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Abstract. Several types of interest point detectors have been proposed
for spatial images. This paper investigates how this notion can be gener-
alised to the detection of interesting events in space-time data. Moreover,
we develop a mechanism for spatio-temporal scale selection and detect
events at scales corresponding to their extent in both space and time.

To detect spatio-temporal events, we build on the idea of the Harris
and Förstner interest point operators and detect regions in space-time
where the image structures have significant local variations in both space
and time. In this way, events that correspond to curved space-time struc-
tures are emphasised, while structures with locally constant motion are
disregarded.

To construct this operator, we start from a multi-scale windowed sec-
ond moment matrix in space-time, and combine the determinant and
the trace in a similar way as for the spatial Harris operator. All space-
time maxima of this operator are then adapted to characteristic scales by
maximising a scale-normalised space-time Laplacian operator over both
spatial scales and temporal scales. The motivation for performing tem-
poral scale selection as a complement to previous approaches of spatial
scale selection is to be able to robustly capture spatio-temporal events of
different temporal extent. It is shown that the resulting approach is truly
scale invariant with respect to both spatial scales and temporal scales.

The proposed concept is tested on synthetic and real image sequences.
It is shown that the operator responds to distinct and stable points in
space-time that often correspond to interesting events. The potential
applications of the method are discussed.

1 Introduction

Analysing and interpreting video is a growing topic in computer vision and its
applications. Video data contains information about changes in the environment
and is highly important for many visual tasks including navigation, surveillance
and video indexing.

� The support from the Swedish Research Council and from the Royal Swedish
Academy of Sciences as well as the Knut and Alice Wallenberg Foundation is grate-
fully acknowledged.
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Traditional approaches for motion analysis mainly involve the computation
of optic flow (Barron, Fleet and Beauchemin 1994) and feature tracking (Smith
and Brady 1995, Blake and Isard 1998). Although very effective for many tasks,
both of these techniques have limitations. Optic flow approaches mostly capture
first-order motion and often fail when the motion has sudden changes. Interesting
solutions to this problem have been proposed by (Niyogi 1995, Fleet, Black and
Jepson 1998). Feature trackers often assume the constant appearance of image
patches over time and, hence, may fail when this appearance changes for example
in situations when two objects in the image merge or split. Model-based solutions
for this problem have been presented by (Black and Jepson 1998).

Image structures in video are not restricted to constant velocity and/or con-
stant appearance over time. On the contrary, many interesting events in video
are characterised by strong variations of the data in both the spatial and the
temporal directions. For example, consider scenes with a person entering a room,
applauding hand gestures, a car crash or a water splash. Moreover, it can be ar-
gued that changes of image velocity, i.e. accelerations of image structures are
of particular interest since they may indicate the work of forces that act in the
environment and change its structure.

In the spatial domain, points with a significant local variation of image
intensities have been extensively investigated previously (Förstner and Gülch
1987, Harris and Stephens 1988, Schmid, Mohr and Bauckhage 2000). Such image
points are frequently denoted as “interest points” and are attractive due to their
high information contents. Highly successful applications of interest point de-
tectors have been presented for image indexing (Schmid and Mohr 1997), stereo
matching (Tuytelaars and Van Gool 2000, Mikolajczyk and Schmid 2002, Tell
and Carlsson 2002), optic flow estimation and tracking (Smith and Brady 1995),
and recognition (Lowe 1999, Hall, de Verdiere and Crowley 2000).

The purpose of this paper is to extend the notion of interest points into
the spatio-temporal domain and to show that the resulting space-time features
often correspond to interesting events in video. In particular we aim at the di-
rect scheme for event detection that does not require feature tracking nor optic
flow computation. As events often have characteristic extents in both space and
time (Koenderink 1988, Lindeberg and Fagerström 1996, Florack 1997, Chomat,
Martin and Crowley 2000b, Zelnik-Manor and Irani 2001), we investigate the
behaviour of space-time interest points in spatio-temporal scale-space and adapt
both the spatial and the temporal scales of the detected features to their char-
acteristic extents in space-time. The idea of spatio-temporal interest points is
illustrated in figure 1 where the result of a standard interest point detector ap-
plied to still images in a video is compared to the proposed spatio-temporal
interest point detector. As can be seen, the spatio-temporal detector is more
selective than the spatial one and detects specific events in the space-time cycle
of a gait pattern.

