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Abstract

The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to
geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic
invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling
transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image
deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions
between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations.
The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions
about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian
vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized
requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the
receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling
transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically
well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of
receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object
motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision,
which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-
time, from a requirement that the visual system should be invariant to the natural types of image transformations that occur
in its environment.
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Introduction

We maintain a stable perception of our environment although

the brightness patterns reaching our eyes undergo substantial

changes. This shows that our visual system possesses invariance

properties with respect to several types of image transformations:

If you approach an object, it will change its size on the retina.

Nevertheless, the perception remains the same, which reflects a

scale invariance. It is well-known that humans and other animals

have functionally important invariance properties with respect to

variations in scale. For example, Biederman and Cooper [1]

demonstrated that reaction times for recognition of line drawings

were independent of whether the primed object was presented at

the same or a different size as when originally viewed. Logothetis et

al. [2] found that there are cells in the inferior temporal cortex (IT)

of monkeys for which the magnitude of the cell’s response is the

same whether the stimulus subtended 10 or 60 of visual angle. Ito et

al. [3] found that about 20 percent of anterior IT cells responded

to ranges of size variations greater than 4 octaves, whereas about

40 percent responded to size ranges less than 2 octaves. Furmanski

and Engel [4] found that learning with application to object

recognition transfers across changes in image size. The neural

mechanisms underlying object recognition are rapid and lead to

scale-invariant properties as soon as 100–300 ms after stimulus

onset (Hung et al. [5]).

In a similar manner, if you rotate an object in front of you, the

projected brightness pattern will be deformed on the retina,

typically by different amounts in different directions. To first order

of approximation, such image deformations can be modelled by

local affine transformations, which include the effects of in-plane

rotations and perspective foreshortening. For example, Logothetis et al.

[2] and Booth and Rolls [6] have shown that in the monkey IT

cortex there are both neurons that respond selectively to particular

views of familiar objects as well as populations of single neurons

that have view-invariant representations over different views of

familiar objects. Edelmann and Bülthoff [7] have on the other

hand shown that the time for recognizing unfamiliar objects from

novel views increases with the 3-D rotation angle between the

presented and previously seen views. Still, subjects are able to

recognize unfamiliar objects from novel views, provided that the 3-

D rotation is moderate.

If an object moves in front of you, it may in addition to a

translation also lead to a time-dependent motion field in the

brightness pattern on the retina. You may or you may not fixate

on the object. Depending on the relative motion between the

object and the observer, this motion field can to first order of
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approximation be modelled by local Galilean transformations.

Regarding biological counterparts of such relative motions,

Rodman and Albright [8] and Lagae et al. [9] have shown that

in area MT of monkeys there are neurons with high selectivity to

the speed and direction of visual motion over large ranges of image

velocities. Petersen et al. [10] have shown that there are neurons in

area MT that adapt their response properties to the direction and

velocity of motion. Smeets and Brenner [11] have shown that

reaction times for motion perception can be different for absolute

and relative motion and that reaction times may specifically

depend on the relative motion between the object and the

background. When Einstein derived his relativity theory, he used

as a basic assumption the requirement that the equations should

be invariant under Galilean transformations [12].

The measured luminosity of surface patterns in the world may

in turn vary over several orders of magnitude. Nevertheless we are

able to preserve the identity of an object as we move it out of or

into a shade, which reflects important invariance properties under

intensity transformations. The Weber-Fechner law states that the ratio

of an increment threshold DI in image luminosity for a just

noticeable difference in relation to the background intensity I is

constant over large ranges of luminosity variations (Palmer [13,

pages 671–672]). The pupil of the eye and the sensitivity of the

photoreceptors are continuously adapting to ambient illumination

(Hurley [14]).

To be able to function robustly in a complex natural world, the

visual system must be able to deal with these image transforma-

tions in an efficient and appropriate manner to maintain a stable

perception as the brightness pattern changes on the retina. One

specific approach is by computing invariant features whose values or

representations remain unchanged or only moderately affected

under basic image transformations. A weaker but nevertheless

highly useful approach is by computing visual representations that

possess suitable covariance properties, which means that the repre-

sentations are transformed in a well-behaved and well-understood

manner under corresponding image transformations. A covariant

image representation can then in turn constitute the basis for

computing truly invariant image representations, and thus enable

invariant visual recognition processes at the systems level, in

analogy with corresponding invariance principles as postulated for

biological vision systems by different authors (Rolls [15]; DiCarlo

and Maunsell [16]; Grimes and Rao [17]; [18]; DiCarlo and Cox

[19]; Goris and Beek [20]).

The subject of this paper is to introduce a computational

framework for modelling receptive fields at the earliest stages in

the visual system corresponding to the retina, LGN and V1 and to

show how this framework allows for basic invariance or covariance

properties of visual operations with respect to all the above mentioned

phenomena. This framework can be derived from symmetry properties

of the natural environment (Lindeberg [21,22]) and leads to

predictions of receptive field profiles in good agreement with receptive

measurements reported in the literature (Hubel and Wiesel [23–

25]; DeAngelis et al. [26,27]). Specifically, explicit phenomenolog-

ical models will be given of LGN neurons and simple cells in V1

and be compared to related models in terms of Gabor functions

(Marčelja [28]; Jones and Palmer [29,30]), differences of Gaussians

(Rodieck [31]) or Gaussian derivatives (Koenderink and van

Doorn [32]; Young [33]; Young et al. [34,35]). Notably, the

evolution properties of the receptive field profiles in this model can

be described by diffusion equations and are therefore suitable for

implementation on a biological architecture, since the computa-

tions can be expressed in terms of communications between

neighbouring computational units, where either a single compu-

tational unit or a group of computational units may be interpreted

as corresponding to a neuron or a group of neurons. Specifically,

computational models involving diffusion equations arise in mean

field theory for approximating the computations that are

performed by populations of neurons (Omurtag et al. [36]; Mattia

and Guidic [37]; Faugeras et al. [38]).

The symmetry properties underlying the formulation of this

theory will be described in the section ‘‘Model for early visual

pathway in an idealized vision system’’ and reflect the desirable

properties of an idealized vision system that (i) objects at different

positions, scales and orientations in image space should be

processed in a structurally similar manner, and (ii) objects should

be perceived in a similar way under variations in viewing distance,

viewing direction, relative motion in relation to the observer and

illumination variations.

Combined with complementary selection mechanisms over recep-

tive fields at different scales (Lindeberg [39]), receptive fields

adapted to different affine image deformations (Lindeberg and

Gårding [40]) and different Galilean motions (Lindeberg et al.

[21,41]), it will also be shown how true invariance of receptive field

responses can be obtained with respect to local scaling transfor-

mations, affine transformations and Galilean transformations.

These selection mechanisms are based on either (i) the computa-

tion of local extrema over the parameters of the receptive fields or

alternatively based on (ii) comparisons of local receptive field

responses to affine invariant or Galilean fixed-point requirements

(to be described later). On a neural architecture, these geometric

invariance properties are therefore compatible with a routing

mechanism (Olshausen et al. [42]) that operates on the output from

families of receptive fields that are tuned to different scales, spatial

orientations and image velocities. In this respect, the resulting

approach will bear similarity to the approach by Riesenhuber and

Poggio [43], where receptive field responses at different scales are

routed forward by a soft winner-take-all mechanism, with the

theoretical additions that the invariance properties over scale can

here be formally proven and the presented framework specifically

states how the receptive fields should be normalized over scale.

Furthermore, our approach extends to true and provable

invariance properties under more general affine and Galilean

transformations.

A direct consequence of these invariance properties established

for receptive field responses is that they can be propagated to

invariance properties of visual operations at higher levels, and thus enable

invariant recognition of visual objects and events under variations

in viewing direction, retinal size, object motion and illumination.

In this way, the presented framework provides a computational

theory for how basic invariance properties of a visual system can

achieved already at the level of receptive fields. Another

consequence is that the presented framework could be used for

explaining the families of receptive field profiles tuned to different

orientations and image velocities in space and space-time that

have been observed in biological vision from a requirement of that

the corresponding receptive field responses should be invariant or

covariant under corresponding image transformations. A main

purpose of this article is to provide a synthesis where such structural

components are combined into a coherent framework for

achieving basic invariance properties of a visual system and

relating these results, which have been derived mathematically, to

corresponding functional properties of neurons in a biological

vision system.

Another major aim of this article is to try to bridge the gap

between computer vision and biological vision, by demonstrating

how concepts originally developed for purposes in computer vision

can be related to corresponding notions in computational

neuroscience and biological vision. In particular, we will argue
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for explicit incorporation of basic image transformations into

computational neuroscience models of vision. If such image

transformations are not appropriately modelled and if the model is

then exposed to test data that contain image variations outside the

domain of variabilities that are spanned by the training data, then

an artificial neuron model may have severe problems with

robustness. If on the other hand the covariance properties

corresponding to the natural variabilities in the world underlying

the formation of natural image statistics are explicitly modelled

and if corresponding invariance properties are built into the

computational neuroscience model and also used in the learning

stage, we argue that it should be possible to increase the robustness

of a neuro-inspired artificial vision system to natural image

variations. Specifically, we will present explicit computational

mechanism for obtaining true scale invariance, affine invariance,

Galilean invariance and illumination invariance for image

measurements in terms of local receptive field responses.

Interestingly, the proposed framework for receptive fields can be

derived by necessity from a mathematical analysis based on

symmetry requirements with respect to the above mentioned

image transformations in combination with a few additional

requirements concerning the internal structure and computations

in the first stages of a vision system that will be described in more

detail below. In these respects, the framework can be regarded as

both (i) a canonical mathematical model for the first stages of

processing in an idealized vision system and as (ii) a plausible

computational model for biological vision. Specifically, compared

to previous approaches of learning receptive field properties and

visual models from the statistics of natural image data (Field [44];

van der Schaaf and van Hateren [45]: Olshausen and Field [46];

Rao and Ballard [47]; Simoncelli and Olshausen [48]; Geisler

[49]) the proposed theoretical model makes it possible to

determine spatial and spatio-temporal receptive fields from first

principles that reflect symmetry properties of the environment and

thus without need for any explicit training stage or gathering of

representative image data. In relation to such learning based

models, the proposed normative approach can be seen as

describing the solutions that an ideal learning based system may

converge to, if exposed to a sufficiently large and representative set

of natural image data. The framework for achieving true

invariance properties of receptive field responses is also theoret-

ically strong in the sense that the invariance properties can be

formally proven given the idealized model of receptive fields.

In their survey of our knowledge of the early visual system,

Carandini et al. [50] emphasize the need for functional models to

establish a link between neural biology and perception. More

recently, Einhäuser and König [51] argue for the need for

normative approaches in vision. This paper can be seen as

developing the consequences of such ways of reasoning by showing

how basic invariance properties of visual processes at the systems

level can be obtained already at the level of receptive fields, using a

normative approach.

Model for early visual pathway in an idealized
vision system

In the following we will state a number of basic requirements

concerning the earliest levels of processing in an idealized vision

system, which will be used for deriving idealized functional models of

receptive fields. Let us stress that the aim is not to model specific

properties of human vision or any other species. Instead the goal is

to describe basic characteristics of the image formation process

and the computations that are performed after the registration of

image luminosity on the retina. These assumptions will then be

used for narrowing down the class of possible image operations

that are compatible with structural requirements, which reflect

symmetry properties of the environment. Thereafter, it will be

shown how this approach applies to modelling of biological

receptive fields and how the resulting receptive fields can be

regarded as biologically plausible.

For simplicity, we will assume that the image measurements are

performed on a planar retina under perspective projection. With

appropriate modifications, a corresponding treatment can be

performed with a spherical camera geometry.

Let us therefore assume that the vision system receives image

data that are either defined on a (i) purely spatial domain f (x) or a (ii)

spatio-temporal domain f (x,t) with x~(x1,x2)T . Let us regard the

purpose of the earliest levels of visual representations as computing

a family of internal representations L from f , whose output can be

used as input to different types of visual modules. In biological

terms, this would correspond to a similar type of sharing as V1

produces output for several downstream areas such as V2, V4 and

V5/MT.

An important requirement on these early levels of processing is

that we would like them to be uncommitted operations without being

too specifically adapted to a particular task that would limit the

applicability for other visual tasks. We would also desire a uniform

structure on the first stages of visual computations.

Spatial (time-independent) image data
Concerning terminology, we will use the convention that a

receptive field refers to a region V in visual space over which some

computations are being performed. These computations will be

represented by an operator T , whose support region is V.

Generally, the notion of a receptive field will be used to refer to

both the operator T and its support region V. In some cases when

referring specifically to the support region V only, we will refer to

it as the support region of the receptive field.

Given a purely spatial image f : R2?R, let us consider the

problem of defining a family of internal representations

L(:; s)~Tsf ð1Þ

for some family of operators Ts that are indexed by some

parameter s, where s~(s1, � � � ,sN ) may be a multi-dimensional

parameter with N dimensions. (The dot ‘‘:’’ at the position of the

first argument x of L means that L(:; s) when given a fixed value

of the parameter s only should be regarded as a function over x.)

In the following we shall state a number of structural requirements

on a visual front-end as motivated by the types of computations

that are to be performed at the earliest levels of processing in

combination with symmetry properties of the surrounding world.

