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Abstract

In this paper, we address the problem of motion recognition using event-based local motion representations. We assume that similar
patterns of motion contain similar events with consistent motion across image sequences. Using this assumption, we formulate the prob-
lem of motion recognition as a matching of corresponding events in image sequences. To enable the matching, we present and evaluate a
set of motion descriptors that exploit the spatial and the temporal coherence of motion measurements between corresponding events in
image sequences. As the motion measurements may depend on the relative motion of the camera, we also present a mechanism for local
velocity adaptation of events and evaluate its influence when recognizing image sequences subjected to different camera motions.

When recognizing motion patterns, we compare the performance of a nearest neighbor (NN) classifier with the performance of a
support vector machine (SVM). We also compare event-based motion representations to motion representations in terms of global his-
tograms. A systematic experimental evaluation on a large video database with human actions demonstrates that (i) local spatio-temporal
image descriptors can be defined to carry important information of space-time events for subsequent recognition, and that (ii) local veloc-
ity adaptation is an important mechanism in situations when the relative motion between the camera and the interesting events in the
scene is unknown. The particular advantage of event-based representations and velocity adaptation is further emphasized when recog-

nizing human actions in unconstrained scenes with complex and non-stationary backgrounds.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Video interpretation is a key component in many poten-
tial applications within video surveillance, video indexing,
robot navigation and human—computer interaction. This
wide area of application motivates the development of gen-
eric methods for video analysis that do not rely on specific
assumptions about the particular types of motion, environ-
ments and imaging conditions.

In recent years many successful methods were proposed
that learn and classify motion directly from image measure-
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ments [6,53,11,12,47,62,48,8,3,46]. These direct methods
are attractive due to the possibility of training motion mod-
els from the video data alone. In particular, using such
methods recognition of human activities was shown to be
possible without constructing and matching elaborated
models of human bodies [11,62,3].

Direct methods to video analysis often rely on the dense
motion measurements. To enable subsequent recognition
with such methods, it is essential for the measurements in
the test and the training data to correspond to some extent.
A simple approach to ensure such correspondence is to
accumulate all measurements in the video using global
descriptors. Global representations, however, depend on
the background motion and do not scale well to complex
scenes. To avoid the background problem, many methods
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deploy motion-based segmentation and compute motion
descriptors in segmented regions. Complex scenes with
non-rigid backgrounds and motion parallax, however,
often make motion-based segmentation unreliable and dis-
tract subsequent recognition.

In this work, we focus on a local approach to motion
recognition. One of the main goals of our method is to
avoid the need of segmentation and to enable motion
recognition in complex scenes. As a motivation, we observe
that local space-time neighborhoods often contain discrim-
inative information. A few examples of such neighbor-
hoods for image sequences with human actions are
illustrated in Fig. 1. Here, the similarity of motion in
corresponding neighborhoods can be observed despite the
difference in the appearance and the gross motions of people
performing the same type of action. At the same time, the
dissimilarity of image data is evident for non-corresponding
neighborhoods. From this example it follows that some of
the spatio-temporal neighborhoods may provide sufficient
information for identifying corresponding space-time points
across image sequences. Such correspondences could be use-
ful for solving different tasks in video analysis. In particular,
local correspondence in space-time could be used to formu-
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late methods for motion recognition that do not rely on seg-
mentation and, hence, could be applied to complex scenes.

To investigate this approach and to find corresponding
points in space-time, we exploit the spatial and the tempo-
ral consistency or coherence of motion measurements
between pairs of space-time neighborhoods. Considering
all the pairs of neighborhoods for a given pair of sequences
is computationally hard. Moreover, neighborhoods with
simple motions and simple spatial structures may be
ambiguous and may not allow for reliable matching when
using local image information only. To address this prob-
lem, we select informative neighborhoods with low acci-
dental similarity by maximizing the local spatio-temporal
variation of image values over space and time. The detec-
tion of such neighborhoods, denoted here as local motion
events, has been recently proposed by Laptev and Linde-
berg [26] and is summarized in Section 3.

Local motion events (or simply events) are defined in
this paper by the position and the shape of associated
space-time neighborhoods. Both the shape and the posi-
tion of events in video may depend on the recording condi-
tions such as the relative distance and the relative velocity
of the camera with respect to the object. Hence, to exploit

CLINT3

Fig. 1. Local space-time neighborhoods for corresponding space-time points in image sequences: “‘walking”, “boxing” and “hand waving”. The motion

in corresponding neighborhoods is similar despite variations of the cloth and the global motion of people on the left and on the right. The neighborhoods

from different actions have dissimilar motion.
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the inherent motion properties of events, it is important to
detect events independently of external transformations
that effect the image sequences. Invariance of local motion
events with respect to the scaling transformations has been
previously addressed in [26]. Here, we extend this work and
investigate event detection under Galilean transformations
arising from the relative motion of the camera. A method
for detecting motion events independently of the scale
and Galilean transformations is presented in Section 3.

To match corresponding events in image sequences, we
evaluate the coherence of motion measurements at pairs
of space-time neighborhoods. For this purpose in Section
4 we formulate a set of alternative motion descriptors cap-
turing motion information in the neighborhoods of
detected events. Using these descriptors together with asso-
ciated similarity measures we demonstrate the matching of
corresponding events across image sequences in Section 5.
Based on the estimated correspondences, we then define a
nearest neighbor (NN) classifier and a support vector
machine (SVM) classifier as two alternative methods for
recognizing instances of motion classes. Fig. 2 summarizes
the four steps of the method in this paper.

In Section 6 we evaluate different steps of the method. In
particular the influence of local velocity adaptation as well
as the choice of motion descriptors and recognition meth-
ods is analyzed on the problem of recognizing human
actions in simple scenes. Results of human action recogni-
tion in complex scenes are then presented in Section 6.4.
We conclude the paper with the discussion in Section 7.

This work is partly based on results previously presented
in [27,28,51].

2. Related work

This work is related to several domains including
motion-based recognition, local feature detection, adaptive
filtering and human motion analysis. In the area of motion-
based recognition, a large number of different schemes
have been developed based on various combinations of
visual tasks and image descriptors; see e.g. the monograph
by Shah and Jain [52] and the survey paper by Gavrila [14]
for overviews of early works. Concerning more recent
approaches, Yacoob and Black [60] performed tracking
and recognition using principal component analysis and
parameterized models of optic flow. Hoey and Little [17]
presented a related approach using Zernike polynomial
expansions of optic flow. Bobick and Davis [5] recognized
human actions against a static background by computing
templates of temporal differences and characterizing the
resulting motion masks in terms of moments. Zelnik-

Manor and Irani [62] as well as Chomat et al. [8] recognized
activities using probabilistic models of spatio-temporal
receptive fields while Laptev and Lindeberg [29] extended
this approach to histograms of locally velocity-adapted
receptive fields. Another statistical, non-parametric
approach for motion recognition in terms of temporal
multi-scale Gibbs models was proposed by Fablet and
Bouthemy [12]. Efros et al. [11] presented a recognition
scheme in terms of positive and negative components of
stabilized optic flow in spatio-temporal volumes. Several
other papers have recently explored the structure of
space-time volumes for motion representation and action
recognition [4,61,21,15]. Regarding event detection, a more
close approach to ours by Rao et al. [47] represented and
recognized motion in terms of events detected as maxima
of curvature of motion trajectories. Different to this
method, our approach enables direct detection and match-
ing of motion events without relying on tracking and detec-
tion of motion trajectories.

