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Abstract

This article presents an experimental study of the influence of velocity adaptation when recognizing spatio-temporal patterns using a

histogram-based statistical framework. The basic idea consists of adapting the shapes of the filter kernels to the local direction of motion, so

as to allow the computation of image descriptors that are invariant to the relative motion in the image plane between the camera and the

objects or events that are studied. Based on a framework of recursive spatio-temporal scale-space, we first outline how a straightforward

mechanism for local velocity adaptation can be expressed. Then, for a test problem of recognizing activities, we present an experimental

evaluation, which shows the advantages of using velocity-adapted spatio-temporal receptive fields, compared to directional derivatives or

regular partial derivatives for which the filter kernels have not been adapted to the local image motion.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A recent approach for recognition consists of computing

statistical descriptors of receptive field responses. In

particular, histogram-based schemes of derivative operators

have emerged as an interesting alternative for formulating

recognition schemes for static as well as time-dependent

image data [1–7]. Computing responses of local spatio-

temporal receptive fields involves filtering in both space and

time. This naturally rises the question of how to express

filtering operations in space–time.

When analysing spatio-temporal image data, one obser-

vation that can be made is that temporal events can often be

characterized by their extents over time in a similar manner

as spatial structures have their characteristic scales in space.

This motivates and emphasizes the need for analysing

spatio-temporal data at different scales, both with respect to

time and space [8–14].

The temporal domain, however, also has a number of

specific properties, which differ from spatial data, and which

must be taken into account explicitly. A basic constraint on

real-time processing is that the time direction is causal, and

real-time algorithms may only access information from the

past [10,13]. Another difference concerns the classes of

characteristic transformations that influence the data.

Whereas perspective transformations have a high influence

on the image data in the spatial image domain, one of the

most important sources of changes in the temporal

dimension is due to motion between the observer and the

patterns that are studied. This is shown in Fig. 1, where the

spatio-temporal pattern of a walking person is influenced by

the relative motion of the camera (Fig. 1b and c). If

separable spatial filtering is extended to the temporal

domain, we observe that the filter responses are highly

dependent on the relative motion between the person and the

camera (Fig. 1d and f).

When interpreting image data, it is important to base the

analysis on image representations that are invariant to the

external imaging conditions. Hence, it is important to

construct representations of spatio-temporal patterns that

are independent of the relative motion between the patterns

and the observer. Previous work has addressed this problem

by first stabilizing patterns of interest in the field of view,

and then computing spatio-temporal descriptors using

0262-8856/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2003.07.002

Image and Vision Computing 22 (2004) 105–116

www.elsevier.com/locate/imavis

* Corresponding author.

E-mail addresses: laptev@nada.kth.se (I. Laptev); tony@nada.kth.se

(T. Lindeberg).

http://www.elsevier.com/locate/imavis


a fixed set of filters [7,15] for related stabilization

approaches. Camera stabilization, however, may not always

be available, for example, in situations with multiple

moving objects, moving backgrounds or in cases where

initial segmentation of the patterns of interest cannot be

done without (preliminary) recognition.

The main aim of this work is to define and compute

spatio-temporal descriptors that compensate for the relative

motion between the pattern and the observer and do not rely

on external camera stabilization. This is achieved by local

velocity adaptation of receptive fields. In Section 2 we first

introduce velocity-adapted filtering using the framework of

spatio-temporal scale-space. Then in Section 3, a mechan-

ism for performing local velocity adaptation is described.

By integration with a histogram-based statistical framework

in Section 4, we then consider a test problem of recognizing

activities and show how velocity adaptation results in a

considerable increase in recognition performance compared

to two other receptive field representations not involving

velocity adaptation. Section 5 concludes the paper with a

summary and discussion.

1.1. Related work

Velocity adaptation of spatio-temporal receptive fields

follows the idea of shape adaptation in the spatial

domain, which has previously been considered in Refs.

[16–22]. In the spatio-temporal domain, adaptive spatio-

temporal filters have been studied in Refs. [12,23–26].

