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Abstract. This paper presents two approaches for evaluating multi-scale feature-based object models. Within the
first approach, a scale-invariant distance measure is proposed for comparing two image representations in terms of
multi-scale features. Based on this measure, the maximisation of the likelihood of parameterised feature models
allows for simultaneous model selection and parameter estimation.

The idea of the second approach is to avoid an explicit feature extraction step and to evaluate models using a
function defined directly from the image data. For this purpose, we propose the concept of a feature likelihood map,
which is a function normalised to the interval [0, 1], and that approximates the likelihood of image features at all
points in scale-space.

To illustrate the applicability of both methods, we consider the area of hand gesture analysis and show how the
proposed evaluation schemes can be integrated within a particle filtering approach for performing simultaneous
tracking and recognition of hand models under variations in the position, orientation, size and posture of the hand.
The experiments demonstrate the feasibility of the approach, and that real time performance can be obtained by
pyramid implementations of the proposed concepts.
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1. Introduction

When computing image descriptors for image inter-
pretation, a primary aim is to emphasise and abstract
relevant properties in the data while suppressing oth-
ers. Common approaches for computing image de-
scriptors involve either (i) the computation of sparse
sets of image features (feature detection) or (ii) the
computation of dense maps of filter responses (direct
methods).

In this respect, a main strength of feature based ap-
proaches is that they provide an abstracted and compact
description of the local image shape. Image features are
usually invariant to intensity transformations and can
selectively represent characteristic visual properties of

image patterns. In particular, using multi-scale fea-
ture detection it is possible to estimate the size of
image structures and to represent image patterns in a
scale-invariant manner. Moreover, when representing
real-world objects, an important constraint originates
from the fact that different types of image features will
usually be visible depending on the scale of observa-
tion. Thus, when building object models for recogni-
tion, it is natural to consider hierarchical object mod-
els that explicitly encode features at different scales
as well as hierarchical relations over scales between
these.

The purpose of this work is to develop two com-
plementary approaches for comparing such hierarchi-
cal object models to image data. Specifically, we will
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be concerned with graph-like and qualitative image
representations in terms of multi-scale image features
(Koenderink, 1984; Crowley and Sanderson, 1987;
Lindeberg, 1993; Pizer et al., 1994; Triesch and von der
Malsburg, 1996; Shokoufandeh et al., 1999; Bretzner
and Lindeberg, 1999a), which are expressed within a
context of feature detection with automatic scale selec-
tion (Lindeberg, 1998a, 1998b).

For the first, sparse feature-based approach, a scale
invariant distance measure will be proposed for com-
paring hierarchical object models to multi-scale fea-
tures extracted from image data, and we will use
this measure for evaluating the likelihood of object
models.

For the second, dense filter-based approach, the no-
tion of feature likelihood maps will be developed.
The idea is to compute a function on a multi-scale
feature space, which is normalised to the interval
[0, 1], and which directly approximates the likelihood
of image features in such a way that its response is
localised in space and scale, with the strongest re-
sponses near the centres of blob-like and ridge-like
structures.

A main reason behind these constructions is to pro-
vide means for verifying feature-based object hypothe-
ses, either with or without explicit feature detection as
a pre-processing stage. In particular, we aim at match-
ing schemes that are provably invariant with respect
to scale and contrast changes of the image pattern.
As will be shown, the developed schemes easily in-
tegrate with particle filtering approaches (Isard and
Blake, 1996; MacCormick and Isard, 2000) and in
this way enable invariant object tracking and object
recognition.

The structure of this paper is as follows: Section 2 re-
views how multi-scale image features with automatic
scale selection can be extracted from grey-level and
colour images. Then, Section 3 describes how a dis-
tance measure can be formulated for two sets of multi-
scale image features, and how the likelihood of object
models can be estimated based on this distance mea-
sure. Section 4 presents an alternative approach based
on feature likelihood maps, by which scale invariant
model matching can be performed without explicit fea-
ture detection. In Section 5, these two techniques are in-
tegrated with a Bayesian approach for estimating model
states, applied to simultaneous hand tracking and hand
posture recognition. Section 6 gives a brief review of
related works, and Section 7 concludes with a summary
and discussion.

2. Scale-Space Image Features

2.1. Scale-Space Representation

For any continuous signal f : R
2 �→ R, the linear scale-

space L : R
2 × R+ �→ R

L(·; t) = g(·; t) ∗ f (·), (1)

is defined as the convolution of f with Gaussian kernels

g(x, y; t) = 1

2π t
exp(−(x2 + y2)/2t), (2)

One reason for considering such a representation is that
the Gaussian derivatives

Lxm yn (·; t) = ∂xm yn (g ∗ f )

= (∂xm yn g) ∗ f = g ∗ (∂xm yn f ) (3)

constitute a canonical set of filter kernels given natural
symmetry requirements on a visual front-end (Witkin,
1983; Koenderink and van Doorn, 1992; Lindeberg,
1994; Florack, 1997). Another reason is that the evolu-
tion over scales of a signal and its Gaussian derivatives
provides important cues to local image structure.

2.2. Normalised Derivatives

One scale evolution property that we shall make par-
ticular use of here is based on the behaviour over
scales of γ -normalised Gaussian derivative operators
(Lindeberg, 1998b)

Lξmηn = t (m+n)γ /2Lxm yn (4)

where ξ = x/tγ /2 and η = y/tγ /2 denote γ -normalised
coordinates. It can be shown both theoretically and ex-
perimentally that such normalised differential entities
assume extrema over scales at scales reflecting the size
of local image patterns. Hence, γ -normalised operators
can be used for, for example, local size estimation and
for constructing scale-invariant image descriptors.

2.3. Scale-Space Extrema

Consider any normalised differential entity DnormL
computed from a homogeneous polynomial of nor-
malised derivatives. Then, a scale-space extremum
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(x0, y0; t0) is defined as a point where DnormL as-
sumes a local extremum with respect to space and scale
(Lindeberg, 1998b)

∇(DnormL) = 0, ∂t (DnormL) = 0. (5)

Under rescalings of original image pattern f ′(x) =
f (sx), scale-space extrema satisfy the following scale
invariance property. If (x0, y0; t0) is a scale-space ex-
tremum of the original pattern f , then (sx0, sy0; s2t0)
is a scale-space extremum of the rescaled pattern f ′.

2.4. Grey-Level Feature Detection

In this work, we will make use of scale-space extrema
for detecting blob-like and ridge-like image structures
in grey-level and colour images. For grey-level images,
blobs can be detected from scale-space maxima of the
square of the normalised Laplacian operator

Bγ−normL = (∇2
normL

)2 = (tγ (Lxx + L yy))2 (6)

where γ = 1, while ridges can be detected from
scale-space maxima of the following normalised ridge
strength measure

Rγ−normL = (tγ (L pp − Lqq ))2

= t2γ
(
(Lxx − L yy)2 + 4L2

xy

)
(7)

where γ = 3/4 and L pp, Lqq denote the eigenvalues
of the Hessian matrix HL .1

2.5. Colour Feature Detection

When detecting image features in situations when there
is a poor contrast between the object and the back-
ground, more robust image features can be obtained
if the feature detection step is based on colour im-
ages instead of grey-level images. The abovementioned
grey-level feature detection method can be extended to
colour feature detection in the following way:

The input colour image is transformed from
RGB format to an Luv-colour space (Billmeyer and
Saltzman, 1982), which separates the grey-level infor-
mation from the chromatic information. A scale-space
representation C is computed from each colour chan-
nel, giving rise to a set of multi-scale colour channels
Li . Blobs are detected from scale-space maxima of the

normalised Laplacian

Bγ−normC = (∇2
normC

)2 =
∑

i

(t∇2Li )
2

=
∑

i

t2(∂xx Li + ∂yy Li )
2 (8)

while multi-scale ridges are detected as scale-space ex-
trema of the following normalised measure of ridge
strength

Rγ−normC =
∑

i

t2γ ((∂xx Li − ∂yy Li )
2 + 4(∂xy Li )

2).

(9)

The motivation for the definition of Bγ−normC is that
it constitutes a natural extension of the trace of the
Hessian for a vector-valued function. The motivation
for the definition of Rγ−normC is that it can be derived
from a least-squares fitting of ridge responses for the
different colour channels (see Appendix A).