To detect spatio-temporal events, we build on the idea of the Harris and
Förstner interest point operators (Harris and Stephens 1988, Förstner and Gülch
1987) and derive the spatio-temporal event detector in section 2. We analyse its



3

Spatial interest points

Spatio-temporal interest points

Fig. 1. Detection of spatial and spatio-temporal interest points in a video sequence.
Compared to a spatial detector that selects points with high variations of image values
in space, the spatio-temporal detector selects areas corresponding to distinct events
with high variations of image values in both space and time.

behaviour on synthetic image sequences and motivate the need for automatic
temporal scale selection. In section 3 we investigate a mechanism for simulta-
neous spatio-temporal scale selection based on the normalised spatio-temporal
Laplace operator. In section 4 we propose an algorithm that adapts the detec-
tion of space-time interest points to their characteristic scales of observations by
combining the theory from sections 2 and 3. The performance of the resulting
detector on real image sequences is investigated in section 5. Finally, section 6
concludes the paper with the discussion of the method and its potential appli-
cations.

2 Interest point detection

2.1 Interest points in spatial domain

In the spatial domain, we can model an image fs : R
2 �→ R by its linear scale-

space representation (Witkin 1983, Koenderink and van Doorn 1992, Lindeberg
1994, Florack 1997) Ls : R

2 × R+ �→ R

Ls(x, y; σ2
l ) = gs(x, y; σ2

l ) ∗ fs(x, y), (1)

defined by the convolution of fs with Gaussian kernels of variance σ2
l

gs(x, y; σ2
l ) =

1
2πσ2

l

exp(−(x2 + y2)/2σ2
l ). (2)

The idea of the Harris interest point detector is to find spatial locations where
fs has significant changes in both directions. For a given scale of observation σ2

l ,
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such points can be found using a second moment matrix integrated over a Gaus-
sian window with the variance σ2

i (Förstner and Gülch 1987, Bigün, Granlund
and Wiklund 1991, Garding and Lindeberg 1996):

µs(·; σ2
l , σ2

i ) = gs(·; σ2
i ) ∗

(
(∇L(·; σ2

l ))(∇L(·; σ2
l ))

T
)

= gs(·; σ2
i ) ∗

(
(Ls

x)
2 Ls

xLs
y

Ls
xLs

y (Ls
y)2

)
(3)

where ′∗′ denotes convolution operator, and Ls
x and Ls

y are Gaussian derivatives
computed at the local scale σ2

l and defined as Ls
x = ∂x(gs(·; σ2

l ) ∗ fs(·)), Ls
y =

∂y(gs(·; σ2
l ) ∗ fs(·)). The second moment descriptor can be thought of as the

covariance matrix of a two-dimensional distribution of image orientations in the
local neighbourhood of a point. Hence, the eigenvalues λ1, λ2, (λ1 ≤ λ2) of µs

represent characteristic variations of fs in the both image directions while two
significant values of λ1, λ2 indicate the presence of an interest point. To detect
such points, Harris and Stephens (1988) proposed to detect positive maxima of
the corner function

Hs = det(µs)− k trace2(µs) = λ1λ2 − k(λ1 + λ2)2. (4)

The ratio of the eigenvalues α = λ2/λ1 has to be high at the positions of the
interest points. From (4) it follows that for positive local maxima of Hs the
ratio α has to satisfy k ≤ α/(1 + α)2. Hence, if we set k = 0.25, the positive
maxima of H will only correspond to “ideal” interest points with α = 1, i.e.
λ1 = λ2. Lower values of k allow us to detect interest points with more elongated
shape, corresponding to higher values of α. The commonly used value of k in
the literature is k = 0.04 corresponding to the detection of points with α < 23.

The result of detecting Harris interest points in an outdoor image sequence
of a walking person is presented in the top row of figure 1.

