
Generalized Gaussian scale-space axiomatics
comprising linear scale-space, affine scale-space

and spatio-temporal scale-space∗

Tony Lindeberg

School of Computer Science and Communication
KTH (Royal Institute of Technology)

SE-100 44 Stockholm, Sweden

http://www.csc.kth.se/∼tony
Email: tony@csc.kth.se

Technical report ISRN KTH/CSC/CV–10/03–SE
ISSN 1653-7092
November 2010

Available from
http://www.csc.kth.se/∼tony/abstracts/Lin10-GenGaussScSp.html

Shortened version in
Journal of Mathematical Imaging and Vision (in press)

Digitally published with DOI: 10.1007/s10851-010-0242-2
http://dx.doi.org/10.1007/s10851-010-0242-2

∗The support from the Swedish Research Council, Vetenskapsrådet (contract 2004-4680), the Royal Swedish
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Abstract

This paper describes a generalized axiomatic scale-space theory that makes it possible
to derive the notions of linear scale-space, affine Gaussian scale-space and linear spatio-
temporal scale-space using a similar set of assumptions (scale-space axioms).

The notion of non-enhancement of local extrema is generalized from previous appli-
cation over discrete and rotationally symmetric kernels to continuous and more general
non-isotropic kernels over both spatial and spatio-temporal image domains. It is shown
how a complete classification can be given of the linear (Gaussian) scale-space con-
cepts that satisfy these conditions on isotropic spatial, non-isotropic spatial and spatio-
temporal domains, which results in a general taxonomy of Gaussian scale-spaces for
continuous image data. The resulting theory allows filter shapes to be tuned from spe-
cific context information and provides a theoretical foundation for the recently exploited
mechanisms of shape adaptation and velocity adaptation, with highly useful applications
in computer vision.

It is also shown how time-causal spatio-temporal scale-spaces can be derived from
similar assumptions. The mathematical structure of these scale-spaces is analyzed in
detail concerning transformation properties over space and time, the temporal cascade
structure they satisfy over time as well as properties of the resulting multi-scale spatio-
temporal derivative operators. It is also shown how temporal derivatives with respect to
transformed time can be defined, leading to the formulation of a novel type of analogue
of scale normalized derivatives for time-causal scale-spaces.

The kernels generated from these two types of theories have interesting relations
to biological vision. We show how filter kernels generated from the Gaussian spatio-
temporal scale-space as well as the time-causal spatio-temporal scale-space relate to
spatio-temporal receptive field profiles registered from mammalian vision. Specifically,
we show that there are close analogies to space-time separable cells in the LGN as well
as to both space-time separable and non-separable cells in the striate cortex. We do also
present a set of plausible models for complex cells using extended quasi-quadrature
measures expressed in terms of scale normalized spatio-temporal derivatives.

The theories presented as well as their relations to biological vision show that it
is possible to describe a general set of Gaussian and/or time-causal scale-spaces using
a unified framework, which generalizes and complements previously presented scale-
space formulations in this area.

Keywords: scale-space, multi-scale representation, scale-space axioms, non-enhancement
of local extrema, causality, scale invariance, Gaussian kernel, Gaussian derivative, spatio-
temporal, affine, spatial, temporal, time-recursive, receptive field, diffusion, computer
vision, image processing.
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1 Introduction

When analyzing sensory data, such as images, a fundamental issue arises from the fact that
real-world objects may appear in different ways depending upon the scale of observation.
This insight is a major motivation for the development of multi-scale representations such
as pyramids (Burt 1981, Crowley 1981) and scale-space representation (Iijima 1962, Witkin
1983, Koenderink 1984, Koenderink & van Doorn 1992, Lindeberg 1994b, Lindeberg 1994a,
Sporring et al. 1996, Florack 1997, ter Haar Romeny 2003).

A main reason why a multi-scale representation is essential is that the type of information
that can be extracted from an image measurement is largely determined by the relationship
between the size of the image operator (the probe size) and the size of the image structures.
In the lack of any a priori knowledge about what image structures are relevant in a given
situation, there is no way for the visual agent to know what probe size is appropriate for
analyzing a given data set. Hence, if one aims at a vision system with the ability to handle
large variabilities in its input data, the only reasonable approach is to consider image mea-
surements performed for a large range of probe sizes. During the last two decades, there has
been a fruitful wave of research on this topic.

A main stream of research has been concerned with the choice of image operators, In-
deed by studying the problem of how to construct a multi-scale representation, a general and
multi-purpose theory for early visual operations can be stated, where the Gaussian kernel and
its derivatives arise as a canonical family of image operators given natural requirements of a
visual front-end. Complementary works have demonstrated that these filters can serve as a
basis for expressing a large number of visual operations, including feature detection, stereo
matching, computation of optic flow, tracking, estimation of shape cues and view-based ob-
ject recognition (Lindeberg 2008).

Traditionally, however, most works on multi-scale representations have been concerned
with image data defined on isotropic spatial domains, characterized by the fact that image
data are accessible in all directions and moreover that all directions are equally treated. Dur-
ing recent years, these ideas have been extended to non-isotropic spatial domains in terms
of affine Gaussian scale-space, where different amounts of smoothing may be performed in
different directions, for example to account for the linear (affine) component of perspective
deformations (Lindeberg 1994b, Lindeberg & Gårding 1997), as well as to spatio-temporal
scale-space, where space and time are intrinsically different dimensions and in addition
Galilean motions may occur (Lindeberg 1997a). In particular, when dealing with tempo-
ral and/or spatio-temporal data in an on-line situation, we have to accept the fact that we
cannot allow filters to extend into the future. For this reason, the smoothing filters have to
be time-causal (Koenderink 1988, Lindeberg & Fagerström 1996). The subject of this article
is to show how a previously stated scale-space formulation in terms of non-enhancement of
local extrema (Lindeberg 1990, Lindeberg 1996) can be used for deriving Gaussian scale-
spaces over non-isotropic as well as time-casual domains in an axiomatic way, by relaxing
the requirement of rotationally symmetric filters that has been used in previous applications
of non-enhancement of local extrema as a scale-space axiom.

It will be shown that a parameterized family of linear scale-spaces is obtained by this
construction, including (i) the traditional linear scale-space representation for rotationally
symmetric spatial domains, (ii) the affine Gaussian scale-space for non-isotropic spatial im-
age domains that may be subject to local or global affine image deformations and (iii) spatio-
temporal linear scale-space for spatio-temporal image domains subject to local Galilean mo-
tions. Spatio-temporal scale-spaces will be developed for both non-causal and time-causal
spatio-temporal domains. Compared to the isotropic linear scale-space, these affine and
spatio-temporal scale-spaces give rise to non-separable and elongated filter kernels over space
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and time, which allow for shape adaptation in space (Lindeberg & Gårding 1997, Ballester &
Gonzalez 1998, Baumberg 2000, Schaffalitzky & Zisserman 2001, Mikolajczyk & Schmid
2004, Tuytelaars & van Gool 2004) and velocity adaptation along the direction of motion
(Lindeberg 1997a, Nagel & Gehrke 1998, Laptev & Lindeberg 2004, Lindeberg et al. 2004a,
Laptev et al. 2007). Notably the receptive field profiles generated by this scale-space concept
have high qualitative similarity to receptive fields profiles recorded from biological vision
(DeAngelis et al. 1995, Valois et al. 2000) in analogy with previously established relations
between spatial receptive fields and Gaussian derivative operators (Young 1985, Young 1987)
with extensions to spatio-temporal data in (Young et al. 2001, Young & Lesperance 2001).

1.1 Outline of the presentation

This paper is organized as follows: Section 2 gives a review of related work with emphasis on
axiomatic derivations of linear scale-spaces. Section 3 defines the notion of non-enhancement
of local extrema and gives formal proofs showing, by both necessity and sufficiency, how
this requirement in combination with a semi-group structure implies both existence and a
restriction on a corresponding infinitesimal generator. Specifically, it is shown how this al-
gebraic structure implies that the scale-space has to satisfy a family of parabolic differential
equations, where the second-order term is determined by a positive semi-definite covariance
matrix. The consequences of this result with regard to different types of image domains
are developed in section 4 with emphasis on either rotationally symmetric, affine spatially
anisotropic or non-causal spatio-temporal domains.

Up to this point, we have throughout assumed non-causal temporal image data, which is
relevant for processing static spatial domains or spatio-temporal data in off-line situations.
Then, to be able to handle time-causal data in on-line scenarios, where information about the
future is not available, section 5 shows how the previously stated scale-space formulation can
be reformulated to handle time-causal data, where we do only have access to the past.

Interestingly, there are close relations between these scale-space theories and biological
vision. Section 6 shows how the multi-scale spatio-temporal derivative operators from the
two types of spatio-temporal scale-spaces relate to receptive fields registered in mammalian
vision. Finally, section 7 concludes with a summary and discussion about some main results.

Since the mathematical structure of the resulting time-causal scale-space turns out to
be more complicated than for the Gaussian scale-space, we find it important to describe its
properties in more detail. Therefore, appendix E includes a brief review of closely related
theory for heat conduction in solids, which is then transferred to spatio-temporal scale-space.
Specifically, since this theory contains a singular convolution transformation, which may be
unknown to many readers, we five formal proofs for the fulfillment of a necessary boundary
condition and describe further properties of the solutions.

To simplify the flow through the presentation, we have also put some other more technical
material in appendix sections. Appendix B develops the specific regularity properties of
the scale-space kernels over scales that are used when deriving formal necessity results. In
appendix C we describe relations between the proposed notion of non-enhancement of local
extrema and the maximum principle. Appendix D gives a theory for how Galilean invariant
fixed points can be constructed in a spatio-temporal scale-space representation as a way of
interpreting the output from an ensemble of velocity-adapted scale-space filters. Appendix F
gives the formal definitions and proofs regarding the axiomatic derivation of the time-causal
spatio-temporal scale-space, and appendix G gives explicit expression for the purely temporal
part of the spatio-temporal scale-space filters. For introductory purposes, we also have an
appendix A on scale-space axioms for the linear (Gaussian) scale-space.

2



2 Related work on axiomatic scale-space formulations

The Gaussian scale-space concept satisfies a number of useful properties1 that make it partic-
ularly attractive for generating a scale-space representation; (i) linearity, (ii) shift invariance,
(iii) semi-group property, (iv) existence of an infinitesimal generator, (v) non-creation of lo-
cal extrema or zero-crossings in the one-dimensional case, (vi) non-enhancement of local
extrema in any number of dimensions, (vii) rotational symmetry, (viii) positivity, (ix) unit
normalization, and (x) scale invariance. In fact, it can be shown that the Gaussian ker-
nel by necessity is a unique choice for a number of different combinations of subsets of
these scale-space axioms (Koenderink 1984, Babaud et al. 1986, Yuille & Poggio 1986,
Lindeberg 1990, Lindeberg 1994b, Pauwels et al. 1995, Lindeberg 1996, Florack 1997, We-
ickert et al. 1999, ter Haar Romeny 2003, Lindeberg 2008)

g(x; s) =
1

(2πs)N/2
e−(x2

1+···+x2
N )/2s (1)

The Gaussian function is also special in the respect that it (xi) minimizes the uncertainty
relation and (xii) is the probability density function with maximum entropy. The maximum
entropy result can be interpreted as the Gaussian kernel making minimal use of information.
These properties are also desirable when constructing a scale-space representation, since
the uncertainty relation makes the smoothing operation well localized over space and scales,
while the maximum entropy result means that the Gaussian kernel is maximally uncommitted.

When (Witkin 1983) coined the term “scale-space”, he was concerned with one-dimensional
signals and observed that new local extrema cannot be created under Gaussian convolutions.
Specifically, he applied this property to zero-crossings of the second-order derivative to con-
struct so-called “fingerprints”. This observation shows that Gaussian convolution satisfies
certain sufficiency results for being a smoothing operation. The first proof in the Western
literature of the necessity of Gaussian smoothing for generating a scale-space was given by
(Koenderink 1984), who also gave a formal extension of the scale-space theory to higher di-
mensions. He introduced the concept of causality, which means that new level surfaces must
not be created in the scale-space representation when the scale parameter is increased. By
combining causality with the notions of isotropy and homogeneity, which essentially mean
that all spatial positions and all scale levels must be treated in a similar manner, he showed
that the scale-space representation must satisfy the diffusion equation

∂tL =
1
2
∇2L. (2)

Related necessity results were given by by (Babaud et al. 1986) and by (Yuille & Poggio
1986).

(Lindeberg 1990) considered the problem of characterizing those kernels in one dimen-
sion that share the property of not introducing new local extrema or new zero-crossings in a
signal under convolution. Such scale-space kernels can be completely classified using classi-
cal results by (Schoenberg 1950, Schoenberg 1953). For continuous signals, it can be shown
that all such non-trivial scale-space kernels can be decomposed into Gaussian kernels and
truncated exponential functions. By imposing a semi-group structure on scale-space kernels,
the Gaussian kernels will then be singled out as a unique choice. For discrete signals, the
corresponding result is that all discrete scale-space kernels can be decomposed into general-
ized binomial smoothing, moving average or first-order recursive filtering and infinitesimal
smoothing with the discrete analogue of the Gaussian kernel. To express a corresponding

1See appendix A for a more detailed discussion about these scale-space properties.
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theory for higher-dimensional signals, (Lindeberg 1990) reformulated Koenderink’s causal-
ity requirement into non-enhancement of local extrema and combined this requirement with
a semi-group structure as well as an infinitesimal generator and showed that all such discrete
scale-spaces must satisfy semi-discrete diffusion equations. A corresponding scale-space for-
mulation for continuous signals based on non-enhancement of local extrema for rotationally
symmetric smoothing kernels was presented in (Lindeberg 1996).

A formulation by (Florack et al. 1992) with continued work by (Pauwels et al. 1995)
shows that the class of allowable scale-space kernels can also be restricted by combining a
semi-group structure of convolution operations with scale invariance and rotational symme-
try. When (Florack et al. 1992) studied this approach, they used separability in Cartesian
coordinates as an additional constraint and showed that this lead to the Gaussian kernel. If
the requirement about separability on the other hand is relaxed, (Pauwels et al. 1995) showed
that this leads to a one-parameter family of scale-spaces, with Fourier transforms of the form

ĥ(ω; s) = e−α|σω|
p
. (3)

where σ =
√
s. Within this class, it can furthermore be shown that only the exponents p that

are even integers lead to differential equations that have local infinitesimal generators of a
classical form.2 Specifically, out of this countable set in turn, only the choice p = 2 gives
rise to a non-negative convolution kernel, which leads to the Gaussian kernel.

There are, however, also possibilities of defining scale-space representations for other
values of p. The specific case with p = 1 has been studied by (Felsberg & Sommer 2004),
who show that the corresponding scale-space representation is in the two-dimensional case
given by convolution with Poisson kernels of the form

P (x; s) =
s

2π(
(
s
2

)2 + |x|2)3/2
(4)

(Duits et al. 2003, Duits et al. 2004) have investigated the cases with other non-integer values
of p in the range ]0, 2[ and showed that such families of self-similar α-scale-spaces (with
α = p/2) can be modelled so-called pseudo-partial differential equations of the form

∂sL = −1
2

(−∆)p/2L (5)

These scale-spaces can be related to the theory of Lévy processes and infinitely divisible
distributions. For example, according to this theory a non-trivial probability measure on RN

is α-stable with 0 < α ≤ 2 if and only if its Fourier transform is of the form (3) with
p = α (Sato 1999, page 86). These scale-space do, however, not obey non-enhancement
of local extrema, and we will not consider such self-similar scale-spaces with non-classical
infinitesimal generators further, since the main subject of this article is to develop a more
general theory for Gaussian scale-spaces corresponding to p = 2.

For the specific family of Gaussian scale-space representations (Koenderink & van Doorn
1992) carried out a closely related study, where they showed that Gaussian derivative oper-
ators are natural operators to derive from a scale-space representation, given the assumption
of scale invariance. Axiomatic derivations of image processing operators based on scale
invariance have also been given in earlier Japanese literature (Weickert et al. 1999).

With regard to temporal data, the first proposal about a scale-space for temporal data
was given by (Koenderink 1988) by applying Gaussian smoothing to a logarithmically trans-
formed time axes. Such temporal smoothing filters have been considered in follow-up works

2Of the form stated in equation (11) and made more precise in section 3.
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by (Florack 1997) and (ter Haar Romeny et al. 2001). These approaches, however, require in-
finite memory of the past and have so far not been developed for computational applications.
To handle time-causality in a manner more suitable for real-time implementation, (Lindeberg
& Fagerström 1996) expressed a strictly time-recursive space-time separable spatio-temporal
scale-space model based on cascades of temporal scale-space kernels in terms of either trun-
cated exponential functions or first-order recursive filters. These temporal scale-space mod-
els also had the attractive and memory saving property that temporal derivatives could be
computed from differences between temporal channels at different scales, thus eliminating
the need for complimentary time buffering. A similar computation of temporal derivatives
has been used by (Fleet & Langley 1995). Early work on non-separable spatio-temporal
scale-spaces with velocity adaptation was presented in (Lindeberg 1997a, Lindeberg 2002)
with applications to Galilean invariant image descriptors and recognition of activities in
(Laptev & Lindeberg 2004, Lindeberg et al. 2004a, Laptev et al. 2007). More recently,
(Fagerström 2005, Fagerström 2007) has studied scale-invariant continuous scale-space mod-
els that allows for the construction of continuous semi-groups over the internal memory rep-
resentation and in a special case lead to a diffusion formulation.

Outside the class of linear operations, there is also a large literature on non-linear scale-
spaces (ter Haar Romeny 1994). In particular, the works by (Alvarez et al. 1993, Guichard
1998) have many structural similarities to the linear/affine/spatio-temporal scale-space for-
mulations in terms of semi-group structure, infinitesimal generator and invariance to rescal-
ings and affine/Galilean transformations. Non-linear scale-space that obey similar properties
as non-enhancement of local extrema have been studied in particular by (Weickert 1998).
With close relationship to non-enhancement of local extrema, the maximum principle has
been used as a sufficient condition for defining linear or non-linear scale-space representa-
tions (Hummel & Moniot 1989, Alvarez et al. 1993).

3 Generalizing non-enhancement to non-isotropic domains

Out of the above mentioned large family of possibilities, we shall here start by exploring
the richer structure that can be obtained from a scale-space family if the requirements about
rotational symmetry are relaxed. To begin the treatment, let us start by restating the set of
scale-space axioms that the analysis will be based on:

3.1 Structural scale-space axioms

We would like to model an uncommitted visual front-end, that performs linear and shift-
invariant operations. Hence, we assume that each scale level L(·; s) is generated by con-
volving the original signal f with a convolution kernel T (·; s),

L(·; s) = T (·; s) ∗ f(·), (6)

in operator form written
L(·; s) = Tsf(·). (7)

Then, to ensure regularity with respect to scale, we assume that the family of scale-space
kernels T (·; s) forms a semi-group

T (·; s1) ∗ T (·; s2) = T (·; s1 + s2). (8)

This condition means that all scale levels are computed from conceptually similar operations
and that, in addition, the transformation from any fine scale level to any coarser scale level is
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of the same form as the transformation from the original signal

L(·; s2) = T (·; s2 − s1) ∗ L(·; s1). (9)

Another important consequence of imposing the semi-group requirement on the family of
convolution kernels is that if we assume reasonable continuity requirements of T with re-
spect to variations of the scale parameter s (see below), then it follows from a general result
in functional analysis (Hille & Phillips 1957) that there exists a limit case operator, the in-
finitesimal generator

Af = lim
h↓0

T (·; h) ∗ f − f
h

, (10)

such that the scale-space family satisfies a differential equation of the form

∂sL(·; s) = lim
h↓0

L(·; t+ h)− L(·; s)
h

= AL(·; s). (11)

With regard to differential equations, it is natural to formalize the non-enhancement require-
ment of local extrema in terms of a sign condition on the derivative of the scale-space family
with respect to the scale parameter. Hence, at any non-degenerate extremum point over the
image domain, in other words for each local extremum at which the determinant of the Hes-
sian matrix is non-zero, we require the following conditions3 to hold:

∂sL ≤ 0 at any non-degenerate local maximum, (12)

∂sL ≥ 0 at any non-degenerate local minimum. (13)

z

x

Figure 1: The non-enhancement condition of local extrema means that the grey-level value of a local
maximum must not increase with scale and that the grey-level of a local minimum must not decrease.

3.2 Formal definitions

To be able to use tools from functional analysis, we will initially assume that both the original
signal f and the family of convolution kernels T (·; s) are in the Banach space L2(RN ), i.e.,
f, T (·; t) ∈ L2(RN ), with the norm

‖f‖22 =
∫
x∈RN

|f |2 dx. (14)

Then also the scale-space representations L(·; s) will be in the same space, and we can
define a family of scale-space smoothing operators T (s) from L2(RN ) to itself by

L(·; s) = T (s) f. (15)
3The careful reader may note that this formulation of non-enhancement of local extrema is expressed in terms

of “vertical derivatives” ∂s in scale-space. When the signal is subject to scale-space smoothing, however, the
positions of the local extrema may change with scale by a drift velocity v. Hence, one could find it more natural
to consider derivatives along such extremum paths ∂s̄ = ∂s + v ∂x instead of “vertical derivatives” ∂s with
respect to scale. At the position of a local extremum, however, the ”horizontal component” v ∂x will be zero, and
the two types of definitions are therefore equivalent.
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The semi-group structure under convolution transformations in equation (8) in combination
with the initial condition L(·; 0) = f imply that we require a semi-group structure on the
smoothing operators {

T (s1) T (s2) = T (s1 + s2),
T (0) = I,

(16)

and in order to ensure sufficient regularity with respect to the scale parameter, we assume the
semi-group to be strongly continuous (C0) in the sense that

lim
s↓s0
‖(T (s)− T (s0))(f)‖2 = 0 (17)

should hold for each f ∈ L2(RN ) and for any s0 ≥ 0 (Hille & Phillips 1957, page 59)
(Goldstein 1985, page 14) (Pazy 1983, page 4). In terms of explicit convolution kernels, this
requirement corresponds to continuity at the origin in the sense that

lim
s↓0
‖T (·; s) ∗ f − f‖2 = 0 (18)

should hold for every f ∈ L2(RN ). Given these assumptions, it follows from a general
result in functional analysis (Hille & Phillips 1957, page 308) (Goldstein 1985, page 14)
(Pazy 1983, page 5) that there exists a limit case operator, the infinitesimal generator

Af = lim
s↓0

T (s) f − f
s

= ∂sT (s) f |s=0 , (19)

such that the scale-space family satisfies a differential equation of the form

∂sL(·; s) = lim
h↓0

L(·; s+ h)− L(·; s)
h

= A(T (s) f(·)) = AL(·; s). (20)

The set of elements f ∈ L2(RN ) for which A exists is denoted D(A). This set is not empty
and never reduces to the zero element. Actually, D(A) is even dense in L2(RN ) (Hille &
Phillips 1957, page 308) (Pazy 1983, page 5). Hence, the scale-space family will satisfy a
first-order differential equation with respect to scale.

