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1 Introduction

Being able to track image structures over time is a useful and sometimes nec-
essary capability for vision systems intended to interact with a dynamic world.
There are several computer vision algorithms in which tracking arises as an
important subproblem. Examples of this include:

{ Fixation of a physical point/region in the world over time.
{ Object recognition in a dynamically varying environment.
{ Motion segmentation and structure from motion computations.

There is an extensive literature on tracking methods operating without a priori

knowledge about the world or speci�c models. The work in this direction can
be classi�ed into three main categories: correlation based tracking, optical ow
based tracking and feature tracking. As examples of feature tracking, Shapiro
[1] detects and tracks corners individually in an algorithm originally aimed at
applications such as videoconferencing. Smith and Brady [2] track a large set
of corners and use the results in a ow-based segmentation algorithm. Zheng
and Chellappa [3] track features while compensation for camera motion. Cipolla
and Blake [4] estimate time-to-contact by using snakes to track deforming image
features, and Koller et al. [5] track combined motion and grey-level boundaries
in tra�c surveillance. For edge based tracking approaches, see Faugeras [6].

The subject of this article is to consider the domain of feature tracking and
to complement previous works by addressing the scale problems arising in this
context. In most previous works, the analysis is performed at a single prede-
termined scale, and this may can cause severe problems if the size of image
structures change over time due to expansions or contractions.

We will show how an explicit mechanism for automatic scale selection can
be included in a feature tracker to handle tracking situations in which the size
variations are large. Besides avoiding explicit setting of scale levels for feature
detection, and thus overcoming some of the very fundamental limitations of
processing image sequences at a single scale, it will be demonstrated how scale
levels selected by a scale selection procedure are useful for adapting the window
size for correlation and as a matching cue. It will also be illustrated how an
appropriate choice of temporal scale can improve the performance.



Fixed scale tracking Adaptive scale tracking

Fig. 1. Illustration of the importance of automatic scale selection when tracking image
structures over time. A �xed scale tracker fails early when the size variations are large
(left), whereas all visible blobs are correctly tracked up to the last image when a
mechanism for adaptive scale selection has been included (right).



2 The need for automatic scale selection in tracking

Figure 1 shows a few snapshots from a sequence in which a person, dressed in a
spotted shirt, approaches the camera. In a rectangular area in the initial frame,
20 blobs have been detected. Then, a comparison is given between a �xed scale
and an adaptive scale tracker. Notably, the tracker using a �xed scale for blob
detection and a �xed window size for hypothesis evaluation by correlation will fail
after a number of frames and the features will be lost. The reason why this occurs,
is simply the fact that the blobs no longer exist at the predetermined scale. The
right column shows the result of incorporating a mechanism for adaptation of the
scale levels to the local image structure (details will be given in later sections).
As can be seen, all visible blobs are correctly tracked over the whole sequence.

A more general motivation to this study is that any feature detector su�ers
from localization errors due to, e.g, noise and motion blur. When detecting rigid
body motion or recovering 3D structure from feature point correspondences in an
image sequence, it is important that the motion in the scene is large compared to
the localization errors of the feature detector. If the inter-frame motion is small,
we therefore have to track features over a large number of frames to obtain
accurate results. This requirement constitutes a key motivation for including
a scale selection mechanism in the tracker, to obtain long feature trajectories
of features as input to algorithms for motion estimation and recovery of 3D
structure.

3 Feature detection with automatic scale selection

A natural framework to use when extracting features from image data is to
de�ne the image features from multi-scale di�erential invariants expressed in
terms of Gaussian derivative operators [7, 8], or more speci�cally, as maxima or
zero-crossings of such entities [9]. In this way, image features such as corners,
blobs, edges and ridges can be computed at any level of scale.

