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Abstract Scale-invariant interest points have found several
highly successful applications in computer vision, in partic-
ular for image-based matching and recognition.

This paper presents a theoretical analysis of the scale se-
lection properties of a generalized framework for detecting
interest points from scale-space features presented in Linde-
berg (Int. J. Comput. Vis. 2010, under revision) and com-
prising:

– an enriched set of differential interest operators at a fixed
scale including the Laplacian operator, the determinant of
the Hessian, the new Hessian feature strength measures I
and II and the rescaled level curve curvature operator, as
well as

– an enriched set of scale selection mechanisms including
scale selection based on local extrema over scale, com-
plementary post-smoothing after the computation of non-
linear differential invariants and scale selection based on
weighted averaging of scale values along feature trajecto-
ries over scale.

It is shown how the selected scales of different linear and
non-linear interest point detectors can be analyzed for Gaus-
sian blob models. Specifically it is shown that for a rota-
tionally symmetric Gaussian blob model, the scale estimates
obtained by weighted scale selection will be similar to the
scale estimates obtained from local extrema over scale of
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scale normalized derivatives for each one of the pure second-
order operators. In this respect, no scale compensation is
needed between the two types of scale selection approaches.
When using post-smoothing, the scale estimates may, how-
ever, be different between different types of interest point
operators, and it is shown how relative calibration factors
can be derived to enable comparable scale estimates for each
purely second-order operator and for different amounts of
self-similar post-smoothing.

A theoretical analysis of the sensitivity to affine image
deformations is presented, and it is shown that the scale esti-
mates obtained from the determinant of the Hessian operator
are affine covariant for an anisotropic Gaussian blob model.
Among the other purely second-order operators, the Hessian
feature strength measure I has the lowest sensitivity to non-
uniform scaling transformations, followed by the Laplacian
operator and the Hessian feature strength measure II. The
predictions from this theoretical analysis agree with experi-
mental results of the repeatability properties of the different
interest point detectors under affine and perspective trans-
formations of real image data. A number of less complete
results are derived for the level curve curvature operator.

Keywords Feature detection · Interest point · Blob
detection · Corner detection · Scale · Scale-space · Scale
selection · Scale invariance · Scale calibration · Scale
linking · Feature trajectory · Deep structure · Affine
transformation · Differential invariant · Gaussian
derivative · Multi-scale representation · Computer vision

1 Introduction

The notion of scale selection is essential to adapt the scale
of processing to local image structures. A computer vision
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system equipped with an automatic scale selection mecha-
nism will have the ability to compute scale-invariant image
features and thereby handle the a priori unknown scale vari-
ations that may occur in image data because of objects and
substructures of different physical size in the world as well
as objects at different distances to the camera. Computing
local image descriptors at integration scales proportional to
the detection scales of scale-invariant image features, more-
over makes it possible to compute scale-invariant image
descriptors (Lindeberg [35]; Bretzner and Lindeberg [4];
Mikolajczyk and Schmid [49]; Lowe [48]; Bay et al. [2];
Lindeberg [38, 43]).

A general framework for performing scale selection can
be obtained by detecting local extrema over scale of γ -
normalized derivative expressions (Lindeberg [35]). This
approach has been applied to a large variety of feature detec-
tion tasks (Lindeberg [34]; Bretzner and Lindeberg [4]; Sato
et al. [54]; Frangi et al. [11]; Krissian et al. [22]; Chomat
et al. [5]; Hall et al. [15]; Mikolajczyk and Schmid [49];
Lazebnik et al. [24]; Negre et al. [52]; Tuytelaars and Miko-
lajczyk [58]). Specifically, highly successful applications
can be found in image-based recognition (Lowe [48]; Bay
et al. [2]). Alternative approaches for scale selection have
also been proposed in terms of the detection of peaks over
scale in weighted entropy measures (Kadir and Brady [18])
or Lyapunov functionals (Sporring et al. [56]), minimization
of normalized error measures over scale (Lindeberg [36]),
determining minimum reliable scales for feature detection
according a noise suppression model (Elder and Zucker [9]),
determining optimal stopping times in non-linear diffusion-
based image restoration methods using similarity measure-
ments relative to the original data (Mrázek and Navara [51]),
by applying statistical classifiers for texture analysis at dif-
ferent scales (Kang et al. [19]) or by performing image
segmentation from the scales at which a supervised clas-
sifier delivers class labels with the highest posterior (Loog
et al. [47]; Li et al. [25]).

Recently, a generalization of the differential approach
for scale selection based on local extrema over scale of γ -
normalized derivatives has been proposed by linking image
features over scale into feature trajectories over scale in
a generalized scale-space primal sketch [39]. Specifically,
two novel scale selection mechanisms have been proposed
in terms of:

– post-smoothing of differential feature responses by per-
forming a second-stage scale-space smoothing step after
the computation of non-linear differential invariants, so as
to simplify the task of linking feature responses over scale
into feature trajectories, and

– weighted scale selection where the scale estimates are
computed by weighted averaging of scale-normalized fea-
ture responses along each feature trajectory over scale, in
contrast to previous detection of local extrema or global
extrema over scale.

The subject of this article is to perform an in-depth theoret-
ical analysis of properties of these scale selection methods
when applied to the task of computing scale-invariant inter-
est points:

(i) When using a set of different types of interest point de-
tectors that are based on different linear or non-linear
combinations of scale-space derivatives, a basic ques-
tion arises of how to relate thresholds on the magnitude
values between different types of interest point detec-
tors. By studying the responses of the different inter-
est point detectors to unit contrast Gaussian blobs, we
will derive a way of expressing mutually correspond-
ing thresholds between different types of interest points
detectors. Algorithmically, the resulting threshold rela-
tions lead to intuitively very reasonable results.

(ii) The new scale selection method based on weighted
averaging along feature trajectories over scale raises
questions of how the properties of this scale selection
method can be related to the previous scale selection
method based on local extrema over scale of scale-
normalized derivatives. We will show that for Gaussian
blobs, the scale estimates obtained by weighted aver-
aging over scale will be similar to the scale estimates
obtained from local extrema over scale. If we assume
that scale calibration can be performed based on the be-
haviour for Gaussian blobs, this result therefore shows
that no relative scale compensation is needed between
the two types of scale selection approaches. In previous
work on scale selection based on γ -normalized deriva-
tives [34, 35] a similar assumption of scale calibra-
tion based on Gaussian model signals has been demon-
strated to lead to highly useful results for calibrating
the value of the γ -parameter with respect to the prob-
lems of blob detection, corner detection, edge detection
and ridge detection, with a large number of successful
computer vision applications building on the resulting
feature detectors.

(iii) For the scale linking algorithm presented in [39],
which is based on local gradient ascent or gradient de-
cent starting from local extrema in the differential re-
sponses at adjacent levels of scale, it turns out that a
second post-smoothing stage after the computation of
non-linear differential invariants is highly useful for
increasing the performance of the scale linking algo-
rithm, by suppressing spurious responses of low rela-
tive amplitude in the non-linear differential responses
that are used for computing interest points. This self-
similar amount of post-smoothing is determined as a
constant times the local scale for computing the differ-
ential expressions, and may affect the scale estimates
obtained from local extrema over scale or weighted av-
eraging over scale. We will analyze how large this ef-
fect will be for different amounts of post-smoothing
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and also show how relative scale normalization fac-
tors can be determined for the different differential ex-
pressions to obtain scale estimates that are unbiased
with respect to the effect of the post-smoothing op-
eration, if we again assume that scale calibration can
be performed based on the scale selection properties
for Gaussian blobs. Notably, different scale compen-
sation factors for the influence of post-smoothing will
be obtained for the different differential expressions
that are used for defining interest points. Without post-
smoothing, the scale estimates obtained from the dif-
ferent differential expressions are, however, all similar
for Gaussian blobs, which indicates the possibilities of
using different types of differential expressions for per-
forming combined interest point detection and scale se-
lection, so that they can be interchangeably replaced in
a modular fashion.

(iv) When detecting interest points from images that are
taken of an object from different viewing directions,
the local image pattern will be deformed by the per-
spective projection. If the interest point corresponds to
a point in the world that is located at a smooth surface
of an object, this deformation can to first order of ap-
proximation be modelled by a local affine transforma-
tion (Gårding and Lindeberg [12]). While the notion
of affine shape adaptation has been demonstrated to be
a highly useful tool for computing affine invariant in-
terest points (Lindeberg and Gårding [46]; Baumberg
[1]; Mikolajczyk and Schmid [49]; Tuytelaars and van
Gool [57]), the success of such an affine shape adapta-
tion process depends on the robustness of the underly-
ing interest points that are used for initiating the itera-
tive affine shape adaptation process. To investigate the
properties of the different interest point detectors under
affine transformations, we will perform a detailed anal-
ysis of the scale selection properties for affine Gaussian
blobs, for which closed form theoretical analysis is pos-
sible. The analysis shows that the determinant of the
Hessian operator and the new Hessian feature strength
measure I do both have significantly better behaviour
under affine transformations than the Laplacian opera-
tor or the new Hessian feature strength measure II. In
comparison with experimental results [39], the interest
point detectors that have the best theoretical properties
under affine transformations of Gaussian blob do also
have significantly better repeatability properties under
affine and perspective transformations than the other
two. These results therefore show how experimental
properties of interest points can be predicted by the-
oretical analysis, which contributes to an increased un-
derstanding of the relative properties of different types
of interest point detectors.

In very recent work [42], these generalized scale-space
interest points have been integrated with local scale-invariant
image descriptors and been demonstrated to lead to highly
competitive results for image-based matching and recogni-
tion.

1.1 Outline of the Presentation

The paper is organized as follows. Section 2 reviews main
components of a generalized framework for detecting scale-
invariant interest points from scale-space features, including
a richer set of interest point detectors at a fixed scale as well
as new scale selection mechanisms.

In Sect. 3 the scale selection properties of this framework
are analyzed for scale selection based on local extrema over
scale of γ -normalized derivatives, when applied to rotation-
ally symmetric as well as anisotropic Gaussian blob models.
Section 4 gives a corresponding analysis for scale selection
by weighted averaging over scale along feature trajectories.

Section 5 summarizes and compares the results obtained
from the two scale selection approaches including comple-
mentary theoretical arguments to highlight their similarities
in the rotationally symmetric case. It is also shown how scale
calibration factors can be determined so as to obtain compa-
rable scale estimates from interest point detectors that have
been computed from different types of differential expres-
sions. Comparisons are also presented of the relative sensi-
tivity of the scale estimates to affine transformations outside
the similarity group, with a brief comparison to experimen-
tal results. Finally, Sect. 6 concludes with an overall sum-
mary and discussion.

2 Scale-Space Interest Points

2.1 Scale-Space Representation

The conceptual background we consider for feature detec-
tion is a scale-space representation (Iijima [17]; Witkin
[62]; Koenderink [20]; Koenderink and van Doorn [21]; Lin-
deberg [30, 31]; Florack [10]; Weickert et al. [60]; ter Haar
Romeny [14]; Lindeberg [38, 40]) L : R

2 × R+ → R com-
puted from a two-dimensional signal f : R

2 → R according
to

L(x, y; t) =
∫

(u,v)∈R2
f (x − u,y − v)g(u, v; t) dudv (1)

where g : R
2 × R+ → R denotes the (rotationally symmet-

ric) Gaussian kernel

g(x, y; t) = 1

2πt
e−(x2+y2)/2t (2)
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and the variance t = σ 2 of this kernel is referred to as the
scale parameter. Equivalently, this scale-space family can
be obtained as the solution of the (linear) diffusion equation

∂tL = 1

2
∇2L (3)

with initial condition L(·, ·; t) = f . From this representa-
tion, scale-space derivatives or Gaussian derivatives at any
scale t can be computed either by differentiating the scale-
space representation or by convolving the original image
with Gaussian derivative kernels:

Lxαyβ (·, ·; t) = ∂xαyβ L(·, ·; t) = (
∂xαyβ g(·, ·; t)

) ∗ f (·, ·)
(4)

where α and β ∈ Z+.

2.2 Differential Entities for Detecting Scale-Space Interest
Points

A common approach to image matching and object recog-
nition consists of matching interest points with associated
image descriptors. Basic requirements on the interest points
on which the image matching is to be performed are that
they should (i) have a clear, preferably mathematically well-
founded, definition, (ii) have a well-defined position in im-
age space, (iii) have local image structures around the inter-
est point that are rich in information content such that the
interest points carry important information to later stages
and (iv) be stable under local and global deformations of
the image domain, including perspective image deforma-
tions and illumination variations such that the interest points
can be reliably computed with a high degree of repeatability.
The image descriptors computed at the interest points should
also (v) be sufficiently distinct, such that interest points cor-
responding to physically different points can be kept sepa-
rate.

Preferably, the interest points should also have an at-
tribute of scale, to make it possible to compute reliable in-
terest points from real-world image data, including scale
changes in the image domain. Specifically, the interest
points should preferably also be scale-invariant to make it
possible to match corresponding image patches under scale
variations.

Within this scale-space framework, interest point detec-
tors can be defined at any level of scale using

(i) either of the following established differential opera-
tors [35]:

– the Laplacian operator

∇2L = Lxx + Lyy (5)

– the determinant of the Hessian

det HL = LxxLyy − L2
xy (6)

– the rescaled level curve curvature

κ̃(L) = L2
xLyy + L2

yLxx − 2LxLyLxy (7)

(ii) either of the following new differential analogues and
extensions of the Harris operator [16] proposed in [39]:

– the unsigned Hessian feature strength measure I

D1L =

⎧⎪⎨
⎪⎩

det HL − k trace2 HL

if det HL − k trace2 HL > 0

0 otherwise

(8)

– the signed Hessian feature strength measure I

D̃1L =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

det HL − k trace2 HL

if det HL − k trace2 HL > 0

det HL + k trace2 HL

if det HL + k trace2 HL < 0
0 otherwise

(9)

where k ∈]0, 1
4 [ with the preferred choice k ≈ 0.04, or

(iii) either of the following new differential analogues and
extensions of the Shi and Tomasi operator [55] pro-
posed in [39]:

– the unsigned Hessian feature strength measure II

D2L = min(|λ1|, |λ2|) = min(|Lpp|, |Lqq |) (10)

– the signed Hessian feature strength measure II

D̃2L =

⎧⎪⎨
⎪⎩

Lpp if |Lpp| < |Lqq |
Lqq if |Lqq | < |Lpp|
(Lpp + Lqq)/2 otherwise

(11)

where Lpp and Lqq denote the eigenvalues of the Hes-
sian matrix (the principal curvatures) ordered such that
Lpp ≤ Lqq [34]:

Lpp = 1

2

(
Lxx + Lyy −

√
(Lxx − Lyy)2 + 4L2

xy

)
(12)

Lqq = 1

2

(
Lxx + Lyy +

√
(Lxx − Lyy)2 + 4L2

xy

)
(13)

Figure 1 shows examples of detecting different types of in-
terest points from a grey-level image. In this figure, the
repetitive nature of the underlying image structures in the
row of similar books illustrate the ability of the interest point
detectors to respond to approximately similar structures in
the image domain by corresponding responses. Figure 2 il-
lustrates the repeatability properties of such interest points
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Fig. 1 Scale-invariant interest points detected by linking (top left)
Laplacian ∇2

normL features, (top right) determinant of the Hessian
det HnormL features, (middle left) signed Hessian feature strength
measure D̃1,normL features, (middle right) signed Hessian feature
strength measure D̃2,normL features, (bottom left) rescaled level curve
curvature κ̃γ−norm(L) features and (bottom right) scale-linked Harris-
Laplace features over scale into feature trajectories and performing

scale selection by weighted averaging of scale values along each fea-
ture trajectory. The 500 strongest interest points have been extracted
and drawn as circles with the radius reflecting the selected scale mea-
sured in units of σ = √

t . Positive responses of the differential expres-
sion DL are shown in red and negative responses in blue. (Image size:
725 × 480 pixels. Scale range: t ∈ [4,512])
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Fig. 2 Illustration of the repeatability properties of the interest points
by detecting signed Hessian feature strength D̃1,normL interest points
from two images of a building taken from different perspective views,
by linking image features over scale into feature trajectories and per-
forming scale selection by weighted averaging of scale values along
each feature trajectory. The 1000 strongest interest points have been
extracted and drawn as circles with the radius reflecting the selected

scale measured in units of σ = √
t . Interest points that have a posi-

tive definite Hessian matrix are shown in blue (dark features), interest
points with negative definite Hessian matrix are shown in red (bright
features) whereas interest points with an indefinite Hessian matrix are
marked in green (saddle-like features). (Image size: 816 × 540 pixels.
Scale range: t ∈ [4,256])
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more explicitly, by detecting signed Hessian feature strength
D̃1,normL interest points from two images of a building taken
from different perspective views.

