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Dense Scale Selection Over Space, Time, and Space-Time∗

Tony Lindeberg†

Abstract. Scale selection methods based on local extrema over scale of scale-normalized derivatives have
been primarily developed to be applied sparsely—at image points where the magnitude of a scale-
normalized differential expression additionally assumes local extrema over the domain where the
data are defined. This paper presents a methodology for performing dense scale selection, so that
hypotheses about local characteristic scales in images, temporal signals, and video can be computed
at every image point and every time moment. A critical problem when designing mechanisms for
dense scale selection is that the scale at which scale-normalized differential entities assume local
extrema over scale can be strongly dependent on the local order of the locally dominant differential
structure. To address this problem, we propose a methodology where local extrema over scale are
detected of a quasi quadrature measure involving scale-space derivatives up to order two and pro-
pose two independent mechanisms to reduce the phase dependency of the local scale estimates by
(i) introducing a second layer of postsmoothing prior to the detection of local extrema over scale,
and (ii) performing local phase compensation based on a model of the phase dependency of the
local scale estimates depending on the relative strengths between first- and second-order differential
structures. This general methodology is applied over three types of domains: (i) spatial images,
(ii) temporal signals, and (iii) spatio-temporal video. Experiments demonstrate that the proposed
methodology leads to intuitively reasonable results with local scale estimates that reflect variations
in the characteristic scales of locally dominant structures over space and time.
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1. Introduction. The notion of scale is essential when computing features from image
data in biological or artificial visual perception. Results from biological research regarding
the early visual areas in the lateral geniculate nucleus (LGN) and the primary visual cortex
(V1) (Hubel and Wiesel [19, 20, 21], DeAngelis et al. [12, 11]) as well as theoretical results
from normative theory of visual operations (Lindeberg [39, 43]) based on scale-space theory
(Iijima [22]; Witkin [67]; Koenderink [26, 27]; Koenderink and van Doorn [28, 30]; Lindeberg
[33, 38]; Florack [14]; Sporring et al. [59]; Weickert, Ishikawa, and Imiya [66]; ter Haar Romeny
et al. [62, 61]) state that local image measurements in terms of receptive fields constitute both
a natural and an efficient model for expressing early visual operations.

When applying such spatial or spatio-temporal receptive fields at multiple spatial and
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temporal scales, a basic observation is that the responses that are obtained from the receptive
field operators can be strongly dependent on the scale levels at which they are applied. Thus,
one may raise the question of whether it is possible from the data itself to generate hypotheses
about local appropriate scales in the image data, so as to adapt subsequent processing to the
local image structures. Initially, this problem could possibly be seen as intractable. Would
it at all be possible to generate hypotheses about interest scale levels before recognizing the
objects we are interested in or defining the specific purpose for which the scale estimates are to
be used? Research of Lindeberg [33, 35, 34], as well as follow-up work by Bretzner et al. [5, 4];
Chomat et al. [8]; Lowe [49]; Mikolajczyk and Schmid [51]; Lazebnik, Schmid, and Ponce [31];
Rothganger et al. [56]; Bay et al. [2]; Tuytelaars and Mikolajczyk [64]; Negre et al. [52]; and
Lindeberg [40, 42], has, however, demonstrated that such an approach is feasible (see [37, 41]
for overviews). A general framework for automatic selection of local characteristic scales can
be formulated based on the detection of local extrema over scale of scale-normalized feature
responses. Specifically, such local scale estimates transform in a scale-covariant way under
spatial scaling transformations of the image domain, which is a highly desirable property of a
scale selection mechanism, since it implies that the scale estimates will automatically follow
local scale variations in the image data. Corresponding local scale selection mechanisms can
also be expressed over temporal and spatio-temporal domains (Lindeberg [46, 44, 45]).

A common property of most successful applications of scale selection to computer vision
applications, however, is that the scale selection method is applied sparsely over the image do-
main, most commonly at interest points. If one is attempting to perform dense scale selection
based on the two most common rotationally invariant differential invariants for interest point
detection, the spatial Laplacian, or the determinant of the spatial Hessian, then the results of
scale selection will usually not be stable or useful far away from the interest points.

To address this problem, an initial mechanism for dense scale selection was proposed in
Lindeberg [35] based on the detection of local extrema over scale of a spatial quasi quadrature
measure that constitutes a rotationally invariant measure of the amount of energy in the first-
and second-order differential structures of a spatial image. Modifications of this approach were
used by Almansa and Lindeberg [1] for estimating the local scale of fingerprint patterns for
fingerprint recognition and were specifically shown to improve the quality of minutiae extrac-
tion. Related methods for scale selection have been developed by detecting peaks of weighted
entropy measures or Lyapunov functionals over scale (Kadir and Brady [24]; Sporring, Colios,
and Trahanias [58]), by minimizing normalized error measures over scale (Lindeberg [36]),
by determining local scales for variable bandwidth mean shift from the scale bandwidth that
maximizes the norm of the normalized mean shift vector (Comaniciu, Ramesh, and Meer
[10]), by detecting maxima of steered energy responses over scales (Ng and Bharath [53]), by
comparing reliability measures from statistical classifiers for texture analysis at multiple scales
(Kang, Morooka, and Nagahashi [25]), by measuring the size variations of regions to which
pixels belong under total variation (TV) flow (Brox and Weickert [6]), by measuring local
oscillations in signals (Jones and Le [23]), and by computing image segmentations from the
scales at which a supervised classifier delivers class labels with the highest reliability measure
(Loog et al. [48, 32]). Specifically, a more algorithmic way of generating scale estimates for
image matching away from the locations of interest points was recently proposed by Hass-
ner et al. [18] and Tau and Hassner [60] by considering subspaces generated by local image
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descriptors computed over multiple scales to improve the performance of stereo matching.
Closely related issues of estimating dominant scales in signals have been studied in wavelet

theory and local frequency analysis (Cohen [9]). For example, a local Gaussian-weighted
windowed Fourier transform of a 1-D signal corresponds to filtering with Gabor functions [15].
Mallat and Hwang [50] proposed to characterize singularities in terms of Lipshitz exponents
and detected maxima in the wavelet transform. Methods based purely on wavelets and/or
local frequency analysis have, however, been less developed for 2-D image data or 2+1-D video
data.

The purpose of this article is to perform a deeper study into the problem of dense scale
selection for images and video. A basic problem that can be observed if performing dense scale
selection based on the basic quasi quadrature measure in [35] is that the local scale estimates
can be strongly phase dependent. If applied to a sine wave in one or two dimensions, the scale
estimates can be biased depending on the relative strength of first-order vs. second-order
differential structure. To reduce this phase dependency, we will consider two independent
mechanisms in terms of (i) spatial smoothing and (ii) local phase compensation. We will
specifically analyze the properties of these mechanisms, determine free parameters in the
corresponding methods, and show that these mechanisms may substantially reduce the local
phase dependency. We will also generalize this dense scale selection mechanism to the spatio-
temporal domain, to perform simultaneous dense scale selection of both local spatial and
temporal scales. Compared to wavelet-based approaches for local frequency analysis, the
methods that we propose are invariant to rotations over the spatial domain. Additionally,
we prove that both the spatial and the temporal scale estimates are provably covariant under
independent scaling transformations of the spatial and the temporal domains, implying that
the local scale estimates are guaranteed to automatically follow local variations in the spatial
extent and the temporal duration of spatial, temporal, or spatio-temporal image structures,
which is a highly desirable property of a scale selection mechanism. Experiments on different
types of spatial images, temporal signals, and spatio-temporal video demonstrate that the
proposed theory leads to dense spatial and temporal scale maps with intuitively reasonable
properties.

2. Dense spatial scale selection over a purely spatial domain. The context we con-
sider is a spatial scale-space representation L(x, y; s) defined from any 2-D image f(x, y) by
convolution with Gaussian kernels

(1) g(x, y; s) =
1

2πs
e−(x2+y2)/2s

at different spatial scales s (see [22, 67, 26, 28, 30, 33, 38, 14, 59, 66, 61]),

(2) L(·, ·; s) = g(·, ·; s) ∗ f(·, ·),

and with γ-normalized derivatives defined at any scale s according to (see Lindeberg [35])

(3) ∂ξ = sγs/2 ∂x, ∂η = sγs/2 ∂y.

If attempting to perform dense local scale selection in the possibly most straightforward
manner, by detecting local extrema of the scale-normalized Laplacian ∇2

normL = s (Lxx+Lyy)
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or the scale-normalized determinant of the Hessian detHnormL = s2 (LxxLyy −L2
xy) at points

that are not interest points, one will soon find that the resulting scale estimates will be
strongly dependent on the points at which they are computed. The reason for this is that the
underlying interest point detectors primarily respond to very specific aspects of the second-
order differential structure; see Figure 1 for an illustration. Scale selection by the scale-
normalized Laplacian or the scale-normalized determinant of the Hessian operators is therefore
primarily intended for image structures that lead to strong responses for these differential
operators, such as spatial interest points (see Lindeberg [35, 40, 42]).

