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Abstract

Scale-space theory is a framework for multiscale image representation, which has been developed by
the computer vision community with complementary motivations from physics and biologic vision.
The idea is to handle the multiscale nature of real-world objects, which implies that objects may be
perceived in different ways depending on the scale of observation. If one aims to develop automatic
algorithms for interpreting images of unknown scenes, there is no way to know a priori what scales
are relevant. Hence, the only reasonable approach is to consider representations at all scales simulta-
neously. From axiomatic derivations is has been shown that given the requirement that coarse-scale
representations should correspond to true simplifications of fine scale structures, convolution with
Gaussian kernels and Gaussian derivatives is singled out as a canonical class of image operators for
the earliest stages of visual processing. These image operators can be used as basis to solve a large
variety of visual tasks, including feature detection, feature classification, stereo matching, motion
descriptors, shape cues, and image-based recognition. By complementing scale-space representation
with a module for automatic scale selection based on the maximization of normalized derivatives
over scales, early visual modules can be made scale invariant. In this way, visual modules can adapt
automatically to the unknown scale variations that may occur because of objects and substructures
of varying physical size as well as objects with varying distances to the camera. An interesting
similarity to biologic vision is that the scale-space operators resemble closely receptive field profiles
registered in neurophysiologic studies of the mammalian retina and visual cortex.

Figure 1: (top left) A grey-level image of size 560 × 420 pixels. (top right)–(bottom right)
Scale-space representations computed at scale levels t = 1, 8 and 64 (in pixel units).
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The need for multi-scale representation of image data

An inherent property of real-world objects is that they only exist as meaningful entities over
certain ranges of scale. A simple example is the concept of a branch of a tree, which makes
sense only at a scale from, say, a few centimetres to at most a few metres, It is meaningless
to discuss the tree concept at the nanometre or kilometre level. At those scales, it is more
relevant to talk about the molecules that form the leaves of the tree or the forest in which
the tree grows. When observing such real-world objects with a camera or an eye, there is an
addition scale problem due to perspective effects. A nearby object will appear larger in the
image space than a distant object, although the two objects may have the same size in the
world. These facts, that objects in the world appear in different ways depending on the scale
of observation and in addition may undergo scale changes during an imaging process, have
important implications if one aims at describing them. It shows that the notion of scale is
fundamental to the understanding of both natural and artificial perception.

In computer vision and image analysis, the notion of scale is essential to designing methods
for deriving information from images and multi-dimensional signals. To be able to extract
any information from image data, one obviously has to interact with the data in some way,
using some operator or measurement probe. The type of information that can be obtained is
largely determined by the relationship between the size of the actual structures in the data
and the size (resolution) of the operators (probes). Some of the very fundamental problems in
computer vision and image processing concern what operators to use, where to apply them and
how large they should be. If these problems are not appropriately addressed, then the task of
interpreting the operator response can be very hard. Notably, the scale information required
to view the image data at an appropriate scale may in many cases be a priori unknown.

The idea behind a scale-space representation of image data is that in the absence of any
prior information about what scales are appropriate for a given visual task, the only reason-
able approach is to represent the data at multiple scales. Taken to the limit, a scale-space
representation furthermore considers representations at all scales simultaneously. Thus, given
any input image, this image embedded into a one-parameter family of derived signals, in which
fine-scale structures are progressively suppressed. When constructing such a multi-scale rep-
resentation, a crucial requirement is that the coarse-scale representations should constitute
simplifications of corresponding structures at finer scales—they should not be accidental phe-
nomena created by the smoothing method intended to suppress fine scale structures. This
idea has been formalized in a variety of ways by different authors, and a noteworthy coin-
cidence is that similar conclusions can be obtained from several different starting points. A
fundamental result of scale-space theory is that if rather general conditions are imposed on
the types of computations that are to be performed in the earliest stages of visual process-
ing, then convolution by the Gaussian kernel and its derivatives provide a canonical class of
image operators with unique properties. The requirements (scale-space axioms; see below)
that specify the uniqueness are essentially linearity and spatial shift invariance, combined
with different ways of formalizing the notion that new structures should not be created in the
transformation from fine to coarse scales.