2.2 Interest points in the spatio-temporal domain

In this section, we develop an operator that responds to events in temporal image
sequences with specific positions and extents in space-time. The idea of interest
points in the spatial domain can be extended into the spatio-temporal domain by
requiring image values in space-time to have large variations in both the spatial
and the temporal directions. Points with such properties will be spatial interest
points with a distinct location in time corresponding to a local spatio-temporal
neighbourhoods with non-constant motion.

To model a spatio-temporal image sequence we use a function f : R
2 × R →

R and construct its linear scale-space representation L : R
2 × R × R

2
+ �→ R

by convolution of f with an anisotropic Gaussian kernel1 with distinct spatial
1 In general, convolution with a Gaussian kernel in the temporal domain violates
causality constraints since the temporal image data is available only for the past.
For real-time implementation, time-causal scale-space filters thus have to be used
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variance σ2
l and temporal variance τ2

l

L(·; σ2
l , τ2

l ) = g(·; σ2
l , τ2

l ) ∗ f(·), (5)

where the spatio-temporal separable Gaussian kernel is defined as

g(x, y, t; σ2
l , τ2

l ) =
1√

(2π)3σ4
l τ2

l

exp(−(x2 + y2)/2σ2
l − t2/2τ2

l ). (6)

The introduction of a separate scale parameter for the temporal domain is es-
sential since the spatial and the temporal extents of events are in general inde-
pendent. Moreover, as will be illustrated in section 2.3, events detected using
our interest point operator depend on both spatial and temporal scales of ob-
servation and, hence, require separate treatment of the scale parameters σ2

l and
τ2
l .

Similar to the spatial domain, we consider the spatio-temporal second-moment
matrix which is a 3-by-3 matrix composed of first order spatial and temporal
derivatives averaged with a Gaussian weighting function g(·; σ2

i , τ2
i )

µ = g(·; σ2
i , τ2

i ) ∗

 L2

x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t


 , (7)

where the integration scales are σ2
i = sσ2

l and τ2
i = sτ2

l while the first-order
derivatives are defined as

Lξ(·; σ2
l , τ2

l ) = ∂ξ(g ∗ f).

To detect interest points, we search for regions in f having significant eigenvalues
λ1, λ2, λ3 of µ. Among different approaches to find such regions we propose here
to extend the Harris corner function (4) defined for the spatial domain into the
spatio-temporal domain by combining the determinant and the trace of µ as
follows

H = det(µ) − k trace3(µ) = λ1λ2λ3 − k(λ1 + λ2 + λ3)3. (8)

To show that positive local maxima of H correspond to points with high values
of λ1, λ2, λ3 (λ1 ≤ λ2 ≤ λ3), we define the ratios α = λ2/λ1 and β = λ3/λ1 and
re-write H as

H = λ3
1(αβ − k(1 + α + β)3).

From the requirement H ≥ 0 we get k ≤ αβ/(1 + α + β)3 and it follows that k
assumes its maximum possible value k = 1/27 when α = β = 1. For sufficiently
large values of k, positive local maxima of H correspond to points with high
variation of image gray-values in both the spatial and the temporal directions.

(Koenderink 1988, Lindeberg and Fagerström 1996, Florack 1997). In this paper,
however, we simplify the investigation and assume that the data is available for a
sufficiently long period of time and the image sequence can be convolved with a
Gaussian kernel in both space and time.
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(a) (b)

(c) (d)

Fig. 2. Results of detecting spatio-temporal interest points on synthetic image se-
quences. (a): Moving corner; (b) A merge of a ball and a wall; (c): Collision of two
balls with interest points detected at scales σ2

l = 8 and τ 2
l = 8; (d): the same as in (c)

but with interest points detected at scales σ2
l = 16 and τ 2

l = 16.

In particular, if we set the maximal value of α, β to 23 as in the spatial domain,
the value of k to be used in H (8) will then be k = 0.005. Thus, spatio-temporal
interest points of f can be found by detecting local positive spatio-temporal
maxima in H .