2.6. Covariance Matrix Associated
with Image Features

Each image feature detected at a point (x0, y0; t0) in
scale-space indicates the presence of a correspond-
ing image structure of size t0 at position (x0, y0).
To estimate the spatial extent for non-isotropic im-
age structures, we estimate their covariance matrix 
0

from a second moment matrix (Bigün et al., 1991;
Rao and Schunk, 1991; Lindeberg, 1994; Gårding and
Lindeberg, 1996) computed in a neighbourhood of
(x0, y0; t0)

ν =
∑

i

∫
(x,y)∈R2

(
(∂x Li )2 (∂x Li )(∂y Li )

(∂x Li )(∂y Li ) (∂y Li )2

)
× g(x − x0, y − y0; tint) dx dy (10)

at local scale tl = t0 equal to the detection scale and
at integration scale tint = c2t0 proportional to the lo-
cal scale, where c > 1. As shown in Appendix B,
in the case of a non-isotropic Gaussian blob with co-
variance matrix 
0, the eigenvectors e1, e2 of ν co-
incide with the eigenvectors of 
0. Moreover, for a
second moment matrix of such a Gaussian blob com-
puted at local scale tl , the eigenvalues t1 > t2 of

0 are related to the eigenvalues λ1 > λ2, of ν as

t1 =
√

t2
l c4 + λ1

λ2
(t2

2 + 2t2tl(1 + c2) + t2
l (1 + 2c2)) −

(1 + c2)tl . Using this relation and the fact that the small-
est eigenvalue t2 of 
0 (corresponding to the width of



100 Laptev and Lindeberg

Figure 1. Blob and ridge features for a hand: (a) circles and ellipses
corresponding to the significant blob and ridge features extracted
from an image of a hand; (b) manually selected image features cor-
responding to the palm, the fingers and the finger tips of a hand;
(c) a mixture of Gaussian kernels associated with the blob and ridge
features, illustrating how the selected image features capture the es-
sential structure of a hand.

non-isotropic image structure) can be approximated by
the estimated scale t0 of the scale-space maximum, the
covariance matrix 
0 can be estimated as


0 =


 | |

e1 e2

| |


 (

t̃1 0

0 t̃2

)(
−eT

1 −
−eT

2 −

)
(11)

where t̃1 = t0(
√

c4 + 4 λ1
λ2

(1 + c2) − c2 − 1) and t̃2 =
t0. Alternatively, a more accurate estimate of 
0 can
be obtained with an iterative method as presented in
Lindeberg and Gårding (1997) and Mikolajczyk and
Schmid (2002).

To represent non-isotropic image descriptors graph-
ically, we will henceforth use ellipses centred at µ0 =
(x0, y0) and with covariance matrix 
0. Figure 1(a)
and (b) show an example of such descriptors computed
from an image of a hand.

3. Distance Measure for Multi-Scale
Image Features

When representing image patterns and object mod-
els by multi-scale image features, as described in
Section 2, an obvious problem concerns how to for-
mulate a measure by which comparisons can be made
between two feature-based representations. For image
features defined solely in terms of positions (xi , yi ) in
the image domain, a Euclidean measure could obvi-
ously be expected to be sufficient. For scale-space fea-
tures, which in addition comprise scale measurements,
one could attempt to define a scale-space metric by

|(xi , yi ; ti ) − (x j , y j ; t j )|2
= (xi − x j )

2 + (yi − y j )
2 + c2(σi − σ j )

2 (12)

where σ = √
t and the constant c would then be

necessary due to the fact that space and scale are
not fully commensurable entities. An obvious prob-
lem with such an approach, however, is to deter-
mine the degree of penalty with respect to deviations
along the spatial dimensions vs. the scale dimension.
Yet, other problems concern how to capture the fact
that we may be more willing to accept spatial devi-
ations for coarse scale image features than for fine
scale image features, and to be more willing to ac-
cept spatial variations along the orientation of a non-
isotropic oriented structure than in the perpendicular
direction.

In this section, we will address this problem by tak-
ing the underlying image structures into account that
gave rise to the detected image features. The goal is
to construct a distance measure that is invariant under
translations, rotations as well as isotropic scalings and
intensity transformations.

3.1. Distance Between Two Image Features

Consider two image features wi and w j , which in this
context can be regarded as either blobs or ridges. For
these features, we have associated mean vectors, µi

and µ j , as well as covariance matrices, 
i and 
 j .
As mentioned above, the distance between a pair of
such features must take into account the difference in
their position, size, orientation and anisotropy. Rather
than treating all these attributes separately, we here pro-
pose to model these image features by two-dimensional
Gaussian functions in the image domain. The motiva-
tion for this choice is that such Gaussian functions can
be regarded as idealised model patterns representing
the original image structures that gave rise to these
features:

– either from a maximum-entropy motivation given
fixed values of the mean vector and the covariance
matrix (Bevensee, 1993),

– or from the facts that

• the result of applying blob detection according to
(6) to an isotropic Gaussian kernel with mean µ0

and isotropic covariance matrix 
0 = t0 I gives
rise to a scale-space maximum at position x̂0 = x0

and scale t̂0 = t0,
• the result of applying ridge detection according

to (7) to a non-isotropic Gaussian kernel with
mean µ0 and non-isotropic covariance matrix
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0 = diag(t1, t2) gives rise to a scale-space max-
imum at position µ̂0 = µ0 and scale t̂0 ≈ t1,
given that t2 � t1. Subsequent computation of
the second moment matrix (10) then leads to an
estimate of the covariance matrix of the form

̂0 ≈ diag(t1, t2).

Thus, each such image feature will be represented by
a normalised Gaussian kernel

ḡ(x, µ, 
) = h(
)g(x, µ, 
)

= h(
)

2π
√

det(
)
e− 1

2 (x−µ)′
−1(x−µ), (13)

where h(
) is a normalisation factor that we will de-
termine in order to obtain a scale-invariant distance
measure. Figure 1(c) shows an example of such a rep-
resentation of a hand model in terms of Gaussian dis-
tributions.

Then, to define the actual distance between two fea-
tures wi and w j , we propose to compute the square
difference between their associated distributions2 ḡi =
ḡ(x, µi , 
i ) and ḡ j = ḡ(x, µ j , 
 j ):

φ2(wi , w j ) =
∫

R2
(ḡ(x, µi , 
i ) − ḡ(x, µ j , 
 j ))

2 dx

=
∫

R2

(
ḡ2

i + ḡ2
j − 2ḡi ḡ j

)
dx . (14)

Using the fact that the product of two Gaussian func-
tions is another Gaussian function with covariance

̂ = (
−1

i + 
−1
j )−1, mean µ̂ = 
̂(µ′

i

−1
i + µ′

j

−1
j )

(where µ′ denotes the transpose of µ) and a different
amplitude, i.e.

g(x, µi , 
i )g(x, µ j , 
 j )

= C

√
det

(

−1

i

)
det

(

−1

j

)
2π

√
det

(

−1

i + 
−1
j

)g(x, µ̂, 
̂), (15)

where

C = exp

(
−1

2

(
µ′

i

−1
i µi + µ′

j

−1
j µ j

− (
µ′

i

−1
i + µ′

j

−1
j

)(

−1

i + 
−1
j

)−1

× (

−1

i µi + 
−1
j µ j

)))
, (16)

the integral in (14) can be evaluated in closed form:

φ2(wi , w j ) = h2(
i )

4π
√

det(
i )

∫
R2

g(x, µi , 
i/2) dx︸ ︷︷ ︸
=1

+ h2(
 j )

4π
√

det(
 j )

∫
R2

g(x, µ j , 
 j/2) dx︸ ︷︷ ︸
=1

− C
h(
i )h(
 j )

√
det

(

−1

i

)
det

(

−1

j

)
π

√
det

(

−1

i + 
−1
j

)
×

∫
R2

g(x, µ̂, 
̂) dx︸ ︷︷ ︸
=1

. (17)

To be applicable for contrast, translation, rotation and
scale invariant matching, φ should be invariant to such
(simultaneous) transformations of wi and w j . Contrast,
translation and rotation invariance is straightforward.
From (17), (or from a combination of (13) and (14) with
scale invariance argument) it can be seen that φ(wi , w j )
will be scale-invariant if and only if we choose

h(
) = 4
√

det(
). (18)

Thus, we obtain

φ2(wi , w j ) = 1

2π
− C

4

√
det

(

−1

i

)
det

(

−1

j

)
π

√
det

(

−1

i + 
−1
j

) . (19)

By construction, the distance measure φ assumes its
minimum value zero only when the two features wi

and w j are equal, while its value increases when the
features deviate in their positions, sizes or shapes. This
idea is illustrated in Fig. 2. Obviously, the square dif-
ference of two Gaussian functions as illustrated in
Fig. 2(c) becomes flat for similar features, while its
volume increases for features with deviating means or
covariances.

