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Abstract This work presents a theory and methodology
for simultaneous detection of local spatial and temporal
scales in video data. The underlying idea is that if we
process video data by spatio-temporal receptive fields at
multiple spatial and temporal scales, we would like to gen-
erate hypotheses about the spatial extent and the temporal
duration of the underlying spatio-temporal image structures
that gave rise to the feature responses. For two types of
spatio-temporal scale-space representations, (i) a non-causal
Gaussian spatio-temporal scale space for offline analysis of
pre-recorded video sequences and (ii) a time-causal and time-
recursive spatio-temporal scale space for online analysis of
real-time video streams, we express sufficient conditions for
spatio-temporal feature detectors in terms of spatio-temporal
receptive fields to deliver scale-covariant and scale-invariant
feature responses. We present an in-depth theoretical anal-
ysis of the scale selection properties of eight types of
spatio-temporal interest point detectors in terms of either:
(i)–(ii) the spatial Laplacian applied to the first- and second-
order temporal derivatives, (iii)–(iv) the determinant of the
spatial Hessian applied to the first- and second-order tem-
poral derivatives, (v) the determinant of the spatio-temporal
Hessian matrix, (vi) the spatio-temporal Laplacian and (vii)–
(viii) the first- and second-order temporal derivatives of
the determinant of the spatial Hessian matrix. It is shown
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that seven of these spatio-temporal feature detectors allow
for provable scale covariance and scale invariance. Then,
we describe a time-causal and time-recursive algorithm for
detecting sparse spatio-temporal interest points from video
streams and show that it leads to intuitively reasonable
results. An experimental quantification of the accuracy of
the spatio-temporal scale estimates and the amount of tempo-
ral delay obtained from these spatio-temporal interest point
detectors is given, showing that: (i) the spatial and tempo-
ral scale selection properties predicted by the continuous
theory are well preserved in the discrete implementation
and (ii) the spatial Laplacian or the determinant of the spa-
tial Hessian applied to the first- and second-order temporal
derivatives leads to much shorter temporal delays in a time-
causal implementation compared to the determinant of the
spatio-temporal Hessian or the first- and second-order tem-
poral derivatives of the determinant of the spatial Hessian
matrix.

Keywords Scale · Scale space · Scale selection · Spatial ·
Temporal · Spatio-temporal · Scale invariance · Scale
covariance · Feature detection · Differential invariant ·
Interest point · Video analysis · Computer vision

1 Introduction

A basic paradigm for video analysis consists of performing
the first layers of visual processing based on successive layers
of spatio-temporal receptive fields.

From a mathematical viewpoint, such an approach can be
motivated from the fact that the measurement of the image
intensity at a single point in space–time does in general not
carry anymeaningful information, since such ameasurement
is strongly dependent on external factors, such as the usually
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unknown illumination of the scene. The relevant information
is instead carried by the relative relations between the mea-
surements of image intensities at different points over space
and time, which implies that it is natural to perform visual
processing of video data based on local neighbourhoods over
space and time.

From a biological viewpoint, such an approach can also
be motivated from the fact that the first layers of mammalian
vision can be modelled in terms of spatio-temporal recep-
tive fields over multiple spatial and temporal scales. Cell
recordings from neurones in the primary visual cortex have
shown that there are spatio-temporal receptive fields tuned
to different sizes and orientations in the image domain, to
different integration times over the temporal domain as well
as to different image velocities in space–time [12,13,32,33].
Interestingly, the shapes of the spatio-temporal receptive field
families that have been measured in biological vision can
furthermore be explained by normative theories of visual
receptive fields [69,71,75,78], whose axiomatic derivation
is based on structural properties of the environment in com-
bination with assumptions about the internal structure of an
idealized vision system to ensure a consistent treatment of
image representations over multiple spatio-temporal scales.

Based on these or related motivations, a large number of
computer vision approaches have been developed in which
the first layers of image features are computed based on
spatio-temporal receptive field responses [3,16,22,35–37,
43,48,51,53,93,95,96,98,101–103,108,116–119,121,125].

A general problem when applying the notion of receptive
fields in practice, however, is that the types of responses that
are obtained in a specific situation can be strongly dependent
on the scale levels at which they are computed. Figures 1, 2, 3
and 4 show illustrations of the this problem by showing
snapshots of spatio-temporal receptive field responses over
multiple spatial and temporal scales for a video sequence
and for different types of spatio-temporal features computed
from it. Note how qualitatively different types of responses
are obtained at different spatio-temporal scales. At some
spatio-temporal scales, we get strong responses due to the
movements of the paddle or the motion of the paddler in
the kayak. At other spatio-temporal scales, we get relatively
larger responses because of the movements of the here unsta-
bilized camera. The spatio-temporal texture due to the wave
patterns on the water surface does also lead to different type
of responses at different spatio-temporal scales. A computer
vision system intended to process the visual input from gen-
eral spatio-temporal scenes does therefore need to decide
what responses within the family of spatio-temporal recep-
tive fields over different spatial and temporal scales it should
base its analysis on as well as about how the information
from different subsets of spatio-temporal scales should be
combined.

Spatio-temporal scale-space representation L

First-order temporal derivative Lt

Second-order temporal derivative Ltt

Fig. 1 Time-causal spatio-temporal scale-space representation
L(x, y, t; s, τ ) with its first- and second-order temporal deriva-
tives Lt (x, y, t; s, τ ) and Ltt (x, y, t; s, τ ) computed from a video
sequence in the UCF-101 dataset (Kayaking_g01_c01.avi) at 3 × 3
combinations of the spatial scales (bottom row) σs,1 = 2 pixels,
(middle row) σs,2 = 4.6 pixels and (top row) σs,3 = 10.6 pixels and
the temporal scales (left column) στ,1 = 40 ms, (middle column)
στ,2 = 160 ms and (right column) στ,3 = 640 ms with the spatial and
temporal scale parameters in units of σs = √

s and στ = √
τ and using

a logarithmic distribution of the temporal scale levels with distribution
parameter c = 2 (image size: 320 × 172 pixels of original 320 × 240
pixels; frame 90 of 226 frames at 25 frames/s)

For purely spatial data, the problem of performing spa-
tial scale selection is nowadays rather well understood.
Given the spatial Gaussian scale-space concept [24,34,44,
46,47,59,60,67,70,106,111,120,123], a general methodol-
ogy for spatial scale selection has been developed based
on local extrema over spatial scales of scale-normalized
differential entities [62,64,65,72,73]. This general method-
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The spatial Laplacian of the first-order temporal derivative ∇2
(x,y)Lt

The spatial Laplacian of the second-order temporal derivative ∇2
(x,y)Ltt

The spatio-temporal Laplacian ∇2
(x,y,t)L

Fig. 2 The spatial Laplacian applied to the first- and second-order tem-
poral derivatives ∇2

(x,y)Lt and ∇2
(x,y)Ltt as well as the spatio-temporal

Laplacian ∇2
(x,y,t)L computed from a video sequence in the UCF-101

dataset (Kayaking_g01_c01.avi) at 3 × 3 combinations of the spatial
scales (bottom row) σs,1 = 2 pixels, (middle row) σs,2 = 4.6 pixels
and (top row) σs,3 = 10.6 pixels and the temporal scales (left column)
στ,1 = 40 ms, (middle column) στ,2 = 160 ms and (right column)
στ,3 = 640 ms with the spatial and temporal scale parameters in units
of σs = √

s and στ = √
τ and using a time-causal spatio-temporal

scale-space representation with a logarithmic distribution of the tem-
poral scale levels for c = 2 (image size: 320 × 172 pixels of original
320 × 240 pixels; frame 90 of 226 frames at 25 framesframes/s)

ology has in turn been successfully applied to develop
robust methods for image-based matching and recogni-
tion [5,41,52,68,74,84,86,87,89,90,112–114] that are able
to handle large variations of the size of the objects in
the image domain and with numerous applications regard-
ing object recognition, object categorization, multi-view
geometry, construction of 3-D models from visual input,

The determinant of the spatial Hessian of the first-order temporal derivative detH(x,y)Lt

The determinant of the spatial Hessian of the second-order temporal derivative detH(x,y)Ltt

The determinant of the spatio-temporal Hessian detH(x,y,t)L

Fig. 3 The determinant of the spatial Hessian applied to the first- and
second-order temporal derivatives detH(x,y)Lt and detH(x,y)Ltt as
well as the determinant of the spatio-temporal Hessian detH(x,y,t)L
computed from a video sequence in the UCF-101 dataset (Kayak-
ing_g01_c01.avi) at 3 × 3 combinations of the spatial scales (bottom
row) σs,1 = 2 pixels, (middle row) σs,2 = 4.6 pixels and (top row)
σs,3 = 10.6 pixels and the temporal scales (left column) στ,1 = 40 ms,
(middle column) στ,2 = 160 ms and (right column) στ,3 = 640 ms
with the spatial and temporal scale parameters in units of σs = √

s and
στ = √

τ and using a time-causal spatio-temporal scale-space repre-
sentation with a logarithmic distribution of the temporal scale levels for
c = 2. Themagnitude values of detH(x,y,t)L have been stretched by the
monotone function φ(z) = (sign z)

√|z| (image size: 320 × 172 pixels
of original 320 × 240 pixels; frame 90 of 226 frames at 25 frames/s)

human–computer interaction, biometrics and robotics. Alter-
native approaches for spatial scale selection in other problem
domains have also been proposed [7,8,10,19,28,29,31,38–
40,54,55,66,82,83,85,91,92,105,109,115].
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First-order temporal derivative of the determinant of the spatial Hessian ∂t(detH(x,y)L)

Second-order temporal derivative of the determinant of the spatial Hessian ∂tt(detH(x,y)L)

Fig. 4 The first- and second-order temporal derivatives of the deter-
minant of the spatial Hessian ∂t (detH(x,y)L) and ∂t t (detH(x,y)L)

computed from a video sequence in the UCF-101 dataset (Kayak-
ing_g01_c01.avi) at 3 × 3 combinations of the spatial scales (bottom
row) σs,1 = 2 pixels, (middle row) σs,2 = 4.6 pixels and (top row)
σs,3 = 10.6 pixels and the temporal scales (left column) στ,1 = 40 ms,
(middle column) στ,2 = 160 ms and (right column) στ,3 = 640 ms
with the spatial and temporal scale parameters in units of σs = √

s and
στ = √

τ and using a time-causal spatio-temporal scale-space repre-
sentation with a logarithmic distribution of the temporal scale levels for
c = 2. Themagnitude values of detH(x,y,t)L have been stretched by the
monotone function φ(z) = (sign z)

√|z| (image size: 320 × 172 pixels
of original 320 × 240 pixels; frame 90 of 226 frames at 25 frames/s)

Much less research has, however, been performed on
developing methods for choosing locally appropriate tem-
poral scales for spatio-temporal analysis of video data.
While some methods for temporal scale selection have been
developed [49,63,122], the earliest methods suffer from
either theoretical or practical limitations: the initial work
on time-causal temporal scale selection in Lindeberg [63]
is primarily developed over the discrete temporal Poisson
scale space, which possesses a semi-group property over
temporal scales and therefore leads to unnecessarily long
temporal delays for reasons explained in Lindeberg [77,
Appendix A]. The spatio-temporal scale selection method
in Laptev and Lindeberg [49] is based on a spatio-temporal
Laplacian operator that is not scale covariant under inde-
pendent relative scaling transformations of the spatial ver-
sus the temporal domains (see Sect. 4.8), which implies
that the spatial and temporal scale estimates will not be

robust under independent variations of the spatial and tem-
poral scales in video data as arise, for example, when
viewing the same scene with two cameras having differ-
ent sensor characteristics in terms of spatial resolution or
temporal frame rate. The spatio-temporal scale selection
method for the determinant of the spatio-temporal Hessian
in Willems et al. [122] does not make use of the full flex-
ibility of the notion of γ -normalized derivative operators
(see Sect. 4.5) and has not been previously developed over a
time-causal and time-recursive spatio-temporal domain as
is necessary for processing real-time image streams with
requirements of short temporal latencies of the feature
responses for time-critical applications and complementary
requirements about only small compact buffers of past infor-
mation.

The subject of this article is to develop an extended the-
ory for performing spatio-temporal scale selection in video
data, to generate hypotheses about local characteristic spa-
tial and temporal scales in the video data before recognizing
the objects or the spatio-temporal events in the scene that the
camera is observing. For this domain, we can consider two
basic use cases: For offline analysis of pre-recorded video,
one may take the liberty of accessing the virtual future in
relation to any pre-recorded time moment and make use
of symmetric filtering over the temporal domain based on
the non-causal Gaussian spatio-temporal scale-space theory
[61,67,70]. For online analysis of real-time video streams on
the other hand, the future cannot be accessed andwewill base
the analysis on a fully time-causal and time-recursive spatio-
temporal scale-space concept for real-time image streams
that only requires access to information from the present
moment and avery compact buffer ofwhat has occurred in the
past [75] andwhich constitutes an extension of previous tem-
poral scale-space andmulti-scalemodels [23,27,45,81,110].
Specifically, for performing spatio-temporal feature detec-
tion in the latter time-causal scenario, we will build upon a
recently developed theory for temporal scale selection in a
time-causal scale-space representation [77] and extend that
theory to spatio-temporal scale selection for features that
are computed based on a time-causal spatio-temporal scale-
space representation. The resulting theory that we will arrive
at can be seen as an extension of the previously developed
spatial scale selection methodology [64,65,73] from spa-
tial images to spatio-temporal video and real-time image
streams.

To begin, we will start developing our theory for spatio-
temporal scale selectionwith respect to the problemof detect-
ing sparse spatio-temporal interest points [6,9,11,14,18,20,
21,30,49,88,94,97,99,100,107,122,124,126,127], which
may be regarded as a conceptually simplest problem domain
because of the sparsity of spatio-temporal interest points and
the close connection between this problem domain and the
detection of spatial interest points for which there exists
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a theoretically well-founded and empirically tested frame-
work regarding scale selection over the spatial domain [1,4,
5,15,17,25,42,65,72,74,84,89,90,112]. Specifically, using
a non-causal Gaussian spatio-temporal scale-space model,
we will perform a theoretical analysis of the spatio-temporal
scale selection properties of eight different types of spatio-
temporal interest point detectors and show that seven of them:
(i) the spatial Laplacian of the first-order temporal deriva-
tive, (ii) the spatial Laplacian of the second-order temporal
derivative, (iii) the determinant of the spatial Hessian of
the first-order temporal derivative, (iv) the determinant of
the spatial Hessian of the second-order temporal derivative,
(v) the determinant of the spatio-temporal Hessian matrix,
(vi) the first-order temporal derivative of the determinant of
the spatial Hessian matrix and (vii) the second-order tem-
poral derivative of the determinant of the spatial Hessian
matrix, do all lead to fully scale-covariant spatio-temporal
scale estimates and scale-invariant feature responses under
independent scaling transformations of the spatial and the
temporal domains. For (viii) the spatio-temporal Laplacian,
it is on the other hand not possible to achieve scale covariance
or scale invariance, which explains the poor robustness of the
spatio-temporal interest points computed from the spatio-
temporal Harris operator with scale selection based on the
spatio-temporal Laplacian [49] on video data in which there
are large independent variations in the spatial and temporal
scales of the underlying spatio-temporal image structures.

Then,wewill showhow this theory canbe transferred to an
implementation based on fully time-causal spatio-temporal
receptive fields to enable the detection of spatio-temporal
features from real-time image streams in which the future
cannot be accessed. Specifically, since any time-causal image
measurement at a nonzero temporal scale will be associ-
ated with a nonzero temporal delay, we will introduce an
additional parameter q to enable scale calibration of the
spatio-temporal interest point detectors to deliver a tempo-
ral scale estimate at temporal scale σ̂τ = q σ̂τ,0 for q ≤ 1
as opposed to the over the spatial domain more common
choice of σ̂s = σ̂s,0 to enable shorter temporal delays and
therefore the ability to respond faster in time-critical real-
time scenarios, motivated by the general observation that
the temporal delay can be expected to be proportional to
the temporal scale level when expressed in units of the
temporal standard deviation of the temporal scale-space ker-
nel.

Whereas the explicit algorithms and experiments in this
paper are restricted to spatio-temporal scale selection at
sparse interest points over space and time, in a companion
paper [76] we develop complementary methods for comput-
ing dense maps of spatial and temporal scale estimates in
video data based on a structurally similar theory.

1.1 Structure of this Article

As conceptual background to the work, Sect. 2 starts by
describing the theoretical model for spatio-temporal recep-
tive fields and the resulting scale-space concepts thatwe build
upon for computing image and video representations over
multiple spatial and temporal scales.

When to develop a theory for spatio-temporal scale selec-
tion, main questions regarding the foundations concern what
properties the scale selection method should possess and
how the scale estimates should be computed. In Sect. 3, we
show how it is possible to construct a well-founded theory
for simultaneous selection of spatial and temporal scales in
videodata, by detecting local extremaover spatial and tempo-
ral scales of appropriately scale-normalized spatio-temporal
derivative responses. This theory is generally valid for a large
class of homogeneous spatio-temporal differential invariants
and beyond the more explicit examples of spatio-temporal
feature detectors considered in more detail in later sections.
This theory specifically includes a general statement about
scale-covariant properties of the resulting spatio-temporal
scale estimates, which implies that the scale estimates are
guaranteed to adaptively follow variabilities in spatial and
temporal scale levels in the data. This theory also comprises
scale-invariant properties of the resulting spatio-temporal
features and their magnitude strengthmeasures, which imply
that similar types of spatio-temporal image features, while
at different scales, will be computed, if the data in video
sequence are subject to independent scaling transformations
of the spatial and the temporal domains. In these respects, the
proposed theory obeys the desirable properties of a spatio-
temporal scale selection methodology.

The theory presented so far, does, however, comprise two
free parameters, a spatial scale normalization power γs and
a temporal scale normalization power γτ . To understand the
behaviour of spatio-temporal feature detectors over multiple
scales in more specific situations, Sect. 4 does then show
how the scale selection properties of spatio-temporal fea-
ture detectors can be analysed by calculating their feature
responses at multiple spatio-temporal scales in closed form
to determine the scale normalization powers γs and γτ .

Specifically, we present an in-depth analysis of the the-
oretical scale selection properties of eight spatio-temporal
derivative expressions that may be considered as candidates
for defining spatio-temporal interest point detectors, when
applied to idealized model patterns in the form of Gaussian
blinks or Gaussian onset blobs of different spatial extent and
of different temporal duration. By requiring that the selected
spatial and temporal scales should reflect the spatial extent
and the temporal duration of the input pattern, we show
that seven of these spatio-temporal derivative expressions:
(i)–(ii) the spatial Laplacian of the first- and second-order
temporal derivatives, (iii)–(iv) the determinant of the spatial
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Hessian of the first- and second-order temporal derivatives,
(v) the determinant of the spatio-temporalHessianmatrix and
(vi)–(vii) the first- and second-order temporal derivatives of
the determinant of the spatial Hessian matrix, can be scale
calibrated to reflect the spatial extent and the temporal dura-
tion of the underlying spatio-temporal image structures that
gave rise to the filter responses. For one of these expressions,
an attempt to define a spatio-temporal Laplacian operator, the
lack of scale covariance under independent scaling transfor-
mations of the spatial and temporal domains, corresponding
scale-invariant scale calibration cannot, however, be done for
that operator. That in turn implies that applying the spatio-
temporal Laplacian to video data in which there are unknown
spatio-temporal scale variations can be expected to lead to
undesirable artefacts.

In Sect. 5, we then present a general algorithm for detect-
ing spatio-temporal interest points from spatio-temporal
scale-space extrema of scale-normalized spatio-temporal
expressions. Specifically, we present a detailed algorithm
for detecting such image features based on a time-causal
and time-recursive spatio-temporal scale-space representa-
tion. Compared to a corresponding algorithm expressed over
a non-causal spatio-temporal scale space, as for the case of
using a Gaussian spatio-temporal scale space for analysing
pre-recorded video sequences, our time-causal algorithm
does never access information from the past and can there-
fore be applied in real-time settings on video streams.
Additionally, by the time-recursive formulation, the require-
ments about temporal buffering of past information are much
lower and do also imply the need for less computations,
thus improving the computational efficiency, also if applied
in a non-causal setting for analysing pre-recorded video
sequences.