Detection of motion events in space-time is related to
interest point detection in static images. Different formula-
tions for interest points have been presented and used in
the past [16,36,19,39]. Interest points and their image
neighborhoods provide part-based representations of
images with possibility to invariance to photometric trans-
formations as well as to similarity and affine transforma-
tions [35,32,36,41]. Part-based image representations have
been successfully applied to image and video indexing
[50,54], wide base-line matching [56,41,55], object recogni-
tion [36,13] and other applications. Interest points in
space—time have been recently proposed for motion repre-
sentation in [26]. Here, we extend this work and apply
space-time interest points to motion recognition. Our
method for velocity-adaptation of motion events is partic-
ularly related to the methods of adaptive spatio-temporal
filtering that have been considered in [43,33,29].

The motion descriptors introduced in Section 4 build
upon several previous works. The use of the N-jet for
expressing visual operations was proposed by Koenderink
and van Doorn [23] and the first application to spatio-tem-
poral recognition was presented in [8]. The use of histo-
grams of receptive field responses goes back to the work
by Schiele and Crowley [49] as well as Zelnik-Manor and
Irani [62], and the use of PCA for optic flow was proposed
by Black and Jepson [2]. The use of complementary posi-
tion information in histograms is closely related to the
position dependency in the SIFT descriptor by Lowe [36].
Recently, Ke and Sukthankar [20] added a local principal
component analysis to the SIFT descriptor. The perfor-
mance of local descriptors in spatial domain was experi-

Scale and velocity
invariant event
detection

Event description

Event matching Motion recognition

Fig. 2. Overview of the main steps of the method.
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mentally evaluated by Mikolajczyk and Schmid in [42].
Here, we follow this experimental approach and evaluate
local motion descriptors on the task of motion recognition.

3. Galilean- and scale-adapted event detection

Space-time interest points have recently been proposed
to capture and represent local events in video [26]. Such
points have stable locations in space-time and correspond
to moving two-dimensional image structures at moments
of non-constant motion (see Fig. 3a). A direct approach
to detect such points consists of maximizing a measure of
the local variations in the image sequence f{x,y,f) over
both space (x,y) and time ¢. To formulate such an
approach, consider a scale-space  representation
L(-,X) =f*g(-,X) generated by the convolution of f with
a spatio-temporal Gaussian kernel
g,y %) = exp ( (—%(x,% HZ ' (x,y, t)T))
(2n)° det(Z)

with a 3 x 3 covariance matrix X. The image variation in a
2-neighborhood of a space-time point (-) can now be mea-
sured by a second-moment matrix composed from spatio-
temporal gradients VL = (L., L,, L)"

M Mo Has
u(Z) = g(+;sZ) * (VL(VL)T) = | K2 Hxn Hos (1)
iz Moz Hss

integrated within a Gaussian window with the covariance
s¥ and some constant s > 1. Neighborhoods with y of rank

Moving camera

3 correspond to points with significant variations of image
values over both space and time. Points that maximize
these variations can be detected by maximizing all eigen-
values 4,...,43 of u or, similarly, by searching the maxima
of the interest operator H [26] over (x,,?)

H = det(u) — k trace®(u) = Jidads —k(iy + A+ 43)°  (2)

where & = 0.0005 is a threshold on the discrepancy between
My v oy A3

3.1. Galilean transformations

The formulation of the interest operator H (2) in terms
of the eigenvalues of u implies invariance with respect to
three-dimensional rotations of the space-time image f.
Whereas two-dimensional rotations are common in the
spatial domain, a three-dimensional rotation in space—time
does not correspond to any known physical transforma-
tion. On the other hand, the temporal domain is frequently
effected by Galilean transformations caused by the con-
stant relative motion between the camera and the observed
objects [33,29] (see Figs. 3(a) and (b)). A Galilean transfor-
mation is a linear coordinate transformation p’ = Gp with
p=(x,,0)" defined by the velocity vector (v, vy)T and
the matrix

1 0 o
Gl,v,)=10 1 v, (3)
0 0 1

A Galilean transformation has a skewing effect on the im-
age function f'(p’) = f(p) and the corresponding scale-space

Stationary camera

Fig. 3. Detection of local motion events for sequences with different camera motion. Spatio-temporal patterns of a walking person are shown by 3D plots
(up-side-down) for (a) and (c) manually stabilized camera and (b) and (d) stationary camera. Motion events (blue ellipsoids) are detected using the original
method [26] without velocity adaptation in (a) and (b) and with the proposed method for iterative velocity adaptation in (c) and (d). (For interpretation of
the references in colour in this figure legend, the reader is referred to the web version of this article.)
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representation L'(p’;X') = L(p;X). It can be shown [33],
that the covariance matrix X of the filter kernel g trans-
forms under G according to ¥’ = GEG"' while the spatio-
temporal gradient transforms as VL' =G 'VL. Using
these properties, the transformation of u (1) can be derived
from [35] as

L(PpE) =G Tup;z)G! (4)

and it follows that u and, hence, the interest operator H (2)
is not preserved under Galilean transformation.

3.2. Velocity adaptation

Our goal is to detect positions and regions of local
motion events independently of the relative velocity
between the camera and a motion event in the scene. When
using the p-descriptor for event detection, it is essential to
cancel the effect of the Galilean transformation and to
compute H from the Galilean-invariant second moment
matrix. In the case of G being known in advance this can
be done by applying the inverse Galilean transformation
to 1’ as G' ' G. For the general case with unknown G we
propose to transform u’ into a standard Galilean-invariant
form. We make the following definitions:

Definition 3.1. Given space-time image functions f, and f;,
we say that f;, is Galilean-related to f,, if f;,(Gp) = f.(p) for
some Galilean transformation G.

Definition 3.2. Given second-moment matrices p, and py,
we say that p, is Galilean-related to u, (denoted here as
U, — U, if p, and p, can be derived from the corresponding
Galilean-related image functions f, f;: f5(Gp) = f.(p) using
covariance matrices Z,, % &, = GX,G .

It follows that the Galilean-related second moment matri-
ces satisfy (4). It is easy to show that the Galilean relation
is transitive, i.e. for second moment matrices p,, i, . sat-

isfying gy Z o, w2y, it holds that w %, with
GC(J =
Proposition 3.3. Within the subset of Galilean-related

(non-degenerative) second moment matrices there exists a
unique matrix with the block-diagonal form

cb Gba-

My M O
W=\ 1y O (5)
0 0 Mlzl.%

The proof of Proposition 3.3 is given in Appendix A.
Using this proposition we can remove the ambiguity intro-
duced by Galilean transformations if we for a given
second-moment matrix ¢’ find a Galilean-related block-
diagonal matrix y” (5) and then use it for event detection.
For this purpose, we use relation (4) and solve for G(v.,v))
that brings ¢’ into the block-diagonal form

HH _ G_T,u/G_l (6)

The solution for G(vy,v,) is found from the linear system

(l‘,n :“iz)(“x> _ <:“,13> (7)
My Mo Uy Has
as

_ MMy — ok, _ iy — (8)

Y 7 \27 o 7 \2

My 1oy — (115) i1k — (112)

To obtain a unique y”, however, we need to ensure Gali-
lean relation to hold among all y' derived for all Gali-

lean-related image functions. Such a Galilean relation
will be enforced if we compute u’ using

Y=¢'Yc" 9)

y

for G satisfying (6) and for some fixed covariance matrix
%", Since G is unknown prior to the computation of u/,
however, the Galilean relation among p’ and, hence, the
unique Galilean-invariant y” cannot be obtained directly.
An iterative solution to this problem will be presented in
Section 3.3. Here, we note that for some initial guess of
Y', the descriptor u” obtained in (6) can be regarded as
approximately invariant under Galilean transformations.
Hence, we define a velocity-corrected interest operator in
terms of u” (6) as

Hone = det(y") — k trace’ (1) (10)

Remark 3.1. We can note that the solution for G(v,,v,) in
(7) and (8) is structurally similar to optic flow equations
according to Lucas and Kanade [38,18]. Hence, (v,, vy)T
can be regarded as a local estimate of image velocity. Note,
however, that here we did not use the brightness change
constraint deployed in most of the methods for optical flow
estimation. The velocity adaptation presented here, hence,
can be applied to image functions with the brightness
constancy over time violated.