Linearity. Initially, it is natural to require Ts to be a linear

operator, such that

Ts(a1f1za2f2)~a1Tsf1za2Tsf2 ð2Þ

holds for all functions f1,f2 : R2?R and all scalar constants

a1,a2[R. An underlying motivation to this linearity requirement is

that the earliest levels of visual processing should make as few

irreversible decisions as possible.

Linearity also implies that a number of special properties of

receptive fields (to be described below) will transfer to spatial and

spatio-temporal derivatives of these and do therefore imply that

different types of image structures will be treated in a similar
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manner irrespective of what types of linear filters they are captured

by.

Translational invariance. Let us also require Ts to be a

shift-invariant operator in the sense that it commutes with the shift

operator SDx defined by (SDxf )(x)~f (x{Dx), such that

Ts SDxfð Þ~SDx Tsfð Þ ð3Þ

holds for all Dx. The motivation behind this assumption is the

basic requirement that the perception of a visual object should be

the same irrespective of its position in the image plane.

Alternatively stated, the operator Ts can be said to be homogeneous

across space.

For us humans and other higher mammals, the retina is

obviously not translationally invariant. Instead, finer scale

receptive fields are concentrated to the fovea in such a way that

the minimum receptive field size increases essentially linearily with

eccentricity. With respect to such a sensor space, the assumption

about translational invariance should be taken as an idealized

model for the region in space where there are receptive fields

above a certain size.

Convolution structure. Together, the assumptions of line-

arity and shift-invariance imply that the internal representations

L(:; s) are given by convolution transformations

L(x; s)~(T(:; s) � f )(x)~

ð
j[R2

T(j; s) f (x{j)dj ð4Þ

where T(:; s) denotes some family of convolution kernels. Later,

we will refer to these convolution kernels as receptive fields.

The issue of scale. A fundamental property of the convo-

lution operation is that it may reflect different types of image

structures depending on the spatial extent (the width) of the

convolution kernel.

N Convolution with a large support kernel will have the ability to

respond to phenomena at coarse scales.

N A kernel with small support may on the other hand only capture

phenomena at fine scales.

From this viewpoint it is natural to associate an interpretation of

scale with the parameter s and we will assume that the limit case of

the internal representations when s tend to zero should correspond

to the original image pattern f

lim
s;0

L(:; s)~ lim
s;0

Tsf ~f : ð5Þ

Semi-group structure. From the interpretation of s as a

scale parameter, it is natural to require the image operators Ts to

form a semi-group over s

Ts1
Ts1

~Ts1zs2
ð6Þ

with a corresponding semi-group structure for the convolution

kernels

T(:; s1) � T(:; s2)~T(:; s1zs2) ð7Þ

such that the composition of two different receptive fields coupled

in cascade will also be a member of the same receptive field family.

Then, the transformation between any different and ordered scale

levels ss and s2 with s2§s1 will obey the cascade property

L(:; s2)~T(:; s2{s1) � T(:; s1) � f

~T(:; s2{s1) � L(:; s1) ð8Þ

i.e. a similar type of transformation as from the original data f . An

image representation with these properties is referred to as a multi-

scale representation.

Concerning the parameterization of this semi-group, we will in

the specific case of a one-dimensional (scalar) scale parameter

assume the parameter s[R to have a direct interpretation of scale,

whereas in the case of a multi-dimensional parameter

s~(s1, . . . ,sN )[RN , these parameters could also encode for other

properties of the convolution kernels in terms of the orientation h
in image space or the degree of elongation e~s1=s2, where s1

and s2 denote the spatial extents in different directions. The

convolution kernels will, however, not be be required to form a

semi-group over any type of parameterization, such as the

parameters h or e. Instead, we will assume that there exists some

parameterization s for which an additive linear semi-group

structure can be defined and from which the latter types of

parameters can then be derived.

Self-similarity over scale. Regarding the family of convo-

lution kernels used for computing a multi-scale representation, it is

also natural to require them to self-similar over scale, such that if s is a

one-dimensional scale parameter then all the kernels correspond to

rescaled copies

T(x; s)~
1

Q(s)
�TT

x

Q(s)

� �
ð9Þ

of some prototype kernel �TT for some transformation Q(s) of the

scale parameter. If s[RN
z is a multi-dimensional scale parameter,

the requirement of self-similarity over scale can be generalized into

T(x; s)~
1

j det Q(s)j
�TT Q(s){1x
� �

ð10Þ

where Q(s) now denotes a non-singular 2|2-dimensional matrix

regarding a 2-D image domain and Q(s){1 its inverse. With this

definition, a multi-scale representation with a scalar scale

parameter s[Rz will be based on uniform rescalings of the

prototype kernel, whereas a multi-scale representation based on a

multi-dimensional scale parameter might also allow for rotations

as well as non-uniform affine deformations of the prototype kernel.

The reason for introducing a function Q for transforming the

scale parameter s into a scaling factor Q(s) in image space, is that

the requirement of a semi-group structure (6) does not imply any

restriction on how the parameter s should be related to image

measurements in dimensions of length — the semi-group structure

only implies an abstract ordering relation between coarser and

finer scales s2ws1 that could also be satisfied for any monoto-

nously increasing transformation of the parameter s. For the

Gaussian scale-space concept with a scalar scale parameter and

given by (24) this transformation is given by s~Q(s)~
ffiffi
s
p

, whereas

for the affine Gaussian scale-space concept given by (29) it is given

Invariant Visual Receptive Fields
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by the matrix square root function Q(s)~S1=2, where S denotes

the covariance matrix that describes the spatial extent and the

orientation of the affine Gaussian kernels.

Infinitesimal generator. For theoretical analysis it is pref-

erable if the scale parameter can be treated as a continuous scale

parameter and if image representations between adjacent levels of

scale can be related by partial differential equations. Such relations

can be expressed if the semi-group possesses an infinitesimal generator

(Hille and Phillips [52])

BL~ lim
h;0

T(:; h) � f {f

h
ð11Þ

and implies that image representations between adjacent levels of

scale can be related by differential evolution equations; for a scalar scale

parameter of the form

LsL(x; s)~(BL)(x; s) ð12Þ

for some operator B and for an N-dimensional scale parameter of

the form

(DuL)(x; s)~(B(u)L)(x; s)~

~ u1B1z . . . zuNBNð ÞL(x; s) ð13Þ

for any positive direction u~(u1, . . . ,uN ) in the parameter space

with ui§0 for every i. In (Lindeberg [21]) it is shown how such

differential relationships can be ensured given a proper selection of

functional spaces and sufficient regularity requirements over space

x and scale s in terms of Sobolev norms. We shall therefore

henceforth regard the internal representations L(:; s) as differen-

tiable with respect to both the image space and scale parameter(s).

Non-enhancement of local extrema. For the internal

representations L(:; s) that are computed from the original image

data f it is in addition essential that the operators Ts do not generate

new structures in the representations at coarser scales that do not

correspond to simplifications of corresponding image structures in

the original image data.

A particularly useful way of formalizing this requirement is that

local extrema must not be enhanced with increasing scale. In other worlds, if

a point (x0; s0) is a local (spatial) maximum of the mapping

x.L(x; s0) then the value must not increase with scale. Similarly,

if a point (x0; s0) is a local (spatial) minimum of the mapping

x.L(x; s0), then the value must not decrease with scale. Given

the above mentioned differentiability property with respect to

scale, we say that the multi-scale representation constitutes a scale-

space representation if it for a scalar scale parameter satisfies the

following conditions at any non-degenerate local extremum point:

LsL(x0; s0)ƒ0 at any local maximum, ð14Þ

LsL(x0; s0)§0 at any local minimum, ð15Þ

or for a multi-parameter scale-space

(DuL)(x0; s0)ƒ0 at any local maximum, ð16Þ

(DuL)(x0; s0)§0 at any local minimum, ð17Þ

for any positive direction u~(u1, . . . ,uN ) in the parameter space

with ui§0 for every i (see figure 1).

Rotational invariance. If we restrict ourselves to a scale-

space representation based on a scalar (one-dimensional) scale

parameter s[Rz, then it is natural to require the scale-space

kernels to be rotationally symmetric

T(x; s)~h(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1zx2
2

q
; s) ð18Þ

for some one-dimensional function h(:; s) : R?R. Such a

symmetry requirement can be motivated by the requirement that

in the absence of further information, all spatial directions should

be equally treated (isotropy).

For a scale-space representation based on a multi-dimensional

scale parameter, one may also consider a weaker requirement of

rotational invariance at the level of a family of kernels, for example

regarding a set of elongated kernels with different orientations in

image space. Then, the family of kernels may capture image data

of different orientation in a rotationally invariant manner, for

example if all image orientations are explicitly represented or if the

receptive fields corresponding to different orientations in image

space can be related by linear combinations.

Affine covariance. The perspective mapping from surfaces

of objects in the 3-D world to the 2-D image space gives rises to

image deformations in the image domain. If we approximate the

non-linear perspective mapping from a surface pattern in the

world to the image plane by a local linear transformation (the

derivative), then we can model this deformation by an affine

transformation

f 0~Af ð19Þ

corresponding to

f 0(x0)~f (x) with x0~Axzb ð20Þ

where A represents an affine transformation operator operating on

functions and A is the affine transformation matrix. To ensure that

the internal representations behave nicely under image deforma-

tions, it is natural to require a possibility of relating them under

affine transformations

L0(x0; s0)~L(x; s) ð21Þ

corresponding to

TA(s) Af ~ATs f ð22Þ

for some transformation s0~A(s) of the scale parameter.

Unfortunately, it turns out that affine covariance cannot be

Invariant Visual Receptive Fields
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achieved with a scalar scale parameter and linear operations. As

will be shown below, it can, however, be achieved with a 3-

parameter linear scale-space.

Necessity result concerning spatial receptive fields
Given the above mentioned requirements it can be shown that if

we assume (i) linearity, (ii) shift-invariance over space, (iii) semi-

group property over scale, (iv) sufficient regularity properties over

space and scale and (v) non-enhancement of local extrema, then

the scale-space representation over a 2-D spatial domain must

satisfy (Lindeberg [21, theorem 5, page 42])

LsL~
1

2
+T

x S0+xLð Þ{dT
0 +xL ð23Þ

for some 2|2 covariance matrix S0 and some 2-D vector d0 with

+x~(Lx1
,Lx2

)T . If we in addition require the convolution kernels

to be mirror symmetric through the origin T({x; s)~T(x; s) then

the offset vector d0 must be zero. There are two special cases

within this class of operations that are particularly worth

emphasizing.

Gaussian receptive fields. If we require the corresponding

convolution kernels to be rotationally symmetric, then it follows

that they will be Gaussians

T(x; s)~g(x; s)~
1

2ps
e{xT x=2s~

1

2ps
e
{(x2

1
zx2

2
)=2s ð24Þ

with corresponding Gaussian derivative operators

(Lxa g)(x; s)~(L
x

a1
1

x
a2
2

g)(x1,x2; s)

~(L
x

a1
1

�gg)(x1; s)(L
x

a2
2

�gg)(x2; s) ð25Þ

(with a~(a1,a2) where a1 and a2 denote the order of differen-

tiation in the x1- and x2-directions, respectively) as shown in

figure 2 with the corresponding one-dimensional Gaussian kernel

and its Gaussian derivatives of the form

�gg(x1; s)~
1ffiffiffiffiffiffiffi
2ps
p e

{x2
1
=2s

, ð26Þ

�ggx1
(x1; s)~{

x1

s
�gg(x1; s)~{

x1ffiffiffiffiffiffi
2p
p

s3=2
e
{x2

1
=2s

,

�ggx1x1
(x1; s)~

(x2
1{s)

s2
�gg(x1; s)~

(x2
1{s)ffiffiffiffiffiffi
2p
p

s5=2
e
{x2

1
=2s
: ð28Þ

Such Gaussian functions have been previously used for

modelling biological vision by Koenderink and van Doorn

[32,53–55] who proposed the Gaussian derivative model for

visual operations and pioneered the modelling of visual operations

using differential geometry, by Young [33] who showed that there

are receptive fields in the striate cortex that can be well modelled

by Gaussian derivatives up to order four, by Lindeberg [56] who

extended the Gaussian derivative model for receptive fields with

corresponding idealized discretizations and by Petitot [57,58] who

expressed a differential geometric model for illusory contours and

the singularities in the orientation fields in the primary visual

cortex known as pinwheels; see also Sarti et al. [59] for extensions

of the latter model to rotations and rescalings of non-Gaussian

receptive field profiles.

More generally, these Gaussian derivative operators can be used

as a general basis for expressing image operations such as feature

detection, feature classification, surface shape, image matching

and image-based recognition (Witkin [60]; Koenderink [61];

Koenderink and van Doorn [62]; Lindeberg [63–65]; Florack

[66]; ter Haar Romeny [67]); see specifically Schiele and Crowley

[68], Linde and Lindeberg [69,70], Lowe [71], and Bay et al. [72]

for explicit approaches for object recognition based on Gaussian

receptive fields or approximations thereof.