Original image. |∇2L|
√
|detHL|

√
Q(x,y),1L

√
Q(x,y),2L

√
Q(x,y)L

|∇2L|
√
|detHL|

√
Q(x,y),1L

√
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√
Q(x,y)L

Figure 1. The result of computing the unsmoothed quasi quadrature measure Q(x,y),normL (top row) and the
postsmoothed quasi quadrature entity Q(x,y),normL (bottom row) with their underlying first- and second-order

components at scale t = 16 for Cs = 1/
√

2. For comparison, the Laplacian and the determinant of the Hessian
responses (top row) as well as the result of applying spatial smoothing to these differential operators for relative
postsmoothing scale c = 1 (bottom row) are also shown at the same scale to illustrate how the Laplacian and the
determinant of the Hessian responses will be limited to specific aspects of local image structures and thereby the
limitations of using the Laplacian or the determinant of the Hessian operators only for dense scale selection.
(Image size: 480× 640.)

To perform dense scale selection, it is therefore more natural to seek a differential expres-
sion that responds to wider classes of image structures, comprising both first- and second-order
differential structures, and without bias toward primarily specific aspects of the second-order
differential image structure.

2.1. A spatial quasi quadrature measure. By combining the rotationally invariant dif-
ferential invariants (i) the gradient magnitude

(4) |∇L|2 = L2
x + L2

y

as a measure of the amount of first-order structure, and (ii) the Frobenius norm of the Hessian
matrix

(5) ‖HL‖2F = L2
xx + 2L2

xy + L2
yy
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as a measure of the amount of second-order structure, we will consider extensions of the
following quasi quadrature measure (Lindeberg [35, eq. (63)]):

Q(x,y),normL = s (L2
x + L2

y) + Cs s
2 (L2

xx + 2L2
xy + L2

yy)(6)

based on scale-normalized derivatives for γs = 1. This differential entity can be seen as an
approximation of the notion of a quadrature pair of an odd and an even filter (Gabor [15])
as more traditionally formulated based on a Hilbert transform (Bracewell [3, pp. 267–272])
and then extended to 2-D image space, while being confined within the family of differential
expressions based on Gaussian derivatives and additionally being rotationally invariant.

If complemented by spatial integration, the components of this quasi quadrature measure
are specifically related to the following class of energy measures over the frequency domain
(Lindeberg [35, App. A.3]) (here expressed in terms of multi-index notation for the partial
derivatives xα = xα1

1 . . . xαDD with |α| = α1 + · · ·+ αD):

(7) Em,γ−norm =

∫
x∈RD

∑
|α|=m

smγs L2
xα dx =

smγs

(2π)D

∫
ω∈RD

|ω|2m ĝ2(ω; s) dω.

For the specific choice of Cs = 1/2, the quasi quadrature measure (6) coincides with the
proposal by Loog [47] and Griffin [16] to define a metric of the N -jet in scale space.

2.1.1. Complementary scale normalization. To allow for richer degrees of freedom re-
garding the scale selection properties, we allow for complementary scale normalization of the
form

Q(x,y),Γ−normL =
s (L2

x + L2
y) + Cs s

2 (L2
xx + 2L2

xy + L2
yy)

sΓs
,(8)

which is still within the class of scale-normalized differential expressions as obtained from
γ-normalized derivatives

Q(x,y),γ−normL = sγ1 (L2
x + L2

y) + Cs s
2γ2 (L2

xx + 2L2
xy + L2

yy)(9)

for γ1 = 1− Γs and γ2 = 1− Γs
2 . A major motivation for introducing the parameter Γs in (8)

is that if we were to use Γs = 0, then it can be shown (Lindeberg [34]) that the selected scale
would be infinite for any diffuse step edge, which is not a desirable property for a dense scale
selection mechanism, while if we use a value of Γs > 0, the selected scale for a diffuse edge
will be finite [34, eq. (23)]:

(10) ŝ =
γ1

1− γ1
s0 =

1− Γs
Γs

s0.

Concerning the choice of Γs, it can be observed that setting Γs = 1/2 leads to γ1 = 1/2 and
γ2 = 3/4, which are the values derived for edge detection and ridge detection, respectively, to
make the scale estimate for a diffuse step edge reflect the diffuseness of the edge and to make
the scale estimate for a Gaussian ridge reflect the width of the ridge [34]. For blob detection
based on second-order derivatives, γs = 1 corresponding to Γs = 0 is, on the other hand, the
preferred choice to ensure that the scale level for a rotationally symmetric or affine deformed
Gaussian blob reflects the scale of the blob [35, 40]. From these indications, we could expect
to choose the complementary scale normalization parameter Γs in the range Γs ∈]0, 1

2 ].
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2.1.2. Complementary spatial postsmoothing. While the combination of first- and
second-order information in (6) and (8) will decrease the spatial dependency of the differen-
tial expression compared to using only either first- or second-order information, the resulting
differential expressions will not produce a constant scale estimate for a sine wave, unless the
computations are performed at a scale level perfectly adapted to the wavelength of the signal.
To reduce the local ripples caused by this phase dependency , we introduce complementary
smoothing of the quadrature entity Q(x,y),Γ−norm using an integration scale parameter sint
proportional to the local scale parameter s used for computing the spatial derivatives

(11) Q(x,y),Γ−normL = Esint(Q(x,y),Γ−norm),

where Esint denotes a Gaussian averaging operation with scale parameter sint = c2 s. We also
define the first- and second-order components of this entity as

Q(x,y),1,Γ−normL = s−Γs Esint(|∇L|2),(12)

Q(x,y),2,Γ−normL = Cs s
−Γs Esint(‖HL‖2F ).(13)

Figure 1 shows the result of computing these quasi quadrature measures as well as their
underlying first- and second-order components for a grey-level image that contains image
textures at different scales. As can be seen from the results, (i) the quasi quadrature is
less sensitive to the spatial variability in a dense textured image pattern compared to the
Laplacian or the determinant of the Hessian operators, and (ii) the postsmoothing operation
further decreases the sensitivity.

2.1.3. Basic scale selection method. A basic method for dense scale selection therefore
consists of detecting local extrema over scale of either the pointwise scale-normalized quasi
quadrature entity (8)

(14) ŝQL = argmaxlocals>0Q(x,y),Γ−normL

or the corresponding postsmoothed entity (11)

(15) ŝQL = argmaxlocals>0Q(x,y),Γ−normL.

Figure 2 illustrates the effects of these operations for three different images of the same poster
taken at different distances between the poster and the camera. As can be seen from the
graphs, the scale values at which the local extrema over scale are assumed do adapt to the
size variations in the image domain and are assumed at coarser scales relative to the fixed
image resolution as the camera approaches the object.

2.2. Scale selection properties. When applying this methodology in practice, there are
a number of additional issues that need to be considered, which we will illustrate by closed
form theoretical analysis using idealized image models representing a dense texture pattern
or sparse image features, respectively.
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Figure 2. Scale-space signatures computed at corresponding central points for three images of a poster
taken at different distances. Each scale-space signature shows the variation over scale of the scale-normalized
quasi quadrature measure at the center as the function of effective scale approximated by seff = log2(s0 + s)
for s0 = 1/8. Middle column: the unsmoothed quasi quadrature measure Q(x,y),Γ−normL using Γs = 1/4. Right
column: the postsmoothed quasi quadrature measure Q(x,y),Γ−normL using Γs = 1/4 and c = 1. Note how
the scale levels at which the local maxima over scale are assumed to follow the size variations in the image
domain caused by varying the distance between the camera and the poster. All results have been computed using
Cs = 1/

√
(1− Γs)(2− Γs). (Scale range: s ∈ [0.1, 8192]. Image size: 480× 640 pixels.)

2.2.1. Two-dimensional sine wave. For a two-dimensional sine wave

(16) f(x, y) = sin(ω0x) + sin(ω0y),

the scale-space representation can be computed in closed form as

(17) L(x, y; t) = e−ω
2
0s/2(sin(ω0x) + sin(ω0y)).

If we disregard the spatial postsmoothing step by setting the proportionality parameter c
between the local scale parameter and the integration scale parameter to c = 0, then the
quasi quadrature entity assumes the form

Q(x,y),Γ−normL =ω2
0e
−ω2

0ss1−Γs

×
(
cos2(ω0x) + cos2(ω0y) + Csω

2
0s
(
sin2(ω0x) + sin2(ω0y)

))
.(18)

By differentiating this expression with respect to scale s, it follows that for the image points
(x, y) = (mπ/ω0, nπ/ω0) at which only the first-order component

(19) Q(x,y),1,Γ−normL =
|∇normL|2

sΓs
=
s (L2

x + L2
y)

sΓs
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responds, the local extrema over scales are assumed at

(20) ŝ1 =
1− Γs
ω2

0

.