As a verification ofwhether the proposed theory andmeth-
ods do what they are supposed to do, Sect. 6 presents an
experimental quantification of the numerical accuracy of the
spatio-temporal scale estimates as well as the amount of tem-
poral delay for the different types of spatio-temporal interest
point detectors considered in this work, when applied to
idealized spatio-temporal model patterns with ground truth
and in the context of a time-causal spatio-temporal scale-
space representation. The results do first of all show that
the theoretical properties of spatio-temporal feature detectors
responding at spatial and temporal scales corresponding to
the spatial extent and the temporal duration dowith very good
approximation transfer to the proposed discrete implementa-
tion. Secondly, it is shown that the interest point detectors
defined from applying either the spatial Laplacian or the
determinant of the spatialHessian to the first- or second-order
temporal derivatives lead to significantly shorter temporal
delays compared to the interest point detectors defined from
the determinant of the spatio-temporal Hessian or the first-
and second-order temporal derivatives of the determinant

of the spatial Hessian. For time-critical applications, this
implies that the temporal response properties from the first
set of spatio-temporal feature detectors will be faster than
for those from the other set and therefore the ability of an
autonomous agent to react faster. Finally, Sect. 7 concludes
with a summary and discussion.

1.2 Relations to Previous Contributions

This paper constitutes a substantially extended version of a
shorter conference paper presented at the SSVM 2017 con-
ference [79] and with substantial additions concerning:

– the motivations underlying the developments of this the-
ory and the relations to previous work (Sect. 1),

– more details concerning the underlying spatio-temporal
receptive field model (Sect. 2),

– a more extensive description about the proposed general
methodology for spatio-temporal scale selection includ-
ing: (i) its formulation based on temporal scale normal-
ization by L p-normalization of the temporal derivative
operators, (ii) the theory for scale-invariant and scale-
covariant properties of the resulting spatio-temporal
featureswith their spatio-temporal scale estimates aswell
as (iii) spatio-temporal scale selection based on spatio-
temporal differential invariants expressed in terms of
local gauge coordinates that guarantee rotational invari-
ance and which could not be included in the conference
paper because of lack of space (Sect. 3),

– the treatment of two additional spatio-temporal differ-
ential invariants, the first- and second-order temporal
derivatives of the determinant of the spatial Hessian
matrix,

– the detailed theoretical analysis of the scale selection
properties of the eight different spatio-temporal differ-
ential invariants treated in this paper and showing the
explicit derivations of how the spatial and temporal scale
normalization γs and γτ should be determined by scale
calibration for each feature detector (Sect. 4),

– more complete details about the composed algorithm
for detecting spatio-temporal interest points with spatio-
temporal scale selection based on time-causal and time-
recursive spatio-temporal receptive fields and including
a change of order between the spatial and the tempo-
ral smoothing operations that substantially reduces the
amount of computations (Sect. 5),

– an experimental quantification of the accuracy of the
scale estimates and the temporal delays for the different
types of spatio-temporal feature detectors when applied
to idealized spatio-temporal model patterns (Sect. 6) and

– a detailed description of the corresponding spatial scale-
space extrema algorithm on which the spatio-temporal
scale-space extrema algorithm is based (“Appendix A”).
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In relation to the SSVM 2017 paper, this paper therefore
gives a more complete treatment of the subject, including
more details about the spatio-temporal scale selection the-
ory, much more complete algorithmic details when applying
spatio-temporal scale selection in practice aswell as a numer-
ical quantification of the accuracy of the spatio-temporal
scale estimates and the temporal responses properties (the
temporal latencies in a time-causal setting).

2 Spatio-Temporal Receptive Field Model

For processing video data at multiple spatial and temporal
scales, we follow the approach with idealized models of
spatio-temporal receptive fields of the form

T (x1, x2, t; s, τ ; v,Σ)

= g(x1 − v1t, x2 − v2t; s,Σ) h(t; τ) (1)

as previously derived, proposed and studied in Lindeberg
[67,69,75,78], where

– x = (x1, x2)T denotes the image coordinates,
– t denotes time,
– s denotes the spatial scale,
– τ denotes the temporal scale,
– v = (v1, v2)

T denotes a local image velocity,
– Σ denotes a spatial covariance matrix determining the
spatial shape of a spatial affine Gaussian kernel

g(x; s,Σ) = 1

2πs
√
detΣ

e−xTΣ−1x/2s, (2)

– g(x1−v1t, x2−v2t; s,Σ) denotes a spatial affine Gaus-
sian kernel that moves with image velocity v = (v1, v2)

in space–time and
– h(t; τ) is a temporal smoothing kernel over time,

andwe specifically here choose as temporal smoothingkernel
over time either: (i) the non-causal Gaussian kernel

h(t; τ) = g(t; τ) = 1√
2πτ

e−t2/2τ (3)

or (ii) the time-causal limit kernel [75, Equation (38)]

h(t; τ) = Ψ (t; τ, c) (4)

defined via its Fourier transform of the form

Ψ̂ (ω; τ, c) =
∞∏

k=1

1

1 + i c−k
√
c2 − 1

√
τ ω

(5)

and corresponding to an infinite cascade of truncated expo-
nential kernels

hexp(t; μi ) =
{ 1

μi
e−t/μi t ≥ 0

0 t < 0
(6)

with logarithmically distributed temporal scale levels

τk =
k∑

k=−∞
μ2
i = c2kτ0 (7)

that cluster infinitely dense near τ ↓ 0+ [75].
Based on this spatio-temporal receptive field model, we

define a spatio-temporal scale-space representation of the
form [67,69,75]

L(x1, x2, t; s, τ ; v,Σ)

=(T (·, ·, ·; s, τ ; v,Σ)∗ f (·, ·, ·)) (x1, x2, t; s, τ ; v,Σ).

(8)

When using a one-dimensional Gaussian kernel (3) for
smoothing over the temporal domain, we obtain a non-causal
Gaussian spatio-temporal scale space. When using the time-
causal limit kernel (4) for temporal smoothing, we obtain a
time-causal and time-recursive spatio-temporal scale space.

For simplicity, we shall in this treatment henceforth
restrict ourselves to space–time separable receptive fields
obtained by setting the image velocity to zero v = (v1, v2)

T

= (0, 0)T and to receptive fields that are based on rotation-
ally symmetric Gaussian kernels over the spatial domain by
setting the spatial covariance matrix to a unit matrix Σ = I .

Figures 5 and 6 show examples of such space–time sepa-
rable receptive fields over a 1+1-D space time, for the main
caseswhen the temporal smoothing is performed using either
the non-causal Gaussian kernel or the time-causal limit ker-
nel.

An alternative model for time-causal temporal smoothing
could be to instead use Koenderink’s scale-time kernels [45],
which correspond to Gaussian smoothing on a logarithmi-
cally transformed temporal domain. For reasons described in
detail in Lindeberg [77, Section 2.2], in particular the lack of
a known time-recursive formulation for Koenderink’s scale-
time kernels, which in turn implies a need for larger temporal
buffers and more computational work for the temporal
smoothing operation compared to using a time-recursive
implementation of the time-causal limit kernel based on a
set of recursive filters coupled in cascade [75, Section 6], we
use the time-causal limit kernel formodelling the time-causal
temporal smoothing operation in this work. As described in
Lindeberg [75, Appendix 2], it is also possible to establish an
approximate mapping between the parameters of the time-
causal limit kernel and Koenderink’s scale-time kernel based
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T (x, t; s, τ)

Tx(x, t; s, τ) Tt(x, t; s, τ)

Txx(x, t; s, τ) Txt(x, t; s, τ) Ttt(x, t; s, τ)

Fig. 5 Space–time separable kernels Txmtn (x, t; s, τ ) =
∂xm tn (g(x; s) h(t; τ)) up to order two obtained as the composi-
tion of Gaussian kernels over the spatial domain x and the non-causal
Gaussian kernel over the temporal domain (s = 1, τ = 1) (horizontal
axis: space x ∈ [−3, 3]; vertical axis: time t ∈ [−3, 3])

T (x, t; s, τ)

Tx(x, t; s, τ) Tt(x, t; s, τ)

Txx(x, t; s, τ) Txt(x, t; s, τ) Ttt(x, t; s, τ)

Fig. 6 Space–time separable kernels Txmtn (x, t; s, τ ) =
∂xm tn (g(x; s) h(t; τ)) up to order two obtained as the composi-
tion of Gaussian kernels over the spatial domain x and the time-causal
limit kernel over the temporal domain (s = 1, τ = 1, c = 2) (horizontal
axis: space x ∈ [−3, 3]; vertical axis: time t ∈ [0, 4])

on the requirement that the zero-, first- and second-order tem-
poral moments of the kernels in the two families should be
equal [75, Equation (161)] and leading to qualitatively sim-
ilar while not identical temporal receptive fields based on
temporal derivatives of the time-causal scale-space kernels
from the two families [75, Figure 11].

While yet a third type of ad hoc model for time-causal
smoothing could possibly also be formulated based on trun-
cated and time-delayed Gaussian kernels, with the temporal
delay determined such that the truncation effects in some
sense could be regarded as sufficiently small, we will not
develop such an approach here because: (i) such a model
could be expected to lead to significantly longer temporal
delays and (ii) require significantly larger temporal buffers
and more computational work compared to our family of
time-causal and time-recursive scale-space kernels. For time-
critical applications, where the temporal response properties
of the vision system need to be as fast as possible, it should
in general be much better to base the temporal processing on
an inherently time-causal temporal scale-space concept.

2.1 Scale-Normalized Spatio-Temporal Derivatives

Specifically, a naturalwayof normalizing the spatio-temporal
derivative operators within this space–time separable spatio-
temporal scale-space concept

L(x1, x2, t; s, τ )

= (T (·, ·, ·; s, τ ) ∗ f (·, ·, ·)) (x1, x2, t; s, τ ) (9)

with respect to the spatial and temporal scale parameters is by
introducing scale-normalized derivative operators according
to Lindeberg [65,75]

∂ξ = ∂x,norm = sγs/2 ∂x , (10)

∂η = ∂y,norm = sγs/2 ∂y, (11)

∂ζ = ∂t,norm = αn(τ ) ∂t , (12)

and studying scale-normalized partial derivates of the form
[75, Equation (108)]

Lx
m1
1 x

m2
2 tn ,norm = s(m1+m2)γs/2 αn(τ ) Lx

m1
1 x

m2
2 tn , (13)

where the factor s(m1+m2)γs/2 transforms the regular spatial
partial derivatives to corresponding scale-normalized spatial
derivatives with γs denoting the spatial scale normalization
parameter [65] and the factorαn(τ ) is the scale normalization
factor for scale-normalized temporal derivatives determined
according to either: (i) variance-based normalization [75,
Equation (74)]

αn(τ ) = τ nγτ /2 (14)
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or (ii) L p-normalization [75, Equation (76)]

αn(τ ) = ‖gξn (·; τ)‖p

‖htn (·; τ)‖p
= Gn,γτ

‖htn (·; τ)‖p
(15)

withGn,γτ denoting the L p-norm of the non-causal temporal
Gaussian derivative kernel for the γτ -value for which this
L p-norm becomes constant over temporal scales (see [75,
Equations (80)–(83)]).

2.2 Temporal Delays

For the non-causal temporal scale-space concept given by
convolutionwith symmetric temporalGaussian kernels of the
form (3), the temporal delay is always zero.When using time-
causal temporal scale-space kernels, there will on the other
hand always be a nonzero temporal delay δ. Unfortunately,
because of the lack of compact closed-form expression for
the time-causal limit kernel (4) over the temporal domain,
it is non-trivial to derive an compact closed-form expres-
sion for its exact temporal delay. Based on a scale-time
approximation of the time-causal limit kernel, it is, however,
possible to derive the following approximate expression for
the temporal maximum of the temporal smoothing kernel
[75, Equation (172)]1

δ ≈ (c + 1)2
√

τ

2
√
2
√

(c − 1) c3
. (16)

From this expression, we can see that the temporal delay δ

increases linearly with the temporal scale στ = √
τ in units

of the standard deviation of the temporal smoothing kernel.
Additionally, the temporal delay depends on the distribution
parameter c of the time-causal limit kernel in such a way that
larger values of c > 1 lead to shorter temporal delays at the
cost of a sparser temporal scale sampling.

3 General Spatial-Temporal Scale Selection
Methodology

In this section, we will describe a general spatio-temporal
scale selection methodology for simultaneous computation
of local characteristic spatial and temporal scale estimates

1 When computing estimates of the temporal delay of the time-causal
spatio-temporal scale-space kernel in an actual discrete implementa-
tion, we do, however, not make use of the approximate expression
(16). Instead, we do for each temporal scale level compute the tempo-
ral maximum point of the discrete time-causal scale-space kernel that
approximates the continuous time-causal kernel, and do then add addi-
tionally half a time step �t/2 for each order of temporal differentiation
as implemented in terms of backward difference operators over time
∂tn L ≈ δnt L/(�t)n , where �t denotes the temporal time step between
successive frames.

from video data, which for appropriate choices of spatio-
temporal derivative expressions for feature detection may
reflect the spatial extent and the temporal duration of the
underlying spatio-temporal image structures that gave rise to
the feature responses.

3.1 Homogeneous Spatio-Temporal Differential
Expressions

An essential property of the definition of scale-normalized
spatio-temporal derivative operators according to (13) is
that they will lead to scale-covariant spatio-temporal image
features, if the spatial smoothing performed by a spatial
Gaussian kernel (2) and if the temporal smoothing is per-
formedwith either a non-causal temporal Gaussian kernel (3)
or the time-causal limit kernel (4), provided that the under-
lying spatio-temporal expression DnormL used for defining
the spatio-temporal features is covariant under independent
scaling transformations of the spatial and temporal domains.

To express this property compactly, let us introducemulti-
index notation for spatio-temporal derivatives

Lxα tβ = Lx
α1
1 x

α2
2 tβ , (17)

where x = (x1, x2), α = (α1, α2) and |α| = α1 + α2. Then,
consider a spatio-temporal differential expression of the form

DL =
I∑

i=1

J∏

j=1

ci Lxαi j tβi j
=

I∑

i=1

J∏

j=1

ci Lx
α1i j
1 x

α2i j
2 tβi j

, (18)

where the sum of the orders of spatial and temporal differ-
entiation in a certain term

J∑

j=1

|αi j | =
J∑

j=1

α1i j + α2i j = M (19)

J∑

j=1

βi j = N (20)

does not depend on the index i of that term. Such a differential
expression is referred to as homogeneous.

3.2 Transformation Property Under Independent
Scaling Transformations of the Spatial and the
Temporal Domains

Consider next an independent scaling transformation of the
spatial and the temporal domains of a video sequence

f ′ (x ′
1, x

′
2, t

′) = f (x1, x2, t) (21)
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for

(
x ′
1, x

′
2, t

′) = (Ss x1, Ss x2, Sτ t), (22)

where Ss and Sτ denote the spatial and temporal scaling
factors, respectively, and define the space–time separable
spatio-temporal scale-space representations L and L ′ of f
and f ′, respectively, according to

L(x1, x2, t; s, τ )

= (T (·, ·, ·; s, τ ) ∗ f (·, ·, ·)) (x1, x2, t; s, τ ), (23)

L ′ (x ′
1, x

′
2, t

′; s′, τ ′)

= (
T (·, ·, ·; s′, τ ′) ∗ f ′(·, ·, ·)) (

x ′
1, x

′
2, t

′; s′, τ ′) . (24)

These spatio-temporal scale-space representations are closed
under independent scaling transformations of the spatial and
the temporal domains

L ′ (x ′
1, x

′
2, t

′; s′, τ ′) = L(x1, x2, t; s, τ ) (25)

provided that the spatio-temporal scale levels are appropri-
ately matched [67,75]

s′ = S2s s, τ ′ = S2τ τ. (26)

For the non-causalGaussian spatio-temporal scale space hav-
ing a continuum of both spatial and temporal scale levels, this
closedness relation holds for all spatial scaling factors Ss > 0
and all temporal scaling factors Sτ > 0. For the time-causal
spatio-temporal scale-space representation having a contin-
uum of spatial scale levels, while the temporal scale levels
are restricted to be discrete (7), the scaling relation holds for
all spatial scaling factors Ss > 0, whereas the closedness
relation under temporal scaling transformations holds only
for temporal scaling factors of the form Sτ = c j ( j ∈ Z) that
correspond to exact mappings between the discrete temporal
scale levels (7), where c > 1 is the distribution parameter of
the time-causal limit kernel (4).

Specifically, a homogeneous spatio-temporal derivative
expression of the form (18) with the spatio-temporal deriva-
tives Lx

m1
1 x

m2
2 tn replaced by scale-normalized spatio-temp-

oral derivatives Lx
m1
1 x

m2
2 tn ,norm according to (13) transforms

according to

D′
normL

′ = SM(γs−1)
s SN (γτ −1)

τ DnormL . (27)

This result follows from a combination and generalization
of Equation (25) in [65], which states that a purely spatial
differential expression of the form

DL =
I∑

i=1

J∏

j=1

ci Lxαi j (28)

when expressed in terms of scale-normalized spatial deriva-
tives transforms according to

D′
normL

′ = SM(γs−1)
s DnormL (29)

with Equations (10) and (104) in [77], which state that an
nth-order temporal derivative transforms according to

∂t ′n ,normL
′ = Sn(γτ −1)

τ ∂tn ,normL . (30)

With the temporal smoothing performed by the scale-
invariant limit kernel (4), the temporal scaling transformation
property does, however, only hold for temporal scaling trans-
formations that correspond to exact mappings between the
discrete temporal scale levels τi = τ0 c2i in the time-causal
temporal scale-space representation and thus to temporal
scaling factors Sτ = ci that are integer powers of the dis-
tribution parameter c of the time-causal limit kernel.

The scaling property (27) of homogeneous polyno-
mial spatio-temporal differential invariants also extends to
homogenous rational expressions of spatio-temporal deriva-
tives, i.e., rational expressions formed by ratios of two
homogeneous polynomials of the form (18).

3.3 General Scale-Covariant Property of the
Spatio-Temporal Scale Estimates

The scale-covariant property (27) implies that local extrema
over spatio-temporal scales are preserved under indepen-
dent scaling transformations of the spatial and the temporal
domains and that local (possibly multi-valued) spatio-
temporal scale estimates obtained from local extrema over
spatio-temporal scales2

{(ŝ, τ̂ )}(x, y, t)
= argmaxminlocals,τ (DnormL)(x, y, t; s, τ ) (31)

are guaranteed to transform in a scale-covariant way under
independent scaling transformations of the spatial and the
temporal domains

(
ŝ′, τ̂ ′) =

(
S2s ŝ, S

2
τ τ̂

)
(32)

or in units of the standard deviation (σs, στ ) = (
√
s,

√
τ) of

the spatio-temporal scale-space kernel

(
σ̂ ′
s, σ̂

′
τ

) = (
Ss σ̂s, Sτ σ̂τ

)
(33)

2 This notation is intended to reflect the fact that a set ofmultiple spatio-
temporal scale estimates (ŝ, τ̂ ) may be obtained at any point (x, y, t)
in space–time, corresponding to qualitatively different types of spatio-
temporal image structures at different spatio-temporal scales.
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provided that the spatial positions (x, y) and the temporal
moments t are appropriately matched

(
x ′
1, x

′
2, t

′) = (Ss x1, Ss x2, Sτ t). (34)

Specifically, the scale-covariant property (27) implies that
if we can detect a spatio-temporal scale level (ŝ, τ̂ ) such
that the scale-normalized expression DnormL assumes a
local extremum over both space–time (x1, x2, t) and spatio-
temporal scales (s, τ ) at some point (x̂1, x̂2, t̂; ŝ, τ̂ ) in
spatio-temporal scale space, then this local extremum is
preserved under independent scaling transformations of the
spatial and temporal domains and is transformed in a scale-
covariant way

(x̂1, x̂2, t̂; ŝ, τ̂ ) →
(
Ss x̂1, Ss x̂2, Sτ t̂; S2s ŝ, S

2
τ τ̂

)
. (35)

The properties (27), (32) and (35), which mean that spatio-
temporal scale estimates follow local independent spatial and
temporal scaling transformations in video data, constitute
a theoretical foundation for scale-covariant spatio-temporal
scale selection and scale-invariant feature detection.