A basic motivation for defining the new differential op-
erators D1, D̃1, D2 and D̃2 from the Hessian matrix HL

in a structurally related way as the Harris and the Shi-and-
Tomasi operators are defined from the second-moment ma-
trix (structure tensor) are that: (i) under an affine trans-
formation p′ = Ap with p = (x, y)T and A denoting a
non-singular 2 × 2 matrix it can be shown that the Hes-
sian matrix Hf transforms in a similar way (Hf ′)(p′) =
A−T (Hf )(p)A−1 as the second-moment matrix μ′(p) =
A−T μ(p)A−1 [31, 46] and (ii) provided that the Hessian
matrix is either positive or negative definite, the Hessian
matrix HL computed at a point p0 defines an either pos-
itive or negative definite quadratic form QHL(p) = (p −
p0)

T (HL)(p − p0) in a similar way as the second-moment
matrix μ computed at p0 does: Qμ(p) = (p − p0)

T μ (p −
p0). From these two analogies, we can conclude that pro-
vided the Hessian matrix is either positive or negative defi-
nite, these two types of descriptors should have strong quali-
tative similarities. Experimentally, the new differential inter-
est point detectors D1, D̃1, D2 and D̃2 can be shown to per-
form very well and to allow for image features with better
repeatability properties under affine and perspective trans-
formations than the more traditional Laplacian or Harris op-
erators [39].

The Laplacian ∇2L responds to bright and dark blobs
as formalized in terms of local minima or maxima of the
Laplacian operator. The determinant of the Hessian det HL

responds to bright and dark blobs by positive responses and
in addition to saddle-like image features by negative re-
sponses as well as to corners. The unsigned Hessian feature
strength D1L responds to bright and dark blobs as well as
to corners, with the complementary requirement that the ra-
tio of the eigenvalues λ1 and λ2 of the Hessian matrix (with
|λ1| ≤ |λ2) should be sufficiently close to one, as specified
by the parameter k according to:

2k

1 − 2k + √
1 − 4k

≤ |λ1|
|λ2| ≤ 1 (14)

For this entity to respond, it is therefore necessary that there
are strong intensity variations along two different directions
in the image domain. The signed Hessian feature strength
measure D̃1L responds to similar image features as the un-
signed entity D1L, and in addition to saddle-like image fea-
tures with a corresponding constraint on the ratio between
the eigenvalues. The Hessian feature strength measures D2L

and D̃2L respond strongly when both of the principal cur-
vatures are strong and the local image pattern therefore con-
tains strong intensity variations in two orthogonal directions.
The unsigned entity D2L disregards the sign of the princi-
pal curvatures, whereas the signed entity D̃2L preserves the
sign of the principal curvature of the lowest magnitude.

Other ways of defining image features from the second-
order differential image structure of images have been pro-
posed by Danielsson et al. [7] and Griffin [13].

2.3 Scale Selection Mechanisms

Scale Selection from γ -Normalized Derivatives In (Linde-
berg [29, 31, 35, 37]) a general framework for automatic
scale selection was proposed based on the idea of detect-
ing local extrema over scale of γ -normalized derivatives de-
fined according to

∂ξ = tγ /2∂x, ∂η = tγ /2∂y (15)

where γ > 0 is a free parameter1 that can be related to the
dimensionality of the image features that the feature detec-
tor is designed to respond to, e.g., in terms of the evolution
properties over scale in terms of (i) self-similar Lp-norms of
Gaussian derivative operators for different dimensionalities
of the image space [35, Sect. 9.1], (ii) self-similar Fourier
spectra [35, Sect. 9.2] or (iii) the fractal dimension of the
image data [53]; see also Appendix A.3 for an explicit inter-
pretation of the parameter γ in terms of the dimensionality
D of second-order image features according to (213).

Specifically, it was shown in [35] that local extrema
over scale of homogeneous polynomial differential invari-
ants Dγ−normL expressed in terms of γ -normalized Gaus-
sian derivatives are transformed in a scale-covariant way:

If some scale-normalized differential invariant
Dγ−normL assumes a local extremum over scale at
scale t0 in scale-space, then under a uniform rescal-
ing of the input pattern by a factor s there will be a
local extremum over scale in the scale-space of the
transformed signal at scale s2t0.

Furthermore, by performing simultaneous scale selection
and spatial selection by detecting scale-space extrema,
where the scale-normalized differential expression
Dγ−normL assumes local extrema with respect to both space
and scale, constitutes a general framework for detecting
scale-invariant interest points. Formally, such scale-space
extrema are characterized by the first-order derivatives with
respect to space and scale being zero

∇(Dγ−normL) = 0 and ∂t (Dγ−normL) = 0 (16)

1Indeed, it can be shown that the definition of scale-normalized deriva-
tives in this way captures the full degrees of freedom by which scale
invariance can be obtained from local extrema over scale of scale-
normalized derivatives defined from a Gaussian scale-space, as for-
mally proved by necessity in [35, Appendix A.1].



184 J Math Imaging Vis (2013) 46:177–210

and in addition the composed Hessian matrix computed over
both space and scale

H(x,y; t)(Dγ−normL) =
⎛
⎝∂xx ∂xy ∂xt

∂xy ∂yy ∂yt

∂xt ∂yt ∂tt

⎞
⎠ (Dγ−normL)

(17)

being either positive or negative definite.

Generalized Scale Selection Mechanisms In [39] this ap-
proach was extended in the following ways:

– by performing post-smoothing of the differential expres-
sion Dγ−normL prior to the detection of local extrema
over space or scale

(Dγ−normL)(x, y; t)

=
∫

(u,v)∈R2
(Dγ−normL)(x − u,y − v; t)

× g
(
u,v; c2t

)
dudv (18)

with an integration scale (post-smoothing scale) tpost =
c2t proportional to the differentiation scale t with c > 0
(see Appendix A.1 for a brief description of the algorith-
mic motivations for using such a post-smoothing opera-
tion when linking image features over scale that have been
computed from non-linear differential entities) and

– by performing weighted averaging of scale values along
any feature trajectory T over scale in a scale-space primal
sketch according to

τ̂T =
∫
τ∈T

τ ψ((Dγ−normL)(x(τ); τ)) dτ∫
τ∈T

ψ((Dγ−normL)(x(τ); τ)) dτ
(19)

where ψ denotes some (positive and monotonically in-
creasing) transformation of the scale-normalized feature
strength response Dγ−normL and with the scale parame-
ter parameterized in terms of effective scale [28]

τ = A log t + B where A ∈ R+ and B ∈ R (20)

to obtain a scale covariant construction of the correspond-
ing scale estimates

t̂T = exp

(
τ̂T − B

A

)
(21)

that implies that the resulting image features will be scale-
invariant.

The motivation for performing scale selection by weighted
averaging of scale-normalized differential responses over
scale is analogous to the motivation for scale selection from

local extrema over scale in the sense that interesting charac-
teristic scale levels for further analysis should be obtained
from the scales at which the differential operator assumes
is strongest scale-normalized magnitude values over scale.
Contrary to scale selection based on local extrema over
scale, however, scale selection by weighted averaging over
scale implies that the scale estimate will not only be obtained
from the behaviour around the local extremum over scale,
but also including the responses from all scales along a fea-
ture trajectory over scale. The intention behind this choice is
that the scale estimates should therefore be more robust and
less sensitive to local image perturbations.

Experimentally, it can be shown that scale-space interest
points detected by these generalized scale selection mecha-
nisms lead to interest points with better repeatability proper-
ties under affine and perspective image deformations com-
pared to corresponding interest points detected by regular
scale-space extrema [39]. In this sense, these generalized
scale selection mechanisms make it possible to detect more
robust image features. Specifically, the use of scale selec-
tion by weighted averaging over scale is made possible by
linking image features over scale into feature trajectories,2

which ensures that the scale estimates should only be in-
fluenced by responses from scale levels that correspond to
qualitatively similar types of image structures along a fea-
ture trajectory over scale.

The subject of this article is to analyze properties of these
generalized scale selection mechanisms theoretically when
applied to the interest point detectors listed in Sect. 2.2.

3 Scale Selection Properties for Local Extrema over
Scale

For theoretical analysis, we will consider a Gaussian pro-
totype model of blob-like image structures. With such a
prototype model, the semi-group property of the Gaussian
kernel makes it possible to directly obtain the scale-space
representations at coarser scales in terms of Gaussian func-
tions, which simplifies theoretical analysis. Specifically, the
result of computing polynomial differential invariants at dif-
ferent scales will be expressed in terms of Gaussian func-
tions multiplied by polynomials. Thereby, closed-form the-
oretical analysis becomes tractable, which would otherwise

2By linking image features over scale into feature trajectories it also
becomes possible to define a significance value by integrating scale-
normalized feature responses over scale. Experimentally, it can be
shown that such ranking of image features leads to selections of sub-
sets of interest points with better overall repeatability properties than
selection of subsets of interest points from the extremum responses of
interest points detectors at scale-space extrema. An intuitive motiva-
tion for this property is a heuristic principle that image features that
are stable over large ranges of scales should be more likely to be sig-
nificant than image features that only exist over a shorter life length in
scale-space [27, Assumption 1 in Sect. 3 on p. 296].
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be much harder to carry out regarding the application of the
non-linear operations that are used for defining the interest
points to general image data.

The use of Gaussian prototype model can also be moti-
vated by conceptual simplicity. If we would like to model
an image feature at some scale, then the Gaussian model is
the model that requires the minimum amount of information
in the sense that the Gaussian distribution is the distribution
with maximum entropy3 given a specification of the mean
value m and the covariance matrix Σ of the distribution.
Specifically, the Gaussian function with scale parameter t

serves as an aperture function that measures image struc-
tures with respect to an inner scale beyond which finer-scale
structures cannot be resolved.

In previous work [34, 35] it has been shown that deter-
mination of the γ -parameter in scale selection for different
types of feature detection tasks, such as blob detection, cor-
ner detection, edge detection and ridge detection, can be per-
formed based on the behaviour of these feature detectors on
Gaussian-based intensity profiles. As will be shown later,
the theoretical results that will be derived based on Gaussian
blob models will lead to theoretical predictions that agree
with the relative repeatability properties of different types
of interest point detectors under affine and perspective trans-
formations. Formally, however, further application of these
results will be based on an assumption that the scale selec-
tion behaviour can be calibrated based on the behaviour for
Gaussian prototype models.

3.1 Regular Scale Selection from Local Extrema over
Scale

Two basic questions in the relation to the different interest
point detectors reviewed in Sect. 2.2 concern:

– How will the selected scale levels be related between dif-
ferent interest point detectors?

– How will the scale-normalized magnitude values be re-
lated between different interest point detectors that re-
spond to similar image structures?

Ideally, we would like similar scale estimates to be obtained
for different interest point detectors, so that the interest point
detectors could be modularly replaceable in the computer vi-
sion algorithms they are part of. Since the interest point de-
tectors are expressed in terms of different types of linear or
non-linear combinations of scale-space derivatives, a basic
question concerns how to express comparable thresholds on
the magnitude values for the different interest point detec-
tors. In this section, we will relate these entities by apply-
ing scale selection from local extrema of scale-normalized

3Maximum entropy solutions have been argued to be taken as preferred
default solutions for underconstrained problems [3, 59] although the
applicability of these arguments has also been questioned [6, 8].

derivatives over scale to a single Gaussian blob:

f (x, y) = g(x, y; t0) = 1

2πt0
e
− x2+y2

2t0 (22)

Due to the semi-group property of the Gaussian kernel

g(·, ·; t1) ∗ g(·, ·; t2) = g(·, ·; t1 + t2) (23)

the scale-space representation of f obtained by Gaussian
smoothing is given by

L(x, y; t) = g(x, y; t0 + t) = 1

2π(t0 + t)
e
− x2+y2

2(t0+t) (24)

3.1.1 The Pure Second-Order Interest Point Detectors

By differentiation, if follows that the scale normalized
(signed or unsigned) feature strength measure at the cen-
ter (x, y) = (0,0) of the blob will for the Laplacian (5),
the determinant of the Hessian (6) and the Hessian feature
strength measures I (8) and II (10) be given by

(∇2
γ−normL

)
(0,0; t) = − tγ

π(t0 + t)2
(25)

(det Hγ−normL)(0,0; t) = t2γ

4π2(t0 + t)4
(26)

(D1,γ−normL)(0,0; t) = (1 − 4k) t2γ

4π2(t0 + t)4
(27)

(D2,γ−normL)(0,0; t) = tγ

2π(t0 + t)2
(28)

By differentiating these expressions with respect to the scale
parameter t and setting the derivative to zero, it follows that
the extremum value over scale will for all these descriptors
be assumed at the same scale

t̂ = γ

2 − γ
t0 (29)

For the specific choice of γ = 1, the selected scale t̂ will
be equal to the scale of the Gaussian blob, i.e. t̂ = t0, and
the extremum value over scale for each one of the respective
feature detectors is

∣∣∇2
normL

∣∣
max = 1

4πt0
(30)

(det HnormL)max = 1

64π2t2
0

(31)

(D1,normL)max = (1 − 4k)

64π2t2
0

(32)

(D2,normL)max = 1

8πt0
(33)
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Table 1 Relationships between
scale-normalized thresholds
CDL for different types of
scale-invariant interest point
detectors DL = ∇2L, det HL,
D1L, D̃1L, D2L and D̃2L using
scale-normalized derivatives
with γ = 1. The complementary
expression for the
Harris-Laplace operator is based
on the assumption of a relative
integration scale of r = 1

Feature detector DL CDL

Laplacian ∇2Lnorm = t (Lxx + Lyy) C∇2L = C

determinant of the Hessian det HnormL = t2(LxxLyy − L2
xy) Cdet HL = C2/4

Hessian feature strength I D1,normL = t2(LxxLyy − L2
xy − k (Lxx + Lyy)2) CD1L = (1 − 4k)C2/4

Hessian feature strength Ĩ D̃1,normL = t2(LxxLyy − L2
xy ± k (Lxx + Lyy)2) CD̃1L = (1 − 4k)C2/4

Hessian feature strength II D2,norm = t min(|Lpp|, |Lqq |) CD2L = C/2

Hessian feature strength ĨI D̃2,normL = t (Lpp or Lqq) CD̃2L = C/2

Harris-Laplace Hnorm = t2 (detμ − k trace2 μ) CH = (1 − 4k)C4/256

These results are in full agreement with earlier results about
the scale selection properties for Gaussian blobs concerning
the scale-normalized Laplacian and the scale-normalized
determinant of the Hessian [31, Sect. 13.3.1] [35, Sect. 5.1].