Nagel and Gehrke [24] proposed an adaptation scheme

close to ours and used it for robust estimation of optic

flow.

With regard to recognition, this work relates to

histogram-based methods first proposed in the spatial

domain by Swain and Ballard [1] using color histograms

computed from single pixel responses. Extensions

to receptive field histograms were later presented in Refs.

[2,3,5,6]. Specifically, combinations of automatic scale

selection in the spatial domain [27] with Gaussian

derivative-based recognition schemes have been presented

in Refs. [3,5]. In the spatio-temporal domain, histogram-

based approaches have been used for the recognition of

activities in Refs. [4,7]. Here, we build upon this work and

Fig. 1. Spatio-temporal image of a walking person (a) depends on the relative motion between the person and the camera (b)–(c). If this motion is not taken into

account, spatio-temporal filtering (here, the second order spatial derivative) results in highly different responses as illustrated in (d) and (e). Manual

stabilization of the pattern in (e) shown in (f) makes the difference more explicit for comparisons with (d).
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show how the performance of spatio-temporal recognition

schemes can be increased by velocity adaptation.

2. Spatio-temporal scale-space representation

The image data we analyse is a spatio-temporal image

sequence, in the continuous case modeled as a function

f : R2 £ R! R or in the discrete case as f : Z2 £ Z! Z:

From this signal, a separable spatio-temporal scale-space

representation Lðx; y; t;s 2; t 2Þ is defined1 by separable

convolution of f with a set of spatial smoothing kernels

gðx; y;s 2Þ with variances s 2 and a set of temporal

smoothing kernels hðt; t 2Þ with variances t 2: Hence, L

is a function that represents the image sequence

at different scales of observations over both space

and time.

For continuous data, the natural choice of a spatial

smoothing kernel is the Gaussian kernel [8,9,11,14].

Regarding continuous time, we may model the temporal

smoothing operation either by a non-causal Gaussian kernel,

or as a causal Gaussian kernel on a logarithmically

transformed temporal domain [10,13]. For discrete data, a

canonical spatial scale-space concept originates from the

discrete analogue of the Gaussian kernel [11]

Tðx; y;s 2Þ ¼ e22s 2

Ixðs
2ÞIyðs

2Þ ðx; yÞ [ Z 2 ð1Þ

where Ix and Iy denote the modified Bessel functions of

integer order [28]. Regarding discrete time, a natural and

computationally efficient scale-space representation can be

computed by coupling first-order recursive filters in cascade

[11,13]

Lðkþ1Þðx;y; tÞ ¼
1

1þm
ðLðkÞðx;y; tÞþmLðkþ1Þðx;y; t21ÞÞ; ð2Þ

where k denotes the number of temporal smoothing

stages. The corresponding temporal smoothing kernel with

coefficients cn $ 0 obeys temporal causality by only

accessing data from the past. Moreover, this kernel is

normalized to
P1

n¼21 cn ¼ 1 and has mean value m¼P1
n¼21 ncn ¼m and variance t2 ¼

P1
n¼21 ðn2mÞ2cn ¼

m2 þm: By coupling k such recursive filters in Eq. (2)

in cascade, we obtain a filter with mean mk ¼
Pk

i¼1mi and

variance t2
k ¼

Pk
i¼1m

2
i þmi:

It can be shown that if for a given variance t 2 we let

mi ¼ t 2=K become successively smaller by increasing the

number of filtering steps K; then the filter kernel approaches

the Poisson kernel [12], which corresponds to the canonical

temporal scale-space concept having a continuous scale

parameter on a discrete temporal domain. Another practical

advantage of the recursive filtering scheme in Eq. (2) is that

it enables the computation of temporal scale-space rep-

resentations without need of buffering previous time frames.