To ensure sufficient regularity, we will also assume that the convolution kernels T (·; s) ∈
L1(RN ). This assumption implies that for all smooth functions f ∈ C∞(RN ) with compact
support, spatial derivatives of the scale-space representation L do always exist by

∂xjL(·; s) = ∂xj (T (·; s) ∗ f(·) = T (·; s) ∗ (∂xjf)(·) (21)

even at s = 0. By applying this property recursively, the scale-space representation of a
smooth signal with compact support will also be guaranteed to be smooth, i.e., L(·; s) ∈
C∞(RN ), also at s = 0.4

In the following, we will show that the requirement of non-enhancement of local ex-
trema combined with semi-group structure and regularity properties with respect to the scale
parameter imply that the scale-space family must satisfy a family of parabolic differential
equations, in which the second-order terms are determined by a positive semi-definite co-
variance matrix, while the first-order terms may be arbitrary. Specifically, the result that we

4Usually, one otherwise uses a family of smooth and rapidly decreasing smooth convolution kernels for
defining derivatives of non-differentiable functions f , by the theory of Schwartz distributions ∂xjL(·; s) =
∂xj (T (·; s) ∗ f(·) = (∂xjT (·; s)) ∗ f(·). Here, however, we start by initially weaker assumptions on the
family of convolution kernels, with the aim that the requirement of non-enhancement of local extrema will then
imply stronger restrictions on the scale-space representation when combined with with a semi-group structure
and rather modest regularity requirements on the semi-group with respect to variations of the scale parameter s.
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shall derive implies that (i) the infinitesimal operatorAmust be a local operator that depends
on local derivatives only, (ii) we cannot allow for derivatives of higher order than two, and
(iii) we cannot allow for any zero-order term either.

To be able to express the non-enhancement condition in a context where derivatives of
the scale-space representation with respect to the scale parameter are well-defined pointwise
and not only almost everywhere, we will make a further requirement explained in more detail
in appendix B that the semi-group T should obey the following regularity requirements with
respect to variations of the scale parameter

lim
h↓0

∥∥∥∥1
h

∫ h

s=0
T (s)f ds− f

∥∥∥∥
Hk(RN )

= lim
h↓0

∥∥∥∥1
h

∫ h

s=0
(T (s)− I) f ds

∥∥∥∥
Hk(RN )

= 0 (22)

for some k > N/2 and for all smooth functions f ∈ L1(Rn) ∩ C∞(RN ), where

‖u‖Hk(RN ) =
(∫

ω∈RN

(
1 + |ω|2

)k |û(ω)|2dω
)1/2

(23)

This continuity condition is referred to as C1 continuity and is a stronger condition than the
more commonly used C0 continuity of semi-groups (Hille & Phillips 1957, page 322).

As pre-requisites to the treatment that shall be performed, let us first summarize the basic
algebraic structure in terms of a definition and a lemma.

Definition 1 (Continuous pre-scale-space representation)
Let f ∈ L2(RN ) be a continuous signal and let T (s) with s ∈ R+ be a strongly continuous
semi-group of linear and shift-invariant operators from L2(RN ) to L2(RN ) according to
(16) and (18), where the convolution kernels T (·; s) are also required to be in L1(RN ) and
the semi-group is also for some value k > N/2 required to be C1 continuous with respect to
the L2-based Sobolev norm ‖ · ‖Hk(RN ) for all smooth functions f ∈ L1(RN ) ∩ C∞(RN ).
Then, the one-parameter family of signals L : RN × R+ → R given by

L(·; s) = T (s) f (24)

is said to be the continuous pre-scale-space representation of f generated by T (s).

As we have described in connection with equations (19) and (11), this algebraic structure
implies that the pre-scale-space representation will be differentiable with respect to the scale
parameter and will possess an infinitesimal generator.

Lemma 2 (A continuous pre-scale-space representation is differentiable)
Let L : RN × R+ → R be the continuous pre-scale-space representation of a signal
f ∈ L2(RN ). Then, L satisfies the differential equation

∂sL = AL (25)

for some linear and shift-invariant operator A from L2(RN ) to L2(RN ). The scale-space
representation L(·; s) of a smooth function f ∈ C∞(RN ) of compact support is smooth
as function over the spatial domain, and smooth functions f of compact support are in the
support D(A) implying that for smooth functions of compact support the partial derivatives
∂sL(x; s) are well-defined for every (x; s) ∈ RN × R+.

Proof: The basic structure follows from (Hille & Phillips 1957, page 308) and our previous
treatment. Since L is generated from f by convolutions, it follows that A must also be shift-
invariant and commute with the shift operator (S∆xf)(x) = f(x − ∆x). The operator A
does, however, not need to be bounded.
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The smoothness of L with respect to space follows from the assumption of the convo-
lution kernels T (·; s) ∈ L1(RN ) and the discussion in connection with equation (21). As
shown in appendix B, the regularity requirements on the semi-group imply that smooth func-
tions of compact support are in the domain D(A) of A implying that the partial derivatives
∂sL(x; s) are well-defined for every (x; s) ∈ RN × R. �

This property makes it possible to formulate the previously indicated scale-space property
in terms of derivatives of the scale-space representation with respect to the scale parameter,
such that the grey-level value in every local maximum point must not increase, whereas the
grey-level value in every local minimum point must not decrease.

Definition 3 (Pre-scale-space property: Non-enhancement of local extrema)
A continuous pre-scale-space representation L : RN × R+ → R of a smooth signal f ∈
L2(RN ) ∩ C∞(RN ) is said to possess continuous non-enhancement pre-scale-space prop-
erties, or equivalently not to enhance local extrema, if for every value of the scale parameter
s0 ∈ R+ it holds that if x0 ∈ RN is a critical point for the mapping x 7→ L(x; s0) and if the
Hessian matrix at this point is non-degenerate, then the derivative of L with respect to s at
this point has the same sign as the Hessian matrix, i.e.

sign ∂sL = sign traceHL. (26)

This condition is closely related to the maximum principle for elliptic and parabolic equa-
tions, however, it is not identical. The maximum principle refers to global property of a
function concerning the global maximum (or minimum), while non-enhancement of local
extrema refers to a local property concerning every local extremum (see appendix C).

Now we can state that a semi-group of operators generates is a scale-space family repre-
sentation if it leads to non-enhancement of local extrema for any input signal.

Definition 4 (Continuous non-enhancement scale-space representation)
Let T be a strongly continuous semi-group of linear and shift-invariant operators from
L2(RN ) to L2(RN ). Given a signal f ∈ L2(RN ), the pre-scale-space representation
L : RN × R+ → R of f is said to be a continuous scale-space representation of f if and
only if it for every smooth function f ′ ∈ L2(RN )∩C∞(RN ) of compact support it holds that
the pre-scale-space representation L′ : RN × R+ → R of f ′ generated by the semi-group
T (s) obeys non-enhancement of local extrema.

3.3 Necessity and sufficiency

We shall first show that these conditions by necessity imply that the scale-space family L
must satisfy the diffusion equation.

Theorem 5 (Non-enhancement scale-space for continuous signals: Necessity)
A continuous non-enhancement scale-space representation L : RN × R+ → R of a signal
f ∈ L2(RN ) satisfies a parabolic differential equation

∂sL =
1
2
∇T (Σ0∇L)− δT0 ∇L. (27)

with initial condition L(·; 0) = f(·) for some positive semi-definite covariance matrix Σ0

and some vector δ0.

Proof: The proof consists of two parts. The first part has already been presented in lemma 2,
where it was shown that a pre-scale-space family obeys a linear differential equation, where
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the infinitesimal generator is shift-invariant. Given the regularity requirements of the semi-
group, lemma 2 also implies that the scale-space representation is guaranteed to be smooth as
function over the spatial domain and that smooth functions of compact support are in D(A)
implying that the partial derivatives ∂sL(x; s) are well-defined for every (x; s) ∈ RN×R+.
In the second part, a set of counterexamples L(x; 0) = f at s = 0 will be constructed
from various simple smooth functions f of compact support to delimit the class of possible
operators.

C.1. The extremum point condition (12) in combination with definition 4 means that A
must be a pure differential operator. This can be easily understood by studying the following
class of counterexamples: Consider a smooth (C∞) function f1 = fI : RN → R such that
(i) fI has a maximum point at the origin and the Hessian matrix is negative definite at the
origin, and (ii) for some ε > 0 the test function is zero fI(x) = 0 outside a smaller circle
around the origin with |x| ≥ ε

2 . Then, we must have Af1 = AfI = C1 ≤ 0. Fixate this
function fI , the value of ε and the operator A. Consider next the test function

f2 = fI + fE (28)

where

∇fI(0) = 0, (29)

signHfI(0) < 0, (30)

fI = 0 when |x| ≥ ε/2, (31)

fE = 0 when |x| ≤ ε. (32)

while the function fE may now assume non-zero values outside the circular region |x| ≤ ε.
Let us initially assume that AfE = C2 6= 0. Then, if we consider a third test function of the
form f3 = fI + β1fE , we get

∂sf3 = AfI + β1AfE = C1 + β1C2. (33)

Obviously, the sign of this expression can be made positive and (12) be violated by a suitable
choice of β1. Hence, for any ε > 0 we have to require that AfE must be identically zero for
all functions that assume non-zero values outside the region |x| < ε. In other words, A must
be a local operator and Af can only exploit information from f at the central point. This
means that for any smooth function Af must be of the form

Af =
∑
ξ∈ZN+

aξLxξ (34)

where ξ = (ξ1, ξ2, . . . , ξN ) is a multi-index, aξ ∈ R ∀ξ and Lxξ = L
x
ξ1
1 x

ξ2
2 ...x

ξN
N

.

C.2. The extremum point condition (12) also means that AL must not contain any term
proportional to L or derivatives of order higher than two. This can be seen by considering a
test function of the form

f4(x) = (x2
1 + x2

2 + · · ·+ x2
N + β2 x

η)χ(x) (35)

for some η = (η1, η2, . . . , ηN ) ∈ ZN with |η| = |η1|+ |η2|+ · · ·+ |ηN | > 2 where χ(x) ≥ 0
is a smooth function of compact support identically equal to one χ(x) = 1 in the disk |x| ≤ 1
and identically equal to zero χ(x) = 0 outside the disk |x| ≤ 2. If aξ 6= 0 for some ξ ∈ ZN ,
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it is clear that we can choose η = ξ and by a suitable choice of β2 we can make the sign of
Af4 arbitrary and hence violate (12). Similarly, by considering a test function of the form

f5(x) = (x2
1 + x2

2 + · · ·+ x2
N + β3)χ(x) (36)

it follows that a0 must be zero. Thus, A can only contain derivatives of order one and two.

C.3. Concerning the remaining first- and second-order terms, let us first note that the non-
enhancement condition of local extrema does not impose any constraints on the first-order
terms, since the influence of the first-order terms vanishes at critical points.

Regarding the second-order terms, we can next observe that without loss of generality,
the influence of the second-order terms can be written

∂sL =
1
2
∇T (Σ0∇L) (37)

for some symmetric matrix Σ0. Let us next show by counter-example that Σ0 must be positive
semi-definite, i.e. if Σ0 would have a strictly negative eigenvalue, then the non-enhancement
property of local extrema would be violated. Such a violation occurs if we can find a positive
definite matrix H such that ∂sL(0; 0) < 0 for L(x; 0) = xTHx, i.e. if for a given Σ0 with
both positive and negative eigenvalues, we could find some positive definite H such that

∂sL =
1
2
∇T (Σ0∇L) = ∇T (Σ0Hx) = trace(Σ0H) < 0. (38)

To construct such aH , let us assume that Σ0 has eigenvectors e1 . . . eN with associated eigen-
values λ1 . . . λN and choose H to have the same set of eigenvectors while having different
eigenvalues µ1 . . . µN . Then, from

∂sL = trace(Σ0H) =
N∑
i=1

µiλi (39)

where all µi > 0 and at least one λi < 0, it is clear that we can find a suitable combination of
µi > 0 such that ∂sL < 0 and we would thus violate the requirement of non-enhancement of
local extrema. Hence, to guarantee that the requirement of non-enhancement of local extrema
can be valid, we have to require that all the eigenvalues of Σ0 are positive. �

Remark: Equation (27) can also be written on the more common form

∂sL =
N∑
i=1

N∑
j=1

aij Lxixj −
∑

bi Lxi (40)

where the coefficients aij form a positive semi-definite matrix. The reason why we have
chosen a parameterization in terms of Σ0 and δ0 here is because of the close connections to
Gaussian kernels and velocity adaptation that will be developed later in sections 4–5. �

To prove sufficiency, i.e., the reverse statement of theorem 5, is straightforward and a basic
property of parabolic equations. For completeness, we give the result with an explicit proof.

Theorem 6 (Non-enhancement scale-space for continuous signals: Sufficiency)
Given a semi-definite covariance matrix Σ0, an arbitrary vector δ0 and any twice continu-
ously differentiable function f ∈ L2(RN ), the solution of the diffusion equation

∂sL =
1
2
∇T (Σ0∇L)− δT0 ∇L. (41)
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with initial condition L(·; 0) = f constitutes a continuous non-enhancement scale-space
representation of f . Specifically, L obeys

∂sL ≤ 0 at any non-degenerate local maximum, (42)

∂sL ≥ 0 at any non-degenerate local minimum. (43)

Proof: The regularity properties of the solution are apparent from the regularity properties
of parabolic differential equations. To verify non-enhancement of local extrema, consider
any non-degenerate local extremum x0 of L at scale s0 with Hessian matrix H0. Using the
fact that ∇T (Σ0∇L) = trace(Σ0H0), we have ∂sL = trace(Σ0H0) at the critical point. If
x0 is a local minimum thenH0 is positive semi-definite. Since the trace of the product of two
positive semi-definite matrices is greater or equal to zero, it follows that trace(Σ0H0) ≥ 0.
If x0 is a local maximum, we can apply similar reasoning to −L. �

To conclude, we can take the results in theorems 5–6 as a generalized definition of the notion
of Gaussian scale-space.

Definition 7 (Generalized Gaussian scale-space)
The (non-enhancement) scale-space families that are defined from the solutions of parabolic
differential equations of the form (27) are referred to as generalized Gaussian scale-spaces.

Concerning the regularity properties of the input signal f , it follows from the strong regu-
larizing properties of the Gaussian kernel that the solution of (27) will be smooth for k > 0
for any bounded function f : Rn → R. Hence, for the purpose of generating a scale-space
representation of a real-world signal f , we can relax the condition on f to f being bounded.

4 Interpretations

In previous section, we showed that for a linear and shift-invariant infinitesimal generator A
the requirement of non-enhancement of local extrema in combination with continuity condi-
tions implies that the scale-space representation should satisfy a parabolic differential equa-
tion of the form

∂sL =
1
2
∇T (Σ0∇L)− δT0 ∇L (44)

for some positive semi-definite covariance matrix Σ0 and some translation vector δ0. If we
take a delta function as input, the interpretation of this evolution equation is that at any time
moment the solution corresponds to a Gaussian kernel with covariance matrix Σs = sΣ0

centered at δs = sδ0. Thus, we can interpret the impulse response as a gradually growing
elongated Gaussian kernel that moves with velocity δ0 with respect to the evolution param-
eter s. In terms of filtering operations, this scale-space can equivalently be constructed by
convolution with affine and velocity-adapted Gaussian kernels

g(x; Σs, δs) =
1

(2π)N/2
√

det Σs
e−(x−δs)TΣ−1

s (x−δs)/2, (45)

which for a given Σs = sΣ0 and a given δs = s δ0 satisfy the diffusion equation (44). The
Fourier transform of this shifted Gaussian kernel is

ĝ(ω; Σs, δs) =
∫
x∈RN

g(x; Σs, δs) e−iω
T x dx = eiω

T δs−ωTΣsω/2. (46)

From the diffusion equation formulation or the Fourier transform, it can be seen that these
shifted and shape-adapted kernels satisfy the following generalized semi-group property

g(·; Σ1, v1) ∗ g(·; Σ2, v2) = g(·; Σ1 + Σ2, v1 + v2). (47)
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Transformation property under linear transformations. This scale-space concept has
the attractive property that it is closed under affine transformations: If two image patterns fL
and fR are related by an affine transformation

fL(ξ) = fR(η) where η = Aξ + b, (48)

and if linear scale-space representations of these images are defined by

L(·; ΣL, δL) = g(·; ΣL, δL) ∗ fL(·), R(·; ΣR, δR) = g(·; ΣR, δR) ∗ fR(·), (49)

then L and R are related by

L(x; ΣL, δL) = R(y; ΣR, δR), (50)

where the covariance matrices ΣL and ΣR satisfy (Lindeberg & Gårding 1997)

ΣR = AΣLA
T , (51)

and the velocity terms δL and δR in the Gaussian kernels can be traded against coordinate
shifts in x and y as long as the following relation is satisfied:

y − δR = A(x− δL) + b. (52)

This property is highly useful in connection with visual tasks involving image deformations,
such as image matching, flow estimation and shape estimation. The closedness under affine
transformation allows for perfect modelling and matching of image data under first-order
approximations of image deformations due to motion or the perspective mapping, and has
been explored by e.g. (Lindeberg & Gårding 1997, Ballester & Gonzalez 1998, Nagel &
Gehrke 1998, Baumberg 2000, Schaffalitzky & Zisserman 2001, Mikolajczyk & Schmid
2004, Tuytelaars & van Gool 2004, Laptev & Lindeberg 2004, Lindeberg et al. 2004a, Laptev
et al. 2007).

4.1 Special cases

The above mentioned relations provide a general structure for linear scale-space concepts on
shift-invariant continuous domains. Specifically, it includes the following special cases:

4.1.1 Rotationally symmetric linear scale-space

If we require the covariance matrix Σ0 to be a unit matrix, we obtain the regular (isotropic)
Gaussian scale-space (Witkin 1983, Koenderink 1984, Lindeberg 1994b, Florack 1997).

L(x; s) =
∫
ξ∈RN

f(x− ξ) g(ξ; s) dξ (53)

generated by convolutions with rotationally symmetric Gaussian kernels

g(x; s) =
1

(2πs)N/2
e−(x2

1+···+x2
N )/2s (54)

From this scale-space, we can define the multi-scale N-jet by applying partial derivatives to
the scale-space

Lxα = ∂xαL = ∂xα1
1 ...x

αN
N
L (55)

where we have introduced multi-index α = (α1, . . . , αN ) to simplify the notation. Due to
the linearity of the diffusion equation, all these scale-space derivatives Lxα satisfy similar
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scale-space properties in terms of non-enhancement of local extrema as the original scale-
space L. So do also directional derivatives. In two dimensions, the M :th order directional
derivative in the direction (cosϕ, sinϕ) is given by

∂ϕML = (cosϕ∂x + sinϕ∂y)ML =
M∑
k=0

(
M
k

)
cosk ϕ sink ϕLxkyM−k (56)

With regard to image deformations, the closedness properties of this original scale-space are
restricted to translations, rotations and rescalings. This scale-space concept is on the other
hand separable in any orthornormal coordinate system.

4.1.2 Affine Gaussian scale-space

If we relax the condition about rotational symmetry, while keeping a requirement that the
corresponding Green’s function should be mirror symmetric on every line through the origin
(in the sense that the filters h should satisfy h(−x,−y; s) = h(x, y; s) for every (x, y) ∈
R2), we obtain the affine Gaussian scale-space representation, generated by convolution with
non-uniform Gaussian kernels

g(x; Σs) =
1

(2π)N/2
√

det Σs
e−x

TΣ−1
s x/2, (57)

where Σs is a symmetric positive definite (covariance) matrix. Besides the requirement of
rotational symmetry, the affine Gaussian scale-space basically satisfies similar scale-space
properties as the linear scale-space. The main difference is that the affine Gaussian scale-
space is closed under the full group of non-singular affine transformations.

With regard to image processing and computer vision, this means that image data sub-
jected to affine transformations can be perfectly captured with the extended class of affine
scale-space operations. Specifically, for two-dimensional images arising as perspective pro-
jections of three-dimensional scenes, this notion of affine image deformations can be used
as a first-order linear approximation of non-linear perspective effects. This scale-space con-
cept has been studied by (Lindeberg & Gårding 1994, Lindeberg 1994b, Griffin 1996) and
is highly useful when computing surface shape under local affine distortion and (Lindeberg
& Gårding 1997) and performing affine invariant segmentation (Ballester & Gonzalez 1998)
and matching (Baumberg 2000, Schaffalitzky & Zisserman 2001, Mikolajczyk & Schmid
2004, Tuytelaars & van Gool 2004). Combined with derivative operations, it can also serve as
a natural idealized model for filter banks (Freeman & Adelson 1991, Simoncelli et al. 1992)
consisting of elongated directional filters (Perona 1992).

