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Abstract

A fundamental problem in vision concerns what types of image operations should be
used at the first stages of visual processing. This paper presents a principled approach to
this problem by describing a generalized axiomatic scale-space theory that makes it pos-
sible to derive the notions of linear scale-space, affine Gaussian scale-space and linear
spatio-temporal scale-space using similar sets of assumptions (scale-space axioms).

Based on a requirement that new image structures should not be created with in-
creasing scale formalized into a condition of non-enhancement of local extrema, a com-
plete classification is given of the linear (Gaussian) scale-space concepts that satisfy
these conditions on isotropic spatial, non-isotropic spatial and spatio-temporal domains,
which results in a general taxonomy of Gaussian scale-spaces for continuous image data.
The resulting theory allows filter shapes to be tuned from specific context information
and provides a theoretical foundation for the recently exploited mechanisms of affine
shape adaptation and Galilean velocity adaptation, with highly useful applications in
computer vision. It is also shown how time-causal and time-recursive spatio-temporal
scale-space concepts can be derived from similar or closely related assumptions.

The receptive fields arising from the spatial, spatio-chromatic and spatio-temporal
derivatives resulting from these scale-space concepts can be used as a general basis for
expressing image operations for a large class of computer vision or image analysis meth-
ods. The receptive field profiles generated by necessity from these theories do also have
close similarities to receptive fields measured by cell recordings in biological vision,
specifically regarding space-time separable cells in the retina and the lateral geniculate
nucleus (LGN) as well as both space-time separable and non-separable cells in the striate
cortex (V1) of higher mammals.
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1 Introduction

For us humans as well as many other living organisms, vision is a main source of information
about the surrounding world, which allows us to gather information about objects in our
environment at a distance and without interacting with them physically. In science, medicine
and our daily life, digital information in the form of images and video is becoming ubiquitous
by the developments of visual sensors and information technology.

While we humans seemingly effortlessly make use of visual perception to recognize and
categorize familiar as well as unfamiliar objects and activities in complex environments, there
are several reasons why visual tasks are hard to automate. One main source of difficulty orig-
inates from the fact that visual input does not provide direct, but indirect, information about
the objects that the light is reflected from. The image formation process is associated with
a set of natural image transformations, including the perspective mapping, which implies
scale variations due to depth as well as perspective distortions due to variations in the view-
ing direction. For time-dependent image data, objects usually move relative to the observer.
Moreover, image measurements are strongly influenced by external illumination, occlusion
and interference with neighbouring objects in the environment. Therefore, individual mea-
surements of intensity and/or colour at single image points do hardly ever provide sufficient
information about an object, since beyond material properties, any pointwise measurement
is strongly influenced by the external illumination as well as the orientation of the surface
of the object relative to the viewing direction of the observer. The relevant information for
visual perception is instead contained in the relative relations between image measurements
at adjacent points. A key issue in computer vision and image processing is therefore to de-
sign image features and image descriptors that are sufficiently descriptive and discriminatory
to be able to distinguish between different types of visual patterns, while also being robust
(invariant) to the types of transformations that are present in the image formation process, as
well as robust to noise and other perturbations. Borrowing terminology originally developed
for biological vision (Hubel & Wiesel 2005), an image operator that computes image fea-
tures or image descriptor from the local image information around a specific point in space
or space-time can be referred to as a receptive field.

The problem of computing or designing appropriate image features from image data, or
alternatively stated modelling the function of visual receptive fields, is closely related to the
fact that real-world objects are composed of different types of structures at different scales.
A general methodology that has been developed to handle this issue is by imposing structural
constraints on the image operators, which reflect symmetry properties in the world. From
such arguments, theoretical results have been presented showing that Gaussian kernels and
Gaussian derivatives constitute a canonical class of image operations, and can be regarded as
an idealized model for linear receptive fields over a spatial (time-independent) image domain
(Iijima 1962, Koenderink 1984, Koenderink & van Doorn 1992, Lindeberg 1994b, Lindeberg
1994a, Florack 1997, ter Haar Romeny 2003, Lindeberg 2011). Empirical evidence have
shown that this is a highly fruitful approach, and scale-space theory developed from these
principles has established itself as a promising paradigm for early vision with a large number
of successful applications, including feature detection, stereo matching, computation of optic
flow, tracking, estimation of shape cues and view-based object recognition (Lindeberg 2008).

Whereas scale-space theory was originally developed to handle (i) image structures at
different scales in spatial data to make it possible to handle image phenomena caused by
objects having substructures of different size and of different distances to the observer, scale-
space theory has later evolved into a general theory of early visual operations, to handle



other types of image variations including (ii) locally linearized image deformations caused
by variations in the viewing direction relative to the object, (ii) locally linearized relative mo-
tions between the object and the observer in spatial-temporal image data (video) and (iv) the
effect of local illumination transformations on receptive field responses (Lindeberg 2013b).
Computational mechanisms developed from these premises have also been shown to be con-
sistent with properties of receptive fields measured by cell recordings in biological vision
(Young 1987, Young et al. 2001, Lindeberg 2011, Lindeberg 2013a, Lindeberg 2013b).

During the last decades, a large number of interesting developments have been made
regarding computational methods for automated interpretation of visual information; several
of these either based on or with close relations to scale-space theory and image measurements
in terms of receptive fields. Prior to the establishment of scale-space theory it was indeed very
hard to construct computer vision algorithms that work robustly on real-world image data
acquired under natural imaging conditions. Specifically, mechanisms for scale invariance as
obtained as one of the consequences of this theory (Lindeberg 1998, Lindeberg 2013c) have
allowed for breakthroughs regarding methods for image matching and object recognition
with important follow-up consequences for constructing computer vision systems in several
domains.

The subject of this article is to give an overview of some of the theoretical foundations
of scale-space theory by showing how classes of natural image operations can be singled out
in an axiomatic manner by imposing structural constraints on permissible classes of image
operations. The approach will bear close resemblance to approaches in theoretical physics,
where symmetry properties of the world are used for constraining physical theories.

1.1 Organization of the presentation

The presentation begins in section 2 with a general treatment of how measurements of signals
from the real world, such as image data, are intimately related to the notion of scale. Sec-
tion 3 gives an overview of some of the basic structural assumptions of scale-space theory
as they can be motivated by the requirement of enabling consistent measurements of image
observations for a camera or a visual agent that observes objects in the real world under the
variability of natural image transformations. Section 4 explains how these structural assump-
tions can be formalized into a set of scale-space axioms for image data that are defined over
a purely spatial (time-independent) image domain. Section 5 then describes the spatial Gaus-
sian scale-space concepts that arise by necessity from the assumptions. Section 6 develops a
corresponding set of scale-space axioms for (time-varying) spatio-temporal image data, and
Section 7 shows how three different types of spatio-temporal concepts can be obtained from
these assumptions depending on how the special nature of time is treated, and correspond-
ing to different temporal smoothing kernels over time in the respective cases as developed
in Section 8. Section 9 gives an overview of the history of previous axiomatic scale-space
formulations. Finally, Section 10 concludes with a summary and discussion.

2 Image measurements and the notion of scale

The process of image measurements implies that the incoming light that falls on the vi-
sual sensor must be integrated over some non-infinitesimal region over space for some non-
infinitesimal amount of time. For a two-dimensional camera, we can model the image inten-
sity I that is sampled from the incoming image irradiance E at an image point x = (x1, x2)T



Figure 1: Illustration of qualitatively different types of image structures that may appear in image data
depending on the scale of observation. This figure simulates this phenomenon by gradually zooming
in to finer scale image structures in a high resolution photograph. At a coarse level of scale, the crowd
may be perceived as a kind of texture, whereas finer scale structures become visible as we zoom
in to finer scales, such as individual faces and substructures in these. In a corresponding manner,
a corresponding manifestation of qualitatively different types of image structures depending on the
scale of observation will arise in many other imaging, image analysis or computer vision applications.



and time moment t according to

I(x, t) =

∫
ξ∈R2

∫
η∈R

∫
λ∈R

E(x− ξ, t− η, λ) g(ξ)h(η) Λ(λ) dξ dη dλ (1)

where

• g(ξ) is a spatial window function over which spatial integration is performed,

• h(η) is a temporal window function over which temporal integration is performed and

• Λ(λ) is the wavelength sensitivity function of the sensor.

The spatial extent of this support region defined by the window function g and the temporal
integration time defined by the temporal window h do therefore define natural inner spatial
and temporal scales of the visual observation beyond which further information is not ac-
cessible (see figure 2 for an illustration). When analyzing the image data by a computerized
vision or image analysis system, alternatively in biological perception, it is, however, not
at all evident that these scale levels would be the best scales for computing image features
from the image data. Therefore, a mechanism is needed for changing the scale of observation
when processing image data by automated analysis methods.

. . . . .

. . . . .

. . . . .
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Figure 2: When sampling image data from the real world, the distribution of continuous image inten-
sities must be integrated over non-infinitesimal regions over space and some non-infinitesimal amount
of time. This figure gives a schematic illustration of the spatial support regions corresponding to the
application of similar spatial window functions over a uniform rectangular grid in space, for which
the spatial extent of these window functions determines the spatial inner scale of observation. In a
corresponding manner, the image intensities do also have to be integrated for some non-infinitesimal
amount of time, thus defining the temporal inner scale of the image measurement. These two inner
scale levels determined by the image sampling process are, however, usually not the best scales for
computing image features from the data as a basis for analyzing the image contents by automated
computer vision or image analysis methods. For this reason, a principled theoretical framework is
needed for changing the level of observation in real-world image data.

The world around us consists of different types of image structures at different scales.
For example, for a crowd of people, we may at a coarse scale perceive the crowd as a type of
texture, where different parts of the persons in the crowd constitute the texture elements. If
we then look at some individual at a finer scale, we can expect that finer details will become
visible, such as the eyes, the nose, the mouth of a face or even finer scale substructures of
these (see figure 1).



Therefore, qualitatively different types of descriptions of image data may be warranted
depending on the scale of observation and the types of image structures we are analyzing.
This need is well understood, for example, in cartography, where maps are produced at dif-
ferent degrees of abstraction. A map of the world contains the largest countries and islands,
and possibly, some of the major cities, whereas towns and smaller islands appear at first in a
map of a country. In a city guide, the level of abstraction is changed considerably to include
streets and buildings, etc. An atlas can be seen as a symbolic multi-scale representation of
the world around us, constructed manually, and with very specific purposes in mind.

In physics, phenomena are modelled in different ways depending on the scale of the
phenomena that are of interest, ranging from particle physics and quantum mechanics at the
finest scales, through thermodynamics and solid mechanics dealing with every-day phenom-
ena, to astronomy and relativity theory at scales much larger than those we are usually dealing
with. Notably, a physical description may depend strongly upon the scale at which the world
is modelled. This is in clear contrast to certain idealized mathematical entities, such as a
“point” or a “line”, which appear in the same way independent upon the scale of observation.

Specifically, the need for multi-scale representation of the data arises when designing
methods for automatically analyzing and deriving information from images or signals that
are the result of real-world measurements. It is clear that to be able to extract any type of
information from data it is necessary to interact with it using some operators. The type of
information that can be obtained is to a large extent determined by the relationship between
the size of the actual structures in the data and the size (resolution) of the operators (probes).
Some of the very fundamental problems in image processing and computer vision concern
what operators to use, where to apply them and how large they should be. If these problems
are not appropriately addressed, then the task of interpreting the data can be very hard.

In certain controlled situations, appropriate scales for analysis may be known a priori.
For example, a characteristic property of a good physicist is his intuitive ability to select
proper scales for modelling a problem. Under other circumstances, for example, in appli-
cations dealing with automated image processing, however, it may not at all be obvious to
determine what are the proper scales. One such example is a vision system with the task
of analyzing unknown scenes (see figure 3 for an illustration). Therefore, a theoretically
well-founded methodology is needed for modelling the notion of scale in image data, and if
needed, also performing the analysis at a different scale than the data was sampled at.

For images of a priori unknown objects there is usually no way to know in advance
what scale levels are suitable or best for analyzing the image data. For images defined from
two-dimensional spatial projections of the surrounding three-dimensional world, the perspec-
tive mapping implies that the same object may appear at different scales depending on the
distance between the camera and the object. Therefore, an uncommitted approach to this
problem consists of allowing for the image data to be analyzed at any level of scale, or al-
ternatively stated at all scales simultaneously. In computer vision and image processing, this
problem has been addressed by the notion of multi-scale representations such as pyramids or
scale-space and in signal processing or numerical analysis by wavelets.

When constructing a multi-scale representation one may ask formally what types of im-
age operations would be suitable for computing an image representation at a coarser scale
from the original image data: Would any type of smoothing operation be permissible? Of
crucial importance when constructing a multi-scale representation is that the smoothing op-
eration does not introduce “new” spurious image structures in the image representations at
coarse scales that do not correspond to simplifications of corresponding image structures
at finer scales. How should such operations be formalized in a theoretically well-founded



Figure 3: Illustration of the basic scale problem when computing derivative approximations as a basis
for e.g. edge detection in computer vision or image processing. Assume that the dots represent (noisy)
grey-level values along an imagined cross-section of an object boundary, and that the task is to find
the boundary of the object. The lines show the effect of computing derivative approximations using
a central difference operator with varying step size. There do also exist more refined approaches to
gradient estimation, but they will also face similar problems. Clearly, only a certain interval of step
sizes is appropriate for extracting the major slope of the signal corresponding to the object boundary.
Of course, this slope may also be interpreted as due to noise (or some other phenomena that should be
neglected) if it is a part superimposed onto some coarser-scale structure (not visible here). Therefore,
even an as apparently simple problem as of finding a slope in measurement data is scale dependent.
More generally, a similar type of scale problem will be present for any model for visual operations
that is expressed in terms of derivatives of visual data.

manner?
An approach that has been taken in the area of scale-space theory is by imposing struc-

tural requirements on types of processing stages that are allowed and restricting the class
of image operations in an axiomatic manner (Iijima 1962, Witkin 1983, Koenderink 1984,
Lindeberg 1990, Koenderink & van Doorn 1992, Lindeberg 1994b, Lindeberg 1994a, Lindeberg
1996, Sporring et al. 1996, Florack 1997, Weickert et al. 1999, ter Haar Romeny 2003, Duits
et al. 2004). The subject of this article is to describe a recent generalization of this the-
ory (Lindeberg 2011) that encompasses scale-space representations for spatial and spatio-
temporal image data in a unified manner and gives rise to image operations that are qualita-
tively very similar to receptive fields measured by cell recordings in biological vision.

3 Structural assumptions of scale-space theory

The notion of a visual front-end refers to a set of processes at the first stages of visual pro-
cessing, which are assumed to be of a general nature and whose output can be used as input
to different later stage processes, without being too specifically adapted to a particular task
that would limit the applicability to other tasks. Major arguments for the definition of a visual
front-end are that the first stages of visual processing should be as uncommitted as possible
and allow initial processing steps to be shared between different later-stage visual modules,
thus implying a uniform structure on the first stages of computations (Koenderink et al. 1992)
(Lindeberg 1994b, section 1.1).

Basic assumptions underlying the formulation of scale-space theory are that:

• The image data arise from projections of a structured 3-D world, with basic symmetry
properties under:
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Figure 4: Basic factors that influence the formation of images for a two-dimensional camera that ob-
serves objects in the three-dimensional world. In addition to the position, orientation and motion of
the object in 3-D, the perspective projection onto the image plane is affected by the viewing distance,
viewing direction and relative motion of the camera in relation to the object, the spatial and temporal
sampling characteristics of the image sensor as well the usually unknown external illumination field
in relation to the geometry of the scene and the camera.. A main goal of the generalized scale-space
theory presented in this article is to provide a theoretical framework for handling the interaction be-
tween these inherent variabilities of the image formation process and the image operators that are
to be used for computing image features from the measured image data. (The effect of illumina-
tion variations on receptive field measurements is, however, not explicitly treated in this article; see
(Lindeberg 2013a, Lindeberg 2013b) for a general theoretical analysis regarding this matter.)

– translations and rotations of objects in the 3-D environment,

– different distances to the camera,

– relative motion velocities between the camera and the observer and

– illumination variations.

• Visual observations are performed with a non-infinitesimal aperture function (probe)
which must be taken into explicit account in subsequent analysis of the image data.
Specifically, different scale levels than used for sampling the image data are usually
needed when analyzing the data.

• Real-world objects may appear in different ways depending on the scale of observation.

• Image representations at coarser scales should correspond to simplifications of image
representations at finer scales.

For a computerized vision system or a biological vision to behave in a stable manner when
exposed to natural image data, we would like objects to be perceived or described in a similar
way under such basic image transformations (see figure 4 for an illustration).
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Figure 5: Consider a method for computing image features from image data that is based on rotation-
ally symmetric image operations over the spatial image domain. If such a method is applied to two
different images of a three-dimensional object that have been taken from different viewing directions,
then the backprojections of the image operations onto the surface of the object will in general corre-
spond to different regions in physical space over which corresponding information will be weighed
differently. If such image features are to be used for e.g. image matching or object recognition, then
there will be a systematic error caused by the mismatch between the backprojections of the receptive
fields from the image domain onto the world. By requiring the family of receptive fields to be co-
variant under local affine image deformations, it is possible to reduce this amount of mismatch such
that the backprojected receptive fields can be made similar when projected onto the tangent plane
of the surface by local linearizations of the perspective mapping. Corresponding effects occur when
analyzing spatio-temporal image data (video) based on receptive fields that are restricted to being
space-time separable only. If an object is observed over time by two cameras having different rela-
tive motions between the camera and the observer, then the corresponding receptive fields cannot be
matched unless the family of receptive fields possesses sufficient covariance properties under local
Galilean transformations.

At a high level of abstraction, one may be interested in constructing invariant image
features that can be used e.g. for recognizing objects from different viewpoints and whose
numerical values will be equal or only moderately affected by basic image transformations.
At a lower level of abstraction, a weaker condition is to require the image operations to be
covariant under basic image transformations, implying that the image features are not truly
invariant but nevertheless transform in a predictable and well-understood manner under basic
image transformations. If the underlying image operations would not be covariant, then there
would be a systematic bias in the visual operations, corresponding to the amount of mismatch
between the backprojections of the image operations to the world corresponding to e.g. two
images of the same physical object taken from different views or an object that moves with
different velocity relative to the observer for two observations having significant extent over
both space and time (see figure 5 for an illustration).