2.3 Experimental results on synthetic data

In this section, we illustrate the detection of spatio-temporal interest points
on synthetic image sequences. For clarity of presentation, we show the spatio-
temporal data as 3-D space-time plots where the original signal is represented by
a threshold surface while the detected interest points are presented by ellipsoids
with positions corresponding to the space-time location of interest points and
the length of the semi-axes proportional to the local scale parameters σl and τl

used in the computation of H .
Figure 2a illustrates a sequence with a moving corner. The interest point is

detected at the moment in time when the motion of the corner changes direction.
This type of event occurs frequently in natural sequences such as sequences of
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articulated motion. Note that image structures with constant motion do not give
rise to the detection of interest points. Other typical types of events detected by
the proposed method are splits and unifications of image structures. In figure 2b
the interest point is detected at the moment and the position corresponding to
the collision of a ball and a wall. Similarly, interest points are detected at the
moment of collision and bouncing of two balls as shown in figure 2c-d. Note, that
different types of events are detected depending on the scale of observation.

To further emphasise the importance of the spatial and the temporal scales
of observation, let us consider an oscillating signal with different spatial and
temporal frequencies defined by the threshold surface y = sin(x4) ∗ sin(t4) (see
figure 3). As can be seen, the result of detecting the strongest interest points
highly depends on the scale parameters σ2

l and τ2
l . We observe that space-time

structures with long temporal extents are detected for large values of τ2
l while

short events are preferred by the detector with small values of τ2
l . Similarly, the

spatial extent of events is related to the value of the spatial scale parameter σ2
l .

From the presented examples it follows that a correct selection of temporal
and spatial scales is crucial when capturing the events with different spatial
and temporal extents. Moreover, estimation of the spatio-temporal extents of
events can be interesting for their further interpretation. In the next section,
we propose a mechanism for simultaneous estimation of spatio-temporal scales.
This mechanism is combined with the interest point detector in section 4.

3 Scale selection in space-time

During recent years, the problem of automatic scale selection has been addressed
in several different ways, based on the maximisation of normalised derivative
expressions over scale, or the behaviour of entropy measures or error measures
over scales (see the companion paper by Lindeberg and Bretzner (2003) for
a review). To estimate the spatio-temporal extent of an event in space-time we
follow works on local scale selection proposed in the spatial domain by Lindeberg
(1998) as well as in the temporal domain (Lindeberg 1997). The idea is to define
a differential operator that assumes simultaneous extrema over the spatial and
the temporal scales that are characteristic for an event with a particular spatio-
temporal location.

For the purpose of analysis we study a prototype event represented by a
spatio-temporal Gaussian blob f = g(x, y, t; σ2

0 , τ2
0 ) with spatial variance σ2

0 and
temporal variance τ2

0 (see figure 4a). Using the semi-group property of the Gaus-
sian kernel, it follows that the scale-space representation of f is L(x, y, t; σ2, τ2) =
g(x, y, t; σ2

0 + σ2, τ2
0 + τ2).

To recover the spatio-temporal extent (σ0, τ0) of f we consider second-order
derivatives of L normalised by the scale parameters as follows

Lxx,norm = σ2aτ2bLxx, Lyy,norm = σ2aτ2bLyy, Ltt,norm = σ2cτ2dLtt. (9)

All of these entities assume extrema over space and time at the centre of the
blob f . Moreover, depending on the parameters a, b and c, d, they also assume
extrema at certain spatial and temporal scales σ̃2 and τ̃2.
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σ2
l = 8, τ

2
l = 8 σ2

l = 2, τ
2
l = 8

σ2
l = 8, τ

2
l = 2 σ2

l = 2, τ
2
l = 2

(a) (b)

(c) (d)

Fig. 3. Results of interest point detection at different spatial and temporal scales for a
synthetic sequence with impulses having varying extents in space and time. The extents
of the detected events roughly corresponds to the scale parameters σ2

l and τ 2
l used in

the computation of H .