To parameterize the affine Gaussian kernels, let us in the two-dimensional case consider
the covariance matrix determined by two eigenvalues λ1, λ2 and one orientation β. Then, the
covariance matrix can be written

Σ′ =
(
λ1 cos2 β + λ2 sin2 β (λ1 − λ2) cosβ sinβ
(λ1 − λ2) cosβ sinβ λ1 sin2 β + λ2 cos2 β

)
. (58)

Figure 2 shows a few examples of affine Gaussian filter kernels obtained in this way. Di-
rectional derivative operators of any order or orientation can then be obtained by combining
equations (58) and (56); see figure 3.

When computing directional derivatives from elongated affine Gaussian kernels, it should
be noted that it is natural to align the orientations of the directional derivative operators (the
angle ϕ in equation (56)) with the orientations of the eigendirections of the covariance matrix
in the affine Gaussian kernels (the angle β in equation (58)). This is also the most likely
model for biological vision (see figure 17 and figure 18 in section 6).
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Figure 2: Examples of affine Gaussian kernels in the two-dimensional case (λ1 = 16, λ2 = 4,
β = π/6, π/3, 2π/3).
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Figure 3: Elongated filters obtained by applying first- and second order directional derivatives to affine
Gaussian kernels (λ1 = 16, λ2 = 4, β = π/6, π/3, 2π/3, ϕ = β + π/2).

4.1.3 Gaussian spatio-temporal scale-space

While the affine Gaussian scale-space generated by (57) has essentially the same invariance
properties as the spatio-temporal scale-space representation generated by (45), one motiva-
tion for keeping the velocity term v in (45) arises when studying time dependent data. On
a temporal domain, the non-zero offset in the Gaussian kernel can be used as a simplified
model of the fact that all computations require non-zero computation time and time averages
can only be computed from data that have occurred in the past. This requirement of time
causality implies that any temporal receptive field has to be associated with a non-zero time
delay. Moreover, on a spatio-temporal domain, we may want the receptive fields to follow
the direction of motion, in such a way that the centres and the shapes of the receptive fields
are adapted to the direction of motion; see figure 4 for an illustration. Such velocity adapta-
tion (Lindeberg 1997a) is useful for reducing the temporal blur induced by observing objects
that move relative to the camera and is a natural mechanism to include in modules for multi-
scale motion estimation (Nagel & Gehrke 1998, Florack et al. 1998) and for recognizing
spatio-temporal activities or events (Laptev & Lindeberg 2004, Laptev et al. 2007). In par-
ticular, invariance to local Galilean transformations can be achieved if the filter parameters
can be adapted to the local spatio-temporal image structure (Lindeberg et al. 2004a) (see also
appendix D).

With respect to temporal implementation, however, the filters in this Gaussian filter class
do not respect time causality in a strict sense. Although the total mass of the filter coefficients
that imply access to the future can be made arbitrarily small, by a suitable choice of time delay
associated with the scale parameter in the scale direction, all filters in this filter class have
support regions that cover the entire time axis and are not suitable for real-time processing
of temporal image data. Nevertheless, they are highly useful as the simplest possible model
for studying properties of temporal and spatio-temporal scale-spaces. They are also highly
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Figure 4: By adapting the shape and the position of a spatio-temporal smoothing kernel to the direction
of motion, we can compute image descriptors that are invariant to constant velocity motion. This
property can for example be used for reducing the effect of motion blur when computing image
descriptors of moving objects at coarse temporal scales.

useful for off-line processing. We shall later consider the topic of strict temporal causality in
detail in section 5.

Parameterization of shape- and velocity-adapted spatio-temporal filters In the case
with two spatial dimensions and one temporal dimension, which will be referred to as 2+1-
dimensional space-time, let us consider a Galilean motion in the image plane

x′ = x+ vxt
y′ = y + vyt
t′ = t

(59)

Then, by transforming the affine covariance matrix in equation (58) by such a Galilean trans-
formation, we obtain (using equation (51)) a spatio-temporal covariance matrix of the form

Σ′ =

 λ1 cos2 β + λ2 sin2 β + v2
xλt (λ2 − λ1) cosβ sinβ + vxvyλt vxλt

(λ2 − λ1) cosβ sinβ + vxvyλt λ1 sin2 β + λ2 cos2 β + v2
yλt vyλt

vxλt vyλt λt

 (60)

Velocity-adapted spatio-temporal derivatives are then given by

∂x̄ = ∂x, ∂ȳ = ∂y, ∂t̄ = vx ∂x + vy ∂y + ∂t. (61)

Figures 5–6 spatio-temporal scale-space kernels generated in this way. Figure 5 shows space-
time separable filters corresponding to v = 0, while figure 6 shows corresponding velocity
adapted and non-separable filters for a non-zero velocity v 6= 0.

For the specific case with one spatial dimension and one temporal dimension, we obtain

det Σ′ = λxλt = sτ (62)

(X − δ)TΣ′−1(X − δ) =
(x− vt)2

s
+

(t− δt)2

τ
(63)

which after insertion into equation (45) implies that these Gaussian spatio-temporal kernels
assume the form

g(x, t; s, τ, v, δ) =
1√
2πs

e−
(x−vt)2

2s
1√
2πτ

e−
(t−δ)2

2τ = g(x− vt; s) g(t; τ, δ). (64)

Figure 7 and figure 8 shows examples of these kernels over a 1+1-D space-time.
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Figure 5: Space-time separable Gaussian spatio-temporal scale-space kernels: (top left) Original
smoothing kernel g(x, y, t; Σ, v) (top right) First-order spatial derivative gx(x, y, t; Σ, v) (bottom
left) First-order temporal derivative gt(x, y, t; Σ, v) (bottom right) First-order temporal derivative of
the spatial Laplacian gxxt(x, y, t; Σ, v) + gyyt(x, y, t; Σ, v) (λ1 = λ2 = 16, λt = 4, vx = vy = 0).
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Figure 6: Velocity-adapted and non-separable Gaussian spatio-temporal scale-space kernels:
(top left) Original smoothing kernel g(x, y, t; Σ, v) (top right) First-order spatial derivative
gx(x, y, t; Σ, v) (bottom left) First-order temporal derivative gt̄(x, y, t; Σ, v) (bottom right) First-
order temporal derivative of the spatial Laplacian gxxt̄(x, y, t; Σ, v) + gyyt̄(x, y, t; Σ, v) (λ1 = λ2 =
16, λt = 4, vx = 2, vy = 0).
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Figure 7: Space-time separable kernels gxαtγ (x, t; s, τ, δ) up to order two obtained from the Gaus-
sian spatio-temporal scale-space in the case of a 1+1-D space-time (s = 1, τ = 1, δ = 2). (Horizontal
axis: space. Vertical axis: time.)
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Figure 8: Velocity-adapted spatio-temporal kernels gx̄α t̄γ (x, t; s, τ, v, δ) up to order two obtained
from the Gaussian spatio-temporal scale-space in the case of a 1+1-D space-time (s = 1, τ = 1,
v = 0.75, δ = 2). (Horizontal axis: space. Vertical axis: time.)

19



When implementing a velocity-adapted spatio-temporal scale-space representation in
practice, there are different alternatives to consider. The simplest approach is to use the
same velocity vector at all image positions, and is equivalent to global stabilization. More
generally, one may consider different image velocities at different image positions.5 In this
way, the corresponding velocity-adapted spatio-temporal scale-space representations will for
appropriate values of the velocity parameters correspond to filtering along the particle trajec-
tories. Thereby, the system will be able to handle multiple moving objects and will also have
the ability to derive a Galilean invariant representation for each object (see next section for
details). Alternatively, we may at each image position even consider an ensemble of spatio-
temporal filters that are tuned to different image velocities — a design with close relations
to velocity-tuned receptive fields biological vision (see section 6). Such a parallel treatment
of velocity adaption for different image velocities also has the potential to handle transparent
motion.

4.1.4 Galilean invariant fixed-point property of spatio-temporal scale-space

This spatio-temporal scale-space concept implies that spatio-temporal image data can be
smoothed by a family of spatio-temporal filters that correspond to different spatial scales
s, temporal scales τ and image velocities v. An underlying intention behind this construction
is that the vision system should be able to handle objects that move with different velocities
relative to the observer. Specifically, if a particular object moves with image velocity v0, then
the spatio-temporal scale-space representation will for this value of the velocity parameter
correspond to filtering along the direction of motion. In practice, however, we cannot expect
the velocity of the object to be a priori known by the vision system, which is a major moti-
vation for allowing for a family of different image velocities in the scale-scale representation.
This idea is also in good agreement with findings about velocity-tuned cells in biological
vision, that give their strongest responses around a particular stimulus velocity.

If the image velocity v of the filter does not agree with the image velocity v0 of the
object, it is, however, not guaranteed that the corresponding filtered data will be easy to in-
terpret. Therefore one may ask: Is there a way to determine from the output from a particular
velocity-adapted filter alone if the output can be regarded as useful or not?

One way of making such judgements of velocity-adapted data can be derived from a
Galilean-invariant fixed-point property of a notion referred to as Galilean block diagonaliza-
tion of the spatio-temporal second-moment matrix/structure tensor (Lindeberg et al. 2004b),
which is a generalization of a corresponding affine-invariant fixed-point property of the spa-
tial second-moment matrix/structure tensor (Lindeberg 1994b, section 15.4) (Lindeberg &
Gårding 1997). In appendix D, we describe how such Galilean-invariant fixed points can be
constructed theoretically and be detected computationally.

5 Time-causal spatio-temporal scale-space

While the above mentioned Gaussian spatio-temporal scale-space model can be successfully
used for analyzing off-line data, it is not suitable for a real-time implementation. In a real-
time scenario, we have to require all scale-space kernels to be strictly time-causal in the sense
that they should not require any access to the future. Fortunately, it is rather straightforward
to adapt the above mentioned theories to be truly time-causal.

5A spatial counterpart of this idea has been developed in (Almansa & Lindeberg 2000), where the spatial
covariance matrix in an affine scale-space representation is allowed to vary in space, to allow for enhancements
of local directional image structures in fingerprint images.
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Time-recursive update rule over time t. Following (Lindeberg & Fagerström 1996) we
would like the scale-space model to be based on time-causal scale-space kernels that lead to a
limited internal memory that is successively updated with regard to novel contents. Further-
more, following (Fagerström 2007) we are seeking a scale-space representation that at any
time moment to be computed from a continuous semi-group structure over temporal scales.
Thus, given any spatio-temporal signal f(x, t) over space-time (x, t), we embed this signal
into a scale-space representation L using a complementary spatial scale parameter s and a
complementary temporal scale parameter τ that it is to be updated according to the following
time-recursive formulation6

L(x, t2; s2, τ) =
∫
ξ∈RN

∫
ζ≥0

T (x− ξ, t2 − t1; s2 − s1, τ, ζ)L(ξ, t1; s1, ζ) dζ dξ (65)

where T now in combination with L generates a two-parameter cascade structure over both
spatial scales s and time t (however NOT over temporal scales τ ). In analogy with the
spatial scale-space concept, we require the algebraic structure to correspond to convolutions
over the spatial domain (x, ξ) and with regard to spatial scales s. We require the algebraic
structure to be similar to a cascade structure over time t, using the temporal scales (τ , ζ)
as an internal temporal buffer. For reasons that will be apparent later, however, we do not
require the updating rule over time to be a true convolution over temporal scales, but a more
general integral formulation. Notably, this update rule makes it possible to compute the
representation at any coarser scale s2 and/or any later time moment t2 from the representation
at any finer scale s1 and any earlier time moment t1, with the arguments of the updating kernel
depending only on the differences s2 − s1 in scale and t2 − t1 in time. For the update rule
over temporal scales as referred to by τ and ζ, however, we do not require a similar structure.

Joint two-parameter semi-group structure over spatial scales s and time t. Let us now
turn to the problem of expressing a spatio-temporal scale-space representationL : RN×R+×
R2

+ → R of a spatio-temporal signal f : RN×R+ → R defined for all spatial positions x and
all positive times t ≥ 0 and with two scale parameters (s, τ) ∈ R2

+. As combined boundary
and initial condition, we take L(x, t; 0, 0) = f(x, t), and in terms of transformations from
the original spatio-temporal signal f , we assume that the spatio-temporal scale-space can be
obtained by a convolution over space x and time t that respects temporal causality over time.

L(x, t; s, τ) =
∫ t

u=0

∫
ξ∈RN

f(ξ, u)h(x− ξ, t− u; s, τ) dξ du. (66)

Initially, we assume that both the original signal f and the convolution kernel h are in the
Banach space X = L2(RN × R+). Then, also all scale-space representations L will be
in this space. To ensure sufficient regularity, we do also assume that the smoothing func-
tions T (x, t; s, τ, ζ) in the time recursive formulation (65) and that convolution kernels
h(x, t; s, τ) in the transformation (66) from the original spatio-temporal signal are to be
absolute integrable, i.e., in L1(RN × R+).

To describe this algebraic structure in terms of operators, let us introduce a two-parameter
family of bounded linear operators T (s, t) from X to X , denoted T (s, t) ∈ O(X),

L(·, t; s, ·) = T (s, t)L(·, 0; 0, ·) (67)

6Please, note that this formulation is only preliminary. In addition to an update rule on the scale-space
representation L, the updating relation must also specify how new information from the input signal f should
be incorporated. We will return to this topic in a more precise manner later, in equation (110). The purpose of
this preliminary formulation is to provide a first intuitive start towards the formalism that will follow in terms of
differential equations.
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where a two-parameter semi-group condition on the operator T over spatial scales s and time
t implies that T must satisfy{

T (s1, t1) T (s2, t2) = T (s1 + s2, t1 + t2),
T (0, 0) = I. (68)

We require this semi-group to be strongly continuous (C0) in the sense that

lim
(s,t)↓(s0,t0)

‖(T (s, t)− T (s0, t0))(f)‖2 = 0 (69)

should hold for each f ∈ X and for any (s0, t0) ≥ 0, where the limit operation (s, t) ↓
(s0, t0) should be interpreted so as to hold for all paths ((s − s0)2 + (t − t0)2) → 0 to the
origin for which s ≥ s0 and t ≥ t0.

For this two-parameter semi-group, we define the infinitesimal generator as the linear
transformation A : R2

+ → O(X) that satisfies

A(α1, α2)L = (A1,A2)
(
α1

α2

)
L = α1A1L+ α2A2L (70)

for all L ∈ X and all (a1, a2) ∈ R2
+, whereA1 andA2 are the infinitesimal generators of the

one-parameter semi-groups T (s, 0)s≥0 and T (0, t)t≥0 respectively, defined in turn from

A1L = lim
h↓0

T (h, 0)L− L
h

= ∂sL, (71)

A2L = lim
k↓0

T (0, k)L− L
k

= ∂tL. (72)

Specifically, the directional derivative of the semi-groupn in any direction u = (α1, α2) is

DuL = lim
h↓0

T (α1h, α2h)L− L
h

(73)

and for all u = (α1, α2) ∈ R2
+ and all f ∈ X we have for k > 0 and t > 0 that

Du T (s, t) f = (α1 ∂s + α2 ∂t) T (s, t) f

= (α1A1 + α2A2) T (s, t) f = A(α1, α2) T (s, t) f (74)

where the domain of the operator Au = α1A1 + α2A2 is dense in X for all (α1, α2) ∈ R2
+

(Al-Sharif & Khalil 2004, pages 405, 407, 409).
To ensure that pointwise derivatives with respect to the scale parameters exist for all

points (x, t; s, τ) ∈ RN × R+ × R2
+ given any smooth function f of compact support as

input, we do also require the semi-group should for some k > (N + 1)/2 be C1 continuous
with respect to the L2-based Sobolev norm ‖ ·‖Hk(RN×R+) in the sense that for all connected
regions Ω ∈ R2

+ that shrink to zero in such a way that the maximum distance ρ(Ω) between
a point in Ω and the origin tends to zero

lim
ρ(Ω)↓0

∥∥∥∥∥
∫

(s,t)∈Ω T (s, t) f dΩ∫
(s,t)∈Ω dΩ

− f

∥∥∥∥∥
Hk(RN×R+)

= 0 (75)

should be required to hold for all all smooth functions f ∈ L1(RN ×R+)∩C∞(RN ×R+).
This algebraic structure constitutes a natural generalization of the corresponding frame-

work for one-parameter semi-groups in section 3.2; see definition 11 and lemma 12 in ap-
pendix F for more formal statements.
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Evolution properties over time t and scale s. From this analysis we can in analogy with
lemma 2 conclude that the spatio-temporal scale-space representation L should be differen-
tiable with respect to scale s and time t and satisfy the following two differential equations

∂sL = A1L (76)

∂tL = A2L (77)

for some infinitesimal generators A1 and A2. Specifically, the second equation reflects a
time-recursive formulation where the temporal scales τ are now treated as an internal tem-
poral memory buffer, which is not explicitly but only implicitly updated by the temporal
evolution. In this respect, the relationship between time t and temporal scale τ is reversed
compared to the relationship between space x and spatial scale s.

Our next step is to investigate how the notion of non-enhancement of local extrema affects
the choice of possible infinitesimal generator A1 and A2 and thus the class of possible op-
erators Ts,t with their associated admissible spatio-temporal scale-space representation L. A
natural way to formulate the notion of non-enhancement of local extrema in a time-recursive
spatio-temporal setting is as follows: If a point (x0, t0; s0, τ0) is a local maximum over the
spatial coordinates x ∈ RN and the temporal scale τ , then the directional derivative of L in
an arbitrary (forward) direction u in (s, t)-space must be negative. Similarly, if the point is a
local minimum, then the directional derivative must by positive. In other words:

∂uL ≤ 0 at any non-degenerate local maximum, (78)

∂uL ≥ 0 at any non-degenerate local minimum. (79)

Since the directional derivative ∂uL in a direction u = (α1, α2) in (s, t)-space can be written

∂uL = α1 ∂sL+ α2 ∂tL (80)

and the sign condition on ∂uL is required to hold for all non-negative α1 and α2, it follows
that we have to require that

∂sL ≤ 0 and ∂tL ≤ 0 at any non-degenerate local maximum, (81)

∂sL ≥ 0 and ∂tL ≥ 0 at any non-degenerate local minimum. (82)

see definition 13 and definition 14 in appendix F for more detailed statements.
From a similar way of reasoning as in the proof of theorem 5, we can then conclude that

the infinitesimal generators A1 and A2 must correspond to linear combinations of first- and
second-order derivatives, where the second-order derivatives are determined from positive
semi-definite covariance matrices Σ1 and Σ2. In other words, the scale-space representation
L should satisfy:

∂sL =
1
2
∇Tx,τ (Σ1∇x,τL)− δT1 ∇x,τL, (83)

∂tL =
1
2
∇Tx,τ (Σ2∇x,τL)− δT2 ∇x,τL, (84)

where in this setting, the gradient operator ∇x,τ contains derivatives with respect to both the
spatial coordinates x and the temporal scale τ ; see lemma 15 in appendix F for a proof.

If we want the spatial scale parameter s to be a pure spatial scale parameter, however, it is
natural to require the first evolution equation for ∂sL to be independent of explicit derivatives
with respect to τ ; otherwise temporal phenomena would influence the definition of spatial
scales. Thus, we reduce the first term in A1 to

∇Tx,τΣ1∇x,τL = ∇TxΣ1∇x (85)

23



where the restricted gradient operator ∇x corresponds to differentiation with respect to the
spatial coordinates x only. To avoid an unessential translation with respect to the spatial
domain, we can apply similar reflection symmetry arguments as in section 4.1 to set δ1 = 0.

Similarly, if we want the temporal scale parameter τ to correspond to a pure temporal
scale parameter, it is natural to require those second-order terms in the second evolution
equation that depend on explicit derivatives with respect to x to be zero. Then, only one
second-order term with derivatives with respect to τ remains non-zero, leading to a single
term of the form 1

2∂ττL. Concerning the first-order terms, we do not want the temporal
evolution to be dependent on the temporal history and thus not dependent on the temporal
scale τ . Therefore, we set the first-order term with respect to τ to zero, implying that the
first-order term will only contain partial derivatives with respect the spatial coordinates x.
What will remain of A2 will therefore be an operator of the form

A2L =
1
2
∂ττL− δT2 ∇xL, (86)

where we in a moment will rename the x component of δ2 into v. To conclude, we have
shown that given the requirement of non-enhancement of local extrema and complementary
regularity and symmetry requirements, the spatio-temporal scale-space representation should
satisfy the following evolution equations:

∂sL =
1
2
∇Tx (Σ∇xL), (87)

∂tL = −vT∇xL+
1
2
∂ττL. (88)

Definition 16 and theorems 17–18 in appendix F give precise statements of the correspond-
ing necessity and sufficiency results. Hence, for an original signal of dimensionality N +
1, the time-causal scale-space representation will (at least) comprise N + 3 dimensions.7

¡In terms of integral expressions, it can be shown8 that the solutions of these equations
with initial condition L(x, 0; 0, τ ; Σ, v) = 0 and combined boundary and initial condition
L(x, t; 0, 0; Σ, v) = f(x, t) can be written

L(x, t; s, τ ; Σ, v) =
∫ t

u=0

∫
ξ∈RN

f(ξ, u)h(x− ξ, t− u; s, τ ; Σ, v) dξ du (89)

where the notation with double semi-colons in the list of variables indicates that s and τ are
parameters while Σ and v are meta-parameters. The convolution kernel h is in turn given by

h(x, t; s, τ ; Σ, v) = gN (x− vt; s; Σ)φ(t; τ)

=
1

(
√

2πs)N
√

det Σ
e−(x−vt)TΣ−1(x−vt)/2s 1√

2π t3/2
τ e−τ

2/2t. (90)

7If the full group of spatial covariance matrices Σ and velocity vectors v is considered as well, the dimension-
ality of the affine- and velocity-adapted scale-space will be dim(x) + dim(t) + dim(Σ) + dim(v) + dim(τ) =
N + 1 +N(N + 1)/2 +N + 1 = (N2 + 5N + 4)/2. To handle such high-dimensional scale-spaces in practise,
some sorts of intelligent search strategies are obviously required, such as combinations of lower-dimensional
subgroups. The shape adaptation and velocity adaptation algorithms constitute examples of such simplifying
search strategies. With a massively parallel architecture, such as in biological vision, however, one could afford
to represent a richer family of affine-adapted and/or velocity-adapted filters than would be possible to handle with
a serial computer. We will return to this subject, when we describe relations to biological vision in section 6.