In summary, for any two-dimensional signal f : R2 → R, its scale-space representation
L : R2 × R+ → R is defined by [37, 14, 22, 34, 7, 30]

L(x, y; t) =
∫

(ξ,η)∈R2
f(x− ξ, y − η) g(ξ, η; t) dξ dη (1)

where g : R2 × R+ → R denotes the Gaussian kernel

g(x, y; t) =
1

2πt
e−(x2+y2)/2t (2)

and the variance t = σ2 of this kernel is referred to as the scale parameter . Equivalently, the
scale-space family can be obtained as the solution of the (linear) diffusion equation

∂tL =
1
2
∇2L (3)
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with initial condition L(·, ·; t) = f . Then, based on this representation, scale-space deriva-
tives at any scale t can be computed either by differentiating the scale-space directly or by
convolving the original image with Gaussian derivative kernels:

Lxαyβ (·, ·; t) = ∂xαyβL(·, ·; t) = (∂xαyβg(·, ·; t)) ∗ f(·, ·). (4)

Since scale-space derivatives can also be computed by convolving the original image with
Gaussian derivative operators gxαyβ (·, ·; t), they are also referred to as Gaussian derivatives.
This way of defining derivatives in scale-space makes the inherently ill-posed problem of
computing image derivatives well-posed, with a close connection to generalized functions.

Figure 2: The Gaussian kernel and its derivatives up to order two in the 2-D case.

For simplicity, we shall here restrict ourselves to 2-D images. With appropriate general-
izations or restrictions, however, most of these concepts apply in arbitrary dimensions.

Feature detection at a given scale in scale-space

The set of scale-space derivatives up to order N at a given image point and a given scale
is referred to as the N-jet [15, 16] and corresponds to a truncated Taylor expansion of a
locally smoothed image patch. These derivatives together constitutes a basic type of feature
within the scale-space framework and provide a compact characterization of the local image
structure around the image point at that scale. For N = 2, the 2-jet at a single scale contains
the partial derivatives

(Lx, Ly, Lxx, Lxy, Lyy) (5)

and directional filters in any direction (cosϕ, sinϕ) can be obtained from

∂ϕL = cosϕLx + sinϕLy and ∂ϕϕL = cos2 ϕLxx + 2 cosϕ sinϕLxy + sin2 ϕLyy. (6)

From the five components in the 2-jet, four differential invariants can be constructed, which are
invariant to local rotations; the gradient magnitude |∇L|, the Laplacian∇2L, the determinant
of the Hessian detHL and the rescaled level curve curvature κ̃(L):

|∇L|2 = L2
x + L2

y,
∇2L = Lxx + Lyy,
detHL = LxxLyy − L2

xy,
κ̃(L) = L2

xLyy + L2
yLxx − 2LxLyLxy.

(7)

A theoretically well-founded approach to feature detection is to use rotationally variant de-
scriptors such as the N-jet, directional filter banks or rotationally invariant differential invari-
ants as primitives for expressing visual modules. For example, with v denoting the gradient
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direction (Lx, Ly)T , a differential geometric formulation of edge detection at a given scale can
be expressed from the image points for which the second-order directional derivative in the
gradient direction Lvv is zero and the third-order directional derivative Lvvv is negative:{

L̃vv = L2
x Lxx + 2Lx Ly Lxy + L2

y Lyy = 0,
L̃vvv = L3

x Lxxx + 3L2
x Ly Lxxy + 3Lx L2

y Lxyy + L3
y Lyyy < 0.