2.1. Transformation properties under motion

To describe the spatio-temporal smoothing step, we will

henceforth use covariance matrices of filter kernels. For a

separable smoothing kernel, with a spatial variance s2 and a

temporal variance t2; the covariance matrix is diagonal:

S ¼

Cxx Cxt Cxt

Cxy Cyy Cyt

Cxt Cyt Ctt

0
BB@

1
CCA ¼

s2

s2

t2
k

0
BBB@

1
CCCA: ð3Þ

A limitation of using a separable scale-space for analysing

motion patterns, however, originates from the fact that this

scale-space concept is not closed under 2D motions in the

image plane. For a 2D Galilean motion

x0

y0

t0

0
BB@

1
CCA ¼

1 0 vx

0 1 vy

0 0 1

0
BB@

1
CCA

x

y

t

0
BB@

1
CCA ð4Þ

the covariance matrix of the smoothing kernel transforms as

[12,23]

C0
xx C0

xt C0
xt

C0
xy C0

yy C0
yt

C0
xt C0

yt C0
tt

0
BBB@

1
CCCA

¼

1 0 vx

0 1 vy

0 0 1

0
BB@

1
CCA

Cxx Cxt Cxt

Cxy Cyy Cyt

Cxt Cyt Ctt

0
BB@

1
CCA

1 0 0

0 1 0

vx vy 1

0
BB@

1
CCA ð5Þ

and spatio-temporal derivatives transform according to

›x0 ¼ ›x ›y0 ¼ ›y ›t0 ¼ 2vx ›x 2 vy ›y þ ›t: ð6Þ

Hence, if we consider separable smoothing kernels only and

if we do not take the transformation property of spatio-

temporal derivatives into explicit account, it will not be

possible to perfectly match the spatio-temporal scale-space

representations for different amounts of motion.

2.2. Scale-space with velocity adaptation

A natural way of defining a scale-space that is closed

under Galilean motion in the image plane, is by considering

a scale-space representation that is parameterized by the full

family of (positive definite) covariance matrices [12,14,23].

In terms of implementation, there are two basic ways of

computing such a scale-space—either by transforming the

smoothing kernels themselves, or by transforming the input

image prior to smoothing (see Fig. 2). In this work, the latter

approach is taken, and for reasons of simplicity and

computational efficiency, we restrict the set of image

1 Here, ðx; yÞ [ R2 (or Z2) denote the spatial coordinates, t [ R (or Z)

denotes time, s2 [ Rþ is the spatial scale parameter and t2 [ Rþ the

temporal scale parameter.
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velocities to integer multiples of the pixel size. Thus, in

combination with a spatial smoothing step

Lð0Þðx; y; t;s2Þ ¼ Tðx; y;s2Þf ðx; y; tÞ; ð7Þ

a set of velocity-adapted time-recursive smoothing steps is

computed according to

Lðkþ1Þðx; y; t;s2Þ ¼
1

1 þ mk

ðLðkÞðx; y; t;s2Þ

þ mkLðkþ1Þðx 2 vx; y 2 vy; t 2 1;s2ÞÞ;

ð8Þ

where k represents the level of temporal smoothing

corresponding to the convolution with a set of temporal

kernels with variances t 2
k : The scale-space concept we make

use of, will hence be parameterized by a spatial scale

parameter s 2; a temporal scale parameter t 2 and a set of

discrete image velocities ðvx; vyÞ
T:

The result of applying such velocity-adapted filters to

spatio-temporal image data is shown in Fig. 3. Here, a

synthetic pattern with one spatial and one temporal

dimension has been filtered using different values of velocity

parameter v: As can be seen, depending on the value of v; the

filtering is able to emphasize either the moving pattern

(Fig. 3b) or the stationary background (Fig. 3c).

3. A mechanism for local velocity adaptation

If we want to interpret events independently of their

relative motion to the camera, one approach is to adapt the

receptive fields globally with respect to the velocity of the

events in the field of view. This approach also corresponds

to camera stabilization followed by non-adapted filtering.

As shown in Fig. 3b, the result of filtering with globally

adapted receptive fields with v ¼ 21 indeed enhances the

structure of the moving pattern. However, the stationary

pattern is suppressed and it follows that global velocity

adaptation is not able to handle multiple motions. Moreover,

global velocity adaptation is likely to fail if the external

velocity information is incorrect (Fig. 3d).

