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Abstract. This paper presents and investigates a set of local space-
time descriptors for representing and recognizing motion patterns in
video. Following the idea of local features in the spatial domain, we
use the notion of space-time interest points and represent video data in
terms of local space-time events. To describe such events, we define sev-
eral types of image descriptors over local spatio-temporal neighborhoods
and evaluate these descriptors in the context of recognizing human ac-
tivities. In particular, we compare motion representations in terms of
spatio-temporal jets, position dependent histograms, position indepen-
dent histograms, and principal component analysis computed for either
spatio-temporal gradients or optic flow. An experimental evaluation on
a video database with human actions shows that high classification per-
formance can be achieved, and that there is a clear advantage of using
local position dependent histograms, consistent with previously reported
findings regarding spatial recognition.

1 Introduction

When performing recognition from spatial or spatio-temporal images, the defi-
nition of the underlying image representation is of crucial importance for subse-
quent recognition. During recent years there has been a substantial progress on
recognition schemes that are based on either local or global image features. In
particular, the use of view-based approaches in terms of receptive field responses
[10] has emerged as a highly promising approach for visual recognition.

When performing recognition, global methods are conceptually simple to
implement. For complex scenes with occlusions and multiple moving objects,
however, such methods require a complementary segmentation step, which may
be non-trivial to achieve in practice. In this respect, local approaches have an
interesting potential, while requiring a complementary matching step between
the local features in the model and the data. For a recognition scheme to be
invariant to size changes in the image domain as well as temporal phenomena
that occur with different speed, it is natural to require the image descriptors to
be invariant to spatial and temporal scale changes. Similarly, in order to handle
unknown relative motions between the objects and the camera, invariance to
local Galilean transformations can be expected to be a highly useful property.
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In the area of motion-based recognition, a large number of different schemes
have been developed based on various combinations of visual tasks and image de-
scriptors; see e.g. the monograph by [24] and the survey paper by [7] for overviews
of early works. Concerning more recent approaches, [1, 25] performed tracking
and recognition using principal component analysis and parameterized models
of optic flow. [8] presented a related approach using Zernike polynomial expan-
sions of optic flow. [2] recognized human actions against a static background
by computing templates of temporal differences and characterizing the resulting
motion masks in terms of moments. [3, 26] recognized activities using probabilis-
tic models of spatio-temporal receptive fields while [13] extended this approach
to histograms of locally velocity-adapted receptive fields. Another statistical,
non-parametric approach for motion recognition in terms of temporal multiscale
Gibbs models was proposed by [5]. [4] presented a recognition scheme in terms
of positive and negative components of stabilized optic flow in spatio-temporal
volumes.

Space-time interest points [11] have recently been proposed to capture local
events in video. Such points have stable locations in space-time and provide a
potential basis for part-based representations of complex motions in video. The
subject of this paper, is to study different ways of defining local space-time de-
scriptors associated with such interest points and to use these descriptors for
subsequent recognition of spatio-temporal events and activities. The approach
can hence be seen as an extension of previous interest point based spatial recog-
nition approaches [17, 19] into space-time.

In previous works in the spatial domain, it has been shown that the use of
automatic scale selection allows for the computation of scale invariant image
descriptors [14, 17, 19, 6], and that the SIFT descriptor [17], which can be seen
as a scale-adapted position dependent histogram of spatial gradient vectors, is
very powerful for spatial recognition [20]. Moreover, histograms of spatial or
spatio-temporal derivatives have been shown to allow for spatial and spatio-
temporal recognition [22, 26]. For handling perspective as well as Galilean image
deformations, affine shape adaptation [16, 19] and velocity adaptation [21, 15, 13]
have been demonstrated to be useful mechanisms.

In this paper, we shall combine and connect these types of mechanisms into
new types of powerful spatio-temporal image descriptors. Specifically, we shall
compare local space-time descriptors at interest points in terms of various com-
binations of N -jets, optic flow, principal component analysis as well as local
histograms with or without spatial dependency. We will show that such local
descriptors allow for matching of spatio-temporal events and activities between
image sequences. The performance will be measured by evaluating classification
rates on a video database with different types of human activities.

2 Spatio-temporal interest points

Following [11], let us adopt a local interest point approach for capturing spatio-
temporal events in video data. Consider an image sequence f and construct
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a spatio-temporal scale-space representation L by convolution with a spatio-
temporal Gaussian kernel g(x, y, t; σ, τ) = 1/(2πσ2

√
2πτ) exp(−(x2 + y2)/2σ2−

t2/2τ2) with spatial and temporal scale parameters σ and τ . Then, at any point
p = (x, y, t) in space-time define a spatio-temporal second-moment matrix µ as

µ(p) =
∫

q∈IR3
(∇L(q))(∇L(q))T g(p− q; σi, τi) dq, (1)

where ∇L = (Lx, Ly, Lt)T denotes the spatio-temporal gradient vector and
(σi = γσ, τi = γτ) are spatial and temporal integration scales with γ =

√
2.