(8)

A single-scale blob detector that responds to bright and dark blobs can be expressed from the
minima and the maxima of the Laplacian response ∇2L. An affine covariant blob detector
that also responds to saddles can be expressed from the maxima and the minima of the
determinant of the Hessian detHL. A straight-forward and affine covariant corner detector
can be expressed from the maxima and minima of the rescaled level curve curvature κ̃(L).
With p denoting the main eigendirection of the Hessian matrix, which is parallel to the vector

(cosϕ, sinϕ) ∼

√√√√1 +
Lxx − Lyy√

(Lxx − Lyy)2 + 4L2
xy

, sign(Lxy)

√√√√1− Lxx − Lyy√
(Lxx − Lyy)2 + 4L2

xy

 ,

(9)
a differential geometric ridge detector at a fixed scale can be expressed from the zero-crossings
of the first derivative Lp in this direction for which the second-order directional derivative
Lpp is negative and in addition |Lpp| ≥ |Lqq|. Similarly, valleys can be extracted from the
zero-crossings of Lq that satisfy Lqq ≥ 0 and |Lqq| ≥ |Lpp|.

Feature classification and image matching from the multi-scale N-jet

By combining N-jet representations at multiple scales, usually with the scale levels distributed
by ratios of two when the scale parameter is measured in units of the standard deviation
σ =
√
t of the Gaussian, we obtain a multi-scale N-jet vector . This descriptor is useful for a

variety of different tasks. For example, the task of texture classification can be expressed as a
classification and/or clustering problem on the multi-scale N-jet over regions in the image [21].
Methods for stereo matching can be formulated in terms of comparisons of local N-jets [13],
either in terms of explicit search or coarse-to-fine schemes based on differential corrections
within the support region of the multi-scale N-jet. Moreover, straightforward (rotationally
dependent) methods for image-based object recognition can expressed in terms of vectors or
(global or regional) histograms of multi-scale N-jets [32, 31, 27, 2]. Methods for rotationally
invariant image-based recognition can formulated in terms of histograms of multi-scale vectors
of differential invariants.

Figure 3: Edge detection: (left) A grey-level image of size 180×180 pixels. (middle) The neg-
ative value of the gradient magnitude |∇L| computed at t = 1. (right) Differential geometric
edges at t = 1 with a complementary low threshold

√
t|∇L| ≥ 1 on the gradient magnitude.
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Figure 4: Differential descriptors for blob detection/interest point detection: (left) A grey-
level image of size 210×280 pixels. (middle) The Laplacian ∇2L computed at t = 16. (right)
The determinant of the Hessian detHL computed at t = 16.

Figure 5: Fixed scale valley detection: (left) A grey-level image of size 180 × 180 pixels.
(middle) The negative value of the valley strength measure Lqq computed at t = 4. (right)
Differential geometric valleys detected at t = 4 using a complementary low threshold on
t|Lqq| ≥ 1 and then overlayed on a bright copy of the original grey-level image.

Windowed image descriptors with two scale parameters

The image descriptors considered so far are all dependent on a single scale parameter t.
For certain problems, it is useful to introduce image descriptors that depend on two scale
parameters. One such descriptor is the second-moment matrix (structure tensor) defined as

µ(x, y; t, s) =
∫

(ξ,η)∈R2

(
L2
x(ξ, η; t) Lx(ξ, η; t)Ly(ξ, η; t)

Lx(ξ, η; t)Ly(ξ, η; t) L2
y(ξ, η; t)

)
g(x−ξ, y−η; s) dξ dη

(10)
where t is a local scale parameter describing the scale of differentiation and s is an integration
scale parameter describing the extent over which local statistics of derivatives is accumulated.
In principle, the formulation of this descriptor implies a two-parameter variation. In many
practical applications, however, it is common practice to couple the two scale parameters by
a constant factor C such that s = Ct where C > 1.

One common application of this descriptor is for a multi-scale version of the Harris corner
detector [12], by detecting positive spatial maxima of the entity

H = det(µ)− k trace2(µ) (11)

where k ≈ 0.04 is a constant. Another common application is for affine normalization/shape
adaptation and will be developed below. The eigenvalues λ1,2 = 1

2 (µ11+µ22±
√

(µ11 − µ22)2 + 4µ2
12)
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and the orientation arg(µ11−µ22, 2µ12) of µ are also useful for texture segmentation and tex-
ture classification.

Other commonly used image descriptors that depend an additional integration scale pa-
rameter include regional histograms obtained using Gaussian window functions as weights [18].