Finally, the fact that φ can be regarded as a distance
measure follows from the fact that we map image de-
scriptors (µ, 
) to Gaussian functions, and define φ in
terms of the norm of functions in L2. Thus, the triangle
inequality holds for φ, i.e., for any triplet of multi-scale
image features wi , w j and wk we have

φ(wi , w j ) ≤ φ(wi , wk) + φ(wk, w j ). (20)

In addition, φ satisfies φ(wi , w j ) ≥ 0 for any wi , w j

with equality if and only if wi = w j .
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Figure 2. Two overlapping features represented by Gaussian functions in the image domain are shown: (a) as a gray-value image and (b) as
a three-dimensional plot. (c) illustrates the square difference of these Gaussian functions, which after integration gives the distance measure
between the features.

3.2. Distance Between Model and Data Features

Then, to perform matching between object models and
image patterns, let us consider two sets Wm , Wd with
N m model and N d data features, respectively. Specif-
ically, let us consider the model and the data as two
mixtures of Gaussian distributions in the image domain

Gm =
N m∑
i

ḡ
(
x, µm

i , 
m
i

)
, Gd =

N d∑
i

ḡ
(
x, µd

i , 

d
i

)
,

(21)
where ḡ(x, µm

i , 
m
i ) and ḡ(x, µd

i , 

d
i ) are normalised

Gaussian functions associated with the model and the
data features defined in (13). In a similar way as for
the distance between two image features, we define the
distance between the composed model and the set of
data features by integrating the square difference of
their associated Gaussian mixture functions:3

�2(Wm,Wd ) =
∫

R2
(Gm − Gd )2 dx . (22)

Figure 3 illustrates this idea on two model features
and two data features. While the overlapping model and
the data features cancel each other, the mismatched fea-
tures in both the model and the data increase the square
difference (Gm−Gd )2 (see Fig. 3 (b)) and consequently
increase the distance �. By expanding (22) we get

�2(Wm,Wd )

=
N m∑
i

N m∑
j

∫
R2

ḡm
i ḡm

j dx

︸ ︷︷ ︸
Q1

+
N d∑
i

N d∑
j

∫
R2

ḡd
i ḡd

j dx

︸ ︷︷ ︸
Q2

− 2
N m∑
i

N d∑
j

∫
R2

ḡm
i ḡd

j dx

︸ ︷︷ ︸
Q3

(23)

Figure 3. Two model features (solid ellipses) and two data features
(dashed ellipses) in (a) are compared by evaluating the square differ-
ence of associated Gaussian functions. While the overlapping model
(A) and the data (B) features cancel each other, the mismatched fea-
tures (C and D) increase the square difference.

whose computation requires comparisons of all of the
feature pairs. We can note, however, that blobs and
ridges in Wm and Wd that originate from different
image structures should be well separated by their po-
sitions scales or both. In practice, overlaps between de-
tected features usually occur due the multiple responses
to the same image structure and therefore are not rel-
evant for our analysis and can be discarded. Hence, to
save computations, we approximate the terms Q1 and
Q2 in (23) by

Q1 ≈
N m∑
i

∫
R2

(
ḡm

i

)2
dx, Q2 ≈

N d∑
i

∫
R2

(
ḡd

i

)2
dx .

(24)

Additionally, we can note that most of the model and
the data features will not overlap either, and most of the
products in Q3 will be close to zero. Thus, we compare
each model feature wm

i only to its closest data feature
wd

ki
and approximate Q3 by

Q3 ≈ 2
N m∑
i

∫
R2

ḡm
i ḡd

ki
dx . (25)
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Here, the indices k1,...,N m correspond to data features
matched by the model, while the data features with
indices kN m+1,...,N d (we assume N d > N m) are con-
sidered as outliers. Note, that matching according to
(25) does not guarantee a one-to-one correspondence
between the model and the data features. Such a con-
straint, however, could easily be added in the imple-
mentation.

Taking advantage of the approximations above, we
can finally simplify the expression (23) for � into �

as

�2(Wm,Wd ) =
N m∑
i=1

∫
R2

((
ḡm

i

)2 − 2ḡm
i ḡd

ki
+ (

ḡd
ki

)2)
dx

+
N d∑

i=N m+1

∫
R2

(
ḡd

ki

)2
dx

=
N m∑
i=1

φ2
(
wm

i , wd
ki

)
︸ ︷︷ ︸

offset criterion

+ N d − N m

4π︸ ︷︷ ︸
outlier criterion

, (26)

where φ is the distance measure between features wm
i

and wd
ki

according to (17). Since � is now expressed
in terms of distances φ, it is clear that � inherits the
invariance properties to joint translations, rotations and
re-scalings of image features as well as intensity trans-
formations.

An important property of the proposed distance mea-
sure is that it equally accounts for mismatches in the
model and in the data. Given a set of parameterised
models, minimisation of � over different models and
their parameters according to (26) provides a trade-off
between (i) the distance between the matched model
and the data features (an offset criterion) and (ii) the
number of mismatched data features (an outlier crite-
rion). In this way, the measure � enables matching and
selection of object models that may be subsets of each
other. This property will be highly important for the
problem of tracking and recognising hand postures as
addressed in Section 5.

The measure � is easy to compute in practice. For
each model feature f m

i , we choose the data feature
f d
ki

that minimises φ( f m
i , f d

ki
). Then, the sum over all

φ( f m
i , f d

ki
), i ∈ [1, N m], together with a constant term

for outliers give the desired estimate.
Currently, all the features in the model contribute

equally to �. By modelling the uncertainty of the fea-
tures and multiplying the contribution to � from the
individual feature pairs by their estimated certainty

values, the influence of uncertain image features can be
decreased and thus facilitate matching to highly noisy
data.

3.3. Likelihood Estimate

When performing tracking and recognition, the match-
ing problem can be expressed as finding the best hy-
pothesis of an object model M(X0) (represented by a set
of model parameters X0) given a set of image measure-
ments I. Thus, we must search for the minimum of �

over all X . For the purpose of tracking and recognition
using particle filtering, as will be addressed in Section
5, however, it turns out to be more convenient to max-
imise a likelihood measure p(I | X ) = p(Wd | Wm)
instead of minimising a distance measure. Thus, in
analogy with Gibbs distributions (Geman and Geman,
1984), we will define an approximate likelihood func-
tion in terms of � as

p(Wd | Wm) = e−�2(Wm ,Wd )/2σ 2
, (27)

where σ 2 is a free parameter. Variation of σ enables
control over the sharpness of the maxima in the like-
lihood function. This property is especially useful for
optimisation algorithms such as the one that will be
used in Section 5. Whereas initial (coarse) estimates
of the locations of the maxima can be obtained using
high values of σ , lower values of σ enable more precise
adjustments of these estimates.

4. Feature Likelihood Maps

In several computer vision applications relating to
tracking and recognition, one faces the problem of esti-
mating the likelihood of object models relative to image
data. While we in the previous approach first performed
feature detection, and then defined a likelihood func-
tion in terms of a distance measure between the image
features, an alternative approach consists of estimating
the likelihoods of object models directly from image
data.

In this section, we will address this problem within
the context of feature-based object models and in such a
way that the approach is compatible with an automatic
scale selection mechanism. We will introduce a notion
of feature likelihood maps M : R

2 × R+ �→ R, based
on the idea that for a blob of size t0 located at a point
(x0, y0) in space, the feature likelihood map M should
satisfy the following basic properties:
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– M should assume its maximum value one at
(x0, y0; t0),

– M should assume high values in a small neighbour-
hood of (x0, y0; t0), and

– M should decrease monotonically towards zero
elsewhere.

Additionally, M should not give preference to blobs of
any particular size, position or amplitude, and should
thus be invariant to scalings and translations in the im-
age as well as to local changes of the image contrast.

With regard to model matching, the underlying idea
behind the construction of this likelihood map is that
the likelihood of model features should be possible to
estimate by mere lookup in M. Moreover, estimation
of likelihoods from local neighbourhoods has benefits
in efficiency, since computations ofM can be done “on
demand”. These properties make the approach conve-
nient for object tracking and object recognition using
particle filtering, as addressed in Section 5. It should be
emphasised, however, that the proposed feature like-
lihood maps will not constitute true probability esti-
mates. Rather the intention is to provide heuristic esti-
mates that can be derived in closed form without need
for an explicit learning stage.