Neighborhoods with µ of rank 3 correspond to points with significant variations
of image values over both space and time. Points that maximize these variations
can be detected by maximizing all eigenvalues λ1, .., λ3 of µ or, similarly, by
searching the maxima of the interest point operator H = detµ− k(traceµ)2 =
λ1λ2λ3 − k(λ1 + λ2 + λ3)3 over (x, y, t) subject to H ≥ 0 with k ≈ 0.005.
Scale selection. To estimate the spatial and the temporal extents (σ0, τ0) of
events, we maximize the following normalized feature strength measure over spa-
tial and temporal scales [14, 11] at each detected interest point p0 = (x0, y0, t0)

(σ0, τ0) = argmax
σ,τ

(σ2τ1/2(Lxx + Lyy) + στ3/2Ltt)2. (2)

Velocity adaptation. Moreover, to compensate for (generally unknown) relative
motion between the camera and the moving pattern, we perform velocity adap-
tation [21, 15, 13, 12] by locally warping the neighborhoods of each interest point
with a Galilean transformation using image velocity u estimated by computing
optic flow [18] at the interest point.

Figure 1 shows a few examples of spatio-temporal interest points computed
in this way from image sequences with human activities. As can be seen, the
method allows us to extract scale-adaptive regions of interest around spatio-
temporal events in a manner that is invariant to spatial and temporal scale
changes as well as to local Galilean transformations.

boxing hand waving walking

Fig. 1: Examples of scale and Galilean adapted spatio-temporal interest points. The illus-
trations show one image from the image sequence and a level surface of image brightness
over space-time with the space-time interest points illustrated as dark ellipsoids.
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3 Space-time image descriptors at interest points

The subject of this section is to present a set of image descriptors to characterize
the local space-time structure around interest points for subsequent recognition.

3.1 Image measurements

As basis for defining spatio-temporal image descriptors, we shall make use of
image measurements in terms of either:

– Gaussian derivatives up order four computed by applying scale normalized
spatial and temporal derivatives [14] to the scale-space representation L

Jnorm (g(·; σ0, τ0) ∗ f) = {σLx, σLy, τLt, σ
2Lxx, . . . , στ

3Lyttt, τ
4Ltttt} (3)

at locally adapted scale levels (σ0, τ0) as obtained from the scale selection
step when detecting spatio-temporal interest points (see Fig. 2(left)). Specif-
ically, we shall consider two types of Gaussian derivative descriptors; (i) the
local (pointwise) N -jets [10] of order N = 4 evaluated at an interest point,
and (ii) a multi-local gradient vector field obtained by evaluating the jet of
order one at every point in a local neighborhood of an interest point.

– Optic flow computed from second-moment matrices around the space-time
interest points, according to the method by Lukas and Kanade [18], and at
locally adapted scale levels determined from the space-time interest points.

Due to the scale normalization in combination with the scale selection proce-
dure, the N -jets will be scale invariant over both space and time [14, 11]. Scale
invariance of the optic flow is achieved by computing the optic flow using scale-
normalized Gaussian derivatives at locally adapted scale levels. For the purpose
of Galilean invariance, both the N -jet and the optic flow are computed from
locally warped space-time volumes as obtained from the velocity adaptation
procedure.

There are a number of qualitative similarities as well as differences between
these two types of image measurements: The N -jet contains a truncated encoding
of the complete space-time image structure around the interest point, with an
implicit encoding of the optic flow. By explicitly computing the optic flow, we
obtain a representation that is invariant to local contrast in the image domain,
at the cost of possible errors in the flow estimation step. In addition to the optic
flow, the N -jet also encodes the local spatial structure, which may either help or
distract the recognition scheme depending on the relation between the contents
in the training and the testing data. Hence, it is of interest to investigate both
types of image measurements.

3.2 Types of image descriptors

Then, we combine these measurements into image descriptors by considering:
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– Histograms of either spatio-temporal gradients or optic flow computed at
several scales. The histograms will be computed either for the entire neigh-
borhood of an interest point, or over several (M ×M ×M) smaller neigh-
borhoods around the interest point. For the latter case, here referred to as
position dependent histograms, local coordinates are measured relative to the
detected interest points and are used in the descriptors together with local
image measurements (see Fig. 2(right)). Local measurements are weighted
using Gaussian window function where we for simplicity marginalize the his-
tograms and compute separable histograms over either the components of
spatio-temporal gradients or the components of optic flow.