To address these problems, we propose to make use of

local velocity adaptation of receptive fields. The main idea

is to obtain information about motion in the local

neighborhood and to use this information for velocity

adaptation of receptive fields in the same neighborhood.

Before proceeding to specific schemes for local velocity

adaptation in space-time, however, let us observe that there

are two main approaches for handling multiple image

velocities. One approach is to consider the entire ensemble

of receptive fields over image motions as the representation,

while the other is to select receptive field outputs

corresponding to a single motion estimate. From basic

arguments, the first approach can be expected to be more

robust in critical situations (compare with biological vision

systems), while the second approach followed in this work

could be expected to be more accurate and also computa-

tionally more efficient on a serial architecture.

The mechanism we will use for accomplishing local

velocity adaptation is inspired by related work on automatic

scale selection [27] extended to a multi-parameter scale-

space [12] as well as by motion energy approaches for

computing optic flow [29,30]. Given a set of image

velocities, the normalized Laplacian response is computed

for each image velocity in a motion compensated frame (8)

Fig. 3. The effect of global velocity adaptation for a synthetic spatio-

temporal pattern in (a). (b)–(d) Convolution of (a) with spatio-temporal

second-order derivative operators with s2 ¼ 32; t2 ¼ 32 and velocity

parameters v ¼ 21; 0; 1; respectively. Note, that depending on the velocity

parameter, global velocity adaptation emphasizes either the moving pattern

(b) or the stationary pattern (c).

Fig. 2. A pre-requisite for perfect matching of spatio-temporal receptive field responses for different amounts of motion is that the image representation is

closed under motions in the image domain. The aim of the velocity adaptation mechanism is to allow for such closedness, and to permit the construction of a

velocity invariant recognition scheme.
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in the spatio-temporal scale-space. Then, for each scale, a

motion estimate is computed from the velocity ðvx; vyÞ
T that

maximizes the normalized derivative response

ðv̂x; v̂yÞ
Tðx;y; tÞðkÞ ¼ argmax

vx;vy

ð72
normLðkÞðx;y; t;s2

;vx;vyÞÞ
2
; ð9Þ

where 72
norm ¼s2ð›xx þ›yyÞ is a scale-normalized Laplacian

operator in space. This approach is equivalent to

the application of a set of velocity-adapted Laplacian

operators (Fig. 4) at each spatio-temporal scale, and

selecting the motion estimate from the spatio-temporal

filter parameters that gives the maximum response. While

one could also consider the use of optic flow estimation

schemes for computing the velocity estimates [24], a main

reason why we here consider maximization of normalized

receptive field responses over image velocities is that

Fig. 4. Spatio-temporal filters Lxx computed from a velocity-adapted spatio-temporal scale-space for a 1 þ 1D image pattern, for different values of the velocity

parameter v; the spatial scale s2 and the temporal scale t2:

Fig. 5. Results of filtering original patterns in (a) and (d) using the proposed local velocity adaptation are illustrated in (b) and (e), respectively. The orientation

of the ellipses in (c) and (f) show the chosen velocity at each point of the pattern. Note that filtering with local velocity adaptation preserves the details of the

moving and stationary pattern. The similarity of the filter responses in (b) and (e) also illustrates the independence of the filtering results with respect to the

amount of camera motion.
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a similar mechanism, when extended to maximization over

spatial scales and temporal scales, can also be used for

performing simultaneous automatic selection of spatial

scales and temporal scales [27,31].

Fig. 5 shows the results of local velocity adaptation for a

synthetic spatio-temporal pattern (Fig. 5a) and its Galilean

transformation (Fig. 5d). From the responses of velocity-

adapted receptive fields and from the ellipses displaying the

selected orientation of filters in space-time, it is apparent

that the proposed filtering scheme adapts to the local motion

and enhances structures both in the moving pattern and in

the static background. Moreover, by comparing the results

in Fig. 5e and f, we can visually confirm the invariance of

locally adapted receptive field responses with respect to the

Galilean transformation of the pattern or, equivalently, to

the relative motion between the pattern and the camera.