4.1. Likelihood Map for Blobs in the 1-D Case

For simplicity of illustration, let us first construct a
likelihood map for a prototype of a one-dimensional
blob given by a Gaussian function f (x) = g(x ; x0, t0)
with parameters t0 and x0 corresponding to the size
and the position of the blob (see Fig. 4(a)). Using

Figure 4. (a): Gaussian kernels of various widths; (b): Evolution over scales of the second order normalised derivative operator L2
ξξ in the case

when γ2 = 3/4.

the semi-group property of the Gaussian kernel, it
follows that the scale-space representation of f is
L(x ; t) = g(x ; x0, t + t0). The γ -normalised second-
order derivative of this expression is

Lξξ (ξ ; t) = tγ2 Lxx (x ; t)

= − tγ2 (t + t0 + (x − x0)2)√
2π (t + t0)5

e− (x−x0)2

2(t+t0) (28)

If we choose γ2 = 3/4, then it can be shown (Linde-
berg, 1998a) that Lξξ assumes a local extremum over
space and scale at the point (x0, t0) in scale-space that
corresponds to the position x0 and the size t0 of the orig-
inal blob f . Thus, L2

ξξ satisfies some of the required
properties of the desired likelihood map M. However,
L2

ξξ is not invariant to the local amplitude of the signal
(see Fig. 4(b)).

4.1.1. Quasi-Quadrature. A standard methodology
for amplitude estimation in signal processing is in terms
of quadrature filter pairs (h+, h−), from which the am-
plitude can be estimated as

Q f = (h+ ∗ f )2 + (h− ∗ f )2. (29)

Strictly, a quadrature filter pair is defined from a Hilbert
transform, in such a way that Q is phase-independent.
Within the framework of scale-space derivatives, a
quadrature entity can be approximated by a pair of nor-
malised first- and second-order Gaussian derivative op-
erators (Koenderink and van Doorn, 1992; Lindeberg,
1998b):

Q1L = AL2
ξ + L2

ξξ = Atγ1 L2
x + t2γ2 L2

xx (30)
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where A is a constant and Lξ = tγ1/2Lx (x ; t) is the nor-
malised first-order derivative operator. Concerning the
choice of the γ -normalisation parameters, we choose
γ2 = 3/4 for the second-order derivative operator as
above, while γ1 = 1/2 is chosen to satisfy scale-
invariant behaviour of Q1L . This scale-invariance
follows if we write Q1L as

Q1L = t−1/2
(
AtL2

x + t2L2
xx

)
(31)

i.e. as a power function of the scale parameter t mul-
tiplied by a non-homogeneous differential expression
in terms of γ -normalised derivatives with γ = 1. Note
that γ1 = 1/2 has also been established as a natu-
ral choice with regard to edge detection (Lindeberg,
1998a).

Concerning the choice of A, we can choose A ≈ 4/e
such that the response of the Q1L is approximately
constant over space in a local neighbourhood of (x0;
t0) (Lindeberg, 1997).

4.1.2. Incorporating Stability of Image Structures
Over Scales. A main idea towards constructing a like-
lihood map for blob structures is to divide the blob
measure L2

ξξ by an amplitude estimate QL

M = L2
ξξ

QL
. (32)

If we would take QL = Q1L , however, the corre-
sponding feature likelihood map would not be suitable
for scale selection, since its response at the blob point
x = x0 would be constant over scale. To localise im-
age structures over both space and scale, we propose
to include the stability of image structures over scales
(corresponding to low values of derivatives with respect
to scale) as a main component in M. Specifically, we
propose to measure the stability of blob structures over
scales in terms of the derivative of Lξξ with respect to
effective scale τ = log t . Using

∂τ = t∂t (33)

and the fact that all Gaussian derivatives satisfy the
diffusion equation

∂t (Lxα ) = 1

2
∂xx (Lxα ), (34)

it follows that the derivative of the γ -normalised
second-order Gaussian derivative with respect to

effective scale can be expressed as:

Lξξτ (ξ ; t) = t∂t Lξξ (ξ ; t) = γ3tγ3 Lxx + tγ3 Lxxt

= γ3tγ3 Lxx + tγ3+1

2
Lxxxx . (35)

By adding this expression to (30), we thus propose to
extend Q1L into

Q2L = AL2
ξ + BL2

ξξτ + L2
ξξ , (36)

where we choose γ3 = 3/4, since for a Gaussian pro-
totype signal the scale-space maximum of L2

ξξ /Q2L is
assumed at

tmax = 2γ3

3 − 2γ3
t0. (37)

Thus, the maximum response over scales is assumed at
a scale reflecting the size of the blob tmax = t0 if and
only if γ3 = 3/4.

Figure 5(a) and (b) illustrate the evolution of the
components in this expression, i.e. L2

ξ , L2
ξξτ and L2

ξξ ,
over space and scale. As can be seen, the responses of
L2

ξ and L2
ξξτ complement the response of L2

ξξ by as-
suming high values where L2

ξξ is low and vice versa.
Thus, one can expect that by an appropriate choice of
the weights A and B, Q2L will be approximately con-
stant in a neighbourhood of (x0, t0). Such a behaviour
is illustrated in Fig. 5(c) and (d).

4.1.3. Invariance Properties. If we consider the ra-
tio L2

ξξ /Q2L , it is apparent that the amplitude cancels
between the numerator and the denominator. Thus, we
achieve invariance to local affine intensity transforma-
tions. Moreover, since Q2L ≥ L2

ξξ ≥ 0 it follows that
the ratio L2

ξξ /Q2L will always be in the range [0, 1].
Regarding scale-invariance, the following property

holds: If for a signal f the entity L2
ξξ /Q2L has a scale-

space maximum at a position (x0; t0) in scale-space,
then under a rescaling of f by a factor s, there will
be a scale-space maximum at (sx0; s2t0) in the ratio
L2

ξξ /Q2L computed for the rescaled image pattern.
The relative magnitudes of L2

ξξ and Q2L are illus-
trated in Fig. 5(c) and (d). From these graphs it can
be seen that the response of the ratio L2

ξξ /Q2L will be
localised in space and scale around the centre of the
Gaussian blob and at a scale reflecting the size of the
blob.

To conclude, we have shown that for a Gaussian blob
the ratio L2

ξξ /Q2L satisfies all the stated requirements
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Figure 5. (a) and (b): Evolution of L2
ξ , L2

ξξ and L2
ξξτ over space and scale when applied to a Gaussian blob centred at x0 = 0 and with variance

t0 = 4; (c) and (d): Evolution of L2
ξξ and Q2 L when using the parameter values A = 1 and B = 2.8. Note that Q2 L is approximately constant

over space and scale in the neighbourhood of (x0, t0).

Figure 6. Evolution of the likelihood map M over space and scale for different values of parameters A and B when applied to a Gaussian blob
(x0 = 0, t0 = 4). The more precise localisation of responses over scale in (b) is desirable for e.g. size estimation and matching.

on the feature likelihood map. Thus, we define

M = L2
ξξ

Q2L
= L2

ξξ

AL2
ξ + BL2

ξξτ + L2
ξξ

. (38)

4.1.4. Determination of the Free Parameters A and B.
Concerning the parameters A and B, which so far are
undetermined, it can be verified that A ≈ 1 and B ≈ 3

give an approximately constant behaviour of the de-
nominator of M around (x0; t0). This was the original
design criterion when the quasi quadrature entity (30)
was proposed (Lindeberg, 1998b). Figure 6(a) shows
the behaviour of M in this case. As can be seen, how-
ever, the peak around (x0; t0) is rather wide in the scale
direction, and there are two quite strong side lobes in
the spatial direction.
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For the purpose of dense scale selection with applica-
tion to recognition, it is desirable to have a more narrow
and localised response with respect to scale and space.
For this reason, we manually adjust the parameters A
and B to the values A = 10 and B = 100 and obtain a
desired behaviour of M as illustrated in Fig. 6(b). As
an alternative approach, the parameters A and B could
also be learned automatically from training data.