– Principal component analysis (PCA) of either optic flow or spatio-temporal
gradient vectors (Lx, Ly, Lt) computed over local scale and velocity normal-
ized spatio-temporal neighborhoods around the interest points. The prin-
cipal components are computed from space-time interest points extracted
from training data, and the data is then projected to a lower-dimensional
space with D dimensions defined by the most significant eigenvectors (see
Fig. 2(middle)).

Space-time derivative filters PCA basis gradient fields Position-dependent histograms

Fig. 2: (left) Examples N-jet components in terms of partial spatio-temporal deriva-
tive operators, here: ∂x, ∂xt, ∂xyt, ∂xxyt. (middle) Examples of basis vectors obtained
by performing PCA on spatio-temporal gradients around space-time interest points.
(right) Examples of position dependent histograms (bottom) computed using overlap-
ping window functions (top).

3.3 Spatio-temporal image descriptors

By combining the abovementioned notions in different ways, we will consider the
following types of space-time image descriptors:

1. N -jet of order 4 at a single scale, computed at (x0, y0, t0) at scale (σ0, τ0).
2. Multi-scale N -jet of order 4, computed at all 9 combinations of 3 spatial

scales (σ0/2, σ0, 2σ0) and 3 temporal scales (τ0/2, τ0, 2τ0) at (x0, y0, t0).
3. Local position dependent histograms of first-order partial derivatives.
4. Local position independent histograms of first-order partial derivatives.
5. Local position dependent histograms of optic flow.
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6. Local position independent histograms of optic flow.
7. Local principal component analysis of optic flow.
8. Local principal component analysis of spatio-temporal gradients vectors.
9. Global histograms of first-order partial spatio-temporal derivatives com-

puted over the entire image sequence using 9 combinations of 3 spatial scales
and 3 temporal scales. This descriptor is closely related to [26] and is mainly
considered here as a reference with respect to the previous global schemes
for spatio-temporal recognition.

To obtain affine contrast invariance, the N -jets as well as the spatio-temporal
gradient vectors are normalized to unit l2-norm. For the principal component
analysis of spatio-temporal gradient fields, the affine contrast normalization is
performed at the level of scale normalized image volumes.

For an interest point detected at position (x0, y0, t0) and scale (σ0, τ0), all
histograms were computed at all 9 combinations of 3 spatial scales (σ0/2, σ0, 2σ0)
and 3 temporal scales (τ0/2, τ0, 2τ0). The global histograms were computed at
combinations of spatial scales σ ∈ {1, 2, 4} and temporal scales τ ∈ {1, 2, 4}.
When accumulating histograms of spatio-temporal gradients, only image points
with Lt above a threshold were allowed to contribute. Moreover, all histograms
were smoothed with a binomial filter and were normalized to unit l1-norm. For
the position dependent histograms (Descriptors 3 and 5), we initially consider
M = 2 and evaluate the position dependent entities using Gaussian weighted
window functions centered at (x0 ± ασ0, y0 ± ασ0, t0 ± βτ0) with α = 1.5
and β = 1.5. The spatial standard deviation of the Gaussian weighting func-
tion was 3σ and the temporal standard deviation 3τ . For the position depen-
dent histograms, 16 bins were used for the components of the spatio-temporal
gradients or the optic flow, while 32 bins were used for the position indepen-
dent histograms. Thus, with M = 2 the position dependent histograms contain
9 scales × 8 positions × 3 derivatives × 16 bins = 3456 accumulator cells, and
position independent histograms contain 9 scales× 3 derivatives× 32 bins = 864
cells. For the local principal component analysis, the gradient vectors and the
optic flow were computed in windows of spatial extent ±3σ and temporal extent
±3τ around the interest points. Prior to the computation of principal compo-
nents using D = 100 dimensions, the gradient vectors and the optic flow were
resampled to a 9 × 9 × 9 grid using trilinear interpolation.

These descriptors build upon several previous works. The use of the N -jet
for expressing visual operations was proposed by [10] and the first application to
spatio-temporal recognition was presented in [3]. The use of histograms of recep-
tive field responses goes back to [22, 26], and the use of PCA for optic flow was
proposed by [1]. The use of complementary position information in histograms is
closely related to the position dependency in the SIFT descriptor [17]. Recently,
[9] added a local principal component analysis to the SIFT descriptor.

