in Section 5.5, and that this normalization can be carried out based on
the behaviour in scale-space of point noise signals.

Assumption 8.4. (Normalization)
The coordinate axes in the scale-space representation can be normalized based on the be-
haviour in scale-space of point noise data.
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Below, we will give experimental results showing that these assumptions, combined with a
careful computational treatment of the scale-space, really segment out perceptually relevant
regions in the image.

8.2. Motivation for the Assumptions

A central issue in low-level vision concerns what should be meant with “image structure”. In
other words, which features in an image can be regarded as important, and which ones should
be rejected as noise. Notably, Lowe [Low85] defines structure based on non-accidentalness.
However, such an approach requires a probabilistic model of the situation. It is well-known
that it is difficult to find a statistical model generally valid for the image formation process.

8.2.1. Transformational Invariance: Structure

In this work we take an alternative viewpoint and suggest a definition of structure based
on features, which are stable with respect to (appropriately selected) transformations and/or
parameter variations. For this specific treatment the transformation family of interest is the
semi-group of convolution transformations associated with the scale-space smoothing. The
parameter we vary is the scale parameter. We think that features stable or invariant with
respect to variations in scale can be regarded as significant. In more general situations one
could also imagine the probing transformation as given by variations in viewing distance
(focusing), spatial resolution, regularization parameters etc.

One can motivate such a standpoint by a pragmatic argument. If a feature is to be useful
for recognition, it must necessarily be stable with respect to small disturbances. Otherwise
it can hardly be practically useful, since then, it inherently cannot be computed accurately.
This definition of structure in terms of transformational invariance also induces a straight-
forward and general method for detecting significant image features, namely by subjecting
the image to systematic parameter variations. In line with that idea we believe that those
features, that are the most stable ones during such a parameter variation process, can be
regarded a strong candidates for being useful for later processing and possibly recognition.

The reverse statement does of course not hold. There are many other sources of infor-
mation, i.e., lines in line-drawings, that are not captured by a blob concept and scale-space
smoothing. In this work we focus mainly on one aspect of image structure, namely regions
that are brighter or darker than the background and stand out from the surrounding.

Note, that this use of transformational invariance is different than to what is usually
meant by invariance in the algebraic or geometric sense. Here, we consider invariance as
stability over a finite interval, that is a limited range of parameter values, and define features
based on this property.

8.2.2. Stability in Scale-Space: Perceptual Salience

The approach is closely related to Witkin’s [Wit83a] observation about correspondence
between stability in scale-space and perceptual salience. However, here we base the stability
measure on the scale-space blob volumes instead of the scale-space lifetime. The intention
is that this choice also should reflect the size of the blobs and how strongly they manifest
themselves with respect to the background. As mentioned in Section 5.4 we have observed
that small blobs due to noise can survive over a large range of scales if they are located
in regions with slowly varying grey-level, which shows that scale-space lifetime alone is not
sufficient as a significance measure.
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8.2.3. Reduction of the Representation: Abstraction

Because of complexity arguments, the entire parameter variation information from the low-
level modules cannot not be transferred to modules intended to perform higher-level pro-
cessing tasks. Instead we think that low-level modules working after this paradigm should
be able to extract stable intervals, and that it should suffice to determine a representative
descriptor for each important stability region.

The second and third assumptions express such a desire to represent a scale-space blob
with a grey-level blob at a single level of scale in order to give a more compressed representa-
tion, an abstraction, for further processing. We believe that a relevant scale of a scale-space
blob should be a scale where the grey-level blob manifests itself “as its best”, i.e., it should
be the scale level where the blob response “is maximally strong”. This selection method
is similar to Marr’s, [Mar76], idea about the choice of an appropriate mask size for edge
detection. Empirically we have found that this suggested scale value will give a good de-
scription of the situation. It turns out that it often will be close to the appearance scale of
the scale-space blob, except at blob splits and blob creations, for which the grey-level blob
volume at the appearance scale will be zero.

Worth noting is that Assumption 8.2 implies a projection from a four-dimensional scale-
space blob to a three-dimensional scale-space blob and that Assumption 8.3 implies a projec-
tion from that three-dimensional grey-level blob to its two-dimensional blob support region.

8.3. Basic Extraction Method for Image Structures

The basic methodology, in our suggested algorithm for extraction of important image struc-
ture, should be obvious from the previous presentation.

• Generate the suggested multi-scale representation, where blobs are extracted at all
levels of scale and linked across scales into scale-space blobs.

• Compute the scale-space volume for each scale-space blob based on the notion of
effective scale and transformed grey-level blob volumes.

• For each scale-space blob determine the scale where it assumes its maximum grey-level
blob volume, and extract the blob support region of the grey-level blob at that level
of scale.

• Sort the scale-space blob in descending significance order, i.e., with respect to their
scale-space blob volumes.

8.4. Experimental Results

In Figure 8.1, Figure 8.2 and Figure 8.3 we show the results of applying this procedure to
three different images with toy blocks, a telephone and a calculator and a dot pattern. The
reader is encouraged to study these images carefully.

For display purpose we have extracted the N dark scale-space blobs having the largest
blob volumes. Each blob is represented at its representative scale, that is the previously
mentioned scale where the scale-space blob has its maximum grey-level blob volume. Finally,
the spatial region of each blob (which is the blob support region at its representative scale)
has been marked in a binary image, where black indicates the existence of a significant blob
and white represents background. In order to avoid overlap in the display, we have shifted to

171



Figure 8.1. The 50 most significant dark blobs from a toy block image. (Note how these images
have been produced — they are not just blob images at a few levels of scale. Instead every blob has
been marked at its representative scale. Finally, the blobs have been drawn in different images as to
avoid overlap.)

Figure 8.2. The 50 most significant dark blobs from a telephone and calculator image.
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Blob label Scale Significance
1760 32.00 1450.55
1767 64.00 1266.43
1764 50.80 1030.53
1768 80.60 591.16
1770 812.90 297.60
1769 645.10 284.72
1761 45.25 150.64
1758 28.51 131.99
1763 45.25 73.69
1065 35.91 63.51
1759 28.51 35.92
1753 22.65 35.42
1703 8.00 20.45
1702 8.99 17.43
1723 11.99 12.84
1757 28.51 9.94
1256 4.00 6.84
1708 9.53 6.20
1725 14.25 5.33
1440 2.00 5.10
1471 1.40 4.85
1610 2.87 4.03
1731 16.00 3.84
1679 4.73 2.41
1078 1.00 2.30
1265 1.10 2.27
1713 10.10 2.21
1706 8.99 2.21
251 1.22 2.07
1072 1.00 2.02
1070 1.00 1.98
1187 1.00 1.96
1243 2.65 1.95
1686 5.00 1.95
1371 1.05 1.93
1611 6.40 1.87
1286 1.00 1.83
1183 1.00 1.83
1083 1.00 1.79
1336 1.00 1.75
1393 1.10 1.72
212 1.00 1.71

Table 8.1. Table over the relevant scales and significance values of the 40 most significant blobs
obtained from the scale-space primal sketch representation of the toy block image. Note that a few
blobs have significance values clearly standing out from the other ones.
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Figure 8.3. The 50 most significant dark blobs from a dot pattern image.

a new fresh image each time the addition of a new blob would have implied overlap between
two different blobs.

We can see that the blocks are extracted from the toy block scene. Also, at coarser
scales, adjacent blocks become grouped into coarser scale units and the imperfections of the
image acquisition near the boundaries are pointed out. In the telephone scene, the buttons,
the keyboard, the calculator, the cord and the receiver are detected as single units. Finally,
in the dot pattern image the algorithm finds at first all the dots and then also performs
those groupings we find perceptually reasonable.

In order to show the spatial relations between the blobs at the various levels of scale
we have also drawn the blob boundaries for the images from the previous examples in
Figures 8.4-8.5.

Figure 8.4. Boundaries of the dark blobs extracted from the toy block image. (a) The 50 most
significant dark blobs. (b) Low threshold on the significance measure set in one of the “gaps” (between
74 and 131) in the sequence of significance values. (c) High threshold on the significance measure
set in another “gap” (between 298 and 591). (The significance values are shown in Table 8.1).
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Figure 8.5. Boundaries of the dark blobs extracted from the telephone and calculator image. (a)
The 50 most significant dark blobs. (b) Low threshold on the significance measure set in one of the
“gaps” in the sequence of significance values. (c) High threshold on the significance measure set in
another “gap”.

Figure 8.6. Boundaries of the dark blobs extracted from the dot pattern image. (a) The 50 most
significant dark blobs. (b) Low threshold on the significance measure set in one of the “gaps” in the
sequence of significance values. (c) High threshold on the significance measure set in another “gap”.

Let us conclude by stressing that we extract the intrinsic shape of the grey-level landscape
in a completely bottom-up data-driven way without any assumptions about the shape of the
primitives (except for the fact that the scale-space smoothing favours blob-like objects, since
it is equivalent to correlation with a Gaussian-shaped kernel).

We get a segmentation that is coarse in the sense that the localization of object bound-
aries may be poor, due to the natural distortions of shape which occur in scale-space.
However, the segmentation is safe in the sense that those regions, which are given by the
scale-space blobs with large scale-space volume, really serve as landmarks of significant
structure in the image, with information about

• the approximate location and extent of relevant regions in the image.

• an appropriate scale for treating those regions.

This is exactly the kind of coarse information1 that is necessary for many higher-level pro-
cesses, see e.g. the application to edge detection in Section 9.1.

1The scale-space primal sketch contains much more information than is presented in this rudimentary
output. For instance, we have not illustrated the registered blob bifurcations in scale-space. Nor have we
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8.5. Further Treatment of the Generated Blob Hypotheses

The number of scale-space blobs selected for display above is, of course, rather arbitrary.
However, note that there is a well-defined ranking between the blobs. If one studies the
significance values of the blobs, (see Table 8.1 regarding the toy block image), one can
observe that those blobs we regard as the most significant ones have significance values
standing out from the significance values of the other ones.

Hence, it seems plausible that a few image regions could be extracted just from the
criterion that their significance values should stand out from the significance values of the
other ones. In more general situations there is a need for feed-back or reasoning.

The output information from this algorithm should not be over-estimated. Since it is
a low-level processing module, the output results should be interpreted as such, namely as
indicators signalling that “there might be something there of about that size — now some
other module should take a closer look”. From this viewpoint it can be noted how well the
extracted blobs describe the images in the previous examples, considering that the blobs
have been extracted almost without any a priori information.

In principle we think that a reasoning process, working on the output from the scale-
space primal sketch, could operate in either of two possible modes:

1. Use a threshold on the significance measure. In a real system such a threshold could
in some applications be set from given context information and expectations.

2. Evaluate the generated hypothesis in decreasing order of significance, i.e., first try
to interpret the first hypothesis in a feed-back loop. Then consider the second one
etc. Continue as long as the hypotheses deliver meaningful interpretations for the
higher-level modules.

Note also that the output from the scale-space primal sketch can work both in a static
and a dynamic mode. Consequently, we believe that it can really serve as a guide to the
focus-of-attention. In Chapter 9 will show how such integration of this kind of information
with later stage processing modules can be done.

Another inherent property with this representation is that it does not have any limiting
requirement that there is just one possible interpretation of a situation. Instead it generates
a variety of hypotheses. Given some region in space, several hypotheses may be active for
it (or parts of it) concerning structures at different levels of scale.

8.6. About the Selection of Appropriate Scale

In this section we will now describe some consequences of the suggested definition of ap-
propriate scale of a scale-space blob. The presentation to be given is not intended to be
theoretically rigorous in any way, but rather to convey an intuitive understanding for what
qualitative properties the stated assumption leads to.

8.6.1. Relations between Appropriate Scale and Object Size

The scale value given by Assumption 8.2 does not necessarily reflect the size of the blob
region in the image. Although large values of the scale parameter in general will lead to
images with large size features, there is no direct relation between the size of an object and its

shown or made use of the hierarchical relations between blobs at different levels of scale induced by the blob
events. This information is however explicit in the computed representation.
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associated appropriate scale. In certain situations large size objects may in fact be assigned
relatively small values of t as their appropriate scale (although the opposite situation can
be expected not to occur). The scale value given by Assumption 8.2 should therefore rather
be interpreted as an abstract scale parameter or as giving the smallest amount of smoothing
for which a region in the image manifests itself as a single blob entity.

Consider for example an image with, say, a few squares of fixed size. The scale value,
where for the first time one of the squares appears as a blob, can vary substantially depending
on the noise level in the image and on where the squares are located relative to each other.
In the ideal noise-free and texture-free case, i.e. when there are no interfering fine-scale
structures present, the appropriate scale for each one of the squares will be zero. Only for
coarse scale structures, which only exist as groupings of other primitive fine scale structures,
will the appropriate scale be non-zero in the ideal noise-free case. (For example, a letter
formed by arranging the blocks in a certain pattern with some spacing between them).

8.6.2. Partial Ordering

Hence, these scale values do not induce any total ordering of regions with respect to their
relative size, but rather a partial ordering. By and large the following property holds: If two
structures overlap, i.e., if a fine scale structure is superimposed onto a coarser scale structure,
then the coarser scale structure will be given a greater scale value than its superimposed fine
scale structure. On the other hand, if similar structures are located sufficiently far apart
from each other in an image then the reverse relation may actually hold.

However, the situation is even further complicated. At blob splits, the blob existing
after the bifurcation will be larger than the blobs existing before the bifurcation. Therefore,
the scale values2 given by Assumption 8.2 give useful information about the relative size3

of two objects only when the objects overlap and in addition they can be related to each
other through a series of bifurcations free from blob splits and blob creations.

8.6.3. Several Instances of a Region

As can be seen e.g. with the calculator in Figure 8.2 it may happen that given some
region in the image, several instances of blobs can be detected corresponding to that region.
This is a common phenomenon in the scale-space primal sketch, arising because a large
(significant) blob merges with a small (insignificant) blob and thus forms a new scale-
space blob. From the definition of a scale-space blob, we have that it is delimited by two
scales where bifurcations occur. This means that every time a bifurcation takes place, the
(involved) grey-level blobs existing before the bifurcation will be treated as belonging to
different scale-space blobs than the (involved) grey-level blobs existing after the bifurcation.

2However, the scale interval between the appearance scale and the disappearance scale, during which an
object exists, should be applicable for such determination and it seems plausible that there should exist some
scale level within the scale interval that could be mapped to the size of the object, at least for regions of
relatively round shape. The appearance scale of a blob is mainly determined by the interaction between
the blob and interfering finer scale structures. When no fine-scale structures are present, the appearance
scale will be zero. Similarly, the disappearance scale of a blob is determined by the interference between the
blob and the coarser scale structures in the surrounding. When no coarser scale structures are present, the
disappearance scale will be infinite.

3On the other hand it is not even clear that it is desirable to use the scale values for size comparisons,
since the size of a region can be easily estimated from the size of its blob support region.
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8.6.4. Number of Layers: Complexity

Observe that the number of layers in the output gives a coarse measure on the complexity of
an image. A relatively simple image will in general give rise to fewer layers than a complex
one. In the case when all significant blobs of an image can be drawn in the same layer
without overlap, it is natural to say that to every point in the image there corresponds just
one stable scale, or shorter, that there is only one scale level in the image, (even though
the actual value of the scale parameter may vary substantially between different blobs).
Similarly, the keyboard of the telephone can be said to have two scales — one for the set of
buttons and one for the keyboard as a whole.

8.7. Additional Experiments

In order to further demonstrate the properties of the scale-space primal sketch and the
suggested way to extract image structures from this representation, we give some more
experimental results4 in Figures 8.8-8.27. See also Section 9.4 for an application to the
analysis of aerosol images and Section 9.5 for examples with textures and medical data.

Figure 8.8 and Figure 8.9 show an indoor table scene and the 50 most significant bright
and dark blobs extracted from the grey-level image. In Figures 8.10-8.13 we display the
boundaries of these blobs and also the results of superimposing the blob boundaries onto
the original image. In order to give a rough idea of the significance values, we have manually
set different thresholds in “gaps” in the sequences of significance values. One can observe
that in this scene, most of the meaningful objects are brighter than the background and
that those objects are found. In addition, the bright blobs respond also to illumination
phenomena on the table, in the background as well as to specularities. The detected dark
blobs correspond to the two background regions and various shadows due to the objects on
the table.

For one object, the curved pipe in the right part of the image, only the specularity on
its surface is detected. The object fails to stand out as a single blob unit. This illustrates
a characteristic property of the representation, namely that a region, which borders upon
both a darker region and a brighter region, cannot be expected to be detected as a single
blob region by this method. According to the blob definition (compare with Figure 5.1 and
Figure 5.6), only regions that are either brighter or darker than their background will be
treated as “blobs”, see Figure 8.7. In order to be able to detect regions also of this latter
type it seems necessary to include more information into the analysis. This issue will be
considered in further work.

Figures 8.14-8.17 show similar results from a scattered office scene, where most of the
important objects are darker than their background. One can see that the handle of the
hammer, the heap of screws, the black tape reel, the label of the hammer and some other
dark regions are all detected as dark blobs. The grey tape reel is not detected as a blob,
since it bounds upon both a region that is darker and a region that is brighter. One can
observe that the blob corresponding to the handle of the hammer spreads relatively far from
the boundary of the actual object. This phenomenon occurs for isolated objects far away

4All these experiments have been performed with images of size 256 × 256 pixels. The scale-space con-
volutions were carried out with floating point calculations and the image boundaries were treated in the
following way: When detecting bright blobs on dark background the image was extended using its minimum
image value. Conversely, when looking for dark blobs on bright background the image was extended with its
maximum grey-level value. The infinite support convolution kernel (the discrete analogue of the Gaussian
kernel) was truncated at the tails such that the truncation error ε was guaranteed not to exceed 0.0005.
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plateau

bright blob

dark blob

Figure 8.7. According to the definition of grey-level blob, only regions that are either brighter or
darker than their background will be classified as blobs. A region, which borders upon both a darker
and a brighter region, does not satisfy the blob definition, which means that the plateau in the figure
will not be detected as one unit by the algorithm. In order to extract such regions it seems necessary
to include some kind of gradient information into the analysis.

from other competing blobs of the same polarity. However, this effect does not imply any
severe problems and can be easily compensated for, for instance when matching blobs to
edges, see Section 9.1.2 for a description. As bright blobs we find the holes in the two tape
reels as well as various regions on the table.