4.2. Likelihood Maps for Blobs and Ridges
in the 2-D Case

The likelihood map defined in Section 4.1 can be easily
extended to two dimensions. Consider again a Gaussian
kernel f = g(x, y; x0, y0, t0) as a prototype of an image
blob of size t0 and centred at (x0, y0). The scale-space
representation of this signal is given by L(x, y; t) =
g(x, y; x0, y0, t + t0) and its position and scale can be
recovered from the normalised Laplacian operator

∇2
normL = Lξξ + Lηη = tγ2 Lxx (x, y; t)

+ tγ2 L yy(x, y; t) (39)

which assumes a local maximum at (x0, y0, t0) if we
take γ2 = 1. To construct a quadrature entity Q, we
consider the normalised gradient magnitude

|∇normL| =
√

L2
ξ + L2

η = tγ1/2
√

L2
x + L2

y, (40)

as the analogue of Lξ in the one-dimensional case.
Moreover, we take

∂τ∇2
normL = Lξξτ + Lηητ = γ3tγ3 (Lxx + L yy)

+ tγ3+1

2
(Lxxxx + L yyyy + 2Lxxyy) (41)

as the analogue to Lξξτ in order to complement the
response of ∇2

normL along the scale direction. Using
these two entities, we thus define

Q3L = A(∇normL)2 + B
(
∂τ∇2

normL
)2 + (∇2

normL
)2

(42)

from which the Laplacian likelihood map is defined as

Mlap =
(
∇2

norm L
)2

Q3 L

= (Lξξ + Lηη)2

A
(

L2
ξ + L2

η

)
+ B(Lξξτ + Lηητ )2 + (Lξξ + Lηη)2

.

(43)

Concerning the choice of γ1, we can observe that γ1 = 1
is a necessary requirement once we have chosen γ2 =
1, if we in addition require that the sum of the first- and
second-order derivative responses should be written on
the form

∇normL2 + (∇2
normL

)2

= t−�
(
t
(
L2

x + L2
y

) + t2(Lxx + L yy)2
)

(44)

for some �, to allow for a scale invariant scale selection
procedure. Concerning the choice of γ3, it can be shown
that for a Gaussian blob pattern, the local maximum
over scale of Mlap is assumed at

tmax = γ3

2 − γ3
t0. (45)

Thus, tmax = t0 if and only if γ3 = 1.
It is straightforward to show thatMlap is rotationally

invariant, and invariant with respect to scale as well
as the amplitude of the blob; it assumes values in the
range [0, 1] and for a Gaussian blob of size t0 centred
at (x0, y0) the maximum value 1 is assumed at (x0, y0;
t0). Hence, Mlap has essentially similar properties as
the likelihood map (38) in the one-dimensional case.
Figure 7(a)–(c) illustrate how, with A = 10 and B =
100, Mlap assumes a rather sharp maximum at (x0,
y0, t0) and rapidly decreases with deviations from this
point.

4.2.1. Suppression of Saddle Regions and Noise.
Besides blobs and ridges, however, Mlap will also
respond to certain saddle points. This occurs when
∇normL = 0, ∂τ (∇2

normL) = 0 and when the eigen-
values λ1 and λ2 of the Hessian matrix have different
signs. To suppress such points, we introduce a saddle
suppression factor

µ = λ2
1 + λ2

2 + 2λ1λ2

λ2
1 + λ2

2 + 2|λ1λ2|

= L2
ξξ + L2

ηη + 2Lξξ Lηη

L2
ξξ + L2

ηη − 2L2
ξη + 2

∣∣Lξξ Lηη − L2
ξη

∣∣ . (46)

It can be seen that µ is equal to one when λ1 and λ2

have the same sign (i.e., for emphasised blob and ridge
structures), while µ decreases towards zero if λ1 and
λ2 have equal magnitude and opposite sign. Moreover,
to suppress the influence of spurious noise structures
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Figure 7. Evolution of the likelihood map Mlap over space and scale for a two-dimensional Gaussian blob defined by (x0 = 0, y0 = 0, t0 = 1).
Plots in (a), (b) and (c) illustrate Mlap for scale values t = 0.5, 1 and 4.

of amplitude lower than ε, we introduce a small noise-
suppression parameter εnorm = ε/t in the denomina-
tor, where the normalisation with the factor 1/t pre-
serves the scale-invariance of M. Thus, we define a
saddle- and noise-suppressed feature likelihood map as

M̃lap

= µkMlap

= µk (Lξξ + Lηη)2

A
(

L2
ξ + L2

η

)
+ B(Lξξτ + Lηητ )2 + (Lξξ + Lηη)2 + ε2

norm

(47)

where we have chosen k = 4 and ε is currently cho-
sen manually. Alternatively, ε can be estimated using
standard noise level estimation schemes.

4.2.2. Specialised Likelihood Maps for Blobs and
Ridges. The proposed Laplacian likelihood map em-
phasises both blob-like and ridge-like image structures.
For the purpose of matching, however, it can be desir-
able to construct specialised maps with selective re-
sponses to different image structures. Hence, to em-
phasise circular blob-like structures, we introduce a
specialised blob likelihood map

Mblob

=
4µk

∣∣∣Lξξ Lηη − L2
ξη

∣∣∣
A
(

L2
ξ + L2

η

)
+ B(Lξξτ + Lηητ )2 + (Lξξ + Lηη)2 + ε2

norm

,

(48)

and to emphasise elongated ridge-like structures, we
construct a ridge likelihood map

Mridge

=
µk

(
(Lξξ − Lηη)2 + 4L2

ξη

)
A
(

L2
ξ + L2

η

)
+ B(Lξξτ + Lηητ )2 + (Lξξ + Lηη)2 + ε2

norm

.

(49)

For more details on the construction of Mblob and
Mridge, see Laptev and Lindeberg (2001a).

4.3. Experiments

Figure 8(a) shows the result of computing the Laplacian
feature likelihood map for a synthetic image with two
Gaussian blobs and one Gaussian ridge. As can be ob-
served, M̃lap assumes high values for both blobs and
ridges and the responses are well localised in space
and scale, with the main peaks corresponding to the
positions and the sizes of the original image structures.

One minor artifact arises, however, for the ridge-like
structure. Due to the calibration of the scale normalisa-
tion scheme for a Gaussian blob, it follows that the se-
lected scale for a Gaussian ridge of width t0 will be 2t0.
This problem is avoided when computing specialised
likelihood maps for blobs and ridges according to (48)
and (49). Figure 8(b) and (c) show the result of comput-
ing these feature likelihood maps for the same pattern
as the Laplacian feature likelihood map. As expected,
the blob likelihood map gives dominant responses to
the blobs, while the ridge likelihood map mainly em-
phasises the ridge. Moreover, by using appropriate γ -
values, i.e. γ1 = 1, γ2 = 1 for Mblob and γ1 = 1/2,
γ2 = 3/4 forMridge, the variances of the original blobs
and the ridge in images are successfully recovered. It
can also be noted, that since the end points of the ridge
share properties of both blobs and ridges, both the blob
and ridge likelihood maps give weak responses around
these points.

Figure 9 shows the result of computing Mblob and
Mridge for an image of a hand. Here, it can be seen that
Mblob gives dominant responses to blob structures and
weaker responses to line terminations, while Mridge

emphasises the elongated ridge-like structures, such as
the fingers and the thin patterns in the background.
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Figure 8. The result of computing feature likelihood maps for a synthetic image containing two blobs and one ridge. As can be seen, the high
responses of the likelihood maps are localised at positions and scales of image structures with corresponding parameters. While the Laplacian
likelihood map (top) gives high responses to both blobs and ridges, more exclusive responses to blobs and ridges are obtained with the blob
likelihood map (middle) and the ridge likelihood map (bottom). Moreover, by separating the Laplacian blob likelihood map into a blob likelihood
map and a ridge likelihood map, we can enforce a maximum ridge response at a scale corresponding to the width of the ridge structure.

From these results, it can be clearly seen how we by
these feature likelihood maps can separate between the
small structures in the background, the fingers and the
palm of a hand. Moreover, despite the varying con-
trast of the image structures, the feature likelihood
maps give equally high responses to weak ridges in
the background and to the fingers of higher contrast. In
many cases, this is a desirable property of a recognition

system aimed at classifying local image structures ir-
respective of illumination variations.

5. Integration with Particle Filtering Applied
to Hand Tracking and Posture Recognition

To experimentally investigate the use of the proposed
distance measure and feature likelihood concepts for
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Figure 9. The result of computing the blob likelihood map (upper part) and the ridge likelihood map (lower part) for an image of a hand. (To
display only responses corresponding to bright image structures, the likelihood maps have been set to zero for points with ∇2 L > 0.) Note how
the fingers give rise to fine scale responses in the ridge likelihood map, and that the palm of a hand gives rise to a coarser scale response in the
blob likelihood map.

model matching, we will in this section apply these no-
tions to the problem of tracking and recognising hands
in different postures.