Hence, Descriptors 1, 2, 4, 6 and 7 can be seen as adaptations (and combi-
nations) of previous approaches to space-time interest points, Descriptor 9 can
be seen as a variation of [26], while Descriptors 3, 5 and 8 are basically new,
although with qualitative relations to some of the abovementioned works.
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4 Matching

For recognizing spatio-temporal events and activities, we shall in this section
explore the idea of matching space-time interest points attributed with image
descriptors according to section 3.

Video database with human activities. For testing and evaluating our methods,
we shall use a video database with 192 image sequences, with 8 people performing
6 types of actions (“walking”, “jogging”, “running”, “boxing”, “handclapping”,
“handwaving”). Each action is repeated four times by each subject, and for the
cases of “walking”, “jogging” and “running”, there are two sequences where the
subject is moving leftwards and two sequences with the subject moving right-
wards (see figure 4 for a few sample image sequences for each type of activity).

Similarity/dissimilarity measures. For comparing descriptors h1 and h2 at differ-
ent interest points, we consider the following similarity/dissimilarity measures:

– Normalized scalar product: S(h1, h2) =
P

i h1(i)h2(i)√P
i h2

1(i)
√P

i h2
2(i)

– Euclidean distance: E(h1, h2) =
∑

i(h1(i) − h2(i))2

– The χ2-measure: χ2(h1, h2) =
∑

i
(h1(i)−h2(i))2

h1(i)+h2(i)

For descriptors in terms of N -jets, the feature vector h consists of Gaussian
derivatives at an adaptively determined set of spatio-temporal scales. For the
histogram descriptors, the feature vector is defined from the contents of all the
accumulator cells. For PCA descriptors, the feature vector consists of projections
of local image measurements onto D principal components.

Matching space-time interest points and image sequences. For matching local
space-time features between image sequences, we will use a local greedy method.
Given that the K strongest interest points have been computed in a training and
a testing image, the similarity (dissimilarity) measure is evaluated for each pair
of features. The pair with maximum similarity (or minimum dissimilarity) is
matched and the corresponding features are removed from the training and test-
ing sets. The procedure is repeated until no more feature pairs can be matched,
either due to a threshold on similarity (dissimilarity) or lack of data.

Figure 3 shows a few examples of space-time interest points matched in this
way for pairs of image sequences. As can be seen, many interest points identify
the same type of events in different sequences disregarding variations in scale,
cloth, lightning and complex backgrounds. To define similarity (dissimilarity)
measures for pairs of sequences, we sum the individual similarities (dissimilar-
ities) obtained from m best point matches. Of course, one could also consider
adding these measures transformed by a monotonically increasing function. Fig-
ure 4 shows a few examples of performing matching between image sequences in
the database. As can be seen, the types of actions in the matched sequences (on
the right) correspond to the actions in the test sequences (in the left column).
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Correct matches: changes in scale, cloth, light, background False matches

Fig. 3: Examples of point matches of space-time interest points using local image de-
scriptors in terms of position dependent histograms of spatio-temporal gradient vectors.

5 Experiments

To evaluate the performance of the different types of image descriptors, we will
perform leave-X-out experiments for random perturbations of the database. In
other words, the image sequences for X of the subjects will be removed from the
database to be used as testing data, while the remaining image sequences will
be used as training data. Then, for each image sequence in the test set, a best
match is determined among all the image sequences in the training set. A match
is regarded as correct if the activity of the best match in the training set agrees
with the activity of the image sequence in the test set.

Figure 5 shows the result of computing classification rates in this way for the
different types of image descriptors defined in section 3.3 using different types of
similarity (dissimilarity) measures presented in section 4. For those descriptors
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walking (test) dist: 0.1546 (walking) dist: 0.1576 (walking) dist: 0.1619 (walking) dist: 0.1623 (walking)

boxing (test) dist: 0.0917 (boxing) dist: 0.0920 (boxing) dist: 0.0927 (boxing) dist: 0.0968 (boxing)

running (test) dist: 0.0296 (running) dist: 0.0337 (running) dist: 0.0350 (running) dist: 0.0358 (jogging)

jogging (test) dist: 0.0636 (jogging) dist: 0.0649 (jogging) dist: 0.0668 (jogging) dist: 0.0818 (jogging)

handclapping (test) dist: 0.0835 (handclapping) dist: 0.0876 (handclapping) dist: 0.0887 (handclapping) dist: 0.0888 (handclapping)

handwaving (test) dist: 0.0973 (handwaving) dist: 0.0995 (handwaving) dist: 0.1058 (handwaving) dist: 0.1078 (handwaving)

Fig. 4: One sequence for each type of action in the database [23] with its best sorted
matches (ordered from left to right). Here, all matches are correct except for the se-
quence with “running” for which the fourth best match is “jogging”.

that involve free parameters to be determined, we only show the results for
the best parameters that were tested. The χ2-measure is evaluated only for
histogram-based descriptors.