Correspondingly, for the spatial positions (x, y) = ((π/2 + mπ)/ω0, (π/2 + nπ)/ω0) at which
only the second-order component

(21) Q(x,y),2,Γ−normL =
Cs ‖HnormL‖2F

sΓs
=
Cs s

2 (L2
xx + 2L2

xy + L2
yy)

sΓs

responds, the local extrema are assumed at

(22) ŝ2 =
2− Γs
ω2

0

.

In this respect, the combination of first- and second-order derivatives in the quasi quadrature
entity will lead to a strong phase dependency in the scale estimates.

At the intermediate points (x, y) = ((π/4+mπ/2)/ω0, (π/4+nπ/2)/ω0), the scale estimate
is given by

(23) ŝintermed =

√
C2
s (Γs − 2)2 − 2CsΓs + 1− Cs(Γs − 2)− 1

2Csω2
0

.

If we require the scale estimates at the intermediate points to be equal to the geometric
average of the extreme cases

(24) ŝintermed =
√
ŝ1 ŝ2 =

√
(1− Γs)(2− Γs)

ω2
0

,

then this implies that Cs should be chosen as

(25) Cs =
1

2− Γs
.

Alternatively, if we determine the weighting parameter Cs such that the relative strengths
of the first- and second-order components become equal at the midpoints (x, y) = (π/4 +
mπ/2)/ω0, π/4 + mπ/2)/ω0) between the extreme points for the scale corresponding to the
geometric average

√
ŝ1 ŝ2 of the extreme values

(26) Q(x,y),1,Γ−normL
∣∣
x= π

4ω0
,y= π

4ω0
,s=
√
ŝ1 ŝ2

= Q(x,y),2,Γ−normL
∣∣
x= π

4ω0
,y= π

4ω0
,s=
√
ŝ1 ŝ2

,

then this implies that the relative weighting factor Cs between first- and second-order deriva-
tive responses should be chosen as

(27) Cs =
1√

(1− Γs)(2− Γs)
.
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2.3. Phase-compensated scale estimate. Given this understanding of how the scale es-
timates depend on the local phase of a sine wave, we can define a phase-compensated scale
estimate according to either

ŝQL,comp =

√
(1− Γs)(2− Γs)(

Q(x,y),1,Γ−normL+Q(x,y),2,Γ−normL
)

×
(Q(x,y),1,Γ−normL

1− Γs
+
Q(x,y),2,Γ−normL

2− Γs

)
ŝQL(28)

or

ŝQL,comp

=

√
(1− Γs)(2− Γs)

(1− Γs)

Q(x,y),1,Γ−normL
Q(x,y),1,Γ−normL+Q(x,y),2,Γ−normL (2− Γs)

Q(x,y),2,Γ−normL
Q(x,y),1,Γ−normL+Q(x,y),2,Γ−normL

ŝQL.

(29)

These expressions are defined to be equal to the geometric average

(30) ŝgeom =
√
ŝ1 ŝ2 =

√
(1− Γs)(2− Γs)

ω2
0

of the extreme values when only one of the first- and second-order components in QΓ−normL
responds and using blending of these responses by transfinite interpolation [13] using the
relative strengths of the first- and second-order responses, respectively, to achieve a much
lower variability of the scale estimates in between (see Figure 3).

The motivation for the definitions of (28) and (29) is to express interpolation functions
on a simple form that compensate for the phase dependency of the scale estimates depending
on the relative strengths of the first- and second-order components. When only the first-
order component responds and the second-order component is zero, the scale estimate is
ŝ1 = (1 − Γs)/ω

2
0. When only the second-order component responds and the first-order

component is zero, the scale estimate is ŝ2 = (2− Γs)/ω
2
0.

In the first expression (28), the ratios w1 = Q(x,y),1,Γ−normL/(Q(x,y),1,Γ−normL+
Q(x,y),2,Γ−norm) and w2 = Q(x,y),2,Γ−normL/(Q(x,y),1,Γ−normL + Q(x,y),2,Γ−norm), which are
positive and sum to one, w1 + w2 = 1, are used as relative weights in a linear convex combi-
nation

(31) ŝcomp = sgeom

(
w1

ŝ

ŝ1
+ w2

ŝ

ŝ2

)
defined such that ŝcomp = sgeom if either (w1 = 1, w2 = 0, ŝ = ŝ1) or (w1 = 0, w2 = 1, ŝ = ŝ2).
In the second expression (29), the same ratios w1 and w2 are used as relative weights in a
geometric convex combination

(32) ŝcomp = sgeom

(
ŝ

ŝ1

)w1
(
ŝ

ŝ2

)w2

,
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Dense scale selection without postsmoothing.
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Phase-compensated dense scale selection without postsmoothing.
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Dense scale selection with postsmoothing.
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Figure 3. Spatial variability of the local scale estimates in units of σs =
√
s for a 1-D sine wave f(x) =

sinω0x with angular frequency ω0 = 1. Top row: regular scale estimates without postsmoothing according
to (14). Second row: phase-compensated scale estimates on a logarithmic scale and without postsmoothing
according to (29). Third, fourth, and bottom rows: scale estimates computed from local extrema over scale
of the postsmoothed quasi quadrature entity Q(x,y),Γ−normL according to (15) for relative postsmoothing scales

c = 1/
√

2, c = 1, and c =
√

2, respectively. (All results have been computed using Cs = 1/
√

(1− Γs)(2− Γs).)
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again defined such that ŝcomp = sgeom if either (w1 = 1, w2 = 0, ŝ = ŝ1) or (w1 = 0, w2 =
1, ŝ = ŝ2).

For the first expression (28), the blending is thus performed on a linear scale with respect
to the spatial scale parameter, whereas in the second expression (29) the blending is performed
on a more natural logarithmic scale.

From these spatial scale estimates, we can in turn estimate the temporal wavelength of
the sine wave according to

(33) λ̂ =
2π
√
ŝQL,comp

4
√

(1− Γs)(2− Γs)
.

Although the interpolation functions (28) and (29) in combination with (33) will not lead to
exact wavelength estimates for all phases of a sine wave, these functions compensate for the
gross behavior of the phase dependency, which substantially decreases the otherwise much
higher spatial variability in the spatial scale estimates.

2.4. Scale calibration. In sections 2.2–2.3, as well as in a more detailed analysis in the
supplementary material, it is shown how the scale estimates ŝQL and ŝQL according to (14)
and (15) are influenced by the parameters Γs, c, and Cs in the quasi quadrature measure.
To decouple this dependency from the later stage visual modules for which the dense scale
selection methodology is intended to be used as an initial preprocessing stage, we introduce
the notion of scale calibration, which implies that the scale estimates are to be multiplied by
uniform scaling factors such that they are either

(i) equal to the scale estimate ŝ = s0 obtained by applying the regular scale-normalized
Laplacian ∇2

normL = s (Lxx+Lyy) or the scale-normalized determinant of the Hessian
detHnormL = s2 (LxxLyy−L2

xy) at the center of a Gaussian blob of any spatial extent
s0, or

(ii) equal to the scale estimate ŝ =
√

2/ω2
0 corresponding to the geometric average of the

scale estimates obtained for a sine wave of any angular frequency ω0 when Γs = 0.
The first method, which aims at similarity with previous scale selection methods at sparse
image features, will be referred to as Gaussian scale calibration, whereas the second method,
which aims at similarity for dense texture patterns, will be referred to as sine wave scale
calibration.

For the case of either (i) no phase compensation and no postsmoothing, or (ii) phase
compensation without postsmoothing, the necessary calibration factors can be obtained from
the theoretical results in section 2.2. Ways of deriving the scale calibration factors when using
spatial postsmoothing are described in the supplementary material.

2.5. Composed dense scale selection algorithms. Given the above treatment, we can
define four types of dense scale selection algorithms as follows:
Algorithm I: without postsmoothing or phase compensation, with local scale estimates at

every image point computed according to (14).
Algorithm II: with phase compensation and without postsmoothing, with local scale esti-

mates at every image point computed according to (28) or (29) based on uncompen-
sated local scale estimates according to (14).
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Algorithm III: with postsmoothing and without phase compensation, with local scale esti-
mates at every image point computed according to (15).

Algorithm IV: with both postsmoothing and phase compensation, with local phase-
compensated scale estimates at every image point computed in an analogous way
as (28) or (29), although based on postsmoothing according to (15) and with the
factors (1− Γs) and (2− Γs) in the expressions for phase compensation, which origi-
nate from the local extrema over scale when c = 0, replaced by Ssine,1(Γs, c, Cs) and
Ssine,2(Γs, c, Cs) according to (SM5) in the supplementary material.

The scale estimates from each algorithm can in turn be calibrated using either Gaussian scale
calibration or sine wave calibration according to section 2.4.

