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Synonyms

– Automatic scale selection
– Scale invariant image features and image descriptors

Related Concepts

– Scale-space
– Feature detection
– Scale invariance
– Interest point detection
– Blob detection
– Corner detection
– Edge detection
– Ridge detection
– Frequency estimation
– Feature tracking
– Image-based matching and recognition
– Object recognition

Definition

The notion of scale selection refers to methods for estimating characteristic scales
in image data and for automatically determining locally appropriate scales in a
scale-space representation, so as to adapt subsequent processing to the local im-
age structure and compute scale invariant image features and image descriptors.

An essential aspect of the approach is that it allows for a bottom-up determi-
nation of inherent scales of features and objects without first recognizing them
or delimiting alternatively segmenting them from their surrounding.

Scale selection methods have also been developed from other viewpoints of
performing noise suppression and exploring top-down information.

Background

The concept of scale is essential when computing features and descriptors from
image data. Real-world objects may contain different types of structures at dif-
ferent scales and may therefore appear in different ways depending on the scale



of observation. When observing objects by a camera or an eye, there is an ad-
ditional scale problem due to perspective effects, implying that distant objects
will appear smaller than nearby objects. A vision system intended to operate au-
tonomously on image data acquired from a complex environment must therefore
be able to handle and be robust to such scale variations.

For a vision system that observes an unknown scene, there is usually no way
to a priori know what scales are appropriate for extracting the relevant informa-
tion. Hence, a multi-scale representation of the image data is essential, whereby
the original signal is embedded into a one-parameter family of signals using scale
as the parameter. Given an N -dimensional signal f : IRN → IR and with the no-
tation x = (x1, . . . , xN ) ∈ IRN , the scale-space representation [28,8,11] of f is
defined by the convolution operation

L(x; t) =

∫
ξ∈IRN

f(x− ξ) g(ξ; t) dξ (1)

where g : IRN × IR+ → IR denotes the Gaussian kernel

g(x; t) =
1

(2πt)N/2
e−|x|

2/2t (2)

and the variance t = σ2 of this kernel is referred to as the scale parameter . Based
on this representation, Gaussian derivatives, or scale-space derivatives, at any
scale t can then be computed by differentiating the scale-space representation or
equivalently by convolving the original image with Gaussian derivative kernels:

Lxα(·; t) = ∂xαL(·; t) = (∂xαg(·; t)) ∗ f(·). (3)

(with multi-index notation α = (α1, . . . , αN ) for ∂xα = ∂xα1
1
. . . ∂xαNN

). Such

Gaussian derivatives can be used as a basis for expressing a large number of vi-
sual modules including feature detection, feature classification, image matching,
motion, shape cues, and image-based recognition [15].

Theory

The notion of scale selection complements traditional scale-space theory by pro-
viding explicit mechanisms for generating hypotheses about interesting scales.

Scale selection from γ-normalized derivatives: A particularly useful methodology
for computing estimates of characteristic scales is by detecting local extrema
over scales of differential expressions in terms of γ-normalized derivatives [13,12]
defined by

∂ξ = tγ/2 ∂x. (4)

A general and very useful property of this construction is that if two signals f
and f ′ are related by a scaling transformation

f ′(x′) = f(x) with x′ = s x, (5)



and if there is a local extremum over scales at (x0; t0) in a differential expression
Dγ−normL defined as a homogeneous polynomial of Gaussian derivatives com-
puted from the scale-space representation L of the original signal f , then there
will be a corresponding local extremum over scales at (x′0; t′0) = (s x0; s2t0) in
the corresponding differential expression Dγ−normL′ computed from the scale-
space representation L′ of the rescaled signal f ′ [13, section 4.1].

This scaling result holds for all homogeneous polynomial differential expres-
sions, including rotationally invariant differential invariants, and implies that
local extrema over scales of γ-normalized derivatives are preserved under scaling
transformations. Thereby, such local extrema over scales provide a theoretically
well-founded way to automatically adapt the scale levels to local scale variations.

Specifically, scale-normalized scale-space derivatives of order |α| = α1 + · · ·+
αN at corresponding points will then be related according to

L′ξ′α(x′; t′) = s|α|(γ−1)Lξα(x; t) (6)

which means that γ = 1 implies perfect scale-invariance in the sense that the
γ-normalized derivatives at corresponding points will be equal. If γ 6= 1, the
difference in magnitude can on the other hand be easily compensated for using
the scale values of corresponding scale-adaptive image features.