Regarding the types of image transformations, the non-linear perspective mapping im-
plies that rigid translations and rotations, which correspond to linear operations in 3-D, give
rise to non-linear transformations in the image plane. To simplify the analysis, we shall there-
fore approximate these transformations by local linearizations at any image point, implying
that the perspective mapping will be approximated by local affine transformations and that



relative motions between the camera and the observer will be approximated by local Galilean
transformations.

A main subject of scale-space theory is to provide a formal and theoretically well-founded
framework for handling image structures at different scales that is consistent with such struc-
tural requirements corresponding to symmetry properties of the environment in the cases of
purely spatial, spatio-chromatic or spatio-temporal image data, respectively.

4 Scale-space axioms for spatial image domains

In the following, we will describe a set of structural requirements that can be stated on early
visual operations regarding (i) spatial geometry, (ii) the image measurement process with its
close relationship to the notion of scale and (iii) internal representations of image data that
are to be computed by a general purpose vision system. In section 6 this treatment will then
be extended with complementary requirements that arise due to (iv) the special nature of time
and structural requirements concerning (v) spatio-temporal geometry.

4.1 Structural scale-space axioms

Let us initially restrict ourselves to static (time-independent) data and focus on the spa-
tial aspects: If we regard the incoming image intensity f as defined on an N -dimensional
continuous image plane f : RN → R with Cartesian image coordinates denoted by x =
(x1, . . . , xN )T , then the problem of defining a set of early visual operations can be formu-
lated as finding a family of operators Ts that are to act on f to produce a family of new
intermediate image representations1

L(·; s) = Ts f(·) (2)

which are also to defined as functions on RN , i.e., L(·; s) : RN → R. These intermediate
representation may be dependent on some parameter s ∈ RM , which in the simplest case
may be one-dimensional or under more general circumstances multi-dimensional.

On a spatial domain where the smoothing operation is required to be rotationally sym-
metric, a one-dimensional parameter s with M = 1 may be regarded as sufficient, whereas
a higher dimensionality of the parameter s is needed to account for different amounts of
smoothing along different directions in space as will be needed in the presence of general
affine image transformations.

Linearity. If we want these initial visual processing stages to make as few irreversible
decisions as possible, it is natural to initially require Ts to be a linear operator such that

Ts(a1f1 + a2f2) = a1Tsf1 + a2Tsf2 (3)

holds for all functions f1, f2 : RN → R and all scalar constants a1, a2 ∈ R.
Linearity also implies that a number of special properties of receptive fields (to be devel-

oped below) will transfer to spatial derivatives of these and do therefore imply that different
types of image structures will be treated in a similar manner irrespective of what types of
linear filters they are captured by.

1In equation (2), the symbol “·” at the position of the first argument of L is a place holder to emphasize that
in this relation, L is regarded as a function and not evaluated with respect to its first argument x. The following
semi-colon emphasizes the different natures of the image coordinates x and the filter parameters s.



Derivative operators are essential for modelling visual operations, since they respond to
relative differences between image intensities in a local neighbourhood and are therefore less
sensitive to illumination variations than zero-order (undifferentiated) image intensities (see
(Lindeberg 2013a, section 2.3) for a precise statement).

Translational invariance. Let us also require Ts to be a shift-invariant operator in the
sense that it commutes with the shift operator S∆x defined by (S∆xf)(x) = f(x − ∆x),
such that

Ts (S∆xf) = S∆x (Tsf) (4)

holds for all ∆x ∈ RN . The motivation behind this assumption is the basic requirement that
the representation of a visual object should be similar irrespective of its position in the image
plane.2 Alternatively stated, the operator Ts can be said to be homogeneous across space.

Convolution structure. From a general result in linear systems theory it follows from the
assumptions of linearity and shift-invariance that the internal representations L(·; s) are
given by convolution transformations (Hirschmann & Widder 1955)

L(x; s) = (T (·; s) ∗ f)(x) =

∫
ξ∈RN

T (ξ; s) f(x− ξ) dξ (5)

where T (·; s) denotes some family of convolution kernels. These convolution kernels and
their spatial derivatives can also be referred to as (spatial) receptive fields.

Regularity. To be able to use tools from functional analysis, we will initially assume that
both the original signal f and the family of convolution kernels T (·; s) are in the Banach
space L2(RN ), i.e., that f ∈ L2(RN ) and T (·; s) ∈ L2(RN ) with the norm

‖f‖22 =

∫
x∈RN

|f(x)|2 dx. (6)

Then, also the intermediate representations L(·; s) will be in the same Banach space and the
operators Ts can be regarded as well-defined.

Positivity (non-negativity). Concerning the convolution kernels, one may require these to
be non-negative in order to constitute smoothing transformations.

T (x; s) ≥ 0. (7)

Normalization. Furthermore, it may be natural to require the convolution kernels to be
normalized to unit mass ∫

x∈RN
T (x; s) dx = 1. (8)

to leave a constant signal unaffected by the smoothing transformation.
2For a two-dimensional camera that observes objects in a three-dimensional world, translational invariance

may be more natural to express with respect to a spherical camera geometry, since then the image representation
will be independent of the viewing direction of the camera. In this presentation, we will, however, restrict
ourselves to a planar camera geometry, since the algebraic modelling is simpler with such a model, which can
also be regarded as a reasonable approximation in the central field of view.



Quantitative measurement of the spatial extent and the spatial offset of non-negative
scale-space kernels. For a non-negative convolution kernel, we can measure its spatial
offset by the mean operator

m = x̄ = M(T (·; s)) =

∫
x∈RN xT (x; s) dx∫
x∈RN T (x; s) dx

(9)

and its spatial extent by the spatial covariance matrix

Σ = C(T (·; s)) =

∫
x∈RN ((x− x̄) (x− x̄)T T (x; s) dx∫

x∈RN T (x; s) dx
. (10)

Using the additive properties of mean values and covariance matrices under convolution,
which hold for non-negative distributions, it follows that

m = M(T (·; s1) ∗ T (·; s2)) = M(T (·; s1)) +M(T (·; s2)) = m1 +m2, (11)

Σ = C(T (·; s1) ∗ T (·; s2)) = C(T (·; s1)) + C(T (·; s2)) = Σ1 + Σ2 (12)

4.2 Simplifying image structures over scale

The reduction of the first stage of visual processing to a set of convolution transformations
raises the question of what types of convolution kernels T (·; s) should be regarded as natu-
ral?

The issue of scale. A fundamental property of the convolution operation is that it may
reflect different types of image structures depending on the spatial extent (the width) of the
convolution kernel:

• Convolution with a large support kernel will have the ability to respond to phenomena
at coarse scales.

• A kernel with small support will on the other hand be necessary capture phenomena at
fine scales.

From this viewpoint, it is natural to associate an interpretation of scale with every image
measurement. Let us therefore assume that the parameter s represents such a scale attribute
and let us assume that for a one-dimensional scale parameter the scale parameter should
always be non-negative s ∈ R+ whereas for a multi-dimensional scale parameter there should
exist some mapping from the real-valued multi-dimensional scale parameter s ∈ RM to some
non-negative quantification of the notion of scale.

Identity operation with continuity. To guarantee that the limit case of the internal scale-
space representations when the scale parameter s tends to zero should correspond to the
original image data f , we will assume that

lim
s↓0

L(·; s) = lim
s↓0
Tsf = f. (13)

Hence, the intermediate image representations L(·; s) can be regarded as a family of derived
representations parameterized by a scale parameter s. With s = (s1, . . . , sM ) represent-
ing a multi-dimensional scale parameter s ∈ RM , equation (13) should be interpreted as

lim|s|↓0 L(·; s) = lim|s|↓0 Tsf = f with |s| =
√
s2

1 + · · ·+ s2
M .



Semi-group structure. For such image measurements to be properly related between dif-
ferent scales, it is natural to require the operators Ts with their associated convolution kernels
T (·; s) to form a semi-group3 over s

Ts1 Ts2 = Ts1+s2 (14)

with a corresponding semi-group structure for the convolution kernels

T (·; s1) ∗ T (·; s2) = T (·; s1 + s2). (15)

Then, the transformation between any different and ordered4 scale levels s1 and s2 with
s2 ≥ s1 will obey the cascade property

L(·; s2) = T (·; s2 − s1) ∗ T (·; s1) ∗ f = T (·; s2 − s1) ∗ L(·; s1) (16)

i.e. a similar type of transformation as from the original data f . An image representation
having these properties is referred to as a (spatial) multi-scale representation.

Note the close similarity between the additive structure of scale parameters obtained in
this way with the additive structure of mean values (11) and covariance matrices (12) under
convolution of non-negative convolution kernels.

Self-similarity over scale. Regarding the family of convolution kernels used for computing
a multi-scale representation, it is also natural to require them to self-similar over scale, such
that if s ∈ R is a one-dimensional scale parameter then all the kernels correspond to rescaled
copies

T (x; s) =
1

ϕ(s)
T̄

(
x

ϕ(s)

)
(17)

of some prototype kernel T̄ for some transformation5 ϕ(s) of the scale parameter. If s ∈ RM+
is a multi-dimensional scale parameter, the requirement of self-similarity over scale can be

3Concerning the parameterization of this semi-group, we will in the specific case of a one-dimensional (scalar)
scale parameter assume the parameter s ∈ R to have a direct interpretation of scale, whereas in the case of a multi-
dimensional parameter s = (s1, . . . , sM ) ∈ RM , these parameters could also encode for other properties of the
convolution kernels in terms of the orientation θ in image space or the degree of elongation e = σ1/σ2, where
σ1 and σ2 denote the spatial extents in different directions. The convolution kernels will, however, not be be
required to form a semi-group over any type of parameterization, such as the parameters θ or e. Instead, we will
assume that there exists some parameterization s for which an additive linear semi-group structure can be defined
and from which the latter types of parameters can then be derived.

4 With s1 = (s1,1, . . . , s1,M ) and s2 = (s2,1, . . . , s2,M ) denoting two M -dimensional scale parameters, the
inequality s2 ≥ s1 should be interpreted as a requirement that the scale levels s1 and s2 have to be ordered in
the sense that the increment u = s2 − s1 should correspond to a positive direction in parameter space that can
be interpreted as increasing levels of scale. For example, for the affine Gaussian scale-space concept L(x; Σ)
to be considered later in section 5.3, for which the scale parameter over a two-dimensional spatial image domain
can be parameterized by positive semi-definite 2 × 2 covariance matrices Σ, the requirement of an ordered
and positive scale direction u between the scale-space representations computed for two different covariance
matrices Σ1 and Σ2 means that the difference between these covariance matrices Σu = Σ2 − Σ1 must be
positive semi-definite. With the corresponding multi-dimensional scale parameters s1 and s2 expressed as vectors
s1 = (Σ1,11,Σ1,12,Σ1,22) and s2 = (Σ2,11,Σ2,12,Σ2,22) where Σk,ij denote the elements of Σk for k = 1
and 2, the condition for u = (u1, u2, u3) = s2 − s1 to correspond to a positive direction in parameter space can
therefore be expressed as u1u3 − u2

2 ≥ 0 and u1 + u3 ≥ 0.
5The reason for introducing a function ϕ for transforming the scale parameter s into a scaling factor ϕ(s)

in image space, is that the requirement of a semi-group structure (14) does not imply any restriction on how the
parameter s should be related to image measurements in dimensions of length — the semi-group structure only
implies an abstract ordering relation between coarser and finer scales s2 > s1 that could also be satisfied for any
monotonously increasing transformation of the parameter s. For the Gaussian scale-space concept having a scalar



generalized into

T (x; s) =
1

| detϕ(s)|
T̄
(
ϕ(s)−1x

)
(18)

whereϕ(s) now denotes a non-singularN×N -dimensional matrix regarding anN -dimensional
image domain and ϕ(s)−1 its inverse. With this definition, a multi-scale representation hav-
ing a scalar scale parameter s ∈ R+ will be based on uniform rescalings of the prototype
kernel, whereas a multi-scale representation based on a multi-dimensional scale parameter
might also allow for rotations as well as non-uniform affine deformations of the prototype
kernel.

Together, the requirements of a semi-group structure and self-similarity over scales im-
ply that the parameter s gets both a (i) qualitative interpretation of the notion of scale in
terms of an abstract ordering relation due to the cascade property in equation (16), and (ii) a
quantitative interpretation of scale in terms of the scale-dependent spatial transformations
in equations (17) and (18). When these conditions are simultaneously satisfied, we say that
the intermediate representation L(·; s) constitutes a candidate for being regarded as a weak
scale-space representation.

Infinitesimal generator. For theoretical analysis it preferably if we can treat the scale pa-
rameter s as a continuous parameter and if image representations at adjacent scales can be
related by partial differential equations. Such relations can be expressed if the semi-group
possesses an infinitesimal generator (Hille & Phillips 1957, page 308) (Pazy 1983, page 5)

BL = lim
h↓0

T (·; h) ∗ f − f
h

(19)

and imply that the image representations at adjacent scales can be related by an evolution
equation of the form

∂sL(x; s) = (BL)(x; s) (20)

where we would preferably like the operator B to be a partial differential operator. The set of
elements f ∈ L2(RN ) for which B exists is denoted D(B). This set is not empty and never
reduces to the zero element. Actually, D(B) is even dense in L2(RN ) (Hille & Phillips 1957,
page 308) (Pazy 1983, page 5).

In equation (20), we have for simplicity assumed the scale parameter s to be a scalar
(one-dimensional) parameter. For a multi-parameter scale-space having a scale parameter of
the form s = (s1, . . . , sM ), an analogous concept can be defined in terms of the directional
derivative of the semi-group along any positive direction u = (u1, . . . , uM ) in the parameter
space

(DuL)(x; s) = (B(u)L)(x; s) = (u1B1 + · · ·+ uMBM ) L(x; s) (21)

where each Bk (k = 1 . . .M) constitutes the infinitesimal generator for the parameter sk
along the unit direction ek in the M -dimensional parameter space

BkL = lim
h↓0

T (·; h ek) ∗ f − f
h

(22)

scale parameter according to equations (36)–(37) this transformation is given by σ = ϕ(s) =
√
s, whereas for

the affine Gaussian scale-space concept according to equation (50) it is given by the matrix square root function
ϕ(s) = Σ1/2, where Σ denotes the covariance matrix that describes the spatial extent and the orientation of the
affine Gaussian kernel.



and with the notion of a “positive direction” in parameter space defined in a similar way as
in footnote 4.

In (Lindeberg 2011) it is shown how such differential relationships can be ensured given
a proper selection of functional spaces and sufficient regularity requirements over space x
and scale s in terms of Sobolev norms. We shall therefore henceforth regard the internal
representations L(·; s) as differentiable with respect to the scale parameter(s).

4.2.1 Non-creation of new image structures with increasing scale

A further requirement on a scale-space representation is that convolution with a scale-space
kernel T (·; s) should correspond to smoothing transformation in the sense that coarser scale
representations should be guaranteed to constitute simplifications of corresponding finer scale
representations. This means that new image structures must not be created at coarser scales
L(·; s) that do not correspond to simplifications of corresponding structures in the original
data f .

Non-creation of local extrema (zero-crossings). For one-dimensional signals f : R→ R,
such a condition can be formalized as the requirement that the number of local extrema in
the data must not increase with scale for any signal and is referred to as non-creation of local
extrema. Formally, a one-dimensional kernel T is a scale-space kernel if for any signal f , the
number of local extrema in T ∗ f is guaranteed to not exceed the number of local extrema
in f (Lindeberg 1990). It can be shown that for a one-dimensional signal, this condition can
also be equivalently expressed in terms of zero-crossings.

For higher-dimensional signals, however, this condition cannot be applied, since it can
be shown that there are no non-trivial linear transformations that are guaranteed to never
increase the number of local extrema in an image (Lifshitz & Pizer 1990) (Lindeberg 1990)
(Lindeberg 1994b, Chapter 4, pages 101–103).

Non-enhancement of local extrema. A particularly useful way of formalizing the require-
ment of non-creation of new image structures with increasing scale is that local extrema must
not be enhanced with increasing scale. In other words, if a point (x0; s0) is a local (spatial)
maximum of the mapping x 7→ L(x; s0) then the value must not increase with scale. Simi-
larly, if a point (x0; s0) is a local (spatial) minimum of the mapping x 7→ L(x; s0), then the
value must not decrease with scale. Given the above mentioned differentiability property with
respect to scale, we say that the multi-scale representation constitutes a scale-space represen-
tation if it for a scalar scale parameter satisfies the following conditions (Lindeberg 1996):

∂sL(x0; s0) ≤ 0 at any non-degenerate local maximum, (23)

∂sL(x0; s0) ≥ 0 at any non-degenerate local minimum, (24)

or for a multi-parameter scale-space

(DuL)(x0; s0) ≤ 0 at any non-degenerate local maximum, (25)

(DuL)(x0; s0) ≥ 0 at any non-degenerate local minimum, (26)

for any positive direction u = (u1, . . . , uM ) in the parameter space (see figure 6).
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Figure 6: The requirement of non-enhancement of local extrema is a way of restricting the class of
possible image operations by formalizing the notion that new image structures must not be created
with increasing scale, by requiring that the value at a local maximum must not increase and that the
value at a local minimum must not decrease.

Basic implications of the requirements of non-creation of structure. For one-dimensional
signals, it can be shown that the requirement of non-creation of local extrema implies that a
scale-space kernel must be positive and unimodal, both in the spatial domain and the Fourier
domain (Lindeberg 1990). By considering the response to a constant signal, it furthermore
follows from the requirement of non-enhancement of local extrema that a scale-space kernel
should be normalized to constant L1-norm (equation (8)).