3.1.2 Scale Invariant Feature Responses After Contrast
Normalization

When applying different types of interest point detectors in
parallel, some approach is needed for expressing compara-
ble thresholds between different types of interest point de-
tectors. Let us assume that such calibration of corresponding
thresholds between different interest point detectors can be
performed based on the their responses to Gaussian blobs.
If we would like to present a Gaussian blob on a screen and
would like to make it possible to vary its size (spatial extent)
without affecting its perceived brightness on the screen, let
us assume that this can be performed by keeping the con-
trast between the maximum and the minimum values con-
stant. Let us therefore multiply the amplitude of the original
Gaussian blob f by a factor 2πt0 so as to obtain an input sig-
nal with unit contrast as measured by the range between the
minimum and maximum values. Then, the maximum value
over scale of the contrast normalized Gaussian blob will be
given by

∣∣∇2
normL

∣∣
max = 1

2
(34)

(det HnormL)max = 1

16
(35)

(D1,normL)max = 1 − 4k

16
(36)

(D2,normL)max = 1

4
(37)

These expressions provide a way to express mutually related
magnitude thresholds for the different interest point detec-
tors as shown in Table 1.

Note: For the Harris operator [16], which is determined
from the second-moment matrix

μ(x, y; t, s)

=
∫
(u,v)∈R2

(
L2

x(u, v; t) Lx(u, v; t)Ly(u, v; t)

Lx(u, v; t)Ly(u, v; t) L2
y(u, v; t)

)

× g(x − u,y − v; s) dudv (38)

according to

Hnorm = t2(detμ − k trace2 μ
)

(39)

for some k ∈]0, 1
4 [, a corresponding analysis shows that the

response at the center (x, y) = (0,0) of a Gaussian blob is
at scale t = t0 given by

Hmax = (1 − 4k) r4

256(r2 + 1)4
(40)

if we let the integration scale s be related to the local scale
t according to s = r2t . This value therefore expresses the
magnitude value that will obtained by applying the Harris-
Laplace operator [49] to a Gaussian blob with unit con-
trast, provided that scale selection is performed using scale-
normalized derivatives with γ = 1. In all other respects, the
scale selection properties of the Harris-Laplace operator are
similar to the scale selection properties of the Laplacian op-
erator.

3.1.3 The Rescaled Level Curve Curvature Operator

When applying the rescaled level curve curvature operator
κ̃γ−norm(L) to a rotationally symmetric Gaussian blob we
obtain

κ̃γ−norm(L) = − t2γ (x2 + y2)

8π(t0 + t)6
e
− 3(x2+y2

2(t0+t) . (41)

This expression assumes its spatial extremum on the circle

x2 + y2 = 2

3
(t0 + t) (42)
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where the extremum value is

κ̃γ−norm(L) = − t2γ

12eπ3(t0 + t)5
(43)

and this entity assumes its extremum over scale at

tκγ−norm(L) = 2γ

5 − 2γ
t0. (44)

In the special case when γ = 7/8 [4] this corresponds to

tκ̃(L) = 7

13
t0 ≈ 0.539 t0 ⇒ σκ̃(L) ≈ 0.734σ0 (45)

with the corresponding scale-normalized response

(
κ̃(L)

)
max = (5 − 2γ )5

9375 · 41−γ e π3 t5
0

(
γ t0

5 − 2γ

)2γ

(46)

and the following approximate relation for γ = 7/8 if the
Gaussian blob is normalized to unit contrast

(
κ̃(L)

)
max

= 0.00963

t
1/4
0

(47)

Due to the use of a γ -value not equal to one, this magni-
tude measure is not fully scale invariant. The scale depen-
dency can, however, be compensated for by multiplying the
maximum feature response over scale by a scale-dependent
compensation factor t2(1−γ ).

3.2 Scale Selection with Complementary Post-smoothing

When linking image features at different scales into fea-
ture trajectories, the use of post-smoothing of any differ-
ential expression DnormL according to (18) was proposed
in [39] to simplify the task for the scale linking algorithm,
by suppressing small local perturbations in the responses of
the differential feature detectors at any single scale. Since
this complementary post-smoothing operation will affect the
magnitude values of the scale-normalized differential re-
sponses that are used in the different interest point detectors,
one may ask how large effect this operation will have on the
resulting scale estimates.

In this section, we shall analyze the influence of the post-
smoothing operation for scale selection based on local ex-
trema over scale of scale-normalized derivatives.

3.2.1 The Laplacian and the Determinant of the Hessian
Operators

Consider again a rotationally symmetric Gaussian blob (22)
with its scale-space representation of the form (24). Then,

the scale-normalized Laplacian ∇2
γ−normL and the scale-

normalized determinant of the Hessian det Hγ−normL are
given by

∇2
γ−normL = tγ

(x2 + y2 − 2(t0 + t))

2π(t0 + t)3
e
− x2+y2

2(t0+t) (48)

det Hγ−normL = t2γ (t0 + t − x2 − y2)

4π2(t0 + t)5
e
− x2+y2

t0+t (49)

With complementary Gaussian post-smoothing with scale
parameter tpost = c2 t , the resulting differential expressions
assume the form

∇2
γ−normL

= tγ
(x2 + y2 − 2(t0 + (1 + c2)t))

2π(t0 + (1 + c2)t)3
e
− x2+y2

2(t0+(1+c2)t (50)

det Hγ−normL

= t2γ (t0 + (1 + 2c2)t − x2 − y2)

4π2(t0 + t)2(t0 + (1 + 2c2)t)3
e
− x2+y2

t0+(1+2c2)t (51)

and assume their extremal scale-normalized responses over
scale at

t̂∇2L = γ t0

(1 + c2)(2 − γ )
(52)

t̂det HL = (
√

1 + 2c2 + c4(1 − γ )2 − (1 + c2)(1 − γ ))

(1 + 2c2)(2 − γ )
t0

(53)

In the specific case when γ = 1 and c = 1/2, these local
extrema over scale are given by

t̂∇2L = 0.800 t0 ⇒ σ̂∇2L ≈ 0.894σ0 (54)

t̂det HL ≈ 0.817 t0 ⇒ σ̂det HL ≈ 0.904σ0 (55)

In other words, by comparison with the results in Sect. 3.1.1,
we find that the use of a post-smoothing operation with inte-
gration scale determined by c = 1/2, the scale estimates will
be about 10 % lower when measured in units of σ = √

t .
To obtain unbiased scale estimates that lead to t̂ = t0 for a

Gaussian blob, we can either multiply the scale estimates by
correction factors from (52) and (53) or choose γ as function
of c according to

γ∇2L = 2(1 + c2)

2 + c2
(56)

γdet HL = 2 + 3c2

2(1 + c2)
(57)

With c = 1/2, the latter settings correspond to the following
values of γ :

γ∇2L = 10

9
≈ 1.11 (58)
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γdet HL = 11

10
= 1.10 (59)

3.2.2 The Hessian Feature Strength Measure I

To analyze the effect of the post-smoothing operation for the
Hessian feature strength measure I computed for a Gaussian
blob, which is given by

D1,γ−normL

= t2γ
(
(t0 + t)

(
t + t0 − x2 − y2)

+ κ
(
2(t0 + t) − x2 − y2)2) e

− x2+y2

t0+t

4π2(t0 + t)6
(60)

provided that this entity is positive, let us initially disregard
the effect of the local condition det HL − k trace2 HL > 0
in (8) and integrate the closed-form expression (60) over the
entire image plane R

2 instead of over only the finite region
where this entity is positive

x2 + y2 ≤
√

1 − 4κ − (1 − 4κ)

2κ
(t0 + t) (61)

Then, complementary post-smoothing with integration scale
tpost = c2t implies that this approximation of the post-
smoothed differential entity is given by

(D1,γ−normL)(0,0; t)

≈ t2γ
((

1 − 4κ − 2(1 − 4κ) c2 − 8κ c4) t2

+ 2
(
1 + c2)(1 − 4κ)t t0 + (1 − 4κ)t2

0

)

/
(
4π2(t0 + t)3(t0 + (

1 + 2c2)t)3) (62)

Corresponding integration within the finite support region
(61) where D1 > 0 gives an expression that is too complex
to be written out here.

Unfortunately, it is hard to analyze the scales at which
these entities assumes local extrema over scale, since differ-
entiation of the above mentioned expression and solving for
its roots leads to fourth-order equations. In the case of γ = 1,
c = 1/2 and κ = 0.04, we can, however, find the numerical
solution

t̂ ≈ 0.813 t0 ⇒ σ̂ ≈ 0.902σ0 (63)

For these parameter settings, the use of a spatial post-
smoothing operation does again lead to scale estimates that
are about 10 % lower.

If we restrict ourselves to the analysis of a single isolated
Gaussian blob, a similar approximation holds for the signed
Hessian feature strength measure D̃1,γ−normL.

3.2.3 The Hessian Feature Strength Measure II

For the Hessian feature strength measure II (10), we also
have a corresponding situation with a logical switching be-
tween two differential entities |Lpp| and |Lqq | with Lpp and
Lqq determined by (12) and (13). Solving for boundary be-
tween these domains, which is determined by Lpp + Lqq =
0, gives that we should select |Lqq | within the circular re-
gion

x2 + y2 ≤ 2(t0 + t) (64)

and |Lpp| outside. Solving for the corresponding integrals
gives

Lqq inside

= −tγ
(
(t0 + t)

(
t0 + (

1 − c2)t)

+ (t0 + t)
(
t0 + (

1 + 3c2)t)) e
−1− t0+t

c2 t

/
(
2π(t0 + t)2(t0 + (

1 + c2)t)2) (65)

Lppoutside = − tγ e
− t+t0

c2t
−1

2π(t0 + t)(t0 + (1 + c2)t)
(66)

with

D2L = |Lqq inside| + |Lppoutside| (67)

Unfortunately, it is again hard to solve for the local ex-
trema over scale of the post-smoothed derivative expres-
sions in closed form. For this reason, let us approximate the
composed expression D2L by the contribution from its first
term4 Lqq inside and with the integral extended from the cir-
cular region (64) to the entire image plane

Lqq = − tγ (t0 + (1 − c2)t)

2π(t0 + t)(t0 + (1 + c2)t)
(68)

Then, the local extrema over scale are given by the solutions
of the third-order equation
(
c4 − 1

)
(γ − 2)t3 + t t2

0

(
3c2 − 3γ + 2

)

+ t2t0
(
c4(γ − 1) + 3c2 − 3γ + 4

) − γ t3
0 = 0 (69)

where the special case with γ = 1 and c = 1/2 has the nu-
merical solution

t̂ ≈ 0.699 t0 ⇒ σ̂ ≈ 0.836σ0 (70)

For the D2,normL operator and these parameter values, the
use of a spatial post-smoothing operation does therefore lead

4This approximation may be reasonable for small values of c for which
the major contribution of the post-smoothing integration originates
from values of D2L near the interest point.
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to scale estimates that are about 16 % lower, and the influ-
ence is therefore stronger than for the Laplacian ∇2

normL, de-
terminant of the Hessian det HnormL or the Hessian feature
strength D1,normL operators.

If we restrict ourselves to the analysis of a single isolated
Gaussian blob, a similar approximation holds for the signed
Hessian feature strength measure D̃2,γ−normL.

3.2.4 The Rescaled Level Curve Curvature Operator

If we apply post-smoothing to the rescaled level curve cur-
vature computed for a rotationally symmetric Gaussian blob
(41) with post-smoothing scale tpost = c2 t , we obtain

κ̃γ−norm(L)

= − t2γ ((t0 + t)(x2 + y2) + 2c2t (t0 + t) + 6c4t2)

8π3(t0 + t)4(t0 + (1 + 3c2)t)3

× e
− 3(x2+y2)

2(t0+(1+3c2)t) (71)

This entity assumes it spatial extremum on the circle

x2 + y2 = 2

3

(t0 + t)2 − 9c4t2

(t0 + t)
(72)

and the extremum value on this circle is

κ̃γ−norm(L)extr

= − t2γ

12π3(t0 + t)3(t0 + (1 + 3c2)t)2

× e
− 3(x2+y2)

2(t0+(1+3c2)t) (73)

By differentiating this expression with respect to the scale
parameter t , it follows that the selected scale level will be a
solution of the third-order equation

(
1 + 3c2)(5 − 2γ )t3 + (

10 − 9c4 − 6γ + 6c2(3 − 2γ )
)
t0t

2

+ (
5 + c2(3 − 6γ ) − 6γ

)
t t0t − 2γ t3

0 = 0. (74)

Unfortunately, the closed form expression for the solution
is rather complex. Nevertheless, we can note that due to the
homogeneity of this equation, the solution will always be
proportional the scale t0 of the original Gaussian blob. In
the specific case with γ = 7/8 and c = 1/2 we obtain

tκ̃γ−norm(L) ≈ 0.493 t0 ⇒ σκ̃γ−norm(L) ≈ 0.702σ0 (75)

In other words, compared to the case without post-smooth-
ing (45), the relative difference between the selected scale
levels is here less than 5 %, when measured in units of
σ = √

t .