8This result follows from the fact that gN (x − vt; s; Σ, δ) in equation (45) satisfies the differential equa-
tion (44), which (with δ = 0) implies that gN (x − vt; s; Σ)φ(t; τ) in equation (90) satisfies equation (87).
Similarly, since φ(t; τ) according to (222) is a solution of (218), it follows that gN (x − vt; s; Σ)φ(t; τ) is a
solution of equation (88); see appendix E.4.
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This form of time-causal spatio-temporal scale-space has also been derived by (Fagerström
2007) in the special case when Σ = I , however, starting from different arguments of scale
invariance. The additional degree of freedom in the spatial covariance matrix Σ obtained
here has the additional advantage that it allows for non-isotropic smoothing kernels over the
spatial domain, which may be useful when dealing with local image deformations over time
and when considering motion boundaries.

Figure 9 shows examples of the kernel h with spatio-temporal derivatives computed from
it in the space-time separable case with v = 0. Figure 10 shows corresponding velocity-
adapted kernels for non-zero velocities v with velocity-adapted temporal derivatives com-
puted from a linear combination of temporal derivatives and spatial derivatives

∂t̄ = ∂t + vT∇x. (91)

Before proceeding with detailed analysis of this scale-space it can be mentioned that it will
be shown in section 5.1.4 that the spatial extent of these kernels is determined by the spatial
covariance matrix Σ, while the temporal extent is proportional to τ2.

5.1 Properties of the time-causal spatio-temporal scale-space.

We can note that there are many structural similarities between this time-causal spatio-
temporal scale-space concept and the previously considered Gaussian spatio-temporal scale-
space. First of all, due to the linearity, the property of non-enhancement of local extrema
carries over to any spatio-temporal derivative. Hence, all spatio-temporal derivatives satisfy
corresponding scale-space properties as the original scale-space. Furthermore, with the evo-
lution derivatives ∂sL and ∂tL over spatial scales s and over time t given by (87) and (88), it
holds that the directional derivative ∂uL in any direction u = (α, β) in (s, t) space (according
to equation (80)) can be written

∂uL = α∂sL+ β ∂tL =
α

2
∇TxΣ∇xL+

β

2
∂ττL− β vT∇xL (92)

Thus, there is a very close similarity between these equations and the differential equations
(44) governing the previously considered Gaussian spatio-temporal scale-space concept.

With regard to temporal causality, which is necessary in a real-time setting, it follows
from equation (88) in combination with equation (91) that velocity-adapted temporal deriva-
tives of L, i.e. ∂nt̄ L, can be computed from derivatives over temporal scales (i.e. the internal
temporal memory) ∂nττL according to

∂t̄ =
1
2
∂ττ , (93)

thus without need for any additional temporal buffering than the information already con-
tained in the time-causal spatio-temporal scale-space.

5.1.1 Relations to regular Gaussian smoothing

We can note that there is also a very close link to regular Gaussian smoothing. By inspection,
it can be seen that the time-causal spatio-temporal smoothing can be interpreted as as a first-
order derivative with respect to temporal scale τ of a one-dimensional Gaussian over temporal
scales, i.e.

φ(t; τ) = −∂τg(τ ; t), (94)

and an N -dimensional Galilean-transformed affine Gaussian kernel

gN (x− vt; Σ) =
1

(
√

2π)M
√

det Σ
e−(x−vt)TΣ−1(x−vt)/2 (95)

25



Figure 9: Time-causal and space-time separable spatio-temporal scale-space kernels: (top left) Orig-
inal smoothing kernel h(x, y, t; Σ, v, τ) (top right) First-order spatial derivative hx(x, y, t; Σ, v, τ)
(bottom left) First-order temporal derivative ht(x, y, t; Σ, v, τ) (bottom right) First-order temporal
derivative of the spatial Laplacian hxxt(x, y, t; Σ, v, τ) + hyyt(x, y, t; Σ, v, τ) (λ1 = λ2 = 16,
τ = 2, vx = vy = 0).

26



Figure 10: Time-causal and velocity-adapted (non-separable) spatio-temporal scale-space ker-
nels: (top left) Original smoothing kernel h(x, y, t; Σ, v, τ) (top right) First-order spa-
tial derivative hx(x, y, t; Σ, v, τ) (bottom left) First-order velocity-adapted temporal derivative
ht̄(x, y, t; Σ, v, τ) (bottom right) First-order velocity-adapted temporal derivative of the spatial
Laplacian hxxt̄(x, y, t; Σ, v, τ) + hyyt̄(x, y, t; Σ, v, τ) (λ1 = λ2 = 16, τ = 2, vx = 3/4, vy = 0).
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over space x. For sake of convenience, we will henceforth change to the following notation:

L(x, t; Σ, v, τ) =
∫ t

u=0

∫
ξ∈RN

f(ξ, u)h(x− ξ, t− u; Σ, v, τ) dξ du (96)

where
h(x, t; Σ, v, τ) = gN (x− vt; Σ)φ(t; τ) (97)

and

gN (x; Σ) =
1

(
√

2π)N
√

det Σ
e−x

TΣ−1x/2 (98)

φ(t; τ) = −∂τg1(τ ; t) =
1√

2π t3/2
τ e−τ

2/2t (99)

Please, note the shift of the order of the arguments between φ and g1 in equation (99).

5.1.2 Transformation properties

This velocity- and shape-adapted spatio-temporal scale-space concept is closed under

• rescalings of the spatial and temporal dimensions,

• Galilean transformations in space-time and

• affine transformations in the spatial domain.

Scaling transformations over space and/or time. To verify the first one of these proper-
ties, let us rescale the spatial and temporal domains by scaling factors a and b, i.e. given a
spatio-temporal signal f(x, t) introduce a rescaled signal

f ′(x′, t′) = f(x, t) with x′ = ax and t′ = bt. (100)

where a and b are non-zero scalar entities. Then, with

Σ′ = a2Σ, v′ =
b

a
v and τ ′ =

√
b τ (101)

the time-causal spatio-temporal scale-space representations of f and f ′ are related according
to

L′(x′, t′; Σ′, v′, τ ′) = L(x, t; Σ, v, τ) (102)

with L given by (96) and L′ defined by

L′(x′, t′; Σ′, v′, τ ′) =
∫ t′

u′=0

∫
ξ′∈RN

f ′(ξ′, u′) gN (x′ − v′t′; Σ′)φ(t′; τ ′) dξ′ du′ (103)

Galilean transformations in space-time. Concerning the Galilean transformation prop-
erty, let us next given any spatio-temporal signal f(x, t) and any velocity vector w define a
Galilean transformed signal by

f ′′(x′′, t′′) = f(x, t) where x′′ = x− wt and t′′ = t (104)

Then, provided that
Σ′′ = Σ, v′′ = v + w and τ ′′ = τ (105)

the spatio-temporal scale-space representations of f and f ′′ are also equal

L′′(x′′, t′′; Σ′′, v′′, τ ′′) = L(x, t; Σ, v, τ). (106)
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Affine transformation over the spatial domain. Finally, concerning the affine transfor-
mation property, it follows from (50) and (51) that if we have two spatio-temporal signals f ′′′

and f that are related by f ′′′(x′′′, t′′′) = f(x, t) with x′′′ = Ax and t′′′ = t and where A is a
non-singularN×N matrix, then the time-causal spatio-temporal scale-space representations
of f and f ′′′ are related according to

L′′′(x′′′, t′′′; Σ′′′, v′′′, τ ′′′) = L(x, t; Σ, v, τ) (107)

if
Σ′′′ = AΣAT , v′′′ = v and τ ′′′ = τ. (108)

General implications. To conclude, these results show that this spatio-temporal scale-
space satisfies natural transformation properties that allow it to handle

• image data acquired with different spatial and/or temporal sampling rates,

• image structures of different spatial and/or temporal extent,

• objects with different distances from the camera,

• the linear component of relative motions between the camera and objects in the world,
and

• the linear component of perspective deformations.

Similar properties hold also for the Gaussian spatio-temporal scale-space in section 4.1.3.

5.1.3 Temporal cascade-recursive formulation

When computing a spatio-temporal scale-space representation at time t2 > t1, a very attrac-
tive property is if this can be done in a time-recursive manner, such that it sufficient to use
the following sources of information:

• the internal buffer of the spatio-temporal scale-space representation L at time t1, and

• information about the spatio-temporal input data f during the time interval [t1, t2].

This property means that it is sufficient to use the internal states of the spatio-temporal scale-
space representation as internal memory, and we do not need to have any complementary
buffer of what else has occurred in the past.

Such a property can indeed be established for the time-causal scale-space representation,
based the fact that the time-causal scale-space kernel φ(t; τ) satisfies the following time-
recursive cascade smoothing property over a pure temporal domain (derived in equation (227)
and equation (231) in appendix E.3)

φ(t2; τ) =
∫ ∞
ζ=0

φ(t1; ζ) (g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ (109)

From this relation it follows that the time-causal spatio-temporal scale-space representation
satisfies the following cascade-recursive structure over time t and spatial scales s

L(x, t2; s2, τ) =
∫
ξ∈RN

∫
ζ≥0

T (x− ξ, t2 − t1; s2 − s1, τ, ζ)L(ξ, t1; s1, ζ) dζ dξ

+
∫
ξ∈RN

∫ t2

u=t1

B(x− ξ, t2 − u; s2, τ) f(ξ, u) dξ du (110)
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where the kernel T for updating the internal memory representation L is given by

T (x, t; s, τ, ζ) = gN (x− vt; s) (g(τ − ζ; t)− g(τ + ζ; t)) (111)

and the kernel B for incorporating new knowledge from the input signalf at the boundary is

B(x, t; s, τ) = gN (x− vt; s)φ(t; τ). (112)

Please, note that we have here dropped the arguments for the meta-parameters Σ and v in
order to simplify the notation.

5.1.4 Properties of the time-causal smoothing functions

To describe the evolution properties over temporal scales τ is however somewhat different
than for the Gaussian spatio-temporal scale-space. While the integral of h over space-time is
finite ∫ ∞

t=0

∫
x∈RN

h(x, t; Σ, v, τ) dx dt = 1, (113)

we cannot compute the first- and second-order moments of h over time t, since the corre-
sponding integrals do not converge∫ ∞

t=0

∫
x∈RN

t h(x, t; Σ, v, τ) dx dt→∞, (114)∫ ∞
t=0

∫
x∈RN

t2 h(x, t; Σ, v, τ) dx dt→∞. (115)

Hence, we cannot parameterize the time-causal kernels h in terms of mean vectors and co-
variance matrices over space-time, as is a natural approach for most other spatio-temporal
scale-spaces. Nevertheless, we can compute the position in space-time of the local maxi-
mum of h(x, t; Σ, v, τ) (

x̂

t̂

)
=

1
3

(
v
1

)
τ2 (116)

and make another definition of the effective temporal extent of the time-causal kernel from
the values tt/2,1 < t1/2,2 for which the one-dimensional purely temporal time-causal kernel
φ(t; τ) assumes half its maximum value

φ(tt/2,1; τ) = φ(tt/2,2; τ) =
1
2
φ(t̂; τ) (117)

with the approximate estimates

tt/2,1 ≈ 0.145 τ2, tt/2,2 ≈ 1.046 τ2 (118)

that lead to the following measure of the temporal width of the time-causal scale-space kernel

∆t = tt/2,2 − tt/2,1 ≈ 0.900 τ2. (119)

We can also define the temporal delay according to

δ =

∫∞
t=0 t φ

2(t; τ) dt∫∞
t=0 φ

2(t; τ) dt
= τ2. (120)

Both the temporal width and the temporal delay of the time-causal scale-space kernel are
hence proportional to the square of the temporal scale parameter τ (see figure 11 for illustra-
tions).
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Figure 11: (left) Graphs of the one-dimensional time-causal scale-space kernels φ(t; τ) for τ = 1, 2
and 4. (right) Illustration of the definition of the width of the time-causal kernel from the values
tt/2,1 < t1/2,2 for which the time-causal kernel (here with τ = 1) assumes half its maximum value.

To visualize the temporal response properties of the one-dimensional time-causal kernel
φ(t; τ), we can also compute the response to a step function fstep(t) = H(t) = 1 for
t > 0 and fstep(t) = H(t) = 0 for t < 0

Lstep(t; τ) = erfc
(

τ√
2t

)
(121)

and to a linear ramp framp(t) = t (see figure 12)

Lramp(t; τ) = (t+ τ2) erfc
(

τ√
2t

)
− e−

τ2

2t

√
2
π
τ
√
t. (122)
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Figure 12: The response dynamics of the one-dimensional time-causal scale-space kernel φ(t; τ) to
(left) a unit step function and (right) a linear ramp at temporal scale τ = 1.

We can also compute the spatial mean x̄ and the spatial covariance matrix C(x, x) of the
composed spatio-temporal kernel h(x, t; Σ, v, τ) according to

x̄ =
∞
∫
x∈RN xh(x, t; Σ, v, τ) dx∫
x∈RN h(x, t; Σ, v, τ) dx

= vt, (123)

C(x, x) =

∫
x∈RN xx

T h(x, t; Σ, v, τ) dx∫
x∈RN h(x, t; Σ, v, τ) dx

− x̄x̄T = sΣ. (124)

In other words, (i) the spatial shape of the spatio-temporal kernel h(x, t; Σ, v, τ) is described
by the spatial covariance matrix Σ, (ii) the temporal extent is proportional to τ2 and (iii) the
velocity vector v specifies the orientation of the kernel in space-time.
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5.1.5 Behaviour over temporal scales τ

Under variations of the temporal scale parameter τ , it can be noted that the explicit expression
for the time-causal kernel φ(t; τ) is self-similar with regard to the ratio τ/

√
t. This means

that the time-causal kernels will be self-similar over temporal scales, as reflected in the scal-
ing property in equations (101)–(102). With the Laplace transform of the purely temporal
part of the time-causal kernel defined by

(Lφ)(p; τ) = φ̄(p; τ) =
∫ ∞
t=0

φ(t; τ) e−ptdt =
∫ ∞
t=0

1√
2π t3/2

τ e−τ
2/2t e−ptdt = e−

√
2p τ ,

(125)
it can be seen that the result of multiplying two such Laplace transforms is of the form

φ̄(p; τ1) φ̄(p; τ2) = e−
√

2p τ1e−
√

2p τ2 = e−
√

2p (τ1+τ2) = φ̄(p; τ1 + τ2) (126)

corresponding to the linear semi-group structure of φ(t; τ) under additions of the temporal
scale parameter τ . Thus, the time-causal kernels also form a semi-group over temporal scales
with regard to one-sided and finite support convolution operations

φ(·; τ1) ∗̃φ(·; τ2) = φ(·; τ1 + τ2). (127)

of the form

(f ∗̃ g)(t) =
∫ t

u=0
f(u) g(t− u) du =

∫ t

u=0
f(t− u) g(u) du, (128)

This property carries over to a corresponding semi-group property of the time-causal spatio-
temporal kernels under convolutions over space-time

(h(·, ·; Σ1, τ1) ∗ h(·, ·; Σ2, τ2)) = h(·, ·; Σ1 + Σ2, τ1 + τ2) (129)

which means that the spatio-temporal derivatives obey the following cascade smoothing
property

L(·, ·; Σ2, τ2) = h(·, ·; Σ2 − Σ1, τ2 − τ1) ∗ L(·, ·; Σ1, τ1) (130)

Along the direction of temporal scales τ , this semi-group does, however, not obey non-
enhancement of local extrema with increasing temporal scales, only scale invariance (see
figure 13).

5.2 Temporal derivatives with respect to transformed time

When computing temporal derivatives of time-causal spatio-temporal kernels, the tempo-
ral derivative operator reduces to temporal derivatives of the one-dimensional time kernel
φ(t; τ). For space-time separable kernels with v = 0 we have

∂xαtγh(x, t; s, τ) = ∂xαtγ (g(x; s)φ(t; τ)) = gxα(x; s)φtγ (t; τ) (131)

while for velocity-adapted kernels the corresponding velocity-adapted spatio-temporal deriva-
tives are given by

∂xα t̄γh(x, t; s, τ, v) = ∂xα t̄γ (g(x− vt; s)φ(t; τ)) = gxα(x− vt; s)φtγ (t; τ) (132)

Hence, we can reveal many of the temporal response properties of the composed spatio-
temporal kernels h(x, t; s, τ) and spatio-temporal kernels h(x, t; s, τ, v) by studying the
temporal derivatives of the one-dimensional temporal time-causal kernel φ(t; τ).
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Figure 13: The spatio-temporal scale-space L representation of an image is a function over space
x ∈ RN , time t ∈ R+, spatial scale s ∈ R+ and temporal scale τ ∈ R+, with a spatial covariance
matrix Σ ∈ RN2

and an image velocity vector v ∈ RN as meta parameters. With the temporal scale
parameter τ treated as an internal state variable in addition to (the here invisible) space x, we can
describe this spatio-temporal scale-space representation as a two-parameter semi-group that obeys
non-enhancement of local extrema over spatial scale s and time t, and with a both time-causal and
time-recursive update rule over time t. If we on the other hand treat space-time (x, t) as the internal
state, we obtain another two-parameter semi-group over spatial scales s and temporal scales τ , which
obeys non-enhancement of local extrema with increasing spatial scales s while only scale invariance
over temporal scales τ .

In this subsection, we shall follow this notion and extend the regular temporal derivative
operator ∂t by a transformed derivative operator ∂t′ with respect to a transformed time. The
motivation for this extension is that the time-causal kernels are highly asymmetric over time,
which means that it may be more natural to consider temporal derivatives with respect to a
transformed time axis

t′ = ϕ(t) (133)

where ϕ should be a monotonically increasing function, we we can in particular consider a
self-similar logarithmic transformation

t′ = log
(
t

t0

)
(134)

or a self-similar power law
t′ = tα. (135)

The derivative operation ∂t′ with respect to logarithmic time will then related to the regular
temporal derivative operator ∂t according to

∂t′ =
1

ϕ′(t)
∂t (136)

which for the logarithmic time transformation implies

∂t′ =
t

t0
∂t (137)

and for the power law t′ = tα

∂t′ =
t1−α

α
∂t. (138)
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Figure 14: Temporal smoothing kernels that can be used in the modelling of space-time separable
spatio-temporal receptive fields, with their first- and second-order derivatives displayed as well: (top
row) Time-shifted Gaussian kernel g(t; τ, δ) = 1/

√
2πτ exp(−(t − δ)2/2τ) with τ = 1 and δ = 4.

(second row from top) The time-causal kernel φ(t; τ) = 1/
√

2πt3 τ exp(−τ2/2t) with τ = 1.
(third row from top) The time-causal kernel φ(t; τ) = 1/

√
2πt3 τ exp(−τ2/2t) considered in the

previous row, but with derivatives computed with respect to square root time t′ =
√
t. (bottom row)

The time-causal kernel φ(t; τ) = 1/
√

2πt3 τ exp(−τ2/2t) considered in the previous row, but with
derivatives computed with respect to logarithmic time t′ = log(t/t0) with t0 = 2.
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Figure 15: Space-time separable kernels hxαtγ (x, t; s, τ, v) up to order two obtained from the time-
causal spatio-temporal scale-space in the case of a 1+1-D space-time (s = 1, τ = 2) and with
temporal derivatives computed with respect to a self-similar transformation of the temporal axis ∂t′ ∼
tκ ∂t, here with κ = 1/2. (Horizontal axis: space. Vertical axis: time.)
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Figure 16: Velocity-adapted spatio-temporal kernels hx̄α t̄′γ (x, t; s, τ, v) up to order two obtained
from the time-causal spatio-temporal scale-space in the case of a 1+1-D space-time (s = 1, τ = 2,
v = 0.75) and with temporal derivatives computed with respect to self-similar transformation of the
temporal axis ∂t′ ∼ tκ ∂t, here with κ = 1/2. (Horizontal axis: space. Vertical axis: time.)
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The third and fourth rows in figure 14 show the result of computing first- and second-order
temporal derivatives from the time-causal smoothing kernel in this way. For comparison, we
also show derivatives of the Gaussian temporal kernel and regular temporal derivatives of the
time-causal kernel.

As we can see, the change of temporal variable by a self-similar monotonically increasing
transformation does not change the position of the zero-crossing for the first-order derivative;
it only leads a multiplication by linear time-dependent scalar factor. For the second-order
derivative, however, the behaviour is qualitatively different. The regular first-order derivative
of the time-causal kernel has two peaks and one interior zero-crossing, while the second-order
derivative with respect to transformed time has three clearly visible peaks and two internal
zero-crossings, as a second-order scale-space derivative kernel should have.