Affine-adapted Gaussian receptive fields. If we relax the

requirement of rotational symmetry and relax it into the

requirement of mirror symmetry through the origin, then it

follows that the convolution kernels must instead be affine Gaussian

kernels (Lindeberg [63])

x

L

Figure 1. The requirement of non-enhancement of local extrema is a way of restricting the class of possible image operations by
formalizing the notion that new image structures must not be created with increasing scale, by requiring that the value at a local
maximum must not increase and that the value at a local minimum must not decrease.
doi:10.1371/journal.pone.0066990.g001

(27)
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T(x; s)~g(x; S)~
1

2p
ffiffiffiffiffiffiffiffiffiffiffi
detS
p e{xTS{1x=2 ð29Þ

where S denotes any symmetric positive semi-definite 2|2
matrix. This affine scale-space concept is closed under affine

transformations, meaning that if we for affine related images

fL(j)~fR(g) where g~Ajzb, ð30Þ

(which may represent images of a local image patch seen from two

different views, either by L and R representing the left and right

views of a binocular observer or L and R representing two

different views registered by a monocular observer by translating

and/or rotating the object and/or the observer) define corre-

sponding scale-space representations L and R according to

L(:; SL)~g(:; SL) � fL(:) ð31Þ

R(:; SR)~g(:; SR) � fR(:)

Figure 2. Spatial receptive fields formed by the 2-D Gaussian kernel with its partial derivatives up to order two. The corresponding
family of receptive fields is closed under translations, rotations and scaling transformations.
doi:10.1371/journal.pone.0066990.g002

(32)
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then these scale-space representations will be related according to

(Lindeberg [63]; Lindeberg and Gårding [40])

L(x; SL)~R(y; SR) ð33Þ

where

SR~ASL AT and y~Axzb: ð34Þ

In other words, given that an image fL is affine transformed into

an image fR it will always be possible to find a transformation

between the scale parameters sL and sR in the two domains that

makes it possible to match the corresponding derived internal

representations L(:; sL) and R(:; sR). Figure 3 shows a few

examples of such kernels in different directions with the covariance

matrix parameterized according to

S ~
l1 cos2 hzl2 sin2 h (l1{l2) cos h sin h

(l1{l2) cos h sin h l1 sin2 hzl2 cos2 h

 !
ð35Þ

with l1 and l2 denoting the eigenvalues and h the orientation.

Directional derivatives of these kernels can in turn be obtained

from linear combinations of partial derivative operators according

to

LQm L ~( cos QLx1
z sin QLx2

)mL

~
Pm

k~0

m

k

� �
cosk Q sinm{k QL

xk
1

xm{k
2

: ð36Þ

With respect to biological vision, these kernels can be used for

modelling receptive fields that are oriented in the spatial domain,

as will be described in connection with equation (71) in the section

on ‘‘Computational modelling of biological receptive fields’’. For

computer vision they can be used for computing affine invariant

image descriptors for e.g. cues to surface shape, image-based matching

and recognition (Lindeberg [63]; Lindeberg and Gårding [40]:

Baumberg [73]; Mikolajczyk and Schmid [74]; Tuytelaars and van

Gool [75]; Lazebnik et al. [76]; Rothganger et al. [77]).

Note on receptive fields formed from derivatives of the

convolution kernels. Due to the linearity of the differential

equation (23), which has been derived by necessity from the

structural requirements, it follows that also the result of applying a

linear operator D to the solution L will also satisfy the differential

equation, however, with a different initial condition

lim
s;0

(DL)(:; s)~Df : ð37Þ

The result of applying a linear operator D to the scale-space

representation L will therefore satisfy the above mentioned

structural requirements of linearity, shift invariance, the weaker

form of rotational invariance at the group level and non-

enhancement of local extrema, with the semi-group structure (6)

replaced by the cascade property

(DL)(:; s2)~T(:; s2{s1) � (DL)(:; s1): ð38Þ

Then, one may ask if any linear operator D would be

reasonable? From the requirement of scale invariance, however,

if follows that that the operator D must not be allowed to have

non-infinitesimal support, since a non-infinitesimal support s0w0
would violate the requirement of self-similarity over scale (9) and it

would not be possible to perform image measurements at a scale

level lower than s0. Thus, any receptive field operator derived

from the scale-space representation in a manner compatible with

the structural arguments must correspond to local derivatives. In

the illustrations above, partial derivatives and directional deriva-

tives up to order two have been shown.

For directional derivatives that have been derived from

elongated kernels whose underlying zero-order convolution

kernels are not rotationally symmetric, it should be noted that

we have aligned the directions of the directional derivative

operators to the orientations of the underlying kernels. A structural

motivation for making such an alignment can be obtained from a

requirement of a weaker form of rotational symmetry at the group

level. If we would like the family of receptive fields to be

rotationally symmetric as a group, then it is natural to require the

directional derivative operators to be transformed in a similar way

as the underlying kernels.

Receptive fields in terms of derivatives of the convolution

kernels derived by necessity do also have additional advantages if

one adds a further structural requirement of invariance under

additive intensity transformations f (x).f (x)zC. A zero-order

receptive field will be affected by such an intensity transformation,

whereas higher order derivatives are invariant under additive

intensity transformations. As will be described in the section on

‘‘Invariance property under illumination variations’’, this form of

invariance has a particularly interesting physical interpretation

with regard to a logarithmic intensity scale.

Spatio-temporal image data
For spatio-temporal image data f (x,t) defined on a 2+12D

spatio-temporal domain with (x,t)~(x1,x2,t) it is natural to

inherit the symmetry requirements over the spatial domain. In

addition, the following structural requirements can be imposed

motivated by the special nature of time and space-time:

Galilean covariance
For time-dependent spatio-temporal image data, we may have

relative motions between objects in the world and the observer, where

a constant velocity translational motion can be modelled by a

Galilean transformation

f 0~Gv f ð39Þ

corresponding to

f 0(x0,t0)~f (x,t) with x0~xzvt: ð40Þ

To enable a consistent visual interpretation under different relative

motions, it is natural to require that it should be possible to

transform internal representations L(:,:; s) that are computed

from spatio-temporal image data under different relative motions
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L0(x0,t0; s0)~L(x,t; s) ð41Þ

corresponding to

TGv(s) Gv f ~Gv Ts f : ð42Þ

Such a property is referred to as Galilean covariance.

Temporal causality. For a vision system that interacts with

the environment in a real-time setting, a fundamental constraint

on the convolution kernels (the spatio-temporal receptive fields) is

that they cannot access data from the future. Hence, they must be

time-causal in the sense that convolution kernel must be zero for any

relative time moment that would imply access to the future:

T(x,t; s)~0 if tv0: ð43Þ

Time-recursivity. Another fundamental constraint on a

real-time system is that it cannot keep a record of everything that

Figure 3. Spatial receptive fields formed by affine Gaussian kernels and directional derivatives of these. The corresponding family of
receptive fields is closed under general affine transformations of the spatial domain, including translations, rotations, scaling transformations and
perspective foreshortening.
doi:10.1371/journal.pone.0066990.g003
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has happened in the past. Hence, the computations must be based

on a limited internal temporal buffer M(x,t), which should provide:

N a sufficient record of past information and

N sufficient information to update its internal state when new

information arrives.

A particularly useful solution is to use the internal representa-

tions L at different temporal scales also used as the memory buffer

of the past. In (Lindeberg [21, section 5.1.3, page 57]) it is shown

that such a requirement can be formalized by a time-recursive

updating rule of the form

L(x,t2; s2,t)~

~
Ð

j[RN

Ð
f§0

U(x{j,t2{t1; s2{s1,t,f)

L(j,t1; s1,f)dfdj

z
Ð

j[RN

Ð t2
u~t1

B(x{j,t2{u; s2,t) f (j,u)djdu ð44Þ

which is required to hold for any pair of scale levels s2§s1 and any

two time moments t2§t1, where

N the kernel U updates the internal state,

N the kernel B incorporates new image data into the represen-

tation,

N t is the temporal scale and f an integration variable referring

to internal temporal buffers at different temporal scales.

Non-enhancement of local extrema in a time-recursive

setting. For a time-recursive spatio-temporal visual front-end it

is also natural to generalize the notion of non-enhancement of

local extrema, such that it is required to hold both with respect to

increasing spatial scales s and evolution over time t. Thus, if at

some spatial scale s0 and time moment t0 a point (x0,t0) is a local

maximum (minimum) for the mapping

(x,t)?L(x,t0; s0,t) ð45Þ

then for every positive direction u~(u1, . . . ,uN ,uNz1) in the Nz1-

dimensional space spanned by (s,t), the directional derivative

(DuL)(x,t; s,t) must satisfy

(DuL)(x0,t0; s0,t0)ƒ0 at any local maximum , ð46Þ

(DuL)(x0,t0; s0,t0)§0 at any local minimum : ð47Þ

Necessity results concerning spatio-temporal
receptive fields

We shall now describe how these structural requirements

restrict the class of possible spatio-temporal receptive fields.

Non-causal spatio-temporal receptive fields
If one disregards the requirements of temporal causality and

time recursivity and instead requires (i) linearity, (ii) shift

invariance over space and time, (iii) semi-group property over

spatial and temporal scales, (iv) sufficient regularity properties over

space, time and spatio-temporal scales and (v) non-enhancement

of local extrema for a multi-parameter scale-space, then it follows

from (Lindeberg [21, theorem 5, page 42]) that the scale-space

representation over a 2+1-D spatio-temporal domain must satisfy

LsL~
1

2
+T

(x,t) S0+(x,t)L
� �

{dT
0 +(x,t)L ð48Þ

for some 3|3 covariance matrix S0 and some 3-D vector d0 with

+(x,t)~(Lx1
,Lx2

,Lt)
T .

In terms of convolution kernels, the zero-order receptive fields

will then be spatio-temporal Gaussian kernels

g(p; Ss,ds)~
1

(2p)3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
detSs

p e{(p{ds)TS{1
s (p{ds)=2s ð49Þ

with p~(x,t)T~(x1,x2,t)T ,

Ss ~ f 3 | 3 matrix as shown in table1 g ð50Þ

ds ~

v1t

v2t

d

0
B@

1
CA

where (i) l1, l2 and h determine the spatial extent, (ii) lt determines

the temporal extent, (iii) v~(v1,v2) denotes the image velocity and (iv) d
represents a temporal delay. From the corresponding Gaussian spatio-

temporal scale-space

L(x,t; Sspace,v,t)~(g(:,:; Sspace,v,t) � f (:,:))(x,t) ð52Þ

spatio-temporal derivatives can then be defined according to

L
xatb

(x,t; Sspace,v,t)~(L
xatb

L)(x,t; Sspace,v,t) ð53Þ

with corresponding velocity-adapted temporal derivatives

L�tt~vT+xzLt~v1 Lx1
zv2 Lx2

zLt ð54Þ

as illustrated in figure 4 and figure 5 for the case of a 1+12D

space-time.

Motivated by the requirement of Galilean covariance, it is

natural to align the directions v in space-time for which these

velocity-adapted spatio-temporal derivatives are computed to the

velocity values used in the underlying zero-order spatio-temporal

kernels, since the resulting velocity-adapted spatio-temporal

derivatives will then be Galilean covariant. Such receptive fields

can be used for modelling spatio-temporal receptive fields in

biological vision (Lindeberg [21,56]; Young et al. [34,35]) and for

computing spatio-temporal image features and Galilean invariant

image descriptors for spatio-temporal recognition in computer

(51)
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vision (Laptev and Lindeberg [78–80]; Laptev et al. [81]; Willems

et al. [82]).

Transformation property under Galilean

transformations. Under a Galilean transformation of space-

time (40), in matrix form written

p0~Gv p ð55Þ

corresponding to

x10

x20

t0

0
B@

1
CA~

1 0 v1

0 1 v2

0 0 1

0
BBB@

1
CCCA

x1

x2

t

0
B@

1
CA, ð56Þ

the corresponding Gaussian spatio-temporal representations are

related in an algebraically similar way (30–33) as the affine

Gaussian scale-space with the affine transformation matrix A

replaced by a Galilean transformation matrix Gv. In other words,

if two spatio-temporal image patterns fL and fR are related by a

Figure 4. Non-causal and space-time separable spatio-temporal receptive fields over 1+12D space-time as generated by the
Gaussian spatio-temporal scale-space model with v~0. This family of receptive fields is closed under rescalings of the spatial and temporal
dimensions. (Horizontal axis: space x. Vertical axis: time t.)
doi:10.1371/journal.pone.0066990.g004

Invariant Visual Receptive Fields

PLOS ONE | www.plosone.org 11 July 2013 | Volume 8 | Issue 7 | e66990



Galilean transformation encompassing a translation

Dp~(Dx1,Dx2,Dt)T in space-time

fL(j)~fR(g) where g~Gv jzDp, ð57Þ

(which may represent time-dependent image data registered of an

object under different relative motions between the object and the

observer) and if corresponding spatio-temporal scale-space repre-

sentations L and R of fL and fR are defined according to

Figure 5. Non-causal and velocity-adapted spatio-temporal receptive fields over 1+1-D space-time as generated by the Gaussian
spatio-temporal scale-space model for a non-zero image velocity v. This family of receptive fields is closed under rescalings of the spatial and
temporal dimensions as well as Galilean transformations. (Horizontal axis: space x. Vertical axis: time t.)
doi:10.1371/journal.pone.0066990.g005

Table 1. Spatio-temporal covariance matrix for the Gaussian
spatio-temporal scale-space used for modelling non-causal
spatio-temporal receptive fields in equation (50).

l1 cos2 hzl2 sin2 hzv2
1lt (l2{l1) cos h sin hzv1v2lt v1lt

(l2{l1) cos h sin hzv1v2lt l1 sin2 hzl2 cos2 hzv2
2lt v2lt

v1lt v2lt lt

0
B@

1
CA

doi:10.1371/journal.pone.0066990.t001
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L(:; SL) ~g(:; SL) � fL(:) ð58Þ

R(:; SR) ~g(:; SR) � fR(:) ð59Þ

for general spatio-temporal covariance matrices SL and SR of the

form (50), then these spatio-temporal scale-space representations

will be related according to

L(x; SL)~R(y; SR) ð60Þ

where

SR~GvSL GT
v and y~Gv xzDp: ð61Þ

Given two spatio-temporal image patterns that are related by a

Galilean transformation, such as arising when an object is

observed with different relative motion between the object and

the viewing direction of the observer, it will therefore be possible to

perfectly match the spatio-temporal receptive field responses

computed from the different spatio-temporal image patterns.