Application of the local velocity adaptation to a sequence

with a walking person is shown in Fig. 6. Note, that filtering

here has been done in three dimensions while for the purpose

of demonstration, the results are shown only for one x 2 t-

slice of a spatio-temporal cube (see Fig. 1). As for the synthetic

pattern above, we observe successful adaptation of filter

kernels to the motion structure of a gait pattern (Fig. 6c and d).

The results in Fig. 6e–g also demonstrate approximative

Fig. 6. Spatio-temporal filtering with local velocity adaptation applied to a gait pattern recorded with a stabilized camera (a) and a stationary camera (b) (see

Fig. 1 for comparison); (c) and (d) velocity adapted shape of filter kernels; (e) and (f) results of filtering with a second-order derivative operator; (g) warped

version of (f) showing high similarity with (e).
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invariance of filter responses with respect to camera motion.

The desired effect of the proposed local velocity adaptation is

especially evident when these results are compared to the

results of separable filtering as shown in Fig. 1d–f.

3.1. Comparison with steerable filters

When computing spatio-temporal derivatives, we per-

form velocity adaptation of both the shapes of smoothing

kernels and the derivatives according to Eqs. (5) and (6). An

alternative approach that is more efficient but less accurate

consists of separable smoothing step followed by adaptation

of the derivatives only. Such a scheme is closely related to

steerable filters [32] for computing higher-order spatial

derivatives in a rotationally invariant way. To differentiate

these two approaches, we will refer to them as velocity-

adapted filtering and velocity-steered filtering.

To compare these two alternatives and to illustrate the

importance of shape adaptation of filter kernels, we will first

compare the results of filtering a synthetic prototype of a

moving spatio-temporal impulse. The original signal is

shown in Fig. 7a in two spatial and one temporal

dimensions. Fig. 7b shows the result of computing a partial

spatio-temporal derivative ›xxt using velocity-adapted

filtering. With positive and negative filter values represented

by different colors, we can visually confirm the correctness

of the resulting shape. On the contrary, computation of the

same derivative using velocity-steered filtering (Fig. 7c)

results in a different and incorrect shape. A similar result is

obtained when filtering is performed without adaptation of

neither the smoothing kernels nor the derivatives (Fig. 7d).

In Section 4, we apply these filtering schemes to a

recognition task and give their quantitative comparison as

well as emphasize the importance of velocity-adapted

filtering in practice.

4. Histogram-based recognition

The responses of spatio-temporal derivatives describe

the structure of local spatio-temporal neighborhoods and

therefore can be used for discriminating between motion

patterns with different spatio-temporal structure. Higher

order derivatives provide for a more rich and discriminative

representation while lower order derivatives are less

sensitive to noise and other sources of variations in the

pattern. Moreover, the velocity adaptation of derivatives

makes them independent of the first order motion but still

enables to capture and represent the motion of higher order.

Since the relative motion between the camera and the pattern

can be approximated by the constant velocity (at least for

a short period of time), the velocity adaptation enables to

compute descriptors independently of the relative camera

motion.

Computing the statistics of derivative responses over all

points of the image sequence is attractive due to

Fig. 7. (a) Prototype spatio-temporal blob signal with velocity vx ¼ 2: (b)–(d) Responses to the ›xxt-derivative operator when using (b): velocity-adapted filters;

(c): velocity-steered filters; (d): non-adapted filters. A correct shape of the filter response is obtained only for the case of velocity-adapted filtering.
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the invariance of such a descriptor with respect to the

translations of the pattern in space and time. Hence,

following Refs. [2–4,7], we represent image patterns by

histograms of receptive field responses. For this purpose, we

use velocity-adapted spatio-temporal derivative operators

up to order four and collect histograms of these at different

spatial and temporal scales. For simplicity, we restrict

ourselves to 1D histograms for each type of filter response.