Remark 3.2. By expanding y” in (6) using the solution of G
(8) the component p7; of y” can be written as

2 2
23y — M (113)” — 4y () (11)
2

ity — (Kis)
It can be shown that u}; corresponds to the residual error
term of optic flow estimation according to Lucas and Ka-
nade [38] caused by image measurements violating the esti-
mated constant motion model. Hence, 1}, can be regarded
as a measure of non-constant motion in the local
neighborhood.

Iy = Hss +

3.3. Scale- and velocity-adapted motion events

Following the previous section, estimation of Galilean-
invariant u” from p'(-, £’) requires G satisfying both (6)
and (9). Since G is derived from u' while u’ depends on
G, this ‘‘chicken-and-egg” problem cannot be solved



212 L Laptev et al. | Computer Vision and Image Understanding 108 (2007) 207-229

1. Detect local motion events P =

as positive

{p17"‘7pN}’p = (:[7y7t72/)’
space-time maxima of Hgy,. (10) using X’ derived

from (9),(12),(3), with velocity values v, = v, = 0 and some initial
values of spatial and temporal scales o, T

2. foreachp € P

3. do  Update spatial and temporal scale values o «— o + 0,
T « 7+0, such that the normalized Laplacian V2 L =
0*7Y2(Lyy + Ly,) + 07%%Ly; obtains extremum in the
scale neighborhood: ¢, € (—¢,,&,), 0 € (—¢&,,&7)
(see [26] for more details)

4. Update the velocity values v, v, according to (8)

5. Update ¥’ (9), 1" (6) using new estimates of v,, v, o, 7

6. Update the position z, y, t by maximizing H ... (10) over
space and time

7. until convergence of parameter values o,T,v,,vy,7,y,t or

max. number of iterations

Fig. 4. Algorithm for scale- and velocity-adapted detection of local motion events.

directly. An iterative solution for Galilean-invariant x” can
be formulated as follows. Without loss of generality we
assume

a; 0 0
=0 o o (12)
0 0

and compute X' (9) for some initial guess of G(v,,v,) (e.g.
with v, = 0,v, =0). At each iteration we then (i) re-esti-
mate G(vy,v,) from (8), (ii) update X' with (9) and (iii) re-
detect the position of the event by maximizing H... (10)
using new estimation of y”. In addition to Galilean-invari-
ance we can achieve local adaptation to the changes of the
spatial and the temporal scale of the image function using
the scale-selection approach in [26]. For this purpose, we at
each iteration update the scale parameters o, T and stop
iterating when the velocities, the scales and the position
of the event converge to stable values. The algorithm for
detecting scale- and velocity-adapted motion events is sum-
marized in Fig. 4.

Remark 3.3. Iterative velocity adaptation of motion events
described above bears close similarity with the adaptation
of spatial interest points [16] with respect to affine
transformations in the image plane [35,41]. In fact, the
proposed velocity adaptation in space-time could be
combined with the affine adaptation in space by estimating
the affine transformation from the spatial part of u'.

3.4. Qualitative evaluation

While the quantitative evaluation of velocity adaptation
will be presented in Section 6.1, we will here discuss some

qualitative results. An intuitive idea about the effect of
velocity adaptation is illustrated in Fig. 3. Two sequences
of a walking person have been recorded with a camera sta-
bilized on the person (Figs. 3(a) and (c¢)) and a stationary
camera (Figs. 3(b) and (d)). As can be seen from the spa-
tio-temporal plots, the space-time structure of sequences
differs by a skew transformation originating from different
motions of the camera. As result, motion events detected
without velocity adaptation using [26] are highly influenced
by the relative camera motion (compare detection results in
Figs. 3(a) and (b)). On the other hand, velocity-adapted
motion events illustrated in Figs. 3(c) and (d) have roughly
corresponding positions and shapes.! Hence, velocity-
adapted motion events can be expected to provide reliable
matching of corresponding space-time points in image
sequences with different relative motions of the camera.
A quantitative evaluation of local velocity adaptation on
the task of classifying human actions in image sequences
will be presented in Section 6.

Fig. 5 shows more examples of detected motion events
for image sequences with human actions. From these
results we can visually confirm the stability of detected
events with respect to repeating structures in image
sequences. Moreover, by analyzing spatio-temporal neigh-
borhoods of detected events in Fig. 6, we observe that dif-
ferent actions give rise to different types of motion events.
Hence, the proposed method can be expected to provide

! Ellipsoidal shapes of features in Figs. 3(a) and (b) are defined by the
covariance matrices X’ derived from the iterative velocity and scale
adaptation procedure summarized in Fig. 4. It takes about twenty
iterations on average for the algorithm to converge.
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time
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time

Fig. 5. Examples of scale- and velocity-adapted local motion events. The illustrations show one image from the image sequence and a level surface of
image brightness over space-time. The events are illustrated as dark ellipsoids.
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Fig. 6. Examples of spatio-temporal image patches corresponding to neighborhoods of local events detected for different actions in Fig. 5.

promising event candidates for the purpose of matching
corresponding space-time points across image sequences.

4. Local descriptors for space—time neighborhoods

This section presents a set of alternative spatio-temporal
image descriptors for the purpose of matching correspond-
ing events in video sequences. To enable the matching, the
event descriptors should be both discriminative and invari-
ant with respect to irrelevant variations in image sequences.
The method of previous section will be used here to adapt
local motion events to scale and velocity transformations.
Other variations, however, such as the individual varia-
tions of motion within a class might be more difficult to

formalize since the criteria of optimality may depend on
the task. For this reason we here take an empirical
approach and define a set of alternative event descriptors
whose performance will then be evaluated and compared
in practice. The design of these descriptors is inspired by
related work in the spatial domain [23,22,36,42] and in
the spatio-temporal domain [60,17,62].

4.1. Image measurements

Differential measures are a common tool for describing
local structure of the image [22]. As a basis for defining
spatio-temporal image descriptors, we shall here make
use of Gaussian derivatives. Taking advantage of the scale
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and velocity estimation in the previous section, we compute
scale and velocity adapted Gaussian derivatives using the
estimate of covariance matrix X’ from the image sequence
f- Provided the correct estimation of X', the responses of
Gaussian derivatives will be invariant to scale and velocity

variations in f'if computed from f”(p) = f (Z’*%p) that is a
normalized image sequence obtained by transforming f to
the common coordinate frame. In practice we achieve this
by warping the neighborhoods of each detected event in the
event-centered coordinate system by the linear coordinate
transformation p” = c¢X’ 2p for some constant ¢ > 1 using
trilinear interpolation.

To construct invariant spatio-temporal event descrip-
tors in terms of scale and velocity adapted Gaussian deriv-
atives, we then consider the following type of image
measurements:

e N-jets [23]up to order N = 4 (see Fig. 7) evaluated at the
center of the detected motion events

J('; Zl) = {anLyaLtvamny? ce 7Lmt} (13)

e Gradient vector fields obtained by computing vectors of
adapted spatio-temporal gradients (L: L, LC)T at every
point in a local neighborhood of a motion event.

e Optic flow fields computed in the neighborhoods of motion
events according to (8) from second-moment matrices
defined in terms of adapted spatio-temporal gradients.

There is a number of qualitative similarities as well as
differences between these types of image measurements.

time X time X

The N-jet contains a truncated encoding of the complete
space-time image structure around the motion event, with
an implicit encoding of the optic flow. Gradient vector field
also approximates the space-time structure around motion
events but without computing higher order derivatives that
might be sensitive to noise. By explicitly computing the
optic flow, we obtain a representation that is invariant to
local contrast in the image domain, at the cost of possible
errors in the flow estimation step. In addition to the optic
flow, the N-jets and spatio-temporal gradients also encode
the local spatial structure, which may either help or distract
the recognition scheme depending on the relation between
the contents in the training and the testing data. Hence, it is
of interest to investigate all three types of image
measurements.