3.4 General Scale-Covariant and Scale-Invariant
Properties of Feature Responses at Local Extrema
Over Spatio-Temporal Scales

Additionally, the magnitude of the feature response
(DnormL)extr at the spatio-temporal scale-space extremum
over spatial and temporal scales will also transform accord-
ing to power law

(D′
normL

′)
extr = SM(γs−1)

s SN (γτ −1)
τ (DnormL)extr. (36)

In the special case when the scale normalization powers γs =
1 and γτ = 1, the magnitude responses at the scale-space
extrema will be equal.

For reasons that will be explained later in Sect. 4, there
are, however, situations where it can be highly motivated
to use scale normalization powers not equal to one. Then,
the important message is that the magnitude estimates are
transformed by a power law and can be compensated for
by post-normalization of the magnitude responses that also
takes the actual spatio-temporal scale levels into account.

3.5 Spatio-Temporal Scale Selection for Homogeneous
Spatio-Temporal Differential Invariants in Terms of
Gauge Coordinates

Introduce at every point (x1, x2, t) in space–time, local
orthonormal gauge coordinate systems (u, v, t) and (p, q, t)
oriented such that: (i) the v-direction is parallel to the spa-
tial gradient direction of L and the u-direction is orthogonal

in image space with the partial derivative in the u-direction
being zero Lu = 0 and (ii) the p- and q-directions are par-
allel with the eigendirections of the spatial Hessian matrix
H(x,y)L such that the mixed spatial second-order derivative
is zero L pq = 0. Then, consider spatio-temporal differential
expressions of the forms

DL =
I∑

i=1

J∏

j=1

ci Luα1i j v
α2i j tβi j

(37)

or

DL =
I∑

i=1

J∏

j=1

ci L pα1i j qα2i j tβi j (38)

that satisfy the homogeneity requirements

J∑

j=1

α1i j + α2i j = M (39)

J∑

j=1

βi j = N (40)

for all i ∈ [1, I ]. Then, by the construction from these rota-
tionally invariant gauge coordinates, these spatio-temporal
differential expressions are guaranteed to be invariant under
global rotations of the spatial domain. Additionally, because
of the homogeneity of these expressions in terms of the total
orders of spatial and temporal differentiation in each term,
simultaneous spatial and temporal scale selection based on
corresponding scale-normalized derivatives is guaranteed to
lead to scale-covariant scale estimates.

As a consequence, the scale estimates will be guaran-
teed to be rotationally invariant in the sense that if the
spatial domain is globally rotated in image space, then
both the spatial and the temporal scale estimates will
be rotated in the same way as the spatial image posi-
tions. A corresponding rotational invariance property of
the spatio-temporal scale estimates does also hold for
other types of spatio-temporal differential expressions of
the form (18) that are additionally rotationally invari-
ant.

What remains in this theory is to choose appropriate scale-
normalized spatio-temporal derivative expressions DnormL
for different visual tasks and to tune the scale normalization
powers γs and γτ to additional complementary require-
ments. In next section, we will perform a detailed study of
this for eight different spatio-temporal differential invariants
with respect to the task of detecting spatio-temporal interest
points.
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4 Spatio-Temporal Scale Selection in Non-Causal
Gaussian Spatio-Temporal Scale Space

In this section, we will perform a closed-form theoretical
analysis of the spatial and the temporal scale selection proper-
ties that are obtained by detecting simultaneous local extrema
over both spatial and temporal scales of different scale-
normalized spatio-temporal differential expressions.Wewill
specifically analyse: (i) how the spatial and temporal scale
estimates ŝ and τ̂ are related to the spatial extent s0 and the
temporal duration τ0 for different types of spatio-temporal
model signals for which closed-form theoretical analysis is
possible and (ii) how the resulting scale-normalized mag-
nitude responses of the different differential entities at the
selected spatio-temporal scales depend upon the spatial
extent s0 and the temporal duration τ0 of the underlying
image structures as well as upon a complementary param-
eter q introduced to enable detection of spatio-temporal
image features at finer temporal scales than at the temporal
scales at which they occur, to in turn enable shorter tem-
poral delays when computing image features based on a
time-causal spatio-temporal scale-space concept.

A main goal is to perform scale calibration, to determine
suitable values of the spatial and temporal scale normal-
ization parameters γs and γτ for different types of spatio-
temporal feature detectors, in such a way that the selected
spatial and temporal scale levels reflect the spatial extent
and the temporal duration of the original spatio-temporal
image structures that gave rise to the feature response.
The methodology we shall follow is to calculate scale-
space representations in closed form for Gaussian-based
spatio-temporal image patterns for which the non-causal
spatio-temporal scale-space representation can be obtained
from the semi-group property of the Gaussian kernel. Then,
given that explicit expressions can be calculated for the scale-
normalized spatio-temporal derivatives, we will solve for the
local extrema of the spatio-temporal differential invariant
DnormL over spatio-temporal scales, to define equations that
determine the scale normalization powers γs and γτ from the
constraints that the spatio-temporal scale estimates should
obey ŝ = s0 and τ̂ = q2 τ0.

The spatial assumption ŝ = s0 is similar to the method for
scale calibration in the spatial scale selection methodology
[64,65,72] and corresponds to detecting the image structure
at the same scale as they appear, which should be optimal
with regard to signal detection theory. Regarding the tempo-
ral assumption τ̂ = q2 τ0, we do, however, also introduce
a parameter q < 1 to enforce temporal scale selection at
finer temporal scales, to enable shorter temporal delays of
the feature responses. As previously described in Sect. 2.2,
for the time-causal scale-space representation the temporal
delay can be expected to be proportional to the temporal scale
in units of the standard deviation of the temporal smoothing

kernel δ ∼ στ = √
τ . A first-order prediction is therefore

that a value of q < 1 can be expected to reduce the temporal
delay by the order of a corresponding factor, to enable an
autonomous agent using these features as input to respond
faster in a time-critical real-time situation.

4.1 The Spatial Laplacian of the Second-Order
Temporal Derivative

Inspired by theway neurones in the lateral geniculate nucleus
(LGN) respond to visual input [12,13], which for many LGN
cells can bemodelled by idealized operations of the form [69,
Equation (108)]

hLGN(x, y, t; s, τ ) = ±(∂xx + ∂yy) g(x, y; s) ∂tn h(t; τ),

(41)

let us for general values of the spatial and temporal scale nor-
malization parameters γs and γτ study the scale-normalized
spatial Laplacian of the second-order temporal derivative
defined according to

∇2
(x,y),normLtt,norm = sγs τγτ ∇2

(x,y)Ltt

= sγs τγτ
(
Lxxtt + Lyytt

)
, (42)

which in turn can be seen as an idealized functional model
of a so-called “lagged” LGN neurone (compare with [69,
Figure 24, right column]). This operator can be expected to
give a strong response when both the spatial Laplacian and
the second-order temporal derivative give strong responses,
e.g., for blinking blobs.

Consider a spatio-temporal image pattern defined as a
Gaussian blink with spatial extent s0 and temporal duration
τ0:

f (x, y, t) = g(x, y; s0) g(t; τ0)

= 1

(2π)3/2s0
√

τ0
e−(x2+y2)/2s0 e−t2/2τ0 . (43)

By spatial smoothingwith the two-dimensional spatial Gaus-
sian kernel and temporal smoothing with the non-causal one-
dimensional Gaussian kernel, the resulting spatio-temporal
scale-space representation will be of the form

L(x, y, t; s, τ ) = g(x, y; s0 + s) g(t; τ0 + τ), (44)

forwhich the scale-normalizedLaplacian of the second-order
temporal derivative at the origin (x, y, t) = (0, 0, 0) is given
by

∇2
(x,y),normLtt,norm

∣∣∣
(0,0,0)

= sγsτγτ

√
2π3/2(s + s0)2(τ + τ0)3/2

.

(45)
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Differentiating this expression with respect to the spatial
scale parameter s and the temporal scale parameter τ and
setting the derivative to zero implies that the local extremum
over spatial and temporal scales is given by

ŝ = γss0
2 − γs

, (46)

τ̂ = 2γτ τ0

3 − 2γτ

. (47)

Ifwe require the spatial and temporal scale estimates to reflect
the spatial and temporal extent of theGaussian blink such that

ŝ = s0, (48)

τ̂ = q2τ0, (49)

then this implies that we should calibrate the scale normal-
ization parameters γs and γτ according to

γs = 1, (50)

γτ = 3q2

2(q2 + 1)
, (51)

where specifically the choice of q = 1 corresponds to
γτ = 3/4. For these values of γs and γτ , the scale-normalized
magnitude expression at the extremum over spatial and tem-
poral scales will be given by

∇2
(x,y),normLtt,norm

∣∣∣
(x,y,t)=(0,0,0),s=ŝ,τ=τ̂

=
(
q2τ0

) 3q2

2(q2+1)

4
√
2π3/2s0

((
q2 + 1

)
τ0

)3/2 , (52)

where specifically the choice q = 1 corresponds to

∇2
(x,y),normLtt,norm

∣∣∣
(x,y,t)=(0,0,0),s=ŝ,τ=τ̂

= 1

16π3/2s0τ
3/4
0

.

(53)

If we additionally renormalize the original Gaussian blink to
having maximum value equal to C

f (x, y, t) = C (2π)3/2s0
√

τ0 g(x, y; s0) g(t; τ0)

= C e−(x2+y2)/2s0 e−t2/2τ0 , (54)

then the magnitude value at the extremum over spatio-
temporal scales will instead be given by

∇2
(x,y),normLtt,norm

∣∣∣
(x,y,t)=(0,0,0),s=ŝ,τ=τ̂

= C
√

τ0
(
q2τ0

) 3q2

2(q2+1)

2
((
q2 + 1

)
τ0

)3/2 , (55)

where specifically the choice q = 1 corresponds to

∇2
(x,y),normLtt,norm

∣∣∣
(x,y,t)=(0,0,0),s=ŝ,τ=τ̂

= C

4
√
2τ 1/40

(56)

and implying that if we want to compare responses between
different spatio-temporal scale levels, we should consider
the following post-normalizedmagnitudemeasure defined to
achieve scale-invariant magnitude responses over both spa-
tial and temporal scales

∇2
(x,y),normLtt,postnorm

= τ
2−q2

2(q2+1) ∇2
(x,y),normLtt,norm

∣∣∣
γs=1,γτ = 3q2

2(q2+1)

= sτ
(
Lxxtt + Lyytt

)
. (57)

4.2 The Spatial Laplacian of the First-Order Temporal
Derivative

For the spatial Laplacian of the first-order temporal deriva-
tive, the corresponding scale-normalized expression is for
general values of the spatial and temporal scale normaliza-
tion parameters γs and γτ given by

∇2
(x,y),normLt,norm = sγs τγτ /2 ∇2

(x,y)Lt

= sγs τγτ /2 (
Lxxt + Lyyt

)
, (58)

which can be seen as an idealized functional model of a
so-called “non-lagged” LGN neurone (compare with [69,
Figure 24, left column]). This operator can be expected to
give a strong response when both the spatial Laplacian and
the first-order temporal derivative give strong responses, e.g.,
for onset and offset blobs.

Consider a spatio-temporal image pattern defined as a
Gaussian onset blobwith spatial extent s0 and temporal dura-
tion τ0:

f (x, y, t)

= g(x, y; s0)
∫ t

u=0
g(u; τ0) du

= 1

(2π)3/2s0
√

τ0
e−(x2+y2)/2s0

∫ t

u=0
e−u2/2τ0 du. (59)

By spatial smoothingwith the two-dimensional spatial Gaus-
sian kernel and temporal smoothing with the non-causal one-
dimensional Gaussian kernel, the resulting spatio-temporal
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scale-space representation will be of the form

L(x, y, t; s, τ ) = g(x, y; s0 + s)
∫ t

u=0
g(u; τ0 + τ) du,

(60)

for which the scale-normalized spatial Laplacian of the
second-order temporal derivative at the origin (x, y, t) =
(0, 0, 0) is given by

∇2
(x,y),normLt,norm

∣∣∣
(0,0,0)

= − sγsτγτ /2

√
2π3/2(s0 + s)2

√
τ0 + τ

.

(61)

Differentiating this expression with respect to the spatial
scale parameter s and the temporal scale parameter τ and
setting the derivative to zero implies that the local extremum
over spatial and temporal scales is given by

ŝ = γss0
2 − γs

, (62)

τ̂ = γτ τ0

1 − γτ

. (63)

Requiring the spatial and temporal scale estimates to reflect
the spatial and temporal extent of the Gaussian onset blob
according to

ŝ = s0, (64)

τ̂ = q2τ0, (65)

implies that we should calibrate the scale normalization
parameters γs and γτ according to

γs = 1, (66)

γτ = q2

q2 + 1
, (67)

where specifically the choiceq = 1 corresponds toγτ = 1/2.
For these values ofγs andγτ , the scale-normalizedmagnitude
expression at the extremum over spatial and temporal scales
will be given by

∇2
(x,y),normLt,norm

∣∣∣
(x,y,t)=(0,0,0),s=ŝ,τ=τ̂

= −
(
q2τ0

) q2

2q2+2

4
√
2π3/2s0

√(
q2 + 1

)
τ0

, (68)

where specifically the case q = 1 corresponds to

∇2
(x,y),normLt,norm

∣∣∣
(x,y,t)=(0,0,0),s=ŝ,τ=τ̂

= − 1

8π3/2s0 4
√

τ0
. (69)

If we additionally renormalize the original Gaussian onset
blob to having maximum value equal to C

f (x, y, t) = 2π C s0 g(x, y; s0) g(t; τ0)

= C√
2π

e−(x2+y2)/2s0

∫ t

u=0
e−u2/2τ0 du, (70)

then the magnitude value at the extremum over spatio-
temporal scales will instead be given by

∇2
(x,y),normLt,norm

∣∣∣
(x,y,t)=(0,0,0),s=ŝ,τ=τ̂

= C
(
q2τ0

) q2

2q2+2

2
√
2π

√(
q2 + 1

)
τ0

, (71)

where specifically the case q = 1 corresponds to

∇2
(x,y),normLt,norm

∣∣∣
(x,y,t)=(0,0,0),s=ŝ,τ=τ̂

= − C

4
√

π 4
√

τ0

(72)

and implying that if we want to compare responses between
different spatio-temporal scale levels, we should consider
the following post-normalizedmagnitudemeasure to achieve
scale-invariant magnitude responses over both spatial and
temporal scales

∇2
(x,y),postnormLt,postnorm

= τ
1

2(q2+1) ∇2
(x,y),normLt,norm

∣∣∣
γs=1,γτ = q2

q2+1

= s
√

τ
(
Lxxt + Lyyt

)
. (73)

4.3 The Determinant of the Spatial Hessian Matrix
Applied to the Second-Order Temporal Derivative

Inspired by the way the determinant of the spatial Hessian
matrix constitutes a better spatial interest point detector than
the spatial Laplacian operator [74], we consider an extension
of the spatial Laplacian of the second-order temporal deriva-
tive (42) into the determinant of the spatial Hessian applied
to the second-order temporal derivative

detH(x,y),normLtt,norm = s2γs τ 2γτ detH(x,y)Ltt

= s2γs τ 2γτ

(
Lxxtt L yytt − L2

xytt

)
.

(74)
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This operator can be expected to give a strong response when
both the second-order temporal derivative and the determi-
nant of the spatial Hessian give strong responses, e.g., when
there are strong second-order temporal variations in combi-
nation with simultaneously strong spatial variations in two
orthogonal spatial directions, such as for blinking blobs or
corners.

When applied to aGaussian blink of the form (43) having a
spatio-temporal scale-space representation of the form (44),
the scale-normalizeddeterminant of the spatio-temporalHes-
sian at the origin then assumes the form

detH(x,y),normLtt,norm
∣∣
(0,0,0)

s2γsτ 2γτ

8π3(s + s0)4(τ + τ0)3
(75)

and assumes its extremum over spatial and temporal scales
at

ŝ = γss0
2 − γs

, (76)

τ̂ = 2γτ τ0

3 − 2γτ

. (77)

Ifwe require the spatial and temporal scale estimates to reflect
the spatial and temporal extent of the Gaussian blink accord-
ing to ŝ = s0 and τ̂ = q2τ0, then this implies that we
should calibrate the scale normalization parameters γs and
γτ according to

γs = 1, (78)

γτ = 3q2

2
(
q2 + 1

) , (79)

where specifically the choiceq = 1 corresponds toγτ = 3/4.
For these values ofγs andγτ , the scale-normalizedmagnitude
expression at the extremum over spatial and temporal scales
will be given by

detH(x,y),normLtt,norm
∣∣
(0,0,0) =

(
q2τ0

) 3q2

q2+1

128π3
(
q2 + 1

)3
s20τ

3
0

,

(80)

where specifically the choice q = 1 corresponds to

detH(x,y),normLtt,norm
∣∣
(0,0,0) = 1

1024π3s20τ
3/2
0

. (81)

If we additionally renormalize the original Gaussian blink to
having maximum value equal to C according to (54), then
the magnitude value at the extremum over spatio-temporal
scales will instead be given by

detH(x,y),normLtt,norm
∣∣
(0,0,0) = C2

(
q2τ0

) 3q2

q2+1

16
(
q2 + 1

)3
τ 20

, (82)

where specifically the choice q = 1 corresponds to

detH(x,y),normLtt,norm
∣∣
(0,0,0) = C2

128
√

τ0
(83)

and implying that if we want to compare responses between
different spatio-temporal scale levels, we should consider
the following post-normalizedmagnitudemeasure to achieve
scale invariance over both spatial and temporal scales

detH(x,y),normLtt,norm

= τ
2(2−q2)

q2+1 detH(x,y),normLtt,norm
∣∣
γs=1,γτ = 3q2

2(q2+1)

= s2 τ 2 (Lxxtt L yytt − L2
xytt ). (84)

4.4 The Determinant of the Spatial Hessian Matrix
Applied to the First-Order Temporal Derivative

Analogously to the determinant of the spatialHessian applied
to the second-order temporal derivative,we can also apply the
determinant of the spatial Hessian to the first-order temporal
derivative

detH(x,y),normLt,norm = s2γs τγτ detH(x,y)Lt

= s2γs τγτ

(
Lxxt L yyt − L2

xyt

)
.

(85)

This operator can be expected to give a strong response when
both the first-order temporal derivative and the determinant
of the spatial Hessian give strong responses, e.g., when there
are strong first-order temporal variations in combinationwith
simultaneously strong spatial variations in two orthogonal
spatial directions, such as for onset or offsets blobs or corners.