The idea of scale selection we follow here is to determine the parameters
a, b, c, d such that Lxx,norm, Lyy,norm and Ltt,norm assume extrema at scales
σ̃2 = σ2

0 and τ̃2 = τ2
0 . To find such extrema, we differentiate the expressions

in (9) with respect to the spatial and the temporal scale parameters. For the
spatial derivatives we obtain the following expressions at the centre of the blob

(Lxx,norm)′σ2 = − aσ2 − 2σ2 + aσ2
0√

(2π)3(σ2
0 + σ2)6(τ2

0 + τ2)
σ2(a−1)τ2b (10)

(Lxx,norm)′τ2 = − 2bτ2
0 + 2bτ2 − τ2√

25π3(σ2
0 + σ2)4(τ2

0 + τ2)3
τ2(b−1)σ2a. (11)

By setting these expressions to zero we obtain simple relations for a and b

aσ2 − 2σ2 + aσ2
0 = 0, 2bτ2

0 + 2bτ2 − τ2 = 0
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Fig. 4. (a): Spatio-temporal Gaussian blob with spatial variance σ2
0 = 4 and tem-

poral variance τ 2
0 = 16; (b)-(c) derivatives of ∇2

normL with respect to scales. The
zero-crossings of (∇2

normL)′σ2 and (∇2
normL)′τ2 indicate extrema of ∇2

normL at scales
corresponding to the spatial and the temporal extents of the blob.

that after substituting σ2 = σ2
0 and τ2 = τ2

0 lead to the values a = 1 and b = 1/4.
Similarly, differentiating the second-order temporal derivative

(Ltt,norm)′σ2 = − cσ2 − σ2 + cσ2
0√

(2π)3(σ2
0 + σ2)4(τ2

0 + τ2)3
σ2(c−1)τ2d (12)

(Ltt,norm)′τ2 = − 2dτ2
0 + 2dτ2 − 3τ2√

25π3(σ2
0 + σ2)2(τ2

0 + τ2)5
τ2(d−1)σ2c (13)

leads to the expressions

cσ2 − 2σ2 + cσ2
0 = 0, 2dτ2

0 + 2dτ2 − τ2 = 0

that after substituting σ2 = σ2
0 and τ2 = τ2

0 result in c = 1/2 and d = 3/4.
The derived normalisation of derivatives in (9) guarantees that all of them

assume space-time-scale extrema at the centre of the blob f and at scales cor-
responding to the spatial and the temporal extents of f , i.e. σ = σ0 and τ = τ0.
The sum of these derivatives defines the normalised spatio-temporal Laplace
operator

∇2
normL = Lxx,norm + Lyy,norm + Ltt,norm

= σ2τ1/2(Lxx + Lyy) + στ3/2Ltt.
(14)

Figures 4b-c show derivatives of this operator with respect to the scale pa-
rameters evaluated at the centre of a spatio-temporal blob with spatial variance
σ2

0 = 4 and temporal variance τ2
0 = 16. The zero-crossings of the curves verify



10

that ∇2
normL assumes extrema at the scales σ2 = σ2

0 and τ2 = τ2
0 . Hence, the

spatio-temporal extent of the blob can be estimated by finding the extrema of
∇2

normL over both spatial and temporal scales.

4 Scale-adapted space-time interest points

Local scale estimation using the normalised Laplace operator has shown to be
very useful in the spatial domain (Lindeberg 1998, Almansa and Lindeberg
2000, Chomat, de Verdiere, Hall and Crowley 2000a). In particular, Mikolajczyk
and Schmid (2001) combined the Harris interest point operator with the nor-
malised Laplace operator and derived a scale-invariant Harris-Laplace interest
point detector. The idea is to find points in scale-space that are both spatial max-
ima of the Harris function Hs (4) and extrema over scale of the scale-normalised
Laplace operator in space.

Here, we extend this idea and detect interest points that are simultane-
ous maxima of the spatio-temporal corner function H (8) over space and time
(x, y, t) as well as extrema of the normalised spatio-temporal Laplace operator
∇2

normL (14) over scales (σ2, τ2). One way of detecting such points is to compute
space-time maxima of H for each spatio-temporal scale level and then to select
points that maximise (∇2

normL)2 at the corresponding scale. This approach,
however, requires dense sampling over the scale parameters and is therefore
computationally expensive.