A basic problem that arises for any such feature detector concerns how to
determine at what scales the image features should be extracted, or if the fea-
ture detection is performed at several scales simultaneously, what image features
should be regarded as signi�cant. A framework addressing this problem has been
developed in [10, 9]. In summary, one of the main results from this work is a
general principle for scale selection, which states that scale levels for feature de-
tection can be selected from the scales at which normalized di�erential invariants
assume maxima over scales. In this section, we shall give a brief review of how
this methodology applies to the detection of features such as blobs and corners.
The image features so obtained, with their associated attributes resulting from
the scale selection method, will then be used as basic primitives for the tracking
procedure.



Normalized derivatives. The scale-space representation L [11, 12] of a signal f
is de�ned as the result of convolving f with Gaussian kernels g(�; t) for di�erent
values of the scale parameter t

L(�; t) = g(�; t) � f (1)

In this representation, -parameterized, normalized derivatives [13] are de�ned
by

@� = t=2 @x (2)

where t is the variance of the Gaussian kernel. From this construction, a normal-
ized di�erential invariant is then obtained by replacing all spatial derivatives by
corresponding normalized derivatives according to (2).  is chosen to be one for
blobs, 0.875 for corners and 0.75 for ridges.

Corner detection with automatic scale selection. A common way to de�ne a
corner in a grey-level image is as a point at which both the curvature � of a level
curve and the gradient magnitude jrLj are high [14, 15]. From the product of �
and jrLj3, we obtain the following essentially a�ne invariant expression

~� = LyyL
2

x + LxxL
2

y � 2LxLyLxy (3)

with its corresponding -parameterized, normalized di�erential invariant

~��norm = t2~�: (4)

In [16], a junction detector with automatic scale selection is formulated in terms
of the detection of scale-space maxima of ~�2norm, i.e., by detecting points in
scale-space where ~�2norm assumes maxima with respect to both scale and space.
To improve the localization of the corner feature, a modi�ed F�orstner operator
[17] is used to compute new localization estimates using scale information from
the detection step.

Blob detection with automatic scale selection. A straightforward method for blob
detection can be formulated in an similar way by detecting scale-space maxima
of the square of the normalized Laplacian

r2

normL = t (Lxx + Lyy): (5)

Ridge detection with automatic scale selection. In [13] a ridge detector for auto-
matic scale selection is formulated based on the di�erence between the squared
principal curvatures Lpp and Lqq of the grey-level landscape

AL�norm = t2 jL2

pp � L2

qq j = t2 ((Lxx � Lyy)
2 + 4L2

xy) (6)

In analogy with the corner detection method we can expect the scales where
r2

normL and AL�norm assume their maxima over scales to reect the size of
the corresponding image structures.



4 Multi-scale and multi-cue tracking and prediction

When tracking features over time, we can expect the position of the feature as
well as the appearance of its surrounding grey-level pattern to vary. To relate
features over time, we shall throughout this work make use of the common
assumption about small motions between successive frames. The tracking scheme
is based on a traditional predict-detect-match-update loop.

There are several ways to predict the position of a feature in the next
frame based on its positions in previous frames. Whereas the Kalman �lter-
ing methodology has been commonly used in the computer vision literature,
this approach su�ers from a fundamental limitation if the motion direction sud-
denly has changed. If a feature moving in a certain direction has been tracked
over a long period of time, then the built-in temporal smoothing of the feature
trajectory in the Kalman �lter, implies that the predictions will continue to be
in essentially the same direction, although the actual direction of the motion has
changed. It will hence be likely that the feature is lost at the discontinuity.

For this reason, we use a simpler �rst-order prediction, which uses the motion
between the previous two successive frames as a prediction to the next frame.

Within a neighbourhood of each predicted feature position, we detect new
features using the above mentioned detection procedure with automatic scale
selection. An important property of this method is that it automatically selects
smaller regions of interest for small-size image structures, and larger search re-
gions for larger size structures. This scale information is used for three main
purposes:

{ Setting the search regions for matching candidates.
{ Setting the window size for correlation matching.
{ Using scale stability as a matching condition.