4.2. Types of image descriptors

To combine dense flow measurements into image
descriptors we consider:

e Histograms of either spatio-temporal gradients or optic
flow computed at several scales. The histograms will
be computed either for the entire neighborhood of a
motion event, or over several (M x M x M) smaller
neighborhoods around the motion event. For the latter
case, here referred to as position dependent histograms,
local coordinates are measured relative to the position
and the shape of the detected motion events (see
Fig. 8). Local measurements are weighted using a
Gaussian window function where we for simplicity com-

>~L/ h|v
time X time X

Fig. 7. Examples of impulse responses of spatio-temporal derivatives used to compute N-jet descriptors. The responses are illustrated by threshold
surfaces with colors corresponding to different signs of responses. From left to right: L,, L, L\, L. (For interpretation of the references in colour in this

figure legend, the reader is referred to the web version of this article.)

Fig. 8. Examples of position dependent histograms (right) computed for overlapping Gaussian window functions (left).



L Laptev et al. | Computer Vision and Image Understanding 108 (2007) 207-229 215

Fig. 9. The four most significant eigenvectors obtained by performing PCA on spatio-temporal gradient fields computed at the neighborhoods of motion
events. Although the interpretation of the three-dimensional vector fields is somewhat difficult, we can observe increasing levels of details for the

eigenvectors with lower eigenvalues.

pute one-dimensional (marginal) histograms by integrat-
ing the responses separately for each component of
either the spatio-temporal gradient field or the optic flow
field.

e Principal component analysis (PCA) of either optic flow
or spatio-temporal gradient vectors computed over
local scale and velocity normalized spatio-temporal
neighborhoods around the motion events. The princi-
pal components are computed from local motion
events detected in the training data, and the data is
then projected to a lower-dimensional space defined
by the eigenvectors corresponding to the largest eigen-
values. (see Fig. 9).

4.3. Spatio-temporal image descriptors

By combining the above mentioned notions in different

ways, we consider the following types of descriptors for a
space-time event p(x,y,t; X') with position (x,y,7) and
the neighborhood defined by ¥’ (9) in terms of scale values
o, © and velocity values v,,v):
2Jets, 4Jets: N-jet of order 2 or 4 computed at
(X0, Y0, tp) at the scale (o, 79) accord-
ing to (13)
Multi-scale N-jet of order 2 or 4,
computed at (xg, Vo, Zo) at all 9 com-
binations of 3 spatial scales (oo/
2,00,2009) and 3 temporal scales
(t0/2,70,210)

MS2Jets, MS4Jets:

STG-PDHIST: Local position dependent histo-
grams of first-order partial deriva-
tives

STG-HIST: Local position independent histo-
grams of first-order partial deriva-
tives

OF-PDHIST: Local position dependent histo-
grams of optic flow

OF-HIST: Local position independent histo-
grams of optic flow

STG-HIST: Local principal component analysis
of spatio-temporal gradients vectors

OF-HIST: Local principal component analysis

of optic flow

We also consider a global histogram-based descriptor as
a reference with respect to the previous global schemes for
spatio-temporal recognition:

Global-STG-HIST: Global histograms of first-order par-
tial spatio-temporal derivatives com-
puted over the entire image sequence
using 9 combinations of 3 spatial
scales and 3 temporal scales. This
descriptor is closely related to [62]

To obtain affine contrast invariance, the N-jets as well
as the spatio-temporal gradient vectors are normalized
to unit L-norm. For the principal component analysis
of the spatio-temporal gradient fields, the affine con-
trast normalization is performed at the level of scale
normalized image volumes. Additional details of imple-
mentation of motion descriptors are summarized in
Appendix B.

5. Matching and recognition

To find corresponding events based on the information
in motion descriptors, it is necessary to evaluate the simi-
larity of the descriptors. In this work, we use three alterna-
tive dissimilarity measures for comparing descriptors
defined by the vectors d; and d>:

e The normalized scalar product

2_id1(i)d (i)

S(dy,dy) =1 — (14)
VEL 0 Sd0)
o The Euclidean distance
E(d,dy) = Z(dl(i) — d(i))? (15)

1
e The y*-measure

i(dy,dy) :Z% "

The normalized scalar product and the Euclidean dis-
tance can be applied for comparing any type of local
space—time descriptors introduced above. The y°-measure
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Correct matches: changes in clothing, light, background

False matches

Fig. 10. Examples of matched local space-time features in sequences with human actions. The matches are generated by minimizing the dissimilarity

measure (14) between STG-PDHIST descriptors.

will be used to compare histogram-based descriptors only:
STG-HIST, OF-HIST, STG-PDHIST, OF-PDHIST.

Using the dissimilarity measures, we can match local
events in the image sequences by searching for the pairs
of events with the lowest dissimilarity of their descriptors.
Fig. 10 presents matched events for some sequences with
human actions. To generate the matches, we here used
the STG-PDHIST descriptor in combination with the nor-
malized scalar product. In Fig. 10(left) we observe that
matches are found for similar parts (legs, arms and hands)
at moments of similar motion. Note that the local nature of
the descriptors enables a correct matching of similar events
despite variations in the background, illumination and the
cloth of people. Pure local information, however, is not
always sufficient to discriminate between different types
of actions and events as illustrated in Fig. 10(right).

5.1. Classification

Until now we have focused on the task of representing
and matching individual events in image sequences. Given
the problem of motion recognition, it is natural to combine
evidence from several motion events for the purpose of
final classification. In this section we define two alternative

representations using combinations of motions events in
image sequences. For these representation we then formu-
late a NN and a SVM classifier that will be used for motion
recognition in the rest of this article.

Motion events originating from the same pattern of
motion are likely to have joint properties within an image
sequence in terms of relative positions in space—time. Such
properties could be used to disambiguate the mismatches
of local events and, hence, to increase the performance of
recognition. Stable modelling of space-time arrangements
of motion events, however, is not trivial due to the presence
of noise and individual variations of motion patterns
within a class. A similar problem of representing static
objects in images using constellations of local features
has been recently addressed for the task of object recogni-
tion in [37,30,13,54]. Currently, however, there exists no
general solution to this problem.

To avoid stability issues, in this work we consider local
properties of motion events only. Given n local events with
descriptors d; in the image sequence, we define two repre-
sentations as:

LME: Unordered set of local descriptors (“bag of
features”)
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9 ={dy,....d} (17)
LMEHist: Histogram of quantized descriptors

H=(h,....h) (18)

with each histogram bin /; corresponding to
one quantization label. Quantization is ob-
tained by K-mean clustering of descriptors in
the training set. For a test sequence, each
descriptor is assigned a quantization label
i=1,...,n corresponding to the label of the
nearest cluster.

5.1.1. Nearest neighbor classifier

Given a set of training sequences for each motion
class, we use a NN classifier to recognize motion clas-
ses in test sequences as follows. For LMEHist repre-
sentations we compute the dissimilarity between
histograms # (18) of the training and the test
sequences using one of the dissimilarity measures in
(14)—(16). The class of the test sequence is then deter-
mined by the class of the training sequence with the
lowest dissimilarity.

For sequences represented by unordered sets of event
descriptors Z (17), we adopt the following greedy match-
ing approach. Given sets of motion descriptors &, and
92, in two sequences, the dissimilarity measure is evalu-
ated for each pair of features (d},djz.), d € 9, df €D
according to (14)—(16). The pair of events with the min-
imum dissimilarity is matched and the corresponding
descriptors are removed from 2, and %,. The procedure
is repeated until no more feature pairs can be matched,
either due to a threshold on the dissimilarity or the lack
of data. The dissimilarity between two image sequences is
then defined by the sum of dissimilarities of N individual
event matches. Given training sequences and the test
sequence, the class of the test sequence is determined
by the class of the training sequence with the lowest
dissimilarity.