4.3 Covariance requirements regarding spatial domains

Scale covariance. A basic requirement on a scale-space representation is that it should be
able to handle rescalings in the image domain in a consistent manner. If the input image is
transformed by a uniform scaling factor

f ′ = S f corresponding to f ′(x′) = f(x) with x′ = S x, (27)

then there should exist some transformation of the spatial scale parameter s′ = S(s) such
that the corresponding scale-space representations are equal (see figure 7):

L′(x′; s′) = L(x; s) corresponding to TS(s) S f = S Ts f. (28)

Ts f
S−−−−→ LxTs xTS(s)

f
S−−−−→ S f

Figure 7: Commutative diagram for scale-space representations computed under uniform scalings of
the spatial domain. Such a spatial rescaling transformation may, for example, represent image data
that have been acquired using visual sensors that sample the image data with different resolution or
an object that is observed with different distances between the camera and the object.

Rotational covariance. If we restrict ourselves to a scale-space representation based on a
scalar (one-dimensional) scale parameter s ∈ R+, then it is natural to require the scale-space
kernels to be rotationally symmetric

T (x; s) = h(
√
x2

1 + · · ·+ x2
N ; s) (29)

for some one-dimensional function h(·; s) : R → R. Such a symmetry requirement can be
motivated by the requirement that in the absence of further information, all spatial directions
should be equally treated (isotropy).



For a scale-space representation based on a multi-dimensional scale parameter, one may
also consider a weaker requirement of rotational invariance at the level of the family of ker-
nels, for example regarding a set of elongated kernels with different orientations in image
space. Then, the family of kernels may capture image data of different orientation in a rota-
tionally invariant manner, for example if all image orientations are explicitly represented or
if the receptive fields corresponding to different orientations in image space can be related by
linear combinations.

Affine covariance. The perspective mapping from the three-dimensional world to the two-
dimensional image space gives rise to image deformations in the image domain. If we ap-
proximate the non-linear perspective mapping from a surface pattern in the world to the image
plane by a local linear transformation (the derivative), then we can model this deformation
by a local affine transformation

f ′ = A f corresponding to f ′(x′) = f(x) with x′ = Ax+ b. (30)

A natural requirement on a vision system that observes objects whose projections on the
image plane are being deformed in different ways depending on the viewing conditions, is
that the vision system should be able to relate or match the different internal representations
of external objects that are acquired under different viewing directions. Such a requirement
is natural to enable a stable interpretation of objects in the world under variations of the
orientation of the object relative to the observer.

To ensure that the internal representations behave nicely under image deformations, it is
therefore natural to require a possibility of relating them under affine transformations

L′(x′; s′) = L(x; s) corresponding to TA(s)A f = ATs f (31)

for some transformation s′ = A(s) of the scale parameter.
Within the class of linear operators Ts over a two-dimensional image domain, it is, how-

ever, not possible to realize such an affine covariance property over the full group of affine
transformations within a scale-space concept based on a scalar scale parameter only. For
two-dimensional image data, such affine covariance can, however, be accomplished within
a three-parameter linear scale-space, which will be referred to as affine scale-space. The
notions of scale covariance and rotational covariance can, however, be obtained based on a
one-parameter spatial scale-space.

Ts f
A−−−−→ LxTs xTA(s)

f
A−−−−→ A f

Figure 8: Commutative diagram for scale-space representations computed under affine deformations
of image space. Such an affine transformation may, for example, represent a local linear approx-
imation of the projective mapping between two different perspective projections of a local surface
patch.



5 Scale-space concepts for spatial image domains

5.1 General necessity result concerning Gaussian scale-spaces

Given the above mentioned requirements it can be shown that if we assume (i) linearity,
(ii) shift-invariance over space, (iii) semi-group property over scale, (iv) sufficient regularity
properties over space and scale in terms of Sobolev norms6 and (v) non-enhancement of local
extrema to hold for any smooth image function f ∈ C∞(RN )∩L1(RN ), then the scale-space
representation over an N -dimensional spatial domain must satisfy (Lindeberg 2011, theorem
5, page 42)

∂sL =
1

2
∇Tx (Σ0∇xL)− δT0 ∇xL (32)

for some N × N covariance matrix Σ0 and some N -dimensional vector δ0 with ∇x =
(∂x1 , . . . , ∂xN )T .

In terms of convolution kernels, this corresponds to convolutions with gradually grow-
ing elongated Gaussian kernels, which translate with drift velocity δ0 with respect to the
evolution parameter s. In terms of filtering operations, this scale-space can equivalently be
constructed by convolution with affine and translated Gaussian kernels

g(x; Σs, δs) =
1

(2π)N/2
√

det Σs
e−(x−δs)TΣ−1

s (x−δs)/2, (33)

which for a given Σs = sΣ0 and a given δs = sδ0 satisfy the diffusion equation (32). The
Fourier transform of this shifted Gaussian kernel is

ĝ(ω; Σs, δs) =

∫
x∈RN

g(x; Σs, δs) e
−iωT x dx = eiω

T δs−ωTΣsω/2. (34)

From the diffusion equation formulation or the Fourier transform, it can be seen that these
shifted and shape-adapted kernels satisfy the following generalized semi-group property

g(·; Σ1, v1) ∗ g(·; Σ2, v2) = g(·; Σ1 + Σ2, v1 + v2). (35)

If we in addition require the convolution kernels to be mirror symmetric through the origin
T (−x; s) = T (x; s) then the offset vector δ0 must be zero.

This formulation of the Gaussian scale-space representation L in terms of the diffusion
equation (32) means that it is possible to interpret the intensity values of the input image f as
a ”temperature distribution” in the image plane and that the process that generates the scale-
space representation as a function of the scale parameter s corresponds to heat diffusion in
the image plane over virtual diffusion time s assuming that the thermal conductivity of the
material equal to the arbitrarily chosen constant 1/2 in the isotropic case when the covariance
matrix Σ is equal to the unit matrix I . The covariance matrix Σ then describes how the
thermal conductivity is modified in different directions in image space for heat diffusion

6To ensure sufficient differentiability properties such that an infinitesimal generator exists and the result-
ing multi-scale representation obtained by convolution with the semi-group of convolution kernels can be dif-
ferentiated with respect to both space and scale such that the requirement of non-enhancement of local ex-
trema can be applied, we do formally for an N -dimensional spatial domain require the semi-group Ts to be
C1-continuous such that limh↓0

∥∥∥ 1
h

∫ h
s=0
T (s)f ds− f

∥∥∥
Hk(RN )

= 0 should hold for some k > N/2 and

for all smooth functions f ∈ L1(RN ) ∩ C∞(RN ) with ‖ · ‖Hk(RN ) denoting the L2-based Sobolev norm

‖u‖Hk(RN ) =
(∫

ω∈RN
(
1 + |ω|2

)k |û(ω)|2dω
)1/2

and û denoting the Fourier transform of u over RN ; see
(Lindeberg 2011, Section 3.2 and Appendix A) regarding details.



in an anisotropic medium, and the term v represents a drift velocity with respect to virtual
diffusion time s.

These relationships provide a general structure for linear scale-space concepts on shift-
invariant continuous domains. Specifically, they comprise the following special cases:

5.2 Rotationally symmetric Gaussian scale-space

original image s = 1

s = 8 s = 64

Figure 9: Illustration of the result of computing a rotationally symmetric scale-space representation of
an image with perspective effects. Note how the Gaussian smoothing operation gives rise to a gradual
suppression of finer-scale image structures, such that image structures having spatial extent smaller
than σ =

√
s have largely been suppressed in the scale-space representation at scale s.

If we require the scale-space representation generated by (32) or equivalently (33) to be
rotationally symmetric, then it follows by necessity that the offsets δs and δ0 must be zero
and that the covariance matrices Σs and Σ0 must be proportional to the unit matrix. Thus,
the diffusion operator A will be proportional to the Laplacian operator, and the filter kernels
will be rotationally symmetric Gaussians. In other words, this scale-space is obtained from

L(x; s) =

∫
ξ∈RN

f(x− ξ) g(ξ; s) dξ (36)

where g : RN × R+ → R denotes the isotropic Gaussian kernel

g(x; s) =
1

(2πs)N/2
e−(x21+···+x2N )/2s (37)



Equivalently, this scale-space family can be obtained as the solution of the isotropic diffusion
equation

∂sL =
1

2
∇2L (38)

with initial condition L(·; 0) = f . Earlier closely related necessity results regarding this
representation in the rotationally symmetric case have been presented by (Koenderink 1984)
based on the requirement that new level surfaces in scale-space must not be created with
increasing scale (causality) in combination with isotropy and homogeneity, and in (Lindeberg
1996) based on a combination of a convolution semi-group structure with non-enhancement
of local extrema. Another explicit necessity result in the one-dimensional case has also been
given in (Lindeberg 1990, Theorem 5, page 241) (Lindeberg 1994b, Section 3.5.2, pages 89-
91) based on a combination of a convolution semi-group structure with non-creation of local
extrema with increasing scale, based on an earlier characterization of variation diminishing
convolution transformations by (Schoenberg 1950); see also (Karlin 1968).

Figure 9 shows an illustration of computing different levels of a Gaussian scale-space rep-
resentation for a grey-level image with significant perspective effects. Note how the Gaussian
smoothing operation leads to gradual suppression of fine scale image structures, which can
be used for separating image structures at different scales.

Gaussian derivative operators. From this scale-space representation, we can for any value
ofN (not necessarily coupled to the dimensionality of the signal) define the multi-scale N-jet
by applying partial derivatives to the scale-space (Koenderink & van Doorn 1987, Koenderink
& van Doorn 1992)

Lxα = ∂xαL = ∂xα11 ...x
αN
N
L (39)

where we have introduced multi-index α = (α1, . . . , αN ) to simplify the notation. Due to
the linearity of the diffusion equation, all these scale-space derivatives Lxα satisfy similar
scale-space properties in terms of non-enhancement of local extrema as the original scale-
space L. Due to the commutative property between convolution and differentiation, these
scale-space derivatives can also be computed by applying Gaussian derivative operators (see
figure 10) to the original signal

Lxα(·; s) = ∂xαL(·; s) = (∂xαg(·; s)) ∗ f(·). (40)

For this reason, these derivative operators are also referred to as Gaussian derivatives. From
linear combinations of partial derivatives, we can also compute directional derivatives in any
direction (cosϕ, sinϕ) (see figure 11) which also satisfy scale-space properties in terms of
non-enhancement of local extrema. In two dimensions, we have

∂ϕNL = (cosϕ∂x + sinϕ∂y)
NL =

N∑
k=0

(
N
k

)
cosk ϕ sink ϕLxkyN−k (41)

With regard to image deformations, the closedness properties of this original scale-space are
restricted to translations, rotations and rescalings. On the other hand, this scale-space concept
is separable

L(x; s) = g(x; s) ∗ f(x) = g(x1; s) ∗ · · · ∗ g(xN ; s) ∗ f(x1, . . . , xN ) (42)
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Figure 10: The Gaussian kernel in the 2-D case with its derivatives up to order two (s = 16).
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Figure 11: First- and second-order directional derivatives of the Gaussian kernel in the 2-D case
computed from a linear combination of Cartesian partial derivatives according to equation (41) (s =
16, ϕ = π/6).

corresponding to the convolution7 with one-dimensional Gaussian kernels along each dimen-
sion, which improves the computational efficiency in serial implementations. This separabil-
ity carries over also to partial derivatives

Lxα(x; s) = gxα(x; s) = gxα11
(x1; s) ∗ · · · ∗ gxαNN (xN ; s) ∗ f(x1, . . . , xN ) (43)

For derivatives up to order four, these expressions reduce to separable convolution with the
7In equations (42)–(43) we make an intentionally somewhat sloppy use of the convolution symbol in order to

simplify the notation. These expression should be understood as one-dimensional convolutions carried out along
each one of the dimensions. The presence of variable names as argument to the functions indicate over which
dimension the convolution is performed. The correct notation for convolutions is of the form (40).



f(x1, x2) (∂x1x1L)(x1, x2; s)

(∂x1
L)(x1, x2; s) (∂x1x2

L)(x1, x2; s)

(∂x2
L)(x1, x2; s) (∂x2x2

L)(x1, x2; s)

Figure 12: First- and second-order partial derivatives computed from a grey-level image at scale
s = 16.



Laplacian interest points determinant of the Hessian interest points

Figure 13: Examples of image features that can be computed based on the rotationally symmetric
Gaussian scale-space concept. This figure shows scale-invariant interest points detected from three
images obtained by gradually zooming in to structures in a library using two blob detectors with
automatic scale selection proposed in (Lindeberg 1998) based on the detection of scale-space extrema
of (left column) the scale-normalized Laplacian ∇normL = s (Lx1x1

+ Lx2x2
) and (right column)

the scale-normalized determinant of the Hessian detHnormL = s2 (Lx1x1Lx2x2 − L2
x1x2

). Each
circle indicates an interest point with the radius of the circle equal to the detection scale of the feature
in units of σ =

√
s, with red circles corresponding to positive values of the differential invariant

and blue circles corresponding to negative values. Note how a large number of these features are
preserved under rescalings in the image domain, which is a consequence of the scale invariance of
the underlying feature detectors. Approximations of the these interest point detectors are used as
primary feature detectors in the SIFT and SURF methods for image matching and object recognition
proposed by (Lowe 2004) and (Bay et al. 2008), respectively. Because of the varying amount of
image structures in these images caused by the size variations in the image domain due to zooming,
the number of image features has been varied such that the images in the top row show the 2000
strongest interest points, the images in the middle row show the 1000 strongest interest points and the
images in the bottom row show the 500 strongest interest points. (Scale range: s ∈ [4, 4096], Image
size: 1024× 678 pixels.)



following one-dimensional Gaussian and Gaussian derivative kernels

g(x; s) =
1√
2πs

e−x
2/2s (44)

gx(x; s) = −x
s
g(x; s) = − x√

2πs3/2
e−x

2/2s (45)

gxx(x; s) =
(x2 − s)
s2

g(x; s) =
(x2 − s)√

2πs5/2
e−x

2/2s (46)

gxxx(x; s) = −(x3 − 3sx)

s3
g(x; s) = −x(x2 − 3s)√

2πs7/2
e−x

2/2s (47)

gxxxx(x; s) =
(x4 − 6sx2 + 3s2)

s4
g(x; s) =

(x4 − 6sx2 + 3s2)√
2πs9/2

e−x
2/2s (48)

The Gaussian derivative operators do not obey a semi-group property. Instead, they (as well
as any linear combination of them) satisfy the cascade smoothing property

Lxα(·; s1 + s2) = g(·; s1) ∗ Lxα(·; s2). (49)

Such Gaussian derivative operators and differential invariants can be used as a general basis
for expressing a large number of different visual operations including as feature detection,
feature classification, surface shape, image matching and image-based recognition (Witkin
1983, Koenderink 1984, Koenderink & van Doorn 1992, Lindeberg 1994b, Lindeberg 1994a,
Sporring et al. 1996, Florack 1997, ter Haar Romeny 2003, Lindeberg 2008); see specifi-
cally (Schiele & Crowley 2000, Linde & Lindeberg 2004, Lowe 2004, Bay et al. 2008, Tola
et al. 2010, Linde & Lindeberg 2012, Larsen et al. 2012) for explicit approaches for object
recognition based on Gaussian derivative operators or approximations thereof.

Figure 12 shown an illustration of computing Gaussian derivative operators up to order
two from a grey-level image. Figure 13 shows an example of computing scale-invariant in-
terest points from such Gaussian derivative responses of second order and applying this oper-
ation to different images of the same scene taken with different amount of physical zooming.
The excellent repeatability properties of these interest point detectors under changing camera
zoom, alternatively changing virtual distance between objects in the world and the observer,
are a consequence of the scale invariant properties of the scale selection mechanism used
in the interest point detectors, which in turn is based on the covariance properties of the
underlying receptive fields under scaling transformations.

5.3 Affine Gaussian scale-space

If we relax the condition about rotational symmetry, while keeping a requirement that the
corresponding Green’s function should be mirror symmetric on every line through the origin
(in the sense that the filters h should satisfy h(−x1,−x2; s) = h(x1, x2; s) for every
(x1, x2) ∈ R2), i.e., to avoid spatial shifts the Fourier transform should be real, we obtain the
affine Gaussian scale-space representation, generated by convolution with affine Gaussian
kernels

g(x; Σs) =
1

(2π)N/2
√

det Σs
e−x

TΣ−1
s x/2, (50)

where Σs is a symmetric positive definite (covariance) matrix. Besides the requirement of
rotational symmetry, the affine scale-space basically satisfies similar scale-space properties
as the linear scale-space. The main difference is that the affine scale-space is closed under
the full group of non-singular affine transformations.



Transformation property under affine image transformations. If two image patterns fL
and fR are related by an affine transformation

fL(ξ) = fR(η) where η = Aξ + b, (51)

and if affine Gaussian scale-space representations of these images are defined by

L(·; ΣL, δL) = g(·; ΣL, δL) ∗ fL(·), R(·; ΣR, δR) = g(·; ΣR, δR) ∗ fR(·), (52)

then L and R are related by (Lindeberg & Gårding 1997)

L(x; ΣL, δL) = R(y; ΣR, δR), (53)

where the covariance matrices ΣL and ΣR satisfy

ΣR = AΣLA
T , (54)

and the offset vectors δL and δR in the Gaussian kernels can be traded against coordinate
shifts in x and y as long as the following relation is satisfied:

y − δR = A(x− δL) + b. (55)

With regard to image processing and computer vision, this means that image data subjected
to affine transformations can be perfectly captured with the extended class of affine scale-
space operations. Specifically, for two-dimensional images arising as perspective projections
of three-dimensional scenes, this notion of affine image deformations can be used as a first-
order linear approximation of non-linear perspective effects.

This scale-space concept has been studied by (Lindeberg & Gårding 1994, Lindeberg
1994b, Griffin 1996) and is highly useful when computing surface shape under local affine
distortion (Lindeberg & Gårding 1997) and performing affine invariant segmentation (Ballester
& Gonzalez 1998) and matching (Baumberg 2000, Schaffalitzky & Zisserman 2001, Miko-
lajczyk & Schmid 2004, Mikolajczyk & Schmid 2004, Lazebnik et al. 2005, Rothganger
et al. 2006) (see figure 17). Combined with derivative operations, this affine scale-space con-
cept can also serve as a natural idealized model for filter banks (Freeman & Adelson 1991, Si-
moncelli et al. 1992) consisting of elongated directional filters (Perona 1992).