In addition, for elongated structures, such as ridges, we de�ne elliptic regions of
interest by computing a second moment matrix for the distribution of directional
derivatives. With t denoting the scale of an image feature detected according to
section 3, this descriptor is de�ned as

� =

Z �
L2

x LxLy

LxLy L2

y

�
g(�; t)d� (7)

The correlation window size is determined by the largest of the semi-axes and the
size of the search region is set to the spatial extent of the previous image feature,
multiplied by a safety factor. Within this window, a certain number of candidate
matches are selected. Then, an evaluation of these matching candidates is made
according to the next section.

Based on the assumption of small inter-frame image motions, we use a mul-
tiple cue approach to the feature matching problem. Instead of evaluating the
matching candidates using a correlation measure on a local grey-level patch only,
as done in most feature tracking algorithms, we combine the correlation mea-
sure with signi�cance stability, scale stability and proximity measures as de�ned
below.



Patch similarity. Let C(A;B) be the Gaussian-weighted intensity cross-correlation
between two square image patches A and B, centered at each feature and with
the size set from the detection scale. Then, this normalized measure is

Scorr(A;B) =
C(A;B)p

C(A;A)C(B;B)
(8)

For anisotropic features, the shape of the Gaussian window is given by the second
moment matrix as de�ned in (7).

Signi�cance stability. The signi�cance of an image feature detected according to
section 3 is de�ned as the normalized response at the local scale-space maximum
(either by (4) or (5)). With RA and RB denoting the signi�cance measures of the
corresponding features A and B, we measure similarity by relative di�erences
according to

Ssign = j log RB

RA
j (9)

Scale stability. To measure the relative scale variation between two features A
and B, detected at scales tA and tB respectively, we de�ne

Sscale = j log tB
tA
j (10)

Proximity. We measure how well the position xA of feature A corresponds to
the position xpred predicted from feature B (with detection scale tB)

Spos =
kxA � xpredkp

tB
(11)

The division by
p
tB compensates for poor feature localization at coarse scales.

Combined similarity measure. The combined multi-cue similarity measure is
then

Scomb = ccorrScorr + csignSsign + cscaleSscale + cposSpos

The winner of the matching is the candidate having the highest similarity value
above a �xed threshold. The threshold is necessary to suppress false matches
when features disappear due to e.g occlusion. Each feature has been assigned a
quality measure indicating how stable it is over time. If a feature is matched, this
quality measure is increased and the position, the scale descriptor, the signi�-
cance value and the grey-level patch of the feature are updated. If no match is
found, the quality measure is decreased, the position is set to the predicted one
and the scale descriptor, the signi�cance value and the patch are left unchanged
(see [18] for further details about the scheme).

Finally, for each frame, the feature set is parsed to detect feature merges
and to remove features having too low quality values. When two features merge,
their trajectories are terminated and a new trajectory is initiated. In this way,
we obtain more reliable feature trajectories for further processing.



5 Experimental results

Corner tracking. Let us �rst demonstrate the performance of the algorithm
when applied to an image sequence consisting of 60 frames. In this sequence,
the camera moves in a fairly complex way relative to a static scene. The objects
of interest on which the features (here corners) are detected are a telephone
and a package on a table. From the junctions detected in the initial frame, a
subset of 14 features were selected manually. Figure 2 shows the initial frame
and the situation after 30, 50 and 60 frames. The size of the circles correspond to
the detection scales of the features, black segments on the trajectories indicate
matched positions while white segments show unmatched (predicted) positions.

Note how the detection scale adapts to the image structure when we approach
the objects; tracked sharp corners are still detected at �ne scales while blunt
corners are detected at coarser scales. These blunt corners are lost if similar
tracking is performed at a �xed scale.

Blob tracking. Besides the ability to track blobs under large size variations, as
shown already in �gure 1, let us illustrate how stability of feature trajectories over
a large number of frames is likely to give us trajectories corresponding to reliable
and stable physical scene points or regions of interest on objects. In other words,
responses due to noise, illumination and temporary occlusions can be suppressed.
Figure 3 shows 4 frames from a sequence in which the 10 most signi�cant blobs
have been tracked in a region around the face of the subject. The subject �rst
approaches the camera and then moves back to his initial position. The �gure
shows the initial frame and the situation after 20, 45 and 90 frames. As can be
seen, the remaining four features correspond to the nostrils and the eyes. This
ability to register stable image structures over time is clearly a desirable quality
in many computer vision applications. And as we stress again, for general scenes
with large expansions or contractions, a scale selection mechanism is essential to
allow for such registrations.