Figure 8.18 and Figure 8.20 display the extracted dark and bright blobs from an outdoor
image of a house, a scene where there are both dark and bright objects with meaningful
interpretation. Figure 8.19 and Figure 8.21 show the boundaries of these blobs. One can
observe that the windows of the house are detected as well as various parts of the wall, the
sky and parts of the tree.

Finally, as a test of the stability of the representation, Figures 8.22-8.25 display the
results from another image of the same telephone and calculator as in Figure 8.2, where we
have changed the background to a textured piece of cloth and also moved the camera and the
objects in the scene. One can observe that the important regions (receiver, cord, keyboard,
buttons, calculator) are still being found. The bright blobs respond to the telephone, the
hole in the cord, other regions delimited by dark objects, various illumination phenomena
in the background, the bright buttons of the calculator and, actually, the regions between
the buttons of the telephone.

For comparison, corresponding results for the original telephone and calculator image
are shown in Figures 8.26-8.27. One observes that similar types of regions are extracted in
the two cases, both for the dark and the bright blobs, although the interference effects for
the coarse scale blobs are different, mainly because the distance between the telephone and
the calculator has been changed.
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Figure 8.8. The 50 most significant bright blobs from a table scene. (In the last case the whole
image has been classified as one blob).
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Figure 8.9. The 50 most significant dark blobs from a table scene.
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Figure 8.10. Boundaries of the bright blobs extracted from the table scene. (a) The 50 most
significant bright blobs. (b) Low threshold on the significance measure set in one of the “gaps” in the
sequence of significance values. (c) High threshold on the significance measure set in another “gap”.
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Figure 8.11. Boundaries of the extracted bright blobs superimposed onto the original grey-level
image. The lower threshold has been used on the significance values.
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Figure 8.12. Boundaries of the dark blobs extracted from the table scene. (a) The 50 most significant
dark blobs. (b) Low threshold on the significance measure set in one of the “gaps” in the sequence of
significance values. (c) High threshold on the significance measure set in another “gap”.
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Figure 8.13. Boundaries of the extracted dark blobs superimposed onto the original grey-level image.
The lower threshold has been used on the significance values.
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Figure 8.14. The 50 most significant dark blobs from a scattered office scene.
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Figure 8.15. Boundaries of the dark blobs extracted from the scattered office scene. (a) The 50
most significant blobs. (b) Low threshold on the significance measure set in one of the “gaps” in the
sequence of significance values. (c) High threshold on the significance measure set in another “gap”.
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Figure 8.16. The 50 most significant bright blobs from a scattered office scene.
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Figure 8.17. Boundaries of the bright blobs extracted from the scattered office scene. (a) The 50
most significant blobs. (b) Low threshold on the significance measure set in one of the “gaps” in the
sequence of significance values. (c) High threshold on the significance measure set in another “gap”.
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Figure 8.18. The 50 most significant dark blobs from an image of the Godthem Inn at Djurg̊arden,
Stockholm.
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Figure 8.19. Boundaries of the dark blobs extracted from the Godthem Inn image. (a) The 50
most significant blobs. (b) Low threshold on the significance measure set in one of the “gaps” in the
sequence of significance values. (c) High threshold on the significance measure set in another “gap”.
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Figure 8.20. The 50 most significant bright blobs from an image of the Godthem Inn at Djurg̊arden,
Stockholm.
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Figure 8.21. Boundaries of the bright blobs extracted from the Godthem Inn image. (a) The 50
most significant blobs. (b) Low threshold on the significance measure set in one of the “gaps” in the
sequence of significance values. (c) High threshold on the significance measure set in another “gap”.
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Figure 8.22. The 50 most significant dark blobs from a telephone and calculator image. The
background is textured.
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Figure 8.23. Boundaries of the dark blobs extracted from the telephone and calculator image with
textured background. (a) The 50 most significant blobs. (b) Low threshold on the significance measure
set in one of the “gaps” in the sequence of significance values. (c) High threshold on the significance
measure set in another “gap”.
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Figure 8.24. The 50 most significant bright blobs from a telephone and calculator image. The
background is textured.
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Figure 8.25. Boundaries of the bright blobs extracted from the telephone and calculator image with
textured background. (a) The 50 most significant blobs. (b) Low threshold on the significance measure
set in one of the “gaps” in the sequence of significance values. (c) High threshold on the significance
measure set in another “gap”.
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Figure 8.26. The 50 most significant bright blobs from the telephone and calculator image with
smooth background. (The dark blobs were shown in Figure 8.2.)
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Figure 8.27. Boundaries of the dark and bright blobs extracted from the telephone and calculator
image with smooth background. (a) The 50 most significant dark blobs. (b) The 50 most significant
bright blobs.
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9

Guiding Early Visual Processes

Many methods in computer vision and image analysis implicitly assume that the problems
of scale detection and initial segmentation have already been solved. One example is in
edge detection, where the selection of step size for the gradient computations leads to a
trade-off problem. A small step size gives a small truncation error, but the noise sensitivity
might be severe. Conversely, a large step size will in general reduce the noise sensitivity,
but at the cost of an increased truncation error. In the worst case case one may even miss
the slope of interest and get meaningless results if the difference quotient approximating
the gradient is formed over a wider distance than the size of the object in the image. The
problem originates from the basic scale problem, namely that the issue of inherent scale
must be considered when selecting a mask size for computing spatial derivatives. Other
examples can be obtained from most “shape from X” methods, which in general assume
that they are applied to a domain in the image where the underlying assumptions are valid,
corresponding to e.g. a region in the image corresponding to one facet of a surface etc.

The methodology we will develop in this section states that the qualitative scale and
region information extracted from the scale-space primal sketch can be useful for guiding
other visual processes and will simplify their tasks. More specifically, we propose that when
spatial derivatives are needed, they can be computed from the scale-space representation at
the scale given by a scale-space blob. Furthermore, the blob support regions can provide
coarse size information to other algorithms. We suggest that this type of information can be
used for delimiting the search space for further processing, for example such that matching
could be carried out regionally in a neighbourhood of a blob instead of globally over the
entire image.

Of course, the amplitude of spatial derivatives can in general be expected to decrease
by the scale-space smoothing. Therefore, one cannot expect the actual numerical values
of derivatives computed from the coarse scale representations to be quantitatively accurate.
However, for finding qualitative features, not depending on the actual scaling of the intensity,
like e.g. edges, local extrema, singularities in general etc, the detection step can be carried
out at a coarse scale. Then, once the existence of a feature has been established, if precise
numerical values are required, it should be possible to compute those in a second step e.g.
by fitting an appropriate model, to the original data.

9.1. Application to Edge Detection

As a first example of the suggested way to use the scale-space primal sketch, for guiding other
processes in early vision, we present an integration of the output from this representation
with an edge detection method known as edge focusing, developed by Bergholm [Ber87,
Ber89].
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The leading idea is to use the output scale information to guide an edge detection scheme
working at an adaptively determined level of scale. We demonstrate that this task can be
relatively easy and that there is no need for thresholding on gradient magnitude, since the
image has been subjected to an appropriately selected amount of blurring. Hence, the detec-
tion step will be safe. The localization could on the other hand be poor due to the natural
shape distortions that occur at coarser levels of scale in scale-space. However, the local-
ization can be improved using the edge focusing method, which traces the safely detected
edges at coarse scales to corresponding and better localized edges at finer scales. Hence,
the resulting method will achieve a good compromise between the two conflicting goals in
edge detection, namely eliminating the noise without distorting the localization of the edges.
Another way to phrase this property is that we circumvent the problems connected with
simultaneous detection and localization, that have been discussed by e.g. Canny [Can86].
Thus, we do not only perform edge detection without any need for thresholding. We are
also more likely to get edge elements with meaning, since they correspond to boundaries of
objects, which have given rise to significant blobs in the scale-space primal sketch.

scale information edge focusing

blobs from thescale-spaceprimal sketch

edge detection +matching at coarse scale

localized edges at finer scales

Figure 9.1. Schematic view over the proposed integration of the scale-space primal sketch module
with edge detection. Given a significant scale-space blob, edge detection is performed at the appro-
priate scale of the blob scale-space blob. Then a matching step between the support region of the
blob and the edges is carried out. Finally, the matched edges are localized to finer scales using edge
focusing.

We do not maintain that this part of the presentation describes any “optimal way” to
solve every occurring subproblem. Instead, the intention is to illustrate how a connection
between the scale-space primal sketch with other modules can be done. The application
supports the claim we make, that if the image contains significant structures, which stand
out from the surrounding, then they are extracted in such a way that the output information
from the scale-space primal sketch is useful for further processing. We will now describe the
actions of the different submodules in more detail.

9.1.1. Edge Detection at a Proper Scale

The edge detection method used here is by intention simple, since we want to illustrate
that edge detection becomes easier once the earlier mentioned scale and region information
is available. The image is smoothed to the scale level given by a significant blob from the
scale-space primal sketch. Then x- and y-gradients are computed with the Sobel operator
and a non-maximum-suppression step is performed to get thin edges. In order to suppress
spurious noise points at the finest levels of scale we accept only edge segments having a
length exceeding, say, 2 pixels.
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9.1.2. Matching Blobs to Edges

Associating blobs with edges leads to a matching situation. However, we argue that also
this task becomes simpler when performed at a proper level of scale. The matching criterion
we have made use of in this work is based on spatial coincidence, and is a combination of
three different conditions:

9.1.2.1. Geometric Coincidence

The edge segment should “encircle” or be “included” in the blob. A convenient way to
formulate such a criterion is a follows. Let B be the set of pixels contained in the support
region of a blob and let E be the set of pixels covered by an edge segment. Further, given
any region R define the quantities xmin, xmax by

xmin(R) = min
(x,y)∈R

x; xmax(R) = max
(x,y)∈R

x; (9.1)

and the quantities ymin, ymax analogously. Now, an edge segment E will be regarded as a
matching candidate of a blob B if1

xmin(E) ≤ xmax(B); xmax(E) ≥ xmin(B)
ymin(E) ≤ ymax(B); ymax(E) ≥ ymin(B)

(9.2)

In order to reduce the directional sensitivity of this criterion it is suitable to require that
similar conditions hold also in a coordinate system rotated by 45 degrees. This criterion
constitutes an approximation to the property that it should be impossible to draw a straight
line separating the edge from the blob, see Figure 9.2 for an illustration. The latter property
is satisfied if (9.2) holds in an arbitrarily rotated coordinate system. We define

Definition 9.1. (Extreme coordinate blob-edge matching candidate)
An edge E is said to be a (four-directional) extreme-coordinate matching candidate of a blob
B if the conditions in (9.2) hold in the standard xy-coordinate system as well as in a similar
coordinate system rotated by 45 degrees.

Figure 9.2. (a) The geometric extreme-coordinate condition means that the edge should either
surround the blob or be included in it. In this example edges E1 and E2 are treated as matching
candidates of the blob while E3 and E4 are not. (b) This criterion is an approximation to the
requirement that it should be impossible to draw a straight line separating the line from the blob.

1This condition is not the same requirement as E ∩B �= ∅.
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9.1.2.2. Proximity

The edge segment should not be too far away from the blob boundary. In other words the
edge segment should comprise at least some pixel located near the boundary of the blob.
We state the necessary condition

min
(xE ,yE)∈E; (xB ,yB)∈B

√
(xE − xB)2 + (yE − yB)2 ≤

d(t)
2

(9.3)

where d(t) is a typical spatial length at the current level scale2. To summarize,

Definition 9.2. (Proximity blob-edge matching candidate)
An edge E at scale t is said to be a (weak) proximity blob-edge matching candidate of a
blob B at the same scale if the minimum distance between the blob and the edge is less than
d(t)/2, where d(t) is a characteristic length at scale t.

The main purpose of the stripe around the boundary of the blob is to avoid edges corre-
sponding to the interior of a blob from being interpreted as belonging to the blob boundary.
It will prevent interior edges corresponding to e.g. surface markings from being matched to
the blob boundary and also rule out edges far outside the blob. The width of this stripe is
not critical, since at coarse scales the edges will usually have a substantial width and there
will be an interval around the edge where there are no other edges.

9.1.2.3. Voronoi Diagram of the Grey-Level Blobs

The edge segment should not be too strongly associated with other blobs. We compute a
Voronoi diagram of the grey-level blob image at the given level of scale, using a distance
transformation. An edge segment is regarded as a matching candidate of a blob if it has at
least have one pixel in common with the Voronoi region associated with the grey-level blob,
see Figure 9.3(b). We define

Definition 9.3. (Voronoi blob-edge matching candidate)
Given a blob B at a certain scale, let V be the Voronoi region corresponding to B in the
Voronoi diagram of the grey-level blob image at that scale. Then, an edge E at the same
scale is said to be a (weak) Voronoi blob-edge matching candidate of B if the edge has at
least one pixel in V .

This condition prevents edges, which are closely related to one particular blob, from being
associated with other blobs. For instance, if two grey-level blobs share the same delimiting
saddle point, then the stripe around one of the blobs will cover a part of the other blob.

9.1.2.4. Resulting Matching Procedure

For an edge segment to be accepted as a matching candidate of a blob, it must be a matching
candidate with respect to all these three criteria. Hence, the matching is relatively restric-
tive. But again, the situation is improved by the fact that it is performed at a coarser scale.
Once we know that a spatial region has given rise to a large blob at some level of scale, it
seems very improbable that conflicting edges could appear at the same level of scale, since
most interfering fine-scale structures ought to be suppressed by the scale-space smoothing.

2Here, we have set this distance to the square root of an experimentally determined typical blob area,
Am(t), at the current level of scale, (see Section 5.5.3 for further details).
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Figure 9.3. (a) The main purpose with the stripe around the blob is to prevent edges corresponding
to the interior of the blob and edges far away from the blob from being associated to the blob
boundary. (b) The purpose with the Voronoi region is to prevent edges strongly related to one blob
from being associated with other nearby blobs.

Figure 9.4. Illustration of the matching procedure between blobs and edges for a blob from the
telephone and calculator image. (a) A dark blob from the scale-space primal sketch which is to be
matched (marked with black). (b) Extracted edges (non-maximum suppression without thresholding)
at the scale level given by the blob. (c) The grey-level blobs at the same level of scale, i.e. all grey-
level blobs at that scale level. (d) Voronoi diagram of the previous grey-level blob image. (e) The
region in the Voronoi diagram corresponding to the treated blob. (Used in Criterion 3). (f) The
stripe around the blob edge. Its width has been set to a characteristic length at the current level of
scale. (Used in Criterion 2). (g) The resulting matched edges, that is the edges that have at least
one pixel in both of the regions marked in Figures (e) and (f) and in addition satisfy the min-max
coordinate criterion (Criterion 1) above about geometric coincidence with the blob.
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Figure 9.5. Similar illustration of the matching procedure as above but for a blob from the toy
block image. Note that one of the edge segments spreads far away from the blob since the matching
algorithm does not include any mechanism for breaking up long edge segments into shorter ones.
However, we will demonstrate below that the focusing procedure itself provides a cue for such deter-
mination — at finer levels of scale the elongated edge will break up into two well separated sets of
edges (see Figure 9.13).

Figure 9.4 and Figure 9.5 illustrate two such matching situations from the toy block image
and the telephone and calculator image respectively. We display the blob to be matched,
the extracted edges at the scale level given by the blob, the grey-level blobs at the same
level of scale, the Voronoi diagram of the grey-level blob image and the matched edges.

The main problem with this matching procedure is that it does not include any mech-
anism for breaking up long edge segments into shorter ones. The edge segment grouping
is based just on connectivity between adjacent edge pixels. This means that the edge seg-
ments at coarser levels of scale may be very long, and spread far away from the boundary
of the actual blob, see Figure 9.5 and also the examples in Figure 9.8 and Figure 9.10. It
seems probable that further clues for distinguishing which edges should be associated with a
certain blob could be obtained by studying the behaviour and the connectivity of the edges
during the focusing procedure, see also Figure 9.10.

Another situation where the matching could fail is for severely fragmented edges. Then
the matching may be rejected by Definition 9.1 if the edge segments encircle but are located
outside the blob support region. However, we have not found any such problems to occur
in any experiments.

More generally, we find the regions defined by the Voronoi diagram of the grey-level blob
image and the region around the blob boundary as useful spatial regions (see Figure 9.4(e-f)
and Figure 9.5(e-f)) to be associated with the blobs also for other types of matching purposes,
see e.g. the work with junction classification in Section 9.3 and the more extensive discussion
in Section 9.1.5.
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9.1.2.5. Improving the Localization of the Blob Boundary

For single isolated blobs, the proximity matching criterion in its original formulation can lead
to problems. In such cases the boundary of the grey-level blob support region can spread
far away from the boundary of the actual “object” in the image, since there will be no
competing blobs in its neighbourhood delimiting its growth. Hence, the blob might extend
far beyond the “actual boundary”, but with a relatively flat intensity slope (compare with
the shape of the Gaussian at the tails). This means that the edge matching by Definition 9.2
might fail. In the extreme case, when there is just one local extremum in an image, the
corresponding blob will actually get an infinite support region. In order to compensate for

60%

100%

35%

-1 0 1

 

Figure 9.6. In the extreme case, a single isolated blob will have an infinite support region. In
order to compute a spatial representative more useful for matching purpose, the blob boundary must
be modified. A straightforward way is to clip the blob at a grey-level corresponding to a position
closer to the edge. For a Gaussian intensity profile the position of an edge defined by non-maximum
suppression corresponds to a clipping level of about 61% (≈ e−1/2). Here we use a clipping level of
about 35% (≈ e−1).

this effect we clip3 the grey-level blob at a higher grey-level for bright blobs (and a lower
level for dark blobs) than the previously defined base level, as to obtain a better localized
blob boundary. This modified blob is then used for determining the stripe around the blob
for matching according to (9.3). Empirically we have found that a clipping level4 of about
35% (≈ 1

e ) of the range between the minimum and maximum grey-levels within the blob
gives a reasonable improvement in localization without seriously affecting blobs actually
having nearby competitors. In this region the slope of the grey-level intensity function of
the blob is normally relatively steep and we will obtain a smaller blob with a better localized
boundary. For blobs that are not isolated the effect of this clipping will usually be minor.