Fig. 8. Test sequences of people walking W1 –W4 and people performing an exercise E1 –E4: Whereas the sequences W1; W4; E1; E3 were taken with a

manually stabilized camera, the other four sequences were recorded using a stationary camera.

Fig. 9. Results of local velocity adaptation for image sequences recorded with a manually stabilized camera (a), and with a stationary camera (b). Directions of

cones in (c) and (d) correspond to the velocity chosen by the proposed adaptation algorithm. The size of the cones corresponds the value of the squared

Laplacian ðð›xx þ ›yyÞLðx; y; t;s; tÞÞ
2 at the selected velocities.
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To achieve independence with respect to the direction of

motion (left/right or up/down) and the sign of the spatial

grey-level variations, we simplify the problem by only

considering the absolute values of the filter responses.

Moreover, to emphasize the parts of the histograms that

correspond to stronger spatio-temporal responses, we use

heuristics and weight the accumulated histograms HðiÞ by a

function f ðiÞ ¼ i2 resulting in hðiÞ ¼ i2HðiÞ:

4.1. Experimental setup

As a test problem we have chosen a data set with image

sequences containing people performing actions of type

walking W1…W4 and exercise E1…E4 as shown in Fig. 8.

Some of the sequences were taken with a stationary camera,

while the others were recorded with a manually stabilized

camera. Each of these 4 s long sequences were subsampled

to a spatio-temporal resolution of 80 £ 60 £ 50 pixels and

convolved with a set of spatio-temporal smoothing kernels

for all combinations of seven velocities vx ¼ 23…3; five

spatial scales s2 ¼ {2; 4; 8; 16; 32} and five temporal scales

t2 ¼ {2; 4; 8; 12; 16}:

For each spatial scale si; velocity adaptation was

performed according to Eq. (9) at scale level siþ1: Since in

our examples the relative camera motion was mostly

horizontal, we maximized Eq. (9) over vx only. The result of

this adaptation for the sequences W2 and E1 is shown in Fig. 9.

To represent the patterns, we accumulated histograms of

derivative responses for each combination of scales and

each type of derivative. For the purpose of evaluation,

separate histograms were accumulated over (i) velocity-

adapted derivative responses; (ii) velocity-steered

Fig. 10. Means and variances of histograms for the activities ‘walking’ (red) and ‘exercise’ (blue). (a)–(c) Histograms of velocity-adapted derivatives Lxxt ; Lxyt ;

Lyyt; (d)–(f) histograms of velocity-steered directional derivatives Lxxt; Lxyt ; Lyyt; (g)–(i) histograms of non-adapted partial derivatives Lxxt; Lxyt; Lyyt: As can be

seen, the velocity-adapted filter responses give considerably better possibility to discriminate the motion patterns compared to velocity-steered or non-adapted

filters.
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directional derivative responses and (iii) non-adapted partial

derivative responses computed at velocity v ¼ 0:

4.2. Discriminability of histograms

Fig. 10 shows the means and the variances of the

histograms computed separately for both of the classes. As

can be seen from Fig. 10a–c, velocity adaptation of

receptive fields results in discriminative class histograms

and low variation of histograms computed for the same class

of activities. On the contrary, the high variations in the

histograms in Fig. 10d–i clearly indicate that activities are

much harder to recognize when using velocity-steered or

non-adapted receptive fields.

Whereas Fig. 10 presents histograms for three types of

derivatives Lxxt; Lxyt and Lyyt at scales s2 ¼ 4; t2 ¼ 4 only,

we have observed a similar behavior for other derivatives at

most of the other scales considered.

4.3. Discriminability measure

To quantify these results, let us measure the distance

between pairs of histograms (h1; h2) defined according to the

x2-divergence measure

Dðh1; h2Þ ¼
X

i

ðh1ðiÞ2 h2ðiÞÞ
2

h1ðiÞ þ h2ðiÞ
; ð10Þ

where i is the index to the histogram bin. To evaluate the

distance between a pair of sequences, we accumulate

differences of histograms over different spatial and temporal

scales as well as over different types of receptive fields

according to dðh1; h2Þ ¼
P

l;s;t Dðh1; h2Þ; where l denotes the

type of the spatio-temporal filters, s2 the spatial scale and t2

the temporal scale.