For these reasons, we will henceforth consider this generalized notion of temporal deriva-
tives with respect to transformed time when studying temporal derivative responses of highly
asymmetric smoothing kernels. Indeed, for both the logarithmic transformation and for the
power law the transformed derivative operator is of the form

∂t′ ∼ tκ∂t, (139)

and we will refer to this operator as temporal derivatives with respect to self-similarly trans-
formed time. It can be shown that this definition is compatible with spatio-temporal scale in-
variance for scale selection based on local extrema over temporal scales of scale-normalized
derivatives (manuscript in preparation). Specifically, the value κ = 1/2 can be motivated
both from theoretical considerations and agreement with biological receptive fields. Fig-
ure 16 shows corresponding spatio-temporal derivative operators for a 1+1-D space-time.

6 Relations to biological vision

In a comprehensive review, (DeAngelis et al. 1995) present an overview of temporal response
properties of receptive fields in the central visual pathways. Foremost, the authors point out
the limitations of defining receptive fields in the spatial domain only, and emphasize the need
to characterize receptive fields in the joint space-time domain, in order to describe how a
neuron processes the visual image. Then, for basic cell types in the LGN and the striate
cortex, they essentially describe the spatio-temporal response characteristics as follows:

LGN neurons: The neurons in the LGN have approximately circular center-surround or-
ganization in the spatial domain (see figure 17(a)) and most receptive fields are separable
in space-time. There are two main classes of temporal responses for such cells: In a “non-
lagged cell” the first temporal lobe is the largest one (figure 19(a)) whereas for a “lagged
cell” the second lobe dominates (figure 19(b)). Such temporal response properties are typical
for first- and second-order temporal derivatives of a time-causal temporal scale-space repre-
sentation (see figure 14).9 The spatial response, on the other hand, shows a high similarity to
a Laplacian of a Gaussian.

Within the above mentioned spatio-temporal scale-space theory, we can model the qual-
itative shape of these circular center-surround receptive fields in the LGN as:

hLGN (x, y, t; s, τ) = ±(∂xx + ∂yy) g(x, y; s) ∂t′n h(t; τ) (140)

where
9For the first-order temporal derivative of a time-causal temporal scale-space kernel, the first peak is usually

strongest, whereas for certain classes of time-causal temporal smoothing kernel, the second peak may be the most
dominant for second-order temporal derivatives (see figure 14).
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Figure 17: Examples of receptive field profiles in the spatial domain as reported by (DeAngelis et al.
1995). (a) Receptive fields in the LGN have approximately circular center-surround responses in the
spatial domain. In terms of Gaussian derivatives, this spatial response profile can be modelled by the
Laplacian of the Gaussian ∇2g(x; t) (see figure 18(a)). (b) Simple cells in the cerebral cortex do
usually have strong directional preference in the spatial domain. In terms of Gaussian derivatives, this
spatial response can be modelled as a directional derivative of an elongated affine Gaussian kernel
(see figure 18(b)). (c) Complex cells are non-linear and do not obey the superposition principle.
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Figure 18: (left) The Laplacian of an isotropic two-dimensional Gaussian smoothing kernel over a
spatial domain∇2g(x, y; s) = (x2 +y2−2s)/(2πs3) exp(−(x2 +y2)/2s) with s = 0.4 can be used
as a model for the circular center-surround responses in the LGN illustrated in figure 17(a). (right)
First-order directional derivatives of anisotropic affine Gaussian kernels, here aligned to the coordinate
directions ∂xg(x, y; Σ) = ∂xg(x, y; λx, λy) = − x

λx
1/(2π

√
λxλy) exp(−x2/2mλx− y2/2λy) and

here with λx = 0.2 and λy = 2, can be used as a model for simple cells with a strong directional
preference as illustrated in figure 17(b).
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• the sign determines whether the cell is of type “on-center-off-surround” or “off-center-
on-surround”,

• the parameter n = 1, 2 describes the order of differentiation with respect to time,

• g(x, y; s) is an isotropic smoothing kernel in the spatial domain generated by the
rotationally symmetric Gaussian scale-space concept with spatial scale parameter s,

• h(t; τ) is a temporal smoothing kernel over time t with temporal scale parameter τ ,

• the operator ∂t′ denotes differentiation with respect to a possibly transformed temporal
axis according to a self-similar transformation ∂t′ ∼ tκ ∂t, where κ = 0 corresponds
to regular temporal derivatives, κ = 1 corresponds to the computation of temporal
derivatives with respect to logarithmic time, and κ ∈]0, 1[ corresponds to temporal
derivatives with respect to a power law transformation t′ = tα with κ = 1− α.

Figure 18(a) shows an illustration of the spatial response properties of such a receptive field.
Figure 14 shows examples of different kernels that can be used for modelling the temporal
smoothing component for this class of space-time separable filters.

Note: In all illustrations in section 6, where spatial and spatio-temporal derivative expres-
sions are aligned to biological data, the unit for the spatial scale parameter s corresponds to
[degrees2] of visual angle, the units for the temporal scale parameter τ in the Gaussian spatio-
temporal scale-space representation is [milliseconds2], while the units for the temporal scale
parameter τ in the time-causal spatio-temporal scale-space representation is [

√
milliseconds].

For image velocities v of velocity-adapted filters, the units are [degrees/millisecond].

Simple cells: For simple cells in the striate cortex, the receptive fields are oriented in the
spatial domain (see figure 17(b)). The spatial component of such cells can be modelled by
directional derivatives of affine Gaussian kernels according to equations (57), (58) and (56);
see figure 18(b):

hspace(x, y; s) = (cosϕ∂x + sinϕ∂y)m
(

1
2π
√

det Σs
e−x

TΣ−1
s x/2

)
(141)

In the joint space-time domain, the spatio-temporal response properties range from separable
(figure 21) to strongly inseparable (figure 23), where a majority exhibit marked space-time
inseparability. The temporal profile is reported to be typically biphasic, although some cells
are reported to have monophasic or triphasic responses.

In terms of temporal derivatives, a biphasic behaviour arises from first-order derivatives,
a monophasic behaviour from zero-order derivatives and a triphasic behaviour from second-
order derivatives. Concerning the oriented spatial response characteristics, there is a high
similarity with directional derivatives of Gaussian kernels (Young 1987).

In fact, for all these linear receptive fields, spatio-temporal filters with qualitatively sim-
ilar response characteristics can be generated by applying Cartesian or directional partial
derivative operators of low orders to the spatio-temporal filters obtained from the spatio-
temporal scale-space framework outlined in section 4 and section 5.

Figures 20, 22, and 24 show a few examples of separable and inseparable kernels obtained
in this way for a 1+1-dimensional space-time, based on the general models

hGaussian(x, t; s, τ, v, δ) = ∂mx̄ ∂
n
t̄ g(x, t; s, τ, v, δ) (142)

htime−causal(x, t; s, τ, v) = ∂mx̄ ∂
n
t̄′h(x, t; s, τ, v) (143)

with space-time tilted spatio-temporal derivative operators ∂x̄ = ∂x and ∂t̄ = v ∂x + ∂t and
with the transformed self-similar temporal derivative operator according to ∂t′ ∼ tκ ∂t.
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Figure 19: Examples of space-time separable receptive field profiles in the LGN as reported by
(DeAngelis et al. 1995). There are two main categories of such cells; (a) for a non-lagged cell,
the first temporal lobe dominates, while (b) for a lagged cell the second temporal lobe is strongest.
In terms of the spatio-temporal receptive field model presented in this paper, non-lagged cells can be
modelled by first-order temporal derivatives, while the shape of lagged cells resembles second-order
temporal derivatives (see figure 20). (Horizontal dimension: space x. Vertical dimension: time t.)
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Figure 20: Space-time separable kernels obtained from the spatio-temporal scale-space concepts:
(upper left) Gaussian spatio-temporal kernel gxxt(x, t; s, τ, δ) = gxx(x; s) gt(t; τ, δ) with
s = 0.4, τ = 302, δ = 60. (upper right) Gaussian spatio-temporal kernel gxxtt(x, t; s, τ, δ) =
gxx(x; s) gtt(t; τ, δ) with s = 0.3, τ = 352, δ = 120. (lower left) Time-causal spatio-temporal
kernel hxxt′h(x, t; s, τ) = gxx(x; s)φt′(t; τ, δ) with s = 0.4, τ = 17. (lower right) Time-causal
spatio-temporal kernel hxxt′t′h(x, t; s, τ) = gxx(x; s)φt′t′(t; τ, δ) with s = 0.4, τ = 25. For
the time-causal kernels, the temporal derivatives have been computed using the transformed temporal
derivative operator ∂t′ ∼ tκ ∂t, here with κ = 1/2. Compare the qualitative shapes of these kernels
with the kernels in with figure 19. (Horizontal dimension: space x. Vertical dimension: time t.)
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Figure 21: Examples of space-time separable receptive field profiles in the striate cortex as reported by
(DeAngelis et al. 1995): (a) a non-lagged cell reminiscent of a first-order temporal derivative in time
and a first-order derivative in space (compare with figure 22(a)) (b) a non-lagged cell reminiscent
of a first-order temporal derivative in time and a second-order derivative in space (compare with
figure 22(b)). (Horizontal dimension: space x. Vertical dimension: time t.)
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Figure 22: Space-time separable kernels obtained from the spatio-temporal scale-space concepts:
(upper left) Gaussian spatio-temporal kernel gxt(x, t; s, τ, δ) = gx(x; s) gt(t; τ, δ) with s =
0.3, τ = 402, δ = 100. (upper right) Gaussian spatio-temporal kernel gxxt(x, t; s, τ, δ) =
gxx(x; s) gt(t; τ, δ) with s = 0.3, τ = 602, δ = 150. (lower left) Time-causal spatio-temporal
kernel hxt′(x, t; s, τ) = gx(x; s)φt′(t; τ, δ) with s = 0.4, τ = 17. (lower right) Time-causal
spatio-temporal kernel hxxt′(x, t; s, τ) = gxx(x; s)φt′(t; τ, δ) with s = 0.4, τ = 22. For the
time-causal kernels, the temporal derivatives have been computed using the transformed temporal
derivative operator ∂t′ ∼ tκ∂t, here with κ = 1/2. Compare the qualitative shapes of these kernels
with the kernels in figure 21. (Horizontal dimension: space x. Vertical dimension: time t.)
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Figure 23: Examples of non-separable receptive field profiles in the striate cortex as reported by
(DeAngelis et al. 1995): (a) a receptive field reminiscent of a second-order derivative in tilted space-
time (compare with the left column in figure 24) (b) a receptive field reminiscent of a third-order
derivative in tilted space-time (compare with the right column in figure 24). (Horizontal dimension:
space x. Vertical dimension: time t.)
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Figure 24: Non-separable spatio-temporal receptive fields obtained by applying velocity-adapted
second- and third-order derivative operations in space-time to spatio-temporal smoothing kernels
generated by the spatio-temporal scale-space concept. (upper left) Gaussian spatio-temporal kernel
gxx(x, t; s, τ, v, δ) with s = 0.5, τ = 502, v = 0.006, δ = 100. (upper right) Gaussian spatio-
temporal kernel gxxx(x, t; s, τ, v, δ) with s = 0.5, τ = 602, v = 0.006, δ = 130. (lower left)
Time-causal spatio-temporal kernel hxx(x, t; s, τ, v) with s = 0.4, τ = 15, v = 0.006. (lower right)
Time-causal spatio-temporal kernel hxxx(x, t; s, τ, v) with s = 0.4, τ = 15, v = 0.006. Compare
the qualitative shapes of these kernels with the kernels in figure 23. (Horizontal dimension: space x.
Vertical dimension: time t.)
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Motion selectivity. Concerning motion selectivity, (DeAngelis et al. 1995) report that most
cortical neurons are quite sensitive to stimulus velocity and the speed tuning is more narrow
than for LGN cells. Simple cells with inseparable receptive fields have directional prefer-
ence while cells with space-time separable receptive fields do not. Moreover, the preferred
direction of motion corresponds to the orientation of the filter in space-time.

This structure is nicely compatible with velocity adaptation, as described in sections 4.1.3–
??, section 5 and appendix D. Within the above mentioned terminology, separable receptive
fields correspond to spatio-temporal scale-space kernels without velocity adaptation, while
inseparable receptive fields correspond to kernels that are explicitly adapted to non-zero ve-
locities.

The directional preference of the cells in the spatial domain can, in turn, be controlled by
the covariance matrix of the affine Gaussian scale-space concept as outlined in section 4.1.2.
We obtain receptive fields without directional preference in the spatial domain if we set the
covariance matrix Σ = sI proportional to the unit matrix, and space-time separable recep-
tive fields if we in addition choose the velocity adaptation vector v equal to zero. Assuming
that the influence of Σ and v can be neglected (e.g. by setting Σ proportional to the unit
matrix and v to zero), the filter shape will then be determined solely by the spatial scale s
and the temporal scale λ. Conversely, we can construct inseparable kernels with strong di-
rectional preference by appropriate combinations of the covariance matrix Σ and the velocity
adaptation vector v.

The above mentioned fact that a majority of the cells are inseparable in space-time is
indeed nicely compatible with a description in terms of a multi-parameter scale-space as
outlined in section 4. If the vision system is to give a reasonable coverage of a set of filter
parameters Σ and v, then the set of filters corresponding to space-time separable receptive
fields (corresponding to the filter parameters v = 0) will be much smaller than the set of
filters allowing for non-zero values of the mixed parameters over space and time.

Complex cells. Besides the above mentioned linear receptive fields, there is a large number
of early non-linear receptive fields that do not obey the superposition principle and which are
referred to as complex cells. The response profile of such a cell in the spatial domain is
typically of the form illustrated in figure 17(c).

In their study of spatio-temporal receptive field properties, (DeAngelis et al. 1995) also
report a large number of complex cells with non-linear response profiles in the joint space-
time domain; see figure 25 for an example. Within the framework of the presented spatio-
temporal scale-space concept, it is interesting to note that non-linear receptive fields with
qualitatively similar properties can be constructed by squaring first- and second-order deriva-
tive responses and summing up these components (Koenderink & van Doorn 1990). Provided
that the filters are appropriately normalized, we can then construct a quasi quadrature mea-
sure over a one-dimensional either spatial or temporal domain as (Lindeberg 1997b)

QL = L2
ξ + C L2

ξξ = sL2
x + C s2L2

xx (144)

where ∂ξ =
√
s ∂x denotes normalized derivatives with respect to normalized coordinates

ξ = x/
√
s (Lindeberg 1998) and where the constant C can be determined either to minimize

the amount of ripples in the operator response (C = 2/3 ≈ 0.667) or from scale selection
properties (C = e/4 ≈ 0.670). In the case of operating on a 1+1-D space-time with a
Gaussian spatio-temporal scale-space, and with normalized derivatives over scale-normalized
time λ = t/

√
τ according to ∂λ =

√
τ ∂t or more generally ∂λ = τγ/2 ∂t, we can then
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Figure 25: Response profile of a complex cell in the joint space-time domain as reported by
(DeAngelis et al. 1995). Within the framework of the spatio-temporal scale-space framework pre-
sented in this paper, such a response property can be obtained by a quasi-quadrature combination
of first- and second-order receptive fields; see figure 26. (Horizontal dimension: space x. Vertical
dimension: time t.)
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Figure 26: The response of different spatio-temporal quasi quadrature measures to a delta function.
(left) Computed for a spatio-temporal Gaussian g(x, t; s, τ, δ) according to (top) Q1 g = s g2

x +
τg2
t +C (s2g2

xx + 2sτg2
xt + τ2g2

tt) (middle)Q2
2 g = (s g2

x + s2g2
xx)(τg2

t +C τ2g2
tt) (bottom)Q3 g =

(sτg2
xt + C s2τg2

xxt + C sτ2τg2
xtt + C2 s2τ2g2

xxtt) with s = 1.2, τ = 252, δ = 90, C = e/4.
(right) Computed for the time-causal kernel h(x, t; s, τ) according to (top) Q1 h = s h2

x + τh2
t +

C (s2h2
xx + 2sτh2

xt + τ2h2
tt) (middle) Q2

2 h = (sh2
x + s2h2

xx)(τh2
t + C τ2h2

tt) (bottom) Q3 h =
(sτh2

xt + C s2τh2
xxt + C sτ2h2

xtt + C2 s2τ2h2
xxtt) with s = 1.2, τ = 252, δ = 90, C = e/4.

(Horizontal dimension: space x. Vertical dimension: time t.)
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consider the following generalizations of the quasi quadrature measure: 10

Q1L = L2
ξ + L2

λ + C (L2
ξξ + 2L2

ξλ + L2
λλ)

= sL2
x + τL2

t + C (s2L2
xx + 2sτL2

xt + τ2L2
tt) (145)

(Q2L)2 = (L2
ξ + C L2

ξξ)(L
2
λ + C L2

λλ)

= (sL2
x + C s2L2

xx)(τL2
t + C τ2L2

tt) (146)

Q3L = L2
ξλ + C L2

ξξλ + C L2
ξλλ + C2 L2

ξξλλ

= sτL2
xt + C s2τL2

xxt + C sτ2L2
xtt + C2 s2τ2L2

xxtt (147)

For the time-causal scale-space, we can express corresponding scale-normalized operators as

Q1L = L2
ξ + L2

λ + C (L2
ξξ + 2L2

ξλ + L2
λλ)

= sL2
x + τL2

t + C (s2L2
xx + 2sτL2

xt′ + τ2L2
t′t′) (148)

(Q2L)2 = (L2
ξ + C L2

ξξ)(L
2
λ + C L2

λλ)

= (sL2
x + C s2L2

xx)(τL2
t′ + C τ2L2

t′t′) (149)

Q3L = L2
ξλ + C L2

ξξλ + C L2
ξλλ + C2 L2

ξξλλ

= sτL2
xt′ + C s2τL2

xxt′ + C sτ2L2
xt′t′ + C2 s2τ2L2

xxt′t′ (150)

where the temporal derivatives ∂t′ with respect to self-similarly transformed time are related
to derivatives with respect to regular time according to ∂t′ ∼ tκ∂t.11

Figure 26 shows the result of computing the response of these quasi quadrature measures
to a delta function over a 1+1-D space-time. Note that this type of computational structure is
nicely compatible with results by (Valois et al. 2000), who show that first- and second-order
receptive fields typically occur in pairs that can be modelled as approximate Hilbert pairs.

7 Summary and discussion

We have presented a generalized theory for Gaussian scale-space representation of spatial
and/or spatio-temporal data. Starting from a general condition about non-creation of spurious

10In the first spatio-temporal quasi quadrature entity Q1L, the square of the first-order derivative L2
ξ in the

corresponding one-dimensional measure QL has been replaced by the squared gradient magnitude L2
ξ + L2

λ

in space-time, while the square of the second-order derivative L2
ξξ has been replaced by the Frobenius norm

L2
ξξ + 2L2

ξλ + L2
λλ of the Hessian matrix computed over a scale-normalized space-time. For this entity to

respond, it is sufficient that there are significant variations in the signal over either space or time. The second
spatio-temporal quasi quadrature measureQ2L has been defined as the product of corresponding quasi quadrature
measures over pure space L2

ξ + C L2
ξξ and pure time L2

λ + C L2
λλ. Therefore, this entity will only generate

responses when there simultaneously occur variations in the signal over both space and time. Hence, the operator
Q2L will be much more selective thanQ1L. Finally, the third entityQ3L has been defined from spatio-temporal
derivative operators with high degree of qualitative similarity to biological receptive fields, and with a similar
spirit of summing up squares of Gaussian derivative operator responses that correspond to first- and second-order
derivatives with respect to space and time. Since all the primitives in Q3L contain derivatives with respect to
both space and time, this entity will only generate significant responses if there are significant variations over
both space and time. For all of these quasi quadrature entities, we can compute the derivatives either from a
space-time separable spatio-temporal scale-space or a velocity-adapted scale-space. In the latter case, the entire
operator will therefore be tuned to a particular stimulus velocity. The illustrations in figure 26 have, however,
been computed with space-time separable derivative operators.

11In analogy with the computation of multi-scale second-moment descriptors (Gårding & Lindeberg 1996), we
can apply a second convolution stage determined by integration scale parameters to the computation of the local
pointwise derivative descriptors Qi in order to suppress local ripples. For the quasi quadrature entities derived
from the Gaussian spatio-temporal scale-space, we do of course choose a non-causal Gaussian spatio-temporal
kernel, while we for the corresponding entities derived from the time-causal spatio-temporal scale-space choose
a time-causal spatio-temporal kernel for the second-stage integration smoothing.
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structures with increasing scales formalized in terms of non-enhancement of local extrema,
a complete characterization has been given of the semi-groups of convolution transforma-
tions that obey this requirement on different types of image domains. The resulting theory
comprises the existing continuous scale-space theory on symmetric spatial domains, with ex-
tensions to non-symmetric spatial domains as well as spatio-temporal domains. Specifically,
we have shown that this combination of scale-space axioms makes it possible to axiomati-
cally derive the notions of:

• rotationally symmetric Gaussian scale-space on isotropic spatial domains,

• affine Gaussian scale-space on anisotropic spatial domains,

• Gaussian spatio-temporal scale-space on non-causal spatio-temporal domains, and

• time-causal spatio-temporal scale-space on time-causal spatio-temporal domains.

A main message is that a much richer structure of affine as well as spatio-temporal filters
can be obtained if we start from a reformulation of Koenderink’s causality requirement into
non-enhancement of local extrema, and then relax the requirement of spatial symmetry that
was prevalent in the earliest scale-space formulations as well as most follow-up works.

In companion works, such affine and spatio-temporal scale-spaces have been shown to
be highly useful for different tasks in computer vision, by allowing the vision system to take
into explicit account as well as to compensate for the following type of image transformations
that arise when a vision system observes a real world:

• affine transformations arising from the first-order linearized component of the perspec-
tive mapping, and

• Galilean transformations arising because of relative motions between the observer and
objects in the world.