3.3 Influence of Affine Image Deformations

To analyze the behaviour of the different interest point de-
tectors under image deformations, let us next consider an
anisotropic Gaussian blob as a prototype model of a rota-
tionally symmetric Gaussian blob that has been subjected to
an affine image deformation that we can see as representing
a local linearization of the perspective mapping from a sur-
face patch in the world to the image plane. Specifically, we
can model the effect of foreshortening by different spatial
extents t1 and t2 along the different coordinate directions

f (x, y) = g(x; t1) g(y; t2) = 1

2π
√

t1t2
e
− x2

2t1
− y2

2t2 (76)

where the ratio between the scale parameter t1 and t2 is re-
lated to the angle θ between the normal directions of the
surface patch and the image plane according to

σ2

σ1
=

√
t2

t1
= cos θ (77)

if we without loss off generality assume that t1 ≥ t2. Since
all the feature detectors we consider are based on rotation-
ally invariant differential expressions, it is sufficient to study
the case when the anisotropic Gaussian blob is aligned to
one the coordinate directions. Due to the semi-group prop-
erty of the (one-dimensional) Gaussian kernel, the scale-
space representation of f is then given by

L(x, y; t) = g(x; t1 + t) g(y; t2 + t)

= 1

2π
√

(t1 + t)(t2 + t)
e
− x2

2(t1+t)
− y2

2(t2+t) (78)

Note on Relation to Influence Under General Affine Trans-
formations A general argument for studying the influence
of non-uniform scaling transformations can be obtained by
decomposing a general two-dimensional affine transforma-
tion matrix A into [32]

A = R1 diag(σ1, σ2)R−1
2 (79)

where R1 and R2 can be forced to be rotation matrices, if we
relax the requirement of non-negative entries in the diagonal
elements σ1 and σ2 of a regular singular value decomposi-
tion. With this model, the geometric average of the absolute
values of the diagonal entries

σuniform = √|σ1 σ2| (80)

corresponds to a uniform scaling transformation. We know
that the Gaussian scale-space is closed under uniform scal-
ing transformations, rotations and reflections.

The differential expressions we use for detecting inter-
est points are based on rotationally invariant differential in-
variants, which implies that the scale estimates will also be
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rotationally invariant. Furthermore, our scale estimates are
transformed in a scale covariant way under uniform scal-
ing transformations. Hence, if we without essential loss of
generality disregard reflections and assume that σ1 and σ2

are both positive, the degree of freedom that remains to be
studied concerns non-uniform scaling transformations of the
form

1√
σ1 σ2

diag(σ1, σ2) = diag

(√
σ1

σ2
,

√
σ2

σ1

)

= diag

(√
s,

1√
s

)
(81)

whose influence on the scale estimates will be investigated
in this section.

3.3.1 The Laplacian operator

For the Laplacian operator, the γ -normalized response as
function of space and scale is given by
(∇2

γ−normL
)
(x, y; t)

= − tγ e−x2/2(t1+t)−y2/2(t2+t)

2π((t1 + t)(t2 + t))5/2

× (
2t3 + t2(3t1 + 3t2 − x2 − y2)

+ t
(
t2
1 + 4t1t2 − 2t1y

2 + t2
2 − 2t2x

2)

+ t1t2(t1 + t2) − t2
2 x2 − t2

1 y2) (82)

This entity has critical points at the origin (x, y) = (0,0)

and at

(x, y) =
(

±
√

(t1 + t)(t1 + 3t2 + 4t)

(t2 + t)
,0

)
(83)

(x, y) =
(

0,±
√

(t2 + t)(3t1 + t2 + 4t)

(t1 + t)

)
(84)

where the first pair of roots corresponds to saddle points if
t1 > t2, while the other pair of roots correspond to local ex-
trema. Unfortunately, the critical points outside the origin
lead to rather complex expressions. We shall therefore fo-
cus on the critical point at the origin, for which the selected
scale(s) will be the root(s) of the third-order equation

∂t

(∇2
γ−normL(0,0; t)

)

= tγ−1

4π((t + t1)(t + t2))5/2

× (−4(γ − 2)t3 − 2(3γ − 4)t2(t1 + t2)

+ t
(
(3 − 2γ )t2

1 + (2 − 8γ )t1t2 + (3 − 2γ )t2
2

)
− 2γ t1t2(t1 + t2)

) = 0 (85)

For a general value of γ , the explicit solution is too complex
to be written out here. In the specific case of γ = 1, however,
we obtain for t1 ≥ t2

t∇2L = 1

24

(
222/3R2 − 4(t1 + t2)

− 8 3
√

2(t2
1 − 10t1t2 + t2

2 )

R4

)
(86)

where

R1 =
√

9t4
1 + 1518t2

1 t2
2 + 9t4

2 (87)

R2 = 3
√

7t3
1 + 57t2

1 t2 + 3(t1 − t2) + R1 + 57t1t
2
2 + 7t3

2 (88)

R3 =
√

9t4
1 + 1518t2

1 t2
2 + 9t4

2 (89)

R4 = 3
√

7t3
1 + 57t2

1 t2 + 3(t1 − t2)R3 + 57t1t
2
2 + 7t3

2 (90)

which in the special case of t1 = t2 = t0 reduces to

t∇2L = t0 (91)

If we on the other hand reparameterize the scale parame-
ters t1 and t2 of the Gaussian blob as t1 = s t0 and t2 = t0/s,
corresponding to a non-uniform scaling transformation with
relative scaling factor s > 1 renormalized such the determi-
nant of the transformation matrix is equal to one, then a Tay-
lor expansion of t∇2L around s = 1 gives

t∇2L =
(

1 − 1

4
(s − 1)2 + 1

4
(s − 1)3

− 1

4
(s − 1)4 + O

(
(s − 1)5))t0 (92)

From this result we get an approximate expression for how
the Laplacian scale selection method is affected by affine
transformations outside the similarity group. Specifically,
we can note that the scales selected from local extrema over
scale of the scale-normalized Laplacian operator are not in-
variant under general affine transformations.

3.3.2 The Determinant of the Hessian

By differentiation of (78) it follows that the scale-normalized
determinant of the Hessian is given by

(det Hγ−normL)(x, y; t)

= t2γ
(
t2 + t

(
t1 + t2 − x2 − y2) + t1t2 − t2x

2 − t1y
2)

× e
− x2

t+t1
− y2

t+t2

4π2(t1 + t)3(t2 + t)3
(93)
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This expression does also have multiple critical points.
Again, however, we focus on the central point (x, y) = (0,0),
for which the derivative with respect to scale is of the form

∂t

((
det H2

γ−normL
)
(0,0; t)

)

= t2γ−1((γ − 2)t2 + (γ − 1)t (t1 + t2) + γ t1t2)

2π2(t1 + t)3(t2 + t)3
(94)

This equation has a positive root at

tdet HL

= 1

2(2 − γ )

(√
4(2 − γ )γ t1t2 + (γ − 1)2(t1 + t2)2

+ (γ − 1)(t1 + t2)
)

(95)

which in the special case of γ = 1 simplifies to the affine
covariant expression

tdet HL = √
t1 t2 (96)

Notably, if we again reparameterize the scale parameters ac-
cording to t1 = s t0 and t2 = t0/s, then for any non-uniform
scaling transformation renormalized such that the determi-
nant of the transformation matrix is one, it holds that

tdet HL = t0 (97)

which implies that (in this specific case and with γ = 1)
scale selection based on the scale-normalized determinant of
the Hessian leads to affine covariant scale estimates for the
Gaussian blob model. In this respect, there is a significant
difference to scale selection based on the scale-normalized
Laplacian, for which the scale estimates will be biased ac-
cording to (86) and (92).

For other values of γ , a Taylor expansion of tdet HL

around s = 1 gives

tdet HL =
(

1 − 1

2
(1 − γ )(s − 1)2 + 1

2
(1 − γ )(s − 1)3

− 1

8

(
2 + γ − 4γ 2 + γ 3)(s − 1)4

+ O
(
(s − 1)5)) γ

2 − γ
t0 (98)

implying a certain dependency on the relative scaling fac-
tor s. Provided that |γ − 1| < 1/2, this dependency will,
however, be lower than for the Laplacian scale selection
method (92) with γ = 1.

3.3.3 The Hessian Feature Strength Measure I

For the Hessian feature strength measure I, the behaviour of
the scale-normalized response at the origin is given by

D1,γ−norm(0,0; t)

= t2γ
(
(1 − 4k)t2 + (1 − 4k)t (t1 + t2)

− k(t1 + t2)
2 + t1t2

)

/
(
4π2(t1 + t)3(t2 + t)3) (99)

provided that this entity is positive. If we differentiate this
expression with respect to the scale parameter and set the
derivative to zero, we obtain a fourth-order equation, which
in principle can be solved in closed form, but leads to very
complex expressions, even when restricted to γ = 1.

If we reparameterize the scale parameters according to
t1 = s t0 and t2 = t0/s and then restrict the parameter k

in D1,γ−norm to k = 0.04, however, we can obtain a man-
ageable expression for the Taylor expansion of the selected
scale tD1L as function of the non-uniform scaling factor s in
the specific case of γ = 1

tD1L =
(

1 + 1

21
(s − 1)2 − 1

21
(s − 1)3

+ 109

1764
(s − 1)4 + O

(
(s − 1)5))t0 (100)

From this expression we can see that the scales selected
from local extrema over scale of the scale-normalized Hes-
sian feature strength measure I are not invariant under non-
uniform scaling transformations. For values of s reasonably
close to one, however, the deviation from affine invariance
is quite low, and significantly smaller than for the Lapla-
cian operator (92). This could also be expected, since a
major contribution to the Hessian feature strength measure
D1,γ−norm originates from the affine covariant determinant
of the Hessian det Hγ−normL.

3.3.4 The Hessian Feature Strength Measure II

With t1 > t2, the Hessian feature strength measure II at the
origin is given by

(D2,γ−normL)(0,0; t) = Lξξ (0,0; t)

= − tγ

2π(t1 + t)
√

(t1 + t)(t2 + t)
.

(101)

This entity assumes its local extremum over scale at

tD2L = 1

4(2 − γ )

(
2γ (t1 + t2) − t1 − 3t2

+
√

16(2 − γ )γ t1t2 + (
(2γ − 1)t1 − (3 − 2γ )t2

)2)
(102)

which in the case when γ = 1 reduces to

tD2L = 1

4

(√
t2
1 + 14t1t2 + t2

2 + t1 − t2

)
(103)
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If we again reparameterize the scale parameters according to
t1 = s t0 and t2 = t0/s and in order to obtain more compact
expressions restrict ourselves to the case when γ = 1, then
a Taylor expansion of tD2L around s = 1 gives

tD2L =
(

1 + 1

2
(s − 1) − 1

8
(s − 1)2 + 1

8
(s − 1)3

− 13

128
(s − 1)4 + O

(
(s − 1)5))t0 (104)

From a comparison with (92), (97) and (100) we can see that
the scales selected from the scale-normalized Hessian fea-
ture strength measure II are more sensitive to non-uniform
scaling transformations than the scales selected by the scale-
normalized Laplacian ∇2

normL, the determinant of the Hes-
sian det HnormL or the Hessian feature strength measure
D1,norm.

3.3.5 The Rescaled Level Curve Curvature Operator

For the anisotropic Gaussian blob model, a computation of
the rescaled level curve curvature operator κγ−norm(L) gives

κγ−norm(L)

= − t2γ (t (x2 + y2) + t1y
2 + t2x

2)

8π3((t1 + t)(t2 + t))7/2
e
− 3

2 ( x2
t1+t

+ y2

t2+t
)

(105)

This entity assumes its spatial maximum on the ellipse

x2

t1 + t
+ y2

t2 + t
= 2

3
(106)

and on this ellipse it holds that

κγ−norm(L) = − t2γ

12eπ3((t1 + t)(t2 + t))5/2
(107)

By differentiating this expression with respect to t and set-
ting the derivative to zero, it follows that the extremum over
scale is assumed at

tκ(L) = 1

4(5 − 2γ )

(−(5 − 4γ )(t1 + t2)

+
√

32γ (5 − 2γ )t1t2 + (5 − 4γ )2(t1 + t2)2
)

(108)

which in the special case when γ = 5/4 reduces to the affine
covariant expression

tκ(L) = √
t1 t2 (109)

By again reparameterizing the scale parameters in the Gaus-
sian blob model according to t1 = s t0 and t2 = t0/s and per-
forming a Taylor expansion around s = 1 for a general value
of γ , it follows that

tκ(L) =
(

1 − (5 − 4γ )

10
(s − 1)2 + (5 − 4γ )

10
(s − 1)3

− (5 − 4γ )(25 + 30γ − 8γ 2)

500
(s − 1)4

+ O
(
(s − 1)5)) 2γ

5 − 2γ
t0 (110)

which in the case with γ = 7/8 assumes the form

tκ(L) =
(

1 − 3

20
(s − 1)2 + 3

20
(s − 1)3

− 1083

8000
(s − 1)4 + O

(
(s − 1)5)) 7

13
t0 (111)

with second- and third-order relative bias terms about
three times the magnitude compared to the Hessian feature
strength measure I in (100).

4 Scale Selection by Weighted Averaging Along Feature
Trajectories

The treatment so far has been concerned with scale selec-
tion based on local extrema over scale of scale-normalized
derivatives. Concerning the new scale selection method
based on weighted averaging over scale of scale-normalized
derivative responses, an important question concerns how
the scale estimates from this new scale selection method are
related to the scale estimates from the previously established
scale selection based on local extrema over scale. In this sec-
tion, we will present a corresponding theoretical analysis of
weighted scale selection concerning the basic questions:

– How are the scale estimates related between the different
interest point detectors? (Sect. 4.1)

– How much does the post-smoothing operation influence
the scale estimates? (Sect. 4.2 )

– How are the scale estimates influenced by affine image
deformations? (Sect. 4.3)

Given that image features x(t) at different scales t have been
linked into a feature trajectory T over scale

T = {(
x(t); t

) : t ∈ [tmin, tmax]
}

(112)

scale selection by weighted averaging over scale implies that
the scale estimate is computed as [39]

τ̂T =
∫
τ∈T

τ ψ(|(Dγ−normL)(x(τ); τ)|) dτ∫
τ∈T

ψ(|(Dγ−normL)(x(τ); τ)|) dτ

=
∫ tmax

t=tmin
(log t)ψ(|(Dγ−normL)(x(t); t)|) dt

t∫ tmax

t=tmin
ψ(|(Dγ−normL)(x(t); t)|) dt

t

(113)

for some positive and monotonically increasing trans-
formation function ψ of the magnitude values
|(Dγ−normL)(x(τ); τ)| of the differential feature responses.
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Specifically, the following family of scale invariant transfor-
mation functions was considered

ψ
(|Dγ−normL|) = wDL |DnormL|a (114)

where wDL ∈ [0,1] is a so-called feature weighting func-
tion that measures the relative strength of the feature detec-
tor DL compared to other possible competing types of fea-
ture detectors and a is the scalar parameter in the self-similar
power law.

In this section, we shall analyze the scale selection prop-
erties of this construction for the differential feature detec-
tors defined in Sect. 2.2 under the simplifying assumptions
of wDL = 1 and a = 1. With respect to the analysis at the
center of a Gaussian blob, the assumption of wDL = 1 is
particularly relevant for the weighting functions of the form

wDL = L2
ξξ + 2L2

ξη + L2
ηη

A(L2
ξ + L2

η) + L2
ξξ + 2L2

ξη + L2
ηη + ε2

(115)

considered in [39] if we make use of the fact that Lξ = Lη =
0 at any critical point (as at the center of a Gaussian blob)
and disregard the influence of the noise suppression param-
eter ε.