In practice, there are two principally different ways of computing scale-space represen-
tations under affine alignment — either by deforming the filter shapes or by deforming the

L(x; ΣL, δL) —


η = Aξ + b

ΣR = AΣLA
T

y − δR = A(x− δL) + b

 → R(y; ΣR, δR)

↑ ↑
∗g(·; ΣL, δL) ∗g(·; ΣR, δR)

| |
fL(ξ) — η = Aξ + b → fR(η)

Figure 14: Explicit manifestation of the commutative diagram in figure 8 for the Gaussian scale-space
concept under affine transformations of the spatial domain. The commutative property implies that
the scale-space representations of two affine deformed image patches can be affine aligned, either by
adapting the shapes of the Gaussian kernels or by deforming the image data prior to smoothing.
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Figure 15: Examples of affine Gaussian kernels in the two-dimensional case (corresponding to λ1 =
16, λ2 = 4, β = π/6, π/3, 2π/3 in equation (56)).
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Figure 16: Elongated filters obtained by applying first- and second order directional derivatives to
affine Gaussian kernels (corresponding to λ1 = 16, λ2 = 4, β = π/6, π/3, 2π/3, ϕ = β + π/2 in
equation (56)).

image data before the smoothing operation. This equivalence is made explicit in the com-
mutative diagram in figure 14, and the two approaches may have their respective advantages
when expressing algorithms and computational mechanisms. In the ideal continuous case,
the two approaches are mathematically equivalent. In a practical implementation, however,
the first filter-based approach can be expected to be more accurate in the presence of noise
whereas the second warping-based approach is usually faster with a serial implementation on
a single-core computer, since the convolutions can then be performed by separable filters.

Parameterization of affine Gaussian kernels. To introduce more explicit notation for the
affine Gaussian kernels, let us in the two-dimensional case parameterize such a covariance
matrix by two eigenvalues λ1, λ2 and one orientation β. Then, the covariance matrix can be
written

Σ′ =

(
cosβ − sinβ
sinβ cosβ

)(
λ1 0
0 λ2

)(
cosβ sinβ
− sinβ cosβ

)
=

(
λ1 cos2 β + λ2 sin2 β (λ1 − λ2) cosβ sinβ
(λ1 − λ2) cosβ sinβ λ1 sin2 β + λ2 cos2 β

)
(56)

with
det Σ′ = λ1λ2 (57)

Figure 15 shows a few examples of affine Gaussian filter kernels obtained in this way. Di-
rectional derivative operators of any order or orientation can then be obtained by combining
equations (56) and (41) see figure 16 for a few illustrations.



original images affine normalized windows

Figure 17: Illustration of how the affine Gaussian scale-space concept can be used for reducing the
influence of perspective image deformations. The left column shows three views of a book with
different amount of perspective foreshortening due to variations in the viewing direction relative to
the surface normal of the front side of the book. The right column shows the result of performing
an affine normalization of a central window in each image independently, by performing an affine
warping to an affine invariant reference frame computed from an affine invariant fixed point in affine
scale-space using the affine shape adaptation method proposed in (Lindeberg & Gårding 1997). Note
how this leads to a major compensation for the perspective foreshortening, which can be used for
significantly improving the performance of methods for image matching and object recognition under
perspective projection. With regard to receptive fields, the use of an affine family of receptive field
profiles makes it possible to define image operations in the image domain that are equivalent to the
use of receptive fields based on rotationally symmetric smoothing operations in an affine invariant
reference frame.



When computing directional derivatives from elongated affine Gaussian kernels, it should
be noted that it is natural to align the orientations of the directional derivative operators (the
angleϕ in equation (41)) with the orientations of the eigen-directions of the covariance matrix
in the affine Gaussian kernels (the angle β in equation (56)).

Under variations of the eigenvalues (λ1, λ2) and the eigen-direction β in equation (56),
the covariance matrices Σ will span the variability of the affine transformations that arise from
local linearizations of a smooth surfaces of objects seen from different viewing directions as
illustrated in figure 18.

Figure 18: Affine Gaussian receptive fields generated for a set of covariance matrices Σ that corre-
spond to an approximately uniform distribution on a hemisphere in the 3-D environment, which is
then projected onto a 2-D image plane. (left) Zero-order receptive fields. (right) First-order receptive
fields. If we consider surface patterns of three-dimensional objects in the world that are projected
to a two-dimensional image plane, then these surface patterns will be deformed by the perspective
projection. If we in the ideal theoretical case would l like to process these projected surface patterns
by image operations that correspond to rotationally symmetric smoothing operations when backpro-
jected to the tangent plane of surface, then the variability of this family of affine Gaussian receptive
fields spans the full variability of the affine image deformations that arise from local linearizations of
the non-linear perspective deformations. By allowing for a family of affine family of receptive fields,
it will thereby be possible to substantially reduce the otherwise large mismatch between the recep-
tive fields (illustrated in figure 5) that would occur when observing an object from different viewing
directions.

5.4 Gaussian colour-opponent scale-space

To define a corresponding scale-space concept for colour images, the simplest approach
would be by computing a Gaussian scale-space representation for each colour channel in-
dividually. Since the values of the colour channels will usually be highly correlated, it is,
however, preferable to decorrelate the dependencies by computing a colour opponent rep-
resentation. Such a representation is also in good agreement with human vision, where a
separation into red/green and yellow/blue colour colour-opponent channels takes place at an
early stage in the visual pathways.

Given three RGB channels obtained from a colour sensor, consider a colour-opponent



Figure 19: Spatio-chromatic receptive fields corresponding to the application of Gaussian derivative
operators up to order two to red/green and yellow/blue colour opponent channels, respectively

Figure 20: Spatio-chromatic receptive fields corresponding to the application of Gaussian directional
derivatives up to order two along the direction ϕ = π/6 to red/green and yellow/blue colour opponent
channels, respectively
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Figure 21: First- and second-order spatio-chromatic partial derivatives computed from a colour image
at scale s = 16.



transformation of the form (Hall et al. 2000) f
u
v

 =

 f

c(1)

c(2)

 =

 1
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1
3

1
3

1
2 −1

2 0
1
2

1
2 −1

 R
G
B

 . (58)

where yellow is approximated by the average of the R and G channels and f can be defined
as a channel of pure intensity information. Then, a Gaussian colour-opponent scale-space
representation (U, V )T = (C(1), C(2))T can be defined by applying Gaussian convolution to
the colour channels (c(1), c(2)):

U = C(1)(·, ·; s) = g(·, ·; s) ∗ c(1)(·), (59)

V = C(2)(·, ·; s) = g(·, ·; s) ∗ c(2)(·). (60)

Figure 19 shows equivalent spatio-chromatic receptive fields corresponding to the applica-
tion of Gaussian derivative operators according to (43) to such colour-opponent channels.
Figure 20 shows examples of corresponding directional derivatives according to (41). Fig-
ure 21 shows an illustration of computing such spatio-chromatic derivatives in a red/green
and yellow/blue colour-opponent space from a colour image.

In (Hall et al. 2000, Linde & Lindeberg 2004, Burghouts & Geusebroek 2009, van de
Sande et al. 2010, Linde & Lindeberg 2012, Zhang et al. 2012) it is shown how such colour-
opponent spatio-chromatic receptive fields in combination with regular spatial receptive fields
can constitute a very effective basis for object recognition.

5.5 Uniqueness of the Gaussian kernel on a spatial domain

The Gaussian scale-space concept satisfies the requirements of (i) linearity, (ii) shift invari-
ance, (iii) semi-group property, (iv) existence of an infinitesimal generator, (v) non-creation
of local extrema, (vi) non-enhancement of local extrema, (vii) rotational symmetry, (viii) pos-
itivity, (ix) normalization and (x) scale invariance. In section 5.1 we described how the Gaus-
sian scale-space concept is uniquely defined from four of these requirements in combination
with sufficient regularity requirements. The Gaussian scale-space can also be uniquely de-
rived from other combinations of basic scale-space axioms (Iijima 1962, Koenderink 1984,
Babaud et al. 1986, Yuille & Poggio 1986, Lindeberg 1990, Lindeberg 1994b, Lindeberg
1994a, Pauwels et al. 1995, Lindeberg 1996, Sporring et al. 1996, Florack 1997, Weickert
et al. 1999, ter Haar Romeny 2003). The Gaussian function is also special in the following
respects:

• it minimizes the uncertainty relation (Folland & Sitaram 1997), which implies that in
an N -dimensional space with f ∈ L2(RN ) and with

〈x〉2 =

∫
x∈RN |x− x|

2|f(x)|2dx∫
x∈RN |f(x)|2dx

where x =

∫
x∈RN x |f(x)|2dx∫
x∈RN |f(x)|2dx

(61)

and

〈ω〉2 =

∫
ω∈RN |ω − ω|

2|f̂(ω)|2dω∫
ω∈RN |f̂(ω)|2dω

where ω =

∫
ω∈RN ω |f̂(ω)|2dω∫
ω∈RN |f̂(ω)|2dω

(62)

then it holds for any f that

〈x〉 〈ω〉 ≥ N

2
(63)



and this relation is minimized by the Gaussian function

f(x) = g(x; s,m) = e−(x−m)T (x−m)/2s2 . (64)

• if p is a probability density function on RN with mean vector m∫
x∈RN

x p(x) dx = m (65)

and covariance matrix Σ∫
x∈RN

(x−m)(x−m)T p(x) dx = Σ (66)

then the (possibly non-isotropic) Gaussian function

p(x) = g(x; Σ,m) =
1

(2π)N/2
√

det Σ
e−(x−m)TΣ−1(x−m)/2 (67)

is the probability density function with maximum entropy

H = −
∫
x∈RN

p(x) log p(x) dx ≤ 1

2
log
(
(2πe)N det Σ

)
. (68)

The uncertainty relation means that the Gaussian function has maximally compact simultane-
ous localisation properties in the spatial and the frequency domains. The maximum entropy
result can be interpreted as the Gaussian kernel requiring a minimum amount of informa-
tion. These properties are also desirable when constructing a scale-space representation,
since the uncertainty relation makes the smoothing operation well localized over space and
scale, whereas the maximum entropy result means that the Gaussian kernel is maximally
uncommitted.

The Gaussian kernel does also have the attractive property that after a non-infinitesimal
amount of spatial smoothing, the Gaussian smoothed signal can be regarded as infinitely dif-
ferentiable provided that the input signal is bounded. Thereby, the output from the Gaussian
derivative operators can always be regarded as well-defined for any non-infinitesimal value
of the scale parameter.

6 Scale-space axioms for spatio-temporal image domains

6.1 Scale-space axioms transferred from spatial to spatio-temporal domain

For spatio-temporal image data f(x, t) defined on an N + 1-dimensional spatio-temporal
domain indexed by p = (x, t)T = (x1, . . . , xN , t)

T , it is natural to inherit the symmetry
requirements over the spatial domain. Given that we are interested in defining a spatio-
temporal scale-space representation that comprises both a spatial scale parameter s ∈ RM
and a temporal scale parameter τ ∈ R+, we would therefore like to determine a family of
operators Ts,τ that are to act on spatio-temporal image data f : RN × R → R to produce a
family of intermediate representations L : RN × R× RM × R+ → R according to

L(·, ·; s, τ) = Ts,τ f(·, ·) (69)

where (·, ·) denote the arguments for the spatial and temporal coordinates, respectively.



Linearity. If we want the initial visual processing stages to make as few irreversible deci-
sions as possible, it is natural to initially require Ts to be a linear operator such that

Ts,τ (a1f1 + a2f2) = a1Ts,τf1 + a2Ts,τf2 (70)

holds for all functions f1, f2 : RN × R→ R and all scalar constants a1, a2 ∈ R.
Again, linearity implies that a number of special properties of receptive fields (to be

described below) will transfer to spatio-temporal derivatives of these and do therefore imply
that different types of spatio-temporal image structures will be treated in a similar manner
irrespective of what types of linear filters they are captured by.

Specifically, such spatio-temporal derivative operators will respond to relative variations
in image intensities and will therefore be less sensitive to local illumination variations than
zero-order image intensities.

Translational invariance. Let us also require Ts,τ to be a shift-invariant operator in the
sense that it commutes with the spatio-temporal shift operator S(∆x,∆t) defined by (S(∆x,∆t)f)(x) =
f(x−∆x, t−∆t), such that

Ts,τ
(
S(∆x,∆t)f

)
= S(∆x,∆t) (Ts,τf) (71)

holds for all ∆x ∈ RN and ∆t ∈ R. The motivation behind this assumption is the basic
requirement that the representation of a visual object should be similar irrespective of its
position in space-time. Alternatively stated, the operator Ts,τ can be said to be homogeneous
across space-time.

Convolution structure. Together, the assumptions of linearity and shift-invariance imply
that the internal representations L(·, ·; s, τ) are given by convolution transformations

L(x, t; s, τ) = (T (·, ·; s, τ) ∗ f)(x, t) =

∫
ξ∈RN

∫
η∈R

T (ξ, η; s, τ) f(x− ξ, t− η) dξ dη

(72)
where T (·, ·; s, τ) denotes some family of convolution kernels. These convolution ker-
nels and their spatio-temporal derivatives can also be referred to as spatio-temporal receptive
fields.

Regularity. To be able to use tools from functional analysis, we will initially assume that
both the original signal f and the family of convolution kernels T (·, ·; s, τ) are in the Banach
space L2(RN × R), i.e. that f ∈ L2(RN × R) and T (·, ·; s, τ) ∈ L2(RN × R) with the
norm

‖f‖22 =

∫
x∈RN

∫
t∈R
|f(x, t)|2 dx dt. (73)

Then also the intermediate representations L(·, ·; s, τ) will be in the same Banach space, and
the operators Ts,τ can be regarded as well-defined.

Positivity (non-negativity). Concerning the convolution kernels, one may require these to
be non-negative in order to constitute smoothing transformations.

T (x, t; s, τ) ≥ 0. (74)



Normalization. Furthermore, it may be natural to require the convolution kernels to be
normalized to unit mass ∫

x∈RN

∫
t∈R

T (x, t; s, τ) dx dt = 1. (75)

to leave a constant signal unaffected by the smoothing transformation.

Quantitative measurement of the spatio-temporal extent and the spatio-temporal off-
set of non-negative scale-space kernels. For a non-negative convolution kernel, we can
measure its spatial offset p̄ = (x̄, t̄)T by the mean operator

m = p̄ = M(T (·; s, τ)) =

∫
p=(x,t)T∈RN×R p T (x, t; s, τ) dx dt∫
p=(x,t)T∈RN×R T (x, t; s, τ) dx dt

(76)

and its spatial extent by the spatial covariance matrix

Σ = C(T (·; s, τ)) =

∫
p=(x,t)T∈RN×R((p− p̄) (p− p̄)T T (x, t; s, τ) dx dt∫

p=(x,t)T∈RN×R T (x, t; s, τ) dx dt
. (77)

Using the additive properties of mean values and covariance matrices under convolution,
which hold for non-negative distributions, it follows that

m = M(T (·, ·; s1, τ1) ∗ T (·, ·; s2, τ2)) = M(T (·, ·; s1, τ1)) +M(T (·, ·; s2, τ2)) = m1 +m2,
(78)

Σ = C(T (·, ·; s1, τ1) ∗ T (·, ·; s2, τ2)) = C(T (·, ·; s1, τ1)) + C(T (·, ·; s2, τ2)) = Σ1 + Σ2

(79)

Identity operation with continuity. To guarantee that the limit case of the internal scale-
space representations when the scale parameters s and τ tend to zero should correspond to
the original image data f , we will assume that

lim
s↓0,τ↓0

L(·, ·; s, τ) = lim
s↓0,τ↓0

Ts,τf = f. (80)

Hence, the intermediate image representations L(·, ·; s, τ) can be regarded as a family of
derived representations parameterized by a spatial scale parameter s and a temporal scale
parameter τ . Since s ∈ RM and τ ∈ R+ together span a multi-dimensional scale parameter
r = (s, τ) ∈ RM × R+, equation (80) should be interpreted as lim|r|↓0 L(·, ·; s, τ) =

lim|r|↓0 Ts,τf = f with |r| =
√
s2

1 + · · ·+ s2
M + τ2.

Semi-group structure. For such image measurements to be properly related between dif-
ferent spatio-temporal scales, it is natural to require the operators Ts,τ with their associated
convolution kernels T (·, ·; s, τ) to form a semi-group over both s and τ

Ts1,τ1Ts2,τ2 = Ts1+s2,τ1+τ2 (81)

with a corresponding semi-group structure for the convolution kernels

T (·, ·; s1, τ1) ∗ T (·, ·; s2, τ2) = T (·, ·; s1 + s2, τ1 + τ2). (82)



Then, the transformation between any different and ordered scale levels (s1, τ1) and (s2, τ2)
with s2 ≥ s1 and τ2 ≥ τ1 will obey the cascade property

L(·, ·; s2, τ2) = T (·, ·; s2−s1, τ2−τ1)∗T (·, ·; s1, τ1)∗f = T (·, ·; s2−s1, τ2−τ1)∗L(·, ·; s1, τ1)
(83)

i.e. a similar type of transformation as from the original data f . An image representation
having these properties is referred to as a spatio-temporal multi-scale representation.

6.2 Additional scale-space axioms for time-dependent image data

For spatio-temporal image data, the following covariance requirements are natural to impose
motivated by the special nature of time and space-time.