To measure the degree of discrimination between

different actions, we compare the distances between pairs

of sequences that belong to the same class dsame with

distances between sequences of different classes ddiff : Then,

to quantify the average performance of the velocity

adaptation algorithm, we compute the mean distances
�dsame; �ddiff for all valid pairs of examples and define a

distance ratio according to r ¼ �dsame= �ddiff : Hence, low

values of r indicate good discriminability, while r close to

one corresponds to a performance no better than chance.

Fig. 11 shows distance ratios computed separately for

different types of receptive fields. The lower values of the

curve corresponding to velocity adaptation clearly indicate

the better recognition performance obtained by using

velocity-adapted filters compared to velocity-steered or

non-adapted filters. Computing distance ratios over all types

of derivatives and scales used, results in the following

distance ratios: radapt ¼ 0:64 when using velocity-adapted

filters, rsteered ¼ 0:81 using velocity-steered filters, and

rnon-adapt ¼ 0:92 using non-adapted filters.

4.4. Dependency on scales

When analysing discrimination performance for different

types of derivatives and different scales, we have observed

an interesting dependency of the distance ratio on the spatial

and the temporal scales. Fig. 12a and b shows how the

distance ratio has a clear minimum over scales at s2 ¼ 2;

t2 ¼ 8 indicating that these scales give rise to the best

discrimination for patterns considered here. In particular, it

can be noted that t2 ¼ 8 approximately corresponds to the

temporal extent of one gait cycle in our examples.

Computation of distance ratios for the selected scale

values results in radapt ¼ 0:41 when using velocity-adapted

filters, rsteered ¼ 0:71 using velocity-steered filters and

rnon-adapt ¼ 0:79 using non-adapted filters (see Fig. 13).

The existence of such preferred scales motivates approaches

for automatic selection of both spatial [27] and temporal

[31] scales.

5. Summary and discussion

We have addressed the problem of representing and

recognizing events in video in situations where the

relative motion between the camera and the observed

events is unknown. Experiments on a test problem of

recognizing activities show that the use of a velocity

adaptation scheme results in a clear improvement in the

recognition performance compared to using either (steer-

able) directional derivatives or regular partial derivatives

computed from a non-adapted spatio-temporal filtering

step. Whereas for the treated set of examples, recognition

could also have been accomplished by using a camera

stabilization approach, a major aim here has been to

consider a filtering scheme that can be extended to

Fig. 11. Distance ratios computed for different types of derivatives and for

velocity-adapted (solid lines), velocity-steered (point-dashed lines) and

non-adapted (dashed lines) filter responses. As can be seen, local velocity

adaptation results in lower values of the distance ratio and therefore better

recognition performance compared to steered or non-adapted filter

responses.
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recognition in complex scenes, where reliable camera

stabilization may not be possible, i.e. scenes with complex

non-static backgrounds or multiple events of interest. Full-

fledged recognition in such situations, however, requires

more sophisticated statistical methods for recognition than

the present histogram-based scheme. We plan to investigate

such extensions in future work.

Less restricted to this specific visual task, the results of

our investigation also indicate how, when dealing with

filter-based representations of spatio-temporal image data,

velocity adaptation appears as an essential complement to

more traditional approaches of using separable filtering in

space-time. For the purpose of performing a clean

experimental investigation, we have in this work made

use of an explicit velocity-adapted spatio-temporal filtering

for each image velocity. While such an implementation has

interesting qualitative similarities to biological vision

systems (where there are two main classes of receptive

fields in space-time—separable filters and non-separable

ones [33]), there is a need for developing more sophisti-

cated multi-velocity filtering schemes for efficient

implementations in practice.

Finally, future work should also address the problem of

selecting appropriate scales in both the spatial and

the temporal domains. The preliminary results in Section

4.4 indicate the potential of performing joint scale

selection in space-time for increasing the recognition

performance.
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