5.1.2. Support vector machines

Support vector machines (SVMs) are state-of-the-art
large margin classifiers which have recently gained
popularity within visual pattern recognition ([58,59]
and many others). In this section we first give a
brief overview of binary classification with SVMs
(for the extension to multi-class settings and further
details we refer the reader to [9,57]); then, we address
the problem of using local descriptors in an SVM
framework. For this purpose, we will describe a fam-
ily of kernel functions that, in spite of not being
Mercer kernels, can be effectively used in the frame-
work of action recognition.

Consider the problem of separating the set of training
data (x1,31), .. ., (X, V), Where x; € RY is a feature vector

and y; € {—1,+1} its class label. If we assume that the two
classes can be separated by a hyperplane w - x + b =0, and
that we have no prior knowledge about the data distribu-
tion, then the optimal hyperplane (as to say the one with
the lowest bound on the expected generalization error) is
the one which maximizes the margin [9,57]. The optimal
values for w and b can be found by solving the following
constrained minimization problem:

mibn%Hsz subject to y;(w-x;+b) =1, Vi
w,

=1,....m (19)

Solving (19) using Lagrange multipliers «; gives a classifica-
tion function

f@=w<iwww+0 (20)

i=1

where o; and b are found by the SVC learning algorithm
[9,57]. Most of the o;s” take the value of zero; those x; with
non-zero ¢; are the “support vectors”. In cases where the
two classes are non-separable, the solution can be found
as for the separable case except for a modification of the
Lagrange multipliers into 0 < «; < C, where C is the pen-
alty for the misclassification. To obtain a non-linear classi-
fier, one maps the data from the input space R" to a high
dimensional feature space s# by x — @(x) € #, such that
the mapped data points of the two classes are linearly sep-
arable in the feature space. Assuming there exists a kernel
function K such that K(x,z) = ®(x) - ®(z), a non-linear
SVM can be constructed by replacing the inner product
x - z in the linear SVM by the kernel function K(x,z)

fm=w<iwwmm+0 (21)

This corresponds to constructing an optimal separating
hyperplane in the feature space.

SVMs have proved effective for recognition of visual
patterns like objects and categories using global descriptors
[45,7,31]. Particularly, several authors have shown that
Gaussian kernels

KGauss(xa Z) = eXP{—V Z ||X; - Zi||2} (22)

or x> kernels [1]

sz(xa Z) = CXP{—VXZ(xa Z)}, Xz(xaz)

i — Zi|2

7 bxi + zif 3)
perform well in combination with histogram representa-
tions [7,45]. Hence, in this paper we use kernels (22) and
(23) within SVM when recognizing motion in image se-
quences represented by the histograms of quantized events

H (18).
Now we turn to the problem of using SVMs with local
motion events. Given the representation of two image
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sequences by the sets of local descriptors &, and &, (17), it
is possible to use 2, and %, as input for SVMs via a class
of local kernels defined as [58]

Ki(21,%:) =YK(21,2:) + K(Z2, D)) (24)

with
n

. 1
K(21,%2,) = o arglmax{Kl(d;,df)} (25)
1=

Different choices are possible for the local feature similarity
kernel K;, for instance:

Ki=en{-o(1- ||ix—_u’:T||Tz_—”;i||) j (26)

or the Gaussian and y” kernel given in (22) and (23). The
family of kernels given in (24) and (25) relies on the match-
ing of corresponding events in &; and %,. For each local
event with descriptor d! in the first sequence, Eq. (25) en-
forces the search for the best matching event with descrip-
tor djz. in the second sequence according to a similarity
measure given by the local kernel K. Local kernels can en-
force either one-to-one or one-to-many matching. It is also
possible to enforce a threshold on the similarity value given
by K, so to consider significant event matches only.

Despite the claim in [58], the kernels in (24) and (25) are
not Mercer kernels. However, they have been empirically
demonstrated to give highly useful results in visual applica-
tions such as object recognition and categorization [58,45].
Hence, we use this family of kernels for recognizing motion
in image sequences represented by local motion events
(LME).

6. Evaluation

In this section, we evaluate methods described in Sec-
tions 3-5, respectively. We perform evaluation using
video sequences with six types of human actions (walk-
ing, jogging, running, boxing, hand waving and hand
clapping) performed by different subjects in scenes with
homogeneous and complex backgrounds. Scenes with
homogeneous backgrounds (see Fig. 11) are used initially
to evaluate velocity-invariance of adapted motion events
in Section 6.1, the performance of event descriptors in
Section 6.2 and the performance of event-based motion
recognition in Section 6.3. Finally in Section 6.4 we eval-
uate the performance of event-based action recognition
in complex scenes.

6.1. Evaluation of velocity adaptation

To evaluate the velocity adaptation procedure
described in Section 3, we here study event detection for
image sequences distorted by different amount of camera
motion. In particular, we evaluate (i) the repeatability of
motion events, (ii) the stability of event descriptors and
(iii) recognition performance for different velocities of

the camera. As test data we consider a subset of image
sequences from the database in Fig. 11 transformed by
the Galilean transformation G(v.,v,) in (3) with
vy ={.5,1.0,1.5,2.0,2.5} and v, =0. The transformation
was achieved by warping the original image sequences
with trilinear interpolation and in this way simulating
horizontal translation of the camera.”? We compare event
detection with and without velocity adaptation and evalu-
ate the following methods:

maxima of the space-time operator H (2)
without neither scale nor velocity adapta-
tion

maxima of the velocity-corrected operator
H_o.: (10) without iterative scale and veloc-
ity adaptation

maxima of H,,, with iterative scale adap-
tation only according to [26]

maxima of H,, with iterative velocity
adaptation and no scale adaptation (algo-
rithm in Fig. 4 without step 3)

maxima of H_,, in combination with iter-
ative scale and velocity adaptation accord-
ing to the algorithm in Fig. 4

Horig:

Hcorr:

HcorrSc:

HcorrVel:

HcorrScVel:

6.1.1. Repeatability

To evaluate the stability of event detection under Gali-
lean transformations, we compute the number of corre-
sponding (or repeating) events detected in different
Galilean transformed sequences of the same scene. For this
purpose, given the known value of G for each sequence, we
transform the positions of the detected events into the ori-
ginal coordinate frame by p = G~'p and match p with the
position of the events detected in the original image
sequence. The repeatability rate is then computed as a ratio
between the number of matched features and the total
number of features in both sequences.

Fig. 12 illustrates the repeatability averaged over all
sequences in the test set and computed for different velocity
transformations and for different methods of event detec-
tion. As can be seen, the curves cluster into two groups cor-
responding to high re-detection rates for events with
iterative velocity adaptation and to lower re-detection rates
for events without velocity adaptation. Hence, we confirm
that velocity adaptation is an essential mechanism for sta-
ble detection of the events under velocity transformations
in the data. By comparing the results of Horig and Hcorr,
we also observe a slightly better repeatability of events

2 Simulation of camera motion by means of interpolated warping was
chosen here due to practical considerations. Obtaining real video data for
the experiments in this section would require the recording of human
actions to be done simultaneously with several cameras translating at
different and well-controlled velocities. Although this type of data
acquisition is possible in principle, it would require specific equipment
that was not available at our disposal. We believe that the artifacts of
interpolation do not effect the results of this section in a principled way.
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§2
Walking

Jogging

Running

Boxing

Hand
waving

Hand
clapping

detected using the velocity-corrected operator (Hcorr). To
restrict the number of evaluated detectors, we will use
velocity-corrected detection only when evaluating the sta-
bility of image descriptors and the performance of
recognition.