These results imply that detection of image features and computation of
image descriptors at scale levels equal to or proportional to the scales at which
there are local extrema over scales constitutes a very general methodology for
obtaining scale-invariant image features and scale-invariant image descriptors.

Indeed, it can also be axiomatically shown that the notion of γ-normalized
derivatives arises by necessity, given the condition that local extrema over scales
of scale-normalized derivatives should be preserved under scaling transforma-
tions [13, appendix A.1].

Relation to frequency estimation: There is a conceptual similarity between this
principle and local frequency estimation from peaks in the Fourier transform.
For a one-dimensional sine wave

f(x) = sin(ωx) (7)

it can be shown [13, section 3] that there will be a peak in the magnitude of the
m:th order γ-normalized derivative at a scale

σmax =

√
γm

2π
λ (8)

proportional to the wavelength λ = 2π/|ω| of the signal. Two conceptual differ-
ences compared to Fourier-based frequency estimation, however, are that (i) no
window size is needed for computing the Fourier transform, and (ii) this approach
applies also to non-linear differential expressions.
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Fig. 1. Scale-space signatures accumulated for image structures of different size
in the image domain. The upper part of the illustration shows windows around
two details from the image at the bottom, with corresponding scale-space sig-
natures of the scale-normalized Laplacian ∇2

normL and the scale-normalized de-
terminant of the Hessian detHnormL accumulated at the central point in each
window. As can be seen from the graphs, the local extrema over scales are as-
sumed at coarser scales for the larger size object than for the smaller size object.
Specifically, the ratio between the scale values at which the local extrema are as-
sumed provides an estimate of the relative amount of scaling, when measured in
dimension [length]. (In the graphs, the horizontal axis represents effective scale
[11, pages 180–182] approximated by τ ≈ log2(1 + t).) (Reprinted from [18] with
permission.)



Relations to image statistics: It can be shown [13, section 9.1] that the no-
tion of γ-normalized derivatives corresponds to normalizing the m:th order N -
dimensional Gaussian derivatives to constant Lp-norms over scale with

p =
1

1 + m
N (1− γ)

(9)

where the perfectly scale invariant case γ = 1 corresponds to L1-normalization
for all orders m.

It can also be shown [13, section 9.2] that the γ-normalized derivatives are
neutral with respect to self-similar power spectra of the form

Sf (ω) = |ω|−N−2m(1−γ). (10)

Natural images often show a qualitative behaviour similar to this [5].

Scale-space signatures: Figure 1 illustrates the basic idea, by showing so-called
scale-space signatures accumulated in the two-dimensional case1 for two gener-
ally applicable differential entities for scale selection; the scale-normalized Lapla-
cian [11, section 13.3] [13, section 5] (with γ = 1)

∇2Lnorm = t (Lxx + Lyy) (11)

and the scale-normalized determinant of the Hessian [11,13] (also with γ = 1)

detHnormL = t2 (LxxLyy − L2
xy). (12)

In the scene in figure 1, there are strong perspective scaling effects due to differ-
ences in depth between similar objects in the world. These scale variations are
reflected in the scale-space signatures in the respect that the local extrema over
scales are assumed at finer scales for distant objects and at coarser scales for
nearby objects. If one computes the ratio between the scale values in terms of a
scale parameter σ =

√
t of dimension [length], then the ratio between the scale

values is in very good agreement with the ratio between the sizes of the objects
in the image domain as measured by a ruler. This property illustrates one of the
scale-invariant properties of the scale selection mechanism.

General framework for defining scale-invariant image descriptors. By computing
an image descriptor at a scale proportional to the detection scale t̂ of a scale-
invariant image feature or by normalizing an image patch by a corresponding

scaling factor σ̂ =
√
t̂, provides two very general scale normalization mecha-

nisms that can be used for defining much wider classes of scale-invariant image
descriptors [13,16,17,19] (see the “Applications” section below for two specific
examples regarding image-based recognition). The scale-invariant properties of

1 In the specific 2-D case, the simplifying notation (x, y) ∈ IR2 is used instead of
x = (x1, x2) ∈ IR2 implying that Lx1x1 = Lxx, Lx1x2 = Lxy, Lx2x2 = Lyy, etc.



these descriptors originate from the general scale-invariant property of local ex-
trema over scales of differential expressions in terms of γ-normalized derivatives.