The actual value of the clipping level is not critical for the matching, since the stripe
around the blob boundary is anyway intended just as a coarse descriptor of a region around
the blob boundary for guiding the blob-edge matching. During all our experiments this
parameter has been kept unchanged. Other possible ways of overcoming this problem could
be using a more advanced reasoning process in the matching step or by applying e.g. a snake
[Kas87] attracted by high values of gradient magnitude in order to obtain the better localized
“blob boundary” for matching. The initial position of the snake can be determined from
the position and the extent of the (possibly clipped) blob. However, in this implementation
we have used the clipping method because of its algorithmic simplicity.

3This clipping is performed only for the purpose of computing the blob boundary for matching. In all
other situations we stick to the original definition of a grey-level blob.

4In these units a clipping level of 0% corresponds to the original definition of grey-level blob and a clipping
level of 100% to clipping at the extremum point of the blob.
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Figure 9.7. Illustration of the effect of clipping. (a) Original grey-level image (b) The (unclipped)
blob corresponding to the tape reel in the lower left corner. (c) The effect of clipping that blob. (d)
The edges matched to the clipped blob.

9.1.3. Edge Focusing

Edge focusing, developed by Bergholm [Ber87, Ber89], is a method for tracing edges through
scale-space. The basic principle is to detect edges at a coarse scale in scale-space and then
trace them to finer scales. Hence, the method achieves a good compromise between the
two conflicting goals in edge detection, namely; eliminating noise without distorting the
localization of the edges.

It has been shown [Ber87, Ber89] that if the focusing procedure is performed such that the
scale step ∆σ, expressed in σ =

√
t, is less than 1

2 then for most common edge configurations
the edges are guaranteed to move not more than one pixel from one level to the next. In
that case the matching will be trivial — to find the corresponding edges at the finer level of
scale, it suffices5 to perform edge detection in a one-pixel neighbourhood around the edges
at the coarser scale.

In this application we initiate the focusing procedure from several scale levels, since the
significant blobs from the scale-space primal sketch manifest themselves at different levels
of scale. Hence, we presort the significant blobs in decreasing scale order. We start with
the coarsest scale blob, detect edges at that level of scale and match the obtained edges to
the blob. This gives the input for the focusing procedure, which then follows these edges
to the scale given by the second blob. The edge detection and matching steps are repeated
at this new level of scale and the resulting edges are added to the output from the previous
focusing step. This new edge image serves as input for another focusing procedure, tracing
the edges to the next finer level of scale etc.

9.1.4. Experimental Results

In Figure 9.8 and Figure 9.9 we illustrate some steps from the composed edge detection,
blob-edge matching and edge focusing procedure for the telephone and calculator image. The
left column shows the blob support region of the blob. The blob considered at the current
level of scale is black. The other blobs from the scale-space primal sketch are displayed in
grey. The middle column shows the edge image at the same level of scale. The matched
edges have been marked with black, while the other ones are grey. Finally, the right column
shows the result after focusing, just before a new blob is considered. In order to reduce
the number of blob hypotheses treated, we have used a threshold on the significance value.

5Obviously, there are situations where such a fixed scale sampling can lead to problems, see Section 6.1.1
for a description.
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Figure 9.8. Illustration of the composed blob-edge focusing procedure for the telephone and cal-
culator image. The left column shows the active blob hypothesis. Its blob support region has been
marked with black. The middle column shows the edge image at the level of scale given by the
previous blob. The matching edge segments have been drawn black while the other edge pixels are
grey. The right column shows the focused edge. The scale and significance values for the different
blobs are from top to bottom (101.6, 14.1), (50.8, 252.8), (32.0, 11.4) respectively.
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Figure 9.9. Illustration of the composed blob-edge focusing procedure for the telephone and cal-
culator image continued. The scale and significance values for the different blobs are from top to
bottom (25.4, 660.9), (14.3, 40.8), (6.4, 63.6) and (1.3, 13.2) respectively.
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Figure 9.10. Illustration of the composed blob-edge focusing procedure for the toy block image.
The left column shows the active blob hypothesis. Its blob support region has been marked with
black. The middle column shows the edge image at the level of scale given by the previous blob.
The matching edge segments have been drawn black while the other edge pixels are grey. The right
column shows the focused edge. The scale and significance values for the different blobs are from
top to bottom (203.2, 15.5), (161.3, 10.7), (20.2, 20.3) respectively.
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Figure 9.11. Illustration of the composed blob-edge focusing procedure for the toy block image
continued. The scale and significance values for the different blobs are from top to bottom (12.7,
52.2), (12.7, 4.6), (12.7, 35.7) and (8.0, 48.9) respectively.
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The final result of the focusing procedure is shown in the lower right corner of Figure 9.9.
Figure 9.10 and Figure 9.11 show corresponding results for the toy block image.

Let us again mention that this method, which we call blob-initiated edge focusing, is
not just another edge detector, but that the edge elements obtained are more meaningful
entities, since they are associated with blobs and explicit scale information.

9.1.5. Alternative: Individual Treatment of the Blob Hypotheses

Instead of treating all hypotheses generated by the scale-space primal sketch simultaneously
during the edge focusing phase they can of course also be treated separately. I.e. one can let
each blob start up its own focusing scheme, which processes the edge segments matching that
blob independently of the edges corresponding to other blobs. Then the relations between
blobs and edges will be obvious and the interference effects between edge segments from
different blobs during the edge focusing will be eliminated.

Note that such an approach need not require much more computations than the previ-
ously described method, provided that the edge images used for the focusing procedure are
pre-computed6. Then, the part of the processing that is repeated for different blobs will be
just the matching between the scale levels, which is computationally inexpensive, since it
only comprises a search in the eight-neighbourhoods around the processed pixels.

Figure 9.12. Illustration of the individual blob hypothesis treatment for a blob from the telephone
and calculator image. (a) A blob from the scale-space primal sketch. (b) Matched edges according to
the procedure described above. (c) The result after focusing the edge down to finer scales (t = 1.0).

Figure 9.12 and Figure 9.13 show the results after such individual focusing schemes
applied to the blobs used for the matching illustrations in Figure 9.4 and Figure 9.5. Observe
that in the second case the focusing algorithm resolves the problem with the elongated edge
segment that previously spread far from the blob. At a fine level of scale it has split into
two distinctly separated (groups of) edge segments.

With this individual blob-initiated edge focusing we achieve a way of avoiding the com-
monly occurring step of tracking and grouping related edge elements into edge segments.
The matching between a blob and the edges at coarse levels of scale has already induced
a coarse grouping of edge pixels into higher order units. In addition, we explicitly have the
relation to the blob, which gives scale information and coarse spatial information. Simi-
larly, this approach induces a way of actually verifying or rejecting various kinds of blob
hypotheses generated by the blob detection module. For instance, blobs due to noise (or
illumination variations) can probably be rejected by studying the behaviour of their corre-

6The edge focusing algorithm is normally implemented using a fixed set of scale levels [Ber90].
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Figure 9.13. Illustration of the individual blob hypothesis treatment for the a blob from the toy
block image. (a) A blob from the scale-space primal sketch. (b) Matched edges according to the
procedure described above. (c) The result after focusing the edge down to finer scales (t = 1.0).
Note that the long edge segment that spread far from the actual blob has split into two separate
edge segments.

sponding edges under defocusing in a manner similar to the classification of diffuse edges
by Sjöberg, Bergholm [Sjö88, Ber89] and Zhang, Bergholm [Zha91].

We also find it possible that this kind of coarse edge grouping, combined with the blob
information (and possibly also the Voronoi diagram of the grey-level blob image), can be used
for delimiting the search space for higher order interpretations. We see potential applications
in various grouping and matching problems like model matching, Hough transforms, tests
for parallel lines, abstractions of edge descriptors etc. In other words, we believe that this
kind of coarse information lends itself naturally to qualitative reasoning. However, there is
still more work to be done in order to explore these suggestions.

9.1.6. Conclusions

The result from these experiments can be interpreted in many ways. We have used the
output from the scale-space primal sketch to control an edge focusing procedure. Hence, we
have eliminated two of the tuning parameters used in the edge focusing algorithm, namely
the initial scale for edge detection and the threshold on gradient magnitude. What remains
undetermined is the stop scale, i.e., the scale down to which the edge focusing should be
performed. In this work it has throughout been set to t = 1, a scale where the sampling
effects due to the discrete grid start to become important, (see e.g. the comparisons between
different methods for implementing scale-space smoothing in Chapter 4). It seems plausible
that some further guidance for this selection could be obtained by studying the behaviour of
the focused edges in scale-space, compare with the classification of diffuse edges in Sjöberg,
Bergholm [Sjö88, Ber89] and Zhang, Bergholm [Zha91].

This integration of the two algorithms exemplifies the previously mentioned guidance of
the focus-of-attention. Note that the processing initiated by the scale-space primal sketch
is performed only for a small subset of the image data. Hence, the resulting method relates
to the idea of a “focused beam”, derived by Tsotsos [Tso90] from complexity arguments.

A more immediate interpretation of the results is that we have selected a subset of the
edges in the edge image at the finer level of scale. In contrast to the result from a raw edge
detection scheme, we know that these edge elements are more meaningful entities. They
are associated with significant blobs, and the scale information is explicit. Note that label
information for the edge segments can be easily inherited during the edge focusing process.
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Hence, even if the different blob hypotheses are treated simultaneously in the same focusing
process, we can keep track of which blobs have given rise to a specific edge at any level of
scale during the edge focusing.

The experiment also illustrates that the dual concepts “region” and “edge” can be
matched without severe difficulties, provided that the matching is performed at a proper
level of scale.

The most important conclusion one can draw from this experiment is that it clearly
demonstrates that the qualitative output information from the scale-space primal sketch is
useful in guiding and simplifying later stage processing. We shall now exemplify this in
multi-spectral classification.

9.2. Application to Histogram Analysis

The scale-space primal sketch is well suited for automated cluster detection, since it is de-
signed for detection of bright blobs on dark background and vice versa. Hence, it lends itself
as a natural module for peak detection in algorithms based on histogramming techniques.
Although it is well-known that histogram-based segmentation hardly can be expected to
work globally on entire images (due to illumination variations, interference because of many
regions etc), such methods can often give useful results locally in small windows where only
a few regions of distinctly different characteristics (e.g. colour or grey-level) are present.

9.2.1. Experimental Results: Histogram-Based Colour Segmentation

In Figure 9.14 and Figure 9.15 we illustrate how the scale-space primal sketch can constitute
a helpful tool in such histogram modality analysis of multi-spectral data. We have accu-
mulated histograms7 over the chroma information and used the scale-space primal sketch
for detecting peaks and clusters in the histograms. We see that the extracted blobs in-
duce a meaningful partitioning of the histogram corresponding to regions in the image with
distinctly different colours.

Of course, there is a decision finally to be made about which peaks in the histogram
should be counted as being significant. However, we hypothesize that the significance values
given by the scale-space blob volumes reflect the situation in a manner useful for such
reasoning, especially since the regions around the peaks are extracted automatically. In these
examples (single) thresholds have been set manually in “gaps” in the sequences of significance
values. For the fruit bowl scene the accepted blobs had significance 42.6 (background), 8.3
(grapes), 3.6 (oranges), 3.1 (apples), 3.0 (bowl) while the significance values of the rejected
blobs were 2.0 and less (in decreasing order 2.0, 1.9, 1.8, 1.4, 1.3, 1.1, 1.1, 1.1, 1.0, ...).

The significance values of the displayed blobs from the office scene were 187.9 (blue
binder, large blob), 173.7 (blue binder, small blob), 170.1 (yellow binder), 80.6 (shelf) and
66.7 (yellow binder and shelf). As we see, two blobs corresponding to the blue binder have
been detected. This is a common phenomenon in the scale-space primal sketch, that arises
because a large blob merges with a small (insignificant) blob and forms a new scale-space
blob. Two such duplicate blobs corresponding to the yellow binder (significance 18.0) and
the shelf (significance 17.9) have been suppressed. The remaining blobs had significance
values 2.5, 2.0, 2.0, 2.0, 1.2, 1.2, 1.2, 1.1 and less.

7The colour images have been converted from the usual RGB format to the CIEu�v� 1976 format, see
e.g. [Bil82], which separates the intensity and the chroma information. The histogram is formed only over
the chroma information, ignoring the intensity information.
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Figure 9.14. Histogram-based colour segmentation of a fruit bowl image: (a) Grey-level image. (b)
Histogram over the chroma information. (c) Boundaries of the 6 most significant blobs detected by
the scale-space primal sketch. (d)-(i) Backprojections of the different histogram blobs to the original
image (in decreasing order of significance). The pixels corresponding to the various blobs have been
marked in black. (The region in Figure (f) is the union of the regions in Figures (d), (e) and (i)).

9.2.2. Sensitivity to Quantization Effects

It can also be noted that this peak detection concept will be less sensitive to quantization
effects in the histogram acquisition than many traditional peak detection methods. The
problems due to too fine a quantization in the accumulator space will be substantially
reduced, since the scale-space blurring will lead to a propagation of information between
different accumulator cells. Thus, even though the original histogram might have been
acquired using “too many and too small” accumulator cells, large scale peaks will be detected
anyway, since the contents of their accumulator cells will merge to large scale blobs in scale-
space after sufficient amounts of blurring.

Finding peaks in histograms is a problem that arises in many contexts. Let us point
out that the case with colour-based histogram segmentation has been considered just as one
possible application of the scale-space primal to histogram analysis. Because of the general
purpose nature of this tool we think that it could be applicable also to other types of similar
techniques such as Hough transforms, texture classification etc.
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Figure 9.15. Similar histogram-based colour segmentation of a detail from an office scene. The
image shows a small window from a bookcase with two binders (yellow and blue) on a shelf made of
(yellowish) wood. (a) Grey-level image. (b) Histogram over the chroma information. (c) Boundaries
of the 5 most significant blobs detected by the scale-space primal sketch. (d)-(h) Backprojections of
the different histogram blobs to the original image (in decreasing order of significance).

9.3. Application to Junction Classification

Brunnström et al. [Bru89, Bru90a] have shown that a reliable classification of junctions
can be performed by analysing the modalities of local intensity and directional histograms
during an active focusing process.

In this section we will first briefly review the main ideas behind the approach and then
outline how the scale-space primal sketch can be useful in providing context information
necessary for this procedure. It should be emphasized that the treatment here describes
on-going work. Anyway, we find the presentation useful in illustrating some basic ideas
about how the scale-space primal sketch can interact with other processing modules in an
active vision situation.

9.3.1. Background: Classifying Junctions by Active Focusing

The basic principle of the junction classification method is to accumulate local histograms
over the grey-level values and the directional information around candidate junction points
(given by some interest point operator). Then, the numbers of peaks in the histograms can
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be related to the type of junction according to the following table:

Intensity Edge direction Classification hypothesis
unimodal any noise spike
bimodal unimodal edge
bimodal bimodal L-junction
trimodal bimodal T-junction
trimodal trimodal 3-junction

Table 9.1. Basic classification scheme for local intensity and directional distributions around a
candidate junction point (adapted from Brunnström et al (1990b).

The motivation for this scheme is that for example, in the neighbourhood of a point where
three edges join, there will (generically) be three dominant intensity peaks corresponding to
the three surfaces. If that point is a 3-junction (an arrow-junction or a Y -junction) then the
edge direction histogram will (generically) contain three main peaks, while for a T -junction
the number of directional peaks will be two. Similarly, at an L-junction there will be two
intensity and two directional peaks. Noise spikes and edges must be considered, since interest
point operators like those proposed by Moravec [Mor77] or Kitchen and Rosenfeld [Kit82]
tend to give false alarms near such points. Situations with more than three peaks in either
the intensity or the directional histogram are treated as non-generic or as corresponding to
surface markings.

Of course, the result from this type of histogram analysis cannot be regarded as a
final classification, since the spatial information will be lost in the histogram accumulation.
One obtains a hypothesis that must be verified in some way, e.g. by backprojection into the
original data. Therefore, this algorithm is embedded in a classification cycle, see Figure 9.16
for an overview. More detailed information about the different submodules and how they
communicate is given in [Bru90a, Bru90b].

9.3.2. Setting Window Size from Blob Information

However, taking such local histogram properties as the basis for a classification scheme leads
two obvious questions: Where should the window be located and how large should it be? We
believe that the scale-space primal sketch can provide valuable clues for both these tasks.

In order to estimate the number of peaks in the histogram, some minimum number of
samples will be required. With a precise model for the imaging process as well as the noise
characteristics, one could conceive deriving bounds on the resolution, at least in some simple
cases. However, as will be developed further below, direct setting of a single window size
immediately valid for correct histogram classification seems to be a very difficult or even
impossible task.