6.1.2. Stability of descriptors

Galilean transformations effect the shape of events in
space-time and influence the values of the space-time
descriptors. To compensate for velocity transformations,
the covariance matrices £’ of the filter kernels could be
adapted to velocity values estimated either iteratively
according to the algorithm in Fig. 4 or in “one-step” (8).
The first approach is truly invariant under velocity trans-
formations and is natural when computing image descrip-
tors for velocity-adapted events (HcorrVel, HcorrScVel).
The other approach is less demanding in terms of compu-
tations, at the cost of approximative invariance to velocity
transformations. Such an approach is natural to combine

Fig. 11. Example frames from the human action database [51] with six classes of actions (walking, jogging, running, boxing, hand waving, hand clapping)
performed by 25 subjects in four scenarios: (s1) outdoors, (s2) outdoors with scale variation, (s3) outdoors with different clothes and (s4) indoors. The
database contains 2391 sequences in total. All sequences were taken over homogeneous backgrounds with a static camera with 25 fps frame rate. The
sequences were down-sampled to the spatial resolution of 160 x 120 pixels and have a length of four seconds in average. The database is publicly available
from http://www.nada.kth.se/cvap/actions/.

with events detected without iterative velocity adaptation.
For the evaluation we compute 4Jet-descriptors using: (i)
filter kernels with iterative velocity adaptation for veloc-
ity-adapted events HcorrVel, HcorrScVel; (ii) filter kernels
with one-step velocity adaptation for events HcorrSc,
Hcorr; (iii) separable filter kernels without velocity adapta-
tion for non-adapted events Horig, Hcorr here denoted as
HorigV0, Hcorr V0.

The stability of the descriptors is evaluated by comput-
ing the average Euclidean distance between pairs of
descriptors for corresponding events. The pairs of corre-
sponding events are determined as in the repeatability test
above. The results of the evaluation are illustrated in
Fig. 12(b). As can be seen, the most stable method with
the least Euclidean distance between the descriptors corre-
sponds to the combination of events and descriptors com-
puted with the iterative velocity adaptation (HcorrVel,
HcorrScVel). The performance of the descriptors with
approximative velocity adaptation (HcorrSc, Hcorr) is
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Fig. 12. Evaluation of local motion events under Galilean transformations. (a) Repeatability of motion events for different values of the velocity; (b) mean
Euclidean distance between 4Jet-descriptors of corresponding events in the original and in the velocity-warped sequences. The horizontal line in the graph
corresponds to the mean distance between all descriptor pairs in the sequences; (c) average performance of action recognition subject to velocity

transformations in the data.

better than for descriptors without velocity adaptation
(HorigV0, HcorrV0), however, it is outperformed signifi-
cantly by the methods involving iterative velocity adapta-
tion. Hence, a more accurate estimation of true Galilean
transformations using the iterative velocity adaptation
appears to be crucial for obtaining stability under velocity
transformations.

6.1.3. Recognition performance

Besides the stability of image descriptors and the
repeatability of event detection, reliable matching and
motion recognition also requires the motion events to
be discriminative. Here, we evaluate the discriminative
power of the velocity-adapted events and the stability of
the recognition performance under Galilean transforma-
tions. We consider an action in a test sequence as cor-
rectly recognized if it corresponds to the action of a
person in the most similar training sequence. The similar-
ities between sequences are computed using greedy match-
ing in combination with the Euclidean distance metric and
4Jet-descriptors. The sequences for the test and the train-
ing sets here correspond to a subset of outdoor scenes sl
illustrated in Fig. 11. Different subjects were used in the
training and in the test sets while the recognition perfor-
mance was averaged over 100 random permutations with
respect to the subjects.

Fig. 12(c) illustrates the results of motion recognition
for different velocity transformations and for different
types of adaptation of motion events. As can be seen, the
stable curve under different velocity transformations corre-

sponds to the iterative velocity adaptation of motion events
and descriptors (HcorrScVel). However, the best recogni-
tion performance is achieved for the velocity value v, =0
for methods without iterative velocity adaptation. An
explanation for the maximum at v, =0 is that both the
training sequences and the original test sequences were
recorded with a stationary camera. Hence, the velocities
of the people in the test and training sequences are similar.
Moreover, the relatively low recognition rate of HcorrSc-
Vel at v, =0 can be explained by the loss of discriminative
power associated with the velocity adaptation. Velocity is
indeed an important cue when discriminating between,
for example, a walking and a running person. Since veloc-
ity adaptation cancels this information from the local
descriptors, it is not surprising that HcorrScVel performs
slightly worse than the other methods when the velocity
in the training and in the test sets coincide. Hence, the sta-
bility with respect velocity transformations is here achieved
at the cost of a slight decrease in the recognition perfor-
mance. This property will become even more evident in
the next section.

6.2. Evaluation of local motion descriptors

In this section, we evaluate and compare the motion
descriptors introduced in Section 4. For this purpose
we perform motion recognition experiments using 192
sequences with six types of actions from the database
in Fig. 11 performed by eight different individuals. To
assess the generalization performance of the method we
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present recognition results for different number of ran-
domly selected training subjects. We used a NN classifier
and three dissimilarity measures according to Section 5.
Since the recognition performance was found to be
dependent on velocity adaptation (Section 6.1.3), we per-
formed separate experiments using either scale-adapted
events or events detected with iteratively adapted scales
and velocities.

The results of experiments using different types of
local motion descriptors as well as different dissimilarity
measures are shown in Fig. 13. Due to the large number
of tested descriptors, we show only one descriptor within
each descriptor class that maximizes the recognition per-
formance within the class. We observe that the recogni-
tion rates are rather high for most of descriptor classes
while the highest value 96.5% is obtained for OF-
PDHIST descriptor in combination with the Euclidean
distance measure. Independently of the dissimilarity mea-
sure and the type of local measurements (STG or OF),
the position-dependent histograms result in the best per-
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formance when using scale-adapted events (see
Fig. 13(left)). This result coincides with a similar result
in the spatial domain, where the conceptually similar
SIFT-descriptor [36] was found to outperform other local
image descriptors when matching local events in static
images [42].

Concerning the other descriptors, we observe that optic
flow (OF) in combination with PCA does not perform
well in most of these experiments. Moreover, the OF
descriptors are consistently worse than the STG descrip-
tors in the experiments using velocity-adapted events
(see Fig. 13(right)). A reasonable explanation for the last
observation is the reduced discriminative power of the OF
descriptors due to the velocity adaptation. We note a
rather stable recognition performance for all the methods
depending on the number of training subjects.

The recognition performance for the events detected
without iterative velocity adaptation (see Fig. 13(left)) is
somewhat better than for the events with iterative velocity
adaptation (see Fig. 13(right)). Similar to Section 6.1.3 this
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Fig. 13. Results of recognizing human actions in a subset of 51 sequences of the database in Fig. 11. The recognition performance is reported for different
number of training subjects when using either (top) the Euclidean distance; or (bottom) the normalized scalar product for event comparison. (Left column)
Recognition rates obtained for scale-adapted events with complementary velocity correction; (right column) recognition rates obtained for scale- and
velocity-adapted events. All recognition results are averaged over 500 random perturbations of the dataset with respect to the subject. The results are
shown only for the descriptor maximizing the recognition performance within the descriptor class (e.g. MS4Jets is chosen among MS4Jets, MS2Jets, 4Jets

and 2Jets).
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can be explained by the fact that the camera was stationary
in both the training and the test sequences. Although veloc-
ity adaptation appears to be unnecessary in this case, the
advantage of velocity adaptation for motion recognition
will be emphasized in Section 6.4 when performing experi-
ments on image sequences with different amount of camera
motion.