4.1 The Pure Second-Order Interest Point Detectors

From the explicit expression for the magnitude of the scale-
normalized Laplacian response at the center of rotationally
symmetric Gaussian blob (25) it follows that the weighted
scale selection estimate according to (113) will in the case
of γ = 15 and with the effective scale parameter τ defined
as τ = log t be given by

τ̂∇2L =
∫ ∞
t=0

t

π(t0+t)2 log t dt
t∫ ∞

t=0
t

π(t0+t)2
dt
t

=
log t0
πt0
1

πt0

= log t0 (116)

Similarly, from the explicit expression for the determinant
of the Hessian at the center of the Gaussian blob (26), it
follows that the weighted scale estimate will be determined
by

τ̂det HL =
∫ ∞
t=0

t2

4π2(t0+t)4 log t dt
t∫ ∞

t=0
t2

4π2(t0+t)4
dt
t

=
log t0

24π2t0
1

24π2t2
0

= log t0 (117)

Due to the similarity between the explicit expressions for
the Hessian feature strength measure I (27) and the determi-
nant of the Hessian response (26) as well as the similarity

5In this section we will in many cases restrict the analysis to the spe-
cific case of γ = 1, since some of the results become significantly more
complex for a general value of γ = 1. In a few cases where the corre-
sponding results become reasonably compact, we will, however, in-
clude them.

between the Hessian feature strength measure II (28) and
the Laplacian response (27) at the center of a Gaussian blob,
the scale estimates for D1,γ−normL and D2,γ−normL will be
analogous:

τ̂D1L =
∫ ∞
t=0

(1−4k) t2

4π2(t0+t)4 log t dt
t∫ ∞

t=0
(1−4k) t2

4π2(t0+t)4
dt
t

=
(1−4k) log t0

24π2t0

(1−4k)

24π2t2
0

= log t0

(118)

τ̂D2L =
∫ ∞
t=0

t

2π(t0+t)2 log t dt
t∫ ∞

t=0
t

2π(t0+t)2
dt
t

=
log t0
2πt0

1
2πt0

= log t0 (119)

When expressed in terms of the regular scale parameter

t̂ = eτ̂ = t0 (120)

the weighted scale selection method does hence for a rota-
tionally symmetric Gaussian blob lead to similar scale esti-
mates as are obtained from local extrema over scale of γ -
normalized derivatives (29) when γ = 1.

Since these scale estimates are similar to the scale esti-
mates obtained form local extrema over scale, it follows that
the scale-normalized magnitude values will also be similar
and the relationships between scale-normalized thresholds
described in Table 1 will also hold for scale selection based
on weighted averaging over scale.

Corresponding Scale Estimates for General Values of γ

For a general value of γ ∈]0,2[, the corresponding scale
estimates become as follows in terms of effective scale
τ = log t :

τ̂∇2L = τ̂D2L = log t0 − π(1 − γ ) cot(πγ ) + 1

1 − γ
(121)

τ̂det HL

= τ̂D1L

= π csc(2πγ )

Γ (4 − 2γ )Γ (2γ )

(−2
(
4(γ − 3)γ + 11

)
γ log t0

+ 2π(γ − 1)(2γ − 3)(2γ − 1) cot(2πγ )

+ 6 log t0 − 12(γ − 2)γ − 11
)

(122)

where both expressions have the limit value log t0 when
γ → 1. (Note that | cot(πγ )| → ∞ when γ → 1.)

By comparing these scale estimates to the corresponding
scale estimate τ̂ = log γ

2−γ
in (29) obtained from local ex-

trema over scale, we can compute a Taylor expansions of the
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difference in the scale estimates:

τ̂∇2L − log

(
γ

2 − γ

)

=
(

π2

3
− 2

)
(γ − 1) + 1

45

(
π4 − 30

)
(γ − 1)3

+ O
(
(γ − 1)4)

≈ 1.290 (γ − 1) + 1.498 (γ − 1)3 + O
(
(γ − 1)4) (123)

τ̂det HL − log

(
γ

2 − γ

)

=
(

2π2

3
− 6

)
(γ − 1) +

(
8π4

45
− 50

3

)
(γ − 1)3

+ O
(
(γ − 1)4)

≈ 0.580 (γ − 1) + 0.651 (γ − 1)3 + O
(
(γ − 1)4) (124)

Notably, the difference in scale estimates between the two
types of scale selection approaches is smaller6 for scale
selection using the determinant of the Hessian det HL or
the Hessian feature strength measure D1,normL compared to
scale selection based on the Laplacian ∇2

normL or the Hes-
sian feature strength measure D2,normL.

4.2 Influence of the Post-smoothing Operation

4.2.1 The Laplacian and the Determinant of the Hessian
Operators

From the explicit expressions for the post-smoothed Lapla-
cian (50) and the post-smoothed determinant of the Hes-
sian (51), it follows that the weighted scale estimates are

6A plausible explanation why the difference between the scale esti-
mated is smaller for the determinant of the Hessian det HL and the
Hessian feature strength measure D1,normL compared to difference
in scale estimates for the Laplacian ∇2

normL and the Hessian feature
strength measure D2,normL is that second-order derivative responses
are squared for the determinant of the Hessian det HL and the Hessian
feature strength measure D1,normL, whereas the Laplacian ∇2

normL and
the Hessian feature strength measure D2,normL operators depend on
the second-order derivative responses in a linear way.

Thereby, the integrals that define the weighted scale selection es-
timates will get a comparably higher relative contribution from scale
levels near the maximum over scale, which in turn implies that the
influence due to skewness in the scale-space signature caused by val-
ues of γ = 1 will be lower (compare with Sect. 5.1.1). By varying the
power a in the self-similar transformation function (114), it is more
generally possible to modulate this effect.

for γ = 1 given by

τ̂∇2L
=

∫ ∞
t=0

2t (t0+(1+c2)t)

2π(t0+(1+c2)t)3 log t dt
t∫ ∞

t=0
2t (t0+(1+c2)t)

2π(t0+(1+c2)t)3
dt
t

=
log(

t0
1+c2 )

πt0(1+c2)

1
πt0(1+c2)

= log

(
t0

1 + c2

)
(125)

τ̂det HL
=

∫ ∞
t=0 log t

t2 (t0+(1+2c2)t)

4π2(t0+t)2(t0+(1+2c2)t)3∫ ∞
t=0

t2 (t0+(1+2c2)t)

4π2(t0+t)2(t0+(1+2c2)t)3

=
(2c2−(1+c2) log(1+2c2)) log 1+2c2

t20
32c6π2t2

0

(2c2−(1+c2) log(1+2c2))

16c6π2t2
0

= log

(
t0√

1 + 2c2

)
(126)

which agree with the corresponding scale estimates (52)
and (53) for local extrema over scale of post-smoothed γ -
normalized derivative expressions.

In the specific case when c = 1/2 these scale estimates
reduce to

t̂∇2L = 0.8 t0 ⇒ σ̂∇2L ≈ 0.894σ0 (127)

t̂det HL ≈ 0.816 t0 ⇒ σ̂det HL ≈ 0.904σ0 (128)

again agreeing with our previous results (54) and (55) re-
garding scale selection based on local extrema over scale of
post-smoothed scale-normalized derivative expressions.

4.2.2 The Hessian Feature Strength Measure I

To analyze the effect of weighted scale selection for the Hes-
sian feature strength measure I, corresponding weighted in-
tegration over scale of the approximation (62) of the post-
smoothed differential entity D1L for γ = 1 gives

τ̂D1L
≈

∫ ∞
t=0 (D1,γ−normL) log t dt

t∫ ∞
t=0 (D1,γ−normL) dt

t

= θD1L + log t0 (129)

where

θD1L = −ND1L

DD1L

(130)

and

ND1L = (
1 + 3c2 + 2c4)(1 + 2κ) log2(1 + 2c2)

− 2c2(1 + 2κ + 2c2(1 + κ)
)

log
(
1 + 2c2)

− 8c6κ (131)
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DD1L = 2
((

1 + 3c2 + 2c4)(1 + 2κ) log
(
1 + 2c2)

− 2c2(1 + 2κ + 2c2(1 + 2κ) + 2c4κ
))

(132)

In the specific case of c = 1/2 and κ = 0.04, this scale esti-
mate is given by

t̂D1L ≈ 0.813 t0 ⇒ σ̂D1L ≈ 0.902σ0 (133)

in agreement with our previous result (63) regarding scale
selection based on local extrema over scale of post-smoothed
scale-normalized derivative expressions.

4.2.3 The Hessian Feature Strength Measure II

To analyze the effect of post-smoothing of the Hessian fea-
ture strength measure II in (10), let us again approximate
the composed post-smoothed differential expression in (67)
by the contribution from its first term (68) with the spatial
integration extended to the entire plane. Then, the weighted
scale estimate can be approximated by

τ̂D2L
≈

∫ ∞
t=0 Lqq log t dt

t∫ ∞
t=0 Lqq

dt
t

= θD2L + log t0 (134)

where

θD2L = − log(1 + c2)((1 + c2) log(1 + c2) − 4c2)

2((1 + c2) log(1 + c2) − 2c2)
(135)

In the specific case when c = 1/2 this scale estimate reduces
to

t̂D2L ≈ 0.694 t0 ⇒ σ̂D1L ≈ 0.834σ0 (136)

in agreement with our previous result (70) regarding scale
selection based on local extrema over scale of post-smoothed
scale-normalized derivative expressions.

4.3 Influence of Affine Image Deformations

To analyze how the scale estimates t̂ obtained by weighted
averaging along feature trajectories are affected by affine
image deformations, let us again consider an anisotropic
Gaussian blob (76) as a prototype model of a rotationally
symmetric Gaussian blob that has been subjected to an affine
image deformation and with its scale-space representation
according to (78).

4.3.1 The Laplacian Operator

At the origin, the scale-normalized Laplacian response ac-
cording to (82) reduces to

(∇2
normL

)
(0,0; t) = − t (2t + t1 + t2)

2π (t1 + t)3/2(t2 + t)3/2
(137)

and the scale estimate obtained by weighted scale selection
is given by

τ̂∇2L =
∫ ∞
t=0

t (2t+t1+t2)

2π (t1+t)3/2(t2+t)3/2 log t dt
t∫ ∞

t=0
t (2t+t1+t2)

2π (t1+t)3/2(t2+t)3/2
dt
t

=
log(

4t1 t2
t1+t2+2

√
t1 t2

)

π
√

t1t2

1
π

√
t1t2

= log

(
4t1t2

t1 + t2 + 2
√

t1t2

)
(138)

With a reparameterization of the scale parameters t1 and t2

of the Gaussian blob as t1 = s t0 and t2 = t0/s, correspond-
ing to a non-uniform scaling transformation with relative
scaling factor s > 1 renormalized such the determinant of
the transformation matrix is equal to one, the scale estimate
in units of t can be written

t̂∇2L = eτ̂∇2L = 4t1t2

t1 + t2 + 2
√

t1t2
= 1

1
2 + t1+t2

4
√

t1t2

√
t1t2

= 4s

(1 + s)2
t0 (139)

Notably, this scale estimate is not identical to the scale esti-
mate (86) obtained from local extrema over scale. The Tay-
lor expansion of t∇2L around s = 1 is in turn given by

t∇2L =
(

1 − 1

4
(s − 1)2 + 1

4
(s − 1)3

− 3

16
(s − 1)4 + O

(
(s − 1)5))t0 (140)

and is, however, similar until the third-order terms to the
Taylor expansion (92) of the corresponding scale estimate
obtained from local extrema over scale. In this respect, the
behaviour of the two scale selection methods is qualitatively
rather similar when applied to the anisotropic Gaussian blob
model.

4.3.2 The Determinant of the Hessian

At the origin, the response of the determinant of the Hessian
operator (93) simplifies to

(det HnormL)(0,0; t) = t2

4π2 (t1 + t)2(t2 + t)2
(141)

and the scale estimate obtained by weighted scale selection
is

τ̂det HL =
∫ ∞
t=0

t2

4π2 (t1+t)2(t2+t)2 log t dt
t∫ ∞

t=0
t2

4π2 (t1+t)2(t2+t)2
dt
t
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=
(t1+t2)(log2 t1−log2 t2)−2(t1−t2) log(t1t2)

8π2(t1−t2)
3

(t1+t2)(log t1−log t2)−2(t1−t2)

4π2(t1−t2)
3

= log(t1t2)

2
(142)

corresponding to the affine covariant scale estimate

t̂det HL = eτ̂det HL = √
t1t2 (143)

and in agreement with our earlier result (96) for scale selec-
tion from local extrema over scale.

4.3.3 The Hessian Feature Strength Measure I

With the Hessian feature strength measure I at the origin
given by (99), the scale estimate obtained by weighted scale
selection is determined by

τ̂D1L
=

∫ ∞
t=0(D1,γ−normL) log t dt

t∫ ∞
t=0(D1,γ−normL) dt

t

= ND1L

DD1L

(144)

where

ND1L = κ(t1 − t2)
3

− (1 − κ)t1t2(t1 + t2)
(
log2 t1 − log2 t2

)
− t2(t2 − t1) log(t1)

(
(2 − 3κ)t1 + κt2

)
+ t1(t1 − t2) log(t2)

(
κ(t1 − 3t2) + 2t2

)

DD1L = (t1 − t2)
(
κ
(
t2
1 − 6t1t2 + t2

2

) + 4t1t2
)

− 2(1 − κ)t1t2(t1 + t2)(log t1 − log t2)

With a reparameterization of the scale parameters according
to t1 = s t0 and t2 = t0/s, this expression simplifies to

τ̂D1L
= N ′

D1L

D′
D1L

(145)

with

N ′
D1L

= κ
(
1 − s2)2((1 + s2) log s + 1 − s2) (146)

D′
D1L

= 4(1 − κ)
(
1 + s2) s2 log s

+ (
1 − s2)(κ(

1 − 6s2 + s4) + 4s2) (147)

A Taylor expansion around s = 1 of the scale estimate ex-
pressed in units of t = exp t gives

tD1L =
(

1 + κ

1 − 4κ
(s − 1)2 − κ

1 − 4κ
(s − 1)3

+ 25κ − 66κ2

20 (1 − 4κ)2
(s − 1)4 + O

(
(s − 1)5))t0 (148)

which simplifies to the following form for κ = 0.04

tD1L =
(

1 + 1

21
(s − 1)2 − 1

21
(s − 1)3

+ 559

8820
(s − 1)4 + O

(
(s − 1)5))t0 (149)

and agreeing until the third-order terms with the correspond-
ing Taylor expansion (100) for the scale estimate obtained
from local extrema over scale.

Specifically, a comparison with the corresponding ex-
pression for the Laplacian operator (140) shows that scale
selection based on the Hessian feature strength measure I
is less sensitive to affine image deformations compared to
scale selection based on the Laplacian.