Scale-space representation of colour images

The input images f considered so far have all been assumed to be scalar grey-level images.
For a vision system, however, colour images are often available, and the use of colour cues
can increase the robustness and discriminatory power of image operators. For the purpose
of scale-space representation of colour images, an initial red-green blue-yellow colour op-
ponent transformation is often advantageous [11]. While the computation of a scale-space
representation of the RGB channels independently does not necessarily constitute the best
way of defining a colour scale-space, by performing the following pre-transformation prior to
scale-space smoothing  I = (R+G+B)/3

U = R−G
V = B − (R+G)/2

(12)

Gaussian scale-space smoothing, Gaussian derivatives and differential invariants can then
be defined from the IUV colour channels separately. The luminance channel I will then
mainly reflect the interaction between reflectance, illuminance direction and intensity, while
the chromatic channels, U and V , will largely make the interaction between illumination
colour and surface pigmentation more explicit. This approach has been successfully applied
to the tasks of image feature detection and image-based recognition based on the N-jet. For
example, red-green and blue-yellow colour opponent receptive fields of center-surround type
can be obtained by applying the Laplacian ∇2L to the chromatic U and V channels.

An alternative approach to handling colours in scale-space is provided by the Gaussian
colour model , in which the spectral energy distribution E(λ) over all wavelengths λ is approx-
imated by the sum of a Gaussian function and first- and second-order derivatives of Gaussians
[17]. In this way, a three-dimensional colour space is obtained, where the channels Ê, Êλ and
Êλλ correspond to a second-order Taylor expansion of a Gaussian-weighted spectral energy
distribution around a specific wavelength λ0 and smoothed to a fixed spectral scale tλ0 . In
practice, this model can be implemented in different ways. For example, with λ0 = 520 nm
and tλ0 = 55 nm, the Gaussian colour model has been approximated by the following colour
space transformation [9]: Ê

Êλ
Êλλ

 =

 −0.019 0.048 0.011
0.019 0 −0.016
0.047 −0.052 0

 0.621 0.113 0.194
0.297 0.563 0.049
−0.009 0.027 1.105

 R
G
B

 (13)

using the CIE 1931 XYZ colour basis as an intermediate representation. In analogy with the
IUV colour space, spatio-spectral Gaussian derivatives and differential invariants can then
be defined by applying Gaussian smoothing and Gaussian derivatives to the channels in this
representation. This approach has been applied for constructing approximations of colour
invariants assuming specific models for illumination and/or surface properties [10].

Affine scale-space, affine image deformations and affine covariance

The regular linear scale-space representation obtained by smoothing with the rotationally
symmetric Gaussian kernel is closed under translations, rotations and rescalings. This means
that image transformations within this group can be captured perfectly by regular scale-space
operators. To obtain a scale-space representation that is closed under affine transformations,
a natural generalization is to consider an affine scale-space [22] obtained by the convolution
with Gaussian kernels with their shapes determined by positive definite covariance matrices
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Figure 6: Affine normalization by shape adaptation in affine scale-space: (left) A grey-level
image with an oblique view of a book cover. (middle) The result of affine normalization of a
central image patch using iterative shape adaptation with affine transformations proportional
to A = µ1/2. (right) An example of computing differential geometric descriptors, here the
Laplacian ∇2L at scale t = 2, in the affinely normalized frame.

Σ:
g(x̄; Σt) =

1
2π
√

det Σt
e−x̄

TΣ−1
t x̄/2, (14)

where x̄ = (x, y)T . This affine scale-space combined with directional derivatives can serve
as a model for oriented elongated filter banks. Consider two input images f and f ′ that are
related by an affine transformation x̄′ = Ax̄ such that f ′(Ax̄) = f(x̄). Then, the affine scale-
space representations L and L′ of f and f ′ are related according to L′(x′; Σ′) = L(x; Σ)
where Σ′ = AΣAT . A second-moment matrix (10) defined from an affine scale-space with
covariance matrices Σt and Σs transforms according to

µ′(Ax̄; AΣtAT , AΣsAT ) = A−Tµ(x; Σt,Σs)A−1. (15)