From a statistical viewpoint, the problem of tracking
and recognising hands in different postures can be for-
mulated as the problem of estimating a vector X0 that
describes the appearance of the object model in a se-
quence of images. In this context, it should be noted that
if one would use a unimodal approach, such as Kalman
filtering, the vector X0 would be estimated by track-
ing a single object hypothesis over time. Such a strat-
egy, however, is bound to fail in situations where the

hypothesis gets trapped on clutter in the background.
For this reason, we shall here apply a multi-modal ap-
proach, based on particle filtering to overcome this
inherent difficulty, by simultaneously tracking several
object hypotheses and estimating X0 from the proba-
bility distribution over the entire parameter space X .

Thus, following this approach, we will develop a
particle filter that tracks hands over time and simul-
taneously recognises their postures. In particular, we
shall make use of a compact hand model based on fea-
tures at multiple scales, and apply the proposed dis-
tance measure and feature likelihood maps for efficient
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evaluation of these models. It will be demonstrated that
the resulting method will be able to track hands over
complex backgrounds in real time based on pyramid
implementations.

5.1. Hierarchical and Graph-Like Hand Models

One idea that we shall explore here is to consider rela-
tions in space and over scales between image features
as an important cue for recognition. To model such
relations, we shall consider graph-like object represen-
tations, where the vertices in the graph correspond to
features and the edges define relations between differ-
ent features.

Specifically, we shall make use of quantitative re-
lations between features to define hierarchical, proba-
bilistic models of objects in different states. For a hand,
the feature hierarchy will contain three levels of detail;
a blob corresponding to a palm at the top level, ridges
corresponding to the fingers at the intermediate level
and blobs corresponding to the finger-tips at the bottom
level (see Fig. 10). Coarse-scale features in such a rep-
resentation will enable rough localisation of hands in
images, while fine-scale features such as finger tips will
provide more precise localisation of hands and will in-
crease the discriminability between the different hand
poses as well as between the object and the background.

While a more general approach for modelling the
internal state of a hand consists of modelling the prob-
ability distribution of the parameters over all object
features, we will here simplify this task by approxi-
mating the relative scales between all the features by
constant ratios and by fixing the relative positions be-
tween the ridges corresponding to the fingers and the
blobs corresponding to the finger-tips. Thus, we model

Figure 10. Model of a hand in different states: (a) hierarchical configuration of model features and their relations; (b) model states corresponding
to different hand postures.

the global position (x, y) of the hand, its overall size
s and orientation α. Moreover, we have a state pa-
rameter l = 1, . . . , 5 describing the number of open
fingers present in the hand posture (see Fig. 10(b)).
In this way, a hand model can be parameterised by
X = (x, y, s, α, l).

5.2. Particle Filtering

Particle filters aim at estimating and propagating the
posterior probability distribution p(Xt , Yt | Ĩ t ) over
time, where Xt and Yt are static and dynamic model
parameters and Ĩ t denotes the observations up to time t
(Isard and Blake, 1996; MacCormick and Isard, 2000).
Using Bayes rule, the posterior at time t can be evalu-
ated according to

p(Xt , Yt | Ĩ t ) = kp(I t | Xt , Yt ) p(Xt , Yt | Ĩ t−1),

(50)

where k is a normalisation constant that does not
depend on variables Xt , Yt . The term p(I t | Xt , Yt )
denotes the likelihood that a model configuration
Xt , Yt gives rise to the image I t . Using a first-order
Markov assumption, the dependence on observations
before time t − 1 can be removed and the model prior
p(Xt , Yt | Ĩ t−1) can be evaluated using a posterior
from a previous time step and the distribution for model
dynamics according to

p(Xt , Yt | Ĩ t−1)

=
∫

p(Xt , Yt | Xt−1, Yt−1)

×p(Xt−1, Yt−1 | Ĩ t−1) d Xt−1 dYt−1. (51)
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Since the likelihood function is usually multi-modal
and cannot be expressed in closed form, the approach
of particle filtering is to approximate the posterior dis-
tribution using N particles, weighted according to their
likelihoods p(I t | Xt , Yt ). The posterior for a new time
moment is then computed by populating the particles
with high weights and predicting them according to
their dynamic model p(Xt , Yt | Xt−1, Yt−1) (Isard and
Blake, 1996).

In our case, Xt = (x, y, s, α, l) describes the state of
the hand model, while Yt denotes the time derivatives
of the first four variables, i.e., Yt = (ẋ, ẏ, ṡ, α̇). Then,
we assume that the likelihood p(I t | Xt , Yt ) does not
explicitly depend on Yt , and compute p(I t | Xt ) using
either the feature-based approach proposed in Section 3
or the feature likelihood maps introduced in Section 4.

5.3. Computation of Model Likelihoods

5.3.1. Feature-Based Method. For the feature based
approach, the computation of the likelihood of an ob-
ject model comprises the following steps: (i) detection
of image features according to Section 2, (ii) computa-
tion of the approximate distance measure between the
model and the data features as described in Section 3.2
and (iii) estimation of the model likelihood according
to Section 3.3.

An important property of the distance measure �

in (22) and its approximation � in (26) is that they
take into account both mismatches in the model and
in the data. This makes it possible to perform model
selection also in cases when some object models are
subsets of others. To illustrate this, consider the task
of matching a hand model in states with one, two and
three open fingers l = 1, 2, 3 (see Fig. 10) to an image
of a hand as shown in Fig. 1(a). If we match according
to an offset criterion only (see Eq. (26)), hypotheses
with one and two open fingers (l = 1, 2) will have
the same fitting error as a hypothesis with three open
fingers (l = 3). Thus, the offset criterion alone is not
sufficient for a correct selection of hand state. To solve
the problem, we must require the best hypothesis to also
explain as much of the data as possible by minimising
the number of mismatched data features (outlier crite-
rion). This will result in a hypothesis that best fits and
explains the data, i.e. the hypothesis with the correct
state l = 3.

5.3.2. Filter-Based Method. For the feature likeli-
hood based approach, the idea is to use the computed

feature likelihood maps for direct lookup of feature
likelihoods, which are then combined into a joint like-
lihood estimate for the entire model. Thus, to eval-
uate a blob feature wb(x0, y0, t0) in an object model
described by a state vector X = (x, y, s, α, l), we
use Mblob defined in (48) and estimate the likelihood
according to

pblob(I | wb) = Mblob(x ′
0, y′

0, s2t0), (52)

where (x ′
0, y′

0) denotes the position of the blob fea-
ture after subjecting the original position (x0, y0) in
the hand model to a translation by (x, y), a rotation
by α and a scaling by s, as given by the state vector
X

(x ′
0, y′

0) = (x + s(x0 cos α + y0 sin α),

y + s(x0 sin α + y0 cos α)). (53)

Similarly, for evaluating a ridge feature wr (x0, y0, t0,
d0, β0), complemented by a state vector X = (x, y, s,
α, l), we compute Mridge defined in (49) for a set of
points

(xi , yi ) = (x ′
0, y′

0) + i�e(α+β0) (54)

and define the likelihood estimate as

pridge(I | wr ) = 1

m

m∑
i=1

Mridge(xi , yi , t), (55)

where m ∼ d0 denotes the number of sampling points
along the ridge of length d0, while (x ′

0, y′
0) again rep-

resents the transformed position of the image feature
according to (53), and e(α+β0) is a unit vector that de-
scribes the orientation of a ridge feature in the hand
model (with original orientation β0), rotated by the
overall orientation α of the hand model.

Finally, to equally treat models consisting of differ-
ent numbers of features n and to enable model selec-
tion, we introduce a measure of the maximum admissi-
ble feature error εmax ∈ (0, 1) and define the matching
score of the model as

p(I | X ) ∼ (1 − ε)N−n
n∏

i=1

pw(I | wi ), (56)

where pw(I | wi ) corresponds to likelihoods of in-
dividual model features defined in (52) and (55) and
N stands for the maximal number of features in all
models.
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Figure 11. Illustration of the effect of the colour prior. (a) Original
image, (b) map of the probability of skin colour at every image point.

5.3.3. Incorporating Information about Skin Colour.
When identifying humans in images, skin colour has
demonstrated to be a powerful cue for identifying re-
gions corresponding to human skin (Forsyth and Fleck,
1999). To make use of skin colour as a complementary
cue to the shape information, we define an estimate
pskin(I | w) of the probability that the colour at the
position of a feature w corresponds to human skin and
compute it from colour histograms of human hands ac-
cumulated in a training stage (see Fig. 11). Then, to
obtain a likelihood estimate of a hand model X with
features wi , i = 1...n, we combine estimates for skin
colour with the likelihood of hand shape and obtain

phand(I | X ) = pskin(I | X ) pshape(I | X ), (57)

where

pskin(I | X ) =
n∏

i=1

pskin(I | wi ) (58)

and pshape(I | X ) is estimated either using the feature-
based approach as defined in (27), i.e. pshape(I | X ) =
p(Wd | Wm) or from the filter-based approach as
defined in (56).