4.3.4 The Hessian Feature Strength Measure II

Assuming that t1 ≥ t2, the Hessian feature strength measure
II at the origin is given by

(D2,normL)(0,0; t) = Lxx(0,0; t) = − t

2π
√

t1 + t
3√

t2 + t

(150)

and the weighted scale estimate

τ̂D2L =
∫ ∞
t=0

t

2π
√

t1+t
3√

t2+t
log t dt

t∫ ∞
t=0

t

2π
√

t1+t
3√

t2+t

dt
t

= −
2
√

t2 log(t1t2)+(
√

t1+√
t2)(log 16−2 log(t1+t2+2

√
t1t2))

2π
√

t1(t1−t2)

1
π(t1+√

t1t2)

(151)

With the scale parameters reparameterized according to t1 =
s t0 and t2 = t0/s, the corresponding scale estimate can be
written

t̂D2L = eτ̂D2L =
(

(
√

t1 + √
t2)

2

4
√

t1t2

)√
t1+√

t2√
t1−√

t2 √
t1t2

=
(

4s

(1 + s)2

) 1+s
1−s

t0 (152)

for which a Taylor expansion around s = 1 gives

tD2L =
(

1 + 1

2
(s − 1) − 1

8
(s − 1)2 + 1

12
(s − 1)3

− 23

384
(s − 1)4 + O

(
(s − 1)5))t0 (153)

and agreeing until the second-order terms with the corre-
sponding Taylor expansion (104) for the scale estimate ob-
tained from local extrema over scale.
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Again, the scale estimates for scale selection based on
the Hessian feature strength measure II are more affected by
affine image deformations compared to the scale estimates
obtained by the determinant of the Hessian, the Hessian fea-
ture strength measure I or the Laplacian.

5 Relations Between the Scale Selection Methods

5.1 Rotationally Symmetric Gaussian Blob

From the above mentioned results, we can first note that for
the specific case of a rotationally symmetric Gaussian blob,
the scale estimates obtained from local extrema over scale
vs. weighted averaging over scale are very similar.

Table 2 shows the scales that are selected for the Lapla-
cian ∇2

normL and the determinant of the Hessian det HnormL

in the presence of a general post-smoothing operation. Ta-
ble 3 shows corresponding approximate estimates for the
Hessian feature strength measure D1,normL and the Hessian
feature strength measure D2,normL for c = 1/2. Notably, the
exact scale estimates agree perfectly, whereas the approxi-
mate estimates are very similar. In this sense, the two scale
selection methods have rather similar effects when applied
to a rotationally symmetric Gaussian blob.

5.1.1 Theoretical Symmetry Properties Between the Scale
Estimates

The similarity between the results of the two scale selection
methods can generally be understood by studying the scale-
space signatures that show how the Laplacian and the deter-
minant of the Hessian responses evolve as function of scale

Table 2 Exact scale estimates obtained from local extrema over scale
vs. weighted averaging over scale for the Laplacian and determinant
operators applied to a rotationally symmetric Gaussian blob with scale
parameter t0 and for a general amount of post-smoothing as determined
by the post-smoothing parameter c

Operator Extrema over scale Weighted averaging

∇2
normL t0/(1 + c2) t0/(1 + c2)

det Hnorm t0/
√

1 + 2c2 t0/
√

1 + 2c2

Table 3 Approximate scale estimates obtained from local extrema
over scale vs. weighted averaging over scale for the Hessian feature
strength measures I and II applied to a rotationally symmetric Gaus-
sian blob with scale parameter t0 and for a specific amount of post-
smoothing with c = 1/2

Operator Extrema over scale Weighted averaging

D1,normL ≈ 0.813 t0 ≈ 0.813 t0

D2,normL ≈ 0.699 t0 ≈ 0.694 t0

at the center of the blob (below assuming no post-smoothing
corresponding to c = 0):

(∇2
normL

)
(0,0; t) = − t

π(t0 + t)2
(154)

(det HnormL)(0,0; t) = t2

4π2(t0 + t)4
(155)

The left column in the upper and middle rows in Fig. 3
shows these graphs with a linear scaling of the regular
scale parameter t and the right column shows correspond-
ing graphs with a logarithmic scaling of the scale parameter
in terms of effective scale τ .

As can be seen from the latter graphs, the scale-space sig-
natures assume a symmetric shape when expressed in terms
of effective scale, which implies that the weighted scale es-
timates, which correspond to the center of gravity of the
graphs, will be assumed at a similar position as the global
extremum over scale. This property can also be understood
algebraically, due to the functional symmetry of (154) and
(155) under mappings of the form

t �→ t0 t ′ vs. t �→ t0

t ′
(156)

corresponding to the symmetry

log t0 + log t ′ ↔ log t0 − log t ′ (157)

Since the response properties of the Hessian feature strength
measures D1,normL and D2,normL are of similar forms

(D1,normL)(0,0; t) = (1 − 4k) t2

4π2(t0 + t)4
(158)

(D2,normL)(0,0; t) = t

2π(t0 + t)2
(159)

corresponding symmetry properties follow also for these op-
erators. These symmetry properties do also extend to mono-
tonically increasing transformations ψ of the differential re-
sponses of the form

ψ
(∣∣∇2

normL
∣∣), ψ

(|det HnormL|) (160)

ψ
(|D1,normL|), ψ

(|D2,normL|) (161)

These symmetry properties do, however, not extend to gen-
eral values of γ = 1, since such values may lead to a skew-
ness in the scale-space signature (see the bottom row in
Fig. 3).

5.1.2 Calibration Factors for Setting Scale-Invariant
Integration Scales

The scale estimates may, however, differ depending on what
differential expression the interest point detector is based on.
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Fig. 3 Scale-space signatures
computed from a Gaussian blob
with scale parameter t0 = 10 for
(top row) the Laplacian ∇2

normL

for γ = 1, (middle row) the
determinant of the Hessian
det HnormL for γ = 1 and
(bottom row) the second-order
derivative Lξξ for a 1-D signal
and γ = 3/4 so as to give rise to
the peak over scale at t̂ = t0
using (left column) a linear
scaling of the scale parameter t

or (right column) a logarithmic
transformation in terms of
effective scale τ = log t

Hence, if we would like to set an integration scale tint for
computing a local image descriptor from the scale estimate
t̂DL, in such a way that the integration scale should be the
same

tint = r2t0 (162)

for any interest point detector DL applied to a rotationally
symmetric Gaussian blob, irrespective of whether the inter-
est points are computed from scale-space extrema or feature
trajectories in a scale-space primal sketch, we can parame-
terize the integration scale according to

tint = r2 t̂DL

ADL

(163)

with the calibration factor ADL determined from the results
in Table 4.

5.2 Anisotropic Gaussian Blob

5.2.1 Taylor Expansions for Non-uniform Scaling Factors
Near s = 1

From the analysis of the scale selection properties of an
anisotropic Gaussian blob with scale parameters t1 and t2 in
Sect. 3.3 and Sect. 4.2, we found that scale selection based

Table 4 Calibration factors ADL
to obtain compensated scale esti-

mates t̂DL,comp = t̂DL
/ADL

that lead to t̂DL,comp = t0 for a rotation-
ally symmetric Gaussian blob irrespective of the interest point operator
DL or the post-smoothing parameter c

Operator Calibration factor ADL

∇2
normL 1/(1 + c2)

det Hnorm 1/
√

1 + 2c2

D1,norm ≈ eθD1L with θD1L according to (130)

D2,norm ≈ eθD2L with θD2L according to (135)

on local extrema over scale or weighted scale selection lead
to a similar and affine covariant scale estimate

√
t1t2 for the

determinant of the Hessian operator det HnormL.
For the Laplacian ∇2

normL and the Hessian feature
strength measures D1,normL and D2,normL, the scale esti-
mates are, however, not affine covariant. Moreover, the two
scale selection methods may lead to different results. When
performing a Taylor expansion of the scale estimate param-
eterized in terms of a non-uniform scaling factor s relative
to a base-line scale t0, the Taylor expansions around s = 1
did, however, agree in their lowest order terms. In this sense,
the two scale selection approaches have approximately sim-
ilar properties for the Gaussian blob model for affine image
deformations near the similarity group.
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From a comparison between the Taylor expansions for
the scale estimates for the different interest point detectors
in Table 5, we can conclude that after the affine covariant
determinant of the Hessian det HnormL, the scale estimate
obtained from Hessian feature strength measure D1,normL

has the lowest sensitive to affine image deformations fol-
lowed by the Laplacian ∇2

normL and the Hessian feature
strength measure D2,normL. Corresponding results hold for
the corresponding signed Hessian feature strength measures
D̃1,normL and D̃2,normL.

5.2.2 Graphs of Non-uniform Scaling Dependencies for
General s ≥ 1

From the analysis in Sect. 4.3 it follows from (139), (142),
(144) and (152) that for an anisotropic Gaussian blob with
scale parameters t1 = s t0 and t2 = t0/s, the scale estimates
for weighted scale selection using the Laplacian ∇2

normL, de-
terminant of the Hessian det HnormL and the Hessian feature
strength measures D1,normL and D2,normL are in the absence

Table 5 Taylor expansions for the scale estimates obtained for an
anisotropic Gaussian blob with scale parameters t1 = s t0 and t2 = t0/s

around s = 1 (assuming s > 1 for the D2,normL operator). The table
shows the terms in the Taylor expansion that are common for scale se-
lection based on local extrema over scale and scale selection based on
weighted averaging over scale

Operator Common terms in series expansion of scale estimate

∇2
normL (1 − 1

4 (s − 1)2 + 1
4 (s − 1)3 + O((s − 1)4))t0

det HnormL t0

D1,normL (1 + 1
21 (s − 1)2 − 1

21 (s − 1)3 + O((s − 1)4))t0

D2,normL (1 + 1
2 (s − 1) − 1

8 (s − 1)2 + O((s − 1)3))t0

of post-smoothing (c = 0) given by

t̂∇2L = 4s

(1 + s)2
t0 (164)

t̂det HL = t0 (165)

t̂D1L = e
κ(1−s2)2((1+s2) log s+1−s2)

4(1−κ)(1+s2) s2 log s+(1−s2)(κ(1−6s2+s4)+4s2) t0 (166)

t̂D2L =
(

4s

(1 + s)2

) 1+s
1−s

t0 (167)

Figure 4 shows graphs of how the scale estimates depend on
the non-uniform scaling parameter s for scale selection by
weighted averaging over scale. As can be seen from these
graphs, the behaviour is qualitatively somewhat different for
the four differential expressions.

For the determinant of the Hessian det HnormL, the scale
estimate coincides with the geometric average of the scale
parameters for any non-singular amount of non-uniform
scaling. For the Laplacian operator ∇2

normL, the scale esti-
mate t̂∇2L is lower than the geometric average of the scale
parameters in the two directions, whereas the scale estimates
are higher than the geometric average for the Hessian fea-
ture strength measures D1,normL and D2,normL. For moder-
ate values of s ∈ [1,4], the scale estimates from the Hessian
feature strength measure D1,normL, are quite close to the
affine covariant geometric average. For the Hessian feature
strength measure D2,normL on the other hand, the scale esti-
mate increases approximately linearly with the non-uniform
scaling factor s.

These graphs also show that the qualitative behaviour de-
rived for Taylor expansions near s = 1 (Table 5) extend to

Fig. 4 Dependency of the scale
estimates t̂DL on the amount of
non-uniform scaling s ∈ [1,4]
when performing scale selection
by weighted averaging over
scale for a non-uniform
Gaussian blob with scale
parameters t1 = s t0 and
t2 = t0/s for (upper left) the
Laplacian ∇2

normL, (upper right)
the determinant of the Hessian
det HnormL, (lower left) the
Hessian feature strength I
D1,normL and (lower right) the
Hessian feature strength I
D2,normL. (Horizontal axis:
Non-uniform scaling factor s.
Vertical axis: Scale estimate t̂DL

in units of t0)
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Fig. 5 Sample images from a
dataset with 14 images used for
experiments with repeatability
properties under affine image
deformations. (Image size:
560 × 420 pixels)

non-infinitesimal scaling factors up to at least a factor of
four.

5.3 Comparison with Experimental Repeatability
Properties

In this section, we shall compare the above mentioned the-
oretical results with experimental results of the repeatabil-
ity properties of the different interest point detectors under
affine image transformations.

5.3.1 Experimental Methodology

Figure 5 shows a few examples of images from an image
data set with 14 images from natural environments. Each
such image was subjected to 10 different types of affine im-
age transformations encompassing:

– a pure scaling U(s) with scaling factor s = 2,
– a pure rotation R(ϕ) with rotation angle ϕ = π/4, and
– non-uniform scalings N(s) with scaling factors s = 4

√
2

and s = √
2, respectively, which are repeated and aver-

aged over four different orientations respectively

Nϕ0(s) = R(ϕ0)N(s)R(ϕ0)
−1 (168)

with relative orientations of ϕ0 = 0, π/4, π/2 and 3π/4.

For a locally planar surface patch viewed by a scaled ortho-
graphic projection model, the non-uniform rescalings corre-
spond to the amount of foreshortening that arises with slant
angles equal to 32.8◦ and 45◦, respectively. In this respect,
the chosen deformations reflect reasonable requirements of
robustness to viewing variations for image-based matching
and recognition.

For each one of the resulting 14 × (1 + 10) = 154 im-
ages, the 400 most significant interest points were detected.
For interest points detected based on scale-space extrema,

the image features were ranked on the scale-normalized re-
sponse of the differential operator at the scale-space ex-
tremum. For interest points detected by scale linking, the
image features were ranked on a significance measure ob-
tained by integrating the scale-normalized responses of the
differential operator along each feature trajectory, using the
methodology described in [39].

To make a judgement of whether two image features A

and B ′ detected in two differently transformed images f

and f ′ should be regarded as belonging to the same fea-
ture or not, we associated a scale dependent circle CA and
CB ′ with each feature, with the radius of each circle equal to
the detection scale of the corresponding feature measured in
units of the standard deviation σ = √

t of the Gaussian ker-
nel used for scale-space smoothing to the selected scale, in a
similar way as the graphical illustrations of scale dependent
image features in previous sections. Then, each such feature
was transformed to the other image domain, using the affine
transformation applied to the image coordinates of the cen-
ter of the circle and with the scale value transformed to be
proportional to the determinant of the affine transformation
matrix, t ′ = (detA) t , resulting in two new circular features
CA′ and CB . The relative amount of overlap between any
pair of circles was defined by forming the ratio between the
intersection and the union of the two circles in a similar way
as [50] define a corresponding ratio for ellipses

m(CA,CB) = |⋂(CA,CB)|
|⋃(CA,CB)| (169)

Matching relations were computed in both directions and
a match was then permitted only if a pair of image fea-
tures maximize this ratio over replacements of either image
feature by other image features in the same domain and,
in addition, the value of this ratio was above a threshold
m(CA,CB) > m0, where we have chosen m0 = 0.40. Fur-
thermore, only one match was permitted for each image fea-
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Table 6 Relative ranking of 10 scale-invariant interest point detectors
based on scale selection from scale-space extrema with regard to their
repeatability scores under a set of 10 different affine image deforma-
tions applied to each one of the 14 images in the image dataset illus-
trated in Fig. 5 and the extraction of the 400 most significant interest
points from each image

Scale selection from local extrema over scale

Feature detector Type Complementary p (400)

κ̃γ−norm(L) extr – 0.876

D1,normL extr – 0.868

det HnormL extr D1L > 0 0.867

det HnormL extr |D̃1L| > 0 0.852

D̃1,normL extr – 0.849

∇2
normL extr – 0.844

D̃2,normL extr D1L > 0 0.842

D2,normL extr D1L > 0 0.841

∇2
normL extr D1L > 0 0.839

Harris-Laplace extr – 0.781

ture, and matching candidates were evaluated in decreasing
order of significance.