If we can determine covariance matrices Σt and Σs such that µ(x; Σt,Σs) = c1Σ−1
t =

c2Σ−1
s for some constants c1 and c2, we obtain a fixed-point that is preserved under affine

transformations. This property has been used for expressing affine invariant interest point
operators, affine invariant stereo matching as well as affine invariant texture segmentation
and texture recognition methods [26, 1, 28, 33, 20]. In practice, affine invariance at a given
image point can (up to an unknown scale factor and a free rotation angle) be accomplished
by shape adaptation, that is by estimating the second-moment matrix µ using a rotationally
symmetric scale-space and then iteratively either choosing the covariance matrices Σt and Σs
proportional to µ−1 until the fixed-point has been reached or equivalently by warping the
input image by linear transformations proportional to A = µ1/2 until the second-moment
matrix is sufficiently close to a constant times the unit matrix.

Automatic scale selection and scale invariant image descriptors

Although the scale-space theory presented so far provides a well-founded framework for ex-
pressing visual operations at multiple scales, it does not address the problem of how to select
locally appropriate scales for further analysis. Whereas the problem of finding “the best
scales” for handling a given data set may be regarded as intractable unless further informa-
tion is available, there are many situations in which a mechanism is required for generating
hypotheses about interesting scales for further analysis. Specifically, since the size of and
the distance to objects may vary in real-life applications, there is a need for defining scale
invariant image descriptors. A general methodology [23] for generating hypotheses about in-
teresting scale levels is by studying the evolution properties over scales of (possibly non-linear)
combinations of γ-normalized derivatives defined by

∂ξ = tγ/2 ∂x and ∂η = tγ/2 ∂y (16)
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where γ is a free parameter to be determined for the task at hand. Specifically, scale levels
can be selected from the scales at which γ-normalized derivative expressions assume local
extrema with respect to scale. A general rationale for this statement is that under a scaling
transformation (x′, y′) = (sx, sy) for some scaling factor s with f ′(sx, sy) = f(x, y), if follows
that for matching scale levels t′ = s2t the m:th order normalized derivatives at corresponding
scales t′ = s2t in scale-space transform according to

L′ξ′m(x′, y′; t′) = sm(γ−1)Lξm(x, y; t). (17)

Hence, for any differential expression that can be expressed as a homogeneous polynomial
in terms of γ-normalized derivatives, it follows that local extrema over scales will be pre-
served under scaling transformations. In other words, if a γ-normalized differential entity
DnormL assumes an extremum over scales at the point (x0, y0; t0) in scale-space, then under
a rescaling transformation an extremum in the transformed differential invariant is assumed at
(sx0, sy0; s2t0) in the scale-space L′ of the transformed image. This general property means
that if we can find an expression based on γ-normalized Gaussian derivatives that assumes a
local extremum over scales for a suitable set of image structures, then we can define a scale
invariant feature detector and/or image descriptor by computing it at the scale at which the
local extremum over scales is assumed.

The scale estimate t̂ obtained from the scale selection step can therefore be used for
tuning or guiding other early visual processes to be truly scale invariant [22, 23]. With the
incorporation of a mechanism for automatic scale selection, scale-tuned visual modules in a
vision system will have the ability to handle objects of different sizes as well as objects with
different distances to the camera in the same manner. These are essential requirement for
any vision system intended to function robustly in a complex dynamic world.

By studying the γ-normalized derivative response to a one-dimensional sine wave f(x) =
sin(ωx), for which the maximum over scales in the m:th order derivative is assumed at scale
σmax =

√
γmλ/2π (measured in units of the standard deviation of the Gaussian) is pro-

portional to the wavelength λ = 2π/ω of the signal, one can see that there is a qualitative
similarity between this construction and a peak in a local Fourier transform. There are
however also two major differences: (i) no window size is needed for computing the Fourier
transform, and (ii) this approach applies also to non-linear differential expressions.

Specifically, if we choose γ = 1, then under scaling transformations the magnitudes of
normalized scale-space derivatives in equation (17) are equal at corresponding points in scale-
space. For γ 6= 1 they are related according to a (known) power of the scaling factor (see also
[6] for earlier work on receptive field responses under similarity transformations).