Figure 2 illustrates how scale normalization can be performed in this way by
rescaling the local image patches around the two details in figure 1 using the

scale values σ̂ =
√
t̂ at which the Laplacian ∇2

normL and the determinant of the
Hessian, respectively, assumed their strongest local extrema over scales. In this
sense, scale normalization from the detection scales t̂ constitutes a general mech-
anism for establishing a common scale-invariant reference frame with regard to
scaling transformations.

It should be noted, however, that multiple extrema over scales may in general
be found in the scale-space signature, as can be seen in figure 1 and figure 2,
where two significant local extrema over scales are obtained in each scale-space
signature, with the coarser-scale response corresponding to the lamp as a whole
and the finer-scale response corresponding to the light bulb inside. Because of
this inherent multi-scale nature of real-world objects, a vision system intended to
interpret images from a natural environment must in general be able to handle
multiple scale hypotheses over scales.

Scale-space extrema. The notion of scale selection from scale-normalized deriva-
tives can be complemented by spatial selection by detecting points in scale-space
that assume local extrema with respect to both space x and scale t. Such points
are referred to as scale-space extrema. Specifically, detection of scale-space ex-
trema of rotationally invariant differential sone invariants provides a general,
effective and robust methodology for detecting interest points with built-in scale
selection [11,13,16,17,19]. Thus, given a scale-normalized differential expression
Dγ−normL, one simultaneously obtains spatial positions x̂ and scale estimates t̂
according to

(x̂; t̂) = argmaxminlocal
(x; t)

(Dγ−normL)(x; t) (13)

Figure 3 shows the result of detecting the 50 strongest scale-space extrema of
the scale-normalized Laplacian ∇2

normL and the scale-normalized determinant
of the Hessian detHnormL from an image that contains two objects of different
size. Each scale-space extremum has been illustrated by a circle with the radius

proportional to the detection scale σ̂ =
√
t̂. In figure 4, each feature has been

visualized by a sphere in the 3-D scale-space volume of the 2-D image, with the
radius of the sphere increasing with the detection scale. As can be seen from
this illustration, the notion of scale-space extrema can effectively reveal interest
points and characteristic scales of those (see the “Applications” section below
for more details about scale-invariant interest points detectors). Specifically, the
differences in the radii of the circles in the 2-D illustration and in the heights
over the image plane in the 3-D graphics reveal the scale differences between
corresponding image features from the two objects.

The differential operators ∇2
normL and detHnormL do in general both pro-

duce strong responses at the centers of blob-like structures that are either brighter
or darker than their surrounding, provided that the these differential entities are
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Fig. 2. In this illustration, local windows around two of the lamps in figure 1

(shown in the left column) have been rescaled by scaling factors σ̂ =
√
t̂ ob-

tained from the dominant response over scales of the Laplacian ∇2
normL and

the determinant of the Hessian detHnormL (shown in the middle column) to
compute a scale-normalized window (shown in the right column) around each
detail. In this way, scale selection can be used for defining a scale-normalized
reference frame for subsequent computation of scale-invariant image descriptors
(Reprinted from [18] with permission.).

computed at scale levels that roughly match the size of the corresponding image
structures. For this reason, they constitute very useful differential entities for
blob detection.

Discrete implementation: Detection of scale-space extrema from anN -dimensional
discrete image can be performed by nearest-neighbour comparisons in the N+1-
dimensional scale-space volume. For a 2-D image, this implies that nearest-



neighbour comparisons are performed by local comparisons with the 26 neigh-
bours in a 3×3×3 neighbourhood over space and scale [11] [13, footnote 16] [22].
Scale estimates and position estimates of higher accuracy can then be obtained
by fitting a parabola to the data around any scale-space extremum [20,22].