5.4. Particle Filtering Dynamics

Concerning the dynamics p(Xt , Yt | Xt−1, Yt−1) of
the hand model, a constant velocity model is adopted,
where deviations from the constant velocity assump-
tion are modelled by additive Brownian motion, from
which the distribution p(Xt , Yt | Xt−1, Yt−1) is com-
puted. To capture changes in hand postures, the state
parameter l is allowed to vary randomly for 30% of the
particles at each time step.

When the tracking is started, all the particles are first
distributed uniformly over the parameter spaces X and

Figure 12. At every time moment, the hand tracker based on particle
filtering evaluates and compares a set of object hypothesis. From
these hypothesis, which represent the probability distribution of the
object, the most likely object state is estimated.

Y . After each time step of particle filtering, the best
hypothesis of a hand is estimated, by first choosing the
most likely hand posture and then computing the mean
of p(Xt , Yt | Ĩ t ) for that posture (see Fig. 12). Hand
posture number i is chosen if wi = max j (w j ), j =
1, . . . , 5, where w j is the sum of the weights of all
particles with state j . Then, the continuous parameters
are estimated by computing a weighted mean of all the
particles in state i .

5.5. Experiments

To investigate the proposed approaches for model eval-
uation, we have applied it to multistate hand tracking in
a natural office environment. When using the feature-
based approach, the particle filtering was performed
with N = 1000 particles, which were evaluated on
the N d = 200 strongest scale-space features extracted
from each image of a sequence.

Figures 13(a)–(c) show a few results from such track-
ing. As can be seen, the combination of particle filtering
with the distance measure for hierarchical object mod-
els correctly captures changes in the position, scale and
orientation of the hand as well as changes in the hand
postures.

When evaluating object hypotheses based on fea-
ture likelihood maps, we have observed very similar
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Figure 13. Result of applying the proposed framework for tracking a hand in an office environment. (a): size variations; (b): rotations; (c): a
change in hand state l : 5 → 2.

tracking results as in the case of distance-based evalu-
ation. Moreover, the combination of shape and skin
colour information according to (57) enables stable
tracking and hand posture recognition to be performed
in scenes with cluttered backgrounds as illustrated in
Fig. 14.

To evaluate the stability of the hand tracker, we com-
bined it with a simple application where captured hand
motions affect a drawing device. The cursor on the
screen was controlled by the position of the hand, and
depending on the state of the hand, different actions
could be performed. A hand posture with two fingers
implied a drawing state, while a posture with one fin-
ger meant that the cursor moved without drawing. With
three fingers present, the shape of the brush could be
changed, while a hand posture with five fingers was
used for translating, rotating and scaling the drawing.
Figure 15 shows a few snapshots from such a draw-
ing session. As can be seen from the results, the per-
formance of the tracker is sufficient for producing a
reasonable drawing.

Figure 14. Results of combined hand tracking and pose recognition using particle fitering and evaluation of feature-based hand models on
feature likelihood maps.

5.6. Implementation Details

In practice, real-time tracking was achieved using
pyramid implementations of the proposed evaluation
schemes. For the feature-based approach, hybrid pyra-
mid representations (Lindeberg et al., 2002) were gen-
erated by separable convolution with separable bino-
mial (1, 4, 6, 4, 1)/16 kernels combined with spatial
subsampling performed in such a way that several
levels of scale were represented at the same level of
resolution.

For pyramid implementation of the feature likeli-
hood maps, the resolution at scale level ti was ob-
tained by sub-sampling the original image with a factor
κi = √

ti/t f , where sixteen levels of resolution with
ti = 2i/2, i = 1..16 were used in total. The derivatives
were computed using filter kernels of fixed scale t f .
From the experiments, we found t f ≈ 2.0 to be suffi-
ciently large for obtaining a satisfactory quality of M
on one hand, while on the other hand being sufficiently
small to enable fast computations.
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Figure 15. Illustration of the stability of the hand tracker, by letting the estimated hand motions affect a drawing device, where the position,
the size and the orientation of a pencil are controlled by the corresponding parameters of the hand in the image (a), (c). In (b) the user is able to
change the elliptic shape of a pencil by rotating a hand in a state with three open fingers. In (d) the drawing is scaled and rotated with a hand in
a state with five open fingers.

On a modest 550 MHz Pentium III processor, our
current implementation (without extensive optimisa-
tion) requires about 0.1 s for either the feature extrac-
tion step or the computation of the feature likelihood
maps on a 100 × 100 image and about 0.04 s for per-
forming the particle filtering using 1000 hypotheses.

6. Related Works

The subject of this paper relates to multi-scale ap-
proaches for image representation, computation of dif-
ferential invariants, detection of image features as well
as tracking and recognition of view-based object mod-
els. Because of the scope of these areas, it is not possi-
ble to give an extensive review, and only a few closely
related works will be mentioned.

Crowley and Sanderson (1987) extracted peaks from
a Laplacian pyramid of an image and linked them into a
tree structure with respect to their resolution. Lindeberg
(1993) constructed a scale-space primal sketch with
an explicit encoding of blob-like structures in scale-
space as well as the relations between these. Pizer et al.
(1994) proposed the use of multi-scale medial-axis rep-
resentations computed directly from image patterns
distributions. Triesch and von der Malsburg (1996)
used elastic graphs to represent hands in different pos-
tures with local jets of Gabor filters computed at each
vertex.

Multi-scale image differential invariants
(Koenderink and van Doorn, 1992; Lindeberg,
1994; Florack, 1997) have been computed by several
authors, including Schmid and Mohr (1997) who
apply such descriptors at interest points for image
indexing and retrieval. A histogram approach based
on statistics of local image descriptors has been
successfully applied by Schiele and Crowley (2000)
among the others.

Explicit scale selection for extraction of multi-scale
image features has been investigated by Lindeberg
(1998a, 1998b). Dense descriptors for estimating char-
acteristic scales at any image point have been consid-
ered by Lindeberg (1998b), Almansa and Lindeberg
(2000), Chomat et al. (2000) and Hall et al. (2000).
Pattern representations by scale-invariant image fea-
tures providing compact object descriptions have been
used for recognition by Lowe (1999) and Mikolajczyk
and Schmid (2001).

Shokoufandeh et al. (1999) detected maxima in a
multi-scale wavelet transform in a way closely related
to the detection of scale-space maxima. The features
were then connected into an acyclic graph according to
their sizes and positions. Siddiqi et al. (1999) consid-
ered representations of binary images by shock graphs
and used them for object representation and recogni-
tion. The approach by Bretzner and Lindeberg (1999b)
is more closely related to the one followed here, by
being based on multi-scale blob and ridge features and
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by defining explicit qualitative relations between these
features across scales.

Other scale-space approaches with related aims have
been developed by Lifshitz and Pizer (1990), Griffin
et al. (1992), Gauch and Pizer (1993), Burbeck and
Pizer (1995), Olsen (1997) and Vincken et al. (1997).
Interesting works regarding hierarchical representa-
tions in biological vision have been presented by
Riesenhuber and Poggio (1999).

With respect to object tracking, Isard and Blake
(1996) developed a particle filtering approach for track-
ing contour-based models. Black and Jepson (1998)
used eigenspace models of gray-value patterns for
tracking deformable models. Integration of several im-
age cues such as skin colour in particle filtering was pro-
posed in Isard and Blake (1998). The efficiency of par-
ticle filters was increased using layered and partitioned
sampling (Sullivan et al., 1999; MacCormick and Isard,
2000; Deutscher et al., 2000). With close relations to
the notion of feature likelihood maps, Sidenbladh and
Black (2001) have performed explicit learning of likeli-
hood functions from training images and applied these
to human body tracking based on ridge structures.