Scale invariant feature detectors with integrated scale selection mechanism

The most commonly used entity for automatic scale selection is the scale normalized Laplacian
[22, 23]

∇2
normL = t(Lxx + Lyy) (18)

with γ = 1. A general motivation for the usefulness of this descriptor for general purpose
scale selection can be obtained from the fact that the scale-space representation at any point
can be decomposed into an integral of Laplacian responses over scales:

L(x, y; t0) = −(L(x, y; ∞)−L(x, y; t0)) = −
∫ ∞
t=t0

∂tL(x, y; t) dt = −1
2

∫ ∞
t=t0

∇2L(x, y; t) dt.

(19)
After a reparameterization of the scale parameter into effective scale τ = log t, we obtain:

L(x, y; t0) = −1
2

∫ ∞
t=t0

t∇2L(x, y; t)
dt

t
= −

∫ ∞
τ=τ0

∇2
normL(x, y; τ) dτ. (20)

By detecting the scale at which the normalized Laplacian assumes its positive maximum or
negative minimum over scales, we therefore determine the scale for which the image in a
scale-normalized bandpass sense contains the maximum amount of information.
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Figure 7: Automatic scale selection from local extrema over scales of normalized derivatives:
(top row) Subwindows showing different details from figure 4 with image structures of dif-
ferent size. (bottom row) Scale-space signatures of the scale normalized determinant of the
Hessian detHnormL accumulated at the centre of each window. The essential property of the
scale dependency of these scale normalized differential entities is that the scale at which a
local extremum over scales is assumed is proportional to the size of the corresponding image
structure in the image domain. The horizontal axis on these graphs represent effective scale,
roughly corresponding to the logarithm of the scale parameter: τ ≈ log2 t.

Another motivation for using the scale-normalized Laplacian operator for early scale selec-
tion is that it serves as an excellent blob detector. For any (possibly non-linear) γ-normalized
differential expressionDnormL, let us first define a scale-space maximum (minimum) as a point
for which the γ-normalized differential expression assumes a maximum (minimum) over both
space and scale. Then, we obtain a straightforward blob detector with automatic scale selec-
tion that responds to dark and bright blobs, from the scale-space maxima and the scale-space
minima of ∇2

normL. Another blob detector with automatic scale selection that also responds
to saddles can be defined from the scale-space maxima and minima of the scale-normalized
determinant of the Hessian [23]:

detHnormL = t2(LxxLyy − L2
xy). (21)

For both of these scale invariant blob detectors, the selected scale reflects the size of the
blob. For the purpose of scale invariance, it is, however, not necessary to use the same entity
for determining spatial interest points as for determining interesting scales for those. An
alternative approach to scale invariant interest point detection is to use the Harris operator
in equation (11) for determining spatial interest points and the scale normalized Laplacian
for determining the scales at these points [28]. Affine covariant interest points can in turn
be obtained by combining any of these three interest point operators with subsequent affine
shape adaptation following equation (15) combined with a determination of the remaining
free rotation angle using, for example, the orientation of the image gradient.

The free parameter γ in the γ-normalized derivative concept can be related to the dimen-
sionality of the type of image features to be detected or to a normalization of the Gaussian
derivative kernels to constant Lp-norm over scales. For blob-like image descriptors, such as the
interest points described above, γ = 1 is a good choice and corresponds to L1-normalization.
For other types of image structures, such as thin edges, elongated ridges or rounded corners,
other values will be preferred. For example, for the problem of edge detection, γ = 1/2 is a
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useful choice for capturing the width of diffuse edges, while for the purpose of ridge detection,
γ = 3/4 is preferable for tuning the scale levels to the width of an elongated ridge [24, 8, 19].