Discrete analogues of γ-normalized derivatives can be obtained either by
(i) variance-based normalization which implies that the discrete derivative ap-
proximations δxαL are multiplied by an appropriate power of the scale parameter

Lξα(·; t) = Lξα1
1 ...ξ

αN
N

(·; t) = (tγ/2)|α| (δxαL)(·; t) (14)

or by using the notion of (ii) lp-normalization [13, appendix A.4.2]

Lξα(·; t) = Lξα1
1 ...ξ

αN
N

(·; t) = Cα (δxαL)(·; t) (15)

where the discrete normalization constants Cα are determined such that the
lp-norms of the scale-normalized discrete derivative approximation kernels δxαT
[11, chapter 5] are to be equal to the Lp-norms of the corresponding γ-normalized
Gaussian derivative kernels ∂xαg

Cα

 ∑
n∈ZZN

|(δxαT )(n; t)|p
1/p

= (tγ/2)|α|
(∫

x∈IRN
|(∂xαg)(x; t)|p dx

)1/p

.

(16)
Experiments in [20] show that the notion of lp-normalization gives more accurate
scale estimates in situations where discretization effects become important.

original image Laplacian ∇2
normL detHessian detHnormL

Fig. 3. 2-D illustration of the 50 strongest scale-space extrema of the Laplacian
∇2
normL and the determinant of the Hessian detHnormL computed from an im-

age with two similar objects of different physical size. Each feature is illustrated
by a circle centered at the position (x̂, ŷ) of the scale-space extremum and with

the radius proportional to the detection scale σ̂ =
√
t̂. Red circles represent

scale-space maxima, while blue circles represent scale-space minima.



scale-space extrema of the Laplacian ∇2
normL

scale-space extrema of the determinant of the Hessian detHnormL

Fig. 4. 3-D illustration of the 50 strongest scale-space extrema of the Laplacian
∇2
normL and the determinant of the Hessian detHnormL computed from the

image in figure 4. Here, each feature is illustrated by a red sphere centered
at the position (x̂0, ŷ0; t̂0) of the scale-space extremum and with the radius
increasing with the detection scale t̂0. The blue spheres have been inserted to
simplify visual interpretation.



A particularly convenient way of implementing scale-space smoothing in this
context is by convolution with the discrete analogue of the Gaussian kernel [11,
pages 84–87]

T (n; t) = e−tIn(t) (17)

which implies that semi-group property of the Gaussian scale-space holds exactly
also for the discrete scale-space kernels T (·; t1) ∗T (·; t2) = T (·; t1 + t2) and the
cascade smoothing property

L(·; t2) = T (·; t2 − t1) ∗ L(·; t1) (18)

for t2 ≥ t1 ≥ 0 implies that one can perform a set of incremental convolutions
with kernels of smaller support instead of computing each scale level from the
original signal f independently.

The notion of scale selection from scale-normalized derivatives can also be
transferred to a pyramid representation to allow for real-time implementation
on standard processors [20,3,22].

Alternative approaches to scale selection: A number of other mechanisms for
scale selection have also been developed based on ideas of:

– detecting peaks over scales in weighted entropy measures [7] or Lyaponov
functionals [27],

– minimizing normalized error measures over scales in order to compute more
accurate localization estimates for coarser-scale corner features [13, sec-
tion 7.2] or for coarse-to-fine matching of highly noisy image data [14],

– determining minimum reliable scales for feature detection according to an a
priori determined noise suppression model [4],

– determining optimal stopping times in non-linear diffusion-based image restora-
tion methods using similarity measurements relative to the original data [24],

– performing image segmentation from the scales at which a supervised clas-
sifier delivers class labels with the highest posterior [21,10].

Relations between the different approaches to scale selection: The different ap-
proaches to scale selection may have quite different properties depending on the
types of data they are applied to. For noise free data, an adaptive noise suppres-
sion scheme optimized for suppressing high-frequency noise can be expected to
not smooth the data at all, thus implying the selection of a zero scale, whereas
scale selection based on local extrema over scales will always select a scale level
reflecting a characteristic length in the image data.

Provided that the characteristic lengths of the relevant image features are
greater than the typical characteristic lengths in the noise, scale selection based
on scale-normalized derivatives will therefore lead to scale-invariant image fea-
tures. Smoothing approaches that are optimized for suppressing superimposed
high-frequency noise will on the other hand lead to an amount of smoothing that
is primarily determined by the noise level, and therefore not necessarily corre-
sponding to scale-invariant image descriptors. In this respect, these two types of
scale determination approaches can lead to fundamentally different results.



If the task is to detect fine-scale details with amplitude and/or characteristic
scales comparable to the noise, it does, however, not seem unlikely that the two
types of approaches could possibly benefit from each other.