Indeed, by considering more general covariance matrices for anisotropic handling of differ-
ent dimensions and as well as spatial and/or spatio-temporal derivative operators applied to
corresponding filters, a much richer family of filter shapes can be generated than from ro-
tationally symmetric Gaussian filters. All these generalized derivative filters do also obey
non-enhancement of local extrema as well as a transfer of the semi-group property into a
cascade smoothing property. We have also showed that the resulting spatial as well as spatio-
temporal derivative operations have high similarities to receptive fields recorded from biolog-
ical vision. The treatment does hence show that a very rich and general set of visual front-end
operations can be obtained from a unified and generalized Gaussian scale-space theory.

Of course, we do not exclude the possibilities of considering other types of non-Gaussian
scale-space theories, such as the self-similar scale-space families arising from equation (3)
or its affine generalization ĥ(ω; s) = e−α|Bω|

p
, where B is a non-singular N × N matrix.

In this context we would, however, like to stress that the generalized Gaussian scale-space
theory presented in this paper constitutes a particularly convenient class with most attrac-
tive properties. For example, compared to the Poisson kernel in equation (4), the Gaussian
smoothing filter decreases much faster towards infinity and faster than any polynomial, which
implies a very strong regularizing property for any scale-space derivative. Compared to the
α-scale-spaces, the Gaussian scale-spaces have classical infinitesimal generators, straight-
forward closed-form expressions in the spatial domain and obey non-enhancement of local
extrema. The Gaussian scale-spaces are also maximally uncommitted in the sense that their
smoothing kernels have maximum entropy.

Concerning more technical contributions, we have also analysed the time-causal spatio-
temporal scale-space in more detail, regarding the temporal cascade structure it satisfies over
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time and as well as specific properties of the corresponding time-causal spatio-temporal
derivative kernels, which differ from the properties of the more commonly used Gaussian
spatio-temporal derivatives. We have moreover shown how temporal derivatives with respect
to self-similarly transformed time can be defined, resulting in the formulation of a novel
analogue to normalized derivatives for time-causal temporal or spatio-temporal scale-spaces.

We propose that this generalized Gaussian scale-space framework constitutes both a natu-
ral, theoretically well-founded and general basis to consider (i) when designing visual front-
end operations for computer vision systems and (ii) when modelling some of the earliest
processing stages in biological vision.
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Appendix

A Scale-space axioms for the linear Gaussian scale-space

This section gives an introductory overview of major arguments and properties concerning
the definition of a scale-space representation.

When constructing a multi-scale representation, one may ask: Would any choice of
smoothing operation be permissible? Of crucial importance when constructing a scale-space
representation is that spurious12 image structures are not introduced by the smoothing op-
erator that is intended to suppress fine-scale structures from the representations at coarser
scales.

A fundamental approach that has been taken to this problem is by stating scale-space
axioms which express symmetry requirements that one would require to be satisfied in the
first levels of visual processing. These earliest levels of processing are usually referred to as
the visual front-end. During the years a large number of scale-space formulations have been
stated showing the Gaussian kernel is a canonical choice for generating a linear scale-space.
The main types of conditions that have been used for deriving this uniqueness can basically
be summarized as follows:

12The intention behind this formulation is that the smoothing method used for generating the scale-space
should not be allowed to generate representations at coarser scales that do not correspond to simplifications of
corresponding representations at finer scales — they should not be accidental phenomena created by the smooth-
ing method aimed at suppressing fine-scale structures. For example, if you would take a box filter for generating
a “multi-scale representation” of a one-dimensional signal, then it can be shown that such a “smoothing opera-
tion” may lead to violations of non-creation of spurious structures, by the creation of new local extrema or new
zero-crossings with increasing scale. Another example is if you would apply a non-linear filtering scheme with
contrast enhancement, which may lead to the generation of new edge structures or marked level sets that were
not present in the original data. More generally, a smoothing filter that is not non-unimodal in either the spatial
domain or the frequency domain may lead to the creation of new local extrema, new zero-crossings or spurious
ripples (Lindeberg 1990, Lindeberg 1994a). Unimodality is, however, not a sufficient requirement.
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Given any N-dimensional signal f : RN → R, let us introduce a smoothing operator Ts
such that the scale-space representation L(·; s) at scale f is obtained by

L(x; s) = (Tsf)(x) = g(x; s) ∗ f(x) (151)

where g(·; s) is the family of convolution kernels. Then, for the specific choice of a Gaussian
kernel, this form of multi-scale representation satisfies the following special properties:

• linearity
Ts(af + bh) = a Tsf + b Tsh (152)

where f and h are (univariate or multi-variate) signals, while a and b are scalar coeffi-
cients,

• shift invariance
TsS∆xf = S∆xTsf (153)

where S∆x denotes the shift (translation) operator defined by (S∆xf)(x) = f(x−∆x),

• the semi-group property

g(x; s1) ∗ g(x; s2) = g(x; s1 + s2) (154)

with the associated cascade smoothing property

L(x; s2) = g(x; s2 − s1) ∗ L(x; s1), (155)

• the existence of an infinitesimal generator A such that the scale-space family satisfies
a differential equation with respect to the scale parameter

∂sL(x; s) = (AL)(x; s) (156)

• non-creation of local extrema (or zero-crossings) in the one-dimensional case,

• non-enhancement of local extrema in any number of dimensions

∂sL(x; s) ≤ 0 at local maxima in the image domain and ∂sL(x; s) ≥ 0 at
local minima,

• rotational symmetry
g(x; s) = h(|x|; s) (157)

for some univariate function h(·; s) with a complimentary scale parameter s where

|x| =
√
x2

1 + · · ·+ x2
N ,

• positivity (non-negativity)
g(x; s) ≥ 0, (158)

• normalisation ∫
x∈RN

g(x; s) dx = 1, (159)
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• scale invariance
g(x; s) =

1
ϕ(s)

ḡ(
x

ϕ(s)
) (160)

for some functions ϕ and ḡ, or alternatively

ĝ(ω; s) = ĥ(
ω

ϕ(s)
) (161)

for some functions ϕ and ĥ where ĝ denotes the Fourier transform of g.

In fact, it can be shown that the Gaussian kernel is a unique choice for a number of different
combinations of subsets of these scale-space axioms (Koenderink 1984, Babaud et al. 1986,
Yuille & Poggio 1986, Lindeberg 1990, Lindeberg 1994b, Pauwels et al. 1995, Lindeberg
1996, Florack 1997, Weickert et al. 1999, ter Haar Romeny 2003, Lindeberg 2008); see
section 2 for a brief review. The Gaussian kernel is also separable in Cartesian coordinates

g(x; s) = g(x1, x2, . . . , xN ; s) = g(x1; s) g(x2; s) . . . g(xN ; s). (162)

Separability should, however, preferably not be counted as a scale-space axiom, since it is
a coordinate dependent property related to issues of implementation. In addition, the re-
quirement of separability in combination with rotational symmetry per se would fixate the
smoothing kernel to be a Gaussian.13

Other special properties of the Gaussian function. The Gaussian function is also special
in the following respects:

• it minimises the uncertainty relation (Folland & Sitaram 1997), which implies that in
an N -dimensional space with f ∈ L2(RN ) and with

〈x〉2 =

∫
x∈RN |x− x|

2|f(x)|2dx∫
x∈RN |f(x)|2dx

where x =

∫
x∈RN x |f(x)|2dx∫
x∈RN |f(x)|2dx

(163)

and with

〈ω〉2 =

∫
ω∈RN |ω − ω|

2|f̂(ω)|2dω∫
ω∈RN |f̂(ω)|2dω

where ω =

∫
ω∈RN ω |f̂(ω)|2dω∫
ω∈RN |f̂(ω)|2dω

(164)

then it holds for any f that

〈x〉 〈ω〉 ≥ N

2
(165)

and this relation is minimised by the Gaussian function

f(x) = g(x; s,m) = e−(x−m)T (x−m)/2s2 . (166)

13This result can be easily verified as follows: Consider for simplicity the two-dimensional case. Rotational
symmetry and separability imply that h must satisfy h(r cosφ, r sinφ) = h1(r) = h2(r cosφ)h2(r sinφ) for
some functions h1 and h2, where (r, φ) are polar coordinates. Inserting φ = 0 shows that h1(r) = h2(r)h2(0).
With ψ(ξ) = log(h2(ξ)/h2(0)) this relation reduces to ψ(r cosφ) + ψ(r sinφ) = ψ(r). Differentiating
this relation with respect to r and φ and combining these derivatives shows that ψ′(r sinφ) = ψ′(r) sinφ.
Differentiation gives 1/r = ψ′′(r)/ψ′(r) and integration log r = logψ′(r)− log b for some b. Hence, ψ′(ξ) =
bξ and h2(ξ) = a exp(bξ2/2) for some a and b. Hence, if we would include both separability and rotational
symmetry as scale-space axioms, we would not be able to derive any other kernels than the Gaussian.
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• if p is a probability density function on RN with mean vector m∫
x∈RN

x p(x) dx = m (167)

and covariance matrix Σ∫
x∈RN

(x−m)(x−m)T p(x) dx = Σ (168)

then the (possibly non-isotropic) Gaussian function

p(x) = g(x; Σ,m) =
1

(2π)N/2
√

det Σ
e−(x−m)TΣ−1(x−m)/2 (169)

is the probability density function with maximum entropy

H = −
∫
x∈RN

p(x) log p(x) dx ≤ 1
2

log
(
(2πe)N det Σ

)
. (170)

The uncertainty relation means that the Gaussian function has maximally compact simultane-
ous localisation properties in the spatial and the frequency domains. The maximum entropy
result can be interpreted as the Gaussian kernel making minimal use of information. These
properties are also desirable when constructing a scale-space representation, since the uncer-
tainty relation makes the smoothing operation well localised over space and scales, while the
maximum entropy result means that the Gaussian kernel is maximally uncommitted.

B Continuity requirements on the semi-group with respect to scale

When deriving the necessity of the form of the scale-space representation, we use a condi-
tion about non-enhancement of local extrema expressed in terms of a sign condition on the
derivative ∂sL(x0; s0) at local extrema x0 of the scale-space representation L with respect
to the scale parameter s at any scale s0. While the notion of strong C0 continuity of the semi-
group T in equation (17) implies that L(·; s) = T (s) f satisfies the differential equation
∂sL = AL and that the derivative exists almost everywhere for a dense subset of functions
f in the Banach space X over which the semi-group is defined, this structure does not nec-
essarily implies that the partial derivative ∂sL(x0; s0) is well-defined pointwise for every
(x0; s0) ∈ RN × R+. In this appendix, we will express a sufficient condition on the semi-
group T such that the derivative of the scale-space representation L with respect to the scale
parameter is well-defined for smooth functions f of compact support. We start by express-
ing a basic lemma that will make it possible for us to define the infinitesimal generator for
a specific set of functions f r ∈ X . This result will then be used for approximating general
functions f ∈ X using Sobolev norms.

Lemma 8 (Explicit form of infinitesimal generator for a subset of functions f r ∈ X)
Let X be a Banach space, and let T (s) be a semi-group of operators from X to X . For any
x ∈ X , let

f r = C(r)f =
1
r

∫ r

s=0
T (s)f ds (171)

Then, provided that the semi-group T satisfies the C0 continuity requirement that

lim
r↓0
‖C(r)f − f‖X = 0 (172)
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should hold for every f ∈ X , it follows that for every r > 0, we have that C(r)f ∈ D(A) for
every f ∈ X and the result of applying the infinitesimal generator of the semi-group to f r is

Af r = lim
h→0

T (h)− I
h

f r =
T (r)f − f

r
(173)

Proof: Consider

T (h)f r − f r

h
=

1
rh

(
T (h)

∫ r

s=0
T (s)f ds−

∫ r

s=0
T (s)f ds

)
=

1
rh

∫ r

s=0
T (s+ h)f ds−

∫ r

s=0
T (s)f ds (174)

Then, by a change of variables in the first integral we have

T (h)f r − f r

h
=

1
rh

(∫ r+h

s=h
T (s)f ds−

∫ r

s=0
T (s)f ds

)
(175)

which by an inspection of the intervals over which the integration is performed can be written

T (h)f r − f r

h
=

1
r

(
1
h

∫ r+h

s=r
T (s)f ds− 1

h

∫ h

s=0
T (s)f ds

)
(176)

Due to the assumption (172) in combination with (176) it therefore follows that

T (h)f r − f r

h
→ T (r)f − f

r
(177)

when h→ 0. Hence, we know for sure that f r ∈ D(A) with

Af r =
T (r)f − f

r
(178)

(Please, note that there is no limit operator in this expression.) Specifically, it holds that(
T (h)− I

h
−A

)
f r =

1
r

(
1
h

∫ h

s=0
T (s+ r)f ds− 1

h

∫ h

s=0
T (s)f ds

)
− T (r)f − f

r
(179)

�
Our aim is to use an equality with an L2-based Sobolev norm14 to estimate the maximum
norm of the deviation between the difference approximation (T (h)− I)/h and the infinites-
imal generator in equation (179).

Lemma 9 (Maximum norm estimate from L2-based Sobolev norm)
Given any function u ∈ L1(RN ) ∩ L2(RN ), define its Fourier transform by

û(ω) =
∫
x∈RN

u(x) e−iωxdx (180)

and let for any k > N/2 (where k is not required to be an integer)

‖u‖Hk(RN ) =
(∫

ω∈RN

(
1 + |ω|2

)k |û(ω)|2 dω
)1/2

(181)

denote the L2-based Sobolev norm of u of order k. Then, we can estimate the maximum norm
of u from its L2-based Sobolev norm by

‖u‖L∞(RN ) ≤ C‖u‖Hk(RN ) (182)

where the constant C does only depend on k and N and not on u.
14See e.g. (Folland 1995, chapter 6) for an introduction to Fourier based Sobolev norms as used here.
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Proof: Consider

|u(x)| =
∣∣∣∣∫
ω∈RN

e−iωx û(ω) dω
∣∣∣∣ ≤ ∫

ω∈RN
|û(x)| dω

=
∫
ω∈RN

(
1 + |ω|2

)−k/2 (1 + |ω|2
)k/2 |û(ω)| dω (183)

which by the Schwartz inequality and the definition of theL2-based Sobolev norm ‖u‖Hk(RN )

can be overestimated by

|u(x)| ≤
(∫

ω∈RN

(
1 + |ω|2

)−k
dω

)1/2(∫
ω∈RN

(
1 + |ω|2

)k |û(ω)|2dω
)1/2

=
(∫

ω∈RN

(
1 + |ω|2

)−k
dω

)1/2

‖u‖Hk(RN )
(184)

provided that the integral∫
ω∈RN

(
1 + |ω|2

)−k
dω =

∫ ∞
R=0

C ′(N)RN−1

(1 +R2)k
dR = C2 (185)

converges. By the use of N -dimensional spherical coordinates, where C ′(N) denotes the
area of an N − 1-dimensional unit hypersphere, it is clear that the latter integral converges
provided that N − 1− 2k < −1, i.e., provided that k > N/2. �

Using this Sobolev inequality, we will estimate∥∥∥∥(T (h)− I
h

−A
)
f

∥∥∥∥
L∞(RN )

≤ C
∥∥∥∥(T (h)− I

h
−A

)
f

∥∥∥∥
Hk(RN )

(186)

and prove differentiability with respect to s and that the infinitesimal generator A is well-
defined for smooth functions f of compact support given certain regularity requirements on
the semi-group T by showing that

lim
h↓0

∥∥∥∥(T (h)− I
h

−A
)
f

∥∥∥∥
Hk(RN )

= 0 (187)

Lemma 10 (Existence of infinitesimal generator for smooth functions with bounded support)
Let T be a linear semi-group corresponding to convolution kernels T (·; s) ∈ L1(RN ) that
satisfies the continuity requirement that for some value of k > N/2

lim
h↓0

∥∥∥∥∫ h

s=0

(T (s)− I)
h

f ds

∥∥∥∥
Hk(RN )

= 0 (188)

should hold for all smooth functions f ∈ L1(RN ) ∩ C∞(RN ). Then, smooth (C∞) func-
tions f with bounded support are in the domain D(A) and for such functions the derivative
∂sL(x; t) = (AL)(x; s) exists for every (x; s) ∈ RN × R+.

Proof: Given the estimate (186), let us for any smooth function f with bounded support
consider∥∥∥∥(T (h)− I

h
−A

)
f

∥∥∥∥
Hk(RN )

≤

≤
∥∥∥∥(T (h)− I

h
−A

)
(f − f r)

∥∥∥∥
Hk(RN )

+
∥∥∥∥(T (h)− I

h
−A

)
f r
∥∥∥∥
Hk(RN )

(189)
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with f r according to (171), where we from equations (177) and (178) in combination with
the assumption (188) know that

lim
h↓0

∥∥∥∥(T (h)− I
h

−A
)
f r
∥∥∥∥
Hk(RN )

= 0 (190)

for every r > 0. From equation (179) it follows that(
T (h)− I

h
−A

)
(f − f r) =

=
1
h

∫ h

s=0

(T (s+ r)− T (s))(f − f r)
r

ds− (T (r)− I)(f − f r)
r

=
1
h

∫ h

s=0

T (s)(T (r)− I)(f − f r)
r

ds− (T (r)− I)(f − f r)
r

=
1
h

∫ h

s=0

(T (s)− I)(T (r)− I)(f − f r)
r

ds (191)

Returning to the definition of f r, we have that

f r − f =
1
r

∫ r

s′=0
T (s′)f ds′ − f =

∫ r

s′=0

T (s′)− I
r

f ds′ (192)

and we can write(
T (h)− I

h
−A

)
(f r − f) =

=
1
h

∫ h

s=0

∫ r

s′=0

(T (s)− I)(T (r)− I)(T (s′)− I)
r2

f ds ds′ (193)

A sufficient condition for

lim
h↓0

∥∥∥∥1
h

(
T (h)− I

h
−A

)
f

∥∥∥∥
L∞(RN )

= 0 (194)

in equation (186) and for f to be in D(A) is therefore that

lim
h↓0

∥∥∥∥1
h

∫ h

s=0

∫ r

s′=0

(T (s)− I)(T (r)− I)(T (s′)− I)
r2

f ds ds′
∥∥∥∥
Hk(RN )

= 0 (195)

should hold for some k > N/2, some r > 0 and all functions f of compact support in
combination with (188); also for all functions f of compact support. By rewriting (195) into

lim
h↓0

∥∥∥∥1
h

(∫ h

s=0
(T (s)− I) ds

)(∫ r

s′=0

(T (r)− I)(T (s′)− I)
r2

ds′
)
f

∥∥∥∥
Hk(RN )

= 0 (196)

by noting that T (s) is a bounded operator and r > 0 is not required to tend to zero, then the
operator

U =
∫ r

s′=0

(T (r)− I)(T (s′)− I)
r2

ds′ (197)

will also be a bounded operator. Since the operator T corresponds to a convolution kernel
T (·; s) ∈ L1(RN ), the operator U does also preserves smoothness. Given that f has bounded
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support, it follows that Uf will be in L1(RN ). Hence, a sufficient condition for (196) to hold
can also be expressed as the requirement that

lim
h↓0

∥∥∥∥1
h

(∫ h

s=0
(T (s)− I) ds

)
f ′
∥∥∥∥
Hk(RN )

= 0 (198)

should for some k > N/2 hold for all smooth functions f ′ ∈ L1(RN )∩C∞(RN ). The latter
condition is similar to the notion of C1 continuity of the semi-group, although here being
expressed in terms of the Sobolev norm ‖ · ‖Hk(RN ). For a general Banach space, the notion
of C1 continuity is a stronger condition than C0 continuity (Hille & Phillips 1957, page 322).
�

C Non-enhancement of local extrema vs. the maximum principle

This appendix describes relationships between non-enhancement of local extrema as formu-
lated in definition 3 and the maximum principle.

The strong maximum principle for parabolic or elliptic differential equations states that
if a function assumes its maximum in the interior of the domain, then the function must be a
constant (Evans 1998, pages 330–333, 375–377). The weak maximum principle on the other
hand says that the maximum of the function is to be found on the boundary, but may also
occur in the interior (Evans 1998, pages 327–329, 368–370). Corresponding results can be
expressed for minima.

For our purpose of defining a scale-space representation, however, we cannot a priori as-
sume that the scale-space should be generated by a parabolic or elliptic differential equation.
Hence, it is of general interest to perform a study without a priori preconceptions regarding
the form of the evolution equation. Moreover it should be noted that the maximum principle
refers to global properties of the function, while non-enhancement of local extrema refers to
local properties. For a general evolution equation, one may hence conceive situations where
the global maximum of a function has to occur at the boundary, while some other local max-
imum point (which is not the local maximum) may nevertheless be enhanced (see figure 27).
Therefore, one may express maximum principles for differential equations that do not obey
non-enhancement of local extrema, such as the simple differential equation

∂tL = −L. (199)

with initial condition L(x; 0) = f(x). From the solution L(x; t) = e−tf(x) it is obvious
that at a negative maximum over x will always increase with t and the value at a positive
minimum over x will always decrease with t. This example hence shows that the assumption
of non-enhancement of local extrema leads to a different set of smoothing processes than the
maximum principle would lead to.

C.1 A formal connection given the assumption of a local process

Still, however, there is an at least formal connection between non-enhancement of local ex-
trema and the maximum principle. If we assume that the scale-space should be governed by
a partial differential equation with a linear operator AL that corresponds to a local operator
(in terms of derivatives at the central point only), then we can use similar arguments as in
step C.2 in the proof of theorem 5 to show that AL must not contain derivatives of order
higher than two. If we use a test function of the form

f4(x) = (−x2
1 − x2

2 − · · · − x2
N + β2 x

η)χ(Kx) (200)
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Figure 27: For a general evolution process, one may conceive cases where the global maximum
(minimum) always has to decrease (increase), while local extrema may nevertheless be enhanced.
This figure gives a schematic sketch of the sign of derivative with respect to the evolution parameter
s for an evolution equation of the form (204), where the central local maximum marked indicated by
a bold arrow will violate non-enhancement of local extrema provided that the support region of the
weight function w is sufficiently wide.

where χ(x) is defined in a similar way as in the text following equation (35), then we can
choose β2 and K in such a way that f4(x) ≤ 0 ∀x and AL(0) ≥ 0. Thus, the maximum
principle would be violated, because the maximum of the solution would be greater than zero
and would not occur at the boundary of the domain.