6.2.1. Comparison to other methods

In this section, we compare the performance of local
motion descriptors to the performance of other related
representations of image sequences evaluated on the
same dataset. At first, we consider a method in terms
of spatial local features detected as maxima of Harris
operator [16] for every fourth frame in the image
sequence. The obtained features are adapted with respect
to the spatial scale using the approach in [32,40] and
spatial N-Jet descriptors are computed for each feature
at the adapted scale. The resulting features and the cor-
responding descriptors are then used for action recogni-
tion in a similar way as local motion events. Such a
method is very similar to ours, except that it does not
use any temporal information neither for the event
detection nor for the computation of the local descrip-
tors. The main motivation for comparing with this
approach was to confirm that the temporal information
captured by motion events is essential for the recogni-
tion and that the problem of action recognition in our
sequences is non-trivial from the view point of spatial
recognition. From the results obtained for this method
(Spatial-4Jets) presented in Fig. 14, we confirm that
the performance of the local spatial features is here close
to chance and that the use of temporal information is
essential for this data set.

Two other methods used for comparison are based on
global histograms of spatio-temporal gradients computed
for the whole sequence at points with significant temporal
variations of intensity. Such points are estimated by thres-
holding the first-order temporal partial derivative computed
for all points in the sequences (a number of different thresh-
olds were tested and only the best obtained results are
reported here). Separable histograms were computed for:

Global-STG-HIST-MS: Normalized components of spa-
tio-temporal gradients L./||VL],
L/IIVL|, L/|VL|| at multiple
spatial and temporal scales
Absolute values of components
in Global-STG-HIST-MS |L,|/
IVLI, ILIVL,  ILIIVLI at
multiple temporal scales only

Global-STG-HIST-ZI:

The representation Global-STG-HIST-ZI was used pre-
viously for the task of action recognition in [62]. Global-
STG-HIST-MS is an extension of [62] where we addition-
ally take the direction of the spatio-temporal gradients at
multiple spatial scales into account. To recognize actions

using these two types of global representations, we com-
puted histograms for all the sequences in the dataset and
used nearest neighbor classification and dissimilarity mea-
sures according to Section 5. The results for both of these
methods optimized over three dissimilarity measures are
shown in Fig. 14. As can be seen, both methods perform
rather well with the better performance for Global-STG-
HIST-MS. A representation in terms of local motion
events (OF-PDHIST) results in the best performance for
the methods compared here.

6.3. Evaluation of action recognition

In this section, we evaluate the performance of action
recognition on the full database illustrated in Fig. 11 using
both NN and SVM classifiers. To train the SVM classifier
all image sequences were divided with respect to the sub-
jects into a training set (8 persons), a validation set (8 per-
sons) and a test set (9 persons). The validation set was used
for parameter optimization while all the results are
reported for the test set.

6.3.1. Methods

We compare the results obtained with the combination
of three different representations and two classifiers. The
representations according to the definitions in Sections
4.3 and 5.1 are: (i) LME (17) with scale- and velocity-
adapted OF-PDHIST local motion descriptors; (ii) 128-
bin LMEHist histograms (18) defined on 4Jets local motion
descriptors and (iii) Global-STG-HIST. For the classifica-
tion we use: (i) SVM with either local feature kernel [5§]
in combination with LME or SVM with 3> kernel for clas-
sifying histogram-based representations LMEHist and
Global-STG-HIST (see Section 5.1.2) and (ii) nearest
neighbor classification in combination with MLE, MLEH-
ist and Global-STG-HIST according to Section 5.1.1.

6.3.2. Results

Fig. 15(top) shows recognition rates for all of the meth-
ods. To analyze the influence of different scenarios we per-
formed training on different subsets of {sl}, {s1,s4},
{s1,53,54} and {s1,s2,53,54} (see Fig. 11 for the definitions
of the subsets). It follows that LME with local SVM gives
the best performance for all training sets while the perfor-
mance of all methods increases with the number of scenar-
ios used for training. Regarding the histogram-based
representations, SVM outperforms NN as expected, while
LMEHist gives a slightly better performance than Glo-
bal-STG-Hist.

Fig. 15(bottom) shows confusion matrices obtained with
the LME + SVM method. As can be seen, there is a clear
separation between the leg actions and the arm actions.
Most of the confusion occurs between jogging and running
sequences as well as between the boxing and hand clapping
sequences. We observed a similar structure on the confu-
sion matrices for the other methods as well. The scenario
with scale variations (s2) is the most difficult one for all
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Fig. 14. Comparison of the recognition performance using local space-time events (OF-PDHIST) and other methods in terms of (Spatial-4Jets) spatial
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shown as plots for different number of training subjects and as confusion matrices for experiments with seven subjects in the training set.

the methods. The low spatial resolution of image sequences
is likely to be one among other factors disturbing the reli-
able interpretation in s2. The recognition rates and the con-
fusion matrix when testing on s2 only are shown in
Fig. 15(right).

When analyzing the confusion matrices in Fig. 15(bot-
tom), the confusion between walking and jogging as well
as between jogging and running can partly be explained
by the high similarities between these classes (running of
some people may appear very similar to the jogging of
the others). As can be seen from Fig. 15(top, right), the per-
formance of the local motion events (LME) is significantly
better than the performance of Global-STG-HIST for all
the training subsets. This indicates the stability of recogni-
tion with respect to scale variations in image sequences
when using scale-adapted local features for action repre-
sentation. Further, experiments indicating the stability of

LME representation under scale changes can be found in
[24].

6.4. Action recognition in complex scenes

In this section, we apply motion events to action recogni-
tion in complex scenes. We use a test set with 51 image
sequences of human actions that have been recorded in city
environments (see Fig. 16). The type of recorded actions
was the same as in the database of Fig. 11 except for jogging.
Most of the sequences contain heterogeneous background as
well as background motion caused by for example moving
cars. Moreover, about the half of all the sequences were
taken with a stationary camera, while the other half with a
moving camera that was manually stabilized on the subject.
Other variations in these sequences include changes in the
spatial scale (sequences 1-3, 17, 22-27, 37), occlusions
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(sequences 5, 35, 13, 36, 38) and three-dimensional view vari-
ations (sequences 17, 20, 22-24).

For the training, we used 192 sequences of human actions
with simple background from the database in Fig. 11. Since
the training and the test sequences were recorded with differ-
ent camera motions, we detected local motion events using
iterative adaptation with respect to scale and velocity
according to Section 3.3. For each event, we then computed
scale- and velocity-adapted local image descriptors accord-
ing to Section 4. To recognize image sequences we used
NN and SVM classifiers in combination with LME event-
based representations according to Section 5.1. The recogni-
tion rate was then computed as a ratio between the number of
correctly classified actions and the number of all sequences in
the test set. For the NN classifier, the recognition rate was
separately computed for all (valid) combinations of local
motion descriptors and the three dissimilarity measures in
(14)—«(16). Due to computational complexity, the SVM
method was only evaluated for the type of descriptor with
the best performance of the NN classifier.

Motion events are frequently triggered by the back-
ground motion in complex scenes. This behaviour is illus-
trated on one of our test sequences in Fig. 17(a) where a
large number of detected events is caused by the visual
interaction of cars and a person. In our recognition frame-
work outlier rejection is made implicitly by enforcing con-
sistent matches of events in the training and the test
sequences. When matching events in Fig. 17(a) to the train-

ing set with human actions, most of the background events
are discarded as illustrated in Fig. 17(b).

The recognition rates for the different types of local
motion descriptors are presented in Fig. 18 where for each
descriptor the result is optimized over different dissimilarity
measures (14)—(16). As can be seen, the highest recognition
rate is obtained for the STG-PCA and the STG-PDHIST
descriptors. We can note that the same type of descriptors
(in the same order) gave the best performance when evalu-
ated on action recognition in the simple scenes using
motion events detected with iterative velocity adaptation
(see Fig. 13(right)). Given a large number of all tested
descriptors, the consistency of these results indicates good
generalization of the method for scenes with complex
backgrounds.