Applications

Interest point detectors with built-in scale selection: Below, four different in-
terest point detectors with automatic scale selection will be presented. A more
general set of scale-invariant interest point detectors defined according to a sim-
ilar methodology can be found in [16,17] with an in-depth theoretical analysis
of their scale selection properties in [19].

Blob detection: Based on the notion of scale-space extrema, straightforward
methods for blob detection can be obtained by detecting scale-space extrema
of either (i) the scale-normalized Laplacian ∇2

normL = t (Lxx + Lyy) or (ii) the
scale-normalized determinant of the Hessian detHnormL = t2 (LxxLyy − L2

xy)
[11,13]. Specifically, using the Laplacian operator one can detect:

– bright blobs from negative scale-space minima of ∇2
normL, and

– dark blobs from positive scale-space maxima of ∇2
normL.

Using the determinant of the Hessian one can on the other hand detect:

– bright blobs from positive scale-space maxima of detHnormL that satisfy
∇2L < 0,

– dark blobs from positive scale-space maxima of detHnormL that satisfy
∇2L > 0, and

– saddle-like image features from negative scale-space minima of detHnormL.

These two blob detection approaches do both satisfy the basic scale selection
property that if the scale adaptive blob detector is applied to a two-dimensional
Gaussian blob with scale value t0, i.e. f(x, y) = g(x, y; t0), then the select scale
t̂ will be equal to the scale of the blob in the input data, i.e. t̂ = t0.

In comparison, the image features obtained from the determinant of the
Hessian blob detector do often have better repeatability properties under affine
image deformations than Laplacian image features [13,16,17,19].

Figure 5 shows the result of applying these interest point detectors to a grey-
level image. Please, note how the variations in the detection scales of the blob
responses reflect the perspective scaling effects in the scene.

Corner detection: A straightforward method for scale-invariant corner detection
can be obtained by detecting positive scale-space maxima and negative scale-
space minima of the scale-normalized rescaled level curve curvature measure

κ̃(L) = t2γ |∇L|2 κ(L) = t2γ
(
L2
xLyy + L2

yLxx − 2LxLyLxy
)

(19)



scale-space extrema of the Laplacian ∇2
normL

scale-space extrema of the determinant of the Hessian detHnormL

Fig. 5. Scale-invariant interest points obtained from the 1000 strongest scale-
space extrema of the Laplacian ∇2

normL and the determinant of the Hessian
detHnormL with the size of each circle reflecting the detection scale of the cor-
responding feature. Red circles represent local maxima of the operator response,
while blue circles indicate local minima. (Adapted from [16].)



scale-space extrema of the rescaled level curve curvature κ̃(L)

the Harris-Laplace operator

Fig. 6. Scale-invariant interest points obtained from the 1000 strongest scale-
space extrema of the rescaled level curve curvature κ̃(L) and the Harris-Laplace
operator. The size of each circle reflects the detection scale of the corresponding
feature. For the rescaled level curve curvature operator κ̃(L), the colour of the
circles show the sign of the curvature; red circles represent a local maxima of the
operator response, while blue circles indicate local minima. (Adapted from [16].)



where κ(L) denotes the curvature of the level curves of the Gaussian smoothed
image at any scale and γ = 7/8 turns out to be a good choice [13, section 6] [16];
see figure 6(a) for an illustration.

The Harris-Laplace operator [23] is structurally different in the respect that it
uses different entities for spatial selection (the Harris measure) and scale selection
(∇2

normL); see figure 6(b).

Edge detection: With regard to edge detection, the evolution properties over
scales of the scale-normalized gradient magnitude

|∇L|norm = tγ/2
√
L2
x + L2

y (20)

can be shown to reveal local characteristics of the type of edge [12, section 4].
Specifically, by choosing γ = 1/2 a local maximum over scales will be assumed
at a scale corresponding to the diffuseness of a one-dimensional diffuse step edge

Φ(x; t0) =

∫ x

u=−∞
g(u; t0) du (21)

and may then provide cues to e.g. focus blur, shadow edges or rounded edges.

Ridge and valley detection: Let ep and eq denote the eigendirections of the Hes-
sian matrix HL such that the mixed second-order derivative in this coordinate
frame is zero Lpq = 0 and denote the eigenvalues of the Hessian matrix by Lpp
and Lqq. These eigenvalues are also referred to as principal curvatures and these
directions are assumed to be ordered such that Lpp < Lqq.