When applied to an onset Gaussian blob of the form (59)
having a spatio-temporal scale-space representation of the
form (60), the first-order temporal derivative of the deter-
minant of the spatial Hessian at the origin then assumes the
form

detH(x,y),normLt,norm
∣∣
(0,0,0) = s2γsτγτ

8π3(s + s0)4(τ + τ0)

(86)

and assumes its extremum over spatial and temporal scales
at

ŝ = γss0
2 − γs

, (87)
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τ̂ = γτ τ0

1 − γτ

. (88)

Ifwe require the spatial and temporal scale estimates to reflect
the spatial and temporal extent of the Gaussian onset blob
according to ŝ = s0 and τ̂ = q2τ0, then this implies that we
should calibrate the scale normalization parameters γs and
γτ according to

γs = 1, (89)

γτ = q2

q2 + 1
, (90)

where specifically the choiceq = 1 corresponds toγτ = 1/2.
For these values ofγs andγτ , the scale-normalizedmagnitude
expression at the extremum over spatial and temporal scales
will be given by

detH(x,y),normLt,norm
∣∣
(0,0,0) =

(
q2τ0

) q2

q2+1

128π3
(
q2 + 1

)
s20τ0

, (91)

where specifically the choice q = 1 corresponds to

detH(x,y),normLt,norm
∣∣
(0,0,0) = 1

256π3s20
√

τ0
. (92)

If we additionally renormalize the original Gaussian onset
blob to having maximum value equal to C according to
(70), then the magnitude value at the extremum over spatio-
temporal scales will instead be given by

detH(x,y),normLt,norm
∣∣
(0,0,0) = C2

(
q2τ0

) q2

q2+1

32πq2τ0 + 32πτ0
, (93)

where specifically the choice q = 1 corresponds to

detH(x,y),normLt,norm
∣∣
(0,0,0) = C2

64π
√

τ0
(94)

and implying that if we want to compare responses between
different spatio-temporal scale levels, we should consider
the following post-normalizedmagnitudemeasure to achieve
scale invariance over both spatial and temporal scales

detH(x,y),normLt,norm

= τ

q2+2
2(q2+1) detH(x,y),normLt,norm

∣∣
γs=1,γτ = q2

q2+1

= s2τ
(
Lxxt L yyt − 2L2

xyt

)
. (95)

4.5 The Determinant of the Spatio-Temporal Hessian
Matrix

For general values of the spatial and temporal scale normal-
ization parameters γs and γτ , the scale-normalized determi-
nant of the spatio-temporal Hessian is given by

detH(x,y,t),normL

= s2γs τγτ

(
Lxx L yy Ltt + 2Lxy Lxt L yt

− Lxx L
2
yt − Lyy L

2
xt − Ltt L

2
xy

)
. (96)

This operator can be expected to give strong responses when
there are simultaneously strong second-order variations in
three strongly different directions in joint space–time.

When applied to aGaussian blink of the form (43) having a
spatio-temporal scale-space representation of the form (44),
the scale-normalizeddeterminant of the spatio-temporalHes-
sian at the origin then assumes the form

det(H(x,y,t),normL)
∣∣
(0,0,0)

= − s2γsτγτ

16
√
2π9/2(s + s0)5(τ + τ0)5/2

(97)

and assumes its extremum over spatial and temporal scales
at

ŝ = 2γss0
5 − 2γs

, (98)

τ̂ = 2γτ τ0

5 − 2γτ

. (99)

Requiring the spatial and temporal scale estimates to reflect
the spatial and temporal extent of the Gaussian blink accord-
ing to ŝ = s0 and τ̂ = q2τ0 implies that we should calibrate
the scale normalization parameters γs and γτ according to

γs = 5

4
, (100)

γτ = 5q2

2(q2 + 1)
, (101)

where specifically the choiceq = 1 corresponds toγτ = 5/4.
For these values ofγs andγτ , the scale-normalizedmagnitude
expression at the extremum over spatial and temporal scales
is given by

det(H(x,y,t),normL)
∣∣
(0,0,0)

= −
(
q2τ0

) 5q2

2(q2+1)

512
√
2π9/2s5/20

((
q2 + 1

)
τ0

)5/2 , (102)
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where specifically the choice q = 1 corresponds to

det(H(x,y,t),normL)
∣∣
(0,0,0) = − 1

4096π9/2s5/20 τ
5/4
0

. (103)

If we additionally renormalize the original Gaussian blink to
having maximum value equal to C according to (54), then
the magnitude value at the extremum over spatio-temporal
scales will instead be given by

det(H(x,y,t),normL)
∣∣
(0,0,0) = −C3 √

s0 τ
3/2
0

(
q2τ0

) 5q2

2(q2+1)

32
((
q2 + 1

)
τ0

)5/2 ,

(104)

where specifically the choice q = 1 corresponds to

det(H(x,y,t),normL)
∣∣
(0,0,0) = −C3 √

s0 4
√

τ0

128
√
2

(105)

and implying that if we want to compare responses between
different spatio-temporal scale levels, we should consider
the following post-normalizedmagnitudemeasure to achieve
scale invariance over both spatial and temporal scales

det(H(x,y,t),postnormL

= τ
2−3q2

2(q2+1)

√
s

det(H(x,y,t),normL)
∣∣
γs= 5

4 ,γτ = 5q2

2(q2+1)

= s2τ
(
Lxx L yy Ltt + 2Lxy Lxt L yt

− Lxx L
2
yt − Lyy L

2
xt − Ltt L

2
xy

)
. (106)

In view of these results, it is illuminating to compare to
the analysis by Willems et al. [122], who defined a scale-
normalized determinant of the Hessian corresponding to (96)
based on γs = 1 and γτ = 1, which in turn implies that the
spatial and temporal scale estimates were instead given by

ŝ = 2

3
s0, (107)

τ̂ = 2

3
τ0. (108)

If we would like the features to be detected at the scales at
which they occur, such that ŝ = s0 and τ̂ = τ0, we should,
however, instead choose the scale normalization powers γs
and γτ according to (100) and (101) for q = 1, so that
we achieve maximum similarity between the response prop-
erty of the spatio-temporal feature detector in relation to the
spatio-temporal features we would like to detect. If using
a lower value of the parameter q < 1, then this prop-
erty is sacrificed for the possible gain of obtaining faster

temporal responses in a time-causal implementation, where
otherwise the detection of image features at coarser tem-
poral scales implies longer temporal delays (compare with
Sect. 2.2). Over the spatial domain or over a non-causal tem-
poral domain as used in the original work by Willems et al.
[122], it should, however, from signal detection theory be
better to calibrate the method such that ŝ = s0 and τ̂ = τ0.
Notwithstanding the potential gain of achieving a shorter
temporal delay by using a lower value of q < 1, from a signal
detection theory background there should be no motivation
to calibrate the feature detector to choosing finer spatial scale
levels than s0.

4.6 The Second-Order Temporal Derivative of the
Determinant of the Spatial Hessian Matrix

When using the spatial Laplacian operator over the spa-
tial domain as a basis for defining spatio-temporal interest
operators, the spatial Laplacian does because of its linearity
commute with the first- and second-order temporal deriva-
tives. Thereby, the spatial Laplacian of the second-order
temporal derivative is equal to the second-order temporal
derivative of the spatial Laplacian.When replacing theLapla-
cian interest operator in the spatio-temporal interest operator
∇2

(x,y),normLtt,norm by the determinant of the spatial Hessian,
an alternative possibility to considering the determinant of
the second-order temporal derivative detH(x,y),normLtt,norm

is therefore to consider the second-order temporal derivative
of the determinant of the spatial Hessian

∂t t,norm(detH(x,y),normL)

= s2γs τγτ ∂t t (detH(x,y)L)

= s2γs τγτ
(
Lxxtt L yy + 2Lxxt L yyt + Lxx L yytt

− 2L2
xyt − 2Lxy Lxytt

)
. (109)

This operator can be expected to give strong responses when
the spatial slice of joint space–time contains strong second-
order variations on two orthogonal spatial directions, and this
structure in turn also leads to strong second-order temporal
variations as time evolves.

When applied to aGaussian blink of the form (43) having a
spatio-temporal scale-space representation of the form (44),
the scale-normalizeddeterminant of the spatio-temporalHes-
sian at the origin then assumes the form

∂t t,norm(detH(x,y),normL)
∣∣
(0,0,0)

= − s2γsτγτ

4π3(s + s0)4(τ + τ0)2
(110)
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and assumes its extremum over spatial and temporal scales
at

ŝ = γss0
2 − γs

, (111)

τ̂ = γτ τ0

2 − γτ

. (112)

Ifwe require the spatial and temporal scale estimates to reflect
the spatial and temporal extent of the Gaussian blink accord-
ing to ŝ = s0 and τ̂ = q2τ0, then this implies that we
should calibrate the scale normalization parameters γs and
γτ according to

γs = 1, (113)

γτ = 2q2

q2 + 1
, (114)

where specifically the choice q = 1 corresponds to γτ = 1.
For these values ofγs andγτ , the scale-normalizedmagnitude
expression at the extremum over spatial and temporal scales
will be given by

∂t t,norm(detH(x,y),normL)
∣∣
(0,0,0) = −

(
q2τ0

) 2q2

q2+1

64π3
(
q2 + 1

)2
s20τ

2
0

,

(115)

where specifically the choice q = 1 corresponds to

∂t t,norm(detH(x,y),normL)
∣∣
(0,0,0) = − 1

256π3s20τ0
. (116)

If we additionally renormalize the original Gaussian blink to
having maximum value equal to C according to (54), then
the magnitude value at the extremum over spatio-temporal
scales will instead be given by

∂t t,norm(detH(x,y),normL)
∣∣
(0,0,0) = −C2

(
q2τ0

) 2q2

q2+1

8
(
q2 + 1

)2
τ0

,

(117)

where specifically the choice q = 1 corresponds to

∂t t,norm(detH(x,y),normL)
∣∣
(0,0,0) = −C2

32
(118)

and implying that if we want to compare responses between
different spatio-temporal scale levels, we should consider
the following post-normalizedmagnitudemeasure to achieve
scale invariance over both spatial and temporal scales

∂t t,postnorm(detH(x,y),postnormL)

= τ
1−q2

1+q2 ∂t t,norm(detH(x,y),normL)
∣∣
γs=1,γτ = 2q2

1+q2

= s2τ
(
Lxxtt L yy + 2Lxxt L yyt + Lxx L yytt

−2L2
xyt − 2Lxy Lxytt

)
. (119)

4.7 The First-Order Temporal Derivative of the
Determinant of the Spatial Hessian Matrix

Analogously to the second-order temporal derivative of the
determinant of the spatial Hessian, we can also define the
first-order temporal derivative of the determinant of the spa-
tial Hessian

∂t,norm(detH(x,y),normL)

= s2γs τγτ /2 ∂t (detH(x,y)L)

= s2γs τγτ /2 (
Lxxt L yy + Lxx L yyt − 2Lxy Lxyt

)
. (120)

This operator can be expected to give strong responses when
the spatial slice of joint space–time contains strong second-
order variations on two orthogonal spatial directions, and
this structure in turn also leads to strong first-order temporal
variations as time evolves.

When applied to an onset Gaussian blob of the form (59)
having a spatio-temporal scale-space representation of the
form (60), the first-order temporal derivative of the deter-
minant of the spatial Hessian at the origin then assumes the
form

∂t,norm(detH(x,y),normL)
∣∣
(0,0,0)

= s2γsτγτ /2

4
√
2π5/2(s + s0)4

√
τ + τ0

(121)

and assumes its extremum over spatial and temporal scales
at

ŝ = γss0
2 − γs

, (122)

τ̂ = γτ τ0

1 − γτ

. (123)

Ifwe require the spatial and temporal scale estimates to reflect
the spatial and temporal extent of the Gaussian onset blob
according to ŝ = s0 and τ̂ = q2τ0, then this implies that we
should calibrate the scale normalization parameters γs and
γτ according to

γs = 1, (124)

γτ = q2

q2 + 1
, (125)
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where specifically the choiceq = 1 corresponds toγτ = 1/2.
For these values ofγs andγτ , the scale-normalizedmagnitude
expression at the extremum over spatial and temporal scales
will be given by

∂t,norm(detH(x,y),normL)
∣∣
(0,0,0)

=
(
q2τ0

) q2

2q2+2

64
√
2π5/2s20

√(
q2 + 1

)
τ0

, (126)

where specifically the choice q = 1 corresponds to

∂t,norm(detH(x,y),normL)
∣∣
(0,0,0) = 1

128π5/2s20
4
√

τ0
. (127)

If we additionally renormalize the original Gaussian onset
blob to having maximum value equal to C according to
(70), then the magnitude value at the extremum over spatio-
temporal scales will instead be given by

∂t,norm(detH(x,y),normL)
∣∣
(0,0,0) = C2

(
q2τ0

) q2

2q2+2

16
√
2π

√(
1 + q2

)
τ0

,

(128)

where specifically the choice q = 1 corresponds to

∂t,norm(detH(x,y),normL)
∣∣
(0,0,0) = C2

32
√

π 4
√

τ0
(129)

and implying that if we want to compare responses between
different spatio-temporal scale levels, we should consider
the following post-normalizedmagnitudemeasure to achieve
scale invariance over both spatial and temporal scales

∂t,postnorm(detH(x,y),postnormL)

= τ

1
2(q2+1) ∂t,norm(detH(x,y),normL)

∣∣
γs=1,γτ = q2

q2+1

= s2
√

τ
(
Lxxt L yy + Lxx L yyt − 2Lxy Lxyt

)
. (130)

4.8 The Spatio-Temporal Laplacian

If aiming at defining a spatio-temporal analogue of the Lapla-
cian operator, one does, however, need to consider that the
most straightforward way of defining such an operator

∇2
(x,y,t)L = Lxx + Lyy + Ltt (131)

is not covariant under independent scaling transformations
of the spatial and temporal domains as occurs if observing
the same scene with cameras having independently different

spatial and temporal sampling rates. Therefore, if attempt-
ing to define a spatio-temporal analogue of the Laplacian of
the Gaussian operator, one could in principle consider intro-
ducing an arbitrary scaling factor �2 between the temporal
versus the spatial derivatives

∇2
(x,y,t)L = Lxx + Lyy + �2Ltt . (132)

This operator can be expected to give strong response when
there is strong second-order variation in at least one spa-
tial dimension or in the temporal dimension. It is, however,
not necessary that that there are simultaneous strong varia-
tions over both space and time, implying that this operator
cannot be expected to be as selective as the other seven spatio-
temporal interest point detectors studied above.

With the previously introduced recipe of replacing spatial
and temporal derivatives by corresponding scale-normalized
derivatives, the corresponding scale-normalized expression
then becomes

∇2
(x,y,t),normL = sγs(Lxx + Lyy) + �2τγτ Ltt , (133)

which, however, is not within the family of spatio-temporal
differential invariants (18) guaranteed to lead to scale-
covariant spatio-temporal scale selection.

When applied to aGaussian blink of the form (43) having a
spatio-temporal scale-space representation of the form (44),
the scale-normalized spatio-temporal Laplacian at the origin
then assumes the form

∇2
(x,y,t),normL

∣∣∣
(0,0,0)

= −2sγs(τ + τ0) − �2τγτ (s + s0)

2
√
2π3/2(s + s0)2(τ + τ0)3/2

.

(134)

Unfortunately, the algebraic equations that determine the spa-
tial and temporal scale estimates as function of s0 and τ0

− 2(γs − 2)sγs+1(τ + τ0) − 2γss0s
γs(τ + τ0)

+ s2�2τγτ + ss0�
2τγτ = 0, (135)

2τ sγs(τ + τ0) − s�2τγτ ((2γτ − 3)τ + 2γτ τ0)

− s0�
2τγτ ((2γτ − 3)τ + 2γτ τ0) = 0, (136)

are hard to solve for general values of the scale normaliza-
tion parameters γs and γτ . By solving these equations in the
specific case of γs = 1 and γτ = 1, we can, however, note
that the resulting scale estimates

ŝ =s0

(
5

2 + �2 − 1

)
, (137)

τ̂ =2τ0

(
2 − 5

2 + �2

)
, (138)
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will be explicitly dependent on the relative scaling factor
�2 between the derivatives with respect to the temporal ver-
sus the spatial domains. This situation is in clear contrast to
the previously considered spatio-temporal differential invari-
ants for spatio-temporal scale selection: (i)–(ii) the spatial
Laplacian of the first- and second-order temporal derivatives
(58), (iii)–(iv) the determinant of the Hessian applied to the
first- and second-order temporal derivatives (58) and (42),
(v) the determinant of the spatio-temporal Hessian (96) or
(vi)–(vii) the first- and second-order temporal derivatives of
the determinant of the spatial Hessian (109) and (120), for
which a correspondingmultiplication of the temporal deriva-
tive operator by a temporal rescaling factor � does not affect
the spatio-temporal scale estimates.

The underlying theoretical reason for this lack of spatial
and temporal scale invariance is that the attempt to define a
spatio-temporal Laplacian operator according to (132) is not
covariant under independent rescaling transformations of the
spatial and temporal domains. The spatial Laplacian of the
first- and second-order temporal derivatives, the determinant
of the Hessian of the first- and second-order temporal deriva-
tives and the determinant of the spatio-temporal Hessian are
on the other hand truly covariant under such independent
relative scaling transformations of the spatial and temporal
domains.

The corresponding magnitude estimate at the extremum
over spatio-temporal scales is for γs = 1 and γτ = 1 given
by

∇2
(x,y,t),normL

∣∣∣
(0,0,0)

=
3
√

3
10

(
2 + �2

)

25π3/2s0
√

τ0
. (139)

If we additionally renormalize the original Gaussian blink to
having maximum value equal to C according to (54), then
the magnitude value at the extremum over spatio-temporal
scales will instead be given by

∇2
(x,y,t),normL

∣∣∣
(0,0,0)

= − 6

25

√
3

5

(
2 + �2

)
C (140)

and also dependent on the in principle arbitrary relative
weighting factor �2 between the temporal and spatial deriva-
tives.

To illustrate the practical consequence of the lack of
spatio-temporal scale covariance for a differential entity used
for spatio-temporal scale selection, let us consider two dif-
ferent video cameras that are observing the same scene. Let
us for simplicity assume that the sensors in the two video
cameras have the same spatial resolution, whereas the tem-
poral resolutions differ by say a factor of two. If we define
a spatio-temporal Laplacian operator for each video domain
based on the native coordinate systemof each respective indi-
vidual camera, then the spatio-temporal Laplacian operator

in the first video domain will correspond to a spatio-temporal
Laplacian operator in the second video domain that differs
by a factor of two in the value of �. Thus, if we perform
spatio-temporal scale selection by detecting local extrema
over spatio-temporal scales of the spatio-temporal Lapla-
cian, we will detect extrema in effective spatio-temporal
differential expressions that differ between the two video
domains. Specifically, this implies that we cannot exactly
interrelate the spatio-temporal Laplacian responses between
the two domains in the way necessary to carry out a proof
of scale invariance for general classes of spatio-temporal
image structures. Although the scale estimates could for
another form of scale normalization be computed for the spe-
cific spatio-temporal image model of a Gaussian blink [49],
corresponding scale selection properties are then not guar-
anteed to generalize to more general spatio-temporal image
structures beyond the specific subfamily of image structures
for which the scale calibration was performed. Because of
the covariance properties of the spatio-temporal differential
invariants ∇2

(x,y),normLt,norm,∇2
(x,y),normLtt,norm, det

H(x,y),norm Lt,norm, detH(x,y),normLtt,norm, detH(x,y,t),norm

L , ∂t,norm(H(x,y),normL) and ∂t t,norm(H(x,y),normL), such
interrelations can, however, be carried out for those differen-
tial operators between two video domains with undetermined
relative scaling factors between the spatial and temporal
domains. Consequently, these differential entities are there-
fore much better for spatio-temporal scale selection than the
attempt to define a spatio-temporal Laplacian operator.

Additionally, if one would attempt to rank image features
based on the corresponding scale-normalized magnitude
measure∇2

(x,y,t),normL , then the relative ranking of the image
features could therefore also be different between the two
domains of the two video cameras, whereas the correspond-
ing relative ranking of image features is preserved for spatio-
temporal scale selection based on the differential invariants
∇2

(x,y),normLt,norm, ∇2
(x,y),normLtt,norm, detH(x,y),norm

Lt,norm, detH(x,y),normLtt,norm, detH(x,y,t),normL , ∂t,norm
(H(x,y),normL) and ∂t t,norm(H(x,y),normL).

In the spatio-temporal interest point detector proposed in
[49], a scale-normalized spatio-temporal Laplacian operator
corresponding to the specific choice of � = 1 was indeed
used for spatio-temporal scale selection, although with a dif-
ferent form of scale normalization of the form

∇2
(x,y,t),normL = saτ b(Lxx + Lyy) + scτ d Ltt (141)

for the specific choices of a = 1, b = 1, c = 1/2 and
d = 3/4. In addition to the above-mentioned fundamental
limitation of using a spatio-temporal Laplacian operator for
spatio-temporal scale selection, by the mixed scale normal-
ization in (141) with the temporal scale parameter τ affecting
the spatial derivate expressions Lxx and Lyy and the spatial
scale parameter s affecting the temporal derivative expres-
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sion Ltt , it will, however, not be possible to establish a
relation between such spatio-temporal Laplacian operators
between different spatio-temporal domains that are affected
by independent relative rescalings of the spatial and tempo-
ral domains. Specifically, it will therefore not be possible to
establish a covariance relation between two such indepen-
dently rescaled spatio-temporal image domains as would be
needed to prove scale covariance of the spatial and temporal
scale estimates for general spatio-temporal image structures
according to the spatio-temporal scale selection theory in
Sect. 3. By these theoretical arguments, we can therefore
explain why the scale estimates from the spatial and tempo-
ral selectionmechanisms in [49]were later empirically found
to not be sufficiently robust.