Therefore, what is made use of instead is the process of focusing. Focusing means that
the resolution is increased8 locally in a continuous manner (even though we still have to

8Currently, for experimentation purpose, this process has been simulated by changing the window size
in an (already taken) image having a sufficiently high resolution to clearly resolve the structures we are
interested in. However, the long term goal of the work is to integrate the analysis with a camera system
allowing the algorithm to acquire new images of higher resolution in situations where the current sampling
density is not sufficient for resolving the structures under study.
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Figure 9.16. Schematic view over the junction classification cycle. A pair consisting of an interest
point matched to a blob from the scale-space primal sketch gives rise to a series of windows of different
size and resolution over which histograms are accumulated. The modalities of these histograms are
compared to the generic cases and their stability measured. This gives a hypothesis about the
possible nature of the junction candidate, which is tested by backprojection into the original image.
If it cannot be verified then additional data are acquired, invoking a new analysis cycle in a closed-
loop fashion. (From Brunnström et al. (1990b)).

sample at discrete resolutions). The method is based on the assumption that stable responses
will occur for the models that best fit the data, which relates to the systematic parameter
variation principle described in Section 8.2.1.

Assuming that we have found a point of interest, we are to invoke the focusing procedure
analysing local histograms. This calls for some mechanism for actually setting an initial
range of window sizes, since the size of a suitable neighbourhood region around a junction
candidate will in general vary both within and between images.

9.3.2.1. The Scale Problem in Junction Classification

If the window is too large, then other structures than the actual corner region around the
point of interest might be included in the window, and the histogram modality would be
affected. Conversely, if it is too small then the directional histogram could be severely biased
and deviate far from the ideal appearance in case the physical corner is slightly rounded —
a scale phenomenon that seems to be commonly occurring in realistic scenes9. A too small
window might also fall outside the actual corner if the interest point is associated with a
localization error. An example illustrating these effects for a rounded corner of a plastic
detail is shown in Figure 9.17.

Therefore, the methodology we have adopted is to use the context information from the
blobs for setting just coarse approximate values giving (generous) upper and lower bounds
on a focusing interval. Then, the intention is that the systematic variation of window size
combined with the consistency check over parameter variation should allow for a more robust
modality determination.

9This effect does not occur for an ideal (sharp) corner, for which the inner scale is zero.
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Figure 9.17. Illustration of the scale problem in junction classification. We show the effects
of varying the window size around a point near a rounded corner. The left column displays the
treated subwindow, the middle column the intensity histogram and the right column the directional
histogram. One observes that a correct classification based on histogram modalities can be made
only within a certain range of window sizes. (The directional histograms have been accumulated
only for the edge pixels in the window.)
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9.3.2.2. Matching Interest Points to Blobs

Associating blobs to interest points leads to a matching situation. The method we use here is
based on similar criteria as the matching between blobs and edges described in Section 9.1.2.
Currently, an interest point is related to a blob if the following two conditions about spatial
coincidence are satisfied:

1. The interest point should be at least coarsely associated with the blob, without being
too strongly associated with other blobs. We compute a Voronoi diagram of the grey-
level blob image at the given level of scale, using a distance transformation, and require
the interest point to be included in the Voronoi region associated with the support
region of the grey-level blob. This condition prevents points, which are closely related
to one particular blob, from being associated to other blobs.

2. The interest point should not be located too far away from the blob boundary. We
require the minimum distance between the interest point and the blob not to exceed
a typical spatial length at the current level of scale10.

However, compared to the previous blob-edge matching, this implementation suffers from a
few shortcomings. One situation where this procedure will face problems is at sharp corners,
see e.g. Figure 9.18 for an example. Because of the rapid edge drift in such cases, the blob

Figure 9.18. At sharp corners, the matching procedure between blobs and edges will face serious
problems unless some additional precautions are taken. Because of the rapid edge drift in such
situations, the boundary of the blob may spread far away from the actual corner, which means that
the matching may be rejected by the distance criterion.

boundary may be ill localized at coarser scales. Hence, an interest point located at a sharp
corner could be missed, because the distance between the interest point and the boundary
of the blob is too large. Of course, one could imagine increasing the width of the stripe, but
then the number of false matches would increase.

A possible way of explaining this weakness of the blob-point matching compared to the
earlier mentioned blob-edge matching is that the scale information from the blobs is not
used as extensively for the interest points as for the edges. In the case with edges, the
detection step was performed at the same scale as the blob manifested itself, which meant
that interfering structures at finer levels of scale had to a large extent been suppressed by the
scale-space smoothing, something that simplified the matching problem considerably. Here,
the interest points are detected directly from the raw grey-level image at the finest level of
scale without any use of scale knowledge. However, we are currently investigating different

10Here, we have (similarly to the blob-edge matching) set this parameter to the square root of an experi-
mentally determined typical blob area, Am(t), at that scale level, (see Section 5.5.3).
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Figure 9.19. Illustration of the matching procedure between blobs and interest points for the toy
block image. (a) The 50 most significant interest points obtained with the Moravec interest point
operator. (b) A significant blob extracted by the scale-space primal sketch (black) and the other
grey-level blobs (grey) at the scale level given by the scale-space blob. (c) Voronoi diagram of the
previous grey-level blob image (Criterion 1). The boundaries between different regions are marked
with black. (d) Stripe around the boundary of the blob. The width of the stripe has been set to a
characteristic length at the current level of scale (Criterion 2). (e) The interest points matched to
the blob. (f) Resulting minimum and maximum window size around two of the interest points as set
from the data given by the blob information.

promising approaches for including this information already in the phase of detecting the
interest points, with the purpose of reducing the number of false blob-point matches and,
possibly also, obtaining more reliable points of interest. By and large, we are considering
three main strategies:

• Incorporate some gradient information in the matching as well. One possibility could
be to first compute edges at the scale given by the scale-space blob, follow the edges
to finer scales using edge focusing and then carry out a matching between the interest
points and the edges, which in turn would give the matching relations between the
interest points and the blobs.

• An extension of this method could be to start from the edges delivered by the edge
focusing algorithm and then detect interest points in a neighbourhood of appropriate
size around those. Then, also the operator size for the interest point operator could
be set from the coarse scale information.

• Investigate if the interest points can be computed at the scale given by the scale-space
blob. Some experiments with this approach will be described in Section 9.3.5.
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9.3.3. Computing Window Size from Blob Size

Once we have a relation between a blob and an interest point, we fit an ellipse to the blob
in order to get a characteristic length associated with the blob. The ellipse is given by a
2× 2 correlation matrix around the center of gravity of the blob support region.(

Cxx Cxy

Cxy Cyy

)
(9.4)

The eigenvalues λ1, λ2 of this matrix are extracted from

λ2 − (Cxx + Cyy)λ+ CxxCyy − C2
xy = 0 (9.5)

Then the minimum and maximum and window widths are set to some constants (αmin ≈
1
3 −

1
2 and αmax ≈ 2− 3) times the lengths of the shorter and longer semi-axes respectively.

wmin = αmin min(λ1, λ2) ; wmax = αmax max(λ1, λ2) (9.6)

Figure 9.19 shows a set of windows computed for a few interest points from the toy block
image. This information constitutes the input data for the focusing procedure.

9.3.4. Experimental Results

Figure 9.20 shows the result of applying the composed classification procedure to a junction
candidate near a corner of one of the dark blocks from the toy block image. We display the
minimum and maximum window sizes as set from the blob information, together with the
grey-level and directional histograms for a representative window size. For that window size,
we also display an enlargement of the region around the corner as well as the backprojections
of the different histogram peaks together with the superimposed edges. Observe that the
noise level is much higher in the directional histogram than in the grey-level histogram, since
the number of samples for the directional statistics is substantially smaller. This junction
candidate was classified as a 3-junction, since three prominent peaks were found in both the
grey-level and the directional histograms.

Figure 9.21 shows a more difficult situation with a detail from the hammer image. Here,
the boundary between two of the regions in the corner is slightly curved, which implies
that one of the directional peaks is relatively weak and widened. The point was classified
as a T-junction, since three intensity peaks and two directional peaks were found in the
histograms. More experiments with the method can be found in [Bru90b].

9.3.5. Detection of Candidate Junction Points Initiated by the Scale-Space Primal Sketch

What has not really been considered in the treatment above is the problem of actually
detecting candidate junction points. We used Moravec’s interest point operator, which
leads to thresholding problems if applied uniformly all over an image. In addition, there
is one scale problem we have neglected, namely, that of the scale at which the interest
points should be detected. As we discussed in Section 9.3.2, realistic corners are usually
rounded, which means that small size operators will have problems in detecting those from
the original image. Moreover, we faced problems when matching interest points to blobs,
to a large extent because no scale information was included in the matching procedure.

Therefore, one would like to make use of the scale and region information already in the
phase of detecting the interest points. In other words, we would like to detect the interest
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Figure 9.20. Illustration of the results of applying the classification procedure to a junction candi-
date near a corner of one of the dark blocks from the toy block image. (a) Maximum and minimum
window sizes as set from the blob information. (b) Enlargement of the corner for a window size
taken as representative of the classification. (c) Backprojections of the various regions in the final
classification (together with the edges superimposed). (d) Grey-level histogram. (e) Directional his-
togram. (f) Peak-sharpened directional histogram. This junction was classified as a 3-junction since
both the grey-level and the directional histograms contained three prominent peaks.

points at a coarser scale in order to simplify the detection and matching problems. Now, this
poses another problem. Corners are usually treated as pointwise properties and are therefore
regarded as very fine scale features. At first glance, smoothing the image before detecting
such points seems like a contradiction, because of the risk that important interest points
disappear by this operation. However, for detecting coarse scale corners, corresponding to
the rough outline of say a polygon-like object, this approach can be applicable for finding
the major corners, provided that the intensity contrast is sufficient. Therefore, it is desirable
to have an interest point operator with a good behaviour in scale-space. A quantity with
reasonable such properties is the rescaled level curve curvature given by

κ̃ = |LxxL
2
y + LyyL

2
x − 2LxyLxLy| (9.7)

This expression is basically equal to the curvature of a level curve, which can be expressed
as

κ =
LxxL

2
y + LyyL

2
x − 2LxyLxLy

(L2
x + L2

y)3/2
(9.8)

The level curve curvature has, however, been multiplied with the gradient magnitude11 as
to give a stronger response where the gradient is high. The motivation behind this approach

11Raised to the power of 3 (to avoid the division operation).
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Figure 9.21. Illustration of the results of applying the classification procedure to a junction can-
didate in the scattered laboratory scene. (a) The point under consideration is marked with a white
pad (near the junction between the upper edge of the handle of the hammer and the left edge of the
tape reel). (b) Enlargement of the corner for a representative window size. (c) Backprojections of
the various regions in the final classification (together with the edges superimposed). (d) Grey-level
histogram. (e) Directional histogram. (f) Peak-sharpened directional histogram. This junction was
classified as a T-junction, since three peaks were found in the grey-level distribution and two peaks
in the directional histogram.

is that corners basically can be characterized by two properties: (i) high curvature in the
grey-level landscape and (ii) high intensity gradient. Using just the level curve curvature is
not sufficient, since then a large number of false alarms would be obtained in regions with
smoothly varying grey-level intensity. By taking the absolute value of the curvature, we
treat positive and negative in the same way. Different versions of this operator, usually the
level curve curvature multiplied by the gradient magnitude raised to the power of one, have
been used by several authors, see e.g. Kitchen, Rosenfeld [Kit82], Koenderink, Richards
[Koe88], Noble [Nob88], Blum [Blu90], and Deriche, Giraudon [Der90].

Figure 9.22 shows the result of applying this procedure to a blob extracted from the toy
block image. In (a) we show the treated blob, in (b) the grey-level image at the scale given
by the scale-space blob and in (c) the rescaled level curve curvature computed in this way12.
Figure (d) displays the result of applying raw grey-level blob detection to the curvature
image and (e) the boundaries of the 50 most significant scale-space blobs extracted from

12In the discrete implementation of this operation, the first order derivatives have been approximated by
central differences, the second order derivatives with respect to x and y by the three-point operator ∇2

3 and
the mixed derivative by repeated application of the central differences. In other words, the discrete curvature
is computed directly from the discrete N-jet representation by pointwise operations (without any need for
nearest-neighbour communications).
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Figure 9.22. Illustration of the result of applying the level curve curvature operator at a coarse
scale given by a significant blob from the scale-space primal sketch. (a) A significant scale-space
blob from the scale-space primal sketch (marked with black). (b) The smoothed grey-level image
at that level of scale. (c) The absolute value of the rescaled level curve curvature. (The image has
been inverted so that dark regions correspond to high values). (d) Raw grey-level blobs detected
from that image. (Note the high noise sensitivity in detecting blobs from a single level of scale).
(e) Boundaries of the support regions of the 50 most significant scale-space blobs detected from the
same image.

this data. One observes that curvature operation gives a relatively strong response near
the corners of the treated blob, and that the blob-like regions detected from that data give
coarse indications of where one search for candidate junctions points. A coarse estimate
of the position of the candidate junction can be obtained from the curvature extremum
in the blob region. In our further work we will investigate if it is possible to localize the
interest point to finer scales in a way similar to edge focusing, or if the interest points can
be computed within the blob support region directly from the data, given the coarse scale
information.

9.3.6. Summary and Discussion

We have outlined how the scale-space primal sketch can be useful in dynamic situations
like focus-of-attention. We believe that such mechanisms are necessary in computer vision
systems, if they are to perform their tasks in a complex, dynamic world. More specifically, we
discussed how the scale-space primal sketch together with foveation, which means examining
selected regions of the visual world at high resolution, can be incorporated in an active vision
system. The main reason to why foveation is carried out is because the resolution in normal
overview images will not always be sufficient to clearly resolve the fine-scale structures under
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study. Further motivations for this methodology are given in [Bru90b].
In this integration of the scale-space primal sketch with junction classification, the scale-

space blobs can be used for controlling the classification procedure as well as when detect-
ing the junction candidates. The approach is similar to the blob-initiated edge focusing
described in Section 9.1, in the sense that coarse hypotheses are generated about where to
look, with associated coarse size information. However, there is still more work to be done
in order to integrate these processing steps into a reasoning system.

9.4. Example: Analysis of Aerosol Images

As one example of how the scale-space primal sketch can be used for various image analysis
tasks, we will in this section briefly describe a specific application that has arisen from a
physical problem. We will be concerned with the analysis of a certain type of high-speed
photographs of aerosols generated by nozzles for fluid atomization. A typical example of
such an image is shown in Fig 9.23. What one perceives are some kind of clusters in the

Figure 9.23. Photograph of an aerosol generated by a nozzle for fluid atomization (fuel injector).
The time of exposure is approximately 20 nanoseconds.

drop distribution, seemingly periodically spaced in the spread direction of the aerosol. If
these events really exist, then the physical interpretation would be that there are periodical
(or oscillatory) phenomena taking place in the fuel atomization process. This is a theo-
retically interesting question, important for the deeper understanding of the combustion
processes in combustors13. Usually it is assumed that fuel injectors produce aerosols with a
relatively uniform droplet distribution, but the high-speed photograph in Figure 9.23 seems
to indicate that this is not always the case. One may speculate that the occurrence of such
non-uniformities could represent a possible driver for abnormal combustion events, which
in turn could result in a deteriorated emission situation possibly affecting the exhaust pro-
duction and/or the fuel consumption. However, it is not easy to say directly that these
periodic structures really are there, since they correspond to coarse scale phenomena while
the dominating kind of objects in the image is small dark blobs, i.e., fine scale phenomena.
Therefore it is of interest to develop objective methods for analysing these structures.

Here we will demonstrate in a straightforward manner that: (1) these structures can
be enhanced by a scale-space representation of the image and (2) they can be extracted

13Further information about the physical background to the problem can be found in [Lin90f] and [Val89a,
Val89b, Val89c].
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automatically with the scale-space primal sketch.

Figure 9.24. Schematic view of a shadowgraph optical system used in the physical experiments for
acquiring the aerosol images. The fluid, subjected to a pressure of about 0.1 MPa, enters the nozzle
and becomes atomized. The short exposure time is accomplished by performing the experiments in a
dark room and illuminating the test section with a short flash.

9.4.1. Experimental Results

It should be stressed that these data are extremely irregular with a very high noise level.
Figure 9.26 displays the intensity variations in a cross-section of the image along the spread
direction of the aerosol. Therefore, one could expect conventional segmentation techniques
to have problems when applied to this type of data.

In Figure 9.25 we show the resulting scale-space representations together with the ex-
tracted blobs for a set of (logarithmically distributed) scale levels. As we can see, the drop
clusters, that we earlier perceived as periodic structures in the original image, now appear
as large dark blobs at the coarser levels of scale (t = 128, 256, 512). Although the scale-space
representation enhances these clusters, we still rely on a visual and subjective observer in or-
der to extract and verify the existence of these periodic phenomena. Some natural questions
that were raised from the application point of view were:

• Can any one(s) of these smoothed images be regarded as a proper description(s) of
the original image ?

• Which blobs can be regarded as significant structures in the image ?

In Figure 9.27 we display the result of extracting the 50 most significant dark blobs from
this image together with the boundaries of the significant blob. One can observe that the
periodically occurring drop clusters we perceived in the image are detected as significant
structures in the scale-space primal sketch. Since, in contrast to many other methods used
in image analysis, this method is essentially free from ad hoc “tuning parameters”, and
arbitrarily selected error criterions or thresholds, we feel that the features detected by this
algorithm can be regarded as reflecting inherent properties of the image — they are not just
enforced effects of the analysis method.

9.4.2. Conclusions

We have seen that the scale-space primal sketch concept is a useful tool for automatic
extraction of those periodic structures that were brought out by a scale-space representation
of the aerosol image. Further experiments with this approach for analysing aerosol images
are given in [Lin90f]. This presentation is mainly intended to demonstrate the potential
of using the scale-space primal sketch as a primary tool in this kind of image analysis
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Figure 9.25. Grey-level and dark grey-level blob images of the aerosol image at scale levels t = 0,
1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 (from top left to bottom right).
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Figure 9.26. Intensity variations in a central cross-section along the spread direction of the aerosol.