Such a perfect matching would, however, not be possible without

velocity adaptation, i.e., if the spatio-temporal receptive fields

would be computed using space-time separable receptive fields

only.

Time-causal spatio-temporal receptive fields
If we on the other hand with regard to real-time biological

vision want to respect both temporal causality and temporal

recursivity, we obtain a different family of time-causal spatio-

temporal receptive fields. Given the requirements of (i) linearity,

(ii) shift invariance over space and time, (iii) temporal causality, (iv)

time-recursivity, (v) semi-group property over spatial scales s and

time t Ts1,t1
Ts2,t2

~Ts1zs2,t1zt2
, (vi) sufficient regularity properties

over space, time and spatio-temporal scales and (vii) non-

enhancement of local extrema in a time-recursive setting, then it

follows that the time-causal spatio-temporal scale-space must

satisfy the system of diffusion equations (Lindeberg [21, equations

(88–89), page 52, theorem 17, page 78])

LsL ~
1

2
+T

x (S+xL) ð62Þ

LtL ~{vT+xLz
1

2
LttL ð63Þ

for some 2|2 spatial covariance matrix S and some image

velocity v with s denoting the spatial scale and t the temporal scale. In

terms of receptive fields, this spatio-temporal scale-space can be

computed by convolution kernels of the form

h(x,t; s,t; S,v)~g(x{vt; s; S)w(t; t)~

~
1

2ps
ffiffiffiffiffiffiffiffiffiffiffi
detS
p e{(x{vt)TS{1(x{vt)=2s 1ffiffiffiffiffiffi

2p
p

t3=2
te{t2=2t ð64Þ

where

N g(x{vt; s; S) is a velocity-adapted 2-D affine Gaussian kernel with

covariance matrix S and

N w(t; t) is a time-causal smoothing kernel over time with temporal

scale parameter t.

From these kernels, spatio-temporal partial derivatives and

velocity-adapted derivatives can be computed in a corresponding

manner (53) and (54) as for the Gaussian spatio-temporal scale-

space concept; see figure 6 and figure 7 for illustrations in the case

of a 1+12D space-time.

Concerning the relations between the non-causal spatio-

temporal model in section "Non-causal spatio-temporal receptive

fields", and the time-causal model in section ‘‘Time-causal spatio-

temporal receptive fields’’, please note that requirement of non-

enhancement of local extrema is formulated in different ways in

the two cases: (i) For the non-causal scale-space model, the

condition about non-enhancement condition is based on points

that are local extrema with respect to both space x and time t. At

such points, a sign condition is imposed on the derivative in any

positive direction over spatial scales s and temporal scale t. (ii) For

the time-causal scale-space model, the notion of local extrema is

based on points that are local extrema with respect to space x and

the internal temporal buffers at different temporal scales t. At such

points, a sign condition is imposed on the derivatives in the

parameter space defined by the spatial scale parameters s and time

t. Thus, in addition to the restriction to time-causal convolution

kernels (43) the derivation of the time-causal scale-space model is

also based on different structural requirements.

Other time-causal temporal scale-space models have been

proposed by Koenderink [83] based on a logarithmic transfor-

mation of time in relation to a time delay relative to the present

moment and by Lindeberg and Fagerström [84] based on a set of

first-order integrators corresponding to truncated exponential

filters with time constants mi coupled in cascade

hcomposed (t; m)~ �k
i~1

1

mi

e{t=mi ð65Þ

with the composed kernel having temporal variance

tk~
Xk

t~1

m2
i : ð66Þ

Such first-order temporal integrators satisfy weaker scale-space

properties in the sense of guaranteeing non-creation of local

extrema or zero-crossings for a one-dimensional temporal signal,

although they do not permit true covariance under rescalings of

the temporal axis. Moreover, they are inherently time recursive

and obey a temporal update rule between adjacent temporal scale

levels tk{1 and tk of the following form:

LtL(t; tk)~
1

mk

L(t; tk{1){L(t; tk)ð Þ: ð67Þ
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Such kernels can also be used as an idealized computational

model for temporal processing in biological neurons (Koch [85,

Chapters 11–12]). If we combine these purely temporal smoothing

kernels with the general form of spatio-temporal kernels

Tspace{time(x,t; s,t; S,v)~

~g(x{vt; s; S)Ttime(t; t) ð68Þ

as obtained from a principled treatment over the joint space-time

domain, we obtain an additional class of time-causal and time-

recursive spatio-temporal receptive fields with the additional

restrictions that the temporal scale parameter has to be discretized

already in the theory and that temporal covariance cannot hold

Figure 6. Time-causal and space-time separable spatio-temporal receptive fields over a 1+12D space-time as generated by the
time-causal spatio-temporal scale-space model with v~0. This family of receptive fields is closed under rescalings of the spatial and temporal
dimensions. (Horizontal axis: space x. Vertical axis: time t.)
doi:10.1371/journal.pone.0066990.g006
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exactly for temporal scale levels that have been determined

beforehand. For the logarithmic scale-time approach by Koender-

ink [83], there is, however, not any known time-recursive

implementation suitable for real-time processing.

Computational modelling of biological receptive
fields

An attractive property of the presented framework for early

receptive fields is that it generates receptive field profiles in good

Figure 7. Time-causal and velocity-adapted spatio-temporal receptive fields over a 1+12D space-time as generated by the time-
causal spatio-temporal scale-space model with v~0. This family of receptive fields is closed under rescalings of the spatial and temporal
dimensions as well as Galilean transformations. (Horizontal axis: space x. Vertical axis: time t.)
doi:10.1371/journal.pone.0066990.g007
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agreement with receptive field profiles found by cell recordings in

the retina, LGN and V1 of higher mammals. DeAngelis et al. [26]

and DeAngelis and Anzai [27] present overviews of (classical)

receptive fields in the joint space-time domain. As outlined in

(Lindeberg [21, section 6]), the Gaussian and time-causal scale-

space concepts presented here can be used for generating

predictions of receptive field profiles that are qualitatively very

similar to all the spatial and spatio-temporal receptive fields

presented in these surveys.

LGN neurons
In the LGN, most cells (i) have approximately circular-center

surround and most receptive fields are (ii) space-time separable

(DeAngelis et al. [26]; DeAngelis and Anzai [27]). A corresponding

idealized scale-space model for such receptive fields can be

expressed as

hLGN (x1,x2,t; s,t)~

+(Lx1x1
zLx2x2

)g(x1,x2; s)Lt0n h(t; t)
ð69Þ

where

N + determines the polarity (on-center/off-surround vs: off-

center/on-surround),

N Lx1x1
zLx2x2

denotes the spatial Laplacian operator,

N g(x1,x2; s) denotes a rotationally symmetric spatial Gaussian,

N Lt0 denotes a temporal derivative operator with respect to a

possibly self-similar transformation of time t0~ta or t0~ log t

such that Lt0~tk Lt for some constant k [21, section 5.1, pages

59–61],

N h(t; t) is a temporal smoothing kernel over time corresponding

to the time-causal smoothing kernel w(t; t)~
1ffiffiffiffiffiffi

2p
p

t3=2
te{t2=2t

in (64) or a non-causal time-shifted Gaussian kernel

g(t; t,d)~
1ffiffiffiffiffiffiffiffi
2pt
p e{(t{d)2=2t according to (49), alternatively a

time-causal kernel of the form (65) corresponding to a set of

first-order integrators over time coupled in cascade,

N n is the order of temporal differentiation,

N s is the spatial scale parameter and

N t is the temporal scale parameter.

Figure 8 shows a comparison between the spatial component of

a receptive field in the LGN with a Laplacian of the Gaussian.

This model can also be used for modelling on-center/off-surround

and off-center/on-surround receptive fields in the retina.

Regarding the spatial domain, the model in terms of spatial

Laplacians of Gaussians (Lx1x1
zLx2x2

)g(x1,x2; s) is closely related

to differences of Gaussians, which have previously been shown to

be good approximation of the spatial variation of receptive fields in

the retina and the LGN (Rodieck [31]). This property follows from

the fact that the rotationally symmetric Gaussian satisfies the

isotropic diffusion equation

1

2
+2L(x; t) ~LtL(x; t)

&
L(x; tzDt){L(x; t)

Dt

~
DOG(x; t,Dt)

Dt
ð70Þ

which implies that differences of Gaussians can be interpreted as

approximations of derivatives over scale and hence to Laplacian

responses.

Simple cells in V1
In V1 the receptive fields are generally different from the

receptive fields in the LGN in the sense that they are (i) oriented in

the spatial domain and (ii) sensitive to specific stimulus velocities (DeAngelis

et al. [26]; DeAngelis and Anzai [27]).

Spatial dependencies
We can express a scale-space model for the spatial component of

this orientation dependency according to

hspace(x1,x2; s)~( cos QLx1
z sin QLx2

)m g(x1,x2; S) ð71Þ

where

N LQ~ cos QLx1
z sin QLx2

is a directional derivative operator,

N m is the order of spatial differentiation and

N g(x1,x2; S) is an affine Gaussian kernel with spatial

covariance matrix S as can be parameterized according to (35)

where the direction Q of the directional derivative operator should

preferably be aligned to the orientation h of one of the

eigenvectors of S. Figure 9 shows a comparison between this

idealized receptive field model over the spatial domain and the

spatial response properties of a simple cell in V1.

In the specific case when the covariance matrix is proportional

to a unit matrix S~sI , with s denoting the spatial scale

parameter, these directional derivatives correspond to regular

Gaussian derivatives as proposed as a model for spatial receptive

fields by Koenderink and van Doorn [32,62]. The use of non-

isotropic covariance matrices does on the other hand allow for a

higher degree of orientation selectivity. Moreover, by having a

family of affine adapted kernels tuned to a family of covariance

matrices with different orientations and different ratios between

the scale parameters in the two directions, the family as a whole

can represent affine covariance which makes it possible to perfectly

match corresponding receptive field responses between different

views obtained under variations of the viewing direction in relation

to the object.

Figure 10 shows illustrations of affine receptive fields of different

orientations and degrees of elongation as they arise if we assume

that the set of all 3-D objects in the world have an approximately

uniform distribution of surface orientations in 3-D space and if we

furthermore assume that we observe these objects from a uniform

distribution of viewing directions that are not directly coupled to

properties of the objects.

This idealized model of elongated receptive fields can also be

extended to recurrent intracortical feedback mechanisms as

formulated by Somers et al. [86] and Sompolinsky and Shapley

[87] by starting from the equivalent formulation in terms of the

non-isotropic diffusion equation (23)

LsL~
1

2
+T

x S0+xLð Þ ð72Þ

with the covariance matrix S0 locally adapted to the statistics of
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image data in a neighbourhood of each image point; see Weickert

[88] and Almansa and Lindeberg [89] for applications of this idea

to the enhancement of local directional image structures in

computer vision.

By the use of locally adapted feedback, the resulting evolution

equation does not obey the original linearity and shift-invariance

(homogeneity) requirements used for deriving the idealized affine

Gaussian receptive field model, if the covariance matrices S0 are

determined from a properties of the image data that are

determined in a non-linear way. For a fixed set of covariance

matrices S0 at any image point, the evolution equation will still be

linear and will specifically obey non-enhancement of local

extrema. In this respect, the resulting model could be regarded

as a simplest form of non-linear extension of the idealized

receptive field model.

Relations to modelling by Gabor functions. Gabor

functions have been frequently used for modelling spatial receptive

fields (Marčelja [28]; Jones and Palmer [29,30]), motivated by

their property of minimizing the uncertainty relation. This

motivation can, however, be questioned on both theoretical and

empirical grounds. Stork and Wilson [90] argue that (i) only

complex-valued Gabor functions that cannot describe single

receptive field minimize the uncertainty relation, (ii) the real

functions that minimize this relation are Gaussian derivatives

rather than Gabor functions and (iii) comparisons among Gabor

and alternative fits to both psychophysical and physiological data

have shown that in many cases other functions (including Gaussian

derivatives) provide better fits than Gabor functions do.