An alternative we follow here is to detect interest points for a set of sparsely
distributed scale values and then to track these points in the spatio-temporal
scale-time-space towards the extrema of ∇2

normL. We do this by iteratively up-
dating the scale and the position of the interest points by (i) selecting the neigh-
bouring spatio-temporal scale that maximises (∇2

normL)2 and (ii) re-detecting

1. Detect interest points pj = (xj , yj , tj , σ
2
l,j , τ

2
l,j), j = 1..N as maxima of H (8)

over space and time using combinations of initial spatial scales σ2
l = σ2

l,1, .., σ
2
l,n

and temporal scales τ 2
l = τ 2

l,1, .., τ
2
l,m as well as integration scales σ2

i = sσ2
l and

τ 2
i = sτ 2

l .

2. for each interest point pj do

3. Compute ∇2
normL at position (xj , yj , tj) and combinations of neighbouring

scales (σ̃2
i,j , τ̃

2
i,j) where σ̃2

i,j = 2
δσ2

i,j , τ̃ 2
i,j = 2

δτ 2
i,j , and δ = −0.25, 0, 0.25

5. Choose combination of integration scales (σ̃2
i,j , τ̃

2
i,j) that maximises (∇2

normL)2

6. if σ̃2
i,j �= σ2

i,j or τ̃ 2
i,j �= τ 2

i,j

Re-detect interest point p̃j = (x̃j , ỹj , t̃j , σ̃
2
l,j , τ̃

2
l,j) using integration scales

σ̃2
i,j = σ̃2

i,j , τ̃ 2
i,j = τ̃ 2

i,j , local scales σ̃2
l,j =

1
s
σ̃2

i,j , τ̃ 2
l,j =

1
s
τ̃ 2

i,j and position
(x̃j , ỹj , t̃j) that is closest to (xj , yj , tj);
set pj := p̃j and goto 3

7. end

Fig. 5. Algorithm for scale adaption of spatio-temporal interest points.
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the space-time location of the interest point at a new scale. The corresponding
algorithm is presented in figure 5.

The result of scale-adaptation of interest points for the spatio-temporal pat-
tern in figure 3 is shown in figure 6. As can be seen, the chosen scales of the
adapted interest points match the spatio-temporal extents of the corresponding
structures in the pattern.

Fig. 6. The result of scale-adaptation of spatio-temporal interest points computed from
a space-time pattern of the form y = sin(x4)∗sin(t4). The interest points are illustrated
as ellipsoids showing the selected spatio-temporal scales overlayed on a surface plot of
the intensity landscape.

It should be noted, however, that the presented algorithm has been developed
for processing pre-recorded video sequences. In real-time situations, when using
causal scale-space representation based on recursive temporal filters (Lindeberg
and Fagerström 1996), only a fixed set of discrete temporal scales is available
at any moment. In that case an approximate estimate of temporal scale can
still be found by choosing interest points that maximise (∇2

normL)2 in a local
neighbourhood of the spatio-temporal scale-space.

5 Experiments

In this section we investigate the performance of the proposed scale-adapted
spatio-temporal interest point detector applied to real image sequences. In the
first example we consider a sequence of a walking person with non-constant image
velocities due to the oscillating motion of the legs. As can be seen in figure 7, the
pattern gives rise to stable interest points. Note that the detected interest points
reflect well-localised events in both space and time, corresponding to space-
time structures such as the starting and the stopping feet. From the space-time
plot in figure 7(a) we can also observe how the selected spatial and temporal
scales of the detected features roughly match the spatio-temporal extents of the
corresponding image structures.
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(a)

                        

                        

                        

(b)

Fig. 7. Results of detecting spatio-temporal interest points for the motion of the legs
of a walking person. (a): 3-D plot with a threshold surface of a leg pattern (up side
down) and detected interest points; (b): interest points overlayed on single frames of a
sequence.