Finally, given that a total number of Nmatched features
matches have been found from N features detected from the
image f and N ′ features from the transformed image f ′, the
matching performance was computed as

p = Nmatched

max(N,N ′)
(170)

The matching performance was computed in both directions
from f to f ′ as well as from f ′ to f and the average value
of these performance measures was reported.

The evaluation of the matching score was only performed
for image features that are within the image domain for both
images before and after the transformation. Moreover, only
features within corresponding scale ranges were evaluated.
In other words, if the scale range for the image f before the
affine transformation was [tmin, tmax], then image features
were searched for in the transformed image f ′ within the
scale range [t ′min, t

′
max] = [(detA) tmin, (detA) tmax]. In addi-

tion, features in a narrow scale-dependent frame near the im-
age boundaries were suppressed, to avoid boundary effects
from influencing the results. In these experiments, we used
tmin = 4 and tmax = 256.

5.3.2 Relations Between Experimental Results
and Theoretical Results

Table 6 and Table 7 show the average repeatability scores
obtained for the 7 different interest point detectors we have
studied in this work. For the Laplacian ∇normL, determi-
nant of the Hessian det HnormL and the Hessian feature

Table 7 Relative ranking of 10 scale-invariant interest point detectors
based on scale selection by scale linking and weighted averaging over
scale with regard to their repeatability scores under a set of 10 different
affine image deformations applied to each one of the 14 images in the
image dataset illustrated in Fig. 5 and the extraction of the 400 most
significant interest points from each image

Scale selection by weighted averaging over scale

Feature detector Type Complementary p (400)

D1,normL link-w – 0.887

det HnormL link-w D1L > 0 0.886

D̃2,normL link-w D1L > 0 0.880

det HnormL link-w |D̃1L| > 0 0.878

κ̃γ−norm(L) link-w – 0.873

det HnormL link-w – 0.871

D̃1,normL link-w – 0.866

D2,normL link-w D1L > 0 0.858

∇2
normL link-w D1L > 0 0.856

Harris-Laplace link-w – 0.855

strength measures D2,normL and D̃2,normL, we have also ap-
plied complementary thresholding on either D1,normL > 0
or D̃1,normL > 0, which increases the robustness of the im-
age features and improves the repeatability scores of the
interest point detectors. For comparison, we do also show
corresponding repeatability scores obtained with the Harris-
Laplace operator. With these variations, a total number 10
differential interest point detectors are evaluated. Separate
evaluations are also performed for scale selection from local
extrema over scale vs. scale selection by scale linking and
weighted averaging over scale.

As can be seen from Table 6, the best repeatability prop-
erties for the interest point detectors based on scale selec-
tion from local extrema over scale are obtained for (i) the
rescaled level curve curvature κ̃γ−norm(L), (ii) the Hessian
feature strength measure D1,normL and (iii) the determinant
of the Hessian det HnormL.

From Table 7, we can see that the best repeatability prop-
erties for the interest point detectors based on scale selec-
tion using scale linking and weighted averaging over scale
are obtained for (i) the Hessian feature strength measure
D1,normL, (ii) the determinant of the Hessian det HnormL

and (iii) the Hessian feature strength measure D̃2,normL.
The repeatability scores are furthermore generally better

for scale selection based on weighted averaging over scale
compared to scale selection based on local extrema over
scale.

In comparison with our theoretical analysis, we have pre-
viously shown that the response of the determinant of the
Hessian det HnormL to an affine Gaussian blob is affine co-
variant, for both scale selection based on local extrema over
scale (97) and scale selection based on scale linking and
weighted averaging over scale (143). For the Hessian feature
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strength measure D1,normL, a major contribution to this dif-
ferential expression comes from the affine covariant deter-
minant of the Hessian det HnormL, and the deviations from
affine covariance are small for both scale selection based
on local extrema over scale (100) and scale selection by
weighted averaging over scale (148), provided that the non-
uniform image deformations are not too far from the sim-
ilarity group in the sense that the non-uniform scaling fac-
tor s used in the Taylor expansions is not too far from 1.
Specifically, the two interest point detectors that have the
best theoretical properties under affine image deformations
in the sense of having the smallest correction terms in Ta-
ble 5 are also among the top three interest point detectors
for both scale selection based on local extrema over scale
and scale selection based on scale linking and weighted av-
eraging over scale. In this respect, the predictions from our
theoretical analysis are in very good agreement with the ex-
perimental results.

Somewhat more surprisingly the signed Hessian feature
strength measure D̃2,normL performs very well when com-
bined with scale selection based on weighted averaging over
scale. The corresponding unsigned entity D2,normL does not
perform as well, and more comparable to the Laplacian op-
erator ∇2

normL. A possible explanation for this is that keep-
ing the signs of the principal curvatures in the non-linear
minimum operation improves the ability of this operator
to distinguish between nearby competing image structures,
a property that is not captured by the analysis of isolated
Gaussian blobs. The repeatability properties of the unsigned
version D2,normL are therefore in closer agreement with the
presented analysis.

The rescaled level curve curvature κ̃γ−norm(L) performs
comparably very well for scale selection based on local ex-
trema over scale, whereas it does not perform as well for
scale selection based on scale linking and weighted aver-
aging over scale. For scale selection based on local ex-
trema over scale, our analysis showed that the deviation
from affine covariance is comparably low (111) for the
value of γ = 7/8 that we used in our experiments. For this
scale selection method, the experimental results are there-
fore in agreement with our theoretical results. Contrary to
the other interest point detectors, the repeatability properties
of the rescaled level curve curvature operator κ̃γ−norm(L)

are, however, not improved by scale linking. A possible
algorithmic explanation to this could be that the rescaled
level curve curvature operator κ̃γ−norm(L) contains a dif-
ferent type of non-linearity that may cause difficulties for
the scale linking algorithm. Calculating closed-form expres-
sions for the scale estimates obtained by weighed averaging
over scale does also seem harder for this operator. We there-
fore leave it as an open problem to investigate if also this in-
terest point detector could be improved by scale linking and

scale selection from weighted averaging of possibly trans-
formed magnitude values along the corresponding feature
trajectories.

Experimental results in [39] show that the Hessian fea-
ture strength measure D1,normL and the determinant of the
Hessian det HnormL and are also the two interest point de-
tectors that give the best repeatability properties under real
(calibrated) perspective image transformations. Thus, the
two best interest point detectors according to our theoreti-
cal analysis are also the interest point detectors that have the
best properties for real image data.

6 Summary and Discussion

We have analyzed the scale selection properties of (i) the
Laplacian operator ∇2

normL, (ii) the determinant of the Hes-
sian det HnormL, (iii)–(iv) the new Hessian feature strength
measures D1,normL and D2,normL and (iv) the rescaled
level curve curvature operator κ̃γ−norm(L) when applied
to a Gaussian prototype blob model and using scale se-
lection from either (vi) local extrema over scale of scale-
normalized derivatives or (vii) weighted averaging of scale
values along feature trajectories over scale. We have also
analyzed (viii) the influence of a secondary post-smoothing
step after the computation of possibly non-linear differential
invariants and (ix) the sensitivity of the scale estimates to
affine image deformations.

The analysis shows that the scale estimates from the de-
terminant of the Hessian det HnormL are affine covariant for
the Gaussian blob model for both scale selection based on
local extrema over scale and scale selection by weighted av-
eraging over scale. The analysis also shows that the scale es-
timates from the Laplacian operator ∇2

normL and the Hessian
feature strength measures D1,normL and D2,normL are not
affine covariant. Out of the latter three operators, the Hessian
feature strength measure D1,normL has the lowest sensitivity
to affine image deformations outside the similarity group,
whereas the Hessian feature strength measure D2,normL has
the highest sensitivity. The stronger scale dependency of the
Hessian feature strength measure D2,normL can be under-
stood from the fact that it responds to the eigenvalue of the
Hessian matrix corresponding to the slowest spatial varia-
tions.

Experimental results reported in Sect. 5.3 and [39], show
that the interest point detectors based on the new Hessian
feature strength measure D1,normL and the determinant of
the Hessian det HnormL have significantly better repeata-
bility properties under affine or perspective image transfor-
mations than the Laplacian ∇normL or the Hessian feature
strength measure D2,normL. Corresponding advantages hold
relative to the difference-of-Gaussians (DoG) approxima-
tion of the Laplacian operator or the Harris-Laplace oper-
ator. Hence, the interest point detectors that have the best
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theoretical properties under affine deformations of Gaussian
blobs do also have the best experimental properties. In this
respect, the predictions from this theoretical analysis agree
with corresponding experimental results.

When considering scale selection for a rotationally sym-
metric Gaussian blob, it is shown that the scale estimates
obtained by scale selection from local extrema over scale
vs. weighted averaging over scale do for γ = 1 (in the 2-D
case) lead to similar results for each one of these four op-
erators. This similarity can be explained from a symmetry
property of the scale-space signature under inversion trans-
formations of the scale parameter, which correspond to re-
flections along the scale axis after a logarithmic transforma-
tion of the scale parameter in terms of effective scale. Be-
cause of this similarity between the scale estimates obtained
from the two types of scale selection approaches, we may
conclude that no additional scale compensation or scale cal-
ibration is needed between scale estimates that are obtained
from weighted averaging over scale vs. local extrema over
scale (provided that γ = 1).

Since the commonly used difference-of-Gaussians oper-
ator can be seen as a discrete approximation of the Lapla-
cian operator [41], the analysis of the scale selection prop-
erties for the Laplacian operator also provides a theoreti-
cal model for analyzing the scale selection properties of the
difference-of-Gaussian keypoint detector used in the SIFT
operator [48]. The above mentioned results concerning the
scale selection properties of the Laplacian operator ∇2

normL

do also extend to the Harris-Laplace operator [49] for which
the spatial selection is performed based on spatial extrema of
the Harris measure H , whereas the scale selection properties
are solely determined by the scale selection properties of the
Laplacian ∇2

normL. Incorporating the scale selection proper-
ties of the determinant of the Hessian det HnormL, the re-
sults do also extend to the Harris-detHessian, detmu-Laplace
and detmu-detHessian operators proposed in [39] as well as
other possible types of hybrid approaches.

For scale estimates that are computed algorithmically
from real-world images in an actual implementation, the
robustness of image features that are obtained by scale se-
lection from local extrema over scale or weighted scale se-
lection over scale may, however, differ substantially. Ex-
perimental results reported in Sect. 5.3 and [39] show that
weighted scale selection leads to interest points that have
significantly better repeatability properties under perspec-
tive image deformations compared to interest points com-
puted with scale selection from local extrema over scale.
Theoretically, we have also seen that in several cases,
weighted scale selection makes it easier to derive closed-
form expressions for the scale estimate than for scale se-
lection based on local extrema over scale. In these respects,
scale selection by weighted averaging over scale can have
both practical and theoretical advantages.

When making use of a complementary post-smoothing
operation to suppress spurious variations in the non-linear
feature responses from the interest point detectors to sim-
plify the task of scale linking, the influence of this post-
smoothing operation on the scale estimates may, however,
be different for different interest point detectors. If we as-
sume that scale calibration can be performed based on the
scale selection properties for Gaussian blobs, we have de-
rived a set of relative calibration or compensation factors for
each one of the five main types of interest point detectors
studied in this paper.

To conclude, the analysis presented in this paper provides
a theoretical basis for a defining a richer repertoire of mech-
anisms for computing scale-invariant image features and im-
age descriptors for a wide range of possible applications in
computer vision. In very recent work [42], these generalized
scale-space interest points have been integrated with local
scale-invariant image descriptors and been demonstrated to
lead to highly competitive results for image-based matching
and recognition.

As outlined in Appendix A.2, these interest point detec-
tors and the analysis of these can be extended to higher-
dimensional image data in a rather straightforward manner.
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Appendix

A.1 On the Algorithmic Advantages of Post-smoothing
for Scale Linking

In [39] a generalized notion of a scale-space primal sketch
for differential descriptors was introduced, where pointwise
image features at different scales are linked into feature tra-
jectories over scale and bifurcation events between these
feature trajectories are explicitly registered. Specifically, it
was experimentally shown that:

– a significance measure obtained by integrating scale-
normalized feature responses along each feature trajec-
tory allows for a better ranking of interest points than
ranking on the magnitude of the responses of scale-space
extrema, and

– scale selection by weighted averaging over scale allows
for interest point detection with better repeatability prop-
erties under affine and perspective image deformations
compared to scale selection from local extrema over scale
of scale-normalized derivatives.
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Fig. 6 Illustration of the effect of post-smoothing: The left figure
shows extrema of the differential expression D1,normL computed from
an image detail at scale t = 4 without post-smoothing. The right figure
shows extrema of the same differential expression with complemen-
tary post-smoothing using c = 3/8. As can be seen from this figure, the

use of post-smoothing can reduce the number of multiple responses to
similar structures in the image domain. Observe that this operation is
conceptually different from changing the scale at which derivatives are
computed, since the post-smoothing is performed after the computa-
tion of the non-linear differential expression

In the original work on a scale-space primal sketch for inten-
sity data (as obtained from zero-order scale-space operations
without derivative computations) [27, 31] a scale linking al-
gorithm was proposed based on (i) the detection of grey-
level blobs at any level of scale and (ii) adaptive scale sam-
pling refinements. By theoretical analysis of singularities in
scale-space, the generic types of blob events in scale-space
were classified [26]. Specifically, the theoretical analysis
showed that although the local drift velocity in scale-space
may momentarily tend to infinity near bifurcation events, it
can be regarded as unlikely that an extremum point moves
outside the support region of the grey-level blob. For this
reason, the matching of image structures over scales used in
the scale linking algorithm was based on detecting overlaps
between the support regions of the grey-level blobs at adja-
cent scales, and local refinements were performed if the re-
lations between partially overlapping grey-level blobs could
not be decomposed into the generic types of blob events.
Experimentally, it was shown that this approach allowed for
extraction of intuitively reasonable image structures based
on very few assumptions. Due to the adaptive scale refine-
ments and the explicit computation of grey-level blobs, this
type algorithm does, however, not appear suitable for real-
time implementation on a regular processor.

In [39], a simplified and more efficient type of scale link-
ing algorithm was proposed, where scale refinements and

explicit detection of grey-level blobs are avoided. In order
to still be able to make use of the highly useful property
that a local extremum can be expected to be unlikely to drift
outside the support region of the grey-level blob, a local de-
scent/ascent search is instead initiated at the position corre-
sponding to the local extrema at the adjacent scale. If the de-
scent/ascent search is initiated within the support region of
a grey-level blob, this procedure should therefore proceed
towards the extremum. This approach therefore avoids the
complexity problems that otherwise would occur if match-
ing a large number of image features between adjacent scale
levels.