Conceptually, the ripples of the Gabor functions, which are

given by complex sine waves, are related to the ripples of Gaussian

derivatives, which are given by Hermite functions. A Gabor

function, however, requires the specification of a scale parameter

and a frequency, whereas a Gaussian derivative requires a scale

parameter and the order of differentiation. With the Gaussian

derivative model, receptive fields of different orders can be

mutually related by derivative operations, and be computed from

each other by nearest-neighbour operations. The zero-order

receptive fields as well as the derivative based receptive fields

Figure 8. Spatial component of receptive fields in the LGN. (left) Receptive fields in the LGN have approximately circular center-surround
responses in the spatial domain, as reported by DeAngelis et al. [26]. (right) In terms of Gaussian derivatives, this spatial response profile can be
modelled by the Laplacian of the Gaussian +2g(x,y; s)~(x2zy2{2s)=(2ps3) exp ({(x2zy2)=2s), here with s~0:35deg 2 .
doi:10.1371/journal.pone.0066990.g008

Figure 9. Spatial component of receptive fields in V1. (left) Simple cells in the striate cortex do usually have strong directional preference in
the spatial domain, as reported by DeAngelis et al. [26]. (right) In terms of Gaussian derivatives, first-order directional derivatives of anisotropic affine

Gaussian kernels, here aligned to the coordinate directions Lxg(x,y; S)~Lxg(x,y; lx,ly)~{
x

lx

1=(2p
ffiffiffiffiffiffiffiffiffi
lxly

p
) exp ({x=2lx{y2=2ly) and here with

lx~0:2deg 2 and ly~1:9deg 2 , can be used as a model for simple cells with a strong directional preference.
doi:10.1371/journal.pone.0066990.g009
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can be modelled by diffusion equations, and can therefore be

implemented by computations between neighbouring computa-

tional units.

In relation to invariance properties, the family of affine

Gaussian kernels is closed under affine image deformations,

whereas the family of Gabor functions obtained by multiplying

rotationally symmetric Gaussians with sine and cosine waves is not

closed under affine image deformations. This means that it is not

possibly to compute truly affine invariant image representations

from such Gabor functions. Instead, given a pair of images that are

related by a non-uniform image deformation, the lack of affine

covariance implies that there will be a systematic bias in image

representations derived from such Gabor functions, corresponding

to the difference between the backprojected Gabor functions in the

two image domains. If using receptive profiles defined from

directional derivatives of affine Gaussian kernels, it will on the

other hand be possible to compute affine invariant image

representations.

In this respect, the Gaussian derivative model can be regarded

as simpler, it can be related to image measurements by differential

geometry, be derived axiomatically from symmetry principles, be

computed from a minimal set of connections and allows for

provable invariance properties under non-uniform (affine) image

deformations. Young [33] has more generally shown that spatial

receptive fields in cats and monkeys can be well modelled by

Gaussian derivatives up to order four.

Spatio-temporal dependencies
To model spatio-temporal receptive fields in the joint space-time

domain, we can then state scale-space models of simple cells in V1

using either

N non-causal Gaussian spatio-temporal derivative kernels

hGaussian(x1,x2,t; s,t,v,d)~

~(La1
Q La2

\Q L�ttn g)(x1,x2,t; s,t,v,d) ð73Þ

N time-causal spatio-temporal derivative kernels

htime{causal(x1,x2,t; s,t,v)~

~(L
x

a1
1

x
a2
2

L�ttn h)(x1,x2,t; s,t,v) ð74Þ

with the non-causal Gaussian spatio-temporal kernels

g(x1,x2,t; s,t,v,d) according to (49), the time-causal spatio-

temporal kernels h(x1,x2,t; s,t,v) according to (64) and spatio-

temporal derivatives L
x

a1
1

x
a2
2

L
tb

or velocity-adapted derivatives

L
x

a1
1

x
a2
2

L�ttb
of these according to (53) and (54).

For a general orientation of receptive fields with respect to the

spatial coordinate systems, the receptive fields in these scale-space

models can be jointly described in the form

hsimple{cell(x1,x2,t; s,t,v,S)~

~( cos QLx1
z sin QLx2

)a1 ( sin QLx1
{ cos QLx2

)a2

(v1 Lx1
zv2 Lx2

zLt)
n

g(x1{v1t,x2{v2t; sS)h(t; t) ð75Þ

where

N LQ~ cos QLx1
z sin QLx2

and L\Q~ sin QLx1
{ cos QLx2

de-

note spatial directional derivative operators according to (36)

in two orthogonal directions Q and \Q,

N a1§0 and a2§0 denote the orders of differentiation in the two

orthogonal directions in the spatial domain with the overall

spatial order of differentiation m~a1za2,

N v1 Lx1
zv2 Lx2

zLt denotes a velocity-adapted temporal deriv-

ative operator,

N v~(v1,v2) denotes the image velocity,

Figure 10. Affine Gaussian receptive fields generated for a set of covariance matrices S that correspond to an approximately
uniform distribution on a hemisphere in the 3-D environment, which is then projected onto a 2-D image plane. (left) Zero-order
receptive fields. (right) First-order receptive fields.
doi:10.1371/journal.pone.0066990.g010
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N n denotes the order of temporal differentiation,

N g(x1{v1t,x2{v2t; S) denotes a spatial affine Gaussian kernel

according to (29) that translates with image velocity v~(v1,v2)
in space-time,

N S denotes a spatial covariance matrix that can be parameter-

ized by two eigenvalues l1 and l2 as well as an orientation h of

the form (35),

N h(t; t) is a temporal smoothing kernel over time corresponding

to the time-causal smoothing kernel Q(t; t)~
1ffiffiffiffiffiffi

2p
p

t3=2
te{t2=2t

in (64) or a non-causal time-shifted Gaussian kernel

g(t; t,d)~
1ffiffiffiffiffiffiffiffi
2pt
p e{(t{d)2=2t according to (49), alternatively a

time-causal kernel of the form (65) corresponding to a set of

first-order integrators over time coupled in cascade,

N s denotes the spatial scale and

N t denotes the temporal scale.

Figure 11 shows examples of non-separable spatio-temporal

receptive fields measured by cell recordings in V1 with

corresponding velocity-adapted spatio-temporal receptive fields

obtained using the Gaussian scale-space and the time-causal scale-

space; see also Young et al. [34] and Young and Lesperance [35]

for a closely related approach based on Gaussian spatio-temporal

derivatives although using a different type of parameterization and

Lindeberg [56] for closely related earlier work. These scale-space

models should be regarded as idealized functional and phenomenological

models of receptive fields that predict how computations occur in a

visual system and whose actual realization can then be

implemented in different ways depending on available hardware

or wetware.

Work has also been performed on learning receptive field

properties and visual models from the statistics of natural image

data (Field [44]; van der Schaaf and van Hateren [45]; Olshausen

and Field [46]; Rao and Ballard [47]; Simoncelli and Olshausen

[48]; Geisler [49]) and been shown to lead to the formation of

similar receptive fields as found in biological vision. The proposed

theoretical model on the other hand makes it possible to determine

such receptive fields from theoretical first principles that reflect

symmetry properties of the environment and thus without need for

any explicit training stage or selection of representative image

data. This normative approach can therefore be seen as describing

the solution that an idealized learning based system may converge

to, if exposed to a sufficiently large and representative set of

natural image data.

An interesting observation that can be made from the

similarities between the receptive field families derived by necessity

from the assumptions and receptive profiles found by cell

recordings in biological vision, is that receptive fields in the retina,

LGN and V1 of higher mammals are very close to ideal in view of

the stated structural requirements/symmetry properties (Linde-

berg [22]). In this sense, biological vision can be seen as having

adapted very well to the transformation properties of the outside

world and the transformations that occur when a three-dimen-

sional world is projected to a two-dimensional image domain.

Mechanisms for obtaining true geometric
invariances

An important property of the above mentioned families of

spatial and spatio-temporal receptive fields is that they obey basic

covariance properties under

N rescalings of the spatial and temporal dimensions,

N affine transformations of the spatial domain and

N Galilean transformations of space-time;

see (Lindeberg [21, section 5.1.2, page 56]) for more precise

statements and explicit equations. These properties do in turn

allow the vision system to handle:

N image data acquired with different spatial and temporal

sampling rates, including image data that are sampled with

different spatial resolution on a foveated sensor with decreasing

sampling rate towards the periphery and spatio-temporal

events that occur at different speed (fast vs. slow),

N image structures of different spatial and/or temporal extent,

including objects of different size in the world and events with

longer or shorter duration over time,

N objects at different distances from the camera,

N the linear component of perspective deformations (e.g. perspective

foreshortening) corresponding to objects or events viewed from

different viewing directions and

N the linear component of relative motions between objects or

events in the world and the observer.

In these respects, the presented receptive field models ensure

that visual representations will be well-behaved under basic geometric

transformations in the image formation process.

This framework can then in turn be used as a basis for defining

truly invariant representations. In the following, we shall describe basic

approaches for this that have been developed in the area of

computer vision, and have been demonstrated to be powerful

mechanisms for achieving scale invariance, affine invariance and

Galilean invariance for real-world data. Since these mechanisms

are expressed at a functional level of receptive fields, we propose

that corresponding mechanisms can be applied to neural models

and a for providing a mathematically well-founded framework for

explaining invariance properties in computational models.

Scale invariance
Given a set of receptive fields that operate over some range of

scale, a general approach for obtaining scale invariance is by

performing scale selection from local extrema over scale of scale-

normalized derivatives (Lindeberg [39,63])

Lj1
~sc=2 Lx1

Lj2
~sc=2 Lx2

ð76Þ

where c[½0,1� is a free parameter that can be adjusted to the task

and in some cases be chosen as c~1. Specifically, it can be shown

that if a spatial image f (x) has a local extremum over scale at scale

s0 for some position x0 in image space, then if we define a rescaled

image f 0(x0) by f 0(x0)~f (x) where x0~ax for some scaling factor

a, then there will be a corresponding local extremum over scale in

the rescaled image f 0(x0) at scale s00~a2s0 and position x0~ax0

(Lindeberg [63, section 13.2.1] [39, section 4.1]). In other words,

local extrema over scale of scale-normalized derivatives are

preserved under scaling transformations and follow the scale

variations in an appropriate manner. This property also extends to

linear and non-linear combinations of receptive field responses

that correspond to spatial and spatio-temporal derivatives of the

Gaussian spatial and spatio-temporal scale-space concepts de-

scribed in the section ‘‘Model for early visual pathway in an

idealized vision system’’ as well as to the idealized models of

biological receptive fields presented in the section ‘‘Computational

modelling of biological receptive fields’’.
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Figure 12 illustrates this idea by performing local scale selection

at two different points in a spatial image from local extrema over

scale of the scale-normalized Laplacian +2
normL and the scale-

normalized determinant of the Hessian det HnormL computed

from Gaussian-derivative receptive fields at different spatial scales

+2
normL ~s(Lx1x1

zLx2x2
), ð77Þ

Figure 11. Non-separable spatio-temporal receptive fields in V1. (top row) Examples of non-separable spatio-temporal receptive field
profiles in the striate cortex as reported by DeAngelis et al. [26]: (top left) a receptive field reminiscent of a second-order derivative in tilted space-
time (compare with the left column in figure 11) (top right) a receptive reminiscent of a third-order derivative in tilted space-time (compare with the
right column in figure 11). (middle and bottom rows) Non-separable spatio-temporal receptive fields obtained by applying velocity-adapted second-
and third-order derivative operations in space-time to spatio-temporal smoothing kernels generated by the spatio-temporal scale-space concept.
(middle left) Gaussian spatio-temporal kernel gxx(x,t; s,t,v,d) with s~0:5deg 2,t~502 ms2,v~0:007deg=ms ,d~100ms . (middle right) Gaussian

spatio-temporal kernel gxxx(x,t; s,t,v,d) with s~0:5deg 2,t~602 ms2,v~0:004deg=ms ,d~130ms . (lower left) Time-causal spatio-temporal kernel

hxx(x,t; s,t,v) with s~0:4deg 2,t~15ms1=2,v~0:007deg=ms . ( lower right) Time-causal spatio-temporal kernel hxxx(x,t; s,t,v) with

s~0:4deg 2,t~15ms1=2,v~0:004deg=ms . (Horizontal dimension: space x. Vertical dimension: time t.)
doi:10.1371/journal.pone.0066990.g011
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det HnormL ~s2(Lx1x1
Lx2x2

{L2
x1x2

): ð78Þ

From the graphs in this figure, which show the variation over

scale of the scale-normalized Laplacian +2
normL and the scale-

normalized determinant of the Hessian det HnormL as function of

effective scale log s, it can be seen that the local extrema over scale

are assumed at a finer scale for the distant object and at a coarser

scale for the nearby object. The ratio between these scale values

measured in units of the standard deviation s~
ffiffi
s
p

of the

underlying Gaussian kernels corresponds to the ratio between

the sizes of the projections between of the two lamps in the image

Figure 12. Illustration of how scale selection can be performed from receptive field responses by computing scale-normalized
Gaussian derivative operators at different scales and then detecting local extrema over scale. Here, so-called scale-space signatures have
been computed at the centers of two different lamps at different distances to the observer. Notice how the local extrema over scale are assumed at
coarser scales for the nearby lamp than for the distant lamp. When measured in units of dimension length, the ratio between these scale estimates
agrees with the ratio between the sizes of the projected lamps in the image domain.
doi:10.1371/journal.pone.0066990.g012
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domain and reflects the ratio between the distances between these

objects and the observer.

Computing image descriptors at scale levels obtained from a

scale selection step based on local extrema over scale of scale-

normalized receptive field responses or equivalently computing

image descriptors from local image patches that have been scale

normalized with respect to such size estimates constitutes a very

general approach for obtaining true scale invariance and has been

successfully applied for different tasks in computer vision

(Lindeberg [65,91]) including scale-invariant tracking and object

recognition (Bretzner and Lindeberg [92]; Lowe [71]; Bay et al.