Temporal covariance. If the same scene is observed by two different cameras that sample
the spatio-temporal image data with different temporal sampling rates, or if a camera ob-
serves similar types of motion patterns that occur with different speed, it seems natural that
the visual system should be able to relate the spatio-temporal scale-space representations
that are computed from the time-dependent image data. Therefore, one may require that if
the temporal dimension is rescaled by a uniform scaling factor

f ′ = B f corresponding to f ′(t′) = f(t) with t′ = B t, (84)

then there should exist some transformation of the temporal scale parameter τ ′ = B(τ) such
that the corresponding spatio-temporal scale-space representations are equal (here with the
spatial dimension and the spatial scale parameter(s) suppressed; see also figure 22):

L′(t′; τ ′) = L(t; τ) corresponding to TB(τ) B f = B Tτ f. (85)

Tτ f
B−−−−→ LxTτ xTB(τ)

f
B−−−−→ B f

Figure 22: Commutative diagram for scale-space representations computed under uniform scalings of
the temporal dimension. Such a temporal scaling transformation may, for example, represent spatio-
temporal image data that have been acquired using visual sensors that sample the image data with
different temporal sampling rates or motion patterns alternatively spatio-temporal events in the world
that occur with different speed alternatively of different temporal extent.

Galilean covariance. For time-dependent spatio-temporal image data, we may have rela-
tive motions between objects in the world and the observer, where a constant velocity trans-
lational motion can be modelled by a Galilean transformation

f ′ = Gv f corresponding to f ′(x′, t′) = f(x, t) with x′ = x+ v t (86)

where v denotes the image velocity.
To enable a consistent visual interpretation under different relative motions, it is natural

to require that it should be possible to relate internal representations L(·, ·; s, τ) that are
computed from spatio-temporal image data under different relative motions

L′(x′, t′; s′, τ ′) = L(x, t; s, τ) corresponding to TGv(s,τ) Gv f = Gv Ts,τ f. (87)

Such a property is referred to as Galilean covariance (see figure 23).



Ts,τ f
Gv−−−−→ LxTs,τ xTGv(s,τ)

f
Gv−−−−→ Gv f

Figure 23: Commutative diagram for a spatio-temporal scale-space representation computed under a
Galilean transformation of space-time. Such a constant velocity motion may, for example, represent a
local linear approximation of the projected motion field for corresponding image points under relative
motions between objects in the world and the visual observer.

6.2.1 Specific scale-space axioms for a non-causal spatio-temporal domain

Depending on the conditions under which the spatio-temporal image data are accessed, we
can consider two different types of cases. For pre-recorded spatio-temporal image data such
as video, we may in principle assume access to image information all temporal moments si-
multaneously and thereby apply similar types of operations as are used for processing purely
spatial image data. For real-time vision or when modelling biological vision, there is, how-
ever, no way of having access to the future, which imposes fundamental additional structural
requirements on a spatio-temporal visual front-end.

In this section, we shall develop a set of spatio-temporal scale-space axioms that can
be used when processing pre-recorded image data in an offline situation, where temporal
causality can be disregarded.

Infinitesimal generator for non-causal spatio-temporal domain. For theoretical analy-
sis it is preferably if the spatial scale parameter s and the temporal scale parameter τ can
be treated as continuous parameters and if image representations at adjacent scales can be
related by partial differential equations. With r = (s, τ) = (s1, . . . , sM , τ) denoting a
multi-dimensional spatio-temporal scale parameter, we define the directional derivative of
the semi-group along any positive direction u = (u1, . . . , uM , uM+1) in the parameter space

(DuL)(x, t; s, τ) = (B(u)L)(x, t; s, τ) = (u1B1 + · · ·+ uMBM + uM+1BM+1) L(x, t; s, τ)
(88)

where each Bk (k = 1 . . .M,M+1) constitutes the infinitesimal generator for the parameter
rk along the unit direction ek in the M + 1-dimensional parameter space

BkL = lim
h↓0

T (·, ·; h ek) ∗ f − f
h

(89)

and with the notion of a “positive direction” in parameter space defined in a corresponding
way as in footnote 4.

In (Lindeberg 2011, Section 3.2 and Appendix A) it is shown how such differential rela-
tionships can be ensured given a proper selection of functional spaces and sufficient regular-
ity requirements over space-time (x, t) and spatio-temporal scales (s, τ) in terms of Sobolev
norms. We shall therefore henceforth regard the internal representations L(·, ·; s, τ) as dif-
ferentiable with respect to the spatio-temporal scale parameters s and τ .

Non-enhancement of local extrema for non-causal spatio-temporal domain A natural
way to express the requirement of non-enhancement of local extrema for spatio-temporal
image data is by requiring the value to not be allowed to increase in any positive direction



in the parameter space of spatio-temporal scales. In other worlds, if a point (x0, t0; s0, τ0)
is a local (spatial) maximum of the mapping (x, t) 7→ L(x, t; s0, τ0) then the value must
not increase with scale in any positive direction in parameter space. Similarly, if a point
(x0, t0; s0, τ0) is a local (spatial) minimum of the mapping (x, t) 7→ L(x, t; s0, t0), then the
value must not decrease with scale in any positive direction in parameter space. Given the
above mentioned differentiability property with respect to scale, we say that the multi-scale
representation constitutes a scale-space representation if it satisfies the following conditions

(DuL)(x0, t0; s0, τ0) ≤ 0 at any non-degenerate local maximum, (90)

(DuL)(x0, t0; s0, τ0) ≥ 0 at any non-degenerate local minimum, (91)

for any positive direction u = (u1, . . . , uM , uM+1) in the parameter space.

6.2.2 Special scale-space axioms for a time-causal spatio-temporal domain

When processing spatio-temporal image data in a real-time scenario, the following additional
temporal and spatio-temporal requirements are instead needed:

Temporal causality. For a vision system that interacts in with the environment in a real-
time setting, a fundamental constraint on the convolution kernels (the spatio-temporal recep-
tive fields) is that there is no way of having access to future information, which implies that
the temporal smoothing kernels must be time-causal in the sense that the convolution kernel
must be zero for any relative time moment that would imply access to the future:

T (x, t; s, τ) = 0 if t < 0. (92)

Note that the possibly pragmatic solution of using a truncated symmetric filter of finite sup-
port in combination with a temporal delay is not appropriate for a time-critical real-time
system, since it would need to unnecessarily long time delays in particular at coarser tem-
poral scales. Therefore, a dedicated theory for truly time-causal spatio-temporal scale-space
concepts is needed.

Time-recursivity. Another fundamental constraint on a real-time system is that it cannot
be expected to keep a full record of everything that has happened in the past. Too keep down
memory requirements it is therefore desirable that the computations can be based on a limited
internal temporal buffer M(x, t), which should provide:

• a sufficient record of past information and

• sufficient information to update its internal state in a recursive manner over time as
new information arrives.

A particularly useful solution in this context is to use the internal spatio-temporal represen-
tations L at different temporal scales τ as a sufficient memory buffer of the past. Depending
on whether the temporal scale parameter is regarded as as a continuous parameter or a set of
discrete temporal scale levels, two different types of special cases can be distinguished:



Time-recursivity in the context of a continuum of temporal scale levels. For a spatio-
temporal scale-space representation enabling a continuum of temporal scale levels τ ∈ R+,
such a requirement of a time-recursive structure over over time can in combination with a
semi-group structure over image space x ∈ RN with an associated spatial scale parameter
s ∈ RM be formalized in terms of a spatio-temporal time-recursive updating rule of the form
(Lindeberg 2011, section 5.1.3, page 57)

L(x, t2; s2, τ) =

∫
ξ∈RN

∫
ζ≥0

U(x− ξ, t2 − t1; s2 − s1, τ, ζ)L(ξ, t1; s1, ζ) dζ dξ

+

∫
ξ∈RN

∫ t2

u=t1

B(x− ξ, t2 − u; s2, τ) f(ξ, u) dξ du

which is required to hold for any pair of scale levels s2 ≥ s1 and any two time moments
t2 ≥ t1, where

• the kernel U updates the internal state,

• the kernel B incorporates new image data into the representation and

• ζ ∈ R+ is an integration variable referring to internal temporal buffers at different
temporal scales.

Note that this algebraic structure comprises increments over both time t2 ≥ t1 and spatial
scales s2 ≥ s1.

Time-recursivity in the context of discrete temporal scale levels. For a spatio-temporal
scale-space representation L(x, t; σ, k) restricted to a discrete set of scale levels τk for
k = 1 . . .K, temporal recursivity can in combination with the requirement of a semi-group
property over space be expressed in terms of a spatio-temporal time-recursive structure of the
form

L(x, t2; s2, k) =

∫
ξ∈RN

K∑
ζ=0

U(x− ξ, t2 − t1; s2 − s1, k, ζ)L(ξ, t1; s1, ζ) dζ dξ

+

∫
ξ∈RN

∫ t2

u=t1

B(x− ξ, t2 − u; s2, k) f(ξ, u) dξ du

where the kernel U updates the internal state, the kernel B incorporates new information
and ζ constitutes an index over the internal temporal scale levels. Again, this time-recursive
structure does also comprise increments over both time t2 ≥ t1 and scale s2 ≥ s1.

Non-enhancement of local extrema in a time-recursive setting. For a time-recursive
spatio-temporal visual front-end having a continuous scale parameter, it is natural to express
the notion of non-enhancement of local extrema such that it is required to hold both with re-
spect to increasing spatial scales s and evolution over time t (instead of increasing temporal
scales τ as for a non-causal spatio-temporal scale-space). Thus, if at some spatial scale s0

and time moment t0 a point (x0, τ0) is a local maximum (minimum) for the mapping

(x, τ)→ L(x, t0; s0, τ) (93)



then for every positive direction u = (u1, . . . , uN , uN+1) in the N + 1-dimensional space
spanned by (s, t), the directional derivative (DuL)(x, t; s, τ) must satisfy

(DuL)(x0, t0; s0, τ0) ≤ 0 at any local maximum, (94)

(DuL)(x0, t0; s0, τ0) ≥ 0 at any local minimum. (95)

This formulation reflects the basic fact that for any given temporal moment t0, the only
information that is available for the visual front-end is the continuum of spatio-temporal
scale-space representations over space x, spatial scales s and temporal scales τ . Thereby, no
additional explicit memory of past information or access to the future is needed to make the
requirement of non-enhancement of local extrema operational.

Temporal scale-space kernel in the context of discrete temporal scale levels. For a
spatio-temporal scale-space representation involving a discrete set of scale levels only, the
non-enhancement of local extrema condition can obviously not be applied. In this case, one
can instead build on the requirement of non-creation of local extrema as expressed for a one-
dimensional temporal signal depending on time t only. In analogy with the one-dimensional
spatial case, let us therefore regard a one-dimensional temporal smoothing kernel Ttime as a
temporal scale-space kernel if and only if the kernel is time-causal and in addition for any
purely temporal signal f , the number of local extrema in Ttime∗f is guaranteed to not exceed
the number of local extrema in f .

As will be shown later, axiomatic derivations show that both the non-causal and the time-
causal spatio-temporal scale-space concepts give rise to spatio-temporal smoothing kernels
of the form

Tspace−time(x, t; s, v, τ) = Tspace(x− vt; s)Ttime(t; τ) (96)

when combined with the requirement of Galilean covariance. If we therefore take this al-
gebraic structure for granted, it therefore seems natural that the temporal smoothing kernel
Ttime should not be allowed to create new image structures in terms of new local extrema or
new zero-crossings when applied to purely temporal image data.

7 Scale-space concepts for spatio-temporal image domains

7.1 Non-causal Gaussian spatio-temporal scale-space

If we for the purpose of analyzing pre-recorded video data allow for unlimited freedom of
accessing image data at all temporal moments simultaneously, we can apply a similar way of
reasoning as in section 5 with space x replaced by space-time p = (x, t), thus disregarding
both temporal causality and temporal recursivity.

Necessity result. Given image data f : RN × R → R defined over an N+1-dimensional
spatio-temporal domain, let us therefore again assume that the first stage of visual processing
as represented by the operator Ts should be (i) linear, (ii) shift invariant and (iii) obey a
semi-group structure over both spatial and temporal scales s, where we also have to assume
(iv) certain regularity properties of the semi-group Ts over scale s to guarantee sufficient
differentiability properties with respect to space x, time t and spatio-temporal scales s.8 Let
us furthermore require (v) non-enhancement of local extrema to hold for any smooth image
function f ∈ C∞(RN × R) ∩ L1(R2 × R) and for any positive scale direction s.



-4 -2 0 2 4

0

1

2

3

4

5

-4 -2 0 2 4

0

1

2

3

4

5

-4 -2 0 2 4

0

1

2

3

4

5

-4 -2 0 2 4

0

1

2

3

4

5

-4 -2 0 2 4

0

1

2

3

4

5

-4 -2 0 2 4

0

1

2

3

4

5

Figure 24: Space-time separable kernels gxαtγ (x, t; s, τ, δ) up to order two obtained from the Gaus-
sian spatio-temporal scale-space in the case of a 1+1-D space-time (s = 1, τ = 1, δ = 2). (Horizontal
axis: space x. Vertical axis: time t.)
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Figure 25: Velocity-adapted spatio-temporal kernels gx̄α t̄γ (x, t; s, τ, v, δ) up to order two obtained
from the Gaussian spatio-temporal scale-space in the case of a 1+1-D space-time (s = 1, τ = 1,
v = 0.75, δ = 2). (Horizontal axis: space x. Vertical axis: time t.)



space-time separable kernels velocity-adapted kernels

Figure 26: Gaussian spatio-temporal scale space kernels over a 2+1-D space-time. The left col-
umn shows space-time separable kernels with vx1

= 0 and the right column corresponding velocity-
adapted kernels with vx1

= 2: (top row) Zero-order smoothing kernels g(x1, x2, t; Σ, v), (middle
row) First-order spatial derivative gx1

(x1, x2, t; Σ, v), (bottom row) First-order temporal derivative
gt̄(x1, x2, t; Σ, v). (Horizontal dimensions: space x = (x1, x2). Vertical dimension: time t. Filter
parameters: λ1 = λ2 = 16, λt = 4, vx2 = 0 according to (100)).



Then, it follows from (Lindeberg 2011, theorem 5, page 42) that these conditions together
imply that the scale-space family L must satisfy a diffusion equation of the form

∂sL =
1

2
∇T(x,t)

(
Σ0∇(x,t)L

)
− δT0 ∇(x,t)L (97)

with the notation∇(x,t) = (∂x1 , . . . , ∂xN , ∂t)
T for the spatio-temporal gradient operator, and

with initial conditionL(x, t; 0, 0) = f(x, t) for some positive semi-definite (N+1)×(N+1)
covariance matrix Σ0 and for some N + 1-dimensional vector δ0. Equivalently, this spatio-
temporal scale-space representation at scale s can be obtained by convolution with spatio-
temporal Gaussian kernels of the form

g(p; Σs, δs) =
1

(2π)(N+1)/2
√

det Σs
e−(p−δs)TΣ−1

s (p−δs)/2s. (98)

with p = (x, t)T = (x1, . . . , xN , t)
T , where the covariance matrix Σs = sΣ0 constitutes a

simultaneous covariance matrix over space and time and δs = s δ0 denotes a corresponding
translation vector over space and time.

Interpretation. By a suitable interpretation of the covariance matrix Σs and the offset
δs, this non-causal scale-space concept can be used for modelling smoothing operations for
spatio-temporal image data.

On a temporal domain, the non-zero offset in the Gaussian kernel over the temporal
domain can be used as a simplified model of the fact that all computations require a non-zero
computation time and time averages can only be computed from data that have occurred in
the past. This requirement of temporal causality implies that any temporal receptive field
has to be associated with a non-zero time delay, and introducing a temporal delay in the
spatio-temporal smoothing operations constitutes a simple model of these effects within the
paradigm based on Gaussian smoothing operations.

On a spatio-temporal domain, we may furthermore want the receptive fields to follow the
direction of motion, in such a way that the centres and the shapes of the receptive fields are
adapted to the direction of motion; see figure 27 for an illustration. Such velocity adaptation
(Lindeberg 1997) is useful for reducing the temporal blur induced by observing objects that
move relative to the camera and is a natural mechanism to include in modules for multi-scale
motion estimation (Nagel & Gehrke 1998, Florack et al. 1998) and for recognizing spatio-
temporal activities or events (Laptev & Lindeberg 2004c, Laptev & Lindeberg 2004b, Laptev
et al. 2007).

With respect to temporal implementation, however, the filters in this Gaussian filter class
do not respect temporal causality in a strict sense. Although the total mass of the filter
coefficients that imply access to the future can be made arbitrarily small, by a suitable choice
of time delay associated with the scale parameter in the scale direction, all filters in this

8To ensure sufficient differentiability properties such that an infinitesimal generator exists and the resulting
multi-scale representation obtained by convolution with the semi-group of convolution kernels can be differenti-
ated with respect to both space-stime and spatio-temporal scales such that the requirement of non-enhancement
of local extrema can be applied, we do formally for an N + 1-dimensional space-time require the semi-group
Ts to be C1-continuous in the sense that limh↓0

∥∥∥ 1
h

∫ h
s=0
T (s)f ds− f

∥∥∥
Hk(RN×R)

= 0 should hold for some

k > (N + 1)/2 and for all smooth functions f ∈ L1(RN ×R)∩C∞(RN ×R) with ‖ · ‖Hk(R2×R) denoting the

L2-based Sobolev norm ‖u‖Hk(RN×R) =
(∫

ω∈RN×R

(
1 + |ω|2

)k |û(ω)|2dω
)1/2

and û denoting the Fourier

transform of u over RN × R; see (Lindeberg 2011, Section 3.2 and Appendix A) regarding details.



Figure 27: By adapting the shape and the position of a spatio-temporal smoothing kernel to the di-
rection of motion, we can compute image descriptors that are invariant to constant velocity motion.
This property can for example be used for reducing the effect of motion blur when computing image
descriptors of moving objects at coarse temporal scales.

filter class have support regions that cover the entire time axis and are not suitable for real-
time processing of temporal image data. Nevertheless, they are highly useful as the simplest
possible model for studying properties of temporal and spatio-temporal scale-spaces. They
are also highly useful for off-line processing. We shall later describe spatio-temporal scale-
space concepts that respect temporal causality in a strict sense in section 7.2.