2.6. Scale covariance of the spatial scale estimates under spatial scaling transforma-
tions. Consider a scaling transformation of the spatial image domain

(34) f ′(x′1, x
′
2) = f(x1, x2) for (x′1, x

′
2) = (Ss x1, Ss x2),

where Ss denotes the spatial scaling factor. Define the spatial scale-space representations L
and L′ of f and f ′, respectively, according to

L(x1, x2; s) = (T (·, ·; s) ∗ f(·, ·, )) (x1, x2; s),(35)

L′(x′1, x
′
2; s′) =

(
T (·, ·; s′) ∗ f ′(·, ·)

)
(x′1, x

′
2; s′).(36)

Consider a spatial differential expression of the form

(37) DL =

I∑
i=1

J∏
j=1

ci Lxαij =

I∑
i=1

J∏
j=1

ci Lx
α1ij
1 x

α2ij
2

,

required to be homogeneous in the sense that the sum of the orders of differentiation in each
term does not depend on the index of that term,

(38)
J∑
j=1

|αij | =
J∑
j=1

α1ij + α2ij = M.

Then, the corresponding homogeneous differential expression DnormL with the spatial deriva-
tives Lxm1

1 x
m2
2

replaced by scale-normalized derivatives according to

(39) Lξm1
1 ξ

m2
2

= s(m1+m2)γs/2 Lxm1
1 x

m2
2

transforms, according to (Lindeberg [35, eq. (25)]), into

(40) D′normL′ = SM(γs−1)
s DnormL.

Regarding the spatial quasi quadrature measure Q(x,y),Γ−normL, according to (8), which we
use for dense spatial scale selection, this differential invariant is not of the homogeneous form
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(37). If we split this differential expression into two components based on the orders of spatial
differentiation

Q(x,y),Γ−normL =Q(x,y),1,Γ−normL+Q(x,y),2,Γ−normL,(41)

where

Q(x,y),1,Γ−normL =
s (L2

x + L2
y)

sΓs
,(42)

Q(x,y),2,Γ−normL =
Cs s

2
(
L2
xx + 2L2

xy + L2
yy

)
sΓs

,(43)

we can note that each of these expressions is of the homogeneous form (37) and corresponds
to γ-normalized scale-space derivatives in the respective cases:

(44) γ1 = 1− Γs, γ2 = 1− Γs
2
.

Applying the transformation property (40) to each of the two components of the spatial quasi
quadrature measure then gives that they transform according to

Q(x′,y′),1,Γ−normL
′ = S2(γ1−1)

s Q(x,y),1,Γ−normL = S−2Γs
s Q(x,y),1,Γ−normL,(45)

Q(x′,y′),2,Γ−normL
′ = S2×2(γ2−2)

s Q(x,y),2,Γ−normL = S−2Γs
s Q(x,y),2,Γ−normL.(46)

In other words, because of the deliberate adding of differential expressions corresponding to
different orders of spatial differentiation for the maximally scale-invariant case of γs = 1 prior
to postnormalization by the postnormalization power Γs, it follows that the two components
transform in the same way under spatial scaling transformations, implying that the composed
quasi quadrature measure transforms as

(47) (Q(x′,y′),Γ−normL
′)(x′, y′; s′) = S−2Γs

s (Q(x,y),Γ−normL)(x, y; s)

under uniform scaling transformations of the spatial image domain.
This covariance property under spatial scaling transformations specifically implies that

local extrema over spatial scales are preserved under uniform scaling transformations of the
spatial image domain and are transformed in a scale-covariant way according to

(48) ŝ′ = S2
s ŝ

or, in units of the standard deviation σs =
√
s of the spatial scale-space kernel, according to

(49) σ̂′s = Ss σ̂s.

This property constitutes the theoretical foundation for dense spatial scale selection and im-
plies that the local spatial scale estimates will automatically adapt to local variations in the
dominant spatial scales in the image data.

This scale covariance of the spatial scale estimates also extends to phase-compensated
scale estimates according to (28) and (29). This property is straightforward to prove, since
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the underlying uncompensated spatial scale estimates ŝQL in (28) and (29) are provably scale
covariant, and additionally the ratio that determines the scale compensation factor is invariant
under independent scaling transformations of the spatial domain provided that the spatial
scale levels are appropriately matched, which they are if the phase compensation factors are
computed at scale levels corresponding to the spatial scale estimates.

Correspondingly, the scale covariance of the spatial scale estimates also extends to spatial
postsmoothing prior to the detection of local extrema over spatial scales. This property follows
from the fact that the amount of spatial postsmoothing is proportional to the spatial scale
level at which the nonlinear quasi quadrature measure is computed.

Under affine intensity transformations

(50) f ′(x, y) = a f(x, y) + b,

the Gaussian derivatives are multiplied by a uniform scaling factor L′
xαyβ

(x, y; t)=aLxαyβ(x, y; t)
and the quasi quadrature measure transforms according to

(51) Q′(x,y),Γ−norm(x, y; s) = a2Q(x,y),Γ−norm(x, y; s).

The scale estimates are therefore unaffected by illumination variations, whose effects can be
well approximated by local affine transformations over the intensity domain.

The spatial quasi quadrature entities used for scale selection are based on the rotationally
invariant differential invariants |∇L|2 and ‖HL‖2 and are therefore rotationally invariant.
This implies that the resulting scale spatial estimates are covariant under rotations of the
spatial image domain.

2.7. Experimental results. Figure 4 shows spatial scale maps computed using Algo-
rithm II for three images. All the scale maps have been computed using Gaussian scale
calibration for Γs = 1/4. For all images in this illustration, we can note how finer scale es-
timates are selected near edges, leading to a sketch-like representation of prominent edges.
This behavior is in good agreement with the theory and also implies that image features or
image descriptors that are computed with this type of scale selection methodology will be well
localized near edges.

In general, the detection of local extrema over scale of the quasi quadrature entity
Q(x,y),Γ−normL will sweep out scale selection surfaces defined by

(52)

{
∂s(Q(x,y),Γ−normL) = 0,

∂ss(Q(x,y),Γ−normL) < 0

in the 3-D scale space spanned by the spatial dimensions (x, y) and the scale parameter s.
Specifically, when the local image structures contain different types of structures at different
scales, multiple local extrema over scale may be detected, corresponding to multiple patches
of the scale selection surfaces at different scales, which may represent qualitatively different
types of image structures in the image domain while at different scales.

In Figure 4, a much simplified form of visualization has been used, by only showing the
scale value of the local maximum over scale that has the maximum response among the
possibly multiple local maxima over scale. When moving between different points over the
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Original image. Dense scale estimates using Algorithm II.

Figure 4. Dense spatial scale maps computed using Algorithm II (dense scale selection with phase com-
pensation) for three different images using Γs = 1/4 and Cs = 1/

√
(1− Γs)(2− Γs). The grey-levels code for

effective scale approximated by seff = log2(s0 + s) for s0 = 1/8 in such a way that darker means finer spatial
scales and brighter indicates coarser spatial scales. See section 2.7 for more detailed explanations. Observe,
however, that for the quite common phenomenon of when there are multiple local extrema over scale correspond-
ing to different types of dominant structures at different scales, this visualization only shows the single extremum
of the scale estimates that has the strongest maximum response. Thereby, situations where the maximum value
over scales switches between two scale selection surfaces at difference scales appear as discontinuities in this
simplified form of visualization. Such layer discontinuities are therefore artefacts of the visualization method,
not the scale selection method. A more appropriate form of visualization is in terms of a 3-D visualization
of the scale selection surfaces as shown in Figure 5, where multiple scale estimates may be displayed at every
image point.
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Original image.

Scale selection surfaces from ∂s(Q(x,y),Γ−normL) = 0 painted with L.

Scale selection surfaces from ∂s(Q(x,y),Γ−normL) = 0 painted with f .

Figure 5. 3-D visualization of local scale estimates underlying the dense scale maps shown in Figure 4(right)
and shown here as scale selection surfaces in 3-D scale space over space (x, y) and scale s, here also visualizing
multiple local extrema over scales at every image point. (Scale values in units of effective scale approximated
by seff = log2(s0 + s) for s0 = 1/8.)
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spatial domain, this global maximum may in some places switch between different patches
of the scale selection surfaces at different scales. The discontinuities in the scale maps that
can be seen in the right column correspond to such switching between multiple scale selection
surfaces and are artefacts of the visualization method, not the scale selection method.

More generally, one should of course treat multiple local extrema over scale as multiple
scale hypotheses as done in the more appropriate 3-D visualization of such multiple scale
selection surfaces in Figure 5. From a more detailed inspection of the scale selection surface
patch corresponding to the edge of the roof in the upper part of the image, one can also find
that the selected scale levels decrease with increasing distance from the camera as caused
by perspective effects. The similarities between the scale maps for the repetitive structures
in the image in the lower part of the figure demonstrate the stability of the dense scale
estimates under natural imaging conditions, whereas the relative differences in scale estimates
between corresponding parts of the different yet similar pillars reveal the size gradient caused
by perspective scaling effects.

To quantify the numerical stability of the scale estimates for a stimulus for which the scale
estimates should be approximately constant, we computed dense scale estimates for a set of
2-D sine waves of the form

(53) f(x, y) = sinωx+ sinωy,

with wavelengths λ = 8, 16, 32, and 64 for each of the four types of algorithms and compared
the results with corresponding theoretical predictions based on the scale selection properties
of the 1-D sine wave model (24)

(54) ω̂ =
4
√

(1− Γs)(2− Γs)√
ŝ

.