Then, a differential geometric definition of the ridges in the image at any
scale can be expressed as the set of points that satisfy [12, section 5.2]

Lp = 0, Lpp ≤ 0, |Lpp| ≥ |Lqq|. (22)

Similarly, the valleys at any scale can be defined from [15]

Lq = 0, Lqq ≥ 0, |Lqq| ≥ |Lpp|. (23)

With Rγ−norm denoting a scale-normalized measure of ridge strength (or valley
strength) defined from the principal curvatures Lpp and Lqq, one can also express
ridge and valley detection methods with automatic scale selection by detecting
scale-space ridges using the definition

Lp = 0, Lpp ≤ 0, ∂t(Rγ−norm) = 0, ∂tt(Rγ−norm) ≤ 0 (24)

and scale-space valleys according to

Lq = 0, Lqq ≥ 0, ∂t(Rγ−norm) = 0, ∂tt(Rγ−norm) ≤ 0. (25)

Specifically, it can be shown that for natural measures of ridge or valley strength,
the choice γ = 3/4 implies that the selected scale will reflect the width of a
Gaussian ridge (or valley) [12]. For generalizations to 3-D images, see [26,6,9].



Feature tracking: By adapting the scales for feature detection by a local scale
selection mechanism, the resulting image features will be robust to scale changes,
which means that they can be matched over substantial size variations [2]. In-
deed, the variations over time in the characteristic scale estimates obtained dur-
ing feature tracking can, if appropriately implemented, be robust enough for
computing estimates of time-to-collision [20,25].

Image-based matching and recognition: The SIFT descriptor [22] comprises a
bottom-up keypoint detection stage with scale-space extrema detection in a
differences-of-Gaussians (DoG) pyramid. The scale-invariant properties of the
SIFT descriptor can be explained as follows:

From the way that the DoG operator is implemented in the pyramid in [22], it
follows that the normalisation will be similar to the scale-normalized Laplacian.
Using the fact that the scale-space representation satisfies the diffusion equation,
it follows that the Laplacian operator can be approximated from the difference
between two levels in the scale-space representation

1

2
∇2L(x, y; t) = ∂tL(x, y; t) ≈ L(x, y; t+∆t)− L(x, y; t)

∆t
=
DOG(x, y; t,∆t)

∆t
(26)

i.e., from the difference of two Gaussian smoothed images.

With the scale levels distributed such that the ratio between successive scale
levels is k when measured in terms of σ =

√
t, (i.e., σi+1 = k σi and ti+1 = k2 ti

which implies that ∆ti = (k2 − 1) ti), it follows that [16]

DOG(x, y; t) = L(x, y; k2t)− L(x, y; t)

≈ (k2 − 1) t (∂tL(x, y; t)) = (k2 − 1) t
1

2
∇2L(x, y; t)

=
(k2 − 1)

2
t∇2L(x, y; t) =

(k2 − 1)

2
∇2
normL(x, y; t) (27)

Hence, with self-similar sampling of the scale levels, the pyramid implemented
DoG interest point operator can be interpreted as an approximation of the scale
adapted Laplacian operator in equation (11).

In the SURF descriptor [1], local feature detection is performed by detecting
local extrema over space and scale of an approximation of the the determinant
of the Hessian operator in terms of Haar wavelets, with the filters normalized
to constant l1- or Frobenius norm over scales. According to equation (9), the
γ-normalized derivative concept corresponds to normalisation of the Gaussian
derivative operators to unit Lp-norm over scales. Furthermore, it was shown in
[20] that normalizing the filter responses to constant lp-norm over scales gives
better accuracy in a practical implementation than normalisation of the discrete
filters by multiplication with the scale parameter raised to a power of mγ/2,
where m denotes the order of differentiation. Hence, the initial feature detection
step in the SURF descriptor can be seen as an approximation of the scale-
normalized determinant of the Hessian operator in equation (12).



The scale invariant property of the actual image descriptors in the SIFT and
SURF descriptors do in turn follow from the scale-invariant properties of the
initial feature detection step, in line with the general framework for computing
scale-invariant image descriptors from scale estimates obtained from local ex-
trema over scales of scale-normalized differential expressions, as described in the
“Theory” section above.

In these ways, the notion of scale selection constitutes a general mechanism
for computing scale-invariant image descriptors for image-based matching and
recognition.
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