Figure 9.27. Original aerosol image and the 50 most significant dark blobs determined from the
scale-space primal sketch.

applications. Of course, more work needs to be done in order to arrive at a fully automated
analysis method for this particular problem. Nevertheless, we believe that there is a potential
in the approach also for other kinds of very noisy or irregular data, as e.g. medical imagery.
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Figure 9.28. The boundaries of the 50 most significant dark blobs in the aerosol image.
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9.5. Other Possible Applications

Let us finally mention a few other problem areas, where we believe that this approach can
also be applicable:

9.5.1. Texture Analysis

A basic problem in many shape from texture algorithms concerns how to detect texture
elements, texels. We believe that the blobs extracted from the scale-space primal sketch can
be useful for such extraction in cases when the texture elements are blob-like. Compared

Figure 9.29. The result of applying the scale-space primal sketch to a synthetic texture image
generated from perspective projection of a planar surface painted with a sinusoidal grey-level (of the
form f(ξ, η) = sin ξ sin η). (a) Grey-level image with 1 % added noise. (b) The 75 most significant
dark blobs. (c) The 75 most significant bright blobs. (d) Grey-level image with 10 % added noise.
(e-f) The 75 most significant dark blobs. (A few large blobs corresponding to coarse scale groupings
have been suppressed as to simplify the presentation.) (The noise levels refer to uncorrelated point
noise with normal distribution, where the percentage values relate the standard deviation of the
noise to the maximum range of grey-level values in the original image).

to e.g. the approach by Blostein and Ahuja [Blo87], where texture elements are detected
based on the zero-crossings of the Laplacian of the Gaussian at a small set of pre-specified
scale levels, this method does not require any such prior scale information. Further, the
scale levels are automatically adapted to the size variations over the image. In Figure 9.29
we show the result of applying this blob detection scheme to a synthetic regular texture14.
Figure 9.30 shows a less regular example, where the plane has been painted with a sum
of several sinusoidals of different amplitude and phase. Note that in both these cases the

14The image has been generated from an infinite planar surface painted with a grey-level intensity of
the form f(ξ, η) = sin ξ sin η. After the perspective projection step, Gaussian noise of different amplitude
has been added to the grey-level image. The extracted patterns consist of square-like regions, since in
the ideal noise-free case the delimiting saddle points of the grey-level blobs will be located in the points
(ξn, ηm) = (nπ,mπ) on the plane, and the level curves through these points will be straight lines.
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Figure 9.30. The result of applying the scale-space primal sketch to a synthetic texture image
generated from perspective projection of a planar surface painted with an intensity distribution
generated from a sum of sinusoidals of random phase. (a) Grey-level image. (b) Boundaries of the
75 most significant dark blobs. (c) Boundaries of the 75 most significant bright blobs.

Figure 9.31. The result of applying the scale-space primal sketch to two different views of a
textured wallpaper with squares of three different grey-levels. (a) Grey-level image. (b-c) The 75
most significant dark blobs (marked either as blobs or as blob boundaries). (d) Grey-level image.
(e-f) The 75 most significant dark blobs (marked either as blobs or as blob boundaries). Similar
patterns are extracted when detecting bright blobs from these images.
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algorithm extracts a set of blobs with a size gradient that could provide a cue to the three-
dimensional structure.

Figure 9.31 show corresponding results for two different projections of the same wall-
paper, with a texture consisting of squares of three different grey-levels. Observe that in the
first case the algorithm mainly ranks blobs corresponding to squares on the wall-paper as
important, while in the second case both the individual squares and a set of blob groupings
are extracted15. Because of this phenomenon, some of the dark squares in the second image
are no longer among the selected number of the most significant blobs.

When using these blobs as primitive cues to the three-dimensional structure, there are
a few problems that must be considered. Given a set of blobs obtained from the scale-space
primal sketch, with varying size and different significance values, one has to determine
whether the size of some reasonable subset of the blobs varies in a way consistent with the
projection of a three-dimensional surface. Some coarse scale groupings or fine scale blobs
due to noise may have to be suppressed from the analysis. Another problem is that the scale-
space smoothing can have introduced shape distortions of the blobs, which for instance will
reduce the foreshortening effect. Therefore, some improvements of the localization of the
blob boundaries (e.g. by combination with edge detection) may be needed in order to reduce
the systematic underestimation of the slant that would otherwise occur. See e.g. G̊arding
[G̊ar91] for an extensive treatment of the shape from texture problem.

9.5.2. Perceptual Grouping

We have seen that the blobs extracted from the scale-space primal sketch induce a percep-
tually reasonable grouping of various patterns. For example, in Figure 9.31(a) in principle
only the individual squares were ranked as important, while in Figure 9.31(d-f) also the lines
one perceives when looking at the image were found. See also the dot pattern in Figure 8.3.
Note that the grouping operation is not given by any set of pre-specified logical rules, but
by a process generated from a differential equation, which has been combined with a set of
geometric constructions.

9.5.3. Matching

As we described in Section 9.1.5 above, we believe that the blobs delivered from the scale-
space primal sketch can serve as coarse landmarks for different types of matching purposes.
The relations given say by matches between a blob and a set of edges together with similar
matches between the same blob and a set classified junctions provides a sparse feature set
that could be used for simplifying e.g. object model matching. Another possible application
is to use blobs for initiating deformable models like those proposed by e.g. Terzopoulos
et al. [Ter86, Ter87, Ter88, Kas87, Wit87] or Pentland [Pen88, Pen90]. In addition, these
blobs could possibly serve as to establish a coarse correspondense between regions from
different images of the same scene, a problem arising in stereo and motion analysis. In fact,
a type of similar approach has been recently used for motion matching by Koller and Nagel
[Kol90]. If these blobs are to be used for stereo matching, then of course, if actual disparity
measurements are needed, the computations must be based on better localized features like
e.g. edges or corners.

15These higher order groupings take place mainly along the line of sight, since objects are closer to each
other in the image measured in this direction than in the perpendicular direction.
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Figure 9.32. Extracted dark scale-space blobs from a stereo pair (an aerial photograph of a suburb).
(a) Left grey-level image. (b-c) Boundaries of the 50 most significant dark blobs extracted from the
left image. (d) Right grey-level image. (e-f) Boundaries of the 50 most significant dark blobs
extracted from the right image. (In order to simplify the presentation, the blob boundaries have
been drawn in two different images instead of one.) (The upper row corresponds to the left image
and the lower row to the right image.)
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10

Summary and Discussion

10.1. The Scale-Space Primal Sketch

The representation that we build is similar to the primal sketch suggested by Marr [Mar76,
Mar82], in the sense that it is a two-dimensional representation of the significant grey-level
structures in the image. It is also computed under extremely weak assumptions. However,
besides that it is a region-based and not an edge-based representation it is more qualitative,
without strong assumptions about the shape of the primitives. Moreover, the proposed
representation consists of coarse features like blobs represented at multiple scales and allows
for

• Automatic detection of salient (stable) scales, if they exist.

• Ranking of events in order of significance.

• Generation of hypotheses for grouping and segmentation.

This implies that candidate regions for further processing are generated, as well as informa-
tion about their scale. We see that the representation gives clues to subsequent analysis and
can , hence, guide focus-of-attention mechanisms and simplify later stage processing. At
the same time it is obtained with no a priori assumptions and, in principle, with no tuning
parameters.

10.1.1. Qualitative Properties

We have also tried to demonstrate the effects of one as we believe very promising method-
ology, namely that simple methods and qualitative reasoning can perform surprisingly well
if the treatment is performed at a proper scale and over an appropriately selected region
in space, provided that the resolution is sufficient to clearly resolve the phenomena we are
studying1. For instance, the primitives (grey-level blobs, scale-space blobs and edges from
non-maximum suppression) used for extracting image structure were defined solely in terms
of singularities and geometric properties in scale-space. These entities can be very noise
sensitive when considered at a single level of scale only. However, here we have shown that
they can give useful results if combined with a careful treatment of the scale issue.

Of course the actual numerical values cannot be trusted, since the amplitude of the
Gaussian derivatives will in general decrease by the scale-space smoothing. Therefore, in
order to avoid a systematic bias if accurate values are required for computing quantitative

1In a major part of the work we have assumed that the images have been acquired with a sufficient
resolution. However, in Section 9.3 we indicated how this issue can be further coped with in an active vision
context.
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properties related to the environment, as needed in many “shape from X” methods, we
believe that a two-stage process could be applied: (1) First detect the qualitative type of
actual situation. (2) Then fit a model, corresponding to the situation at hand, to the data
(over a region in space determined from the first step).

10.1.2. Extraction of Structure — Transformational Invariance

The underlying principle we use when extracting image structures is that structure should
be invariant under transformations in parameter space. Our method consists of three steps:

• Vary the parameters systematically.

• Detect (locally) stable states (intervals).

• Choose a representative descriptor as an abstraction of each stable interval and pass
only this information on to the higher level modules.

In this specific case the parameter we vary is the scale parameter in the scale-space repre-
sentation. However, we believe that a similar kind of methodology could be applicable also
in other types of situations.

10.2. Scale-Space Experiences

Let us point to a few aspects of scale-space representations that have been given little or
insufficient attention in the literature and that have to be dealt with in creating a represen-
tation of the sort we want.

10.2.1. Suppression of Local Extrema due to Noise

First, it is noteworthy, that the amount of noise in real images usually leads to a large
number of local extrema. These extrema may disappear rather early, provided that they
are subsumed by some more prominent extremum. However, if they occur in a region with
smoothly varying grey-levels, then they will exist over a large range of scale. This effect is
alleviated, but not remedied, by annihilation between nearby noise extrema. Even though
their amplitudes decrease rapidly, it is not clear that one can set a threshold on objective
grounds. This problem is related to the issue of estimating the noise level in an image, which
hardly can be addressed without some constraining assumptions, like e.g. in Voorhees and
Poggio [Vor87].

10.2.2. Stable Scale is a Local Property

Another property, indicated in Section 5.4, is that images of scenes of even moderate com-
plexity rarely have a global scale, at which all structure above the noise level is present.
This aspect is explicitly dealt with in our representation. Stable scales are local properties
associated with objects not with entire images. Bischof and Caelli [Bis88] treat a similar
question for zero-crossings. However, their measure of stability seems to be more arbitrary.

10.2.3. Stable Scale is a Multi-Valued Function

Moreover, given some region in space there may in fact be several stable scales associated
with that region corresponding to structures on different scale. Therefore, if one attempts
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Figure 10.1. (a) An unusual situation, where one could possibly talk about a global scale for a
whole image. (b) This property appears as a plateau in a graph showing the logarithm of the number
of local extrema as function of (the effective) scale. (c) For images of moderate complexity it will,
however, usually not be possible to find such globally stable states. Even if there were a number of
prominent plateaus corresponding to local structures at different scales, by adding up several such
profiles one will anyway obtain a relatively uniformly decreasing curve. The graph in (c) shows the
logarithm of the number of local extrema as function of scale for the Godthem Inn image.

to assign a property “stable scale” to every point in an image, one will obtain a “function”
that in principle may assume an arbitrary number of values in each point. Therefore, the
task of finding “the best scale” for treating a certain point in an image is in general an
impossible problem, which cannot be solved except for very simple images, for which there
is in fact only one such stable scale related to each point in the image (within the scale
interval delimited by the inner scale and the outer scale).

10.2.4. Decreasing Amplitude of Feature Points

The behaviour of local extrema in scale-space has been studied also by Lifshitz and Pizer
[Lif87, Piz88]. They link points across scales based on iso-intensity similar to the projection
between scales described in [Koe84] and define blob regions in terms of watersheds. However,
this leads to a serious problem of non-containment, which basically means that a point,
which at one scale has been classified as belonging to a certain region (associated with a
local maximum), can escape from that region when the scale parameter increases. More
precisely, what can happen is the following: Assume that a point A is contained in a region
associated with an extremum B at a certain scale and that we follow these points by iso-
intensity linking to corresponding point A′ and B′ at a coarser scale. Then, we are not
guaranteed that A′ is contained in the same region as B′. Even worse, these paths can be
intertwined in a rather complicated way, which means that the relations between extremum
regions across scales can hardly be regarded as hierarchical.

These problems will not occur with our proposed way of linking blobs across scales, which
is solely based on qualitative features. The main problem with the iso-intensity linking is
that the grey-level value associated with a feature, say a critical point, will in general be
changed by the scale-space smoothing. By connecting a feature point existing at one scale
to the nearest point at an adjacent scale having the same grey-level value, one makes a small
error, which will accumulate, and cannot be neglected2.

2A similar problem arises with the motion constraint equation in optical flow, where it is usually assumed
that the intensity value of a physical point is preserved under motion. In fact, Pentland [Pen90] has recently
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This is another illustration of the property that in general the magnitudes of grey-levels
or derivatives cannot be trusted after scale-space smoothing, since the amplitude of a signal
or its derivatives will in general decrease by this operation. Only qualitative features (or
invariants) such as edges andlocal extrema, which can be defined in terms of singularities,
can be used.

10.3. Relations to Previous Work

There are, of course, earlier attempts to derive similar representations of the grey-level
landscape. Rosenfeld and his co-workers, see e.g. [Gro86, She86, She87] have studied blob
detection in pyramids e.g. using relaxation methods. Blostein and Ahuja [Blo87] detect
texture elements based on zero-crossings and use multiple scales and a significance measure
based on a background noise assumption. There is also the wealth of literature on pyramids,
see e.g. Levine [Lev80], Crowley and Parker [Cro84a], Crowley and Sanderson [Cro87] and
Burt and Adelson [Bur83]. The texton theory proposed by Julesz, see [Jul83, Jul86] and
[Vor87], essentially also treats the blob detection problem. There are finally a number of
representations based on intensity changes, besides Marr [Mar82], Bergholm [Ber87, Ber89]
and Watt [Wat88] and approaches working at higher levels like Saund’s [Sau89, Sau90] token
based symbolic grouping. Of interest is also the approach by Haralick et.al. [Har83], which
allows a more detailed representation, but only at a single spatial scale.

Our approach differs from these in three important aspects. First, our representation can
be seen as preceding e.g. the edge-based schemes in that it selects the appropriate scales and
regions, intrinsically defined by the image itself, in a complementary data-driven manner.
Secondly, it is a hierarchic representation of the structure at all scales in the image with
explicit information about their significance and relations, and a competition between parts
at different locations and scales. Finally, it is derived in a formal way using the well-defined
notions of scale-space, which allow a precise analysis of the behaviour of structure. Hence,
we can study how events at different scales can be related in a well-defined manner.

One can ask more generally what is the relation between our representation and zero-
crossings of the second derivative. We suggest that our representation, with extrema and
their extents, captures important structure. The zero-crossings will not always be localized
in the same places and, therefore, not represent the same structure. Watt [Wat88], in fact
argues that the extrema of the second derivative, and not the zero-crossings, should be used
to pick up information about intensity discontinuities. We feel that this question should be
investigated further.

10.4. Conclusions

We have presented a multi-scale representation of grey-level image structure similar to the
primal sketch idea and shown that it can be used for detecting stable scales and extracting
regions of interest from an image in a solely bottom-up data-driven way, without any a priori
assumptions about the shape of the primitives. The representation, which is essentially free
from tuning parameters and ad hoc error criteria gives a qualitative description of the grey-
level landscape with information about

• approximate location,

shown that under certain conditions the photometric distortions can be much greater than the geometric
effects due to motion.
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• spatial extent and

• an appropriate scale

for important regions in the image. In other words, it generates coarse but safe segmenta-
tion cues, and can be used as a hypothesis generator for higher-level processes. We have
demonstrated that this kind of information can serve as to control an edge detection scheme
working at a proper level of scale and that it is useful for automatic cluster detection and
modality analysis of histograms. More generally, we find this approach useful for

• guiding the focus-of-attention and

• tuning other low-level processes.

The representation is based on a well-defined notion of blob, which gives a natural geometric
measure of significance. It is also based on scale-space theory, which means a well-founded
treatment of structures at multiple scales. The principle we follow when extracting signifi-
cant image structure from scale-space is based on transformational invariance and consists
of the following steps:

• Vary the parameters systematically and try to detect locally stable states (intervals).

• Choose a representative descriptor as an abstraction of each stable interval and pass
only this information on to the higher level modules.

In this specific case the parameter we vary is the scale parameter in the scale-space repre-
sentation. However, we believe that methodology can be applicable also in other types of
situations.

The computational aspects of scale-space are treated carefully. Particularly, the fact that
realistic images are discrete is taken into account, and we use a scale-space concept specially
designed for discrete signals. The evolution properties in scale-space of local extrema and
blobs are analysed in detail. We also introduce the notion of effective scale, which is the
natural unit for measurement of scale-space lifetime.

More detailed summaries and conclusions for the different subproblems have been given
at the end of each independent treatment.
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Part IV

Appendix
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A

Technical Details and More Examples

A.1. From Chapter 2

A.1.1. Unimodality of the Fourier Transform in the Non-Circulant Case

We are to generalize the unimodality property in the frequency domain, derived for circulant
convolution, to non-circulant convolution transformations. Consider a finite support kernel
K : Z → R, with K(i) = 0 if |i| > M , having a non-unimodal Fourier transform. Will show
that this kernel cannot be a discrete scale-space kernel.