The mean and the standard deviation around the mean were computed for the scale estimates
in terms of effective scale seff , and these measures were transformed into relative measures in
units of the scale parameter σs =

√
s of dimension [length]. As can be seen from the results

in Table 1, the use of phase compensation and complementary postsmoothing substantially
decreases the spatial variability in the scale estimates by an order of magnitude in units of
σs. Specifically, pure phase compensation achieves a reduction in the variability of the same
order as pure postsmoothing for c = 1, while also allowing for a higher resolution in the scale
estimates near edge-like structures.

Table 1
Measures of the accuracy of the scale estimates computed for a 2-D sine wave f(x, y) = sinωx + sinωy

and compared to corresponding theoretical predictions based on a 1-D sine wave model according to (33) for
Algorithms I–IV using Γs = 1/4, c = 1, and Cs = 1/

√
(1− Γs)(2− Γs).

Accuracy of scale estimates for a 2-D sine wave pattern.

Error measure Alg. I Alg. II Alg. III Alg. IV

Offset of mean + 5.0 % – 0.6 % + 1.6 % + 1.5 %
Relative spread ± 11.8 % ± 1.3 % ± 0.6 % ± 0.1 %
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3. Dense temporal scale selection over a purely temporal domain. In this section, we
develop a corresponding approach for dense scale selection over a purely temporal domain.

3.1. A temporal quasi quadrature measure. Motivated by the fact that first-order deriva-
tives respond primarily to the locally odd component of a signal, whereas second-order deriva-
tives respond primarily to the locally even component of a signal, for dense applications it
is natural to aim at a feature detector that combines such first- and second-order temporal
derivative responses. By specifically combining the squares of the first- and second-order tem-
poral derivative responses in an additive way, we obtain a temporal quasi quadrature measure
of the form

(55) Qt,Γ−normL =
τL2

t + Cττ
2L2

tt

τΓτ
,

which is a reduction of the 2-D spatial quasi quadrature measure (8) to a 1-D purely temporal
domain, where t denotes time and τ temporal scale.

This construction is closely related to a proposal by Koenderink and van Doorn [29] of
summing up the squares of the first- and second-order derivative responses of receptive fields
and an observation by De Valois et al. [65] that first- and second-order biological receptive
fields typically occur in pairs that can be modeled as approximate Hilbert pairs, while here
they are instead formalized in terms of scale-normalized temporal scale-space derivatives.

3.2. Scale covariance of temporal scale estimates under temporal scaling transforma-
tions. Consider a temporal scaling transformation of the form

(56) f ′(t′) = f(t) for t′ = Sτ t.

From the temporal scaling transformation of scale-normalized temporal derivatives defined
from either the noncausal Gaussian temporal scale space or the time-causal temporal scale
space obtained by convolution with the time-causal limit kernel [43], it follows that scale-
normalized temporal derivatives of order n are transformed, according to [46, eqs. (10) and
(104)], as

(57) ∂ζ′n,normL
′(t′; τ ′) = Sn(γτ−1)

τ ∂ζn,normL(t; τ)

provided that the temporal scale levels are correspondingly matched according to

(58) τ ′ = S2
τ τ.

Applied to the temporal quasi quadrature measure

(59) Qt,Γ−normL =
τL2

t + Cττ
2L2

tt

τΓτ
= Qt,1,Γ−normL+Qt,2,Γ−normL,

with its first- and second-order components

(60) Qt,1,Γ−normL =
τL2

t

τΓτ
, Qt,2,Γ−normL =

Cττ
2L2

tt

τΓτ
,
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and which correspond to γ-normalized temporal derivatives with γ1 = 1 − Γτ and γ2 =
1− Γτ/2 for the first- and second-order components, respectively, the first- and second-order
components transform according to

(Qt,1,Γ−normL′)(t′; τ ′) = S2(γ1−1)
τ (Qt,1,Γ−normL)(t; τ)

= S−2Γτ
τ (Qt,1,Γ−normL)(t; τ),(61)

(Qt,2,Γ−normL′)(t′; τ ′) = S2×2(γ2−1)
τ (Qt,2,Γ−normL)(t; τ)

= S−2Γτ
τ (Qt,2,Γ−normL)(t; τ).(62)

Since the first- and second-order components transform in a similar way because of the deliber-
ate adding of entities depending on temporal derivatives of different orders for the maximally
scale-invariant choice of γτ = 1, it follows that the temporal quasi quadrature measure, despite
its inhomogeneity, still transforms according to a power law

(63) (Qt,Γ−normL′)(t′; τ ′) = S−2Γτ
τ (Qt,Γ−normL)(t; τ).

Specifically, this implies that temporal scale estimates computed from local extrema over
temporal scales are preserved and are transformed in a scale-covariant way according to

(64) τ̂ ′ = S2
τ τ̂

or, in units of the standard deviation στ =
√
τ of the temporal scale-space kernel,

(65) σ̂′τ = Sτ σ̂τ .

This does in turn imply that the temporal scale estimates will adapt to local temporal scaling
transformations of the input signal, and constitutes the theoretical basis for the dense temporal
scale selection methodology.

This temporal scale covariance property also extends to phase-compensated temporal scale
estimates according to (29)

τ̂Qt,comp =

√
(1− Γτ )(2− Γτ ) τ̂Qt

(1− Γτ )
Qt,1,Γ−normL

Qt,1,Γ−normL+Qt,2,Γ−normL (2− Γτ )
Qt,2,Γ−normL

Qt,1,Γ−normL+Qt,2,Γ−normL

,(66)

since the underlying uncompensated temporal scale estimates τ̂Qt transform in a scale-covariant
way, and the ratios w1 = Qt,1,Γ−normL/(Qt,1,Γ−normL+Qt,2,Γ−normL) and w2 = Qt,2,Γ−normL/
(Qt,1,Γ−normL+Qt,2,Γ−normL) that determine the scale compensation factors are invariant un-
der temporal scaling transformations, provided that the temporal scale levels are appropriately
matched.

The temporal scale covariance of the temporal scale estimates is also preserved under
temporal postsmoothing, since the amount of temporal postsmoothing is proportional to the
local temporal scale for computing the temporal derivatives.
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Figure 6. Dense temporal scale selection from local extrema over scale of the temporal quasi quadrature
measure Qt,Γ−normL applied to a synthetic sine wave signal f(t) = sin(exp((b−t)/a)) for a = 200 and b = 1000
with temporally varying frequency so that the wavelength increases with time t. Left: Original temporal signal.
Middle left: The square root of the temporal quasi quadrature measure Qt,Γ−normL computed for the most
scale-invariant choice of the complementary scale normalization parameter Γτ = 0. Middle right: Basic scale
estimates τ̂Qt,Γ−norm from local extrema over scale of the quasi quadrature measure according to (14) reduced to
one dimension for Γτ = 0 and shown as blue curves overlaid on the magnitude map Qt,Γ−normL with reversed
contrast. Right: Phase-compensated scale estimates τ̂Qt,comp according to (29) reduced to one dimension for
Γτ = 0 and shown as blue curves overlaid on the magnitude map Qt,Γ−normL with reversed contrast. All results
have been computed using Cτ = 1/

√
(1− Γτ )(2− Γτ ). (Horizontal axis: Time t ∈ [0, 1000]; vertical axis in

columns 2–4: Effective temporal scale τeff = log τ over the range from στ,min = 0.25 to στ,max = 1000 for
στ =

√
τ .)

3.3. Experimental results.

3.3.1. Sine wave with exponentially varying frequency. Figure 6 shows the result of
applying this basic form of dense temporal scale selection to a sine wave with exponentially
varying frequency of the form

(67) f(t) = sin

(
exp

(
(b− t)
a

))
for a = 200 and b = 1000. The left figure shows the raw temporal signal. The middle
left figure shows the magnitude map over time and temporal scales of the temporal quasi
quadrature measure Qt,normL computed using a noncausal Gaussian temporal scale-space
representation. The middle right figure shows temporal scale estimates computed as the zero-
crossings of ∂τ (Qt,Γ−normL) = 0 that satisfy the sign condition ∂ττ (Qt,Γ−normL) < 0. These
zero-crossings have been interpolated to higher accuracy along the temporal scale dimension
than the sampling density over the temporal scales using parabolic interpolation [46, eq.
(115)]. In the rightmost figure, the basic temporal estimates from the middle right have been
additionally phase-compensated according to (66).

Note how (i) the temporal scale selection method is able to capture the rapid variations
in the temporal scales in the signal, and (ii) the phase compensation method substantially
suppresses the phase dependency of the temporal scale estimates.

3.3.2. Real measurement signals. Figure 7 shows an example of performing this type of
dense temporal scale selection analysis on two real measurements signals using the noncausal
Gaussian temporal scale-space concept. The figures in the bottom row show measurements of
the local field potential recorded from the subthalamic nucleus of a conscious human subject
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Postsmoothed scale selection (off med.). Postsmoothed scale selection (on med.).