[72]) and estimation of time to collision from temporal size

variations in the image domain (Lindeberg and Bretzner [93];

Negre et al. [94]).

Figure 13 illustrates an application of the latter scale normal-

ization approach applied to the two windows in figure 12, by first

detecting local extrema over scale of the scale-normalized

Laplacian +2
normL and the scale-normalized determinant of the

Hessian det HnormL and then using these scale values for rescaling

the two windows to a common reference frame. In theory any

image measurement derived from the common reference frame

will be truly scale invariant. Scale selection performed in this way

does hence constitute a very general principle for achieving scale

invariance for image measurements in terms of receptive fields.

It should be emphasized, however, that there is in principle no

need for carrying out the image warping in practice as it has been

done in figure 13 for the purpose of illustration. On a neural

architecture it may be more efficient to consider a routing

mechanism (Olshausen et al. [42]; Wiskott [95]) that operates on

image representations at different scales and selects visual

representations from the scales at which image features assume

their extremum responses over scale. In this respect, the resulting

model will be qualitatively rather similar to the approach by

Riesenhuber and Poggio [43], where a SoftMax operation (a soft

winner-take-all mechanism) is applied for computing receptive

field representations at successively higher layers in a hierarchical

architecture. Specifically, the notion of scale-normalized deriva-

tives according to (76) determines how the receptive field responses

as modelled by Gaussian derivatives should be normalized

between different scale levels in such a model. Due to the scale

covariant nature of the underlying receptive fields, it follows that

the visual representations that are routed forward by the

maximum selection mechanism will be truly scale invariant.

Concerning the possible biological implementation of such a

maximum operation, Gawne and Martin [96] have shown that

there are neurons in area V4 of monkey that respond to two

simultaneously presented stimuli that are well predicted by the

maximum of the response to each stimulus presented separately.

(In practice, the scale normalazation in equation (77) with c~1
corresponds to normalizing the underlying Gaussian derivative

receptive fields (25) to constant L1-norm over scale, whereas other

values of c=1 correspond to other Lp-norms being constant over

scale [39, section 9.1, pages 107–108].)

Affine invariance
Given a set of spatial receptive fields as generated from affine

Gaussian kernels (29) with their directional derivatives (36) for

different spatial extents and orientations as specified by different

covariance matrices (35), the vision system will be faced with the

task of interpreting the output from the corresponding family of

receptive field responses. For example, if we assume that the vision

system observes a local surface patch in the world, one may ask if

some specific selection of filter parameters would be particularly

suitable for interpreting the data in any given situation.

Specifically, if the vision system observes the same surface patch

from two different viewing directions, it would be valuable if the

vision system could maintain a stable perception of the surface

patch although it will be deformed in different ways in the two

perspective projections onto the different image planes.

One way of selecting filter responses from such a family of affine

receptive fields is by using image measurements in terms of the

second-moment matrix (structure tensor)

m(x; sder,sint)~

~
Ð

u[R2 (+L)(u; sder)(+L)(u; sder)
T

g(x{u; sint)du ð79Þ

where sder is a local scale parameter describing the scale at which

spatial derivatives are computed and sint is a second integration

scale parameter over which local statistics of spatial derivatives is

accumulated (Lindeberg [63]; Lindeberg and Gårding [40]).

These statistics correspond to weighted averages of the non-linear

combinations of partial derivatives L2
x1

, Lx1
Lx2

and L2
x2

using a

Gaussian function as weight, and could on a biological architec-

ture be performed in a visual area that is based on input from V1,

for example in V2.

A useful property of the second-moment matrix is that it

transforms in a suitable way under affine transformations, as will

be described next. If we consider an affine extension of the second-

moment matrix by replacing the scalar scale parameters sder and

sint in (79) by corresponding covariance matrices Sder and Sint

m(x; Sder,Sint)~

~
Ð

u[R2 (+L)(u; Sder)(+L)(u; Sder)
T

g(x{u; Sint)du ð80Þ

and consider two images f (x) and f 0(x0) that are related by an

affine transformation x0~Ax such that f 0(Ax)~f (x), then the

corresponding affine second-moment matrices will be related

according to

m0(Ax; ASder AT ,ASint AT )~

~A{T m(x; Sder,Sint)A{1: ð81Þ

Specifically, if we can determine covariance matrices Sder and

Sint such that m(x; Sder,Sint)~c1S
{1
der ~c2S

{1
int for some constants

c1 and c2, we obtain a fixed-point that will be preserved under affine

transformations (Lindeberg [63]; Lindeberg and Gårding [40]). This

property can be used for signalling if the image measurements that

have been performed for a particular setting of filter parameters in

a family of affine Gaussian receptive fields satisfy the fixed-point

requirement. If so, they can be used for defining an affine invariant
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reference frame by transforming the local image patch with a linear

transformation proportional to A~m1=2.

If the local image pattern is weakly isotropic in the sense that the

second-moment computed in the tangent plane of the surface is

proportional to the unit matrix msurf ~cI for some constant c

(Gårding and Lindeberg [97]), then the foreshortening caused by

the perspective foreshortening will be compensated for by the

affine transformation given by (81). For non-isotropic image

patterns with msurf =cI this interpretation no longer holds, but the

affine transformed surface pattern will still be affine invariant.

It should be noted, however, that the affine transformation A is

not uniquely determined by the fixed-point requirement (80),

which only determines two of the four parameters, corresponding

to amount and direction of perspective foreshortening of a local

surface pattern, in other words the viewing direction in relation to

an object centered coordinate system. The two remaining degrees

of freedom correspond to (i) an overall scaling factor correspond-

ing the viewing distance, which can be determined by scale

selection as described in the section on ‘‘Scale invariance’’, and (ii)

a free rotation angle, corresponding to the selection of a

representative direction in the image plane. If the vertical direction

is preserved under the perspective transformation, we may

therefore not need to determine it or just adjust it from an initial

estimate.

Figure 14 illustrates an application of this idea to three images

taken as different oblique views of a wall covered with posters.

Here, a second-moment matrix m has been computed in each one

of three corresponding windows in the original images shown in

the left column. Then, an affine transformation matrix A~m1=2

has been used for warping each window to an individual reference

frame, and this so-called affine shape-adaptation process has been

repeated until the second-moment matrix in the reference frame is

sufficiently close to proportional to the unit matrix m0&cI . The

middle figure shows the result of warping each such window in the

original image to the resulting affine normalized reference frame.

Due to the affine invariant property of the fixed point (81), any

receptive field response computed in this reference frame will be

affine invariant up to an undetermined scaling factor and a free

Figure 13. Illustration of how scale normalization can be performed by rescaling local image structures using scale information
obtained from a scale selection mechanism. Here, the two windows selected in figure 12 have been transformed to a common scale-invariant
reference frame by normalizing them with respect to the scale levels at which the scale-normalized Laplacian and the scale-normalized determinant of
the Hessian respectively assumed their global extrema over scale. Note the similarities of the resulting scale normalized representations, although
they correspond to physically different objects in the world.
doi:10.1371/journal.pone.0066990.g013
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rotation angle. Hence, this method provides a way of normalizing

receptive field responses with respect to image transformations

outside the similarity group that correspond to variations in the

viewing direction relative to the object.

Again it should be emphasized that it is in principle not needed

to perform the actual image transformation in reality to achieve

the affine invariant property. On a neural architecture that

computes a family of affine receptive fields with different

orientations and spatial extents in parallel, one can again consider

a routing mechanism that selects the receptive field responses from

those receptive fields whose measurements of second-moment

matrices are in best agreement with the underlying covariance

matrices in relation to the fixed-point property. Then, up to a

known transformation whose parameters can be computed from

the corresponding second-moment matrix, these routed receptive

field responses will also be affine invariant.

In the area of computer vision, this idea of affine shape

adaptation has been used for defining affine invariant image

descriptors with successful applications to image matching,

recognition and estimation of cues to surface shape (Lindeberg

and Gårding [40]; Baumberg [73]; Mikolajczyk and Schmid [74];

Tuytelaars and van Gool [75]; Lazebnik et al. [76]: Rothganger et

al. [77]). The affine generalization of the SIFT operator proposed

by Morel and Yu [98] is essentially also based on similar notions as

underlying the affine shape adaption concept.

In the area of computer vision, other types of non-linear affine

covariant evolution schemes have also been developed for curves

by Sapiro and Tennenbaum [99] and Mokhtarian and Abbasi

[100] and for grey-level images by Alvarez et al. [101]. Compared

to the three-parameter affine Gaussian scale-space model for

receptive fields described here, these evolution schemes achieve

affine covariance by a single one-dimensional scale parameter,

while sacrificing linearity. This means that the scale-space

properties of the zero-order smoothed grey-level images are not

guaranteed to transfer to corresponding derivatives, which on the

other hand holds for receptive fields defined from the affine

Gaussian scale-space. The focus of these non-linear evolution

schemes is instead on preserving the properties of curves or level

sets (Caselles et al. [102]).

On a neural architecture, one can also conceive that a neuron

or a group of neurons that are adapted to a particular shape of the

covariance matrix corresponding to an orientation in space could

determine if the local image measurements that have been

performed for this particular orientation in space are in agreement

with the fixed-point requirement (81). If so, the neuron(s) could

respond with a high activity if the local image measurements agree

with the filter parameters to which the receptive fields are tuned

and with a low activity otherwise. Hence, this framework allows

for the formulation of affine invariant receptive field responses, to

support view-invariant recognition at the level of groups of

oriented receptive fields over a set of different covariance matrices

Sk.

Galilean invariance
Given a family of spatio-temporal receptive field that are

adapted to motions of different image velocities v and given an

object that moves with some unknown image velocity u in relation

to the viewing direction, the vision system also faces the problem of

how to interpret the output from the family of receptive fields.

Figure 15 shows an illustration of how receptive field responses

may be affected by relative motions between objects in the world

and the observer.

If we would know the image velocity u of the object beforehand,

it could of course be preferable to select receptive field responses

from the receptive fields that are adapted to precisely this image

velocity v~u. A priori, we cannot, however, assume such

knowledge, since one of the basic tasks in relation to object

recognition may be to determine the image velocity of an

unknown moving object. There are also classes of composed

spatio-temporal events consisting of different image velocities at

different positions x and time moments t in space-time, for which

it may not be trivial how a representative image velocity could be

defined for the spatio-temporal event as a whole. Hence, this

problem warrants a principled treatment.

Given spatio-temporal image data f (x,t)~f (p) with a position

in space-time denoted by p~(x,t)T , let us define a Gaussian

spatio-temporal scale-space representation L of f by convolution

with a Gaussian spatio-temporal kernel g(:; Sder,dder) with spatio-

temporal covariance matrix Sder of the form (50) and with time

delay dder. With a spatio-temporal second-moment matrix m over 2+1-D

space-time defined according to (Lindeberg [21, equation (191),

page 73])

m(p; S1,S2,d1zd2)~

~
Ð

q[R(2z1) (+L(q; S1,d1))(+L(q; S1,d1))T

g(p{q; S2,d2)dq, ð82Þ

where g(p{q; S2,d2) denotes a second-stage Gaussian smoothing

with covariance matrix S2 and time delay d2 over space-time, it is

indeed possible to perform such velocity selection.

Consider two Galilean-related spatio-temporal image data sets

f 0(p0)~f (p) that are related by a relative image velocity u{v such

that p0~Gu{v p for a Galilean transformation matrix Gu{v

according to (40). Then, it can be shown that the corresponding

spatio-temporal covariance matrices are related according to

(Lindeberg [21, equation (193), page 73])

m0~G{T
u{v mG{1

u{v: ð83Þ

Let us introduce the notion of Galilean diagonalization, which

corresponds to finding the unique Galilean transformation that

transforms the spatio-temporal second-moment matrix to block

diagonal form with all mixed purely spatio-temporal components

being zero m0x1t~m0x2t~0 (Lindeberg et al. [41])