From the proof of Proposition 2.10 (the circulant case) it is apparent that if a kernel
has a non-unimodal Fourier transform, then for some sufficiently large (odd) integer T there
exists a T -periodic signal fper (fper(x) = fper(x+T )), for which the number of zero-crossings
in one period of fout = K ∗ fper is strictly greater than the number of zero-crossings in a
corresponding period of fper. The signal fper : Z → R is constructed from the vector x (of
length T = 2M + 1) used in the proof of Proposition 2.10 by fper(i) = xi (i = 0..T − 1)
and periodic extension. By this construction, the effect of K on one period of fper will be
the same as the effect on the vector x by the associated circulant matrix C

(M)
C , which was

used in the proof of Proposition 2.10. With the number of zero-crossings in one period of a
signal f , we here mean the number of zero-crossings in the sequence f(0), f(1), .., f(T −1),
f(0), including wrap-around.

Figure A.1. Construction of the finite support signal fin from the periodic function fper.

Given this function fper of period T = 2M + 1 let I2M+1 be an interval with 2M + 1
such consecutive periods and construct a new function fin : Z → R, which is equal to fper

on I2M+1 and at the M nearest points outside each boundary of I2M+1, see Figure A.1. At
all other points fin should be zero. Due to the construction of fin and the finiteness of K
it follows that K ∗ fin and K ∗ fper will be equal on I2M+1. Thus, provided that we only
count the points in I2M+1 we have introduced at least 2M + 1 additional zero-crossings.
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Outside I2M+1 we might expect to find more zero-crossings inK∗fin. The support region
of K ∗fin is in general larger than the support region of fin. However, fin cannot have more
than a total of 2M additional zero-crossings since fin is non-zero only at 2M points outside
I2M+1. Consequently, K ∗fin contains at least one zero-crossing more than fin, which shows
that K cannot be a scale-space kernel. This completes the proof of Proposition 2.11.

A.1.2. Positivity and Unimodality are Necessary but not Sufficient

We will show by counterexample that the positivity and unimodality properties in the spatial
and frequency domains do not necessarily guarantee a kernel to be a discrete scale-space
kernel. We will demonstrate this fact by considering symmetric five-kernels.

The case when at least one root is real and positive is not interesting, since then at least
one filter coefficient would need to be negative. If one root is real and negative then also at
least one more root must be real (since non-real roots occur pairwise) and can be assumed to
be negative (because of the previous property). If the remaining second degree factor in the
factorization of generating function has non-real roots, then the kernel cannot be positive
in the Fourier domain (see the treatment in Section 2.3.3). The case we are interested in is
when the generating function ϕ(z) has only complex roots. Then ϕ(z) can be written

ϕ(z) =
(z + a+ bi)(z + a− bi)(z + c+ di)(z + c− di)

z2
= (A.1)

z4 + 2(a+ c)z3 + (a2 + b2 + c2 + d2 + 4ac)z2 + (2a(c2 + d2) + 2c(a2 + b2))z + (a2 + b2)(c2 + d2)
z2

for some real a, b, c and d. To obtain a symmetric kernel we require (a2 + b2)(c2 + d2) = 1.
Introducing polar coordinates

a = r cosα ; b = r sinα (A.2)
c = 1

r cos β ; d = 1
r sin β (A.3)

we have that ϕ(z) can be rewritten as

ϕ(z) = z2+2(r cosα+
cos β
r

)z+(r2+
1
r2
+4cosα cos β)+2(

cosα
r

+r cos β)z−1+z−2 (A.4)

If this kernel is to be symmetric then it is necessary that

r cosα+
cos β
r

=
cosα
r

+ r cos β (A.5)

In other words, we get two cases from

(cosα− cos β)(r − 1
r
) = 0 (A.6)

Case I: Consider first cosα = cos β, which gives

ϕ(z) = z2 + 2cosα(r +
1
r
)z + (r2 +

1
r2
+ 4cos2 α) + 2 cosα(r +

1
r
)z−1 + z−2 (A.7)

The filter coefficients are positive if and only if cosα ≥ 0. The unimodality requirement in
the spatial domain

r2 +
1
r2
+ 4cos2 α ≥ 2 cosα(r +

1
r
) ≥ 1 (A.8)
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can always be satisfied for sufficiently large r if cosα �= 0. The Fourier transform is

ψ(θ) = (r2 +
1
r2
+ 4cos2 α) + 4 cosα(r +

1
r
) cos θ + 2cos 2θ (A.9)

Trivially we have ψ(0) ≥ 0. Positivity in the other end point of the interval [0, π] gives

ψ(π) = (r2 +
1
r2
+ 4cos2 α)− 4 cosα(r +

1
r
) + 2 ≥ 0 (A.10)

The unimodality requirement implies that the equation

ψ′(θ) = −4 sin θ(cosα(r +
1
r
) + 2 cos θ) = 0 (A.11)

must not have any real roots in the interior of [0, π]. Hence, one observes that ψ is unimodal
if and only if

cosα(r +
1
r
) + 2 cos θ �= 0 (A.12)

for all θ ∈]0, π[. A necessary and sufficient condition for unimodality is hence given by

| cosα|
2

(r +
1
r
) ≥ 1 (A.13)

To summarize, we have that the kernel is positive and unimodal both in the spatial and the
frequency domains if these five inequalities are satisfied

cosα ≥ 0 (A.14)
r2 + 1

r2 + 4cos2 α− 2 cosα(r + 1
r ) ≥ 0 (A.15)

2 cosα(r + 1
r )− 1 ≥ 0 (A.16)

| cos α|
2 (r + 1

r )− 1 ≥ 0 (A.17)
r2 + 1

r2 + 4cos2 α− 4 cosα(r + 1
r ) + 2 ≥ 0 (A.18)

Obviously, (A.16) is comprised by (A.17) and can be omitted since cosα > 0. Similarly, by
writing (A.18) on the form

r2 +
1
r2
+ 4cos2 α− 2 cosα(r +

1
r
)− 2(cosα(r +

1
r
)− 1) ≥ 0 (A.19)

one observes that, since the rightmost parenthesis is strictly positive (due to A.17) we have
that (A.18) holds whenever (A.15) is satisfied. Moreover, (A.15) can be rewritten as

(r +
1
r
+ 2cosα)2 + 1 ≥ 0 (A.20)

which shows that this inequality will always be satisfied. We conclude that a necessary and
sufficient condition for such a kernel to be positive and unimodal both in the spatial and
the frequency domains is that

cosα
2

(r +
1
r
) ≥ 1 (A.21)

Taking e.g. α = π
4 and r = 2

√
2 we get

a+ bi = 2(1 + i) ; c+ di =
1
4
(1 + i) (A.22)

243



and

ϕ(z) = (z + 2 + 2i)(z + 2− 2i)(z + 1
4 +

i
4)(z +

1
4 −

i
4 )z
−2 = (A.23)

z2 + 36
8 z + 81

8 + 36
8 z−1 + z−2 (A.24)

which obviously corresponds to a kernel that is positive and unimodal in the spatial domain.
From the Fourier transform

ψ(θ) =
1
8
(81 + 72 cos θ + 16 cos 2θ) (A.25)

and its derivative
ψ′(θ) = − sin θ(9 + 4 cos θ) (A.26)

one can verify that the kernel is positive and unimodal in the frequency domain as well.
However, from the characterization of discrete scale-space kernels in Section 2.4.2 we have
that this kernel cannot possess scale-space properties, since its generating function has non-
real roots.
Case II: When r = 1 we have

ϕ(z) = z2 + 2(cosα+ cos β)z1 + (2 + 4 cosα cos β) + 2(cosα+ cos β) + z−2 (A.27)

The positivity and unimodality requirements in the spatial domain lead to the inequalities

cosα+ cos β ≥ 0 (A.28)
2 + 4 cosα cos β ≥ 0 (A.29)
2(cosα+ cos β) ≥ 1 (A.30)

2 + 4 cosα cos β ≥ 2(cosα+ cos β) (A.31)

From the Fourier transform

ψ(θ) = (2 + 4 cosα cos β) + 4(cosα+ cos β) cos θ + 2cos 2θ (A.32)

and its derivative
ψ′(θ) = −4 sin θ(cosα+ cosβ − 2 cos θ) (A.33)

we observe that the kernel is positive and unimodal in the Fourier domain if and only if

ψ(0) = 2 + 4 cosα cos β + 4(cosα+ cosβ) + 2 ≥ 0 (A.34)
ψ(θ) = 4(cosα cosβ − cosα− cos β) ≥ 0 (A.35)

| cos α+cos β|
2 ≥ 1 (A.36)

One easily verifies that these systems of inequalities can be reduced to

cosα cos β − cosα− cos β ≥ 0 (A.37)
cos α+cos β

2 ≥ 1 (A.38)

Obviously, the last equation implies that cosα and cos β must be equal to one, which also sat-
isfies the second equation. Then, the kernel will equal to the binomial kernel (1, 4, 6, 4, 1).
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A.2. From Chapter 3

A.2.1. Separated Convolution with T (n; t) Satisfies the Diffusion Equation

Consider the possible scale-space representation of a two-dimensional signal given by sepa-
rated convolution with the one-dimensional discrete analogue of the Gaussian kernel.

L(x, y; t) =
∞∑

m=−∞

∞∑
n=−∞

T2D(m,n; t)f(x−m, y − n) (t > 0) (A.39)

where
T2D(m,n; t) = T (m; t)T (n; t) (A.40)

and T is the one-dimensional discrete analogue of the Gaussian kernel given by T (n; t) =
e−tIn(t), where In(t) are the modified Bessel functions of integer order. We will show that
this representation satisfies a discretized version of the two-dimensional diffusion equation.

∂L

∂t
=
1
2
∇2

5L (A.41)

by considering

∂

∂t
T2D(m,n; t) =

∂T

∂t
(m; t)T (n; t) + T (m; t)

∂T

∂t
(n; t) = (A.42)

= {Eq. (2.78)} = 1
2
(T (m− 1; t)− 2T (m; t) + T (m+ 1; t))T (n; t) +

T (m; t)
1
2
(T (n− 1; t)− 2T (n; t) + T (n+ 1; t)) = (A.43)

1
2
(T (m− 1, n; t) + T (m+ 1, n; t) + T (m,n− 1; t) + T (m,n+ 1; t)− 4T (m,n; t)) =

1
2
(∇2

5T )(m,n; t) (A.44)

Provided that the differentiation and infinite summation operators commute we have that
the same relation holds for L, compare with the proof of Theorem 2.26.

A.2.2. Equivalent 1-D Formulation of the 2-D Discrete Scale-Space

For the sake of clarity, we state the definitions that are necessary for the one-dimensional
equivalent formulation of the two-dimensional discrete scale-space concept given in Theo-
rems 3.4-3.5.

Definition A.1. (Discrete local maximum (1D))
A point x is said to be a (weak) local maximum point for a function g : Z → R if g(x) ≥
g(x− 1) and g(x) ≥ g(x+ 1).

Definition A.2. (Discrete local minimum (1D))
A point x is said to be a (weak) local minimum point for a function g : Z → R if g(x) ≤
g(x− 1) and g(x) ≤ g(x+ 1).
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Definition A.3. (Pre-scale-space family of kernels (1D))
A one-parameter family of kernels T : Z ×R+ → R is said to be a pre-scale-space family of
kernels if it satisfies

• T (·; 0) = δ(·)

• the semi-group property T (·; s) ∗ T (·; t) = T (·; s+ t)

• the symmetry constraint T (−x; t) = T (x; t) for all x ∈ Z

• the continuity requirement ‖ T (·; t)− δ(·) ‖1→ 0 when t ↓ 0

Definition A.4. (Pre-scale-space representation (1D))
Let f : Z → R be a discrete signal and T : Z × R → R a pre-scale-space family of kernels.
Then the one-parameter family of signals L : Z ×R → R given by

L(x; t) =
∞∑

n=−∞
T (n; t)f(x− n) (A.45)

is said to be the pre-scale-space representation of f generated by T .

Definition A.5. (Scale-space property: Non-enhancement of local extrema (1D))
A differentiable one-parameter family of signals L : Z ×R → R is said to possess pre-scale-
space properties, or equivalently, not enhance local extrema if for every value of the scale
parameter t0 ∈ R+ it holds that if x0 ∈ Z is a local extremum point for the mapping
x �→ L(x; t0) then the partial derivative of L with respect to t in this point satisfies

∂L

∂t
(x0; t0) ≤ 0 if x0 is a local maximum point (A.46)

∂L

∂t
(x0; t0) ≥ 0 if x0 is a local minimum point (A.47)

Definition A.6. (Scale-space family of kernels (1D))
A one-parameter family of pre-scale-space kernels T : Z × R → R is said to be a scale-
space family of kernels if for any signal g : Z → R the pre-scale-space representation of g
generated by T possesses pre-scale-space properties, i.e. if for any signal local extrema are
never enhanced.

Definition A.7. (Scale-space representation (1D))
A pre-scale-space representation L : Z × R+ → R of a signal f : Z → R generated by a
family of kernels T : Z × R → R, which are scale-space kernels, is said to be a scale-space
representation of f .

A.2.3. Derivation of the MacLaurin Expansion of the Fourier Transform

Given the expression for the Fourier transform on polar form (3.41) (3.42)

ψT (u, v) = eh(ω cos φ,ω sin φ)t (A.48)
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where

h̃(ω, φ) = h(ω cosφ, ω sinφ) = −(2− γ) +
(1− γ)(cos(ω cosφ) + cos(ω sinφ)) +
γ cos(ω cosφ) cos(ω sinφ) (A.49)

we Taylor expand for small values of ω

h̃(ω, φ) = −(2− γ) +

(1− γ)(1− ω2 cos2 φ
2

+
ω4 cos4 φ

24
+ 1− ω2 sin2 φ

2
+

ω4 sin4 φ

24
+O(ω6))

γ(1− ω2 cos2 φ
2

+
ω4 cos4 φ

24
+O(ω6))(1 − ω2 sin2 φ

2
+

ω4 sin4 φ

24
+O(ω6))

and simplify

h̃(ω, φ) = −(2− γ) +

(1− γ)(2− ω2

2
+

ω4(cos4 φ+ sin4 φ)
24

+O(ω6))

γ(1− ω2

2
+

ω4(cos4 φ+ sin4 φ)
24

+
ω4 cos2 φ sin2 φ

4
+O(ω6)) (A.50)

to

h̃(ω, φ) = −ω2

2
+

ω4(cos4 φ+ sin4 φ)
24

+ γ
6ω4 cos2 φ sin2 φ

24
+O(ω6) (A.51)

which in turn rewritten as

h̃(ω, φ) = −ω2

2
+

ω4(cos2 φ+ sin2 φ)2 + (6γ − 2) cos2 φ sin2 φ

24
+O(ω6) (A.52)

to give the desired result in (3.44).

A.3. From Chapter 4

A.3.1. The l1 Norms of the Difference between Various Discrete Implementations of the
Scale-Space Theory

In this appendix we have tabulated the l1 norms of the difference between various discrete
kernels used for implementing the one-dimensional scale-space theory. The comparison
comprises

• differences of the discrete analogue of the Gaussian kernel, denoted T , δxT and ∇2
3T

• sampled derivatives of the Gaussian kernel, denoted G, ∂
∂xG and ∂2

∂2xG

• differences of the sampled Gaussian, denoted G, δxG and ∇2
3G

• integrated derivatives of the Gaussian kernel, denoted
∫̃
G,

∫̃ ∂
∂xG and

∫̃ ∂2

∂2xG

• differences of the integrated Gaussian kernel, denoted
∫̃
G, δx

∫̃
G, and ∇2

3

∫̃
G

for orders 0, 1 and 2 of the differences and the derivatives.
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t T −G T −
∫̃
G G−