Parameterization of Gaussian spatio-temporal kernels for a 2+1-D spatio-temporal do-
main. By combining the parameterization of a general spatial 2 × 2 covariance matrix in
equation (56) with a general Galilean transformation

x′1 = x1 + v1t
x′2 = x2 + v2t
t′ = t

(99)

it can be shown (Lindeberg 2011, equation (61), page 46) that such a spatio-temporal covari-
ance matrix can be parameterized as

Σs =

 λ1 cos2 θ + λ2 sin2 θ + v2
1λt (λ2 − λ1) cos θ sin θ + v1v2λt v1λt

(λ2 − λ1) cos θ sin θ + v1v2λt λ1 sin2 θ + λ2 cos2 θ + v2
2λt v2λt

v1λt v2λt λt

 (100)

where λ1 and λ2 are the eigenvalues of the spatial component of the covariance matrix with
orientation θ and hence determine the spatial extent of the kernel, whereas λt = τ determines
the temporal extent. The vector δs can in turn be parameterized as

δs =

 v1t
v2t
δ

 (101)

where δ denotes a temporal delay associated with the spatio-temporal scale-space kernel.
This parameter can be used for modelling the temporal delay that will be associated with any
time-causal temporal kernel. Specifically, if we replace all the values of a temporal Gaussian
scale-space kernel that would extend into the future by zeros, an increasing value of this
temporal delay parameter will thereby reduce the influence of such truncation effects.



For the specific case with one spatial dimension and one temporal dimension, we obtain

det Σ′ = λxλt = sτ (102)

(X − δ)TΣ′
−1

(X − δ) =
(x− vt)2

s
+

(t− δt)2

τ
(103)

which after insertion into equation (33) implies that these Gaussian spatio-temporal kernels
assume the form

g(x, t; s, τ, v, δ) =
1√
2πs

e−
(x−vt)2

2s
1√
2πτ

e−
(t−δ)2

2τ

= g(x− vt; s) g(t; τ, δ). (104)

Velocity-adapted spatio-temporal derivative kernels. Corresponding velocity-adapted spatio-
temporal derivatives are given by

∂x̄1 = ∂x1 , . . . , ∂x̄N = ∂xN , ∂t̄ = vT∇x+∂t = v1 ∂x1 +· · ·+vN ∂xN +∂t. (105)

Figures 24–25 show a examples of spatio-temporal scale-space kernels generated in this way
in the case of a 1+1-dimensional space-time for (i) the space-time separable case with v = 0
and (ii) the non-separable case with a non-zero image velocity v 6= 0, in the special case
when the spatial smoothing operation is rotationally symmetric (λ1 = λ2). Figure 26 shows
corresponding kernels for a 2 + 1-dimensional space-time.

Such Gaussian spatio-temporal scale-space kernels have been successfully used for com-
puting spatio-temporal image features from video data (Laptev & Lindeberg 2003, Willems
et al. 2008) and for performing spatio-temporal recognition (Laptev & Lindeberg 2004a,
Kläser et al. 2008, Laptev et al. 2008, Wang et al. 2009, Shao & Mattivi 2010). Specifi-
cally, it was shown in (Laptev & Lindeberg 2004c, Lindeberg et al. 2004, Laptev et al. 2007)
that the computation of Galilean invariant image descriptors improves the ability to perform
image-based recognition under unknown relative motions between the objects/events and the
observer. These Galilean invariant properties are made possible by the Galilean covariant
property of the underlying spatio-temporal scale-space; see (Lindeberg 2011, Section 4.1.4
and Appendix C) for a formal proof regarding Galilean covariant fixed-points in a velocity-
adapted spatio-temporal scale-space.

Combined Galilean and affine covariance. Consider two spatio-temporal patterns fL : RN×
R→ R and fR : RN × R→ R that are related by a space-time transformation of the form

fL(ξ) = fR(η) where η = Gv (Aξ + b) = Aξ + vt+ b (106)

where

Gv =


1 v1

. . .
...

1 vN
1

 (107)

corresponds to a Galilean transformation of space-time according to (99) and

A =


a11 . . . a1N

...
. . .

...
aN1 . . . aNN

1

 and b =


b1
...
bN
c

 (108)



represent an affine deformation over the spatial domain x determined by A and b comple-
mented by a temporal shift tR = tL + c given by c.

Define spatio-temporal scale-space representations L andR of these spatio-temporal pat-
terns according to

L(·; ΣL, δL) = g(·; ΣL, δL) ∗ fL(·), R(·; ΣR, δR) = g(·; ΣR, δR) ∗ fR(·), (109)

where g(·; Σ, δ) denote spatio-temporal Gaussian kernels of the form (98). Then, for cor-
responding points pL = (xL, tL)T and pR = (xR, tR)T in space-time, the spatio-temporal
scale-space representations L and R will be related by

L(pL; ΣL, δL) = R(pR; ΣR, δR) (110)

if the covariance matrices ΣL and ΣR satisfy

ΣR = Gv AΣLA
T GTv (111)

provided that the velocity terms δL and δR in the Gaussian kernels can be traded against
coordinate shifts in pL and pR as long as the following relation is satisfied:

pR − δR = Gv A (pL − δL) + b. (112)

Hence, this Gaussian spatio-temporal scale-space concept allows for simultaneous affine co-
variance over space and Galilean covariance over space-time. The general parameterization
of the corresponding spatio-temporal kernels in equation (100) reflects this property, by si-
multaneously allowing for elongated and directionally adapted operations over the spatial
domain and velocity-adapted operations along the direction of motion.

Velocity adaptation vs. image stabilization or filter banks When implementing a velocity-
adapted spatio-temporal scale-space representation in practice, there are different alternatives
to consider. The simplest approach is to use the same velocity vector at all image positions,
and is equivalent to global stabilization. More generally, one may also consider different im-
age velocities at different image positions.9 In this way, the corresponding velocity-adapted
spatio-temporal scale-space representations will for appropriate values of the velocity pa-
rameters correspond to filtering along the particle trajectories. Thereby, the system will be
able to handle multiple moving objects and will also have the ability to derive a Galilean
invariant representation for each object. Alternatively, we may at each image position even
consider an ensemble of spatio-temporal filters that are tuned to different image velocities
— a design with close relations to velocity-tuned receptive fields biological vision (see
(Lindeberg 2011)). Such a parallel treatment of velocity adaption for different image ve-
locities does also have the potential to handle transparent motion.

7.2 Time-causal spatio-temporal scale-space

When constructing a vision system for real-time processing of visual information, a fun-
damental constraint on the spatio-temporal smoothing kernels is that they have to be time-
causal. As previously mentioned, the ad hoc solution of using a truncated symmetric filter

9A spatial counterpart of this idea has been developed in (Almansa & Lindeberg 2000), where the spatial
covariance matrix in an affine scale-space representation is allowed to vary in space, to allow for enhancements
of local directional image structures in fingerprint images.



of finite temporal extent in combination with a temporal delay is not appropriate in a time-
critical context. Because of computational and memory efficiency, the computations should
also be based on a compact temporal buffer that contains sufficient information for represent-
ing image information at multiple temporal scales and computing image feature therefrom.
Corresponding requirements are also necessary in computational modelling of biological vi-
sion.

In this section, we shall describe two types of time-causal spatio-temporal scale-space
concepts in the cases of (i) an a priori discretization of the temporal scale parameter and
(ii) a continuous scale parameter.

7.2.1 Time-causal spatio-temporal scale-space based on discrete temporal scale levels
(without true temporal covariance)

Time-causal scale-space kernels for a purely temporal domain. Given the requirement
on a temporal scale-space kernel in terms of non-creation of local extrema over a purely
temporal domain, truncated exponential kernels

hexp(t; µi) =

{ 1
µi
e−t/µi t ≥ 0

0 t < 0
(113)

arise as a basic model for modelling temporal smoothing operations over a continuous time-
causal temporal domain (Lindeberg 1990, Lindeberg & Fagerström 1996). The Laplace
transform of such a kernel is given by

Hexp(q; µi) =

∫ ∞
t=−∞

hexp(t; µi) e
−qt dt =

1

1 + µiq
(114)

By coupling k such kernels in cascade, we obtain a composed filter

hcomposed(t; µ) = ∗ki=1hexp(t; µi) (115)

having a Laplace transform of the form

Hcomposed(q; µ) =

∫ ∞
t=−∞

(∗ki=1hexp(t; µi)) e
−qt dt =

k∏
i=1

1

1 + µiq
(116)

The composed filter has mean value

M(hcomposed(·; µ)) =
k∑
t=1

µi (117)

and variance

τk = V (hcomposed(·; µ)) =

k∑
t=1

µ2
i (118)

In terms of physical models, repeated convolution with this set of truncated exponential ker-
nels corresponds to coupling a series of first-order integrators with time constants µk in cas-
cade:

∂tL(t; τk) =
1

µk
(L(t; τk−1)− L(t; τk)) (119)

with L(t; 0) = f(t). These temporal smoothing kernels satisfy scale-space properties in the
sense that the number of local extrema or the number of zero-crossings in the temporal signal



are guaranteed to not increase with the temporal scale. In this respect, these kernels have a
desirable and well-founded smoothing property that can be used for defining multi-scale ob-
servations over time. A limitation of this type of temporal scale-space representation, how-
ever, is that the scale levels are required to be discrete and that the scale-space representation
does hence not admit a continuous scale parameter. In this respect, this discrete temporal
scale-space representation differs from the other temporal scale-space concepts considered
here. Specifically, the lack of scale continuity implies that the transformation properties
under rescalings of time will be more complex than a regular covariance property under scal-
ing transformations. Moreover, this temporal scale-space having only discrete scale levels
cannot satisfy a differential equation over temporal scales. Computationally, however, the
scale-space representation based on truncated exponential kernels can be highly efficient and
admits for direct implementation in terms of hardware (or wetware) that emulates first-order
integration over time (see figure 28 for illustration of a corresponding electric wiring diagram
corresponding to a set of first-order integrators coupled in cascade).

.

.

.

.

f_in f_out

Figure 28: Electric wiring diagram consisting of a set of resistors and capacitors that emulate a series
of first-order integrators coupled in cascade, if we regard the time-varying voltage fin as representing
the time varying input signal and the resulting output voltage fout as representing the time varying
output signal at a coarser temporal scale. According to the theory of temporal scale-space kernels for
one-dimensional signals (Lindeberg 1990, Lindeberg & Fagerström 1996), the corresponding equiv-
alent truncated exponential kernels are the only primitive temporal smoothing kernels that guarantee
both temporal causality and non-creation of local extrema (alternatively zero-crossings) with increas-
ing temporal scale. Such first-order temporal integration can be used as a straightforward computa-
tional model for temporal processing in biological neurons (see also (Koch 1999, Chapters 11–12)
regarding physical modelling of the information transfer in dendrites of neurons).

Time-recursive computation of temporal derivatives. Temporal scale-space derivatives
of order r can be defined from this scale-space model according to

Ltr(·; τk) = ∂tkL(·; τk) = (∂tk(∗ki=1hexp(t; µi)) ∗ f (120)

and the Laplace transform of the composed (equivalent) derivative kernel is

H
(r)
composed(q; τk) = qr

k∏
i=1

1

1 + µiq
(121)

For this kernel to have a net integration effect, and to enable well-posed derivative operators,
an obvious requirement is that the total order of differentiation should not exceed the total
order of integration. Thereby, r < k is a necessary requirement. As a consequence, the
composed transfer function must have a finite L2-norm.

A very useful observation that can be made concerning derivative computations is that
temporal derivatives can equivalently be computed from differences between different tem-
poral channels. Let us first assume that all time constants µi are different in (121). Then, a



Figure 29: Space-time separable kernels gxαtγ (x, t; s, τ) up to order two corresponding to the com-
bination of a cascade of k = 7 time-causal and time-recursive first-order integrators over the temporal
domain with a Gaussian scale-space over the spatial domain in the case of a 1+1-D space-time (s = 1,
τ = 1) and using a self-similar distribution of the scale levels according to equations (129) and (131).
(Horizontal axis: space x. Vertical axis: time t.)

Figure 30: Velocity-adapted spatio-temporal kernels gx̄α t̄γ (x, t; s, τ, v) up to order two obtained by
combining a cascade of k = 7 time-causal and time-recursive first-order integrators over the temporal
domain with a Gaussian scale-space over the spatial domain in the case of a 1+1-D space-time (s = 1,
τ = 1, v = 0.75) and using a self-similar distribution of the scale levels according to equations (129)
and (131). (Horizontal axis: space x. Vertical axis: time t.)
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Figure 31: Time-causal and time-recursive spatio-temporal scale-space kernels over a 2+1-D space-
time obtained by combining k = 7 first-order integrators over the temporal domain with Gaussian
smoothing over the spatial domain for (left column) the space-time separable case with v = 0
and (right column) the velocity-adapted case with v 6= 0: (top row) Original smoothing kernel
h(x, y, t; Σ, v, τ), (middle row) First-order spatial derivative hx(x, y, t; Σ, v, τ), (bottom row) First-
order temporal derivative ht̄(x, y, t; Σ, v, τ). (Parameters: λ1 = λ2 = 16, τ = 4, vx = 0 vs. 3/2
vy = 0).



partial fraction division gives

H
(r)
composed(q; τk) =

k∑
i=1

AiHprim(q; µi) (122)

where

Ai =
(−1)r

µri

k∏
j=1,j 6=i

1

(1− µj/µi)
(1 ≤ i ≤ k) (123)

showing that each temporal derivative can be computed as a linear combination of the rep-
resentations at the different time-scales.

More realistically, however, the channels that we can regard as available at a certain
temporal scale with index k will not be the results of direct filtering with different time
constants µi. Rather, we would like to use the intermediate outputs from the cascade coupled
recursive filtersHcomposed(q; τi) for k−r ≤ i ≤ k. Decomposition ofH(r)

composed into a sum
of r such transfer functions

H
(r)
composed(q; τk) =

k∑
i=k−r

BiHcomposed(q; τi) (124)

shows that the weights Bi are given as the solution of a triangular system of equations pro-
vided that the necessary condition r < k is satisfied

(−1)r

µri

k∏
j=i+1

1

(1− µj/µi)
= Bi+

k∑
ν=i+1

Bν

ν∏
j=i+1

1

(1− µj/µi)
(k−r ≤ i ≤ k). (125)

After a few more calculations it can be shown that the Laplace transforms of the equivalent
derivative computation kernels satisfy the recurrence relation (Lindeberg & Fagerström 1996)

H
(r)
composed(q; τk) =

1

µk

(
H

(r−1)
composed(q; τk−1)−H(r−1)

composed(q; τk)
)
, (126)

implying that higher-order temporal derivatives can be computed from small-support finite
differences of lower-order derivatives (analogous to pure finite differences in the spatial do-
main) where the temporal scale-space representations at different temporal scales serve as a
sufficient temporal buffer of what has occurred in the past (see figure 32 for a schematic il-
lustration). Derivative computations will therefore be highly efficient. Specifically, it follows
that both the temporal smoothing operation and the computation of temporal derivatives are
time-recursive.

Spatio-temporal extension. The axiomatic restriction of temporal scale-space kernels to
truncated exponential kernels coupled in cascade has been made for the case of a one-
dimensional temporal domain (Lindeberg & Fagerström 1996) based on a more general clas-
sification of continuous scale-space kernels (Lindeberg 1990) building upon earlier results
by (Schoenberg 1950). When applying this result to spatio-temporal image data, we can
make analogies with the axiomatic derivations of the non-causal Gaussian spatio-temporal
scale-space in section 7.1 and the time-causal spatio-temporal scale-space concept to be con-
sidered in section 7.2.2 for which the requirement of Galilean covariance do both imply that
the spatio-temporal scale-space kernels should be of the form

Tspace−time(x, t; s, v, τ) = Tspace(x− vt; s)Ttime(t; τ) (127)



where Tspace(x; s) denotes a spatial Gaussian scale-space kernel with scale parameter s, v
denotes an image velocity and Ttime(t; τ) denotes a temporal smoothing kernel with tem-
poral scale parameter τ . Let us therefore define spatio-temporal extensions of the truncated
exponential filters coupled in cascade over an N + 1-dimensional spatio-temporal domain
according to

T (x, t; s, v, τ) = g(x− vt; s)hcomposed(t; k) (128)

where g(x; s) denotes an N -dimensional spatial Gaussian kernel and hcomposed(t; τk) the
convolution of k truncated exponential filters with time constants µi according to (115).

Figure 32: Composed architecture for a spatio-temporal visual front-end based on a time-causal scale-
space concept defined from a set of truncated exponential filters corresponding to first-order integra-
tors coupled in cascade: (i) Optional temporal preprocessing stage. (ii) Spatial scale-space represen-
tation. (iii) One set of time-recursive temporal smoothing stages associated with each spatial scale.
(iv) Temporal derivatives obtained from linear combinations of temporal channels.

In the absence of further information, it is natural to distribute the temporal scale levels
according to a geometric series, corresponding to a uniform distribution in units of effective
temporal scale τeff = log τ :

τk = γk−1 τmin where γ =

(
τmax
τmin

) 1
K−1

(1 ≤ k ≤ K) (129)

which by the additive property of variances between adjacent scales

τk+1 = τk + µ2
k (130)

and implies that the time constants of the individual temporal smoothing stages should be
chosen according to

µk =
√
τmin (γ − 1) γ(k−1)/2. (131)

Figures 29 and 30 show examples of spatio-temporal kernels and spatio-temporal derivatives
of these computed in this way in the case of a 1+1-dimensional space-time. Figure 31 shows
examples of corresponding kernels over a 2 + 1-dimensional space-time.