Confusion matrices for the two best descriptors and the
NN classifier are illustrated in Fig. 18(bottom). As can be
seen, the performance of STG-PCA is almost perfect for
all actions except “running” which is recognized as ‘“‘jog-
ging”” in most of the cases. This confusion can be explained
by somewhat diffuse definition of the boundary between
these two classes of actions. If “running” and “jogging”
actions are merged into one class, the performance of
STG-PCA increases to 96%.

We can note that the 2Jets-descriptor with the forth best
performance is also the most simple one among all the
other alternatives and contains only 9 components. This
indicates that the information in the other types of descrip-
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Fig. 16. Image frames from 51 sequences with human actions performed in complex scenes. (1-27): Walking; (28-33): boxing; (34-40): running; (41-47):
hand clapping; (48-51): hand waving. The scenes contain variations in terms of heterogeneous, non-static backgrounds, variations in the spatial scale,

variations in the camera motions as well as occlusions.

Fig. 17. Illustration of motion events for a walking action with complex background. (a) Time-projection of all detected features onto one frame of a
sequence; (b) a subset of features in (a) that do match with events in a similar training sequence.

tors might be highly redundant. Among the histogram-
based descriptors, we can note that the position-dependent
histograms perform significantly better than position-inde-
pendent histograms, which is consistent with the results in
Section 6.2. When comparing the local measurements, we

note that descriptors based on spatio-temporal gradients
perform better than descriptors based on optic flow in most
of the cases.

Finally, we also compare the performance of the local
methods to the performance of the two global methods in
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terms of histograms of spatio-temporal gradients as
described in Section 6.2.1. From Fig. 18, we see that inde-
pendently of the type of local descriptors, the performance
of all tested local methods is better (or equal for OF-HIST)
than the performance of the global descriptors. The low
performance of the global histograms with the best perfor-
mance for Global-STG-HIST-MS (39.2%) is not surpris-
ing, since such descriptors depend on the motion of the
camera, scale variations and the motion in the background.
Thus, the results in this experiment confirm the expected
advantages of event-based local motion representations in
terms of (i) stability to scale and velocity transformations
due to the adaptation procedure in Section 3.3 as well as
(ii) stability to multiple motions in the scene due to the
local nature of the motion descriptors and the matching
procedure.

7. Summary and discussion

This paper explored the notion of local motion events
for motion recognition. The original motivation for the
method was to overcome difficulties associated with motion
recognition in complex scenes. Towards this goal, the
experiments in Section 6.4 confirmed the expected advan-
tage of event-based motion representations by demonstrat-
ing promising results for the task of recognizing human
actions in complex scenes.

To obtain invariance with respect to relative camera
motion we proposed to adapt motion events to Galilean
transformations estimated from the data. This method
has been shown to be essential for motion recognition in
scenes where methods for motion segmentation and/or

camera stabilization may not be reliable. Local velocity
adaptation, however, has been achieved at the price of
reduced discriminative power of the motion descriptors.
Hence, if the relative motion of the camera is known in
advance (e.g. for a fixed surveillance camera), a higher dis-
criminative power of the motion descriptors could be
obtained if the velocity adaptation stage is discarded. If
these specific assumptions are violated, however, we argue
that it may be a clear advantage to include an explicit
mechanism for local velocity adaptation as we do in this
work.

When comparing different types of local motion descrip-
tors, we found the position-dependent histograms to pro-
vide the best recognition performance. This result is
consistent with the findings in the spatial domain where
the related histogram-based SIFT descriptor [36] has been
demonstrated to give the best performance in [42]. We have
also shown how motion representations in terms of local
motion events can be combined with a SVM classifier for
an additional increase in recognition performance.

There are several natural extensions of this work. Cur-
rently we use a simplifying assumption of a single motion
class per image sequence. This assumption, however, is
not imposed by the local motion events per se and could
be relaxed if re-formulating the recognition methods in
Section 5 accordingly.

Another issue concerns relative structure of events in
space-time. Whereas here for simplicity reasons all the
events have been treated independently, there exists a
strong dependency among events imposed by the temporal
and the spatial structure of motion patterns. Using this
dependency as an additional constraint is expected to
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increase the recognition performance. A similar idea along
with the detection of multiple motions in a scene has been
recently addressed in [25] for the special case of periodic
motion.

Another domain of possible extensions of this work con-
cerns the observation that the spatio-temporal interest
point operator in this work returns information rich and
well localized but rather sparse responses in space-time.
This behaviour appears to be useful in some applications
such as the one presented in this paper or applications of
space-time sequence alignment as discussed in [25]. For
other applications the sparse nature of motion events in
this paper may be too restrictive. Concerning alternative
classes of spatio-temporal interest operators, a few comple-
mentary methods have been recently proposed and used in
[34,10,44]. Investigating other types of space—time interest
operators such as the spatio-temporal Laplacian or quad-
rature filter pairs may be a fruitful direction for future
research.
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Appendix A. Galilean-invariant block-diagonal form

In this section, we prove Proposition 3.3 in Section 3.2.
For this purpose we first consider

Lemma A.l1. For each non-degenerative second moment
matrix there exists a unique Galilean-related second moment
matrix with the block-diagonal form (5).

Lemma A.l follows directly from the unigness of the
solution for G(vy,vy) (7) and (8) that brings a second-
moment matrix into a block-diagonal form according
to (6).

Now let non-degenerative secgnd-moment matrices i,
tp, 1o be Galilean-related as u, — u, by Gy, and p, -
by G.,. Let also u. be of the block-diagonal form (5). Since
the Galilean relation of second-moment matrices is transi-
tive, it follows that u,.— u, by G., = GGy, By Lemma
A.1 we have that p. is a unique block-diagonal matrix that
is Galilean-related to p,. Since p. is also Galilean-related to
Up, We have that two arbitrary Galilean-related second
moment matrices have a unique block-diagonal form. This
proves Proposition 3.3.

Appendix B. Implementation details of motion descriptors

This section provides technical details for the event
descriptors in Section 4.

For a motion event defined by position x,y, ¢ scale val-
ues ¢, T and velocity values v,,v,, all histograms were com-
puted at 9 combinations of 3 spatial scales ¢/2, ¢, 20 and 3

temporal scales 7/2, 7, 2. The global histograms (descrip-
tor Global-STG-HIST) were computed for all combina-
tions of the spatial scales o € {1,2,4} and the temporal
scales 7 € {1,2,4}. When accumulating marginalized histo-
grams of spatio-temporal gradients, only image locations
with L, above a threshold (chosen manually by optimizing
the recognition performance on the validation set) were
allowed to contribute. Moreover, all the marginal histo-
grams were smoothed with binomial filters and were nor-
malized to unit /;-norm. For the position dependent
histograms (descriptors OF-PDHIST and STG-PDHIST),
we discretize each of the spatial and the time coordinates
in two bins (M = 2) and evaluate the position dependent
entities using Gaussian weighted window functions cen-
tered at (x + ag,y + a0,t + fr) with « =1.5 and f=1.5.
The spatial standard deviation of the Gaussian weighting
function was 3¢ and the temporal standard deviation 37.
For the position dependent histograms, 16 bins were used
for the components of the spatio-temporal gradients or
the optic flow, while 32 bins were used for the position
independent histograms. Thus, with M =2 the position
dependent histograms contain 9 scales X 8 positions X 3
derivatives x 16 bins = 3456 accumulator cells, and posi-
tion independent histograms contain 9 scales x 3 deriva-
tives X 32 bins =864 cells. For the local principal
component analysis, the gradient vectors and the optic flow
were computed in windows of spatial extent +3¢ and tem-
poral extent +3t around the interest points. Prior to the
computation of the principal components using D = 100
dimensions, the gradient vectors and the optic flow were
re-sampled to a 9 X 9 x 9 grid using trilinear interpolation.
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