When computing non-linear expressions from image data
at, in particular fine or moderate scales, however, it turns
out that one may get several local extrema of low relative
amplitude in relation to neighbouring local extrema, which
do not correspond to perceptually relevant image structures.
Since such local perturbations cannot be expected to be sta-
ble under natural imaging conditions, they cannot be ex-
pected to be perceptually or algorithmically useful. By per-
forming a small amount of additional Gaussian smoothing
to the computed non-linear differential expression, a large
number of such spurious responses can be suppressed (see
Fig. 6). Thereby, the task of scale linking will be simpli-
fied for the scale linking algorithm. Due to the suppression
of a large number of irrelevant features, the scale linking
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algorithm will also run significantly faster. Experimentally,
the repeatability properties of the resulting interest points do
also become better.

From scale invariance arguments it is natural to let the
relation between the post-smoothing scale tpost and the local
scale level for computing derivatives t be given by

tpost = c2 t (171)

for some fixed value of the relative post-smooth scale pa-
rameter c. In our first work on generalized scale-space in-
terest points [39], we used c = 1/2 when linking image
structures over scale into feature trajectories. Specifically,
the experiments reported in Sect. 5.3 were performed using
c = 1/2. In connection with our more recent work on inte-
grating the generalized scale-space interest points with local
image descriptors [42], we found that c ≈ 3/8 is a better
choice when matching image descriptors under affine and
perspective image deformations. Increasing c above c = 1/2
decreases the repeatability properties for image deforma-
tions outside the similarity group, whereas decreasing c be-
low c = 1/4 leads to a lower suppression of irrelevant fea-
tures which affects the repeatability properties of the result-
ing interest points. Beyond this, we have not tried to opti-
mize the performance, bearing in mind that one could also
consider other types of algorithms for scale linking, which
could then lead to different trade-offs in terms of the com-
plexity of the local matching step vs. efficiency or accuracy
considerations.

A.2 3-D Generalizations of the Scale-Space Interest Point
Detectors

For image data f : R
3 → R that are defined over a three-

dimensional image domain indexed by the image coordi-
nates (x, y, z), there are natural ways to extend the interest
point detectors considered in this work based on the scale-
space representation L : R

3 × R+ → R of f generated by
convolution with the three-dimensional Gaussian kernel

g(x, y, z; t) = 1

(2πt)3/2
e− x2+y2+z2

2t (172)

using

– the Laplacian operator

∇2
γ−normL = tγ trace HL = tγ (Lxx + Lyy + Lzz) (173)

– the determinant of the Hessian

det Hγ−normL = t3γ
(
LxxLyyLzz + 2LxyLxzLyz

− LxxL
2
yz − LyyL

2
xz − LzzL

2
xy

)
(174)

– the rescaled Gaussian curvature

G̃γ−norm(L)

= t4γ
((

Lz(LxxLz − 2LxLxz) + L2
xLzz

)

× (
Lz(LyyLz − 2LyLyz) + L2

yLzz

)

− (
Lz(−LxLyz + LxyLz − LxzLy)

+ LxLyLzz

)2)
/L2

z (175)

– the unsigned Hessian feature strength measure I

D1,γ−normL

=
⎧⎨
⎩

t3γ (det HL − k trace3 HL)

if det HL − k trace3 HL > 0
0 otherwise

(176)

– the unsigned Hessian feature strength measure II

D2,γ−normL = tγ min
(|λ1|, |λ2|, |λ3|

)
(177)

where λ1, λ2 and λ3 denote the eigenvalues of the three-
dimensional Hessian matrix HL, whereas Gγ−norm(L)/

(L2
x + L2

y + L2
z)

2 denotes the Gaussian curvature7 of a level
surface.

Related Work In relation to these 3-D extensions of the 2-
D interest point detectors considered in this work, a three-
dimensional extension of the Harris operator

H3D = detμ − k trace2 μ (178)

defined from the three-dimensional second-moment matrix

μ(x; t, s) =
∫

u∈R3

(∇L(x − u; t)
)

× (∇L(x − u; t)
)T

g(u; s) du (179)

has been previously demonstrated to be effective for de-
tecting sparse spatio-temporal interest points in video data
(Laptev and Lindeberg [23]). The three-dimensional Hes-
sian feature strength measure D1,γ−normL can be seen as
a differential analogue to the spatio-temporal Harris opera-
tor, defined from second-order derivatives of image intensi-
ties only, which should allow for the computation of more
dense sets of interest points, in analogy with the denser sets

7The motivation for multiplying the Gaussian curvature by a power
of the gradient magnitude in (175) is that the resulting operator should
assume high values when the gradient magnitude and the Gaussian cur-
vature are simultaneously high. More generally, also other powers of
the gradient magnitude could be considered (204). The current power
of four is chosen because it leads to the simplest calculations, in anal-
ogy with the multiplication by the gradient magnitude raised to the
power of three for the 2-D rescaled level curve curvature operator (7).
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of interest points that are obtained from the 2-D Hessian fea-
ture strength measure D1,γ−normL compared to the interest
points detected by the 2-D Harris operator. For 3-D image
data, the parameter k should be in the interval ]0, 1

27 [.
Also, the spatio-temporal determinant of the Hessian

has been used for detecting spatio-temporal interest points
(Willems et al. [61]) and been demonstrated to allow for
denser sets of spatio-temporal interest points than the spatio-
temporal Harris operator. The new 3-D interest point de-
tectors D1,γ−normL, D2,γ−normL and G̃γ−norm(L) provide
a way to extend this repertoire of 3-D interest point detec-
tors. When applying these operators to spatio-temporal im-
age data, they should be combined with a spatio-temporal
scale-space representation (Lindeberg [33, 40]; Lindeberg
and Fagerström [45]) that allows for different scale param-
eters over the space vs. time. Moreover, the specific cou-
pling between space and time should be explicitly consid-
ered when expressing invariance properties over space-time
(Lindeberg et al. [40, 44]).

In the following, we shall analyze the scale-selection
properties of these 3-D interest point detectors when applied
to volumetric (spatial) image data using the same amount of
scale-space smoothing over all spatial dimensions.

A.2.1 Scale Selection Properties for a 3-D Gaussian Blob

Consider a single 3-D Gaussian blob

f (x, y, z) = g(x, y, z; t0) = 1

(2πt0)3/2
e
− x2+y2+z2

2t0 (180)

Due to the semi-group property of the Gaussian kernel

g(·, ·, ·; t1) ∗ g(·, ·, ·; t2) = g(·, ·, ·; t1 + t2) (181)

the scale-space representation of f obtained by Gaussian
smoothing is given by

L(x, y, z; t) = g(x, y, z; t0 + t)

= 1

(2π(t0 + t))3/2
e
− x2+y2+z2

2(t0+t) (182)

A.2.2 The Pure Second-Order Interest Point Detectors

By differentiation it follows the scale normalized feature
strength measure at the center (x, y, z) = (0,0,0) of the
Gaussian blob will for the Laplacian (173), the determinant
of the Hessian (174) and the Hessian feature strength mea-
sures I (176) and II (177) be given by

(∇2
γ−normL

)
(0,0; t) = − 3tγ

2
√

2π3/2(t + t0)5/2
(183)

(det Hγ−normL)(0,0; t) = − t3γ

16
√

2π9/2(t + t0)15/2
(184)

(D1,γ−normL)(0,0; t) = − (1 − 27k)t3γ

16
√

2π9/2(t + t0)15/2
(185)

(D2,γ−normL)(0,0; t) = tγ

2
√

2π3/2(t + t0)5/2
(186)

Differentiating these expressions with respect to the scale
parameter t and setting the derivative to zero gives that the
extremum over scale will for all these interest point detectors
be assumed at the same scale

t̂ = 2γ

5 − 2γ
t0 (187)

If we would like these interest point detectors to return a
scale estimate corresponding to the scale parameter of a
Gaussian blob, we should therefore choose

γ3D = 5

4
(188)

Using γ = 1 would otherwise lead to a lower scale estimate

t̂3−D,γ=1 = 2

3
t0 (189)

For scale selection based on weighted averaging over scale
of the scale-normalized Laplacian response (183), the corre-
sponding scale estimates are for γ ∈]0, 5

2 [ given by

τ̂∇2L =
∫ ∞
t=0

3tγ

2
√

2π3/2(t+t0)
5/2 log t dt

t∫ ∞
t=0

3tγ

2
√

2π3/2(t+t0)
5/2

dt
t

= log t0 + ψ(γ ) − ψ

(
5

2
− γ

)
=

{
if γ = 5

4

}
= log t0

(190)

where ψ(u) denotes the digamma function, which is the
logarithmic derivative of the Gamma function ψ(u) =
Γ ′(u)/Γ (u).

Similarly, from the explicit expression for the determi-
nant of the Hessian at the center of the Gaussian blob (184),
it follows that the weighted scale estimate will for γ ∈]0, 5

2 [
be given by

τ̂det HL =
∫ ∞
t=0

t3γ

16
√

2π9/2(t+t0)
15/2 log t dt

t∫ ∞
t=0

t3γ

16
√

2π9/2(t+t0)
15/2

dt
t

= log t0 + ψ(3γ ) − ψ

(
15

2
− 3γ

)

=
{

if γ = 5

4

}
= log t0. (191)

Due to the similarity between the explicit expressions for
the Hessian feature strength measure I (185) and the deter-
minant of the Hessian response (184) as well as the simi-
larity between the Hessian feature strength measure II (186)
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and the Laplacian response (185) at the center of a Gaussian
blob, the scale estimates for D1,γ−normL and D2,γ−normL

will be analogous:

τ̂D1L = log t0 + ψ(3γ ) − ψ

(
15

2
− 3γ

)

=
{

if γ = 5

4

}
= log t0 (192)

τ̂D2L = log t0 + ψ(γ ) − ψ

(
5

2
− γ

)

=
{

if γ = 5

4

}
= log t0 (193)

When expressed in terms of the regular scale parameter

t̂ = eτ̂ (194)

the weighted scale selection method does hence for a rota-
tionally symmetric Gaussian blob lead to similar scale esti-
mates as are obtained from local extrema over scale of γ -
normalized derivatives (29) when γ = 5/4. For other values
of γ , the scale estimates are biased

t̂ = C t0 (195)

by a scale factor equal to

C1 = eψ(γ )−ψ( 5
2 −γ ) (196)

for the Laplacian ∇2
normL and the Hessian feature strength

measure D2,normL operators, and a bias factor

C2 = eψ(3γ )−ψ( 15
2 −3γ ) (197)

for the determinant of the Hessian det HnormL and the Hes-
sian feature strength measure D1,normL operators.

By following the methodology outlined in Sects. 3.2, 3.3,
4.2 and 4.3, a corresponding more detailed analysis can be
performed concerning the influence of the post-smoothing
operation and affine image deformations for these 3-D inter-
est point detectors.

A.2.3 The Rescaled Gaussian Curvature Operator

When computing the rescaled Gaussian curvature
G̃γ−norm(L) for the scale-space representation of a three-
dimensional spherically symmetric Gaussian blob with scale
parameter t0, we obtain

G̃γ−norm(L) = t3γ (x2 + y2 + z2)e
− 2(x2+y2+z2)

t+t0

64π6(t + t0)10
(198)

which with spherical coordinates x2 + y2 + z2 = R2 be-
comes

G̃γ−norm(L) = R2 t3γ e
− 2R2

t+t0

64π6 (t + t0)10
(199)

This expression assumes its maximum value over R when

R =
√

t0 + t

2
(200)

for which the rescaled surface curvature assumes the value

G̃γ−norm(L) = t3γ

128 e π6 (t + t0)9
(201)

Setting the derivative of this expression with respect to the
scale parameter to zero gives

t̂ = γ

3 − γ
t0 (202)

for which the γ -normalized magnitude response is

G̃γ−norm(L) = (3 − γ )9

2519424 e π6 t9
0

(
γ t0

3 − γ

)3γ

(203)

A corresponding analysis can be carried out for the Gaus-
sian curvature modulated by other powers of the gradient
magnitude

G̃
(a)
γ−norm(L) = G̃γ−norm(L)

(L2
x + L2

y + L2
z)

a
(204)

where a < 2. Then, the corresponding scale estimate be-
comes

t̂ = (3 − a)γ

9 − 4a − (3 − a)γ
t0 (205)

For general values of a, the corresponding intermediate re-
sults are, however, more complex.

A.3 Interpreting the Parameter γ in Terms
of the Dimensionality of the Image Features

The value γ = 5/4 obtained from the analysis of a 3-D
Gaussian blob in Appendix A.2.2 (Eq. (188)) can be com-
pared to the values obtained by requiring the purely second-
order differential entities to respond to a 2-D Gaussian blob
at t = t0 (Eq. (29))

γ2D = 1 (206)

or the value of the γ parameter obtained by requiring the
second-order derivative operator to respond to a 1-D Gaus-
sian blob (alternatively a 1-D Gaussian ridge embedded in a
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higher-dimensional space) at t = t0 [34]

γ1D = 3

4
(207)

More generally, for a D-dimensional Gaussian intensity pro-
file

f (x1, . . . , xD) = g(x1, . . . , xD; t0) = 1

(2πt0)D/2
e
−

∑D
i=1 x2

i
2t0

(208)

embedded in N ≥ D dimensions, the scale-space represen-
tation is given by

L(x1, . . . , xN ; t) = g(x1, . . . , xD; t0 + t)

= 1

(2π(t0 + t))D/2
e
−

∑D
i=1 x2

i
2(t0+t) (209)

with the corresponding γ -normalized Laplacian response
(∇2

γ−normL
)
(x1, . . . , xN ; t)

= tγ
D∑

i=1

(x2
i − t0 − t)

(t0 + t)2
g(x1, . . . , xD; t0 + t) (210)

which assumes the following value at the origin

(∇2
γ−normL

)
(0, . . . ,0; t) = − D tγ

(2π(t0 + t))1+D/2
(211)

Differentiating this expression with respect to t gives and
setting the derivative to zero gives

t̂ = 2γ

D + 2(1 − γ )
t0 (212)

Requiring this scale estimate to be equal to t0 implies that
the γ -value for a pure second-order operator should there-
fore be related to the dimensionality D of the image features
they should respond to according to

γ = 1

2
+ D

4
(213)

Note that the 2-D case is special in the sense that only for
this dimensionality D = 2 does scale selection based on the
most scale-invariant choice γ = 1 lead to scale estimates
that are equal to the diffuseness parameter t0 of a Gaussian
intensity profile.

It can also be noted that only for two-dimensional blobs
will the corresponding γ -normalized magnitude values of
scale-space extrema be independent of the size of the blob,
whereas in other dimensionalities the corresponding mag-
nitude values need to be normalized by a scale-dependent
correction factor t̂1−γ to lead to scale-invariant magnitude
values that are independent of the diffuseness t0 of the D-
dimensional Gaussian intensity profile.
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