√
Qt,normL Gaussian kernel (off med.).

√
Qt,normL Gaussian kernel (on med.).

Original signal (off med.). Original signal (on med.).

Figure 7. Dense local scale analysis of a neurophysiological signal from Cagnan, Duff, and Brown [7]
showing the local field potential sampled at ν = 512 Hz during 50 seconds for an electrode inserted in the
subthalamic nucleus of a conscious human subject with Parkinson’s disease without medication (left column)
and with the medication levodopa (L-dopa) (right column). Note how this local scale analysis method reveals
that the uppermost stronger band of dense local scale estimates in the top left figure is spread out over a larger
scale range in the top right figure as a result of the medication. Top row: Basic scale estimates τ̂Qt,Γ−norm from
local extrema over scale of the quasi quadrature measure according to (15) reduced to one dimension for c = 3
and Γτ = 0. Middle row: The square root of the temporal quasi quadrature measure Qt,Γ−normL computed
for the most scale-invariant choice of the complementary scale normalization parameter Γτ = 0. Bottom row:
Original temporal signal. All results have been computed using Cτ = 1/

√
(1− Γτ )(2− Γτ ). (Horizontal axis:

Time t ∈ [0, 50] in seconds. Vertical axis in top and middle rows: Temporal scale in milliseconds.)
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with Parkinson’s disease, with the patient either off or on the medication L-dopa (labeled “off
med.” or “on med.” and shown in the left and the right columns, respectively).

As can be seen from the dense local scale estimates in the top row, the dense scale analysis
(beyond a wide band of responses at finer scales up to temporal scale στ,0 = 1.4 ms) returns
three rather strong bands of coarser temporal scale estimates when the patient is off medi-
cation. These bands are assumed around temporal scales στ,1 = 2.6 ms, στ,2 = 4.5 ms, and
στ,4 = 11 ms with a weaker additional band at temporal scale στ,3 = 7.9 ms. According to the
approximate expression (33) for the local scale estimate of a sine wave, these scale estimates
correspond to frequencies ν = 1/λ around ν0 = 136 Hz, ν1 = 73 Hz, ν2 = 42 Hz, ν3 = 24 Hz,
and ν4 = 18 Hz.

When the patient is on medication, the uppermost band of coarser scale estimates around
στ,4 = 11 ms is replaced by a sparser set of dense local scale estimates over a wider scale range
[στ,5, στ,6] = [10, 42] ms and corresponding to frequencies in the range [ν6, ν5] = [5, 19] Hz.

Comparing the results for the patient off vs. on medication, we see that there is also a
weaker band of responses over the scale range between στ,7 = 44 ms and στ,8 = 260 ms
corresponding to a frequency range between ν7 = 5 Hz and ν8 = 0.75 Hz when the patient is
off medication, and responses are not as strong in this band when the patient is on medication.

The biological background for this signal analysis problem is that in Parkinson’s disease
(PD), several prominent rhythms appear in the local field potentials. Among these, the low-
frequency (∼5 Hz) rhythms are associated with tremors observed in PD patients. Next, the
so-called beta band (15–30 Hz) rhythms are causally related to many motor deficits associated
with PD (Hammond, Bergman, and Brown [17]). Recent analysis of local field potentials in
the subthalamic nucleus using Fourier analysis revealed that beta band oscillations are not
persistent and instead occur in bursts (Tinkhauser et al. [63]). Moreover, administration of L-
dopa medication was shown to reduce the frequency of beta bursts; in particular, the long beta
bursts are significantly reduced. Indeed, quenching of the beta band oscillations is one of the
goals of PD treatment. Specifically, modulation of beta band oscillations can form a basis for
an event-triggered deep-brain-stimulation system (Rosin et al. [55]). To that end, however, it
is important to correctly isolate the occurrences of beta band activity. Conventional methods
based on Fourier transforms, however, have not been found to be very precise for this purpose.

In relation to this biological background, our temporal scale analysis thus reveals how
medication by L-dopa affects the temporal dynamics of neurons in bands at multiple scales that
are related to the tremors observed in PD patients. Specifically, it shows how the responses in
the band around ν4 = 18 Hz related to pathology are reduced and spread out by the L-dopa
medication and that the responses in the band with frequencies below ν7 = 5 Hz related to
tremors are weaker.

4. Dense spatio-temporal scale selection over the joint spatio-temporal domain. In this
section, we shall combine the mechanisms for dense spatial scale selection and dense temporal
scale selection developed in sections 2 and 3 to design a mechanism for dense simultaneous
selection of spatial and temporal scales over the joint spatio-temporal domain.

4.1. Spatio-temporal scale-space representation. The context that we initially consider
for dense spatio-temporal scale selection is a space-time separable spatio-temporal scale-space
representation L(x, y, t; s, τ) defined from any 2+1-D video sequence f(x, y, t) by convolution
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with space-time separable spatio-temporal Gaussian kernels

(68) T (x, y, t; s, τ) = g(x, y; s) g(t; τ) =
1

2πs
e−(x2+y2)/2s 1√

2πτ
e−t

2/2τ

at different spatio-temporal scales (s, τ) (Lindeberg [38]),

(69) L(·, ·, ·; s, τ) = T (·, ·, ·; s, τ) ∗ f(·, ·, ·),

and with γ-normalized spatio-temporal derivatives defined according to [35, 43],

(70) ∂ξ = sγs/2 ∂x, ∂η = sγs/2 ∂y, ∂ζ = τγτ/2 ∂t.

Initially, we will develop the basic theory based on a noncausal Gaussian temporal scale-
space model, and then in the experiments, for the purpose of also being able to handle real-
time image streams, complement this construction with a truly time-causal spatio-temporal
scale-space representation (Lindeberg [43]) defined based on temporal smoothing with the
time-causal limit kernel Ψ(t; τ, c) having a Fourier transform of the form

Ψ̂(ω; τ, c) =

∞∏
k=1

1

1 + i c−k
√
c2 − 1

√
τ ω

,(71)

and for which the discrete implementation of the temporal smoothing operation is in turn
approximated by a finite number of discrete recursive filters coupled in a cascade.

4.2. A spatio-temporal quasi quadrature measure. In Lindeberg [43], the following
spatio-temporal quadrature was considered:

Q3,(x,y,t),normL

= τQ(x,y),normLt + C τ2Q(x,y),normLtt

= τ
(
s (L2

xt + L2
yt) + C s2

(
L2
xxt + 2L2

xyt + L2
yyt

))
+ C τ2

(
s (L2

xtt + L2
ytt) +Cs2(L2

xxtt + 2L2
xytt + L2

yytt)
)
.(72)

This differential entity has been constructed to constitute a simultaneous quasi quadrature
measure over both the spatial dimensions (x, y) and the temporal dimension t, implying that,
instead of combining a pair of first- and second-order derivatives over a single dimension,
here we use an octuple of first- and second-order derivatives over the three spatio-temporal
dimensions and with additional terms added to make the resulting differential expression
rotationally invariant over the spatial domain.

Specifically, this differential entity mimics some of the known properties of complex cells
in the primary visual cortex as discovered by Hubel and Wiesel [19, 20, 21] in the sense
of (i) being independent of the polarity of the stimuli, (ii) not obeying the superposition
principle, and (iii) being rather insensitive to the phase of the visual stimuli. The primitive
components of the quasi quadrature measure (the partial derivatives) do in turn mimic some of
the known properties of simple cells in the primary visual cortex in terms of precisely localized
“on” and “off” subregions (i) with spatial summation within each subregion, (ii) with spatial
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antagonism between on- and off-subregions, and (iv) whose visual responses to stationary
or moving spots can be predicted from the spatial subregions. This model, however, is also
simplified in the sense that the variability over different orientations, and eccentricities over
the spatial domain as well as over motion directions over joint space-time, have been replaced
by primitive components in terms of partial derivatives based on an isotropic scaling parameter
over all spatial orientations and space-time separable receptive fields over the joint space-time
domain.

This spatio-temporal quasi quadrature measure is intended to measure the local energy of
the local spatio-temporal derivatives obtained by combining first- and second-order derivative
operators over both the spatial dimensions and the temporal dimension. Specifically, it can
be seen as a combination of the previously considered spatial quasi quadrature measure of
the form (6) for Γs = 0 and the previously derived temporal quasi quadrature measure (55)
for Γτ = 0. By adding more general Γ-normalization with independent scale normalization
parameters Γs and Γτ over space and time, respectively, we here extend the definition of the
differential expression (72) to the following more general form:

Q(x,y,t),Γ−normL

=
τ Q(x,y),Γ−normLt + Cττ

2Q(x,y),Γ−normLtt

τΓτ

=
1

sΓsτΓτ

(
τ
(
s (L2

xt + L2
yt) + Cs s

2
(
L2
xxt + 2L2

xyt + L2
yyt

))
+ Cτ τ

2
(
s (L2

xtt + L2
ytt) + Cs s

2(L2
xxtt + 2L2

xytt + L2
yytt)

))
.(73)

By the tight integration of the spatial quasi quadrature Q(x,y),Γ−normL with the temporal
quasi quadrature measure Qt,Γ−normL, the intention of this combined spatio-temporal quasi
quadrature is to simultaneously allow for combined scale selective properties over joint space-
time, to allow for joint spatio-temporal scale selection. Specifically, the fact that all individual
components of this differential invariant (all the partial derivatives Lxm1ym2 tn) are expressed
in terms of nonzero orders of spatial differentiation m1 +m2 > 0 and temporal differentiation
n > 0 ensures that the resulting expression is localized over both space-time and spatio-
temporal scales.