m0~

m
0
x1x1

m
0
x1x2

0

m
0
x1x2

m
0
x2x2

0

0 0 m
0
tt

0
BBB@

1
CCCA: ð84Þ

Such a block diagonalization can be obtained if the velocity

vector u satisfies

mx1x1
mx1x2

mx1x2
mx2x2

0
B@

1
CA

u1

u2

0
B@

1
CA~{

mx1t

mx2t

0
B@

1
CA ð85Þ

with the solution
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Figure 14. Illustration of how affine invariance can be achieved by normalization to an affine invariant reference frame determined
from a second-moment matrix. The left column shows three views of a wall at Moderna Museet in Stockholm with different amount of
perspective foreshortening due to variations in the viewing direction relative to the surface normal of the wall. The right column shows the result of
performing affine normalization of a window in each image independently (with the windows centered at corresponding image points on the wall)
using a series of affine transformations proportional to A~m1=2 until an affine invariant fixed-point of (81) has been reached. Notice how this leads to
a major compensation for the perspective foreshortening effects, which can be used for significantly improving the performance of methods for
image matching and object recognition under perspective projection. With regard to receptive fields, the use of an affine family of receptive field
profiles makes it possible to define image operations in the image domain that are equivalent to the use of receptive fields based on rotationally
symmetric smoothing operations in an affine invariant reference frame.
doi:10.1371/journal.pone.0066990.g014
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Figure 15. Illustration of how receptive field responses may be affected by unknown relative motions between objects in the world
and the observer and of how this effect can be handled by velocity adaptation. The first row shows space-time traces of a walking person
taken with (left column) a stabilized camera with the viewing direction following the motion of the person and (right column) a stationary camera
with a fixed viewing direction for a video sequence used for the experiments in Laptev and Lindeberg [79]. The second row shows Laplacian receptive
field responses computed in the two domains from space-time separable receptive fields without velocity adaptation. In the third row, these
receptive field responses from the stationary camera have been space-time warped to the reference frame of the stabilized camera. As can be seen
from the data, the receptive field responses are quite different in the two domains, which implies problems if one would try to match them. Hence,
spatio-temporal recognition based on space-time separable receptive fields only can be a rather difficult problem. In the fourth row, the receptive
field responses have instead been computed with regional velocity adaptation that aligns the space-time orientation of the receptive fields to a
regional velocity estimate. In the fifth row, the velocity-adapted receptive responses from the stationary camera have been space-time warped to the
reference frame of the stabilized camera. As can be seen from a comparison with the corresponding result obtained for the non-adapted receptive
field responses in the third row, the use of velocity adaptation implies a better stability of receptive field responses under unknown relative motions
between objects in the world and the observer. For simplicity of illustration, the velocity estimates used for velocity adaptation have here been
computed regionally over a central region of the spatio-temporal volume containing the spatio-temporal gait pattern. In Laptev and Lindeberg [79] a
corresponding local method for velocity adaptation is presented, where the velocity estimates for velocity adaptation are instead computed locally
from extremum responses of Laplacian receptive field responses over different image velocities and spatio-temporal scales for each point in space-
time.
doi:10.1371/journal.pone.0066990.g015
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u~{fmxxg{1fmxtg ð86Þ

i.e., structurally similar equations as are used for computing optic

flow according to the method by Lukas and Kanade [103]. It can

then be shown that the property of Galilean block diagonalization

is preserved under Galilean transformations (Lindeberg [21,

appendix C.4, pages 73–74]). Specifically, the velocity vector

associated with the Galilean transformation, that brings a second-

moment matrix into block diagonal form, is additive under

superimposed Galilean transformations. This is a very general

approach for normalizing local spatio-temporal image patterns,

which also applies to spatio-temporal patterns that cannot be

modelled by a Galilean transformation of an otherwise temporally

stationary spatial pattern. Specifically, spatio-temporal receptive

field responses that can be expressed with respect to such a spatio-

temporal reference frame will be Galilean invariant.

These ideas have been applied in computer vision for

performing spatio-temporal recognition under unknown relative

motions between the spatio-temporal events and the observer

(Laptev and Lindeberg [79,81]). Notably the approach in [79] is

based on a set of spatio-temporal receptive fields over which

simultaneous selection of image velocities and spatio-temporal

scales is performed.

Again, it is not necessary to carry out the spatio-temporal

normalization in practice to achieve Galilean invariance. On a

neural architecture based on a family of spatio-temporal receptive

fields that operate over some set of image velocities in parallel, one

may consider a routing mechanism that selects receptive field

responses by judging the degree of agreement with the criterion of

Galilean diagonalization (84) and then giving priority to the

responses that are most consistent with this criterion. Notably,

such a computational mechanism will have the ability to respond

to different motions at different spatial and temporal scales and

may therefore have the ability to handle transparent motion.

Please, note that all information that is needed for computing

the spatio-temporal second-moment matrix and the Galilean

diagonalization are spatio-temporal averages of the non-linear

combinations L2
x1

, Lx1
Lx2

, L2
x2

, Lx1
Lt, Lx2

Lt and L2
t of first-order

spatio-temporal derivatives and can hence be computed from

spatio-temporal receptive fields. On a biological architecture, the

corresponding information could therefore be computed from the

output of V1 neurons in combination with an additional layer of

spatio-temporal smoothing. Thus, similar type of information

could in principle be computed by a visual motion area with direct

access to the output from V1, such as V5/MT.

On a neural architecture, one can also conceive that a neuron

or a group of neurons that are adapted to a particular image

velocity could determine if the local spatio-temporal image

measurements that have been performed for this particular image

velocity in space-time are in agreement with the fixed-point

requirement (84) of Galilean diagonalization. If so, the neuron(s)

could respond with a high activity if the local measurements agree

with the filter parameters to which the receptive fields are tuned

and with a low activity otherwise. Hence, this framework allows

for the formulation of Galilean invariant neurons, to support

invariant recognition of visual objects under unknown relative

motions between the object and the observer, provided that this

invariance property is formulated at the level of groups of oriented

receptive fields over a set of image velocities vk.

Invariance property under illumination variations

In the treatment so far, we have described how image

measurements in terms of receptive fields are related to the

geometry of space and space-time, under the assumption that the

actual image intensities from which the receptive field responses

are to be computed have been given beforehand. One may,

however, consider alternative ways of parameterizing the intensity

domain by monotonous intensity transformations that preserve the

ordering between the image intensities, and in this respect would

contain essentially equivalent information.

Given the huge range of luminosity variations under natural

imaging conditions (corresponding to a range of the order of 1010

between the darkest and brightest cases for human vision), it is

natural to represent the image luminosities on a logarithmic

luminosity scale

f (x)* log I(x) (time� independent images) ,

f (x,t)* log I(x,t) (spatio� temporal image data) :
ð87Þ

Specifically, receptive field responses that are computed from

such a logarithmic parameterization of the image luminosities can

be interpreted physically as a superposition of relative variations of

surface structure and illumination variations. Given a (i) perspec-

tive camera model extended with (ii) a thin circular lens for

gathering incoming light from different directions and (iii) a

Lambertian illumination model extended with (iv) a spatially

varying albedo factor for modelling the light that is reflects from

surface patterns in the world, it can be shown (Lindeberg [22]) that

a spatial receptive field response

Lxa (:; s)~L
x

a1
1

x
a2
2

(:,:; s)~Lxa Ts f ð88Þ

of the image data f , where Ts represents the spatial smoothing

operator (here corresponding to a two-dimensional Gaussian

kernel (24)), can be expressed as

Lxa ~Lxa Ts log r(x)z log i(x)ð

z log Ccam(~ff )zV (x)
�

ð89Þ

where

N r(x) is a spatially dependent albedo factor that reflects properties of

surfaces of objects in the environment with the implicit

understanding that this entity may in general refer to points

on different surfaces in the world depending on the viewing

direction and thus the image position x~(x1,x2),

N i(x) denotes a spatially dependent illumination field with the

implicit understanding that the amount of incoming light on

different surfaces may be different for different points in the

world as mapped to corresponding image coordinates x,

N Ccam(~ff )~
p

4

d

f
represents internal camera parameters with the ratio

~ff ~f =d referred to as the effective f -number, where d denotes the

diameter of the lens and f the focal distance,

N V (x)~V (x1,x2)~{2 log (1zx2
1zx2

2) represents a geometric

natural vignetting effect corresponding to the factor log cos4 (w)
for a planar image plane, with w denoting the angle between
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the viewing direction (x1,x2,f ) and the surface normal (0,0,1)
of the image plane. (This vignetting term will disappear for a

spherical camera model.)

From the structure of equation (89) we can note that for any

non-zero order of differentiation aw0, the influence of the internal

camera parameters in Ccam(~ff ) will disappear because of the spatial

differentiation with respect to x, and so will the effects be of any

other multiplicative exposure control mechanism. Furthermore,

for any multiplicative illumination variation i0(x)~C i(x), where

C is a scalar constant, the logarithmic luminosity will be

transformed as log i0(x)~ log Cz log i(x), which implies that

the dependency on C in (87) will disappear after spatial

differentiation.

Thus, after a logarithmic transformation of the intensity axis

receptive field responses in terms of spatial derivatives are invariant

under multiplicative illumination variations. For biological vision, such

multiplicative exposure control mechanisms correspond to adap-

tations of the luminosity on the retina by varying the diameter of

the pupil as well as adaptations of the light sensitivity of the

photoreceptors to the luminosity.

Figure 16 illustrates this effect by showing Laplacian receptive

field responses computed with respect to a linear vs. a logarithmic

luminosity scale for a building for which two different walls are

subject to different type of illumination.

Specifically, if the illumination field i(x) is constant over the

support region of the receptive field, the receptive field response

will then up to the variations in the natural vignetting V (x) only

respond to the spatial variations of the albedo factor r(x), i.e., only

to variations in the surface pattern(s) in the world. Hence, the

receptive field responses will have a direct physical interpretation in terms of

properties of objects and events in the environment. This result can be seen

as a theoretical explanation of why recognition methods based on

receptive field responses work so well in the area of computer

vision. More generally, this result could also be seen as a

theoretical explanation of how the receptive field responses that

are computed in LGN and V1 can constitute the foundation for

the visual operations in higher visual areas in biological vision.

Notably, the vignetting effect V (x) is independent of the image

contents f and could therefore be corrected for given sufficient

knowledge about the camera. For spatio-temporal receptive fields

Lxatb L that involve explicit temporal derivatives with bw0, it will

furthermore disappear altogether, since the vignetting only

depends upon the spatial coordinates.

Summary and conclusions

We have described how the shapes of receptive field profiles in

the early visual pathway can be constrained from structural symmetry

properties of the environment, which include the requirement that

the receptive field responses should be sufficiently well-behaved

(covariant) under basic image transformations. We have also

shown how these covariance properties of receptive fields enable true

invariance properties of visual processes at the systems level, if

combined with max-like operations over the output of receptive

field families tuned to different filter parameters (see figure 17).

The invariance and covariance properties that we have

considered include (i) scaling transformations to handle objects

and substructures of different size as well as objects at different

distances from the observer, (ii) affine transformations to capture

image deformations caused by the perspective mapping under

variations of the viewing direction, (iii) Galilean transformations to

handle unknown relative motions between objects in the world

and the observer and (iv) multiplicative intensity transformations

to provide robustness to slowly varying illumination variations as

well as invariance to intensity variations caused by multiplicative

exposure control mechanisms.

These transformations should be interpreted as local approxima-

tions of the actual image transformations, which in general can be

assumed to be non-linear. Thus, a sufficient requirement for these

invariance or covariance properties to be hold in practice and thus

enable robust visual recognition from real-world image data, is

that these approximations should hold locally within the support

region of a given receptive field. Therefore, these theoretical

results can be extended to more complex scenes by using different

local approximations for receptive fields at different spatial or

spatio-temporal points.

The presented theory leads to a computational framework for

defining spatial and spatio-temporal receptive fields from visual

data with the attractive properties that: (i) the receptive field

profiles can be derived by necessity from first principles and (ii) it

leads to predictions about receptive field profiles in good agreement

with receptive fields found by cell recordings in biological vision.

Specifically, idealized models have been presented for space-time

separable receptive fields in the retina and LGN and for non-

separable simple cells in V1.

The modelling performed in this article has been performed at a

more abstract level of computation than used in many other

computational models, and should therefore be applicable to a

large variety of neural models provided that their functional

properties can be described by appropriate diffusion equations.

These results are therefore very general, since they are based on

inherent properties of the image formation process, and should

therefore have important implications for computational model-

ling of visual processes based on receptive fields. If one accepts the

assumptions underlying the model, these results should therefore

have important implications for computational neuroscience, since

they hold for any computational model whose functionality is

compatible with the assumptions.

Compared to more common approaches of learning receptive

field profiles from natural image statistics, the proposed framework

makes it possible to derive the shapes of idealized receptive fields

without any need for training data. The proposed framework for

invariance and covariance properties also adds explanatory value

by showing that the families of receptive profiles tuned to different

orientations in space and image velocities in space-time that can be

observed in biological vision can be explained from the requirement

that the receptive fields should be covariant under basic image

transformations to enable true invariance properties. If the

underlying receptive fields would not be covariant, then there

would be a systematic bias in the visual operations, corresponding

to the amount of mismatch between the backprojected receptive

fields.

The theory could also be used as a framework for raising

questions concerning invariance properties of biological vision. As

a complement to the fundamental covariance properties, we have

outlined possible mechanisms for how true invariance under scaling

transformations, affine transformations and Galilean transforma-

tions can be obtained already at the level of receptive field

responses. The presented mechanisms are based on two types of

major principles; (i) by detecting extremum values of appropriately

normalized receptive field responses over variations of the filter

parameters or (ii) by normalizing the receptive field responses with

respect to a preferred reference frame that is constructed from criteria

that are invariant under the corresponding image transformations.

These methods have been successfully applied in the area of

computer vision and demonstrate how the covariance properties of

the proposed receptive field model can be used for defining truly
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scale invariant, affine invariant and Galilean invariant visual

operations already at the level of receptive fields, which can then

provide a basis for computational mechanisms for invariant

recognition of visual objects and events at the systems level.

We have also described how invariance to local multiplicative

illumination transformations and exposure control mechanisms

will be automatically obtained for receptive fields in terms of

spatial or spatio-temporal derivatives. If we can assume that the

illumination varies slowly and can be regarded as constant over the

support region of the receptive field, the receptive field response

will therefore have a direct physical interpretation as correspond-

ing to variations in the surface structures of objects in environ-

ment. Thus, the receptive field responses reflect important physical

properties of objects and events in the environment to support visual

recognition.

It should be emphasized, however, that the model has not been

constructed to mimic mammalian vision or the vision system in

other species. Instead it is intended as an idealized theoretical and

computational model to capture inherent properties of basic image

transformations that any computational vision model needs to be

confronted with.