Given the complementary assumption of a local process, the requirement of the maximum
principle to hold does, however, not yield an offset a0 equal to zero in the evolution equation
as the requirement of non-enhancement of local extrema leads to. If we allow ourselves
to reparameterize the scale parameter in the evolution equation by the following change of
variables

L̃ = e−a0sL (201)

and if L is a solution of
∂sL =

∑
0<|η|≤2

aη∂xηL+ a0L (202)

as would be obtained from the maximum principle, then the transformed representation L̃ is
a solution of

∂sL̃ =
∑

0<|η|≤2

aη∂xη L̃ (203)

which agrees with the form of evolution equations obtained from non-enhancement of local
extrema. In this respect, there is a close formal relationship between non-enhancement of
local extrema and the maximum principle. Given the requirement of the maximum principle
to hold, it should, however, be emphasized that non-enhancement of local extrema would not
be guaranteed to hold in the original domain, only in some transformed domain.

C.2 A more fundamental difference in terms of local vs. non-local processes

In the above mentioned analysis, we made a complementary assumption that the evolution
equation should be determined by a local evolution equation. In our previous treatment in
section 3, such a local form of the evolution process was established from the assumption
of non-enhancement of local extrema in step C.1 in the necessity proof underlying theo-
rem 5. A very notable difference between the maximum principle and non-enhancement of
local extrema, however, is that the maximum principle allows for non-local evolution pro-
cesses, where the minimum and maximum values have to occur at the boundary, whereas
non-enhancement of local extrema is violated for such evolution processes. Consider, for
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example, an evolution equation of the form

∂sL(x; s) =
∫ ∞
ξ=−∞

w(ξ) (L(x− ξ; s)− L(x; s)) dξ (204)

where w is a non-negative smooth C∞ function with bounded L1 norm. From the averaging
interpretation of this process, it is evident that if x0 is a global maximum (minimum) of the
mapping x→ L(x; s0) , then L(x0 − ξ; s)− L(x0; s0) will always be negative (positive),
which means that ∂sL(x0; s0) is guaranteed to be negative (positive). Hence, this evolution
process satisfies a maximum (minimum) principle in the sense that the global maximum
(minimum) of the mapping x → L(x; s0) is always guaranteed to decrease (increase).
This property in turn means that the global maximum (minimum) of the mapping (x, s) →
L(x; s) has to occur at the boundary of the (x, s) domain. There is, however, no guarantee
concerning the sign of ∂sL(x; s) at local extrema of the mapping x → L(x; s0), and an
evolution process of this form may therefore violate non-enhancement of local extrema (see
figure 27 for an illustration).

Thus, an evolution process that obeys the maximum principle does not even have to be
local, in the sense that the right-hand side in the evolution equation (204) may depend on
values of L at several points, while the result in theorem 5 shows that a smoothing process
that obeys non-enhancement of local extrema always has to be local and be determined by a
second-order parabolic operator.

C.3 Fourth-order evolution equations

Maximum principles can also be stated for certain types of fourth-order elliptic equations
(Dunninger 1972, Zhang & Zhang 2002), such as

(∇2)2L+ L = 0, (205)

which are, however, not within the class of non-enhancement scale-spaces that we shall con-
sider. In connection with the problem of choosing between candidate smoothing processes,
it may also be highly relevant to ask if, for example, a fourth-order evolution equation of the
form15

∂sL = −(∇2)2L (206)

could be regarded as a possible model for generating a scale-space? The solutions of this
equation may, however, have non-intuitive properties in the sense that positivity may be vi-
olated and local ripples may be amplified (Broadbridge 2008, page 366). The latter fourth-
order process can be ruled out by both the maximum principle and non-enhancement of local
extrema.

D Galilean-invariant fixed points in Gaussian spatio-temporal scale-
space

The subject of this appendix is to describe one way to make appropriate selection of veloc-
ity parameters for interpreting the results in a multi-parameter spatio-temporal scale-space
representation in a general situation when there is no a priori information of the motion of
observed objects relative to the observer. The method that will be proposed is based on the
definition of Galilean invariant fixed points constructed by normalizing local spatio-temporal
image patterns by a method referred to as Galilean block diagonalization and by comparing
and adapting the velocity parameter based on local spatio-temporal image measurements.

15The minus sign is needed here to make this equation dissipative in L2 (Broadbridge 2008, page 371).
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D.1 Basic definitions

Consider a spatio-temporal image sequence f(p) = f(x, t) defined over RN×R with spatio-
temporal scale-space representation L(p; Σ) given by L(·; Σ, δ) = g(·; Σ, δ) ∗ f(·), where
g denotes the spatio-temporal Gaussian kernel

g(x; Σ, δ) =
1

(2π)(N+1)/2
√

det Σ
e−(p−δ)TΣ−1(p−δ)/2, (207)

with a spatio-temporal covariance matrix Σ of the form (60) and with time delay δ.
Given any velocity vector u, define a Galilean transformed image f ′′ by f ′(p′′) = f(p),

where p′′ = G(u) p and G(u) denotes a Galilean transformation with image velocity u.
Moreover, define the spatio-temporal scale-space representationL′′ of f ′′ according toL′′(·; Σ′′, δ′′) =
g(·; Σ′′, δ′′) ∗ f ′′(·). Then, from the transformation property of the Gaussian scale-space un-
der Galilean transformations, which in turn originates from the corresponding transformation
property under affine transformations (50), it follows that L′′(p′′ Σ′′, δ′′) = L(p; Σ, δ) pro-
vided that the covariance matrices satisfy Σ′′ = GΣGT and that the time delays are equal
δ′′ = δ.

D.2 Spatio-temporal second-moment matrix/structure tensor

Let us next define velocity-adapted spatio-temporal second-moment matrices (structure ten-
sors) of L and L′′ according to

µ(p; Σ1,Σ2, δ1 + δ2) =
∫
q∈R(N+1)

(∇L(q; Σ1, δ1))(∇L(q; Σ1, δ1))T g(p− q; Σ2, δ2) dq,

(208)

µ′′(p′′; Σ′′1,Σ
′′
2, δ
′′
1 + δ′′2) =

∫
q′′∈R(N+1)

(∇L′′(q′′; Σ′′1, δ
′′
1))(∇L′′(q′′; Σ′′1, δ

′′
1))T g(p′′ − q′′; Σ′′2, δ

′′
2) dq′′.

(209)

where δ1 and δ2 denote the time constant in the first and second stages of scale-space smooth-
ing, respectively. Then, from the general transformation property of second-moment matrices
under affine transformations (Lindeberg 1994b, section 15.3) (Lindeberg & Gårding 1997),
if follows that the second-moment matrices µ and µ′′ are related according to

µ′′ = G−T (u)µG−1(u). (210)

D.3 Galilean block diagonalization

Our next step is to introduce the notion of Galilean block diagonalization, which corresponds
to finding the unique Galilean transformation that transforms the spatio-temporal second-
moment matrix to block diagonal form with all mixed purely spatio-temporal components
being zero µ′x1t = µ′x2t = · · · = µ′xN t = 0 (Lindeberg et al. 2004a)

µ′ =


µ′x1x1

µ′x1x2
. . . µ′x1xN

0
µ′x1x2

µ′x2x2
. . . µ′x2xN

0
...

...
. . . 0

µ′x1xN
µ′x2xN

. . . µ′xNxN 0
0 0 0 0 µ′tt

 (211)
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Such a block diagonalization can be obtained if the velocity vector u satisfies
µ′x1x1

µ′x1x2
. . . µ′x1xN

µ′x1x2
µ′x2x2

. . . µ′x2xN
...

...
. . .

µ′x1xN
µ′x2xN

. . . µ′xNxN




u1

u2
...
uN

 = −


µx1t

µx2t
...

µxN t

 (212)

with the solution
u = −{µxx}−1{µxt} (213)

i.e., structurally similar equations as are used for computing optic flow according to the
method by (Lukas & Kanade 1981). This is a very general approach for normalizing local
spatio-temporal image patterns, which also applies to spatio-temporal patterns that cannot be
modelled by a Galilean transformation of an otherwise temporally stationary spatial pattern.

D.4 Galilean invariant property of Galilean diagonalization

In view of the above mentioned definition of the notion of Galilean block diagonalization of
the spatio-temporal second-moment matrix, let us next return to the previously stated general
transformation property (210) of the Gaussian spatio-temporal scale-space under Galilean
transformations. Given a certain spatio-temporal pattern L around a point p in space-time,
let us assume that we have a Galilean transformation G(u) that transforms µ′′ into block
diagonal form

µ′′ = G−T (u)µG−1(u). (214)

Let us moreover assume that the original spatio-temporal image pattern L is transformed by
some unknown Galilean transformation with velocity vector v into a transformed scale-space
representation L′. From equation (210), it then follows that the spatio-temporal second-
moment matrix µ for this transformed image pattern can be written µ′ = G−T (v)µG−1(v).
This transformed spatio-temporal second-moment matrix can in turn be brought to a Galilean
block diagonalized form by a velocity vector w such that µ′′ = G−T (w)µ′G−1(w). By
combining the last two expressions, we thus obtain

µ′′ = G−T (w)G−T (v)µG−1(v)G−1(w). (215)

Since Galilean transformation matrices satisfy G−1(v) = G(−v) as well as G(v + w) =
G(v)G(w), it follows that

µ′′ = G−T (v + w)µG−1(v + w) (216)

and we have that the Galilean transformation G(w) = G(u − v) will bring the second-
moment matrix µ′ of the transformed pattern into block diagonal form. Thus, the property
of Galilean block diagonalization is preserved under Galilean transformations. Specifically,
the velocity vector associated with the Galilean transformation, that brings a second-moment
matrix into block diagonal form, is additive under superimposed Galilean transformations.

Therefore, if we normalize local space-time structures using a local Galilean transfor-
mations determined from the requirement that the second-moment matrix should be block
diagonal, it follows that the result after normalization will always be the same, irrespective
of any superimposed Galilean transformation. From this view-point, the notion of Galilean
block diagonalization leads to a canonical Galilean invariant way of normalizing local spatio-
temporal image structures.16

16Note that although a similar result could be expected from the viewpoint of optic flow computations accord-
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D.5 Fixed-point property: Adaptation of the velocity vectors to the local spatio-
temporal image structure

A pre-requisite for carrying out the proofs underlying the transformation properties above is
that the spatio-temporal covariance matrices used for computing the second-moment matri-
ces are related according to Σ′′ = G(u) ΣGT (u) and Σ′ = G(v) ΣGT (v). Thus, perfect
Galilean invariance can only be expected if the shapes of the spatio-temporal smoothing ker-
nels are coupled. Otherwise, the transformation properties will only be approximate. From
this viewpoint, a scale-space concept that allows for velocity adaptation for any image veloc-
ity can therefore be motivated from the desire of achieving true Galilean invariance.

We can formally test if true Galilean invariance has been achieved by checking if the
velocity estimate û according to equation (213) agrees with the velocity v of the velocity-
adapted spatio-temporal filters used for computing the estimate. Then, the image measure-
ments are in agreements with the assumptions used for computing them. In practice, an
operational criterion of the form

‖û− v‖ ≤ ε (217)

can therefore be expected to sort out stable spatio-temporal image descriptors from unstable
ones, with the interpretation that if this condition is satisfied, then the velocity parameter
in the scale-space representation could be regarded as approximately matching an average
velocity estimate for the local spatio-temporal image pattern (Lindeberg et al. 2004b).

In an actual implementation based on a limited set of filter parameters, we can also iter-
atively adapt the velocity parameter to previous image measurements and stop the iterations
when the increments are below a threshold. Provided that this iterative velocity adaption
procedure converges, the resulting image descriptors will then be Galilean invariant.

An underlying assumption for the iterative velocity adaptation approach to be applicable
is that the velocity estimates are stationary over time intervals longer than combined temporal
delay δ1 + δ2 corresponding to the time constants of the first- and second-layer scale-space
filters. If the velocity estimates vary strongly on a much shorter time scale, the results of
iterative velocity adaptation may, however, be unpredictable.

Let us finally remark that although the analysis in this appendix concerns the Gaussian
spatio-temporal scale-space, a corresponding treatment can be performed for the time-causal
spatio-temporal scale-space. Moreover, besides a Galilean invariant representation based
on a single velocity parameter, there is also a potential in exploring representations based
multiple values of the velocity parameter in a corresponding manner as multiple orientations
of spatial receptive fields may be used in an advantageous manner in spatial vision.

E Solutions for the time-causal spatio-temporal scale-space

In this section, we will study the solution of diffusion equations on semi-infinite domains,
with emphasis on how time-dependent boundary conditions influence the temperature dis-
tribution in the interior. This type of physical model arises in time-causal scale-spaces on

ing to the method by (Lukas & Kanade 1981), we have in this proof not made any assumption that the local
spatio-temporal image structures within the support region of the window function should represent a local trans-
lational model. (The optic flow estimation method by Lukas and Kanade is derived from such an assumption.)
Therefore this result applies to arbitrary types of space-time structures and spatio-temporal events. The only as-
sumption we have made above is that the purely spatial component of the second-moment matrix is non-singular,
i.e., that det{µxx} 6= 0. If this assumption is violated, then the velocity vector u in the Galilean transformation
G(u) that diagonalizes the spatio-temporal second-moment matrix µ is not uniquely determined, and we have a
situation with a local aperture problem. This indeterminacy will, however, not effect the Galilean normalization,
since the indeterminacy will not effect the transformed pattern.
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temporal and spatio-temporal domains. To simplify the treatment, let us begin with a simpli-
fied case with one temporal dimension and no spatial dimensions.

Please note that this treatment is given for introductory and tutorial purposes. For a
detailed account of the solutions of the diffusion equation in different types of solids, please
refer to (Carslaw & Jaeger 1959). A difference compared to classical heat diffusion, however,
is that we will here later consider diffusion over two temporal dimensions; one for the spatial
scale parameter s and one for the ordinary time t.

E.1 Pure temporal time-causal scale-space

Consider the solution of the diffusion equation

∂tL =
1
2
Lττ (218)

on a semi-infinite solid with initial condition L(0; τ) = L0(τ) and a time-dependent bound-
ary condition L(t; 0) = f(t). This equation describes how an initial heat distribution L0(τ)
evolves over time t in an infinite solid with τ > 0 while also being strongly influenced by
a time varying temperature f(t) at the boundary τ = 0. With regard to a temporal scale-
space representation, the temperature distribution at any non-infinitesimal distance τ from
the boundary τ = 0 will be interpreted as the time-causal scale-space representation of a
temporal signal f(t) at coarser time scales τ .

In (Carslaw & Jaeger 1959, Section 14.2) it is shown that the solution of this one-
dimensional equation can be written

L(t; τ) =
∫ ∞
ζ=0

L0(ζ) (g(τ − ζ; t)− g(τ + ζ; t)) dζ +
∫ t

u=0
f(u)φ(t− u; τ) du (219)

where
g(τ ; t) =

1√
2πt

e−τ
2/2t and φ(t; τ) =

1√
2π t3/2

τ e−τ
2/2t. (220)

As can be seen, this solution consists of two terms. The first term describes how the initial
heat distribution L0(τ) evolves over time t in such a way that the influence of this heat
distribution will be kept to zero at the boundary τ = 0. For this reason of keeping the
boundary influence to zero, an artificial distribution of negative heat sinks −L0(−τ) has
been introduced on the negative τ axis, manifested in terms of the addition of a negative
Gaussian in the convolution expression. The second term describes how the time dependent
boundary condition f(t) at τ = 0 spreads into the heat conducting medium. Specifically, the
kernel φ(t−u; τ) arising in this term describes how an amount of heat f(u) at the boundary
at time t−u spreads over time t into the medium at a penetration depth τ from the boundary.
Due to the linearity of the diffusion equation, these two solutions can be superimposed, and
the resulting solution will satisfy both the initial condition and the boundary condition. While
one could in general initiate a temporal or spatio-temporal scale-space concept over time t
with an initial distribution over temporal scales τ , we will henceforth simplify the treatment
by setting the initial condition to zero and focus on the latter boundary component of the
solution only. Thus, with initial condition L(0; τ) = L0(τ) = 0 we will consider

L(t; τ) =
∫ t

u=0
f(u)φ(t− u; τ) du (221)

with
φ(t; τ) =

1√
2π t3/2

τ e−τ
2/2t (222)
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as the solution for the boundary-dependent part of the diffusion equation with the time-
dependent boundary condition L(t; 0) = f(t).

By verification, it can be shown that φ(t; τ) satisfies the diffusion equation. More easily,
by observing that φ(t; τ) = −∂τg(τ ; t) we can also immediately see that φ(t; τ) has
to satisfy the diffusion equation, since the Gaussian g(τ ; t) is a solution of the diffusion
equation and the operator ∂τ used for computing φ from g is a linear operator.

E.2 Fulfillment of the boundary condition

To verify that L according to (221) satisfies the boundary condition L(t; 0) = f(t), we can
start from the explicit integral expression

L(t; τ) =
1√
2π

∫ t

u=0
f(u)

τ

(t− u)3/2
e−τ

2/2(t−u) du (223)

and perform a change of variables by (Carslaw & Jaeger 1959)

µ =
τ√

2(t− u)
with u = t− τ2

2µ2
and du =

τ2

µ3
dµ (224)

which transforms the integral expression into

L(t; τ) =
2√
π

∫ ∞
µ=τ/

√
2t
f(t− τ2

2µ2
) e−µ

2
dµ (225)

If we would allow ourselves to take limits inside the integral, we would obtain

lim
τ↓0

L(t; τ) = lim
τ↓0

2√
π

∫ ∞
µ=τ/

√
2t
f(t− τ2

2µ2
) e−µ

2
dµ

=
2√
π

∫ ∞
µ=0

(
lim
τ↓0

f(t− τ2

2µ2
)
)
e−µ

2
dµ

=
2√
π

∫ ∞
µ=0

f(t) e−µ
2
dµ = f(t)

2√
π

∫ ∞
µ=0

e−µ
2
dµ = f(t) (226)

and the fulfillment of the boundary condition would be proven. A more detailed proof show-
ing that this conclusion can indeed be made valid is given in appendix E.5.

E.3 Temporal cascade-recursive structure over time

In addition to the cascade smoothing property over temporal scales τ , the time-causal scale-
space also obeys a recursive structure over time t. If we start from the general expression for
the solution of the diffusion equation over a semi-infinite solid in equation (219), and let the
initial condition be the temporal scale-space representation at time t1, i.e., L0(ζ) = L0(τ) =
L(t1; τ), then we can write the temporal scale-space representation L(t2; τ) at time t2, i.e.
after a time increment t2 − t1 as

L(t2; τ) =
∫ ∞
ζ=0

L(t1; ζ) (g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ

+
∫ t2

u=t1

f(u)φ(t2 − u; τ) du (227)

If we at time t = t2 consider t = t1 as a divider of the history, we can from this expression
explicitly see how L(t1; ζ), when considered as a representation over all temporal scales
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ζ works as an internal memory of what has happened before t = t1. This information is
updated by integration with two shifted Gaussians, one of these negative, each with variance
t2 − t1. The novel contribution of information between t = t1 and t2 is incorporated into
the temporal scale-space representation L by convolving the input signal f with the time-
causal scale-space kernel φ(t; τ). If we in turn combine this expression with the definition
of L(ti; τ)

L(ti; τ) =
∫ ti

u=0
f(u)φ(ti − u; τ) du (228)

and divide the integral for computing L(ti; τ) over the intervals [0, t1] and [t1, t2] we obtain∫ t1

u=0
f(u)φ(t2 − u; τ) du+

∫ t2

u=t1

f(u)φ(t2 − u; τ) du+

=
∫ ∞
ζ=0

(∫ t1

u=0
f(u)φ(t1 − u; ζ) du

)
(g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ

+
∫ t2

u=t1

f(u)φ(t2 − u; τ) du (229)

By changing the order of integration in the middle integral and then identifying first the
integrals over the interval [0, t1]∫ t1

u=0
f(u)φ(t2 − u; τ) du

=
∫ t1

u=0
f(u)

(∫ ∞
ζ=0

φ(t1 − u; ζ) (g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ
)
du (230)

and then also identifying the arguments of these integrals with the complementary motiva-
tion that this relation should hold for all sufficiently regular f , we can after replacing the
arguments ti − u by ti state that

φ(t2; τ) =
∫ ∞
ζ=0

φ(t1; ζ) (g(τ − ζ; t2 − t1)− g(τ + ζ; t2 − t1)) dζ (231)

This is the time-recursive cascade smoothing property of the time-causal scale-space kernel
φ(t; τ) over time t.

E.4 Time-causal spatio-temporal scale-space

To define a time-causal scale-space representation of a spatio-temporal signal f(x, t), where
x ∈ RN and t ∈ R+, we will consider diffusion over two dimensions; one dimension for
the spatial scale s and one dimension for the regular time t. Thus, the original data set will
be extended with a spatial scale parameter s and complementary temporal scale dimension,
which will be labelled τ . As derived in section 5, we will define the time-causal spatio-
temporal scale-space representation L(x, t; s, τ) of a spatio-temporal signal f(x, t) from the
following two differential equations

∂sL =
1
2
∇Tx (Σ∇xL) (232)

∂tL = −vT∇xL+
1
2
∂ττL (233)

with initial condition L(x, 0; 0, τ) = L0(x; τ) = 0 and with combined boundary and initial
condition L(x, t; 0, 0) = f(x, t). As noted in Section E.1, we could alternatively consider
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a different initial condition for L0(x; τ). Since the temporal part of the time-causal scale-
space representation will be obtained by diffusion from the boundary into the interior of a
higher-dimensional volume, however, we will because of simplicity restrict ourselves to the
influence of the boundary term corresponding to f(x, t).