As can be seen, for all three types of error metrics the position dependent
histograms give the best results. Specifically, the position dependent histograms
give better results than corresponding position independent histograms, both for
spatio-temporal gradients and optic flow. Moreover, the position dependent his-
tograms give better results than a principal component analysis of corresponding
descriptors. In addition, most of our local methods give better results than the
global histogram method. The multi-scale N -jet performs better than a princi-
pal component analysis of spatio-temporal gradient vectors or optic flow, and a
multi-scale N -jet gives better results than a corresponding single-scale jet. We
also evaluated recognition using N -jets of order two, but the performance of
the forth order N -jets was slightly better. Position-dependent histograms with
M = 3 were tested as well but did not give significant improvement.
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Currently, the best results are obtained using position dependent histograms
of optic flow in combination with a Euclidean distance measure. The second
best method is a position dependent histogram of spatio-temporal gradients in
combination with the normalized scalar product. The third best image descriptor
out of these is the multi-scale N -jet, both for the case of using a normalized scalar
product or the Euclidean distance as error metric. A conceptual advantage of the
multi-scale N -jet is that it is essentially parameter free and gives a reasonable
performance.

Figure 6 shows confusion matrices for the two best descriptors. As can be
seen, most of the errors are due to mixing up the classes “jogging” and “walk-
ing” and mixing up the activities “boxing” and “handclapping”, respectively.
It is easy to explain why these types of misclassifications occur, since the ac-
tivities “jogging/running” and “boxing/handclapping” contain similar types of
local space-time events. For some of the subjects that were jogging and running
in the video sequences, there is a somewhat fuzzy boundary between these two

Scalar-product Euclidean distance χ2-measure
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Fig. 5: Classification rates for different types of space-time image descriptors in leave-
X-out experiments using either (a) normalized scalar product as similarity measure, (b)
Euclidean distance as dissimilarity measure or (c) χ2 dissimilarity measure. The results
are averages over random permutations of the database. Specific comparison between
position dependent histograms and position independent histograms for the χ2 measure
in (c) demonstrates the advantage of using position dependent histograms. Qualitatively
similar results were obtained for the two other measures (left out here).
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Fig. 6: Confusion matrices when classifying human activities with local descriptors in
terms of position dependent histograms of spatio-temporal gradients (left) and optic
flow (right).
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types of activities. If we merge “jogging” and “running” into a single class, the
best overall recognition rate on this database increases from 96.4 % (position
dependent histograms of optic flow) to 98.4 % (position dependent histograms
of spatio-temporal gradients).

To conclude, these results show that it is possible to perform spatio-temporal
recognition based on local space-time features. Moreover, considering that all
these results have been computed using greedy matching of local image descrip-
tors, there is potential for improvement by including spatio-temporal consistency
constraints as well as overall motion descriptors into the recognition scheme.

6 Summary and discussion

We have presented a set of image descriptors for representing local space-time im-
age structures as well as a method for matching and recognizing spatio-temporal
events and activities based on local space-time interest points.

By evaluating the proposed image descriptors on a video database with hu-
mans performing different types of actions, we have demonstrated that it is
possible to obtain reasonably high recognition rates based on local space-time
features. Specifically, we have shown that for this database two novel types of
descriptors in terms of local position dependent histograms of either spatio-
temporal gradients or optic flow give significantly better results than more tra-
ditional approaches of using global histograms, N -jets or principal component
analysis of either optic flow or spatio-temporal gradients.

In on-going work, we are planning to extend the proposed histogram-based
image descriptors to non-separable histograms as well as to evaluate Mahalanobis
distances for matching. We will also perform evaluations on a larger database,
including situations with multiple moving objects and cluttered backgrounds.
Early results of recognizing human actions in scenes with complex and non-
stationary backgrounds have been recently obtained and will be reported else-
where. In this context, the locality of space-time features and of the proposed
image descriptors is of key importance since it allows for matching of correspond-
ing events in scenes with complex backgrounds as illustrated in figure 3.

Concerning other extensions, there is also potential for improving the current
greedy point matching procedure to matching schemes which take the internal
consistency of matching field as well as the overall motion patterns in the train-
ing data more explicitly into account. The replacement of the current nearest-
neighbor classification scheme with the SVM classifier has recently been done
in [23] and has shown additional increase in recognition performance.
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