7.2.2 Time-causal spatio-temporal scale-space based on continuous temporal scale pa-
rameter (with true temporal covariance)

To process real-time image data with a spatio-temporal scale-space concept having a contin-
uous temporal scale parameter, we do in addition to (i) linearity and (ii) spatial and temporal



shift-invariance require the scale-space kernels to be (iii) time-causal and require the vi-
sual front-end to be (iv) time-recursive in the sense that the internal image representations
L(x, t; s, τ) at different spatial scales s and temporal scales τ to also constitute a sufficient
internal temporal memory M(x, t) of the past, without any further need for temporal buffer-
ing. To adapt the convolution semi-group structure to a time-recursive setting, we require the
spatio-temporal scale-space concept

L(·, t; s, ·) = Ts,t L(·, 0; 0, ·) (132)

to be generated by a (v) two-parameter semi-group over spatial scales s and time s

Ts1,t1 Ts2,t2 = Ts1+s2,t1+t2 . (133)

Then, it can be shown (Lindeberg 2011, theorem 17, page 78) that provided we express
(vi) certain regularity properties on the semi-group in terms of Sobolev norms, the require-
ment of (vii) the time-recursive formulation of non-enhancement of local extrema in equa-
tions (94)–(95) implies that the semi-group must satisfy the following system of diffusion
equations

∂sL =
1

2
∇Tx (Σ∇xL), (134)

∂tL = −vT∇xL+
1

2
∂ττL (135)

and combined boundary and initial condition L(x, t; 0, 0; Σ, v) = f(x, t).
A physical interpretation of the second equation in this scale-space concept, given fixed

values of the spatial scale parameter s and the covariance matrix Σ, is that the time-varying
spatio-temporal image data f(x, t) are considered as a time-varying thermal distribution that
constitutes the boundary condition at τ = 0 for heat diffusion over time t in an N + 1-
dimensional solid with extent over x and τ , where the thermal diffusion with respect to real
time t only takes place in the τ -direction and the parameter v corresponds to an overall spatial
drift velocity with respect to real time t. The internal representations at distance τ from the
boundary of the solid do thereby correspond to the image representations at coarser temporal
scales τ . The combination of the second equation with the first equation then corresponds
to an additional diffusion process that operates over the spatial domain only and which is
evolving with respect to a second diffusion evolution parameter (“additional virtual time”) s,
with the spatial covariance matrix Σ describing the spatial anisotropy of this medium.

Time-causal spatio-temporal scale-space kernels. In terms of integral expressions, it can
be shown (Lindeberg 2011, equations (90)–(93), page 53) that the solution of these equations
with initial condition L(x, 0; 0, τ ; Σ, v) = 0 and combined boundary and initial condition
L(x, t; 0, 0; Σ, v) = f(x, t) can be written

L(x, t; s, τ ; Σ, v) =

∫ t

u=0

∫
ξ∈RN

f(ξ, u)h(x− ξ, t− u; s, τ ; Σ, v) dξ du (136)

where the notation with double semi-colons in the list of variables indicates that s and τ are
parameters while Σ and v are meta-parameters. The convolution kernel h is in turn given by

h(x, t; s, τ ; Σ, v) = g(x− vt; s; Σ)φ(t; τ)

=
1

(2πs)N/2
√

det Σ
e−(x−vt)TΣ−1(x−vt)/2s 1√

2π t3/2
τ e−τ

2/2t (137)
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Figure 33: Space-time separable kernels hxαtγ (x, t; s, τ, v) up to order two obtained from the time-
causal spatio-temporal scale-space in the case of a 1+1-D space-time (s = 1, τ = 2). (Horizontal
axis: space x. Vertical axis: time t.)
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Figure 34: Velocity-adapted spatio-temporal kernels hx̄α t̄′γ (x, t; s, τ, v) up to order two obtained
from the time-causal spatio-temporal scale-space in the case of a 1+1-D space-time (s = 1, τ = 2,
v = 0.75). (Horizontal axis: space x. Vertical axis: time t.)
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Figure 35: Time-causal spatio-temporal scale-space kernels over a 2+1-D space-time for (left column)
the space-time separable case with v = 0 and (right column) the velocity-adapted case with v 6= 0:
(top row) Original smoothing kernel h(x, y, t; Σ, v, τ), (middle row) First-order spatial derivative
hx(x, y, t; Σ, v, τ), (bottom row) First-order temporal derivative ht̄(x, y, t; Σ, v, τ). (Parameters:
λ1 = λ2 = 16, τ = 2, vx = 0 vs. 3/4 vy = 0).



where g(x − vt; s; Σ) corresponds to an N -dimensional affine Gaussian kernel with co-
variance matrix Σ that moves an image velocity v in space-time, and φ(t; τ) denotes a
time-causal smoothing kernel over time t with temporal scale parameter τ . Hence, given
original image data of dimensionality N + 1, the time-causal scale-space representation will
(at least) comprise N + 3 dimensions.10

This form of time-causal spatio-temporal scale-space has also been considered by (Fagerström
2007) in the special case when Σ = I as a member in a family of self-similar kernels derived
from the different argument of scale invariance in combination with a semi-group structure.
The additional degree of freedom in the spatial covariance matrix Σ obtained here has the
additional advantage that it allows for non-isotropic smoothing kernels over the spatial do-
main, which may be useful when dealing with local image deformations over time or when
considering motion boundaries.

The interpretation of this temporal scale parameter is, however, somewhat different than
for the previously considered Gaussian spatio-temporal concept. Specifically, the temporal
delay associated with the temporal smoothing kernel is (Lindeberg 2011, equation (123),
page 57)

δ =

∫∞
t=0 t φ

2(t; τ) dt∫∞
t=0 φ

2(t; τ) dt
= τ2. (138)

Time-causal spatio-temporal derivative operators. Figures 33–34 show examples of such
time-causal spatio-temporal kernels with their partial spatio-temporal derivatives for a 1 + 1-
dimensional spatio-temporal domain in the space-time separable case with v = 0

(∂xαtβh)(x, t; s, τ ; Σ, 0) = (∂xαg)(x; s; Σ) (∂tβφ)(t; τ) (139)

and for the non-separable velocity-adapted case with v 6= 0

(∂xα t̄βh)(x, t; s, τ ; Σ, v) = (∂xαg)(x− vt; s; Σ) (∂tβφ)(t; τ). (140)

Figure 35 shows corresponding kernels over a 2 + 1-dimensional space-time in the special
case when the spatial covariance matrix is proportional to the unit matrix.

Relations to regular Gaussian smoothing We can note that there is also a very close link
to regular Gaussian smoothing. By inspection, it can be seen that the time-causal spatio-
temporal smoothing can be interpreted as as a first-order derivative with respect to temporal
scale τ of a one-dimensional Gaussian over temporal scales, i.e.

φ(t; τ) = −∂τg(τ ; t), (141)

and an N -dimensional Galilean-transformed affine Gaussian kernel

gN (x− vt; Σ) =
1

(
√

2π)N
√

det Σ
e−(x−vt)TΣ−1(x−vt)/2 (142)

10If the full group of spatial covariance matrices Σ and velocity vectors v is considered as well, the dimension-
ality of the affine- and velocity-adapted scale-space will be dim(x) + dim(t) + dim(Σ) + dim(v) + dim(τ) =
N + 1 +N(N + 1)/2 +N + 1 = (N2 + 5N + 4)/2. To handle such high-dimensional scale-spaces in practice,
some sorts of intelligent search strategies are obviously required, such as combinations of lower-dimensional
subgroups. The affine shape adaptation and Galilean velocity adaptation algorithms constitute examples of such
simplifying search strategies. When using a massively parallel architecture, such as in biological vision, how-
ever, one could afford to represent a richer family of affine-adapted and/or velocity-adapted filters than would be
possible to handle with a serial single-core computer.



over space x. For sake of convenience, we will henceforth change to the following notation:

L(x, t; Σ, v, τ) =

∫ t

u=0

∫
ξ∈RN

f(ξ, u)h(x− ξ, t− u; Σ, v, τ) dξ du (143)

where
h(x, t; Σ, v, τ) = gN (x− vt; Σ)φ(t; τ) (144)

and

gN (x; Σ) =
1

(
√

2π)N
√

det Σ
e−x

TΣ−1x/2 (145)

φ(t; τ) = −∂τg1(τ ; t) =
1√

2π t3/2
e−τ

2/2t (146)

Please, note the shift of the order of the arguments between φ and g1 in equation (146).

Temporal cascade-recursive formulation. When computing a spatio-temporal scale-space
representation at time t2 > t1, a very attractive property is if this can be done in a time-
recursive manner, such that it sufficient to use the following sources of information:

• the internal buffer of the spatio-temporal scale-space representation L at time t1, and

• information about the spatio-temporal input data f during the time interval [t1, t2].

This property means that it is sufficient to use the internal states of the spatio-temporal scale-
space representation as internal memory, and we do not need to have any complementary
buffer of what else has occurred in the past.

Such a property can indeed be established for the time-causal scale-space representation,
based the fact that the time-causal scale-space kernel φ(t; τ) satisfies the following time-
recursive cascade smoothing property over a pure temporal domain (derived in (Lindeberg
2011, Appendix D.3)):

φ(t2; τ) =

∫ ∞
ζ=0

φ(t1; ζ) (g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ (147)

From this relation it follows that the time-causal spatio-temporal scale-space representation
satisfies the following cascade-recursive structure over time t and spatial scales s

L(x, t2; s2, τ) =

∫
ξ∈RN

∫
ζ≥0

T (x− ξ, t2 − t1; s2 − s1, τ, ζ)L(ξ, t1; s1, ζ) dζ dξ

+

∫
ξ∈RN

∫ t2

u=t1

B(x− ξ, t2 − u; s2, τ) f(ξ, u) dξ du (148)

where the kernel T for updating the internal memory representation L is given by

T (x, t; s, τ, ζ) = gN (x− vt; s) (g(τ − ζ; t)− g(τ + ζ; t)) (149)

and the kernel B for incorporating new knowledge from the input signal f at the boundary is

B(x, t; s, τ) = gN (x− vt; s)φ(t; τ). (150)

Please, note that we have here dropped the arguments for the meta-parameters Σ and v in
order to simplify the notation.



Properties of the time-causal smoothing functions. To describe the evolution properties
over temporal scales τ is however somewhat different than for the Gaussian spatio-temporal
scale-space. Whereas the integral of h over space-time is finite∫ ∞

t=0

∫
x∈RN

h(x, t; Σ, v, τ) dx dt = 1, (151)

we cannot compute regular first- or second-order moments of h over time t, since the corre-
sponding integrals do not converge∫ ∞

t=0

∫
x∈RN

t h(x, t; Σ, v, τ) dx dt→∞, (152)∫ ∞
t=0

∫
x∈RN

t2 h(x, t; Σ, v, τ) dx dt→∞. (153)

Hence, we cannot parameterize the time-causal kernels h in terms of mean vectors and co-
variance matrices over space-time, as is a natural approach for the other spatio-temporal
scale-spaces considered in this article, based on non-causal spatio-temporal Gaussian kernels
or truncated exponential kernels coupled in cascade in combination with a spatial scale-space
and velocity adaptation. Nevertheless, we can compute the position in space-time of the local
maximum of h(x, t; Σ, v, τ) (

x̂

t̂

)
=

1

3

(
v
1

)
τ2 (154)

and we can also compute the spatial mean x̄ and the spatial covariance matrix C(x, x) as

x̄ =

∫∞
τ=0

∫
x∈RN xh(x, t; Σ, v, τ) dx dt∫∞

τ=0

∫
x∈RN h(x, t; Σ, v, τ) dx dt

= vt, (155)

C(x, x) =

∫∞
τ=0

∫
x∈RN xx

T h(x, t; Σ, v, τ) dx dt∫∞
τ=0

∫
x∈RN h(x, t; Σ, v, τ) dx dt

− x̄x̄T = sΣ. (156)

For the temporal derivatives of h(x, t; Σ, v, τ), we can also obtain finite moments over time,
by squaring the temporal derivatives. Hence, we can measure the spatio-temporal mean of
the squared velocity-adapted derivatives h2

t̄ (x, t; Σ, v, τ) and h2
t̄t̄(x, t; Σ, v, τ) according to

M(h2
t̄ ) =

∫∞
τ=0

∫
x∈RN

(
x
t

)
h2
t̄ (x, t; Σ, v, τ) dx dt∫∞

τ=0

∫
x∈RN h

2
t̄
(x, t; Σ, v, τ) dx dt

=
1

5

(
v
1

)
τ2 (157)

M(h2
t̄t̄) =

∫∞
τ=0

∫
x∈RN

(
x
t

)
h2
t̄t̄(x, t; Σ, v, τ) dx dt∫∞

τ=0

∫
x∈RN h

2
t̄t̄

(x, t; Σ, v, τ) dx dt
=

1

9

(
v
1

)
τ2 (158)

To summarize, a main message from the estimates in this subsection is that (i) the spatial
shape of the spatio-temporal kernel h(x, t; Σ, v, τ) is described by the spatial covariance
matrix Σ, (ii) the temporal extent is proportional to τ2 and (iii) the velocity vector v specifies
the orientation of the kernel in space-time.

Laplace transforms and semi-group/cascade smoothing structure over temporal scale.
For a one-sided purely temporal signal f(t) with f(t) = 0 for t ≤ 0, the Laplace transform
is defined by

(Lf)(q) = f̄(q) =

∫ ∞
t=0

f(t) e−qtdt. (159)



With the one-sided and finite support convolution operation defined by

(f ∗ g)(t) =

∫ t

u=0
f(u) g(t− u) du =

∫ t

u=0
f(t− u) g(u) du, (160)

a corresponding convolution theorem holds for the Laplace transforms of f and g

L(f ∗ g) = (Lf)(Lg) (161)

With regard to the time-causal kernel φ(t; τ), its Laplace transform is given by

(Lφ)(q; τ) = φ̄(q; τ) =

∫ ∞
t=0

φ(t; τ) e−qtdt =

∫ ∞
t=0

1√
2π t3/2

τ e−τ
2/2t e−qtdt = e−

√
2q τ ,

(162)
and the result of multiplying two such Laplace transforms is of the form

φ̄(q; τ1) φ̄(q; τ2) = e−
√

2q τ1e−
√

2q τ2 = e−
√

2q (τ1+τ2) = φ̄(q; τ1 + τ2) (163)

corresponding to the linear semi-group structure of φ(t; τ) under additions of the temporal
scale parameter τ . In terms of Laplace transforms, we have

L (φ(·; τ1) ∗ φ(·; τ2)) = (Lφ(·; τ1))(Lφ(·; τ2)) = Lφ(·; τ1 + τ2) (164)

or more explicitly in terms of one-sided and finite support convolution operations

φ(·; τ1) ∗ φ(·; τ2) = φ(·; τ1 + τ2). (165)

Due to this semi-group structure, the time-causal scale-space also satisfies the cascade smooth-
ing property

L(·; τ2) = φ(·; τ2 − τ1) ∗ L(·; τ1). (166)

and so do all temporal scale-space derivatives

Ltα(·; τ2) = φ(·; τ2 − τ1) ∗ Ltα(·; τ1). (167)

Alternatively, we can also obtain the temporal scale-space derivatives by convolution with
temporal derivatives of the time-causal kernel

Ltα(·; τ) = φtα(·; τ) ∗ f(·). (168)

Geometric covariance properties. This spatio-temporal scale-space concept is closed un-
der (i) rescalings of the spatial and temporal dimensions, (ii) affine transformations in the
spatial domain and (iii) Galilean transformations of space-time (Lindeberg 2011, section 5.1.2).
Therefore, it satisfies the natural transformation properties that allow it to handle:

• image data acquired with different spatial and/or temporal sampling rates,

• image structures of different spatial and/or temporal extent,

• objects at different distances from the camera,

• the linear component of perspective deformations and

• the linear component of relative motions between objects in the world and the observer.

Similar covariance properties hold also for the Gaussian spatio-temporal scale-space.



8 Temporal smoothing kernels

This section gives explicit expressions for a number of kernels that can be used for modelling
the temporal smoothing step in the spatio-temporal scale-space concepts described in this
article.

8.1 The truncated and time-delayed Gaussian kernel

The regular (non-centered) one-dimensional time-delayed Gaussian kernel is of the form

g(t; τ, δ) =
1√
2πτ

e−(t−δ)2/2τ (169)

with its regular first- and second-order derivatives

gt(t; τ, δ) = −(t− δ)
τ

g(t; τ, δ) = − (t− δ)√
2π t τ3/2

e−(t−δ)2/2τ (170)

gtt(t; τ, δ) =
((t− δ)2 − τ)

τ2
g(t; τ, δ) =

((t− δ)2 − τ)√
2π t2 τ5/2

e−(t−δ)2/2τ (171)

Graphs of these kernels are shown in figure 36. Notably, these kernels are not strictly time
causal. To arbitrary degree of accuracy, however, they can by truncation be approximated
by truncated time-causal kernels, provided that the time delay δ is chosen sufficiently long
in relation to the temporal scale τ . Hence, the choice of δ leads to a trade-off between
the computational accuracy of the implementation and the temporal response properties as
delimited by a non-zero time delay. This problem, however, arises only for real-time analysis.
For off-line computations, the time delay can in many cases be set to zero. In this respect,
the truncated and time-shifted Gaussian kernels may serve as a simplest possible model for
a temporal scale-space representation, provided that the requirements of temporal causality
and temporal recursivity are relaxed.
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Figure 36: The time-shifted Gaussian kernel g(t; τ, δ) = 1/
√

2πτ exp(−(t− δ)2/2τ) for τ = 1 and
δ = 4 with its first- and second-order temporal derivatives.