If a scale-normalized spatio-temporal Laplacian operator
is to be used for spatio-temporal feature detection anyway,
the scale normalization according to (133) should, however,
lead to better experimental results than the scale normal-
ization according to (141), since the partial derivates with
respects to the different dimensions of space and time in the
scale-normalized differential expression (141) are not added
in terms of dimensionless scale-normalized differential enti-
ties for the given values of a, b, c and d, whereas the partial
derivatives with respect to space versus time are added in
a dimensionless manner in the scale-normalized differential
expression (133) if γs = 1 and γτ = 1 (and corresponding
to a = 1, b = 0, c = 0 and d = 1 in (141) for the specific
choice of � = 1).

4.9 Scale Normalization Powers of Spatio-Temporal
Interest Point Detectors

To summarize, the analysis of scale calibration in Sects. 4.1–
4.7 shows that the scale normalization powers γs and γτ for
the different spatio-temporal interest point detectors should
be determined according to Table 1.

4.10 Relating Magnitude Thresholds Between Different
Spatio-Temporal Feature Detectors

By considering the scale-normalized magnitude responses
(55), (71), (82), (93), (104) (117) and (128) of the above
scale-covariant spatio-temporal feature detectors and apply-
ing post-normalization of these entities to make the feature
responses fully scale-invariant, we can express relations
between their magnitude responses in terms of the contrast
C of the spatio-temporal image pattern that gave rise to the
feature response according to Table 2. These relations can in
turn be used for expressing coarse relations between mag-
nitude thresholds for the different types of spatio-temporal
interest operators.

Table 1 Scale normalization powers γs and γτ as determined from
scale calibration of the seven spatio-temporal interest point detec-
tors ∇2

(x,y),normLt,norm,∇2
(x,y),normLtt,norm, detH(x,y),normLt,norm,

detH(x,y),normLtt,norm, detH(x,y,t),normL , ∂t,norm(detH(x,y),normL)

and ∂t t,norm(detH(x,y),normL) that are guaranteed to lead to scale-
covariant spatio-temporal scale estimates

DL γs γτ

∇2
(x,y),normLt,norm 1 q2

q2+1

∇2
(x,y),normLtt,norm 1 3q2

2(q2+1)

detH(x,y),normLt,norm 1 q2

q2+1

detH(x,y),normLtt,norm 1 3q2

2(q2+1)

detH(x,y,t),normL 5
4

5q2

2(q2+1)

∂t,norm(detH(x,y),normL) 1 q2

q2+1

∂t t,norm(detH(x,y),normL) 1 2q2

q2+1

Table 2 Relations between magnitude thresholds for seven of the
spatio-temporal interest point detectors studied in this paper in terms of
a common local contrast parameter C

Magnitude thresholds for spatio-temporal interest operators
DL For q = 1 For general q

∇2
(x,y),normLt,norm

C
4
√

π

C q
q2

q2+1

2
√
2π

√
q2+1

∇2
(x,y),normLtt,norm

C
4
√
2

Cq
3q2

q2+1

2(q2+1)
3/2

detH(x,y),normLt,norm
C2

64π
C2q

2q2

q2+1

32πq2+32π

detH(x,y),normLtt,norm
C2

128
C2q

6q2

q2+1

16(q2+1)
3

detH(x,y,t),normL C3

128
√
2

C3 q
5q2

q2+1

32(q2+1)
5/2

∂t,norm(detH(x,y),normL) C2

32
√

π

C2 q
q2

q2+1

16
√
2π

√
1+q2

∂t t,norm(detH(x,y),normL) C2

32
C2 q

4q2

q2+1

8(q2+1)
2

5 Spatio-Temporal Interest Points Detected as
Spatio-Temporal Scale-Space Extrema Over
Space–Time

In this section, we shall use the scale-normalized dif-
ferential entities ∇2

(x,y),normLt,norm,∇2
(x,y),normLtt,norm, det

H(x,y),normLt,norm, detH(x,y),normLtt,norm, detH(x,y,t),norm

L , ∂t,norm(detH(x,y),normL), ∂t t,norm(detH(x,y),normL) and
∇2

(x,y,t),normL according to (42), (58), (74), (85), (96), (109),
(120) and (133) for detecting spatio-temporal interest points.
The overall idea of the most basic form of such an algo-
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rithm is to simultaneously detect both spatio-temporal points
(x̂, ŷ, t̂) and spatio-temporal scales (ŝ, τ̂ ) at which the
scale-normalized differential entity (DnormL)(x, y, t; s, τ )

simultaneously assumes local extrema with respect to both
space–time (x, y, t) and spatio-temporal scales (s, τ ).

For the use case of offline analysis of pre-recorded video
using a non-causal spatio-temporal scale-space representa-
tion, such a spatio-temporal scale-space extrema algorithm
could be expressed as a straightforward generalization of
the corresponding spatial scale-space extrema algorithm pro-
posed in Lindeberg [65] and summarized on more compact
form in “Appendix A”. The only major conceptual differ-
ences are that: (i) the image data should be expanded over
both a spatial and a temporal scale parameter instead of
just a spatial scale parameter and (ii) the local compar-
isons for detecting local extrema should be performed over a
3×3×3×3×3-neighbourhood over (x, y, t; s, τ ) instead
of over a 3 × 3 × 3-neighbourhood over (x, y; s).

A computational problem when expanding a video
sequence over both spatial and temporal scales, however, is
that the amount of data may become very large, if expand-
ing the video data into the 5-D spatio-temporal scale-space
representation over the spatial domain (x, y), the temporal
domain t and the spatio-temporal scale parameters (s, τ ).
For this reason, we shall instead consider a time-recursive
implementation that steps forward over time t and onlymain-
tains a much more compact time-recursive memory of past
information, as a 4-D representation over the spatial image
coordinates (x, y) and the spatio-temporal scale levels (s, τ )

at each time moment t . Therefore, the time-recursive imple-
mentation avoids expanding the internal memory over the
temporal dimension and does also directly apply to a time-
causal situation in which the future cannot be accessed.

5.1 Time-Causal and Time-Recursive Algorithm for
Spatio-Temporal Scale-Space Extrema Detection

Let us approximate the spatial smoothing operation in
the continuous spatio-temporal scale-space representation
according to (9) by smoothing with the discrete analogue
of the Gaussian kernel over the spatial domain [56]

T (n1, n2; s) = e−2s In1(s) In2(s), (142)

which obeys the semi-group property over spatial scales

T (·, ·; s1) ∗ T (·, ·; s2) = T (·, ·; s1 + s2) (143)

andwhere In denotes themodifiedBessel functions of integer
order [2].

Let us additionally approximate the time-causal limit ker-
nel, which can be described by a cascade of first-order
integrators [75, Equation (15)]

∂t L(t; τk) = 1

μk
(L(t; τk−1) − L(t; τk)) , (144)

by a cascade of first-order recursive filters of the form [75,
Equation (56)]

fout (t)− fout (t−1) = 1

1 + μk
( fin(t)− fout (t−1)). (145)

Assuming that the input video data f (x, y, t) is acquired at
spatial scale s0 and temporal scale τ0,we can then state a basic
algorithm for computing the time-causal and time-recursive
spatio-temporal scale-space representation and for detecting
spatio-temporal scale-space extremaof scale-normalized dif-
ferential invariants from it as follows:

1. Determine a set of logarithmically distributed temporal
scale levels τk and spatial scale levels sl atwhich the algo-
rithm is to operate by computing spatio-temporal scale-
space representations at these spatio-temporal scales.

2. Compute time constantsμk = (
√
1 + 4 r2 (τk − τk−1)−

1)/2 according to Lindeberg [75, Equations (58) and
(55)] for approximating the time-causal limit kernel by
a finite number of recursive filters, where r denotes the
frame rate and the temporal scale levels τk are given in
units of [seconds]2.

3. Expand the first image frame f (x, y, 0) into its purely
spatial scale-space representation L(x, y, 0; s, τ0) over
the spatial scale levels sl at the finest temporal scale τ0
using the semi-group property of the discrete analogue
of the Gaussian kernel

L(·, ·, 0; sl , τ0) = T (·, ·; sl − sl−1) ∗ L(·, ·, 0; sl−1, τ0)

(146)

with initial condition L(x, y, 0; s0, τ0) = f (x, y, 0) at
the finest spatial scale s0.

4. For each temporal scale level τk , initiate a temporal buffer
for temporal scale-space smoothing at this temporal
scale using the purely spatial scale-space representation
of the first frame as initial condition B(x, y, k, l) =
L(x, y, 0; sl , τ0).

5. For each spatial and temporal scale level, initiate a small
number of temporal buffers for the nearest past frames.
(This number should be equal to the maximum order of
temporal differentiation.)

6. Loop forwards over time t (in units of time steps):

(a) Given a new image frame f (x, y, t), expand this
frame into its purely spatial scale-space representa-
tion L(x, y, t; s, τ0) at the finest temporal scale τ0

L(·, ·, t; sl , τ0) = T (·, ·; sl −sl−1)∗L(·, ·, t; sl−1, τ0).

(147)
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with initial condition L(x, y, t; s0, τ0) = f (x, y, t)
at the finest spatial scale s0.

(b) Loop over the temporal scale levels k in ascending
order:
i. For each spatio-temporal scale level (k, l), per-

form temporal smoothing according to (with
B(x, y, 0, l) = L(x, y, t; sl , τ0))

B(x, y, k, l) := B(x, y, k, l)

+ 1

1 + μk
(B(x, y, k − 1, l) − B(x, y, k, l)).

(148)

(c) For all temporal and spatial scales, compute tempo-
ral derivatives using backward differences over the
buffers from past frames.

(c) For all temporal and spatial scales, compute the scale-
normalized differential entity (DnormL)(x, y, t; sl ,
τk) at that spatio-temporal scale.

(e) For all points and spatio-temporal scales (x, y; sl , τk)
for which the magnitude of the post-normalized dif-
ferential entity is above a pre-defined threshold

|(DpostnormL)(x, y, t; sl , τk)| ≥ θ, (149)

and optionally, if using complementary thresholding
[74], the sign of a complementary differential expres-
sion3 D̄L is additionally positive

|(D̄L)(x, y, t; sl , τk)| ≥ 0, (150)

determine if the point is either a positivemaximum or
a negative minimum in comparison with its nearest
neighbours over space (x, y), time t , spatial scales sl
and temporal scales τk .Because the detection of local
extrema over time requires a future reference in the
temporal direction, this comparison is not done at the
most recent frame but at the nearest past frame.
i. For each detected scale-space extremum, com-

pute more accurate estimates of its spatio-
temporal position (x̂, ŷ, t̂) and spatio-temporal
scale (ŝ, τ̂ ) using parabolic interpolation along

3 For example, if performing spatio-temporal interest point detection
using the spatial Laplacian operator ∇2L applied to either of the first-
or the second-order temporal derivatives Lt or Ltt , complementary
thresholding can be performed by applying the unsigned Hessian fea-
ture strength measure D1L = Lxx L yy − L2

xy − k (Lxx + Lyy)
2 [74]

to either the first- or the second-order temporal derivatives, respec-
tively, for k ∈ [0, 1/4[ with preferred choice of k ∈ [0.04, 0.10],
to suppress multiple responses along elongated image structures over
the spatial domain. This implies that complementary thresholding for
these Laplacian-based spatio-temporal interest operators should be per-
formed based on D1Lt = Lxxt L yyt − L2

xyt − k (Lxxt + Lyyt )
2 > 0 or

D1Ltt = Lxxtt L yytt − L2
xytt − k (Lxxtt + Lyytt )

2 > 0.

each dimension according to Lindeberg [77,
Equation (115)]. Do also compensate themagni-
tude estimates by a magnitude correction factor
computed for each dimension.

When detecting local extrema with respect to the spatial,
temporal and scale dimensions, we stop performing the com-
parisons at any point in spatio-temporal scale-space as soon
as it can be stated that a spatio-temporal point (x, y, t; s, τ )

is neither a local maximum nor a local minimum.
Note specifically that by performing the spatial smoothing

in the outer loop over spatio-temporal scales, the compu-
tationally more demanding spatial smoothing is performed
only once for each spatial scale level, whereas the compu-
tationally more efficient temporal smoothing is performed
in the inner loop over all combinations of spatial and tem-
poral scales. The algorithm is also inherently parallel over
spatio-temporal scale levels and lends itself to parallel imple-
mentation over a multi-core architecture.

5.2 Post-filtering of Spatio-Temporal Scale-Space
Extrema

Additionally, to handle the different amounts of temporal
delay at adjacent temporal scales, which may strongly affect
the detection of local extrema over temporal scales by nearest
neighbour processing of temporal scales in a time-causal con-
text, we perform a post-filtering step of the spatio-temporal
scale-space extrema as an extension of the post-filtering
method proposed for temporal scale-space extrema of a
purely temporal time-causal scale-space representation as
detailed in Lindeberg [77, Section 7.1]:

– To post-filter spatio-temporal scale-space extrema with
respect to the nearest finer temporal scale, we intro-
duce buffers for keeping a short-term memory of purely
temporal extrema of the scale-normalized differential
expression (DnormL)(x, y, t; sτ). If a point (x, y, t; sτ)

is a localmaximum (minimum) over time t , then keep this
point in a the buffer of local maxima (minima) as long as
the values monotonically decrease (increase) with time
to later timemoments.When a point has been detected as
a candidate for a spatio-temporal scale-space maximum
(minimum), check if there are active buffers of localmax-
ima (minima) in a local spatial 3×3-neighbourhood over
space at the nearest finer temporal scale. If there is such a
maximum (minimum) having a higher (lower) value than
the current spatio-temporal scale-space maximum (min-
imum), then the current point is not allowed to become a
scale-space extremum.

– To post-filter spatio-temporal scale-space extrema with
respect to the nearest coarser temporal scale, we put a
record of the spatio-temporal scale-space extremum in
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a spatial 3 × 3-neighbourhood over space at the near-
est coarser temporal scale. If the original point was a
scale-space maximum (minimum), then the short-term
memory is kept active as long as the scale-normalized
differential expression (DnormL)(x, y, t; sτ) continues
to increase (decrease) over time. If the scale-normalized
magnitude additionally would increase above the scale-
normalized magnitude of the original candidate scale-
space extremum, then the original candidate to a scale-
space extremum is disregarded.

With these two mechanisms running in parallel to the above
time-causal and time-recursive spatio-temporal scale-space
extrema detection algorithm, we can compensate for the
different temporal delays at adjacent temporal scale levels,
which implies that a spatio-temporal event in the world will
appear as an extremum earlier in the time-causal scale-space
representation at finer temporal scales in relation to the time-
causal scale-space representation at coarser temporal scales.

5.3 Experimental Results

Figures 7, 8, 9, 10 and 11 show the result of detecting spatio-
temporal scale-space extrema in this way for three video
sequences from the UCF-101 dataset [104] and one video
sequence from theKITTI dataset [26]. For these experiments,
we used 21 spatial scale levels between σs = 2 and 21 pixels
and 7 temporal scale levels between στ = 40 ms and 2.56 s
with seven additional pre-scales and distribution parameter
c = 2 for the time-causal limit kernel. To obtain compara-
ble numbers of features from the different types of feature
detectors, we adapted the thresholds on the scale-normalized
differential invariants such that the average number of fea-
tures from each feature detector was 50 features per frame
for the kayaking video, a lower number of 30 features per
frame for the videos of the table tennis player and the archer
where the background is static, and a larger number of 200
features per frame for the driving scene, where the camera is
moving relative to a cluttered environment.

Figure 7 and the first row of Fig. 10 show results com-
puted from the same video of a kayaker as used for the
illustrations in Figs. 1, 2, 3 and 4. As can be seen from
the results, all eight feature detectors respond to regions
in the video sequence where there are strong variations
in image intensity over space and time. There are, how-
ever, also some qualitative differences between the results
from the different spatio-temporal interest point detectors.
The LGN-inspired feature detectors ∇2

(x,y),normLt,norm and

∇2
(x,y),normLtt,norm respond both to the motion patterns of

the paddler and to the spatio-temporal texture corresponding
to thewaves on thewater surface that lead to temporal flicker-
ing effects and so do the operators detH(x,y),normLt,norm and

detH(x,y),normLtt,norm. The more corner detector inspired
feature detectors detH(x,y,t),normL , ∂t,norm(detH(x,y),normL)

and ∂t t,norm(detH(x,y),normL) respond more to image fea-
tures where there are simultaneously rapid variations over
both of the spatial dimensions and the temporal dimension.

Figure 8 and the second row of Fig. 10 show corre-
sponding results of detecting spatio-temporal scale-space
extrema from a video sequence with a table tennis player.
Here, we can note that the seven spatio-temporal inter-
est point detectors ∇2

(x,y),normLt,norm,∇2
(x,y),normLtt,norm,

detH(x,y),normLt,norm, detH(x,y),normLtt,norm, det
H(x,y,t),normL , ∂t,norm(detH(x,y),normL) and ∂t t,norm
(detH(x,y),normL) do all give rise to rather rich distributions
of feature responses corresponding to the motion pattern of
the tennis player. (The responses on the left part of the table
tennis table are caused by cast shadows of the tennis player
from the lamp in the ceiling). The LGN-inspired feature
detectors ∇2

(x,y),normLt,norm and ∇2
(x,y),normLtt,norm do both

specifically generate responses when the ball flies over the
net and so do the determinant of the spatio-temporal Hessian
as well as the first- and second-order temporal derivatives
of the spatial Laplacian. The responses due to the spatio-
temporal Laplacian are, however, less specific to specific
motion events, andwith numerous responses from the almost
static background. Incorporating also the theoretical limita-
tions of the spatio-temporal Laplacian described in Sect. 4.8
as well as other limitations that will be described below, we
conclude that this operator should therefore not be consid-
ered as a suitable feature detector for processing video data.

Figure 9 and the third row of Fig. 10 show the results of
detecting corresponding spatio-temporal scale-space extrema
from a video sequence with an archer. Here, we can
note that the five spatio-temporal interest point detec-
tors ∇2

(x,y),normLt,norm,∇2
(x,y),normLtt,norm, detH(x,y),norm

Lt,norm, detH(x,y),normLtt,norm anddetH(x,y,t),normL do in a
corresponding manner give rise to rather rich distributions of
feature responses corresponding to the motion pattern of the
archer. For the determinant of the spatio-temporal Hessian,
whichoperates like a three-dimensional corner detector, there
are, however, many more responses along the edges of the
archer than for the other four feature detectors. The four fea-
ture detectors ∇2

(x,y),normLt,norm,∇2
(x,y),normLtt,norm,

detH(x,y),normLt,norm, detH(x,y),normLtt,norm based onfirst-
or second-order temporal derivatives do all generate multi-
ple responses when the arrow hits the cloth on the wall. The
response of the determinant of the spatio-temporal Hessian
is, however, delayed and not as strong as for the other com-
peting spatio-temporal events in the scene.