∫̃
G

0.01 3.01 · 10±0 1.99 · 10−2 2.99 · 10±0

0.1 4.30 · 10−1 4.65 · 10−2 4.72 · 10−1

1 1.52 · 10−1 1.78 · 10−1 3.30 · 10−2

10 1.20 · 10−2 1.50 · 10−2 4.01 · 10−3

100 1.17 · 10−3 1.46 · 10−3 4.03 · 10−4

1000 1.17 · 10−4 1.46 · 10−4 4.04 · 10−5

10000 1.17 · 10−5 1.46 · 10−5 4.03 · 10−6

t δxT − ∂
∂xG δxG− ∂

∂xG δxT − δxG δxT −
∫̃

∂
∂xG

∂
∂xG−

∫̃
∂
∂xG δxG− δx

∫̃
G

0.01 9.95 · 10−1 3.98 · 10±0 3.00 · 10±0 9.95 · 10−1 2.98 · 10−5 2.99 · 10±0

0.1 7.82 · 10−1 1.10 · 10±0 3.94 · 10−1 2.30 · 10−1 5.53 · 10−1 4.24 · 10−1

1 1.15 · 10−1 1.91 · 10−1 1.18 · 10−2 7.65 · 10−2 5.42 · 10−2 3.26 · 10−2

10 4.27 · 10−3 7.78 · 10−3 7.30 · 10−3 4.24 · 10−3 1.97 · 10−3 1.87 · 10−3

100 1.35 · 10−4 2.51 · 10−4 2.45 · 10−4 1.40 · 10−4 6.28 · 10−5 6.25 · 10−5

1000 4.24 · 10−6 7.97 · 10−6 7.78 · 10−6 4.43 · 10−6 1.99 · 10−6 1.99 · 10−6

10000 1.35 · 10−7 2.52 · 10−7 2.46 · 10−7 1.40 · 10−7 6.28 · 10−8 6.27 · 10−8

0.01 1.00 · 10±0 4.01 · 10±0 3.02 · 10±0 1.00 · 10±0 2.99 · 10−5 3.00 · 10±0

0.1 8.21 · 10−1 1.16 · 10±0 4.13 · 10−1 2.41 · 10−1 5.81 · 10−1 4.45 · 10−1

1 1.70 · 10−1 2.84 · 10−1 1.75 · 10−1 1.14 · 10−1 8.05 · 10−2 4.83 · 10−2

10 1.71 · 10−2 3.12 · 10−2 2.93 · 10−2 1.70 · 10−2 7.90 · 10−3 7.52 · 10−3

100 1.69 · 10−3 3.15 · 10−3 3.07 · 10−3 1.75 · 10−3 7.88 · 10−4 7.84 · 10−4

1000 1.69 · 10−4 3.15 · 10−4 3.08 · 10−4 1.76 · 10−4 7.89 · 10−5 7.88 · 10−5

10000 1.69 · 10−5 3.15 · 10−5 3.09 · 10−5 1.76 · 10−5 7.88 · 10−6 7.88 · 10−6

t ∇2
3T − ∂2

∂2xG ∇2
3G− ∂2

∂2xG ∇2
3T −∇2

3G ∇2
3T −

∫̃
∂2

∂2xG
∂2

∂2xG−
∫̃

∂2

∂2xG ∇2
3G−∇2

3

∫̃
G

0.01 3.99 · 10+2 3.99 · 10+2 1.20 · 10+1 3.94 · 10±0 3.99 · 10+2 1.20 · 10+1

0.1 1.11 · 10+1 1.11 · 10+1 1.71 · 10±0 3.96 · 10±0 1.11 · 10+1 1.89 · 10±0

1 4.20 · 10−1 2.18 · 10−1 5.35 · 10−1 4.89 · 10−1 1.19 · 10−1 8.34 · 10−2

10 4.30 · 10−3 2.33 · 10−3 5.70 · 10−3 4.99 · 10−3 1.18 · 10−3 1.14 · 10−3

100 4.07 · 10−5 2.33 · 10−5 5.75 · 10−5 4.86 · 10−5 1.17 · 10−5 1.16 · 10−5

1000 4.05 · 10−7 2.33 · 10−7 5.76 · 10−7 4.86 · 10−7 1.17 · 10−7 1.17 · 10−7

10000 4.05 · 10−9 2.33 · 10−9 5.76 · 10−9 4.86 · 10−9 1.17 · 10−9 1.17 · 10−9

0.01 1.01 · 10+2 1.01 · 10+2 3.05 · 10±0 1.00 · 10±0 1.01 · 10+2 3.03 · 10±0

0.1 3.21 · 10+1 3.21 · 10+1 4.95 · 10−1 1.15 · 10±0 3.21 · 10±0 5.48 · 10−1

1 4.07 · 10−1 2.12 · 10−1 5.19 · 10−1 4.74 · 10−1 1.15 · 10−1 8.08 · 10−2

10 4.45 · 10−2 2.41 · 10−2 5.90 · 10−2 5.17 · 10−2 1.22 · 10−2 1.18 · 10−2

100 4.21 · 10−3 2.41 · 10−3 5.95 · 10−3 5.02 · 10−3 1.21 · 10−3 1.20 · 10−3

1000 4.19 · 10−4 2.41 · 10−4 5.95 · 10−4 5.02 · 10−4 1.21 · 10−4 1.21 · 10−4

10000 4.19 · 10−5 2.41 · 10−5 5.95 · 10−5 5.02 · 10−5 1.21 · 10−5 1.21 · 10−5

Table A.1. The l1 norm of the difference between various discrete implementations of the zero, first
and second order derivatives of the Gaussian kernel in one dimension. Two data sets are given for the
first and second order derivative approximations; the upper table giving the l1 norm of the difference,
and the lower table giving the same norm divided by the l1 norm of the same order difference of the
discrete analogue of the Gaussian kernel.
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A.4. From Chapter 5

In order to give a further intuitive idea of the effects of extracting grey-level blobs at different
levels of scale, Figures A.2-A.3 show some more examples in addition to those given in
Figures 5.8-5.9.

A.5. From Chapter 6

A.5.1. Polynomials Satisfying the Diffusion Equation.

This appendix lists a set of polynomials satisfying the diffusion equation which are used
in Section 6. Each polynomial pm,n(x, y) has been generated from the monomial xmyn by
adding suitable lower order terms containing powers of t, and if necessary x and y as well,
such that pm,n(x, y) satisfies the two-dimensional diffusion equation.

p0,0(x, y; t) = 1
p1,0(x, y; t) = x

p0,1(x, y; t) = y

p2,0(x, y; t) = x2 + t

p1,1(x, y; t) = xy

p0,2(x, y; t) = y2 + t

p3,0(x, y; t) = x3 + 3xt
p2,1(x, y; t) = x2y + yt

p1,2(x, y; t) = xy2 + xt

p0,3(x, y; t) = y3 + 3yt
p4,0(x, y; t) = x4 + 6x2t+ 3t2

p3,1(x, y; t) = x3y + 3xyt
p2,2(x, y; t) = x2y2 + x2t+ y2t+ t2

p1,3(x, y; t) = xy3 + 3xyt
p0,4(x, y; t) = y4 + 6y2t+ 3t2

...

A.5.2. Investigation about the Roots to 4x3 + 12tx+ v = 0

Given a value of v, we will investigate for which t-values the equation h(x) = 4x3+12tx+v =
0 has real roots (in x). Consider the derivative

∂h

∂x
(x) = 12(x2 + t) (A.53)

If t > 0 then this expression is > 0 for all x and the function is monotone, which means
that the equation has one unique real root.

On the other hand if t < 0 then this function has two critical points, ξ1 = −
√
−t and

ξ2 = +
√
−t, where ξ1 is a local maximum and ξ2 is a local minimum. The equation has three

real roots if and only if f(ξ1) and f(ξ2) have different signs, i.e., if and only if f(ξ1)f(ξ2) < 0.
We have

f(ξ1)f(ξ2) = ... = 64t3 + v2 (A.54)
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Figure A.2. Grey-level and dark grey-level blob images of the Godthem image at scale levels
t = 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 (from top left to bottom right).
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Figure A.3. Grey-level and dark grey-level blob images of a telephone and calculator image at scale
levels t = 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 (from top left to bottom right).
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Thus, the equation has three different real roots if and only if

t < −
(
v

8

)2

(A.55)

One easily verifies that if t = −(v
8 )

2 and v �= 0 then all roots are real and exactly two roots
are equal. If v = 0 then for t = 0 the equation trivially has a root of multiplicity 3 at x = 0.

In the cases when the equation has three real roots x1, x2 and x3 the roots will be
delimited by the critical points. Hence, we have

x1 ≤ ξ1 ≤ x2 ≤ ξ2 ≤ x3 (A.56)

When t < −(v
8 )

2 strict inequalities hold in this set of relations.

A.5.3. Detailed Investigation of the Singularity Set for the Elliptic Umbilic

We are to investigate the singularity set of the elliptic umbilic unfolding modified to satisfy
the diffusion equation. From Section 6.4.3 we have that it is given by the solutions to{

∂L
∂x = 2x(y + w) + u = 0
∂L
∂y = x2 − 3y2 − 2t = 0 (A.57)

and that the types of the critical points determined by



(AL) = ∂2L
∂x2 = 2(y + w)

∂2L
∂x∂y = 2x
∂2L
∂y2 = −6y
(HL) = ∂2L

∂x2
∂2L
∂y2 − ∂2L

∂x∂y
∂2L
∂y∂x = −4

(
3y(y + w) + x2

)
(A.58)

Consider first the case when u < 0, set u′ = −u > 0 and introduce new variables ξ and η by{
ξ = (y + w)/x
η = x(y + w)

(A.59)

Since u < 0 we have from (6.115) that x and y + w will always have the same sign. This
means that ξ and η will both be non-negative. However, the mapping (x, y) �→ (ξ, η) is not
globally bijective since the two points (x1, y1) = (a,−w + b) and (x2, y2) = (−a,−w − b)
will both be mapped onto the same (ξ, η) value. This means that the cases (x > 0, y > −w)
and (x < 0, y < −w) must be treated separately. In these new coordinates (6.115) can be
written {

2η − u′ = 0
η/ξ − 3(−w ±

√
ηξ)2 − 2t = 0

(A.60)

and simplified to
u′

2

(
3ξ − 1

ξ

)
+ 3w2 + 2t = ±6w

√
u′ξ
2

(A.61)

after observing that η = u′/2. This equation describes the relation between ξ and t for each
one of the two arcs. The sign of the ± term is the same as the sign of x. For every ξ > 0
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there are two corresponding points (x1, y1) and (x2, y2) given by

(x1, y1) = (+

√
u′

2ξ
,−w +

√
u′ξ
2
) (A.62)

(x2, y2) = (−
√

u′

2ξ
,−w −

√
u′ξ
2
) (A.63)

Introduce t′ by 2t′ = 2t+ 3w2. Then

u′

2

(
3ξ − 1

ξ

)
+ 2t′ = ±6w

√
u′ξ
2

(A.64)

Solving for t′ yields

t′ = −u′

4

(
3ξ − 1

ξ

)
± 3w

√
u′ξ
2

(A.65)

which by introduction of t̃ = t′/u′ can be written

t̃ =
1
4ξ
− 3ξ

4
± 3w

√
ξ

2u′
(A.66)

If w > 0 we let w =
√
u′w̃

t̃1 =
1
4ξ
− 3ξ

4
+
3
2

√
2w̃ξ (w > 0) (A.67)

t̃2 =
1
4ξ
− 3ξ

4
− 3
2

√
2w̃ξ (w > 0) (A.68)

Else if w < 0 we let w = −
√
u′w̃. Then

t̃1 =
1
4ξ
− 3ξ

4
− 3
2

√
2w̃ξ (w < 0) (A.69)

t̃2 =
1
4ξ
− 3ξ

4
+
3
2

√
2w̃ξ (w < 0) (A.70)

These functions describe how t̃ depends on ξ. The two arcs t̃1 and t̃2 correspond to the two
cases, (x1, y1) and (x2, y2) respectively. Since w̃ > 0 the curves are defined only for ξ > 0.
The critical points of these mappings, which are the bifurcation points of L, are given by

dt̃

dξ
= − 1

4ξ2
− 3
4
± 3
4

√
2w̃
ξ
= 0 (A.71)

which can also be summarized into

h(ξ) = 9ξ4 − 18w̃ξ3 + 6ξ2 + 1 = 0 (A.72)

In order to find the number of roots to this equation we differentiate and set the derivative

dh

dξ
= 36ξ3 − 54w̃ξ2 + 12ξ (A.73)
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to zero. This yields three roots

ξh,1 = 0 (A.74)

ξh,2 =
3
4

(
w̃ +

√
w̃2 − 16

27

)
(A.75)

ξh,3 =
3
4

(
w̃ −

√
w̃2 − 16

27

)
(A.76)

with

h(ξh,1) = 1 (A.77)

h(ξh,2) =
27w̃2

4
− 243w̃4

32
+

(
w̃

2
− 27w̃3

32

)√
81w̃2 − 48 (A.78)

h(ξh,2) =
27w̃2

4
− 243w̃4

32
−

(
w̃

2
− 27w̃3

32

)√
81w̃2 − 48 (A.79)

ξh,2 and ξh,3 only exist when w̃ ≥ 4
3
√

3
. Since h(ξ) is positive both when ξ tends to zero and

when ξ tends to infinity, the number of roots to the equation h = 0 is given by the signs of
h(ξh,2) and h(ξh,3). Setting h(ξh,2) = 0 and h(ξh,3) = 0 gives two equations, which can be
summarized into the relation

3w2

16
(−8 + 9w̃)(8 + 9w̃) = 0 (A.80)

One easily shows that

• if w̃ < 8/9 then both h(ξh,2) and h(ξh,3) will be positive and the equation h(ξ) = 0
will have no real roots. This means that t̃(ξ) has no critical points, and accordingly no
bifurcations can take place (for positive ξ). Therefore the type of critical points will
remain the same when the scale parameter t (or equivalently t̃) increases from −∞ to
∞.

In the limit cases ξ → 0+ and ξ → +∞ the behaviours of the critical points (x1, y1)
and (x2, y2) (according to (A.62)), t̃1 and t̃2 (from (A.67)) and the Hessian HL (see
(6.116)) are as stated in Table A.2. By continuity it follows that (x1, y1) and (x2, y2)
will always be saddle point on their trajectories, see also Figure 6.16 for an illustration.

ξ t1 x1 y1 (HL)(x1, y1) (AL)(x1, y1) type
+∞ −∞ 0+ +∞ − + saddle
0+ +∞ +∞ −w+ − + saddle
ξ t2 x2 y2 (HL)(x2, y2) (AL)(x2, y2) type
+∞ −∞ 0− −∞ − − saddle
0+ +∞ −∞ −w− − − saddle

Table A.2. The behaviour of the critical points (x1, y1) and (x2, y2) in the limit cases ξ → 0+ and
ξ → +∞. Observe that t decreases when ξ increases.
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• if w̃ > 8/9 then h(ξh,2) will be negative and h(ξh,3) positive. Thus, the equation
h(ξ) = 0 will have exactly two real roots, ξbifurc,1 and ξbifurc,2, delimited by ξh,2

ξbifurc,1 <
3
4

(
w̃ +

√
w̃2 − 16

27

)
< ξbifurc,2 (A.81)

At those points bifurcations take place. There are two different types of behaviours
depending on the sign of w.

– Consider first the case when w > 0. For the arc corresponding to (x2, y2) it then
holds that

dt̃2
dξ

= − 1
4ξ2

− 3
4
− 3
4

√
2w̃
ξ

(A.82)

This expression will always be strictly negative. Therefore, the two bifurcations
must occur on the arc with (x1, y1) where

dt̃1
dξ

= − 1
4ξ2

− 3
4
+
3
4

√
2w̃
ξ

(A.83)

When ξ tends to zero and when ξ tends to infinity this expression will be strictly
negative. Moreover, since we know that the equation dt̃1

dξ = 0 has exactly two

roots of multiplicity one, it follows that dt̃1
dξ will undergo the sign sequence

{−, 0,+, 0,−} when ξ increases. Hence, for small ξ and large ξ we have that
t̃1 decreases with ξ while in an intermediate interval ]ξbifurc,1, ξbifurc,2[ it holds
that t̃1 increases with ξ. Figure A.4 shows the graph of t̃1 and t̃2 as function of
ξ.

5. 10. 15. 20. 25. 30. xi

-20.

-15.

-10.

-5.

5.t

2.5 5. 7.5 10. 12.5 15. xi

0.5

1.

1.5

2.

2.5

3.

3.5

4.t

Figure A.4. t̃1 and t̃2 as functions of ξ in the case when w̃ > 8/9 (and w > 0). (a) Graph for
w = 2, ξ ∈ [0, 30]. (b) Enlargement of the region around the critical points for t̃1(ξ).

To analyse the sign of the Hessian we observe that HL will change sign for the
same1 values of ξ as dt̃

dξ .

(HL) = −4
(
3y(y + w) + x2

)
(A.84)

1This property can also be shown algebraically by inserting the expressions for (x1, y1) and (x2, y2) into
the expression for HL.
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When ξ tends to either 0 or ∞ the behaviour of the critical points will be the
same as in the case when w̃ < 8/9. However, when ξ increases from 0 to infinity
two sign changes for HL will occur on the arc given by (x1, y1). One verifies
that (HL)(x1, y1) will undergo the sign sequence {−, 0,+, 0,−} when ξ increases.
Moreover, since AL = 2(y + w) > 0 it follows that the critical point given by
(x1, y1) changes from a saddle into a minimum and then back into a saddle again
when ξ increases.
If we re-interpret this result in terms of increasing t (or equivalently increasing
t̃) it means that for small values of t there are two saddle points in L. Then, at
a certain scale a minimum-saddle pair is suddenly created. Later, the minimum
point and the other saddle point on the same trajectory come together and anni-
hilate, which means that at coarse scales there will again be two saddle points in
L. Interpreted in terms of blobs this corresponds to the creation of a dark blob,
which is then followed by an annihilation of the same dark blob (provided that
the saddle points involved in the process are both non-shared). Note, however,
that the minimum point will not have its delimiting saddle point on the same
saddle path throughout the process.

– On the other hand if w < 0 we have that

dt̃1
dξ

= − 1
4ξ2

− 3
4
− 3
4

√
2w̃
ξ

< 0 (A.85)

and the bifurcations must occur on the arc with (x2, y2) where

dt̃2
dξ

= − 1
4ξ2

− 3
4
+
3
4

√
2w̃
ξ

(A.86)

With similar arguments as above one shows that the Hessian will undergo the
sign sequence {−, 0,+, 0,−} when ξ increases. However, here AL = 2(y+w) will
be negative, which means that when ξ increases the critical point changes from
a saddle into a maximum and then back into saddle.
Interpreted in terms of increasing t this corresponds to the creation of maximum-
saddle pair with increasing scale followed by the annihilation of another maximum-
saddle pair, or equivalently, the creation of a bright blob followed by the annihi-
lation of a bright blob.

For the case with u > 0 the analog of (A.60) holds{
2η + u = 0
η/ξ − 3(−w ±

√
ηξ)2 − 2t = 0

(A.87)

which can be simplified to

u

2

(
3ξ′ − 1

ξ′

)
+ 3w2 + 2t = ±6w

√
uξ′

2
(A.88)

after observing that η = −u/2 and introducing ξ′ = −ξ. As ξ < 0 we have ξ′ > 0. We
observe that this equation is similar to (A.61) although the new version of (A.62) holds

(x1, y1) = (−
√

u′

2ξ
,−w +

√
u′ξ
2
) (A.89)
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(x2, y2) = (+

√
u′

2ξ
,−w −

√
u′ξ
2
) (A.90)

A positive sign of the ± operator in (A.88) corresponds to the (x1, y1) point and a negative
sign to the (x2, y2) point. Similar calculations as in the case when u < 0 show that bifurca-
tions occur only when w̃ > 8/9 and that the sign of w determines whether they take place
on (x1, y1) or (x2, y2). To summarize, for u �= 0 we have that an extremum-saddle pair can
be created if |w̃| > 8/9, that is if

|w| > w0 =
2
3

√
2|u|
3

(A.91)

If w > 0 the extremum point is a minimum and if w < 0 the extremum point is a maximum.