Scale-space axioms

Besides its practical usefulness for computer vision problems, the scale-space representation
satisfies a number of theoretical properties that define it as a unique form of multi-scale
image representation: The linear scale-space representation is obtained from linear and shift-
invariant transformations. Moreover, the Gaussian kernels are positive and satisfy the semi-
group property

g(·, ·; t1) ∗ g(·, ·; t2) = g(·, ·; t1 + t2). (22)

which implies that any coarse scale representation can be computed from any fine-scale rep-
resentation using a similar transformation as in the transformation from the original image

L(·, ·; t2) = g(·; t2 − t1) ∗ L(·, ·; t1). (23)

In one dimension, Gaussian smoothing implies that new local extrema or new zero-crossings
cannot be created with increasing scales [37, 22]. In two and higher dimension, the scale-space
representation obeys non-enhancement of local extrema (causality), which implies that the
value at a local maximum is guaranteed not to increase while the value at a local minimum
is guaranteed to not decrease [14, 22, 25]. The regular linear scale-space is closed under

Figure 8: Scale-invariant feature detection: (top) Original grey-level image. (bottom left) The
1000 strongest scale-space extrema of the scale normalized Laplacian ∇2

norm. (bottom right)
The 1000 strongest scale-space extrema of the scale normalized determinant of the Hessian
detHnormL. Each feature is displayed by a circle with its size proportional to the detection
scale. In addition, the colour of the circle indicates the type of image feature; red for dark
features, blue for bright features and green for saddle-like features.
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Figure 9: Affine covariant image features: (left) Original grey-level image. (right) The result
of applying affine shape adaptation to the 500 strongest scale-space extrema of the scale
normalized determinant of the Hessian detHnormL (resulting in 384 features for which the
iterative scheme converged). Each feature is displayed by an ellipse with its size proportional
to the detection scale and the shape determined from a linear transformation A determined
from a second-moment matrix µ. In addition, the colour of the ellipse indicates the type of
image feature; red for dark features, blue for bright features and green for saddle-like features.

translations, rotations and scaling transformations. In fact, it can be shown that Gaussian
smoothing arises uniquely for different subsets of combinations of these special and highly
useful properties. For partial views of the history of scale-space axiomatics, please refer to
[25, 36] and the references therein.

Concerning the topic of automatic scale selection, it can be shown that the notion of
γ-normalized derivatives in equation (16) arises by necessity from the requirement that local
extrema over scales should be preserved under scaling transformations [23].

Relations to biological vision

Interestingly, the results of this computationally motivated analysis of early visual operations
are in qualitative agreement with current knowledge about biological vision. Neurophysiolog-
ical studies have shown that there are receptive field profiles in the mammalian retina and
visual cortex that can be well modelled by Gaussian derivative operators [38, 5].

Summary and outlook

Scale-space theory provides a well-founded framework for modelling image structures at mul-
tiple scales, and the output from the scale-space representation can be used as input to a
large variety of visual modules. Visual operations such as feature detection, feature classifi-
cation, stereo matching, motion estimation, shape cues and image-based recognition can be
expressed directly in terms of (possibly non-linear) combinations of Gaussian derivatives at
multiple scales. In this sense, scale-space representation can serve as a basis for early vision.

The set of early uncommitted operations in a vision system, which perform scale-space
smoothing, compute Gaussian derivatives at multiple scales and combine these into differential
invariants or other types of general purpose features to be used as input to later stage visual
processes, is often referred to as a visual front-end .

Pyramid representation is a predecessor to scale-space representation, constructed by si-
multaneously smoothing and subsampling a given signal [3, 4]. In this way, computationally
highly efficient algorithms can be obtained. A problem with pyramid representations, how-
ever, is that it is algorithmically harder to relate structures at different scales, due to the
discrete nature of the scale levels. In a scale-space representation, the existence of a con-
tinuous scale parameter makes it conceptually much easier to express this deep structure.
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For features defined as zero-crossings of differential invariants, the implicit function theorem
directly defines trajectories across scales, and at those scales where bifurcations occur, the
local behaviour can be modelled by singularity theory. Nevertheless, pyramids are frequently
used for expressing computationally more efficient approximations to different scale-space
algorithms.

Extensions of linear scale-space theory concern the formulation of non-linear scale-space
concepts more committed to specific purposes [29, 35]. There are strong relations between
scale-space theory and wavelets, although these two notions of multi-scale representations
have been developed from somewhat different premises.
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