Figure 11 shows results of applying these spatio-temporal
scale extrema detection algorithms to a scene with a car driv-
ing along a road. Because image feature detection based on
space–time separable spatio-temporal receptive fields is here
applied to a scene where the camera is moving relative to the
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∇2
(x,y)Lt ∇2

(x,y)Ltt

detH(x,y)Lt detH(x,y)Ltt

detH(x,y,t)L ∇2
(x,y,t)L

Fig. 7 Spatio-temporal interest points computed from a video
sequence in the UCF-101 dataset (Kayaking_g01_c01.avi, cropped)
for different scale-normalized spatio-temporal entities and using the
presented time-causal and time-recursive spatio-temporal scale-space
extrema detection algorithm with the temporal scale-space smoothing
performed by a time-discrete approximation of the time-causal limit
kernel for c = 2 and temporal scale calibration based on q = 1:
(top left) The spatial Laplacian of the first-order temporal derivative
∇2

(x,y)Lt . (top right) The spatial Laplacian of the second-order tempo-

ral derivative∇2
(x,y)Ltt . (middle row left) The determinant of the spatial

Hessian of the first-order temporal derivative detH(x,y)Lt . (middle row
right) The determinant of the spatial Hessian of the second-order tem-
poral derivative detH(x,y)Ltt . (bottom row left) The determinant of the
spatio-temporal Hessian detH(x,y,t)L . (bottom row right) The spatio-
temporal Laplacian∇2

(x,y,t)L . Each figure shows a snapshot at frame 90
with a threshold on the magnitude of the scale-normalized differential
expression determined such that the average number of features is 50
features per frame. The radius of each circle reflects the spatial scale of
the spatio-temporal scale-space extremum (image size: 320×172 pixels
of original 320 × 240 pixels; frame 90 of 226 frames at 25 frames/s)

environment, static spatial image features in the world that
move relative to the motion direction will here lead to spatio-
temporal receptive field responses.

For the six basic spatio-temporal interest point detectors
that constitute combinations of differential entities used for
spatial interest point detection with temporal derivates: (i)–
(ii) the spatial Laplacian applied to the first- and second-order
temporal derivatives, (iii)–(iv) the determinant of the spa-

tial Hessian applied to the first- and second-order temporal
derivatives and (v)–(vi) the first- and second-order temporal
derivatives of the determinant of the spatial Hessian matrix,
we can note that all these spatio-temporal interest point
detectors lead to feature responses for the parked cars that
have qualitatively similarities to the responses from applying
spatial interest point detectors to a static scene, with the addi-
tional constraint that there should also be relative motions
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∇2
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detH(x,y)Lt detH(x,y)Ltt

detH(x,y,t)L ∇2
(x,y,t)L

Fig. 8 Spatio-temporal interest points computed from a video
sequence in the UCF-101 dataset (TableTennisShot_g10_c01.avi) for
different scale-normalized spatio-temporal entities and using the pre-
sented time-causal and time-recursive spatio-temporal scale-space
extrema detection algorithm with the temporal scale-space smoothing
performed by a time-discrete approximation of the time-causal limit
kernel for c = 2 and temporal scale calibration based on q = 1:
(Top left) The spatial Laplacian of the first-order temporal derivative
∇2

(x,y)Lt . (Top right) The spatial Laplacian of the second-order tempo-

ral derivative∇2
(x,y)Ltt . (Middle row left) The determinant of the spatial

Hessian of the first-order temporal derivative detH(x,y)Lt . (Middle row
right) The determinant of the spatial Hessian of the second-order tem-
poral derivative detH(x,y)Ltt . (Bottom row left) The determinant of the
spatio-temporal Hessian detH(x,y,t)L . (Bottom row right) The spatio-
temporal Laplacian∇2

(x,y,t)L . Each figure shows a snapshot at frame 37
with a threshold on the magnitude of the scale-normalized differential
expression determined such that the average number of features is 30
features per frame. The radius of each circle reflects the spatial scale
of the spatio-temporal scale-space extremum (image size: 320 × 240
pixels; frame 37 of 178 frames at 25 frames/s)
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∇2
(x,y)Lt ∇2
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detH(x,y)Lt detH(x,y)Ltt

detH(x,y,t)L ∇2
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Fig. 9 Spatio-temporal interest points computed from a video
sequence in the UCF-101 dataset (Archery_g01_c07.avi) for differ-
ent scale-normalized spatio-temporal entities and using the presented
time-causal and time-recursive spatio-temporal scale-space extrema
detection algorithmwith the temporal scale-space smoothing performed
by a time-discrete approximation of the time-causal limit kernel for
c = 2 and temporal scale calibration based on q = 1: (Top left) The
spatial Laplacian of the first-order temporal derivative ∇2

(x,y)Lt . (Top
right) The spatial Laplacian of the second-order temporal derivative
∇2

(x,y)Ltt . (Middle row left) The determinant of the spatial Hessian

of the first-order temporal derivative detH(x,y)Lt . (Middle row right)
The determinant of the spatial Hessian of the second-order tempo-
ral derivative detH(x,y)Ltt . (Bottom row left) The determinant of the
spatio-temporal Hessian detH(x,y,t)L . (Bottom row right) The spatio-
temporal Laplacian∇2

(x,y,t)L . Each figure shows a snapshot at frame 71
with a threshold on the magnitude of the scale-normalized differential
expression determined such that the average number of features is 30
features per frame. The radius of each circle reflects the spatial scale
of the spatio-temporal scale-space extremum (image size: 320 × 240
pixels; frame 71 of 143 frames at 25 frames/s)
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∂t(detH(x,y)L) ∂tt(detH(x,y)L)

∂t(detH(x,y)L) ∂tt(detH(x,y)L)

∂t(detH(x,y)L) ∂tt(detH(x,y)L)

Fig. 10 Spatio-temporal interest points computed from three video
sequences in the UCF-101 dataset (Kayaking_g01_c01.avi, cropped,
TableTennisShot_g10_c01.avi and Archery_g01_c07.avi) for differ-
ent scale-normalized spatio-temporal entities and using the presented
time-causal and time-recursive spatio-temporal scale-space extrema
detection algorithmwith the temporal scale-space smoothing performed
by a time-discrete approximation of the time-causal limit kernel for
c = 2 and temporal scale calibration based on q = 1: (Left column)
The first-order temporal derivative of the determinant of the spatial
Hessian ∂t (detH(x,y)L). (Right column) The second-order temporal

derivative of the determinant of the spatial Hessian ∂t t (detH(x,y)L).
Each figure shows a snapshot at a given frame with a threshold on the
magnitude of the scale-normalized differential expression determined
such that the average number of features is 50 features per frame for the
kayak video and 30 features per frame for the table tennis and archery
videos. The radius of each circle reflects the spatial scale of the spatio-
temporal scale-space extremum(Image size: 320×172 pixels of original
320× 240 pixels. Top row: frame 90 of 226 frames. Middle row: frame
37 of 178 frames. Bottom row: frame 71 of 143 frames. All videos with
25 frames/s)
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(x,y)Ltt

detH(x,y)Lt detH(x,y)Ltt

detH(x,y,t)L ∇2
(x,y,t)L

∂t(detH(x,y)L) ∂tt(detH(x,y)L)

Fig. 11 Spatio-temporal interest points computed from a video
sequence in the KITTI dataset (tracking test video nr 16) for differ-
ent scale-normalized spatio-temporal entities and using the presented
time-causal and time-recursive spatio-temporal scale-space extrema
detection algorithmwith the temporal scale-space smoothing performed
by a time-discrete approximation of the time-causal limit kernel for
c = 2 and temporal scale calibration based on q = 1: (Top left) The
spatial Laplacian of the first-order temporal derivative ∇2

(x,y)Lt . (Top
right) The spatial Laplacian of the second-order temporal derivative
∇2

(x,y)Ltt . (Middle row left) The determinant of the spatial Hessian
of the first-order temporal derivative detH(x,y)Lt . (Middle row right)

The determinant of the spatial Hessian of the second-order tempo-
ral derivative detH(x,y)Ltt . (bottom row left) The determinant of the
spatio-temporal Hessian detH(x,y,t)L . (Bottom row right) The spatio-
temporal Laplacian∇2

(x,y,t)L . Each figure shows a snapshot at frame 77
with a threshold on the magnitude of the scale-normalized differential
expression determined such that the average number of features is 200
features per frame. The radius of each circle reflects the spatial scale of
the spatio-temporal scale-space extremum (image size: 1242×375 pix-
els; frame 77 of 509 frames at 10 frames/s). (A temporal sampling rate
of 10 frames/s is, however, too sparse for this type of local differential
analysis of such fast changes in the image structures over time)

between the camera and the environment. For (vii) the gen-
uine 3-D determinant of the spatio-temporal Hessian, the
responses are on the other hand more selective, while for
(viii) the spatio-temporal Laplacian, the responses are far
less selective and less informative.

An alternative way of handling spatio-temporal scenes
with dominant relative motions between the camera and the
environment, in contrast to this use of space–time separable
receptive fields for only image velocity v = 0, is by exploit-
ing the full structure of the spatio-temporal receptive field
model (1), by considering spatio-temporal receptive fields
with nonzero image velocities v �= 0, which can be locally
adapted to the local motion direction corresponding to veloc-
ity adaptation [50,51,61] or alternatively performing local,

regional or global image stabilization. Then, the image oper-
ations can be made truly covariant under local, regional or
global Galilean image transformations [67,71] and allow for
a more explicit separation of spatio-temporal receptive field
responses that correspond to more complex spatio-temporal
image structures than local Galilean motions.

5.4 Covariance and Invariance Properties

From the theoretical scale selection properties of the spatial
scale-normalized derivative operators according to the spa-
tial scale selection theory in Lindeberg [65] in combination
with the temporal scale selection properties of the temporal
scale selection theory in Lindeberg [77]with the scale covari-
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ance of the underlying spatio-temporal derivative expres-
sions ∇2

(x,y),normLt,norm,∇2
(x,y),normLtt,norm, detH(x,y),norm

Lt,norm, detH(x,y),normLtt,norm, detH(x,y,t),normL , ∂t,norm
(detH(x,y),normL) and ∂t t,norm(detH(x,y),normL) described
in Lindeberg [75], it follows that these spatio-temporal inter-
est point detectors are truly scale covariant under independent
scaling transformations of the spatial and the temporal
domains if the temporal smoothing is performed by either
a non-causal Gaussian kernel g(t; τ) over the tempo-
ral domain or the time-causal limit kernel Ψ (t; τ, c).
From the general proof in Sect. 3, it follows that the
selected spatio-temporal scale levels transform in a scale-
covariant way under independent scaling transformations
of the spatial and the temporal domains. Additionally,
the post-normalized magnitude estimates from these seven
spatio-temporal differential invariants are truly scale invari-
ant.

6 Quantifying the Accuracy of the Scale Estimates
and the Amounts of Temporal Delays

The theoretical analysis of the scale selection properties
of the different types of spatio-temporal interest point
detectors presented in Sect. 4 was performed for a non-
causal Gaussian spatio-temporal concept and using model
signals based on Gaussian or integrated Gaussian inten-
sity profiles over time. While it was conceptually shown
in Lindeberg [77] that important scale selection proper-
ties in terms of temporal scale-invariance transfer from a
non-causal Gaussian temporal scale-space concept to the
time-causal temporal scale-space concept based on the time-
causal limit kernel, it is of interest to also quantify the
numerical properties in terms of the spatio-temporal scale
estimates and the temporal delays obtained from a truly
time-causal scale-space concept and a time-causal imple-
mentation.

In this section, we will experimentally quantify: (i) how
well the spatio-temporal scale selection properties trans-
fer to a discrete implementation, specifically how accurate
the spatial and temporal scale estimates are for idealized
model patterns with ground truth, as well as (ii) how the
different spatio-temporal feature detectors differ in their
ability to respond fast with regard to time-critical applica-
tions.

6.1 Time-Causal Gaussian Blink

To quantify the transfer of the spatio-temporal scale selec-
tion properties to a time-causal spatio-temporal domain, we
first generated a set of videos with time-causal Gaussian
blinks obtained by filtering a discrete delta function with
a discrete Gaussian kernel over the spatial domain and a

discrete approximation of the time-causal limit kernel over
the temporal domain. Such videos sequences were generated
with spatial extent σs,0 = 8 pixels and temporal durations
of στ,0 = 40, 80, 160, 320 and 640 ms at a frame rate of
50 frames/s and for distribution parameter c = 2 of the time-
causal limit kernel. The reason for not varying the spatial
scale parameter in this experiment is that the properties of
the spatial scale selection mechanism have already been suf-
ficiently well established and tested.

Then, we detected spatio-temporal scale-space extrema
of: (i) the spatial Laplacian of the second-order tempo-
ral derivative of ∇2

(x,y),normLtt,norm, (ii) the determinant of
the spatial Hessian of the second-order temporal derivative
detH(x,y),normLtt,norm, (iii) the determinant of the spatio-
temporal Hessian detH(x,y,t),normL and (iv) the second-
order temporal derivative of the determinant of the spatial
Hessian ∂t t,norm(detH(x,y),normL) for each one of these
videos, and recorded (i) the selected spatial scale σ̂s in units
of pixels, (ii) the selected temporal scale σ̂τ in units of
milliseconds and (iii) a measure of the effective temporal
delay δ = t̂ − tmax defined as the time difference between
the time moment t̂ at which the spatio-temporal scale-space
extremum is detected and the time moment tmax at which the
spatio-temporal maximum in the input function occurred.
The motivation for the latter choice is that because of the
time-causal model, each spatio-temporal pattern is associ-
ated with an inherent temporal delay. By compensating for
this delay, the intention is that the compensated delay score
should more reflect the additional amount of temporal delay
caused by the time-causal feature detection method.

The results of these experiments are given in Table 3 for
two different settings of the temporal scale calibration param-
eter q. Note that (i) the spatial scale estimates σ̂s are highly
accurate and that (ii) when using q = 1 the temporal scale
estimates σ̂τ do also give good estimates of the temporal
duration of the underlying spatio-temporal image structures
considering the coarse sampling of the temporal scale levels
induced by a distribution parameter of c = 2, which means
that the ratio between adjacent temporal scale levels is equal
to two in units of dimension [time] and which in turn limits
the effective resolution of the temporal scale estimates. Addi-
tionally, the implementation differs from the presented scale
selection theory in the respects that: (i) the theoretical anal-
ysis has been performed based on the non-causal Gaussian
temporal scale-space model, whereas the experiments are
performed using the time-causal scale-space model, (ii) the
spatio-temporal scale selection theory is continuous,whereas
the discrete implementation is based on the discrete analogue
of the Gaussian kernel [56] over space and recursive filters
over time and (iii) for shorter temporal scales, the temporal
scales of the model signals are close to the inner temporal
scale in the video, determined by the frame rate of 50 fps
corresponding to 20 ms between adjacent frames, implying
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Table 3 Numerical
quantification of the
spatio-temporal scale selection
properties of four
spatio-temporal interest point
detectors when applied to model
signals defined as time-causal
Gaussian blinks of spatial extent
σs,0 = 8 pixels and different
temporal durations στ,0 = 40,
80, 160, 320 and 640 ms

σs,0 στ,0 ∇2
(x,y)Ltt detH(x,y)Ltt detH(x,y,t)L

σ̂s σ̂τ δ σ̂s σ̂τ δ σ̂s σ̂τ δ

Scale selection for a time-causal Gaussian blink using q = 1

8 40 7.99 37 6 7.99 37 6 7.99 42 60

8 80 7.99 71 −5 7.99 73 −5 7.99 79 107

8 160 7.99 179 −18 7.99 173 −18 7.99 157 210

8 320 7.99 334 −36 7.99 330 −36 7.99 313 426

8 640 7.99 676 −64 7.99 663 −64 7.99 626 869

Scale selection for a time-causal Gaussian blink using q = 3/4

8 40 7.99 36 3 7.99 34 6 7.99 33 42

8 80 7.99 36 −27 7.99 48 58 7.99 48 60

8 160 7.99 117 −57 7.99 114 −56 7.99 105 109

8 320 7.99 223 −123 7.99 220 −123 7.99 204 213

8 640 7.99 439 −246 7.99 436 −246 7.99 418 433

σs,0 στ,0 ∂t t (detH(x,y)L) ∂t t (detH(x,y)L)

σ̂s σ̂τ δ σ̂s σ̂τ δ

Scale selection for a time-causal Gaussian blink using q = 1 or q = 3/4

8 40 7.99 37 67 7.99 29 48

8 80 7.99 73 116 7.99 51 69

8 160 7.99 152 222 7.99 95 119

8 320 7.99 298 445 7.99 194 229

8 640 7.99 596 901 7.99 392 460

For each one of the differential entities (i) the spatial Laplacian of the second-order temporal deriva-
tive ∇2

(x,y),normLtt,norm, (ii) the determinant of the spatial Hessian of the second-order temporal derivative
detH(x,y),normLtt,norm, (iii) the determinant of the spatio-temporal Hessian detH(x,y,t),normL and (iv) the
second-order temporal derivative of the determinant of the spatial Hessian ∂t t,norm(detH(x,y),normL), the
results show (i) the selected spatial scale σ̂s in units of pixels, (ii) the selected temporal scale σ̂τ in units of
milliseconds and (iii) the effective temporal delay δ = t̂ − tmax defined as the time difference between the
time moment t̂ at which the spatio-temporal scale-space extremum is detected and the time moment tmax at
which the spatio-temporal maximum of the input function occurs. (The experiments have been performed at
a frame rate of 50 fps corresponding to 20 ms between adjacent frames and for distribution parameter c = 2
of the time-causal limit kernel corresponding to a sampling of the temporal scale parameter by a factor of two
between adjacent temporal scale levels in units of dimension [time])

that the temporal discretization effects at shorter temporal
scales become stronger.

For this family of model signals, the spatial Laplacian
of the second-order temporal derivative ∇2

(x,y),normLtt,norm

and the determinant of the Hessian of the second-order
temporal derivative detH(x,y),normLtt,norm respond very fast
to the onset of a spatio-temporal Gaussian blob when
using q = 1. For the determinant of the spatio-temporal
Hessian detH(x,y,t),normL and the second-order tempo-
ral derivative of the determinant of the spatial Hessian
∂t t,norm(detH(x,y),normL), the temporal delays are, how-
ever, substantial when using q = 1. By instead choos-
ing the temporal scale calibration parameter q to a lower
value of q = 3/4, the effective temporal delays can
be substantially reduced in many cases up to a reduc-
tion near 50% for the determinant of the spatio-temporal
Hessian detH(x,y,t),normL and the second-order tempo-

ral derivative of the determinant of the spatial Hessian
∂t t,norm(detH(x,y),normL) at the cost of less accurate but still
not completely unreasonable estimates of the temporal dura-
tion of the underlying spatio-temporal image structures.

A general conclusion that we can draw from this experi-
ments is that the operators ∇2

(x,y),normLtt,norm and
detH(x,y),normLtt,norm that operate directly on temporal
derivatives respond significantly faster compared to the oper-
ator detH(x,y,t),normL that operates on the joint space–time
structure and the operator ∂t t,norm(detH(x,y),normL) that
operates on temporal derivatives of a nonlinear spatial dif-
ferential invariant.

6.2 Time-Causal Gaussian Onset Blob

To quantify the transfer of the spatio-temporal scale selec-
tion properties for another class of model signals, we then
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Table 4 Numerical
quantification of the
spatio-temporal scale selection
properties of three
spatio-temporal interest point
detectors when applied to model
signals defined as time-causal
Gaussian onset blobs of spatial
extent σs,0 = 8 pixels and
different temporal durations
στ,0 = 40, 80, 160, 320 and
640 ms

σs,0 στ,0 ∇2
(x,y)Lt detH(x,y)Lt ∂t (detH(x,y)L)

σ̂s σ̂τ δ σ̂s σ̂τ δ σ̂s σ̂τ δ

Scale selection for a time-causal Gaussian onset blob using q = 1

8 40 7.99 43 37 7.99 43 57 7.99 36 87

8 80 7.99 74 116 7.99 75 116 7.99 72 179

8 160 7.99 150 240 7.99 152 240 7.99 151 370

8 320 7.99 311 498 7.99 313 498 7.99 302 762

8 640 7.99 616 1023 7.99 620 1023 7.99 605 1557

Scale selection for a time-causal Gaussian onset blob using q = 3/4

8 40 7.99 32 34 7.99 30 34 7.99 35 58

8 80 7.99 56 65 7.99 56 65 7.99 50 113

8 160 7.99 106 130 7.99 106 130 7.99 103 228

8 320 7.99 207 267 7.99 208 267 7.99 201 469

8 640 7.99 421 552 7.99 422 552 7.99 406 961

For each one of the differential entities (i) the spatial Laplacian of the first-order temporal deriva-
tive ∇2

(x,y),normLt,norm, (ii) the determinant of the spatial Hessian of the first-order temporal derivative
detH(x,y),normLt,norm and (iii) the first-order temporal derivative of the determinant of the spatial Hessian
∂t,norm(detH(x,y),normL), the results show (i) the selected spatial scale σ̂s in units of pixels, (ii) the selected
temporal scale σ̂τ in units of milliseconds and (iii) the effective temporal delay δ = t̂ − tmax defined as the
time difference between the time moment t̂ at which the spatio-temporal scale-space extremum is detected
and the time moment tmax at which the spatio-temporal maximum of the spatio-temporal smoothing kernel at
the same spatial and temporal scales occurs. (The experiments have been performed at a frame rate of 50 fps
corresponding to 20 ms between adjacent frames and for distribution parameter c = 2 of the time-causal
limit kernel corresponding to a sampling of the temporal scale parameter by a factor of two between adjacent
temporal scale levels in units of dimension [time])

generated a set of videos with time-causal Gaussian onset
blobs obtained by filtering a the tensor product between a
discrete delta function over the spatial domain and discrete
Heaviside function over the temporal domain function with
a discrete Gaussian kernel over the spatial domain and a
discrete approximation of the time-causal limit kernel over
the temporal domain. Such videos sequences were generated
with spatial extent σs,0 = 8 pixels and temporal durations
of στ,0 = 40, 80, 160, 320 and 640 ms at a frame rate of
50 frames/s and for distribution parameter c = 2 of the time-
causal limit kernel.