8.2 Truncated exponential kernels

When coupling a set of truncated exponential filter in cascade, the primitive time constants µi
should as previously describe preferably be chosen such that the composed time constants τk
are distributed according to a geometric series (129). The explicit expression for h(r)

composed

will, however, therefore in general be rather complex. If we, however, for the ease of theoret-
ical analysis consider the specific modelling case with all µi being equal, i.e., µi = µ, then
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Figure 37: Equivalent kernels hcomposed(t; µ) = ∗ki=1hexp(t; µ) corresponding to the composition
of k truncated exponential kernels hexp(t; µ) = 1

µ exp−t/µ having the same time constant µ, with
their first- and second-order derivatives. (top row) k = 4 and µ = 1/4. (bottom row) k = 16 and
µ = 1/16.
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Figure 38: Equivalent kernels hcomposed(t; µ) = ∗ki=1hexp(t; µi) corresponding to the composition
of k = 7 truncated exponential kernels with different time constants defined from a self-similar
distribution of the temporal scale levels according to equations (129) and (131) and corresponding
to a uniform distribution in terms of effective temporal scale τeff = log τ with τmin = 0.1 and
τmax = 1.

a closed form analysis becomes much simpler. Straightforward computation of the inverse
Laplace transform of (116) shows that the equivalent convolution kernel is of the form

hcomposed(t; µ, k) = L−1

(
1

(1 + µq)k

)
=
tk−1 e−t/µ

µk Γ(k)
(t > 0) (172)

where the composed kernel has mean value M = kµ and variance V = kµ2. Note that in
contrast to the primitive truncated exponentials, which are discontinuous at the origin, these
kernels are continuous of order k−1, thus allowing for differentiation up to order k−1. The



corresponding expressions for the first- and second-order derivatives are

hcomposed,t(t; µ, k) = µ−k−1tk−2 ((k − 1)µ− t)
Γ(k)

e−t/µ

= −(t− (k − 1)µ)

µt
hcomposed,t(t; µ, k) (173)

hcomposed,tt(t; µ, k) = µ−k−2tk−3

(
(k2 − 3k + 2)µ2 − 2(k − 1)tµ+ t2

)
Γ(k)

e−t/µ

=

((
k2 − 3k + 2

)
µ2 − 2(k − 1)tµ+ t2

)
µ2t2

hcomposed,t(t; µ, k) (174)

Figure 37 shows graphs of these kernels for two combinations of µ and k corresponding
to a similar value of the mean m = k µ. As can be seen from the graphs, the kernels are
highly asymmetric for small values of k, whereas they become gradually more symmetric
as the value of k increases. Figure 38 shows examples of kernels corresponding to a set of
truncated exponential kernels having different time constants as defined from equations (129)
and (131) and corresponding to a self-similar distribution in terms of effective scale.

8.3 The time-causal semi-group and non-enhancement kernel φ(t; τ)

The time-causal kernel also previously studied in the context of heat conduction in solids
(Carslaw & Jaeger 1959) has the explicit expression

φ(t; τ) =
τ√

2π t3/2
e−τ

2/2t (175)

with its first- and second-order derivatives given by

φt(t; τ) = −τ(3t− τ2)

2
√

2π t7/2
e−τ

2/2t = −(3t− τ2)

2t2
φ(t; τ) (176)

φtt(t; τ) =
(15t2 − 10tτ2 + τ4)

4
√

2π τ11/2
e−τ

2/2t =
(15t2 − 10tτ2 + τ4)

4t4
φ(t; τ) (177)

see figure 39 for graphs.
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Figure 39: The time-causal kernel φ(t; τ) = 1/
√

2πt3 τ exp(−τ2/2t) for τ = 1 with its first- and
second-order temporal derivatives.

To visualize the temporal response properties of the one-dimensional time-causal kernel
φ(t; τ), we can also compute the response to a step function fstep(t) = H(t) = 1 for t > 0
and fstep(t) = H(t) = 0 for t < 0

Lstep(t; τ) = erfc

(
τ√
2t

)
(178)



and to a linear ramp framp(t) = t (see figure 40)

Lramp(t; τ) = (t+ τ2) erfc

(
τ√
2t

)
− e−

τ2

2t

√
2

π
τ
√
t. (179)
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Figure 40: The response dynamics of the one-dimensional time-causal scale-space kernel φ(t; τ) to
(left) a unit step function and (right) a linear ramp at temporal scale τ = 1.

9 History of axiomatic scale-space formulations

When (Witkin 1983) coined the term “scale-space”, he was concerned with one-dimensional
signals and observed that new local extrema cannot be created under Gaussian convolutions.
Specifically, he applied this property to zero-crossings of the second-order derivative to con-
struct so-called “fingerprints”. This observation shows that Gaussian convolution satisfies
certain sufficiency results for being a smoothing operation. The first proof in the Western
literature of the necessity of Gaussian smoothing for generating a scale-space was given by
(Koenderink 1984), who also gave a formal extension of the scale-space theory to higher di-
mensions. He introduced the concept of causality, which means that new level surfaces must
not be created in the scale-space representation when the scale parameter is increased. By
combining causality with the notions of isotropy and homogeneity, which essentially mean
that all spatial positions and all scale levels must be treated in a similar manner, he showed
that the scale-space representation must satisfy the diffusion equation

∂tL =
1

2
∇2L. (180)

Related necessity results were given by (Babaud et al. 1986) and by (Yuille & Poggio 1986).
(Lindeberg 1990) considered the problem of characterizing those kernels in one dimen-

sion that share the property of not introducing new local extrema or new zero-crossings in a
signal under convolution. Such scale-space kernels can be completely classified using classi-
cal results by (Schoenberg 1950, Schoenberg 1953). For continuous signals, it can be shown
that all such non-trivial scale-space kernels can be decomposed into Gaussian kernels and
truncated exponential functions. By imposing a semi-group structure on scale-space kernels,
the Gaussian kernels will then be singled out as a unique choice. For discrete signals, the
corresponding result is that all discrete scale-space kernels can be decomposed into general-
ized binomial smoothing, moving average or first-order recursive filtering and infinitesimal
smoothing with the discrete analogue of the Gaussian kernel. To express a corresponding



theory for higher-dimensional signals, (Lindeberg 1990) reformulated Koenderink’s causal-
ity requirement into non-enhancement of local extrema and combined this requirement with
a semi-group structure as well as an infinitesimal generator and showed that all such discrete
scale-spaces must satisfy semi-discrete diffusion equations. A corresponding scale-space for-
mulation for continuous signals based on non-enhancement of local extrema for rotationally
symmetric smoothing kernels was presented in (Lindeberg 1996).

A formulation by (Florack et al. 1992) with continued work by (Pauwels et al. 1995)
shows that the class of allowable scale-space kernels can also be restricted by combining a
semi-group structure of convolution operations with scale invariance and rotational symme-
try. When (Florack et al. 1992) studied this approach, they used separability in Cartesian
coordinates as an additional constraint and showed that this lead to the Gaussian kernel. Sep-
arability should, however, not be counted as a scale-space axiom, since it is a coordinate
dependent property related to issues of implementation. In addition, the requirement of sepa-
rability in combination with rotational symmetry would per se fixate the smoothing kernel to
be a Gaussian.11 If the requirement about separability on the other hand is relaxed, (Pauwels
et al. 1995) showed that this leads to a one-parameter family of scale-spaces, with Fourier
transforms of the form

ĥ(ω; s) = e−α|σω|
p
. (181)

where σ =
√
s. Within this class, it can furthermore be shown that only the exponents p that

are even integers lead to differential equations that have local infinitesimal generators of a
classical form. Specifically, out of this countable set in turn, only the choice p = 2 gives rise
to a non-negative convolution kernel, which leads to the Gaussian kernel.

There are, however, also possibilities of defining scale-space representations for other
values of p. The specific case with p = 1 has been studied by (Felsberg & Sommer 2004),
who showed that the corresponding scale-space representation is in the two-dimensional case
given by convolution with Poisson kernels of the form

P (x; s) =
s

2π(
(
s
2

)2
+ |x|2)3/2

(182)

(Duits et al. 2003, Duits et al. 2004) have investigated the cases with other non-integer values
of p in the range ]0, 2[ and showed that such families of self-similar α-scale-spaces (with
α = p/2) can be modelled so-called pseudo-partial differential equations of the form

∂sL = −1

2
(−∆)p/2L (183)

These scale-spaces can be related to the theory of Lévy processes and infinitely divisible
distributions. For example, according to this theory a non-trivial probability measure on RN
is α-stable with 0 < α ≤ 2 if and only if its Fourier transform is of the form (181) with
p = α (Sato 1999, page 86). These scale-space do, however, not obey non-enhancement of
local extrema.

11This result can be easily verified as follows: Consider for simplicity the two-dimensional case. Rotational
symmetry and separability imply that h must satisfy h(r cosφ, r sinφ) = h1(r) = h2(r cosφ)h2(r sinφ) for
some functions h1 and h2 (where (r, φ) are polar coordinates). Inserting φ = 0 shows that h1(r) = h2(r)h2(0).
With ψ(ξ) = log(h2(ξ)/h2(0)) this relation reduces to ψ(r cosφ) + ψ(r sinφ) = ψ(r). Differentiating
this relation with respect to r and φ and combining these derivatives shows that ψ′(r sinφ) = ψ′(r) sinφ.
Differentiation gives 1/r = ψ′′(r)/ψ′(r) and integration log r = logψ′(r)− log b for some b. Hence, ψ′(ξ) =
bξ and h2(ξ) = a exp(bξ2/2) for some a and b. Hence, if we would include both separability and rotational
symmetry as scale-space axioms, we would not be able to derive any other kernels than the Gaussian.



For the specific family of Gaussian scale-space representations (Koenderink & van Doorn
1992) carried out a closely related study, where they showed that Gaussian derivative oper-
ators are natural operators to derive from a scale-space representation, given the assumption
of scale invariance. Axiomatic derivations of image processing operators based on scale
invariance have also been given in earlier Japanese literature (Weickert et al. 1999).

With regard to temporal data, the first proposal about a scale-space for temporal data
was given by (Koenderink 1988) by applying Gaussian smoothing to a logarithmically trans-
formed time axes. Such temporal smoothing filters have been considered in follow-up works
by (Florack 1997) and (ter Haar Romeny et al. 2001). These approaches, however, appear
to require infinite memory of the past and have so far not been developed for computational
applications. To handle time-causality in a manner more suitable for real-time implemen-
tation, (Lindeberg & Fagerström 1996) expressed a strictly time-recursive space-time sepa-
rable spatio-temporal scale-space model based on cascades of temporal scale-space kernels
in terms of either truncated exponential functions or first-order recursive filters. These tem-
poral scale-space models also had the attractive and memory saving property that tempo-
ral derivatives could be computed from differences between temporal channels at different
scales, thus eliminating the need for complimentary time buffering. A similar computa-
tion of temporal derivatives has been used by (Fleet & Langley 1995). Early work on non-
separable spatio-temporal scale-spaces with velocity adaptation was presented in (Lindeberg
1997, Lindeberg 2002) which was then developed into applications regarding recognition of
activities and Galilean invariant image descriptors in (Laptev & Lindeberg 2004c, Laptev
& Lindeberg 2004a, Lindeberg et al. 2004, Laptev & Lindeberg 2004b, Laptev et al. 2007)
based on a Gaussian spatio-temporal scale-space. (Fagerström 2005, Fagerström 2007) then
studied scale-invariant continuous scale-space models that allows for the construction of
continuous semi-groups over the internal memory representation and in a special case lead
to a diffusion formulation. An extension and combination of several of these linear spa-
tial, affine and spatio-temporal concepts into a unified framework was recently presented in
(Lindeberg 2011).

Outside the class of linear operations, there is also a large literature on non-linear scale-
spaces (ter Haar Romeny 1994). In particular, the works by (Alvarez et al. 1993) and
(Guichard 1998) have many structural similarities to the linear/affine/spatio-temporal scale-
space formulations in terms of semi-group structure, infinitesimal generator and invariance
to rescalings and affine or Galilean transformations. Non-linear scale-space that obey similar
properties as non-enhancement of local extrema have been studied in particular by (Weickert
1998). With close relationship to non-enhancement of local extrema, the maximum principle
has been used as a sufficient condition for defining linear or non-linear scale-space represen-
tations (Hummel & Moniot 1989, Alvarez et al. 1993).

10 Summary and conclusions

We have presented a generalized theory for Gaussian scale-space representation of spatial and
spatio-temporal data. Starting from a general condition about non-creation of spurious image
structures with increasing scale formalized in terms of non-enhancement of local extrema, we
have described the semi-groups of convolution transformations that obey this requirement on
different types of spatial and spatio-temporal image domains based on general theoretical
necessity results in (Lindeberg 2011). The resulting theory comprises the existing contin-
uous scale-space theory on symmetric spatial domains, with extensions to non-symmetric
anisotropic spatial domains as well as both non-causal and time-causal spatio-temporal do-



mains. Specifically, we have shown that this combination of scale-space axioms makes it
possible to axiomatically derive the notions of:

• rotationally symmetric Gaussian scale-space on isotropic spatial domains,

• affine Gaussian scale-space on anisotropic spatial domains,

• Gaussian spatio-temporal scale-space on non-causal spatio-temporal domains, and

• two time-causal and time-recursive spatio-temporal scale-spaces on time-causal spatio-
temporal domains.

A main message is that a much richer structure of affine as well as spatio-temporal filters can
be obtained if we start from a reformulation of Koenderink’s causality requirement into non-
enhancement of local extrema, and then relax the requirement of spatial symmetry that was
prevalent in the earliest scale-space formulations as well as most follow-up works. We have
also described how a different time-causal and time-recursive temporal and spatio-temporal
scale-space concept with weaker theoretical properties can be constructed by coupling a set
truncated exponential filters corresponding to first-order integrators in cascade and be ex-
tended from a purely temporal to a spatio-temporal domain in a structurally similar way as
two other spatio-temporal scale-space concepts are obtained from fully axiomatic derivations
from a set of natural spatio-temporal scale-space axioms.

In companion works, such spatial, affine and spatio-temporal scale-spaces have been
shown to be highly useful for different tasks in computer vision, by allowing the vision
system to take into explicit account as well as to compensate for the following type of image
transformations that arise when a vision system observes a real world:

• objects composed of different types of image structures at different scales,

• objects observed at different distances between the observer (camera) and the object,

• affine transformations arising from the first-order linearized component of the perspec-
tive mapping, and

• Galilean transformations arising because of relative motions between the observer and
objects in the world.

Indeed, by considering more general covariance matrices for anisotropic handling of different
dimensions and as well as spatial and/or spatio-temporal derivative operators applied to cor-
responding filters, a much richer family of filter shapes can be generated than from rotation-
ally symmetric Gaussian kernels. For these Gaussian or Gaussian-related scale-spaces, all the
generalized derivative filters resulting from the theory do also obey non-enhancement of local
extrema as well as a transfer of the semi-group property into a cascade smoothing property.
For the time-recursive scale-space based on truncated exponential filters coupled in cascade,
the temporal smoothing stage guarantees non-creation of new local extrema or equivalently
new zero-crossings when the temporal smoothing operation is applied to a purely temporal
signal. In (Lindeberg 2011, Section 6) and (Lindeberg 2013a, Lindeberg 2013b) it is shown
that the spatial and spatio-temporal derivative operations resulting from this theory give rise
to receptive field profiles with high similarities to receptive fields recorded from biologi-
cal vision. Indeed, from spatial and spatio-temporal derivatives of spatial or spatio-temporal
scale-space kernels derived from this theory, it is possible to generate idealized receptive field
models similar to all the basic types of receptive fields reported in the surveys of classical



receptive fields in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) by
(DeAngelis et al. 1995, DeAngelis & Anzai 2004). In (Lindeberg 2013a, Lindeberg 2013b)
it is furthermore proposed that we can explain the basic types of receptive fields found in the
first stages of biological vision, which are tuned to different scales and orientations in space
as well as different motion directions in space-time, from the requirement that the visual
system should have the ability to compute invariant image representations from the image
data with regard to the basic image transformations (symmetry properties) that occur relative
to the environment corresponding to variations in viewing distance, viewing direction and
relative motion between objects and the observer (see figure 4). If the underlying families of
receptive fields would not allow for the computation of covariant image representations un-
der basic image transformations or approximations thereof, there would be systematic errors
arising from the resulting image representations corresponding to the amount of mismatch
between the backprojections of the receptive fields onto the physical world (as illustrated in
figure 5). This treatment does hence show that a very rich and both general and biologically
plausible set of visual front-end operations can be obtained from a unified and generalized
Gaussian scale-space theory that has been derived in an axiomatic way from first principles
that reflect structural symmetry properties in relation to the environment.

For modelling and describing the properties of the resulting scale-space operations, we
have here throughout used the corresponding spatial, spatio-chromatic or spatio-temporal re-
ceptive fields as primary objects in the theory. In a practical implementation, however, it
should be noted that it may not at all be necessary to implement the corresponding recep-
tive field operators in terms of explicit linear filters. Instead, the spatial and spatio-temporal
smoothing operations can be implemented using diffusion equations, possibly in combina-
tion with corresponding temporal recurrence relations for the time-recursive scale-spaces.
By varying the conductivities between neighbouring picture elements, local image features
corresponding the application of equivalent receptive fields with different shapes (elonga-
tion, orientation and/or orientation) in space or space-time can thereby be computed directly
by applying local derivative approximations to the scale-space smoothed image data. This
also opens up interesting possibilities for adaptive smoothing schemes, where the local con-
ductivities in the diffusion equations and/or the temporal recurrence relations are adapted to
the local spatial or spatio-temporal image structure, which in addition to achieving covari-
ance with respect to local affine or local Galilean image deformations could also be used for
achieving a larger amount of local smoothing along e.g. edge or ridge structures than across
them. Such locally adapted image operations could be of particular interest for expressing
locally adapted imaging or image restoration schemes.

There are also other types of non-Gaussian scale-space theories, such as the self-similar
scale-space families arising from equation (181) or its affine generalization ĥ(ω; s) =

e−α|Bω|
p
, alternatively ĥ(ω; s) = e−α(ωTBTBω)p/2 , where B is a non-singular N × N

matrix. The resulting kernels will then be affine warpings of the Poisson kernels in equa-
tion (182) or the solutions of the pseudo-partial differential equation (183). In this context
it should, however, be stressed that the generalized Gaussian scale-space theory presented
in this article constitutes a particularly convenient class of scale-spaces with most attrac-
tive properties. For example, compared to the Poisson kernel in equation (182), the Gaussian
smoothing filter decreases much faster towards infinity and faster than any polynomial, which
implies a very strong regularizing property for any scale-space derivative. Compared to the
α-scale-spaces, the Gaussian scale-spaces have classical infinitesimal generators, straight-
forward closed-form expressions in the spatial domain and obey non-enhancement of local
extrema. The Gaussian scale-spaces are also maximally uncommitted in the sense that their



smoothing kernels have maximum entropy and minimize the uncertainty relation.
We propose that this generalized axiomatic scale-space framework constitutes both a

natural, theoretically well-founded and general basis to consider (i) when designing visual
front-end operations for computer vision or image analysis systems and (ii) when modelling
some of the earliest processing stages in biological vision.
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