4.3. Scale selection properties for a spatio-temporal sine wave. In the following, we
investigate the scale selection properties that this quasi quadrature measure gives rise to for
a multidimensional sine wave of the form

(74) f(x, y, t) = (sin(ωsx) + sin(ωsy)) sin(ωτ t)

taken as an idealized model of a dense spatio-temporal structure over both space and time
and with the spatio-temporal image structures having spatial extent of size λs = 2π/ωs
and temporal duration λτ = 2π/ωτ . The spatio-temporal scale-space representation of (74)
obtained by Gaussian smoothing will then be of the form

(75) L(x, y, t; s, τ) = e−ω
2
ss/2e−ω

2
τ τ/2 (sin(ωsx) + sin(ωsy)) sin(ωτ t).
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Let us decompose this quasi quadrature measure into the following four components based on
spatial and temporal derivatives of either first or second order:

Q(x,y,t),Γ−normL

= Q(x,y),1,Γ−normLt +Q(x,y),2,Γ−normLt

+ Cτ
(
Q(x,y),1,Γ−normLtt +Q(x,y),2,Γ−normLtt

)
,(76)

where

Q(x,y),1,Γ−normLt =
s τ (L2

xt + L2
yt)

sΓsτΓτ
,(77)

Q(x,y),2,Γ−normLt =
Cs s

2 τ
(
L2
xxt + 2L2

xyt + L2
yyt

)
sΓsτΓτ

,(78)

Q(x,y),1,Γ−normLtt =
s τ2 (L2

xtt + L2
ytt)

sΓsτΓτ
,(79)

Q(x,y),2,Γ−normLtt =
Cs s

2 τ2
(
L2
xxtt + 2L2

xytt + L2
yytt

)
sΓsτΓτ

.(80)

By selecting both spatial and temporal scales from local extrema of the quasi quadrature
measure over both spatial and temporal scales

(81) (ŝQ(x,y,t),Γ−norm , τ̂Q(x,y,t),Γ−norm) = argmaxlocals,τ Q(x,y,t),Γ−normL,

it follows that
• at the spatial points (x = nπ/ωs, y = nπ/ωs) at which only the first-order spatial

derivatives respond, the selected spatial scale will be

(82) ŝ11 =
1− Γs
ω2
s

;

• at the spatial points (x = (π/2 + nπ)/ωs, y = (π/2 + nπ)/ωs) at which only the
second-order spatial derivatives respond, the selected spatial scale will be

(83) ŝ22 =
2− Γs
ω2
s

;

• at the temporal moments t = nπ/ωτ at which only the first-order temporal derivative
responds, the selected temporal scale will be

(84) τ̂1 =
1− Γτ
ω2
τ

;

• and at the temporal moments t = (π/2 + nπ)/ωτ at which only the second-order
temporal derivative responds, the selected temporal scale will be

(85) τ̂2 =
2− Γτ
ω2
τ

.
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Determining the weighting parameters Cs and Cτ , such that the relative strengths of the
first- and second-order components become equal at the spatial and temporal midpoints (x =
(π/4 + nπ/2)/ωs, y = (π/4 + nπ/2)/ωs), and t = (π/4 + nπ/2)/ωτ between the extreme
points and at the spatial and temporal scales corresponding to the geometric averages

√
ŝ1ŝ2

and
√
τ̂1τ̂2 of the extreme values, then implies that the relative weighting factors Cs and Cτ

between the first- and second-order derivative responses should be chosen as

Cs =
1√

(1− Γs)(2− Γs)
,(86)

Cτ =
1√

(1− Γτ )(2− Γτ )
.(87)

Note the structural similarities between these results and the corresponding analysis for the
purely spatial quasi quadrature measure Q(x,y),Γ−normL studied in section 2.

4.4. Spatio-temporal scale covariance of the joint spatio-temporal scale estimates
under independent scaling transformations of the spatial and the temporal domains. Con-
sider an independent scaling transformation of the spatial and the temporal domains of a
video sequence

(88) f ′(x′1, x
′
2, t
′) = f(x1, x2, t) for (x′1, x

′
2, t
′) = (Ss x1, Ss x2, Sτ t),

where Ss and Sτ denote the spatial and temporal scaling factors, respectively. Then, the
corresponding spatio-temporal scale covariance of the spatio-temporal scale estimates

(89) (ŝ′, τ̂ ′) = (S2
s ŝ, S

2
τ τ̂)

can be proven—provided that the spatial positions (x, y) and the temporal moments t are
appropriately matched according to (x′1, x

′
2, t
′) = (Ss x1, Ss x2, Sτ t)—by combining the ideas

in the proof of spatial scale covariance from section 2.6 with the ideas in the proof of temporal
scale covariance from section 3.2.

4.5. Experimental results. Figure 8 shows an example of applying dense spatio-temporal
scale selection to a real video sequence. For reasons of computational efficiency, we only show
results obtained using a time-causal and time-recursive spatio-temporal scale-space represen-
tation obtained by convolution with Gaussian kernels over the spatial domain and convolution
with the time-causal limit kernel over the temporal domain. Because of the time-recursive
implementation of this scale-space concept, it is not necessary to explicitly compute and
build the five-dimensional spatio-temporal scale-space representation over space-time (x, y, t)
and spatio-temporal scales (s, τ). Instead, the time-recursive implementation builds a four-
dimensional representation over the spatial domain (x, y) and the spatio-temporal scale pa-
rameters (s, τ) at every temporal image frame t. Then, this representation is recursively
updated to the next frame, using only the temporal scale-space representation at the previous
frame as a sufficient temporal buffer of past information, using the methodology of time-causal
and time-recursive spatio-temporal receptive fields developed in [43].

Because the notion of phase compensation is not yet fully developed for the time-causal
limit kernel, we did not use local phase compensation in this experiment. Instead, we restricted
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Grey-level frame. Quasi quadrature measure at fixed s-t scale.

Scale map of effective spatial scales. Scale map of effective temporal scales.

Spatio-temporal scale-space signature. Maximum magnitude response over all scales.

Figure 8. Results of dense spatio-temporal scale selection applied to a video sequence with water waves.
The results have been computed with a time-causal and time-recursive spatio-temporal scale-space representation
obtained by convolution with a Gaussian kernel over the spatial domain and the time-causal limit kernel over
the temporal domain. Top left: Grey-level image. Top right: The spatio-temporal quasi quadrature measure
computed at a fixed spatio-temporal scale. Middle left: Selected spatial scale levels in units of effective scale
seff = log2 σs. Middle right: Selected temporal scale levels in units of effective scale τeff = log2 στ . Bottom left:
Spatio-temporal scale-space signature showing the magnitude variations of the spatio-temporal quasi quadrature
measure over both spatial and temporal scales, with effective spatial scale increasing linearly from left to right
and effective temporal scale increasing linearly from bottom to top. While this illustration shows the average
over all the image points at the given image frame for the purpose of suppressing the influence of local spatial
variations, the general dense scale selection method is otherwise local, based on individual scale-space signatures
at every image point and for every time moment. Bottom right: The maximum magnitude response over all
spatial and temporal scales at every image point. Note from the maps of the selected spatial and temporal
scales that there is a clear vertical size gradient for the selected spatial scales, whereas there is no size gradient
for the selected temporal scales. The reason for this is that there are size variations over the spatial domain
because of perspective depth effects affecting the spatial scales, whereas the temporal scales are stationary over
the image domain, since temporal scale levels are not affected by the perspective mapping. Note that the contrast
of the maps showing magnitude information has been set so that dark shading corresponds to larger values and
light shading to lower values. In addition, the magnitude maps have been stretched by a square root function.
(Results computed using 24 logarithmically distributed spatial scale levels between σs,min = 0.25 pixels and
σs,max = 24 pixels and using 9 logarithmically distributed temporal scale levels between στ,min = 10 ms and
στ,max = 2.56 sec for Cs = 1/

√
(1− Γs)(2− Γs) and Cτ = 1/

√
(1− Γτ )(2− Γτ ) using complementary scale

normalization parameters Γs = 0 and Γτ = 0.) (Image size: 480× 270 pixels. Frame 100 of 250 frames at 25
frames per second.)
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ourselves to spatial postsmoothing, noting that the approach can be extended to temporal
postsmoothing in a straightforward manner by adding a second stage of recursive temporal
smoothing to the quasi quadrature measures computed at every image frame. To make the
magnitude maps maximally scale invariant for purposes of visualization, we used Γs = Γτ = 0.