To seek a simultaneous solution of equation (232) and equation (233), we can first from
an analogy with the shape-adapted regular scale-space concept on a spatial domain note that
the solution of equation (232) if treated as a function of the spatial coordinate x and the
spatial scale parameter s is by convolution of the initial condition f(x) with a shape-adapted
Gaussian kernel

g(x; s) =
1

(2πs)N/2
√

det Σ
e−x

TΣ−1x/2. (234)

If we multiply g by an arbitrary function of t and τ , then the product of g and this new
function will still be a solution. Specifically, if we initially consider

h′(x, t; s, τ) = φ(t; τ) g(x; s) (235)

with φ according to (222) it follows that h′ will satisfy (232). With regard to equation (233)
we know from previous section that φ(t; τ) according to (222) is a solution of

∂tL =
1
2
Lττ (236)

Since g(x; s) is independent of t and τ , it follows that h′(x, t; s, τ) = φ(t; τ) g(x; s) is
also a solution of this equation. Now, however, our aim is to find a solution of the slightly
different equation (233). To satisfy this equation, we can note that by switching the first
argument of the Gaussian function from x to x− vt

h(x, t; s, τ) = φ(t; τ) g(x− vt; s), (237)

our new function h will satisfy (233). Moreover, the new function h also satisfies (232).
Thus, h is an elementary solution of our two evolution equations. Finally, by considering

L(x, t; s, τ) =
∫ t

u=0

∫
ξ∈RN

f(ξ, u)h(x− ξ, t− u; s, τ) dξ du (238)

it follows from the linearity and the fact that h satisfies (233) and (232) that also L according
to (238) satisfies these two differential equations.

E.5 Fulfillment of the boundary condition for the time-causal scale-space

In appendix E.1, when showing that the time-causal scale-space representation L(t; τ) ac-
cording to equation (221) for a pure temporal signal f(t) satisfies the boundary condition

lim
τ↓0

L(t; τ) = f(t) (239)

we showed that by a change of variables this problem can be reduced to showing that (226)

lim
τ↓0

2√
π

∫ ∞
µ=τ/

√
2t
f(t− τ2

2µ2
) e−µ

2
dµ = f(t) (240)
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In this appendix, we will provide a formal proof of this property by proving that

|L(t; τ)− f(t)| =

∣∣∣∣∣ 2√
π

∫ ∞
µ=τ/

√
2t

[
f(t− τ2

2µ2
)− f(t)

]
e−µ

2
dµ

− 2√
π

∫ τ/
√

2t

µ=0
f(t) e−µ

2
dµ

∣∣∣∣∣
≤

∣∣∣∣∣ 2√
π

∫ ∞
µ=τ/

√
2t

[
f(t− τ2

2µ2
)− f(t)

]
e−µ

2
dµ

∣∣∣∣∣
+

∣∣∣∣∣ 2√
π

∫ τ/
√

2t

µ=0
f(t) e−µ

2
dµ

∣∣∣∣∣
= I + I ′ (241)

tends to zero as we let the temporal scale τ approach zero from above. First, we can directly
see that the second integral I ′ will tend to zero when τ tends to zero, by overestimating its
value by the maximum value of the integrand times the length of the interval

I ′ ≤ 2√
π
f(t)

∫ τ/
√

2t

µ=0
sup

µin[0,τ/
√

2t

e−µ
2

=
2√
π
f(t)

τ√
2t
→ 0 (242)

Next, by splitting the main integral I into two parts using the deliberately chosen divider
µ =

√
τ/2

I =

∣∣∣∣∣ 2√
π

∫ ∞
µ=τ/

√
2t

[
f(t− τ2

2µ2
)− f(t)

]
e−µ

2
dµ

∣∣∣∣∣
≤

∣∣∣∣∣ 2√
π

∫ √τ/2
µ=τ/

√
2t

[
f(t− τ2

2µ2
)− f(t)

]
e−µ

2
dµ

∣∣∣∣∣
+

∣∣∣∣∣ 2√
π

∫ ∞
µ=
√
τ/2

[
f(t− τ2

2µ2
)− f(t)

]
e−µ

2
dµ

∣∣∣∣∣
= I1 + I2 (243)

we will by different overestimates show that both I1 and I2 tend to zero as τ ↓ 0.
For the integral I1, we can again make an overestimate of the magnitude by the maximum

value of the integrand times the length of the interval (where we also note that the arguments
of f are always restricted to the interval u ∈ [0, t] due to the original integral formulation in
equation (223))

I1 ≤
2√
π

(√
τ

2
− τ√

2t

)
sup

µ∈[τ/
√

2t,
√
τ/2]

∣∣∣∣f(t− τ2

2µ2
)− f(t)

∣∣∣∣
≤ 2√

π

(√
τ

2
− τ√

2t

)
2 sup
u∈[0,t]

|f(u)| → 0 (244)

For the remaining integral

I2 ≤
2√
π

∫ ∞
µ=
√
τ/2

∣∣∣∣f(t− τ2

2µ2
)− f(t)

∣∣∣∣ e−µ2
dµ (245)
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we can note that the argument of the absolute value in the integrand can be written∣∣∣∣f(t− τ2

2µ2
)− f(t)

∣∣∣∣ = |f(t− ξτ)− f(t)| (246)

where the function ξ (depending on µ) always assumes values in the interval [0, 1] (insert the
lower bound of the integral µ =

√
τ/2 in f(t − τ2

2µ2 ) and note that this value of µ implies
the largest derivation of the argument from f(t)).

To estimate the difference between f(t− ξτ) and f(t), we can make use of the fact that
there should exist some argument η ∈ [0, ξτ ] (depending on µ) such that we according the
Lagrange mean value theorem can write (please note that the following relation holds exactly,
it is not just an approximate Taylor expansion)

f(t− ξτ)− f(t) = −f ′(η) ξτ (247)

Thus, the integral I2 can be estimated as

I2 ≤
2√
π

∫ ∞
µ=
√
τ/2

∣∣ξ(µ)τ f ′(η(µ))
∣∣ e−µ2

dµ

≤ τ sup
µ≥
√
τ/2

|ξ(µ)| 2√
π

∫ ∞
µ=0
|f ′(η(µ))| e−µ2

dµ

≤ τ sup
u[0,t]
|f ′(u)| 2√

π

∫ ∞
µ=0

e−µ
2
dµ = τ sup

u[0,t]
|f ′(u)| (248)

This entity is linear in τ , and will thus tend to zero as τ ↓ 0 provided that the input signal
f is sufficiently regular, for example, if the integral over the absolute value of the first-order
derivative |f ′| with regard to the measure e−µ

2
dµ is finite, or alternatively if the supremum

of |f ′(u)| is finite.

F Formal statements for the time-causal spatio-temporal scale-
space

This appendix contains formal statements for the time-causal spatio-temporal scale-space
analogous to definition 1, lemma 2, definition 3, definition 4 and theorem 5 in section 3.2
regarding the generalized Gaussian scale-space; please refer to section 5 for an overview.

Definition 11 (Continuous time-causal pre-scale-space representation)
Let f ∈ L2(RN×R+) be a continuous spatio-temporal signal and let T (s, t) with (s, t) ∈ R2

+

be a strongly continuous two-parameter semi-group of linear and shift-invariant operators
from L2(RN × R+) to L2(RN × R+) according to{

T (s1, t1) T (s2, t2) = T (s1 + s2, t1 + t2),
T (0, 0) = I. (249)

and equation (69), where the semi-group corresponds to a spatio-temporal convolution op-
eration of the form (66) with the convolution kernels h(x, t; s, τ) ∈ L1(RN × R) and
the smoothing functions T (x, t; s, τ, ζ) in the time-recursive update rule (65) also being in
L1(RN × R). The semi-group is also required to be C1 continuous with respect to the L2-
based Sobolev norm ‖ · ‖Hk(RN×R+) in the sense that for all connected regions Ω ∈ R2

+ near
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the origin that shrink to zero in such a way that the maximum distance ρ(Ω) between a point
in Ω and the origin tends to zero

lim
ρ(Ω)↓0

∥∥∥∥∥
∫

(s,t)∈Ω T (s, t)f dΩ∫
(s,t)∈Ω dΩ

− f

∥∥∥∥∥
Hk(RN×R+)

= 0 (250)

should for some k > (N + 1)/2 be required to hold for all smooth functions f ∈ L1(RN ×
R+)∩C∞(RN ×R+). Then, the two-parameter family of signals L : RN ×R+ ×R2

+ → R
given by

L(·, t; s, ·) = T (s, t)L(·, 0; 0, ·) (251)

with boundary condition L(x, t; 0, 0) = f(x, t) and combined initial and boundary con-
dition L(x, 0; 0, τ) = L0(x; τ) is said to be a continuous time-causal pre-scale-space
representation of f generated by T (s, t).

Lemma 12 (A continuous time-causal pre-scale-space representation is differentiable)
Let L : RN × R+ × R2

+ → R be the continuous time-causal pre-scale-space representation
of a smooth spatio-temporal signal f ∈ L2(RN × R+) ∩ C∞(RN × R+). Then, L satisfies
a two-parameter differential equation with regard to the parameters of the semi-group with
the (semi-group) directional derivative in direction u = (α1, α2) given by

Du L = (α1A1 + α2A2)L (252)

for some linear and shift-invariant operatorsA1 andA2 fromL2(RN×R+) toL2(RN×R+).

Proof: Follows from results in (Al-Sharif & Khalil 2004, page 407) reviewed in connection
with equations (70)–(74) in section 5. �

Definition 13 (Time-causal pre-scale-space property: Non-enhancement of local extrema)
A time-causal continuous pre-scale-space representationL : RN××R+R2

+ → R of a smooth
signal f ∈ L2(RN ×R+)∩C∞(RN ×R+) is said to possess continuous non-enhancement
pre-scale-space properties, or equivalently not to enhance local extrema, if for any time
t0 ∈ R+ and any scale s0 ∈ R+ it holds that if (x0, τ0) ∈ RN ×R+ is a critical point for the
mapping (x, τ) 7→ L(x, t0; s0, τ) and if the Hessian matrixHx,τ with respect to both space
x and temporal scales τ at this point is non-degenerate, then the (semi-group) directional
derivative of L in any direction u = (α1, α2) in (s, t) space at this point has the same sign
as the Hessian matrix, i.e.

sign ∂uL = sign traceHx,τL. (253)

Remark: The definition of local extrema underlying this definition, i.e., local extrema of the
mapping (x, τ) 7→ L(x, t0; s0, τ) for every scale s0 ∈ R+, means that these local extrema
can be detected from the always available internal buffer over (x; s, τ) at any time moment
t0 and do not imply any explicit references to the future t > t0 or the past t < t0. In this
respect, the notion of non-enhancement of local extrema for the time-causal spatio-temporal
scale-space differs from the notion of non-enhancement of local extrema for the Gaussian
spatio-temporal scale-space, where non-enhancement of local extrema is expressed in terms
of local extrema of the mapping (x, t) 7→ L(x, t; s0, τ0). �

Definition 14 (Time-causal continuous non-enhancement scale-space representation)
Let T (s, t) be a strongly continuous two-parameter semi-group of linear and shift-invariant
operators from L2(RN × R+) to L2(RN × R+). Given a spatio-temporal signal f ∈
L2(RN × R+), the pre-scale-space representation L : RN ×R+ ×R2

+ → R of f is said to
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be a time-causal continuous scale-space representation of f if and only if it for every smooth
function f ′ ∈ L2(RN × R+) ∩ C∞(RN × R+) of compact support and for every initial
condition L(x, 0; 0, τ) = L0(x; τ) it holds that the time-causal pre-scale-space represen-
tation L′ : RN ×R+ ×R2

+ → R of f ′ generated by T (s, t) obeys non-enhancement of local
extrema,

Lemma 15 (Time-causal non-enhancement scale-space for continuous signals: Necessity I)
A continuous time-causal non-enhancement scale-space representationL : RN×R+×R2

+ →
R of a spatio-temporal signal f ∈ L2(RN × R+) satisfies the following system of parabolic
differential equations

∂sL =
1
2
∇Tx,τ (Σ1∇x,τL)− δT1 ∇x,τL, (254)

∂tL =
1
2
∇Tx,τ (Σ2∇x,τL)− δT2 ∇x,τL, (255)

with boundary condition condition L(x, t 0, 0) = f(x, t) for some positive semi-definite
(spatial) covariance matrices Σ1 and Σ2 and some velocity vectors δ1 and δ2.

Proof: A proof that the evolution property over spatial scales s has to be of the form in
equation (254) can be performed by constructing a similar set of counterexamples from func-
tions fi(x, t) = fi(x) i = 1..5 with fi(x) given by the five functions used for constructing
counterexamples in the proof of theorem 5.

A proof that the evolution property over time t has to be of the form in equation (255) can
be performed by constructing a similar set of counterexamples determined by L0(x; τ) =
fi(τ) with fi(τ) determined by the five counterexamples in the proof of theorem 5.

The existence of derivatives with respect to space x as used in the first part of the proof
follows from the assumption of the convolution kernels h(x, t; s, τ) in equation (66) being
in L1(RN × R), which implies that we for smooth functions f with compact support have

∂xj (h(·; s, τ) ∗ f(·)) = h(·; s, τ) ∗ (∂xjf)(·)). (256)

The existence of derivatives with respect to temporal scale τ as used in the second part of
the proof follows from the assumption of the smoothing functions T (·, t; s, τ, ·) in the time
recursive formulation (65) being in L1(RN × R). �

Out of this family of differential equations, it is not necessarily the case that all differential
equations give rise to reasonable evolution processes with regard to interpretations in terms
of spatial scales and temporal scales. More generally, given a two-parameter semi-group,
one may also conceive different ways of parameterizing the same semi-group. In addition to
the above mentioned structural conditions, we would, however, also would like to have the
ability to interpret the first parameter s in the two-parameter semi-group as a spatial scale
parameter and the second parameter t as regular time t. We say that a parameterization is on
standard form if such an interpretation is possible.

Definition 16 (Standard form for the spatio-temporal scale-space)
A system of partial differential equations describing a spatio-temporal scale-space repre-

sentation L : RN ×R+×R2
+ → R of a spatio-temporal signal f ∈ L2(RN ×R+) is said to

be on standard form if

(i) the parameter s can be interpreted as a spatial scale parameter in the sense that the
evolution equation over s does not explicitly depend on derivatives with respect to
temporal scale τ ,
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(ii) the evolution over spatial scales s does not imply any translation in space in the sense
that the coefficients of the first-order derivatives with respect to space x and temporal
scale τ are zero,

(iii) the evolution equation over spatial scales s is stationary over time in the sense that the
coefficients do not depend on time t,

(iv) the evolution equation over time t should not be affected by the spatial scales in the
sense that the coefficients of the second-order derivatives with respect to space x must
be zero,

(v) the evolution equation over time t does not involve temporal scale dependent transla-
tion in time in the sense that the coefficient of the first-order derivative with respect to
temporal scale τ is zero.

Given these conditions, the evolution equations reduce to a simpler form:

Theorem 17 (Time-causal non-enhancement scale-space for continuous signals: Neces-
sity II) A continuous time-causal non-enhancement scale-space representation L : RN ×
R+ × R2

+ → R of a spatio-temporal signal f ∈ L2(RN × R+) on standard form satis-
fies the following system of parabolic differential equations

∂sL =
1
2
∇Tx (Σ0∇xL), (257)

∂tL = −vT∇xL+
1
2
∂ττL. (258)

with initial condition conditionL(x, t 0, 0) = f(x, t) for some positive semi-definite (spatial)
covariance matrix Σ0 and some velocity vector v.

Proof: Lemma 15 implies that the spatio-temporal scale-space representation has to satisfy
the evolution equations (254) and (255).

Property (i) implies that ∇Tx,τΣ1∇x,τL reduces to ∇Tx,τΣ1∇x,τL. From property (ii) it
follows that δ1 = 0. From property (iii) we have that Σ1 does not depend on time t.

From property (iv) we obtain that∇Tx,τ (Σ2∇x,τL) reduces to ∂ττL. Property (v) implies
that δT2 ∇x,τL reduces to δT2 ∇xL and we can rename the x component of δ2 into v. �

Theorem 18 (Time-causal non-enhancement scale-space for continuous signals: Sufficiency)
Given a semi-definite (spatial) covariance matrix Σ0, an arbitrary vector v and any twice
continuously differentiable function f ∈ L2(RN × R+), the solution of the diffusion equa-
tion

∂sL =
1
2
∇Tx (Σ0∇xL), (259)

∂tL = −vT∇xL+
1
2
∂ττL. (260)

with boundary condition L(x, t 0, 0) = f(x, t) does for every combined initial and boundary
condition L(x, 0; 0, τ) = L0(x; τ) constitute a time-causal continuous non-enhancement
scale-space representation of f . Specifically, for any (forward) direction u in (s, t) space L
obeys

∂uL ≤ 0 at any non-degenerate local maximum, (261)

∂uL ≥ 0 at any non-degenerate local minimum. (262)
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Proof: If (x0, τ0) is a local extremum of the mapping (x, τ) 7→ L(x, t0; s0, τ), then x0 is
also a local extremum of the mapping x 7→ L(x, t0; s0, τ). From theorem 6 it then follows
that ∂sL ≤ 0 if the point is a local maximum and ∂sL ≥ 0 if the point is a local minimum.

Similarly, if (x0, τ0) is a local extremum of the mapping (x, τ) 7→ L(x, t0; s0, τ), then
τ0 is also a local extremum of the mapping τ 7→ L(x, t0; s0, τ). From theorem 6 it then
follows that ∂tL ≤ 0 if the point is a local maximum and ∂tL ≥ 0 if the point is a local
minimum.

Since ∂uL = α1∂sL + α2∂tL, where α1, α2 ≥ 0 for a forward direction in (s, t) space,
we have that sign ∂uL = sign traceHx,τL and the result follows. �

G Temporal convolution kernels

This section gives explicit expressions for a number of kernels that can be used for modelling
the temporal smoothing step in temporal and spatio-temporal scale-space representations.

G.1 The truncated and time-delayed Gaussian kernel

The regular (non-centered) one-dimensional time-delayed Gaussian kernel is of the form (45)

g(t; τ, δ) =
1√
2πτ

e−(t−δ)2/2τ (263)

with its regular first- and second-order derivatives

gt(t; τ, δ) = −(t− δ)
τ

g(t; τ, δ) = − (t− δ)√
2π t τ3/2

e−(t−δ)2/2τ (264)

gtt(t; τ, δ) =
((t− δ)2 − τ)

τ2
g(t; τ, δ) =

((t− δ)2 − τ)√
2π t2 τ5/2

e−(t−δ)2/2τ (265)

Graphs of these kernels are shown in the top row of figure 14. Notably, these kernels are
not strictly time causal. To arbitrary degree of accuracy, however, they can by truncation be
approximated by truncated time-causal kernels, provided that the time delay δ is chosen suf-
ficiently long. Hence, the choice of δ leads to a trade-off between the computational accuracy
of the implementation and the temporal response properties as delimited by a non-zero time
delay. This problem, however, arises only for real-time analysis. For off-line computations,
the time delay can in many cases be set to zero. In this respect, the truncated and time-shifted
Gaussian kernels may serve as a simplest possible model for studying properties of temporal
scale-space representations, provided that the requirement of time causality is relaxed.

G.2 The time-causal kernel φ(t; τ)

The time-causal kernel considered in section 5 has the explicit expression

φ(t; τ) =
τ√

2π t3/2
e−τ

2/2t (266)

with its first- and second-order derivatives given by

φt(t; τ) = −τ(3t− τ2)
2
√

2π t7/2
e−τ

2/2t = −(3t− τ2)
2t2

φ(t; τ) (267)

φtt(t; τ) =
(15t2 − 10tτ2 + τ4)

4
√

2π τ11/2
e−τ

2/2t =
(15t2 − 10tτ2 + τ4)

4t4
φ(t; τ) (268)
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see the second row in figure 14 for graphs. For the second-order temporal derivative with
respect to transformed time defined by the power law transformation t′ = tα, we have

∂t′t′ =
(
t1−α

α

)2(
∂tt +

1− α
t

∂t

)
(269)

and the explicit expressions for the first- and second-order derivatives of the time-causal
kernel with respect to a power law transformation of time become

φt′(t; τ) = −(3t− τ2)
2α t1+α

φ(t; τ) (270)

φt′t′(t; τ) =
((9 + 6α)t2 − 2(4 + α)tτ2 + τ4)

4α2t2(1+α)
φ(t; τ) (271)

see the third row in figure 14 for graphs. For the time-causal kernel, the first- and second-
order derivatives with respect to logarithmic time assume the form

φt′(t; τ) = − τ(3t− τ2)
2
√

2π t0 t5/2
e−τ

2/2t =
(−3t+ τ2)

2tt0
φ(t; τ) (272)

φt′t′(t; τ) =
τ(9t2 − 8tτ2 + τ4)

4
√

2π t20 τ7/2
e−τ

2/2t =
(9t2 − 8tτ2 + τ4)

4t20t2
φ(t; τ) (273)

see the fourth row in figure 14 for graphs.

G.3 Other temporal scale-space models

Time-causal temporal scale-spaces can also be expressed in terms of Gaussian convolution on
a logarithmically transformed time axis (Koenderink 1988, Florack 1997, ter Haar Romeny
et al. 2001) or from a cascade of truncated exponential kernels (Lindeberg 1990, Lindeberg
& Fagerström 1996).
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