Concerning limitations of the proposed approach, it should be

stressed that a basic requirement for obtaining true invariance with

respect to the image transformations according to the proposed

invariance mechanisms, is that the vision system has a sufficient

number of receptive fields over a sufficient range of filter parameters

to support invariance over a corresponding range of parameter

variations. Notably, such a limitation is consistent with the findings

from biological vision that the scale invariant properties of neurons

may only hold over finite ranges of scale variations (Ito et al. [3]).

It should also be noted that the invariance and covariance

properties are only guaranteed to hold if the same local

approximation of the image transformation is valid within the

entire support region of the receptive field. Thus, complementary

Figure 16. Illustration of the effect of computing Laplacian receptive field responses +2L from image intensities defined on (left
column) a linear intensity scale f (x)*I(x) vs. (right column) a logarithmic intensity scale f (x)* log I(x) for an image with substantial
illumination variations. As can be seen from the figure, the magnitudes of the Laplacian receptive field response are substantially higher in the left
sunlit part of the house compared to the right part in the shade if the Laplacian responses are computed from a linear luminosity scale, whereas the
difference in amplitude is between the left and the right parts of the house becomes substantially lower if the receptive field responses are computed
from a logarithmic intensity scale.
doi:10.1371/journal.pone.0066990.g016

Figure 17. Schematic overview of how the covariance proper-
ties of the receptive fields in the proposed receptive field
model lead to covariant image measurements, from which
truly invariant image representations can then be obtained by
complementary selection mechanisms that operate over the
parameters s of the receptive fields corresponding to varia-
tions over scale, affine image deformations and Galilean
motions. For pure scaling transformations, the parameter s of the
receptive fields will be a scalar scale parameter, whereas a covariance
matrix S is needed to capture more general affine image deformations.
For spatio-temporal image data, an additional temporal scale parameter
t and an additional image velocity parameter v are furthermore needed.
doi:10.1371/journal.pone.0066990.g017
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mechanisms can be needed to handle, e.g., discontinuities in depth,

discontinuities in the illumination field or specularities.

An interesting observation that can be made from the

similarities between the receptive field families that have been

derived by necessity from the assumptions and the receptive

profiles found by cell recordings in biological vision, is that

receptive fields in the retina, LGN and V1 of higher mammals are

very close to ideal in view of the stated structural requirements/

symmetry properties. In this sense, biological vision can be seen as

having adapted very well to the transformation properties of the

outside world and to the transformations that occur when a three-

dimensional world is projected to a two-dimensional image

domain and being exposed to illumination variations.

Thus, image measurements in terms of receptive fields

according to the proposed model can (i) be interpreted as

corresponding to image features that are either invariant or

covariant with respect to basic geometric transformations and

illumination variations and can (ii) serve as a foundation for

achieving invariant recognition of visual objects at the system level

under variations in viewpoint, retinal size, object motion and

illumination.

From a background of the presented theory, we can therefore

interpret the receptive fields in V1 as highly dedicated computa-

tional units that are very well adapted to enable the computation

of invariant image representations at higher levels in the visual

hierarchy.

Discussion

In his recent overview of Bayesian approaches to understanding

the brain, Friston [104] writes that ‘‘ …we are trying to infer the

causes of our sensations based on a generative model of the world’’

and ‘ …if the brain is making inferences about the causes of its

sensations then it must have a model of the causal relationships

(connections) among (hidden) states of the world that cause sensory

input. It follows that neuronal connections encode (model) causal

connections that conspire to produce sensory information’’. He

furthermore states that an underlying message in several lines of

brain research is that the brain is regarded as ‘‘optimal in some

sense’’.

The presented theory can be seen as describing consequences of

a similar way of reasoning regarding the development of receptive

fields in the earliest stages of visual processing. If the brain is to

handle the large natural variability in image data under basic

image transformations, such as scaling variations, viewing

variations, relative motion or illumination variations, then an

optimal strategy may be to adapt to these variabilities by making it

possible to respond to image transformations in terms of

invariance or covariance properties. If the receptive fields would

not be covariant under basic image transformations, then that

would imply that some of the variabilities in the information could

not be appropriately captured by the vision system, which would

affect its performance. By in addition developing invariance

properties at higher levels in a visual hierarchy, the brain will be

able to deal with natural image transformations in a robust and

efficient manner.

Thus, the proposed theory of receptive fields can be seen as

describing basic physical constraints under which a learning based

method for the development of receptive fields will operate and the

solutions to which an optimal adaptive system may converge to.

Field [44] as well as Doi and Lewicki [105] have described how

Jnatural images are not random, instead they exhibit statistical

regularitiesJ and have used such statistical regularities for

constraining the properties of receptive fields. Receptive field

profiles have been derived by statistical methods such as principal

component analysis (Olshausen and Field [46]; Rao and Ballard

[47]), independent component analysis (Simoncelli and Olshausen

[48]; Hyvärinen et al. [106]) and sparse coding principles (Lörincz

et al. [107]). The theory presented in this paper can be seen as a

theory at a higher level of abstraction, in terms of basic principles

that reflect properties of the environment that in turn determine

properties of the image data, without need for explicitly

constructing specific statistical models for the image statistics.

Specifically, the proposed theory can be used for explaining why

the above mentioned statistical models lead to qualitatively similar

types of receptive fields as the idealized receptive fields obtained

from our theory.

Concerning the closely related issue of how receptive fields are

distributed over the visual cortex, Kaschube et al. [108] have found

that pinwheel density as defined from singularities in the

orientation fields of orientation hypercolumns is similar between

species that separated evolutionary more than 65 million years

ago. By studying structural properties of self organizing systems for

idealized neural interaction models, they showed that an overall

suppressive nature of non-local long-range interactions is essential

for the development of the pinwheel layout observed in carnivores

and primates. Thus, the distribution of orientation hypercolumns

in the visual cortex can be predicted from internal structural

properties of self-organizing neural networks. This paper presents

a corresponding theoretical study of how the shapes of receptive

field profiles found in the retina, LGN and the striate cortex can be

predicted from structural properties of the environment and of

how invariance properties can be achieved with a complementary

assumption concerning the architecture of complementary selec-

tion mechanisms that operate over ensembles of receptive fields.

In terms of computational modelling of vision, the proposed

model for covariant receptive fields leading to true invariance

properties should require a significantly lower amount of training

data compared to approaches that involve explicit learning of

receptive fields or compared to computational models that are not

based on explicit invariance properties in relation to the image

measurements. Specifically, we propose that if the aim is to build a

computational vision system that solves specific visual tasks, then a

neuro-inspired artificial vision system based on these types of

provable invariance properties should allow for more robust

handling of natural imaging variations.

Note I: Relations to Lie groups. In relation to visual

invariances, Miao and Rao [109] have presented an expectation/

maximization approach for learning Lie transformation operators

and applied this approach for learning affine transformations in

the spatial domain. There is a close relationship between

derivatives of Lie groups and local linearizations of non-linear

transformations as used in our work. Indeed, the directional

derivative operator of a multi-parameter scale-space in equation

(13) and the connection equations we have previously stated

between the different internal representations in a multi-parameter

scale-space (Lindeberg [56]) are very closely related to corre-

sponding derivative operators of Lie groups. For the purpose of

this presentation, we have, however, avoided explicit use of the Lie

group formalism, since local linearizations are sufficient to model

the influence of the image transformations on the receptive fields

up to first-order of approximation. By this, we have presented a

uniform framework for modelling essential effects on receptive

fields due to variations in viewing distance, viewing direction,

relative motion in relation to the observer and local multiplicative

illumination variations, including theoretical necessity results

regarding the shapes of the receptive field profiles and a

framework for obtaining provable invariance properties under
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basic image transformations as caused by structural properties of

the environment.

Note II: Relations between receptive fields in the LGN

and V1. In relation to the derived idealized models for linear

receptive fields and their close similarities to biological receptive

fields measured in the LGN and V1 of higher mammals, a

complementary question that one may ask concerns why most

receptive fields in the retina and the LGN are rotationally

symmetric in the spatial domain and separable over space-time,

whereas the more general development of elongated receptive

fields over space that permit affine invariance and non-separable

space-time tilted spatio-temporal receptive fields over space-time

that permit Galilean invariance are primarily developed at later

stages essentially with a dominance at first in V1? Could it be

because of inherent theoretical reasons, because of the different

types of connections from and to other visual areas or because of

the way mammalian vision has developed over evolution?

The microstructure of the LGN (Sherman [110]) is different

from the microstructure of V1 (Callaway [111]). If we interpret

this microstructure as enabling the computations that underlie the

formation of the receptive fields, then this in combination with the

different connectivities of LGN and V1 to other visual areas

indicates that the receptive fields in the LGN vs. V1 are likely to

have different functions and/or that they have developed at

different stages of brain evolution.

Concerning the function of the LGN, experimental evidence

have been presented that a major source of information to the

LGN comes from top-down connections whose detailed functions

remain to be understood (Murphy et al. [112], Alitto and Usrey

[113], Przybyszewski [114]). Such feed-back mechanisms are

beyond the feed-forward model of receptive fields used for deriving

the theoretical results in this article except for the general

extension to non-linear feedback by steering the conductivities in

the diffusion equation that determine the evolution of receptive

fields based on local image information that was proposed in

connection with equation (72). Such an additional feedback

mechanism can also be extended to spatio-temporal image data. If

we model the spatial components of the majority of LGN receptive

fields by Laplacian of Gaussians, we can interpret these receptive

field responses as a bandpass representation of the original image

data, with the interesting additional interpretation that the original

image data can be reconstructed from a sum of a set of Laplacian

of Gaussians at multiple spatial scales

L(x; s0) ~{(L(x; ?){L(x; s0))

~{
Ð?

s~s0
LsL(x; t)ds

~{
1

2

ð?
s~s0

+2L(x; s)ds: ð90Þ

Temporal derivatives at different temporal scales can in turn be

interpreted as a temporal bandpass representation. In the area of

image processing, one has learned that it can be easier to merge

(fuse) visual information from different sources by operating on a

bandpass representation as opposed to the original image data

(Burt and Kolczynski [115]). Bandpass representations have also

been argued to be optimal from a transmission coding point of

view (Zhaoping [116]) by decorrelating the data to be transmitted.

Would these be arguments for using a bandpass representation at

an early visual processing stage to make it easier to transmit and

combine incoming image data from different sources as well as

with top-down influence?

Alternatively speaking, if we interpret the LGN as an

evolutionary earlier visual processing center based on which

higher level visual areas may have developed later (Kaas [117]),

could a major reason be that rotationally symmetric and space-

time separable receptive fields are evolutionary younger than more

refined elongated and space-time tilted receptive fields that allow

for affine invariance and Galilean invariance, and which may then

have been developed in higher and evolutionary younger parts of

the brain?

Concerning the specific use of Laplacian of Gaussian receptive

fields in the retina and the LGN, this family of receptive fields

spans the subgroup of geometric image transformations over scale.

Disregarding translational invariance, which can be seen as

implicitly represented by receptive fields distributed over the

retina, scale invariance is presumably the type of invariance next

at hand that cannot be neglected in a real-world situation, since

objects are of different sizes in the world and the perspective

mapping leads to scaling transformations due to variations in the

distance between objects in the environment and the observer.

A more inherent explanation for the separation between

different types of receptive fields between the retina and the

LGN vs. V1 can also be formulated in terms of computational

efficiency and/or timing. The simpler types of receptive fields that

are present in the retina and the LGN can be computed faster

and/or using a smaller number of neurons, which can then be

used as a basis for faster and/or more specific subcortical visual

functions, compared the more refined receptive fields in V1 that

serve as basis for the more developed higher visual areas in the

cortex.

To span the variability of receptive field profiles under

variations of all the parameters that determine the orientations

and the scales of affine receptive fields as well as a sufficiently rich

set of motion directions for velocity-adapted receptive fields to be

able to achieve invariance over wide ranges of variations in scale,

viewing directions and relative motions, the full group of such

covariant receptive fields in V1 will therefore require a signifi-

cantly larger number of neurons to represent the receptive fields

that correspond to all possible parameter setting in comparison

with the much lower variability in the subgroup of image

transformations over scale that can be captured by rotationally

symmetric and space-time separable LGN cells.

Notably the LGN of a higher mammal may contain the order of

1 to 4 million neurons which is comparable to the number of

output axons from the retina, whereas V1 may contain the order

of 100 to 1000 million neurons (Stevens [118]). Therefore, for

lower level visual functions that may not require the more

developed invariance properties possible from V1 output,

requirements of efficiency may call for such functions to be

implemented in terms of simpler receptive fields that are only able

to represent a lower-dimensional subgroup within the more

general group of natural image transformations. For certain

specific tasks such as signalling new events for attention, handling

eye movements or reacting as fast as possible to possible threats,

rotationally symmetric and space-time separable receptive fields

may be sufficient and thus more effective, whereas more general

visual tasks related to e.g. invariant recognition of objects and

events under natural image transformation may require the full

machinery made possible by the large variabilities of receptive field

profiles in V1 as induced by covariance properties under natural

image transformations.
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From arguments of this type, it seems possible that one may

extend the theoretical model proposed in this article by

complementary notions and possibly further experimental evi-

dence to address these issues concerning the internal structure of

the early visual areas in further detail.
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