At every image frame, we computed a discrete approximation of the spatio-temporal quasi
quadrature measure at all spatial and temporal scales and detected two-dimensional local
extrema over spatial and temporal scales as candidates for local spatio-temporal scale levels.
These local extrema were then interpolated to higher resolution over spatial and temporal
scales using parabolic interpolation according to [46, eq. (115)]. For simplicity, the results
shown in the second row display only the global extremum over spatio-temporal scales at
every image point. However, when applying the scale selection methodology in practice,
multiple local extrema over spatio-temporal scales should instead be considered to make it
possible to handle multiple characteristic spatio-temporal scale levels at any image point.

From the scale maps in the middle row, we note that the selected spatial scale levels
well reflect the perspective size gradient over the vertical direction in the image domain,
if we assume that the water waves have a stationary distribution of wavelengths over the
water surface, while these spatial lengths are shortened because of the perspective scaling
and foreshortening effects. For the selected temporal scale levels, the distribution is more
stationary over the image domain, which can be understood from the assumption that the
temporal wavelengths of the waves should be stationary over the water surface, while at the
same time the temporal scales are not affected by the perspective transformation (the temporal
periodicity of a wave remains the same under imaging transformations).

In the spatio-temporal scale-space signature, showing the average over all the image points
of the scale-normalized spatio-temporal quasi quadrature measure as a function of the spatial
and temporal scales, we can see that for this video sequence there is a narrow range of dominant
spatial and temporal scales. The spread over the spatial scale levels is, however, wider than
the spread over the temporal scales, caused by the additional variabilities induced by the
perspective scaling and foreshortening effects.

When comparing the maximum magnitude response over all spatio-temporal scales to the
quasi quadrature measure at a fixed spatio-temporal scale, we can observe that the variability
in the maximum over all spatio-temporal scales is lower than the variability in the response
at a fixed scale.

Figures 9–10 show results of applying corresponding dense spatio-temporal scale selection
to videos of other dynamic scenes. In the traffic scene in Figure 9, we note that distinct
responses in the spatial and temporal scale maps are obtained for the different moving cars,
again with a vertical size gradient in the spatial scale estimates reflecting the perspective scal-
ing and foreshortening effects, whereas the temporal scale estimates are essentially unaffected
by the perspective transformation. Additionally, we can observe that large spatial scales and
long temporal scales are selected in the smooth stationary regions on the road and in some
parts of the background. For the video of breaking waves in Figure 10, there are two domi-
nant spatio-temporal scales in the scene: one for the larger scale of the overall waves and one
for fine-scale spatio-temporal structures where the waves break. These two spatio-temporal
scale levels are in turn reflected as horizontal stripes in the maps of the selected spatial and
temporal scales.
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Grey-level frame. Quasi quadrature measure at fixed s-t scale.

Scale map of effective spatial scales. Scale map of effective temporal scales.

Spatio-temporal scale-space signature. Maximum magnitude response over all scales.

Figure 9. Results of dense spatio-temporal scale selection applied to a traffic scene (video “smooth traffic05”
from the Maryland dynamic scene dataset [57]). Note that distinct responses in the spatial and temporal scale
maps are obtained for the different moving cars, again with a size gradient in the spatial scale estimates reflecting
the perspective scaling effects, whereas the temporal scale estimates are essentially unaffected by the perspective
transformation. Additionally, we can observe that large spatial scales and long temporal scales are selected in
the smooth stationary regions on the road and in some parts of the background (Image size: 320 × 240 pixels.
Frame 80 of 1217 frames at 30 frames per second.)
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Grey-level frame. Quasi quadrature measure at fixed s-t scale.

Scale map of effective spatial scales. Scale map of effective temporal scales.

Spatio-temporal scale-space signature. Maximum magnitude response over all scales.

Figure 10. Results of dense spatio-temporal scale selection applied to a scene with breaking waves (from
the DynTex dataset [54]). Notice how horizontal stripes of finer spatial and temporal scales are selected at the
breaking waves. Notice additionally that there are two dominant spatio-temporal scales in the scene: one for
the larger scale of the overall waves and one for fine-scale spatio-temporal structures where the waves break.
(Image size: 768× 576 pixels. Frame 50 of 250 frames at 30 frames per second.)
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5. Summary and discussion. We have presented a general methodology for performing
dense scale selection by detecting local extrema over scale of scale-normalized quasi quadrature
entities, which constitute local energy measures of the combined strength of first- and second-
order scale-space derivatives. Specifically, we have (i) analyzed how local scale estimates may
in general be strongly dependent on the relative strengths of first- vs. second-order image
information at every image point, and (ii) proposed two mechanisms to substantially reduce
this phase dependency using postsmoothing and pointwise phase compensation.

Based on the presented theoretical analysis of scale selection properties over a purely
spatial image domain, in section 2 we presented four types of algorithms for dense scale
selection, depending on whether the mechanisms of phase compensation and postsmoothing
are included or excluded. For Algorithms II–IV that involve such mechanisms, we have shown
that these mechanisms substantially reduce the spatial variability of the local scale estimates
compared to the baseline Algorithm I that does not make use of either phase compensation
or postsmoothing. These four methods all lead to provable scale invariance in the sense that
the local scale estimates perfectly follow scaling transformations over image space, and so do
image features and image descriptors that are computed at scales proportional to these local
scale estimates.

In section 3, we developed corresponding dense scale selection mechanisms over a purely
temporal domain and with corresponding mechanisms of postsmoothing and local phase com-
pensation to reduce the phase sensitivity of the local scale estimates. By experiments on a
synthetic sine wave with an exponentially varying wavelength as a function of time, we demon-
strated that the local scale estimates adapt well to the variabilities of the time-dependent
characteristic temporal scales in the signal. By experiments on a neurophysiological signal
with approximate stationarity properties, we demonstrated how the proposed dense scale se-
lection methodology is able to reflect multiple levels of characteristic scales in the signal that
are not as visible in a spectral analysis based on Fourier transforms.

In section 4, we combined the above dense scale selection mechanisms over spatial and
temporal domains into joint dense spatio-temporal scale selection in video data and demon-
strated how the resulting approach is able to generate hypotheses about joint characteristic
spatio-temporal scales for different types of dynamic scenes.

A common property of these spatial, temporal, and spatio-temporal scale selection meth-
ods is that the scale estimates are computed in a bottom-up fashion from the data in such
a way that the scale estimates will be covariant under independent scaling transformations
of the spatial and the temporal domains. We propose these forms of dense scale selection
as a general mechanisms for estimating local spatial and temporal scales in spatial images,
temporal signals, and spatio-temporal video.

As a complement to previous scale selection methodologies, which have been primarily
applied sparsely at spatial or spatio-temporal interest points, the proposed dense scale se-
lection methodology is intended for applications where spatial, temporal, or spatio-temporal
receptive field responses are to be computed densely at every image point and for every time
moment. Potential applications of such dense receptive field responses include texture analy-
sis over a static spatial domain and dynamic texture analysis over a spatio-temporal domain.
For example, if the application of dense spatio-temporal scale selection presented in Figure 8
is applied to videos of water waves taken under different wind conditions, then the spatial
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scale estimates will reflect the spatial extent of the water waves, whereas the temporal scale
estimates will reflect their temporal duration. In this way, dynamic parameters of the wa-
ter waves can be estimated directly, without using a generative physical model of the wave
patterns.

More generally, the proposed framework provides a theory for modeling and measuring how
dense receptive field measurements respond selectively at different spatial and temporal scales.
This theory should be relevant for a large sets of computer vision problems, where receptive
field–based image measurements in terms of spatial or spatio-temporal N -jets are used as the
basis for image analysis or video analysis applications. The presented theory could also be
relevant for computational modeling of biological vision. If we regard the spatio-temporal
quasi quadrature measure (73) as modeling important properties of complex cells as detailed
in section 4.2, then the proposed dense spatio-temporal scale selection theory can explain
how complex cells having receptive fields over different ranges of spatial and temporal scales
respond selectively to stimuli of different spatial extent and temporal duration.

The only free parameters are the complementary spatial and temporal scale normalization
parameters Γs and Γτ , the relative integration scales c for optional postsmoothing, and the
scale calibration factor by which the generated scale estimates are proportional to the scales
at which the local extrema over scales are assumed. These parameters should be optimized to
the specific application domain, where the dense scale selection methodology is to be combined
with higher-level visual modules.

If suitable values of these parameters can be determined for a specific application domain,
then by the general scale covariance property of the scale estimates, the proposed dense
scale selection theory guarantees that the resulting spatial, temporal, or spatio-temporal scale
estimates will automatically adapt to and follow variabilities in the characteristic scales in the
input images, signals, videos, or image streams. In this way, the resulting chain of computer
vision/image analysis/signal analysis/video analysis operations can be made provably scale
invariant.
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