Then, we detected spatio-temporal scale-space extrema
of: (i) the spatial Laplacian of the first-order temporal deriva-
tive ∇2

(x,y),normLt,norm, (ii) the determinant of the spatial
Hessian of the first-order temporal derivative detH(x,y),norm

Lt,norm and (iii) the first-order temporal derivative of the
determinant of the spatial Hessian ∂t,norm(detH(x,y),normL)

for each one of these videos, and recorded the (i) the selected
spatial scale σ̂s in units of pixels, (ii) the selected tempo-
ral scale σ̂τ in units of milliseconds and (iii) a measure of
the effective temporal delay δ = t̂ − tmax defined as the
time difference between the time moment t̂ at which the
spatio-temporal scale-space extremum is detected and the
time moment tmax at which the spatio-temporal maximum
of the spatio-temporal scale-space kernel at the same spatio-
temporal scale στ,0 occurs.

The results of these experiments are given in Table 4
for two different settings of the temporal scale calibration
parameter q. Note that (i) again the spatial scale estimates
σ̂s are highly accurate and that (ii) when using q = 1 the
temporal scale estimates σ̂τ do also give good estimates of
the temporal duration of the underlying spatio-temporal sig-
nals again considering the coarse sampling of the temporal
scale levels induced by sparse sampling the temporal scale
levels resulting from the distribution parameter of c = 2
for the time-causal limit kernel, which in turn means that
the ratio between adjacent temporal scale levels is equal to
two in units of dimension [time] and which again limits the
effective resolution of the temporal scale estimates. For this
problem of onset detection, the temporal delays are, however,
longer than for the previous problem of detecting blinks. By
instead choosing the temporal scale calibration parameter q
to a lower value of q = 3/4, the effective temporal delay
can be substantially reduced in some cases up to a reduc-
tion near 50 % for the spatial Laplacian of the first-order
temporal derivative of∇2

(x,y),normLt,norm and the determinant
of the spatial Hessian of the first-order temporal derivative
detH(x,y),normLt,norm at the cost of less accurate but still not
completely unreasonable estimates of the temporal duration
of the underlying spatio-temporal image structures
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7 Summary and Discussion

We have presented a general theory and methodology for
performing simultaneous detection of local characteristic
spatial and temporal scale estimates in video data. The theory
comprises both (i) feature detection performed within a non-
causal spatio-temporal scale-space representation computed
for offline analysis of pre-recorded video data and (ii) feature
detection performed from real-time image streams where the
future cannot be accessed and memory requirements call for
time-recursive algorithms based on only compact buffers of
what has occurred in the past.

As a theoretical foundation for spatio-temporal scale
selection,wehave stated general sufficiency results regarding
scale-covariant spatio-temporal scale estimates and comple-
mentary invariance properties of spatio-temporal features
defined from video data in which there may be indepen-
dent scaling transformations of the spatial and the temporal
domains. For a wide class of homogeneous spatio-temporal
differential expressions, the spatio-temporal scale estimates
obtained from the presented theory and methodology have
been shown to obey the basic property that they adap-
tively follow independent local spatial and temporal scaling
transformations in the video data, which constitutes a basic
requirement on a spatio-temporal scale selectionmechanism.
In other words, if the spatial size of the image structures
changes by a factor Ss in the spatial domain and/or the
temporal duration of the spatio-temporal image structures
changes by a factor Sτ , then the spatial scale parameter in
units of σs = √

s and the temporal scale parameter in units
of στ = √

τ of the detected spatio-temporal image features
will change by corresponding factors. Additionally, we have
shown that the magnitude estimates either are automatically
invariant under spatio-temporal scaling transformations or
can be compensated to become so by post-normalization,
depending on the specific values of the scale normalization
parameters γs and γτ . These properties together imply that
the presented theory and methodology obeys the necessary
properties to handle video data in which there may be large
spatial and temporal scaling variations in the spatio-temporal
image structures.

For seven specific spatio-temporal differential invariants:
(i)–(ii) the spatial Laplacian of the first- and second-order
temporal derivatives, (iii)–(iv) the determinant of the spatial
Hessian of the first- and second-order temporal derivatives,
(v) the determinant of the spatio-temporal Hessian matrix
and (vi)–(vii) the first- and second-order temporal deriva-
tives of the determinant of the spatial Hessian, we have
performed an in-depth analysis of their theoretical scale
selection properties and shown how scale calibration can
be performed to determine the spatial and temporal scale
normalization powers γs and γτ such that the selected
spatio-temporal scale levels reflect the spatial extent and

the temporal duration of the underlying spatio-temporal
features that gave rise to the feature responses. These spatio-
temporal differential invariants can all be used for formu-
lating spatio-temporal interest point detectors. Theoretically
and experimentally, we have described and illustrated their
properties and shown that they lead to intuitively reasonable
results.

For one spatio-temporal differential expression, an attempt
to define a spatio-temporal Laplacian, we have on the other
hand shown that this differential expression is not scale
covariant under independent rescalings of the spatial and
temporal domains, which explains a previously noted poor
robustness of the scale selection step in the spatio-temporal
interest point detector based on the spatio-temporal Harris
operator [49].

Whereas the presented spatio-temporal scale selection
theory is fully continuous over space and time, we have by
quantitative experiments on model signals with ground truth
shown that the numerical accuracy of the spatio-temporal
scale estimates carries over to a carefully designed discrete
implementation, based on the discrete analogue of the Gaus-
sian over space and a cascade of first-order recursive filters
over time.

To allow for different trade-offs between the temporal
response properties of time-causal spatio-temporal feature
detection (shorter temporal delays) in relation to signal
detection theory, which would call for detection of image
structures at the same spatial and temporal scales as they
occur, we have specifically introduced a parameter q to
regulate the temporal scale calibration to finer temporal
scales τ̂ = q2 τ0 as opposed to the more common choice
ŝ = s0 over the spatial domain. According to the pre-
sented theoretical analysis of scale selection properties in
non-causal spatio-temporal scale space, the results predict
that this parameter should reduce the temporal delay by
a factor of q: �t → q �t . Our numerical experiments
with scale selection properties in time-causal spatio-temporal
scale space confirm that a substantial decrease in temporal
delay is obtained. The specific choice of the parameter q
should be optimized with respect to the task that the spatio-
temporal selection and the spatio-temporal features are to be
used for and given specific requirements of the application
domain.

We have also presented an explicit algorithm for detecting
spatio-temporal interest points in a time-causal and time-
recursive context in which the future cannot be accessed
and memory requirements call for only compact buffers
to store partial records of what has occurred in the past
and presented experimental results of applying this algo-
rithm to real-world video data for the different types of
spatio-temporal interest point detectors that we have stud-
ied theoretically.

123



558 J Math Imaging Vis (2018) 60:525–562

Experimentally, we have shown that four of the pre-
sented spatio-temporal interest operators: (i)–(ii) the spatial
Laplacian of the first- and second-order temporal deriva-
tives and (iii)–(iv) the determinant of the Hessian of the
first- and second-order temporal derivatives, lead to signif-
icantly shorter temporal delays than (v) the determinant of
the spatio-temporal Hessian matrix or (vi)–(vii) the first- and
second-order temporal derivatives of the determinant of the
spatial Hessian.

While the experimental results in this paper have been
presented solely based on a time-causal and time-recursive
spatio-temporal concept, the overall methodology can also
be implemented based on a non-causal Gaussian spatio-
temporal scale-space concept [67]. Such an implementation
would, however, require more computations and larger
temporal buffers compared to using the time-causal and time-
recursive receptive fields based on first-order integrators
coupled in cascade that constitute the temporal smooth-
ing model underlying the implementation reported in this
work. Additionally, an ad hoc use of time-delayed truncated
Gaussian kernels instead would be expected to lead to less
rapid temporal responses for time-critical applications com-
pared to the truly time-causal scale-space kernels used for
the experiments in this work. For offline analysis of pre-
recorded data on an architecture where computational and
memory resources do not constitute a bottle-neck, such a
non-causal implementation would on the other hand have
the potential of computing more accurate image features,
since the method could then also make use of informa-
tion from the future in relation to any pre-recorded time
moment, which is not permitted for these time-causal oper-
ations.

We propose that the spatio-temporal scale selectionmech-
anism presented in this paper should be far more general
than themore specific applications developed here for detect-
ing spatio-temporal interest points. Concerning extensions
of the approach, a first natural extension concerns extend-
ing the sparse spatio-temporal scale selection into dense
spatio-temporal scale selection, which is addressed in a com-
panion paper [76]. A second natural extension is to extend
the current use of a space–time separable spatio-temporal
scale-space representation based on spatio-temporal recep-
tive fields (1) with image velocity zero to incorporate
mechanisms for velocity-adapted spatio-temporal receptive
fields with nonzero image velocities and/or image stabiliza-
tion.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

A Spatial Scale-Space Extrema Detection Algorithm

This appendix describes an algorithm for detecting spatial
scale-space extrema of a spatial differential expression DL
as used in Lindeberg [59,65,74].

For a discrete signal, a point is defined as a discrete scale-
space maximum (minimum) if its value is greater than (less
than) the values of all its neighbours in scale space. For
the three-dimensional scale-space representation of a two-
dimensional image, comparisons will thus be made with
respect to all its 26 neighbours or equivalently against all
the non-central points in a 3 × 3 × ×3-neighbourhood.

This definition directly implies an operational method for
scale-space extrema detection by:

(i) Gaussian smoothing L(·, ·; s) = g(·, ·; s) ∗ f to be
approximated by some discrete approximation kernel
L(·, ·; s) = T (·, ·; s) ∗ f ,

(ii) computationof discrete derivative approximations Lxα yβ

≈ δxα yβ L ,
(iii) scale normalization of the derivative responses Lξαηβ =

Cxα yβ Lxα yβ using somediscretizationmethod for scale-
normalized derivatives,

(iv) combination of the derivative approximations into a dif-
ferential invariant DL for each point and scale,

(v) scale-space extrema detection by local comparisons in a
neighbourhood around each point and

(vi) thresholding and/or sorting of all the feature responses
obtained from the image.

For discrete scale-space smoothing, we use a scale-space
concept especially developed for discrete image data cor-
responding to discrete convolution with a discrete analogue
of the Gaussian kernel [56]. Discrete derivative approxima-
tions are then computed by applying difference operators to
the image data, for which the discrete scale-space properties
transfer also to the discrete implementation [57].

For discrete approximation of scale-normalized deriva-
tives, one can perform either (i) variance normalization, by
multiplying the discrete derivative approximations by the
scale parameter s raised to an appropriate power γ or by
(ii) l p-normalization, by normalizing the equivalent discrete
derivative approximation kernels to having the same l p-norm
as the L p-norm of the corresponding scale-normalizedGaus-
sian derivative kernels [65,80].

Preferably, the scale levels should be distributed such
that the distribution is uniform when measured in terms
of effective scale se f f = log s. For discrete signals, a nat-
ural definition of the notion of effective scale is se f f =
A + B log p(s), where p(s) denotes the expected density
of local extrema at scale s [58].

Conceptually, one may think of this algorithm as first
generating a three-dimensional volume of data for a two-
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dimensional image. Computationally, however, it is usually
faster to implement the algorithm as a moving window that
keeps three adjacent scales in a buffer for local comparisons
and then moves the buffer from finer to coarser scales. In this
way, memory accesses can be confined to a smaller part of
memory in a serial implementation.

The algorithm can also be made more efficient by
introducing a threshold on the magnitude of the response
|DnormL| ≥ CDL and only performing comparisons at points
that satisfy this condition. Of course, we do not need to per-
form comparisons with all the 26 neighbours of each point.
In a serial implementation, the comparisons can be stopped
as soon as we know that the point cannot be a scale-space
maximum or a scale-space minimum.

At the boundary cases with s = smin or s = smax, bound-
ary extrema can be accepted and be labelled as such, to allow
for inclusions of image features whose true characteristic
scales fall outside the given scale range while still giving rise
to feature responses within this range.

References

1. Aanaes, H., Lindbjerg-Dahl, A., Pedersen, K.S.: Interesting inter-
est points: a comparative study of interest point performance on
a unique data set. Int. J. Comput. Vis. 97(1), 18–35 (2012)

2. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathemati-
cal Functions, 55th edn. National Bureau of Standards, Applied
Mathematics Series (1964)

3. Adelson, E., Bergen, J.: Spatiotemporal energy models for the
perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985)

4. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In:
Proceedings ofEuropeanConference onComputerVision (ECCV
2012). Springer LNCS, vol. 7577, pp. 214–227 (2012)

5. Bay, H., Ess, A., Tuytelaars, T., van Gool, L.: Speeded up robust
features (SURF). Comput. Vis. Image Underst. 110(3), 346–359
(2008)

6. Bilinski, P., Bremond, F.: Evaluation of local descriptors for action
recognition in videos. In: International Conference on Computer
Vision Systems, pp. 61–70 (2011)

7. Brox, T., Weickert, J.: A TV flow based local scale measure for
texture discrimination. In: Proceedings of European Conference
on Computer Vision (ECCV 2004), pp. 578–590 (2004)

8. Brox, T., Weickert, J.: A TV flow based local scale estimate and
its application to texture discrimination. J. Vis. Commun. Image
Represent. 17(5), 1053–1073 (2006)

9. Chakraborty, B., Holte, M.B., Moeslund, T.B., Gonzàlez, J.:
Selective spatio-temporal interest points. Comput. Vis. Image
Underst. 116(3), 396–410 (2012)

10. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth
mean shift and data-driven scale selection. In: Proceedings of
International Conference on Computer Vision (ICCV 2001), pp.
438–445. Vancouver, Canada (2001)

11. Dawn, D.D., Shaikh, S.H.: A comprehensive survey of human
action recognition with spatio-temporal interest point (STIP)
detector. Vis. Comput. 32(3), 289–306 (2016)

12. DeAngelis, G.C., Anzai, A.: Amodern view of the classical recep-
tive field: linear and non-linear spatio-temporal processing by V1
neurons. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neu-
rosciences, vol. 1, pp. 704–719. MIT Press (2004)

13. DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Receptive field
dynamics in the central visual pathways. TrendsNeurosci. 18(10),
451–457 (1995)

14. de Geest, R., Tuytelaars, T.: Dense interest features for video pro-
cessing. In: Proceedings of International Conference on Image
Processing (ICIP 2014), pp. 5771–5775 (2014)

15. Demirci, M.F., Platel, B., Shokoufandeh, A., Florack, L., Dick-
inson, S.J.: The representation and matching of images using top
points. J. Math. Imaging Vis. 35(2), 103–116 (2009)

16. Derpanis, K.G., Wildes, R.P.: Spacetime texture representation
and recognition based on a spatiotemporal orientation analysis.
IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1193–1205 (2012)

17. Dickscheid, T., Schindler, F., Förstner, W.: Coding images with
local features. Int. J. Comput. Vis. 94(2), 154–174 (2011)

18. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recog-
nition via sparse spatio-temporal features. In: Proceedings of 2nd
Joint Workshop on Visual Surveillance and Performance Eval-
uation of Tracking and Surveillance, pp. 65–72. Beijing, China
(2005)

19. Elder, J., Zucker, S.: Local scale control for edge detection and
blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20(7),
699–716 (1998)

20. Everts, I., van Gemert, J.C., Gevers, T.: Evaluation of color STIPs
for human action recognition. In: Proceedings ofComputerVision
and Pattern Recognition (CVPR 2013), pp. 2850–2857 (2013)

21. Everts, I., vanGemert, J.C., Gevers, T.: Evaluation of color spatio-
temporal interest points for human action recognition. IEEE
Trans. Image Process. 23(4), 1569–1580 (2014)

22. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-
stream network fusion for video action recognition. arXiv preprint
arXiv:1604.06573 (2016)

23. Fleet, D.J., Langley, K.: Recursive filters for optical flow. IEEE
Trans. Pattern Anal. Mach. Intell. 17(1), 61–67 (1995)

24. Florack, L.M.J.: Image Structure. Series inMathematical Imaging
and Vision. Springer, Berlin (1997)

25. Förstner,W., Dickscheid, T., Schindler, F.: Detecting interpretable
and accurate scale-invariant keypoints. In: Proceedings of Inter-
national Conference on Computer Vision (ICCV 2009), pp.
2256–2263 (2009)

26. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Visionmeets robotics:
the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

27. Guichard, F.: A morphological, affine, and Galilean invariant
scale-space for movies. IEEE Trans. Image Process. 7(3), 444–
456 (1998)

28. Hassner, T., Mayzels, V., Zelnik-Manor, L.: On SIFTs and their
scales. In: Proceedings of Computer Vision and Pattern Recog-
nition (CVPR 2012), pp. 1522–1528. Providence, Rhode Island
(2012)

29. Hassner, T., Filosof, S., Mayzels, V., Zelnik-Manor, L.: SIFTing
through scales. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1431–
1443 (2016)

30. Holte, M.B., Chakraborty, B., Gonzalez, J., Moeslund, T.B.: A
local 3-D motion descriptor for multi-view human action recog-
nition from 4-D spatio-temporal interest points. IEEE J. Sel. Top.
Signal Process. 6(5), 553–565 (2012)

31. Hong, B.W., Soatto, S., Ni, K., Chan, T.: The scale of a texture
and its application to segmentation. In: Proceedings of Computer
Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (2008)

32. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in
the cat’s striate cortex. J. Physiol. 147, 226–238 (1959)

33. Hubel, D.H., Wiesel, T.N.: Brain and Visual Perception: The
Storyof a 25-YearCollaboration.OxfordUniversityPress,Oxford
(2005)

34. Iijima, T.: Observation theory of two-dimensional visual patterns.
Technical Report, Papers of Technical Group on Automata and
Automatic Control, IECE, Japan (1962)

123

http://arxiv.org/abs/1604.06573


560 J Math Imaging Vis (2018) 60:525–562

35. Jacobs, N., Pless, R.: Time scales in video surveillance. IEEE
Trans. Circuits Syst. Video Technol. 18(8), 1106–1113 (2008)

36. Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired
system for action recognition. In: International Conference on
Computer Vision (ICCV’07), pp. 1–8 (2007)

37. Ji, S., Xu,W., Yang,M., Yu, K.: 3D convolutional neural networks
for human action recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 35(1), 221–231 (2013)

38. Jones, P.W., Le, T.M.: Local scales and multiscale image decom-
positions. Appl. Comput. Harmonic Anal. 26(3), 371–394 (2009)

39. Kadir, T., Brady, M.: Saliency, scale and image description. Int.
J. Comput. Vis. 45(2), 83–105 (2001)

40. Kang, Y., Morooka, K., Nagahashi, H.: Scale invariant texture
analysis using multi-scale local autocorrelation features. In: Pro-
ceedings of Scale Space and PDE Methods in Computer Vision
(Scale-Space’05). SpringerLNCS, vol. 3459, pp. 363–373 (2005).
Springer

41. Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive represen-
tation for local image descriptors. In: Proceedings of Computer
Vision and Pattern Recognition (CVPR’04), pp. II: 506–513.
Washington, DC (2004)

42. Khan,N.Y.,McCane,B.,Wyvill,G.: SIFTandSURFperformance
evaluation against various image deformations on benchmark
dataset. In: Proceedings of International Conference on Digital
Image Computing Techniques and Applications (DICTA 2011),
pp. 501–506 (2011)

43. Kläser, A.,Marszalek,M., Schmid, C.:A spatio-temporal descrip-
tor based on 3D-gradients. In: Proceedings of British Machine
Vision Conference, Leeds, UK (2008)

44. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–
370 (1984)

45. Koenderink, J.J.: Scale-time. Biol. Cybern. 58, 159–162 (1988)
46. Koenderink, J.J., van Doorn, A.J.: Representation of local geom-

etry in the visual system. Biol. Cybern. 55, 367–375 (1987)
47. Koenderink, J.J., van Doorn, A.J.: Generic neighborhood oper-

ators. IEEE Trans. Pattern Anal. Mach. Intell. 14(6), 597–605
(1992)

48. Laptev, I., Lindeberg, T.: Local descriptors for spatio-temporal
recognition. In: Proceedings of ECCV’04 Workshop on Spatial
Coherence forVisualMotionAnalysis, SpringerLNCS, vol. 3667,
pp. 91–103. Prague, Czech Republic (2004)

49. Laptev, I., Lindeberg, T.: Space-time interest points. In: Pro-
ceedings of International Conference on Computer Vision (ICCV
2003), pp. 432–439. Nice, France (2003)

50. Laptev, I., Lindeberg, T.: Velocity-adapted spatio-temporal recep-
tive fields for direct recognition of activities. Image Vis. Comput.
22(2), 105–116 (2004)

51. Laptev, I., Caputo, B., Schuldt, C., Lindeberg, T.: Local velocity-
adapted motion events for spatio-temporal recognition. Comput.
Vis. Image Underst. 108, 207–229 (2007)

52. Larsen, A.B.L., Darkner, S., Dahl, A.L., Pedersen, K.S.: Jet-based
local image descriptors. In: Proceedings of European Conference
on Computer Vision (ECCV 2012), Springer LNCS, vol. 7574,
pp. III: 638–650. Springer (2012)

53. Li, Z., Gavves, E., Jain, M., Snoek, C.G.M.: VideoLSTM con-
volves, attends and flows for action recognition. arXiv preprint
arXiv:1607.01794 (2016)

54. Li, Y., Tax, D.M.J., Loog, M.: Supervised scale-invariant seg-
mentation (and detection). In: Proceedings of Scale Space and
Variational Methods in Computer Vision (SSVM 2011), Springer
LNCS, vol. 6667, pp. 350–361. Springer, Ein Gedi, Israel (2012)

55. Li,Y., Tax,D.M.J., Loog,M.: Scale selection for supervised image
segmentation. Image Vis. Comput. 30(12), 991–1003 (2012)

56. Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. Pat-
tern Anal. Mach. Intell. 12(3), 234–254 (1990)

57. Lindeberg, T.: Discrete derivative approximations with scale-
space properties: a basis for low-level feature extraction. J. Math.
Imaging Vis. 3(4), 349–376 (1993)

58. Lindeberg, T.: Effective scale: a natural unit for measuring scale-
space lifetime. IEEE Trans. Pattern Anal. Mach. Intell. 15(10),
1068–1074 (1993)

59. Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer,
Berlin (1993)

60. Lindeberg, T.: Scale-space theory: a basic tool for analysing struc-
tures at different scales. J. Appl. Stat. 21(2), 225–270 (1994)

61. Lindeberg, T.: Linear spatio-temporal scale-space. In: ter
Haar Romeny, B.M., Florack, L.M.J., Koenderink, J.J., Viergever,
M.A. (eds.) Proceedings of International Conference on Scale-
Space Theory in Computer Vision (Scale-Space’97), Springer
LNCS, vol. 1252, pp. 113–127. Springer, Utrecht, The Nether-
lands (1997)

62. Lindeberg, T.: Principles for automatic scale selection. In: Hand-
book on Computer Vision and Applications, pp. 239–274. Aca-
demic Press, Boston, USA (1999). http://www.csc.kth.se/cvap/
abstracts/cvap222.html

63. Lindeberg, T.: On automatic selection of temporal scales in
time-casual scale-space. In: Sommer, G., Koenderink, J.J. (eds.)
Proceedings of AFPAC’97: Algebraic Frames for the Perception-
Action Cycle, Springer LNCS, vol. 1315, pp. 94–113. Kiel,
Germany (1997)

64. Lindeberg, T.: Edge detection and ridge detection with automatic
scale selection. Int. J. Comput. Vis. 30(2), 117–154 (1998)

65. Lindeberg, T.: Feature detection with automatic scale selection.
Int. J. Comput. Vis. 30(2), 77–116 (1998)

66. Lindeberg, T.: A scale selection principle for estimating image
deformations. Image Vis. Comput. 16(14), 961–977 (1998)

67. Lindeberg, T.: GeneralizedGaussian scale-space axiomatics com-
prising linear scale-space, affine scale-space and spatio-temporal
scale-space. J. Math. Imaging Vis. 40(1), 36–81 (2011)

68. Lindeberg, T.: Scale invariant feature transform. Scholarpedia
7(5), 10,491 (2012)

69. Lindeberg, T.: A computational theory of visual receptive fields.
Biol. Cybern. 107(6), 589–635 (2013)

70. Lindeberg, T.: Generalized axiomatic scale-space theory. In:
Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol.
178, pp. 1–96. Elsevier, Amsterdam (2013)

71. Lindeberg, T.: Invariance of visual operations at the level of recep-
tive fields. PLoS ONE 8(7), e66,990 (2013)

72. Lindeberg, T.: Scale selection properties of generalized scale-
space interest point detectors. J. Math. Imaging Vis. 46(2),
177–210 (2013)

73. Lindeberg, T.: Scale selection. In: Ikeuchi, K. (ed.) Computer
Vision: A Reference Guide, pp. 701–713. Springer, Berlin (2014)

74. Lindeberg, T.: Image matching using generalized scale-space
interest points. J. Math. Imaging Vis. 52(1), 3–36 (2015)

75. Lindeberg, T.: Time-causal and time-recursive spatio-temporal
receptive fields. J. Math. Imaging Vis. 55(1), 50–88 (2016)

76. Lindeberg, T.: Dense scale selection over space, time and space-
time. arXiv preprint arXiv:1709.08603 (2017)

77. Lindeberg, T.: Temporal scale selection in time-causal scale space.
J. Math. Imaging Vis. 58(1), 57–101 (2017)

78. Lindeberg, T.: Normative theory of visual receptive fields. arXiv
preprint arXiv:1701.06333 (2017)

79. Lindeberg, T.: Spatio-temporal scale selection in video data. In:
Proceedings of Scale-Space and Variational Methods for Com-
puter Vision (SSVM2017), Springer LNCS, vol. 10302, pp. 3–15.
Kolding, Denmark (2017)

80. Lindeberg, T., Bretzner, L.: Real-time scale selection in
hybrid multi-scale representations. In: Griffin, L., Lillholm, M.
(eds.) Proc. Scale-Space Methods in Computer Vision (Scale-

123

http://arxiv.org/abs/1607.01794
http://www.csc.kth.se/cvap/abstracts/cvap222.html
http://www.csc.kth.se/cvap/abstracts/cvap222.html
http://arxiv.org/abs/1709.08603
http://arxiv.org/abs/1701.06333


J Math Imaging Vis (2018) 60:525–562 561

Space’03), Springer LNCS, vol. 2695, pp. 148–163. Springer,
Isle of Skye, Scotland (2003)

81. Lindeberg, T., Fagerström,D.: Scale-spacewith causal time direc-
tion. In: Proceedings ofEuropeanConference onComputerVision
(ECCV’96), Springer LNCS, vol. 1064, pp. 229–240. Cambridge,
UK (1996)

82. Liu, X.M., Wang, C., Yao, H., Zhang, L.: The scale of edges. In:
Proceedings of Computer Vision and Pattern Recognition (CVPR
2012), pp. 462–469 (2012)

83. Loog, M., Li, Y., Tax, D.: Maximum membership scale selection.
In: Multiple Classifier Systems, Springer LNCS, vol. 5519, pp.
468–477. Springer (2009)

84. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

85. Luo, B., Aujol, J.F., Gousseau, Y.: Local scale measure from the
topographic map and application to remote sensing images. Mul-
tiscale Model. Simul. 8(1), 1–29 (2009)

86. Mainali, P., Lafruit, G., Yang, Q., Geelen, B., Gool, L.V., Lauw-
ereins, R.: SIFER: Scale-invariant feature detector with error
resilience. Int. J. Comput. Vis. 104(2), 172–197 (2013)

87. Mainali, P., Lafruit, G., Tack, K., van Gool, L., Lauwereins, R.:
Derivative-based scale invariant image feature detector with error
resilience. IEEE Trans. Image Process. 23(5), 2380–2391 (2014)

88. Maninis,K.,Koutras, P.,Maragos, P.:Advances on action recogni-
tion in videos using an interest point detector based on multiband
spatio-temporal energies. In: International Conference on Image
Processing (ICIP 2014), pp. 1490–1494 (2014)

89. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest
point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

90. Mikolajczyk, K., Schmid, C.: A performance evaluation of local
descriptors. IEEETrans. PatternAnal.Mach. Intell. 27(10), 1615–
1630 (2005)

91. Mrázek, P., Navara, M.: Selection of optimal stopping time for
nonlinear diffusion filtering. Int. J. Comput. Vis. 52(2–3), 189–
203 (2003)

92. Ng, J., Bharath, A.A.: Steering in scale space to optimally detect
image structures. In: Proceedings of European Conference on
Computer Vision (ECCV 2004), Springer LNCS, vol. 3021, pp.
482–494 (2004)

93. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of
human action categories using spatial-temporal words. Int. J.
Comput. Vis. 79(3), 299–318 (2008)

94. Oikonomopoulos,A., Patras, I., Pantic,M.: Spatiotemporal salient
points for visual recognition of human actions. IEEE Trans. Syst.
Man Cybern. Part B 36(3), 710–719 (2005)

95. Poppe, R.: A survey on vision-based human action recognition.
Image Vis. Comput. 28(6), 976–990 (2010)

96. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial
pyramid network. arXiv preprint arXiv:1611.00850 (2016)

97. Rapantzikos, K., Avrithis, Y., Kollias, S.: Dense saliency-based
spatiotemporal feature points for action recognition. In: Proceed-
ings of Computer Vision and Pattern Recognition (CVPR 2009),
pp. 1454–1461 (2009)

98. Rivero-Moreno, C.J., Bres, S.: Spatio-temporal primitive extrac-
tion using Hermite and Laguerre filters for early vision video
indexing. In: Image Analysis and Recognition. Springer LNCS ,
vol.3211, pp. 825–832 (2004)

99. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor
and its application to action recognition. In: Proceedings of ACM
International Conference on Multimedia, pp. 357–360 (2007)

100. Shabani, A.H., Clausi, D.A., Zelek, J.S.: Evaluation of local
spatio-temporal salient feature detectors for human action recog-
nition. In: Proceedings of Computer and Robot Vision (CRV
2012), pp. 468–475 (2012)

101. Shabani, A.H., Clausi, D.A., Zelek, J.S.: Improved spatio-
temporal salient feature detection for action recognition. In:

British Machine Vision Conference (BMVC’11), pp. 1–12.
Dundee, UK (2011)

102. Shao, L.,Mattivi, R.: Feature detector and descriptor evaluation in
human action recognition. In: Proceedings of ACM International
Conference on Image and Video Retrieval (CIVR’10), pp. 477–
484. Xian, China (2010)

103. Simonyan, K., Zisserman, A.: Two-stream convolutional net-
works for action recognition in videos. In: Advances in Neural
Information Processing Systems (NIPS 2014), pp. 568–576
(2014)

104. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101
human action classes from videos in the wild. Tech. Rep. CRCV-
TR-12-01, Center for Research in Computer Vision, University
of Central Florida (2012). arXiv preprint arXiv:1212.0402

105. Sporring, J., Colios, C.J., Trahanias, P.E.: Generalized scale
selection. In: Proceedings of International Conference on Image
Processing (ICIP’00), pp. 920–923. Vancouver, Canada (2000)

106. Sporring, J.,Nielsen,M., Florack,L., Johansen, P. (eds.):Gaussian
Scale-Space Theory: Proceedings of PhD School on Scale-Space
Theory. Series in Mathematical Imaging and Vision. Springer,
Copenhagen, Denmark (1997)

107. Stöttinger, J., Hanbury, A., Sebe, N., Gevers, T.: Sparse color
interest points for image retrieval and object categorization. IEEE
Trans. Image Process. 21(5), 2681–2692 (2012)

108. Tamrakar, A., Ali, S., Yu, Q., Liu, J., Javed, O., Divakaran, A.,
Cheng, H., Sawhney, H.: Evaluation of low-level features and
their combinations for complex event detection in open source
videos. In: Proceedings of Computer Vision and Pattern Recog-
nition (CVPR 2012), pp. 3681–3688 (2012)

109. Tau, M., Hassner, T.: Dense correspondences across scenes and
scales. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 875–888
(2016)

110. ter Haar Romeny, B., Florack, L., Nielsen, M.: Scale-time kernels
andmodels. In: Proceedings of InternationalConference onScale-
Space and Morphology in Computer Vision (Scale-Space’01),
Springer LNCS. Springer, Vancouver, Canada (2001)

111. ter Haar Romeny, B.: Front-End Vision and Multi-scale Image
Analysis. Springer, Berlin (2003)

112. Tuytelaars, T., Mikolajczyk, K.: A Survey on Local Invariant Fea-
tures, Foundations and Trends in Computer Graphics and Vision,
vol. 3(3). Now Publishers (2008)

113. Tuytelaars, T., van Gool, L.: Matching widely separated views
based on affine invariant regions. Int. J. Comput. Vis. 59(1), 61–
85 (2004)

114. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating
color descriptors for object and scene recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)

115. Vanhamel, I., Mihai, C., Sahli, H., Katartzis, A., Pratikakis, I.:
Scale selection for compact scale-space representation of vector-
valued images. Int. J. Comput. Vis. 84(2), 194–204 (2009)

116. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition
by dense trajectories. In: Proceedings of Computer Vision and
Pattern Recognition (CVPR 2011), pp. 3169–3176 (2011)

117. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-
pooled deep-convolutional descriptors. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2015), pp.
4305–4314 (2015)

118. Wang, H., Schmid, C.: Action recognition with improved trajec-
tories. In: Proceedings of International Conference on Computer
Vision (ICCV 2013), pp. 3551–3558 (2013)

119. Wang, H., Ullah, M.M., Kläser, A., Laptev, I., Schmid, C.: Eval-
uation of local spatio-temporal features for action recognition.
In: Proceedings of British Machine Vision Conference (BMVC
2009). London, UK (2009)

123

http://arxiv.org/abs/1611.00850
http://arxiv.org/abs/1212.0402


562 J Math Imaging Vis (2018) 60:525–562

120. Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first
been proposed in Japan. J. Math. Imaging Vis. 10(3), 237–252
(1999)

121. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based
methods for action representation, segmentation and recognition.
Comput. Vis. Image Underst. 115(2), 224–241 (2011)

122. Willems, G., Tuytelaars, T., van Gool, L.: An efficient dense and
scale-invariant spatio-temporal interest point detector. In: Pro-
ceedings og European Conference on Computer Vision (ECCV
2008), Springer LNCS, vol. 5303, pp. 650–663. Marseille, France
(2008)

123. Witkin, A.P.: Scale-space filtering. In: Proceedings of 8th Interna-
tional Joint Conference on Artificial Intelligence, pp. 1019–1022.
Karlsruhe, Germany (1983)

124. Wong, S.F., Cipolla, R.: Extracting spatiotemporal interest points
using global information. In: International Conference on Com-
puter Vision (ICCV 2007), pp. 1–8 (2007)

125. Zelnik-Manor, L., Irani, M.: Event-based analysis of video.
In: Proceedings of Computer Vision and Pattern Recognition
(CVPR’01), pp. II: 123–130 (2001)

126. Zhen, X., Shao, L.: Action recognition via spatio-temporal local
features: a comprehensive study. Image Vis. Comput. 50, 1–13
(2016)

127. Zhu, Y., Chen, W., Guo, G.: Evaluating spatiotemporal inter-
est point features for depth-based action recognition. Image Vis.
Comput. 32(8), 453–464 (2014)

Tony Lindeberg is a Profes-
sor of Computer Science at
KTH Royal Institute of Tech-
nology in Stockholm, Sweden.
He was born in Stockholm in
1964, received his M.Sc. degree
in 1987 and his Ph.D. degree in
1991, became docent in 1996,
and was appointed professor in
2000. He was a Research Fellow
at the Royal Swedish Academy
of Sciences between 2000 and
2010. His research interests in
computer vision relate to scale-
space representation, image fea-

tures, object recognition, spatio-temporal recognition, focus-of-
attention and computational modelling of biological vision. He has
developed theories and methodologies for continuous and discrete
scale-space representation, visual and auditory receptive fields, detec-
tion of salient image structures, automatic scale selection, scale-
invariant image features, affine invariant features, affine and Galilean
normalization, temporal, spatio-temporal and spectro-temporal scale-
space concepts as well as spatial and spatio-temporal image descriptors
for image-based recognition. He has also worked on topics in medi-
cal image analysis and gesture recognition. He is author of the book
Scale-Space Theory in Computer Vision.

123


	Spatio-Temporal Scale Selection in Video Data
	Abstract
	1 Introduction
	1.1 Structure of this Article
	1.2 Relations to Previous Contributions

	2 Spatio-Temporal Receptive Field Model
	2.1 Scale-Normalized Spatio-Temporal Derivatives
	2.2 Temporal Delays

	3 General Spatial-Temporal Scale Selection Methodology
	3.1 Homogeneous Spatio-Temporal Differential Expressions
	3.2 Transformation Property Under Independent Scaling Transformations of the Spatial and the Temporal Domains
	3.3 General Scale-Covariant Property of the Spatio-Temporal Scale Estimates
	3.4 General Scale-Covariant and Scale-Invariant Properties of Feature Responses at Local Extrema Over Spatio-Temporal Scales
	3.5 Spatio-Temporal Scale Selection for Homogeneous Spatio-Temporal Differential Invariants in Terms of Gauge Coordinates

	4 Spatio-Temporal Scale Selection in Non-Causal Gaussian Spatio-Temporal Scale Space
	4.1 The Spatial Laplacian of the Second-Order Temporal Derivative
	4.2 The Spatial Laplacian of the First-Order Temporal Derivative
	4.3 The Determinant of the Spatial Hessian Matrix Applied to the Second-Order Temporal Derivative
	4.4 The Determinant of the Spatial Hessian Matrix Applied to the First-Order Temporal Derivative
	4.5 The Determinant of the Spatio-Temporal Hessian Matrix
	4.6 The Second-Order Temporal Derivative of the Determinant of the Spatial Hessian Matrix
	4.7 The First-Order Temporal Derivative of the Determinant of the Spatial Hessian Matrix
	4.8 The Spatio-Temporal Laplacian
	4.9 Scale Normalization Powers of Spatio-Temporal Interest Point Detectors
	4.10 Relating Magnitude Thresholds Between Different Spatio-Temporal Feature Detectors

	5 Spatio-Temporal Interest Points Detected as Spatio-Temporal Scale-Space Extrema Over Space–Time
	5.1 Time-Causal and Time-Recursive Algorithm for Spatio-Temporal Scale-Space Extrema Detection
	5.2 Post-filtering of Spatio-Temporal Scale-Space Extrema
	5.3 Experimental Results
	5.4 Covariance and Invariance Properties

	6 Quantifying the Accuracy of the Scale Estimates and the Amounts of Temporal Delays
	6.1 Time-Causal Gaussian Blink
	6.2 Time-Causal Gaussian Onset Blob

	7 Summary and Discussion
	A Spatial Scale-Space Extrema Detection Algorithm
	References