A.5.4. Derivation of pd(t) in the Discrete Case

We are to solve the integral

pd(t) =
∫ ∫

{η=(η1,η2):(η1≥0)∧(η2≥0)}
1√

(2π)2|C2D|
e−

1
2

ηTC−1
2Dηdη1dη2 (A.92)

where

C2D =

(
a0(t) a1(t)
a0(t) a1(t)

)
(A.93)

To simplify the notation a0(t) and a1(t) will from now on be denoted just by a0 and a1

respectively. Using (
a0 a1

a1 a0

)−1

=
1

a2
0 − a2

1

(
a0 −a1

−a1 a0

)
(A.94)

we obtain

pd(t) =
∫ ∫

{η=(η1,η2):(η1≥0)∧(η2≥0)}
1

2π
√

a2
0 − a2

1

e
− 1

2(a2
0
−a2

1
)
(a0η2

1+a0η2
2−2a1η1η2)

dη1dη2 (A.95)

Introducing
b0 =

a0

2(a2
0 − a2

1)
b1 =

a1

2(a2
0 − a2

1)
(A.96)

this expression can be written

pd(t) =
∫ ∫

{η=(η1 ,η2):(η1≥0)∧(η2≥0)}
1

2π
√

a2
0 − a2

1

e−(b0η2
1+b0η2

2−2b1η1η2)dη1dη2 (A.97)

Observing that the argument to the exponential function is

b0

(
η2
1 + η2

2 − 2
b1
b0

η1η2

)
= b0

(
(η1 −

b1
b0

η2)2 + (1− b21
b20
)η2

1

)
(A.98)

and introducing new variables ν1 and ν2 by

ν1 =
√

b0

√
1− b21

b20
η1 ν2 =

√
b0(η2 −

b1
b0

η1) (A.99)
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which leads to

dν1dν2 =
∣∣∣∣∂(ν1, ν2)
∂(η1, η2)

∣∣∣∣ dη1dη2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
√
b0

√
1− b21

b20
0

−
√
b0

b1
b0

√
b0

∣∣∣∣∣∣
∣∣∣∣∣∣ dη1dη2 =

√
b20 − b21dη1dη2 (A.100)

we have that pd(t) can be written

pd(t) =
1

2π
√

a2
0 − a2

1

√
b20 − b21

∫ ∫
Dν1ν2

e−(ν2
1+ν2

2 )dν1dν2 (A.101)

where Dν1ν2 is the region

Dν1ν2 = {(ν1, ν2) : (ν1 ≥ 0) ∧ (ν1 ≥ − a1√
a2

0 − a2
1

ν2)} (A.102)

Using

b20 − b21 =
a2

0

4(a2
0 − a2

1)2
− a2

1

4(a2
0 − a2

1)2
=

1
4(a2

0 − a2
1)

(A.103)

this expression can be simplified further to

pd(t) =
1
π

∫ ∫
Dν1ν2

e−(ν2
1+ν2

2 )dν1dν2 (A.104)

By introducing polar coordinates ν1 = r cosφ and ν2 = r sinφ we can rewrite the pd(t) as

pd(t) =
1
π

∫ ∞
r=0

∫ π/2

φ=φ1

e−r2
rdrdφ (A.105)

where

φ1 = arctan


− a1√

a2
0 − a2

1


 (A.106)

This integral is easily solved

pd(t) =
1
π

[
−e−r2

2

]∞
r=0

[φ]π/2
φ=φ1

= ... =
1
4
− φ1

2π
(A.107)

which shows that

pd(t) =
1
4
+

1
2π
arctan


 a1√

a2
0 − a2

1


 (A.108)

In the special case t = 0 we get

a0|t=0 = 2(T (0; 0)− T (1; 0)) = 2(1 − 0) = 2 (A.109)
a1|t=0 = T (0; 0)− 2T (1; 0) + T (2; 0) = 1− 0 + 0 = 1 (A.110)

and
pd(0) =

1
4
+

1
2π
arctan

(
1√
3

)
=
1
3

(A.111)
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A.5.5. Asymptotic Expression for pd(t) at Fine Scales

In order to obtain a Taylor expansions of T (0; t), T (1; t) and T (2; t) for small values of T
we first observe that every T (n; t) satisfies, see (2.78),

∂T

∂t
(n; t) =

1
2
(T (n− 1; t)− 2T (n; t) + T (n+ 1; t)) (A.112)

Moreover, the kernels are symmetric T (−n; t) = T (n; t) and we have T (n; 0) = δ(n) where
δ denotes the discrete delta function. From these relations one easily shows that the first
order derivatives of T (n; t) are

∂T

∂t
(0; 0) = 1

2(T (−1; 0)− 2T (0; 0) + T (1; 0)) = 1
2 (0− 2 · 1 + 0) = −1 (A.113)

∂T

∂t
(1; 0) = 1

2(T (0; 0)− 2T (1; 0) + T (2; 0)) = 1
2(1− 0 + 0) = 1

2 (A.114)

∂T

∂t
(n; 0) = 0 if |n| ≥ 2 (A.115)

and the second order ones

∂2T

∂t2
(0; 0) = 1

2 (
∂T
∂t (−1; 0)− 2∂T

∂t (0; 0) +
∂T
∂t (1; 0)) =

1
2 (

1
2 − 2 · (−1) + 1

2 ) =
3
2(A.116)

∂2T

∂t2
(1; 0) = 1

2 (
∂T
∂t (0; 0)− 2∂T

∂t (1; 0) +
∂T
∂t (2; 0)) =

1
2(−1− 2 · 1

2 + 0) = −1 (A.117)

∂2T

∂t2
(2; 0) = 1

2(
∂T
∂t (0; 0)− 2∂T

∂t (1; 0) +
∂T
∂t (2; 0)) =

1
2(

1
2 − 0 + 0) = 1

4 (A.118)

∂2T

∂t2
(n; 0) = 0 if |n| ≥ 3 (A.119)

which means that the second order Taylor expansions of T (0; t), T (1; t) and T (2; t) are

T (0; t) = 1− t+
3
4
t2 +O(t3) (A.120)

T (1; t) =
1
2
t− 1

2
t2 +O(t3) (A.121)

T (2; t) =
1
8
t2 +O(t3) (A.122)

By inserting these results into the expressions for a0(t) and a1(t) we get

a0(t) = 2(T (0; 2t)− T (1; 2t)) = 2− 6t+ 10t2 +O(t3) (A.123)
a1(t) = T (0; 2t)− 2T (1; 2t) + T (2; 2t) = 1− 4t+ 15

2 t2 +O(t3) (A.124)
a0(t) + a1(t) = 3− 10t+ 35

2 t2 +O(t3) (A.125)
a0(t)− a1(t) = 1− 2t+ 5

2 t
2 +O(t3) (A.126)

(a0(t))2 − (a1(t))2 = (a0(t) + a1(t))(a0(t)− a1(t)) = 3− 16t+ 45t2 +O(t3) (A.127)

and
a1(t)√

(a0(t))2 − (a1(t))2
=

1√
3

1− 4t+ 15
2 t2 +O(t3)√

1− 16
3 t+ 45

3 t3 +O(t3)
(A.128)
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Using the well-known MacLaurin expansion

(1 + x)−
1
2 = 1− 1

2
x+

3
8
x2 +O(x3) (A.129)

this expression can be simplified to

a1(t)√
(a0(t))2 − (a1(t))2

=
1√
3
(1− 4

3
t+O(t3)) (A.130)

By differentiation one easily shows that the second order MacLaurin expansion of arctan(a+
x) is

arctan(a+ x) = arctan(a) +
1

1 + a2
x− a

(1 + a2)2
x2 +O(x3) (A.131)

In the special case a = 1√
3
this implies

arctan(
1√
3
+ x) =

π

6
+
3
4
x− 3

√
3

16
x2 +O(x3) (A.132)

and
arctan(

a1(t)√
(a0(t))2 − (a1(t))2

) =
π

6
− 1√

3
t+

1
3
√
3
t2 +O(t3) (A.133)

By inserting this result into the expression for pd(t) we obtain

pd(t) =
1
4
+

1
2π
arctan(

a1(t)√
(a0(t))2 − (a1(t))2

) =
1
3
− 1
2
√
3π

t+
1

6
√
3π

t2 +O(t3) (A.134)

which means that we can write down the MacLaurin expansion for the effective scale2

τ(t) = log
(
pd(0)
pd(t)

)
= ... = − log

(
1−

√
3

2π
t+

1
2
√
3π

t2 +O(t3)

)
(A.135)

Using

log(1 + x) = x− 1
2
x2 +O(x3) (A.136)

this expression can be simplified to

τ(t) =
√
3

2π
t+

(
1

2
√
3π

+
3
8π2

)
t2 +O(t3) (A.137)

A.5.6. Asymptotic Expression for pd(t) at Coarse Scales

At coarse scales it holds that a1(t) < 0 (see below). In that case it is convenient to use the
relation

arctan(x) + arctan(
1
x
) = −π

2
(x < 0) (A.138)

for rewriting the expression for

pd(t) =
1
4
+

1
2π
arctan

(
a1(t)√

(a0(t))2 − (a1(t))2

)
(A.139)

2We have selected values of the constants A and B such that t = 0 corresponds to τ = 0 and the coefficient
of the logarithmic term is one. Above it has been shown that pd(0) = 1

3
.
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into

pd(t) =
1
2π
arctan

(√
(a0(t))2 − (a1(t))2

−a1(t)

)
(a1(t) < 0) (A.140)

According to Abramowitz and Stegun [Abr64] (9.7.1) for fixed n and large t it holds that

In(t) =
et

√
2πt

(
1− 4n2 − 1

8t
+
(4n2 − 1)(4n2 − 9)

2!(8t)2
− (4n2 − 1)(4n2 − 9)(4n2 − 25)

3!(8t)3
+ ...

)

(A.141)
which implies that

T (0; t) = e−tI0(t) =
1√
2πt

(
1 +

1
8t
+

9
128t2

+
225
3072t3

+O(
1
t4
)
)

(A.142)

T (1; t) = e−tI1(t) =
1√
2πt

(
1− 3

8t
− 15
128t2

− 315
3072t3

+O(
1
t4
)
)

(A.143)

T (2; t) = e−tI2(t) =
1√
2πt

(
1− 15

8t
+

105
128t2

+
945
3072t3

+O(
1
t4
)
)

(A.144)

and

T (0; 2t) = e−2tI0(2t) =
1√
4πt

(
1 +

1
16t

+
9

512t2
+

225
24576t3

+O(
1
t4
)
)

(A.145)

T (1; 2t) = e−2tI1(2t) =
1√
4πt

(
1− 3

16t
− 15
512t2

− 315
24576t3

+O(
1
t4
)
)

(A.146)

T (2; 2t) = e−2tI2(2t) =
1√
4πt

(
1− 15

16t
+

105
512t2

+
945

24576t3
+O(

1
t4
)
)

(A.147)

From these expressions one easily concludes that

a0(t) = 2(T (0; 2t)− T (1; 2t)) = 1√
4πt

(
1
2t +

3
32t2 +

45
1024t3 +O( 1

t4 )
)

(A.148)

a1(t) = T (0; 2t)− 2T (1; 2t) + T (2; 2t) = 1√
4πt

(
− 1

2t +
9

32t2
+ 75

1024t3
+O( 1

t4
)
)
< 0(A.149)

a0(t) + a1(t) = 1√
4πt8t2

(
3 + 15

16t +O( 1
t2

)
(A.150)

a0(t)− a1(t) = 1√
4πtt

(
1− 3

16t +O( 1
t2

)
(A.151)

(a0(t))2 − (a1(t))2 = 3
32πt4

(
1 + 1

8t +O( 1
t2 )

)
(A.152)

which in turn leads to
√
(a0(t))2 − (a1(t))2 =

√
3
2π

1
4t2

(
1 +

1
16t

+O(
1
t2
)
)

(A.153)

(a1(t))
−1 = −2t

√
4πt

(
1 +

9
16t

+O(
1
t2
)
)

(A.154)

and √
(a0(t))2 − (a1(t))2

a1(t)
= −

√
3
2
1√
t

(
1 +

5
8t
+O(

1
t2
)
)

< 0 (A.155)

which gives

pd(t) =
1
2π
arctan

(√
3
2
1√
t

(
1 +

5
8t
+O(

1
t2
)
))

(A.156)
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From the MacLaurin expansion

arctan(x) = x− 1
3
x3 +O(x5) (A.157)

we finally get

pd(t) =
1
2π

√
3
2
1√
t

(
1 +

1
8t
+O(

1
t2
)
)

(A.158)

which asymptotically agrees with result from the previous continuous analysis.

A.6. From Chapter 7

A.6.1. Algorithmic Performance

In order to give a coarse estimate of the complexity of the algorithm it can be mentioned that
on a Sun4 computer (Sparc Station 1) our non-optimized implementation of the grey-level
blob detection algorithm (handling non-generic cases) takes about 5 seconds for an integer
256 ∗ 256 image and about 9 seconds for a floating point 256 ∗ 256 image. There are several
optimizations that could be made if it is known for sure that the algorithm only needs to
handle generic signals. The time required to compute the full scale-space representation
(covering the scale range up to t = 1024) is about 30 minutes with the smoothing operation
implemented as floating point convolutions in the spatial domain (with the truncation error
ε set to 0.0005). These numbers were valid at the time of implementation (1989).

A.6.2. Bifurcation Statistics

The number of registered bifurcations can of course vary substantially from one image to
another. However, in order to give a coarse indication of how many blob events can be
expected to take place, we can mention that for a 256 ∗ 256 image treated in the scale
interval t ∈ [1, 1024] the following numbers can serve as guidelines:

• blob annihilations: 1000 (250-2000)

• blob merges: 300 (100-800)

• blob splits: 50 (20-100)

• blob creations: 30 (20-100)

A.6.3. Data Structure

In order to give a rough idea of what information can be available in a data structure
representing the scale-space primal sketch, we briefly describe what kind of objects could
be defined in an actual implementation of this concept and also what types of data can be
stored in those, see also Figure 5.5.4.

grey-level blob :
polarity: bright or dark
scale level: pointer
extremum point: pointer
delimiting saddle point: pointer (Observe that in degenerate situations the extent of
a grey-level blob could in fact be delimited by more than one saddle point.)
support region: pointer
grey-level blob volume
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extremum point :
position: pixel coordinates (possibly several pixels for degenerate signals)
grey-level value
grey-level blob: pointer to the grey-level blob to which this saddle point serves as the
seed.

saddle point :
position: pixel coordinates (possibly several pixels for degenerate signals)
grey-level value
grey-level blobs: pointers to the grey-level blobs to which this saddle point serves as a
delimiting saddle point.

support region :
extreme coordinates: the minimum and maximum coordinate values along the x- and
y-axes as well as the skewed 45-degree directions x′ and y′.
blob area: number of pixels in the region.
first order moments: giving the center of gravity.
second order moments: allowing for an ellipse approximation giving the major and
minor axes, which in turn give the orientation of the blob.
pixel representation: can be encoded either as a bit map in a blob image with label
data or in a more compact form as e.g. run-length coding row by row.
boundary flag: telling whether the region belongs to the image boundary or not.

scale-space blob :
polarity: bright or dark
significance: normalized scale-space blob volume
bifurcation event at the appearance scale: pointer
bifurcation event at the disappearance scale: pointer
grey-level blobs: pointers to all the grey-level blobs the scale-space blob consists of.
appropriate scale level: pointer
grey-level blob at the appropriate scale level: pointer
boundary flag: telling whether there is a grey-level blobs belonging to the image bound-
ary or not.

bifurcation event :
type of bifurcation: can be either

• one of the generic bifurcation situations: annihilation, merge, split, creation
• a non-generic complex bifurcation, with more than three scale-space blobs in-
volved, that cannot be resolved into primitive transformations of the previously
listed types

• a flag indicating that the minimum or the maximum scale of the analysis has
been reached

participants from above: pointers to the scale-space blobs at the coarser scale that are
involved in the bifurcation
participants from below: pointers to the scale-space blobs at the finer scale that are
involved in the bifurcation
spatial position
bifurcation scale
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scale level :
scale value
smoothed grey-level image: pointer
bright blob image: with all the bright grey-level blobs coded in a label image
dark blob image: with all the dark grey-level blobs coded in a label image
bright grey-level blobs: pointers to all the bright grey-level blobs at this scale
dark grey-level blobs: pointers to all the dark grey-level blobs at this scale
next coarser scale level: pointer
next finer scale level: pointer

Finally, it is convenient to create an object that can serve as a handle to all these subobjects:

scale-space primal sketch :
scale levels: it can be useful to represent all the scale levels accessed by the refinement
algorithm both as a linked list and as a refinement tree.
bright scale-space blobs: pointers to all the bright scale-space blobs.
dark scale-space blobs: pointers to all the scale-space blobs.
bright bifurcations: pointers to all the bifurcations in which bright scale-space blobs
are involved.
dark bifurcations: pointers to all the bifurcations in which dark scale-space blobs are
involved.

Of course, depending on the actual application it will in some situations be computationally
more efficient not to compute all this information when building the data structure and due
to memory considerations, pieces of information may have to be thrown away during the
process. For instance, regarding grey-level blobs it is in general sufficient to save only those
blobs who correspond to the appropriate scale of a scale-space blob.

A.7. Test Images

In order to give a more detailed reproduction, Figure A.5 and Figure A.6 show larger size
copies of some of the images used for the experiments in the thesis.
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Figure A.5. Larger size copies of some of the original grey-level images used for the experiments.
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Figure A.6. Larger size copies of some of the original grey-level images used for the experiments.
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Figure A.7. Larger size copies of some of the original grey-level images used for the experiments.
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