Figure 8 illustrates interest points detected in an outdoor sequence with
a walking person and a zooming camera. The changing values of the selected
spatial scales (illustrated by the size of the circles) illustrate the invariance of
the method with respect to spatial scale changes of the image structures. Note
that beside events in the leg pattern, the detector finds spurious points due to
the non-constant motion of a coat and arms. However, image structures with
constant motion in the background do not result in the response of the detector.

The third example explicitly illustrates how the proposed method is able to
estimate the temporal extent of detected events. Figure 9 shows a person making
hand-waving gestures with high frequency on the left and low frequency on the
right. The distinct interest points are detected at the moments and at spatial
positions where the palm of a hand changes its direction of motion. Whereas the
spatial scale of the detected interest points remains constant, the selected tem-
poral scale depends on the frequency of the wave pattern. The high frequency
pattern results in short events and gives rise to interest points with small tem-
poral extent (see figure 9a). On the contrary, hand waves with low frequency
result in interest points with long temporal extent as shown in figure 9b.

Figure 10 illustrates a football sequence with a player heading the ball. The
sequence has multiple motions due to camera zooming and motion of objects in
the scene and is probably hard to analyse using standard methods for motion
estimation and tracking. However, the strongest output of the proposed detector
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Fig. 8. Results of interest point detection for a zoom-in sequence of a walking person.
The spatial scale of the detected points (corresponding to the size of circles) matches
the increasing spatial extent of image structures and verifies the invariance of the
interest points with respect to changes in spatial scale.

tau=1.19

tau=0.84

Hand waves with high frequency

(a)

tau=3.36

tau=2.83

Hand waves with low frequency

(b)

Fig. 9. Result of interest point detection for a sequence with waving hand gestures.
(a) Interest points for hand gestures with high frequency; (b) Interest points for hand
gestures with low frequency.

(the interest point with the highest maxima of H in (8)) corresponds to the
position and the moment of the most significant event in the sequence, i.e. the
heading of the ball.
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tau=2.00

Fig. 10. Detection of the strongest interest point in a football sequence with a player
heading the ball.

6 Summary and discussion

We have proposed an interest point detector that finds events in space-time with
high variations of the image values in space and non-constant motion in time.
From the experimental results that have been presented in previous sections, it
can be seen that many of the points detected in this way correspond to space-time
structures that we would intuitively regard as meaningful events. For example,
for the sequences with walking people (figures 7-8) we obtain responses at the
beginning and the end of the gait cycle and at spatial locations corresponding
to distinct body parts.

As temporal events exist over finite periods of time, the notion of temporal
scale is incorporated in the detector and the method for automatic scale selection
is used for estimating temporal as well as spatial extents of detected events.

The current implementation of this interest point detector is based on sepa-
rable space-time filters and is therefore not invariant to Galilean transformations
over time, e.g. caused by relative motions of the camera. To aim at Galilean in-
variance, one could either perform local stabilisation as done by Zelnik-Manor
and Irani (2001) or consider (possibly ensembles of) spatio-temporal receptive
fields that have been adapted to local directions in space-time (Laptev and Lin-
deberg 2002).

Regarding potential applications of the presented techniques, one area of in-
terest concerns sparse representation of video data. A representation in terms
of interest points could be used for matching between image sequences, or for
matching an articulated model over time to a given video sequence. Further-
more, the spatio-temporal interest points could be attributed with higher order
spatio-temporal derivatives or other types of image descriptors evaluated at po-
sitions, moments and scales estimated by the proposed detector. Combinations
of classified spatio-temporal interest points could then be used for describing and
analysing image sequences based on similar techniques as have been proposed
for interest points in the spatial domain.

Figure 11 shows an example of using such an approach for matching a tem-
plate gait pattern derived from one walking person to the gait pattern of another
person using classified spatio-temporal interest points that have been grouped
based on similar spatio-temporal receptive field responses and K-means cluster-
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Fig. 11. Result of alignment of the model sequence (see figure 7) to the data sequence
using classified spatio-temporal interest points. The details of the method are leaved
out due to space limitations and will be presented elsewhere.

ing. Notably this result was obtained in relation to a complex cluttered back-
ground with multiple motions and using neither manual initialisation nor explicit
tracking.
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