With regard to the area of hand gesture analysis
(Pavlovic et al., 1997; Cipolla and Pentland, 1998),
early work of using hand gestures for television control
was presented by Freeman and Weissman (1995) us-
ing normalised correlation. Some approaches consider
elaborated 3-D hand models (Rehg and Kanade, 1995),
while others use colour markers to simplify feature de-
tection (Cipolla et al., 1993) or image differencing us-
ing an updated background model (von Hardenberg
and Bérard, 2001). Appearance-based models for hand
tracking and sign recognition were used by Cui and
Weng (1996), while Heap and Hogg (1998) and
MacCormick and Isard (2000) used silhouettes of
hands. A natural extension consists of integrating such
edge based representations with region based repre-
sentations as proposed in this work. An integration of
the proposed methods into a working real-time system
for human computer interaction has been presented in
Bretzner et al. (2002).

7. Summary

We have introduced and applied two novel methods
for evaluating multi-scale feature-based object mod-
els. Within the first, feature-based approach, we con-
structed a scale-invariant distance measure for compar-
ing two sets of sparse multi-scale features. Based on this

measure, an approximate likelihood function for object
models was defined in such a way that maximisation
of this function allows for simultaneous parameter es-
timation and model selection.

Whereas the computation of a distance measure re-
quires pre-computation of all the features in the input
images, the need for pre-computation can be relaxed
within the second, dense filter-based, approach. Here,
we proposed the concept of feature likelihood maps,
which approximate the likelihood of multi-scale blob-
like and ridge-like structures in image data. The com-
putation of such maps at any point requires only local
image information and can therefore be performed “on
demand”. Both evaluation methods are invariant with
respect to common transformation of image structures
including scalings, rotations translations and changes
in amplitude.

When combining either of these (complementary)
methods with a probabilistic approach for object track-
ing and object recognition, we have shown that the pro-
posed evaluation schemes can be easily integrated with
particle filtering and be used for, for example, simul-
taneous hand tracking and hand posture recognition.
Specifically, by implementing the multi-scale image
processing steps based on pyramids, both methods al-
low for tracking and recognition in real time.

For the chosen application, we manually constructed
object models. A natural extension for future work
would be to employ learning methods for automatic
acquisition of multi-scale feature models and parame-
ters for their optimal matching.

Appendix A. Ridge Strength Measures
for Colour Images

This section shows how ridge strength measures
previously expressed for scalar grey-level images
(Lindeberg, 1998a) can be extended to vector valued
colour images (according to Lindeberg and Sjöbergh,
personal communication).

Consider the following measures of ridge strength,
defined for a scalar image L at a given scale t :

R1L = (L pp − Lqq )2 (59)

R2L = (
L2

pp − L2
qq

)2 = (∇2L)2R1L (60)

where L pp and Lqq denote the second-order directional
derivatives in the main eigendirections p̄ and q̄ of the
Hessian matrixHL . For any orthogonal coordinate sys-
tem (r, s), the directional derivative operators along the
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coordinate directions can be expressed as

∂r̄ = cos α∂x + sin α∂y, ∂s̄ = − sin α∂x + cos α∂y,

(61)

where α denotes the orientation of the coordinate sys-
tem relative to a Cartesian frame. After a few algebraic
manipulations, it can be shown that following differ-
ential entities, inspired by the functional forms of (59)
and (60),

R1,(r,s)L = (Lrr − Lss)
2 (62)

R2,(r,s)L = (
L2

rr − L2
ss

)2
(63)

can be expressed as follows when parameterised as
function of the orientation α of the (r, s)-system

R1,(r,s)L = 1

2

(
(Lxx − Lyy)2 + 4L2

xy

)
+ 1

2

(
(Lxx − Lyy)2 − 4L2

xy

)
cos 4α

+ 2Lxy(Lxx − Lyy) sin 4α

R2,(r,s)L = (Lxx + Lyy)2R1,(r,s)L (64)

A special property of the principal (p, q)-coordinate
system aligned to the eigendirections of the Hessian
matrix HL , is that it maximises the entities R1,(r,s)L
andR2,(r,s)L over all orientations α of the (r, s)-system.
In the following, we shall make use of this property
when extending the ridge strength measures (59) and
(60) from scalar grey-level images to vector-valued
colour images. By summing up these expression over
a set of colour channels C = (L (1), L (2), L (3))T

R1C =
∑
L∈C

R1L =̂
3∑

i=1

R1L (i) (65)

R2C =
∑
L∈C

R2L =̂
3∑

i=1

R2L (i) (66)

and introducing the descriptors (R1, S1, T1) and
(R2, S2, T2), respectively, according to

R1 =
∑
L∈C

(Lxx − Lyy)2 (67)

S1 =
∑
L∈C

4L2
xy (68)

T1 =
∑
L∈C

Lxy(Lxx − Lyy) (69)

R2 =
∑
L∈C

(Lxx + Lyy)2(Lxx − Lyy)2 (70)

S2 =
∑
L∈C

4(Lxx + Lyy)2L2
xy (71)

T2 =
∑
L∈C

(Lxx + Lyy)2Lxy(Lxx − Lyy) (72)

it follows that R1C and R2C can be written as

R1C = 1

2
(R1 − S1) + R1 − S1

2
cos 4α + 2T1 sin 4α

(73)

R2C = 1

2
(R2 − S2) + R2 − S2

2
cos 4α + 2T2 sin 4α

(74)

To determine the direction α that maximises this ex-
pression, we differentiate this expression with respect
to α and set the derivative to zero, which gives

tan 4α = 4T

R − S
(75)

and

cos 4α = R − S√
16T 2 + (R − S)2

(76)

sin 4α = 4T√
16T 2 + (R − S)2

(77)

Insertion into (73) or (74) finally results in

RC = 1

2
(R + S +

√
(R − S)2 + 16T 2) (78)

where the triple (R, S, T ) should be replaced by either
(R1, S1, T1) or (R2, S2, T2) depending on which of the
ridge strength measures (59) or (60) is being used. In
practical experiments, it has often been the case that
the approximation RC ≈ R + S gives satisfactory
performance.

Appendix B. Shape Estimation

In this section, we will show how the shape of an
anisotropic Gaussian blob with covariance matrix 
0

g(x, 
0) = 1

2π
√

det(
0)
exp

(
−1

2
xT 
−1

0 x

)

can be estimated from a second moment matrix as de-
fined in (10). For simplicity, let us first assume that
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0 is diagonal, i.e. 
0 = diag(a, b). From the semi-
group property of the Gaussian kernel, it follows that
the isotropic scale-space representation of g(x, 
0) is
L(x, 
0, t) = g(x, 
0 + tI). By explicit evaluation of
the definition of the second moment matrix (10), it can
after a few calculations be shown that

ν =
(

ν11 ν12

ν12 ν22

)

=
∫

x∈R2
(∇L(x ; 
0, tl))(∇L(x ; 
0, tl))

T g(x ; ti I ) dx

= ti
4π2

√
(a + tl)(b + tl)(a + tl + 2ti )(b + tl + 2ti )

×
( 1

(a+tl )(a+tl+2ti )
0

0 1
(b+tl )(b+tl+2ti )

)
(79)

where we can directly read off the eigenvalues of ν as
λ1 = ν11 and λ2 = ν22. From this expression one can
observe that unless the local scale tl is zero and the in-
tegration scale ti is infinite, the ratio between the eigen-
values will be affected by the use of non-infinitesimal
local scale and finite integration scale. One way of im-
proving the accuracy in the estimate is to use shape
adaptation of the Gaussian kernels as described in
Lindeberg and Gårding (1997) and Mikolajczyk and
Schmid (2002).

An alternative way of computing an estimate of the
shape of the underlying Gaussian blob is by solving for
b in terms of a, λ1 and λ2. Assuming that the integration
scale is proportional to the local scale ti = c2tl , one
obtains

b =
√

t2
l c4 + λ1

λ2

(
a2 + 2atl(1 + c2) + t2

l (1 + 2c2)
)

− tl − c2tl . (80)

From the facts that (i) the eigenvalues of a second mo-
ment matrix are preserved under rotations of the image
domain, and (ii) the eigenvectors follow this rotation
(Lindeberg, 1994), it follows that this expression is also
valid for a non-diagonal covariance matrix parame-
terised as 
1 = R
0 RT , where R denotes the rotation.
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Notes

1. One reason for using γ = 1 for blob detection is that then for a
circular Gaussian blob with variance t0, the selected scale will be
t̂ = t0. Similarly, when using γ = 3/4 for ridge detection, the
selected scale for a Gaussian ridge with variance t0 will be t̂ = t0.

2. Other measures for comparing distributions, such as the KL-
divergence or the X 2-divergence, could also be interesting al-
ternatives. Here, we have chosen to use square difference due to
its symmetric property and simplicity.

3. The fact that � is a distance measure follows from a similar way
of reasoning as for φ.
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