Ridge tracking. Figure 4 shows a few frames from a sequence with hand ges-
tures, in which the two most signi�cant ridges, corresponding to the thumb and
the fore�nger, have been detected in the initial frame. The ridge operator is
anisotropic and the features are represented by elliptical regions given by the
second moment matrix according to (7). The �gure shows the situation after
tracking over 40, 110 and 150 frames. Again, the scale selection mechanism cap-
tures the large size variations in the scene.

A more extensive experimental evaluation of the performance of the tracker
is presented in [18].

6 The inuence of temporal scale

So far we have shown how the performance of a feature tracker can be improved
by automatic selection of spatial scales. To illustrate the importance of temporal
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Fig. 2. (Left column) Corner tracking using automatic scale selection, the initial
frame with 14 selected corners and the situation after 30, 50 and 60 frames. Sharp
corners are detected at �ne scales while blunt corners are detected at coarser scales.
As can be seen, all visible corners are correctly tracked.

Fig. 3. (Right column) Blob tracking using automatic scale selection, the initial
frame and the situation after 20, 45 and 90 frames. Note that blob responses that are
unstable over time are suppressed.



Ridge tracking Tracking at coarse temporal scales

Fig. 4. (Left column) Ridge tracking of the two most signi�cant ridges in a hand
sequence. The images show the situation after 40, 110 and 150 frames.

Fig. 5. (Right column) The result from feature tracking at coarse temporal scales
in a scene with transparent motion. The illustration shows a blob tracked in the time-
�ltered sequence superimposed on the original sequence.



scales in this context, let us consider an example with transparent motion. A
well-known problem in computer vision concerns how to maintain tracking in
situations when objects are (partly) occluded. In transparent motion scenes, we
can have distant slowly moving objects of interest which are occluded by nearby
fast moving structures. Under such circumstances, a normal feature tracker will
inevitably fail. However, if we apply the tracker at coarser temporal scales in
a spatio-temporal scale-space representation [19], the performance can be im-
proved substantially if we select an appropriate temporal scale.

Figure 5 shows an example of this where we track a distant object sen
through fast moving vegetation in the foreground. In many frames of the se-
quence, the object is hardly visible at all and hence impossible to detect if the
analysis is restricted to individual frames only. The �gure shows the tracked blob
in every 10th frame of the time-�ltered sequence superimposed on the original
sequence. The tracking is only succesful if it is performed at a suitable temporal
scale and using automatic selection of spatial scales. Here, the temporal scale is
selected manually, and the example clearly illustrates the need for a mechanism
for automatic selection of temporal scales in this kind of tracking situations. A
basic framework for approaching this problem is presented in a companion paper,
see [20]. So far, however, this approach has not been algorithmically integrated
with the feature tracker, and we are currently working on the topic.

7 Summary

We have presented a framework for feature tracking in which a mechanism for
automatic scale selection has been built into the feature detection stage and
the additional attributes of the image features obtained from the scale selection
module are used for guiding the other processing steps in the tracking procedure.

We have argued that such a mechanism is essential for any feature tracking
procedure intended to operate in a complex environment, in order to adapt the
scale of processing to the size variations that may occur in the image data as
well as over time. If we attempt to track features by processing the image data
at one single scale only, we can hardly expect to be able to follow the features
over large size variations. This property is a basic consequence of the inherent
multi-scale nature of image structures, which means that a given object may
appear in di�erent ways depending on the scale of observation.

Speci�cally, based on a previously developed feature detection framework
with automatic scale selection, we have presented a scheme for tracking corners,
blobs and ridges over time in which:

{ the image features at any time moment are detected using a feature detection
method with automatic scale selection, and

{ this information is used for

� guiding the detection and selection of new feature candidates,
� providing context information for the matching procedure,
� formulating a similarity measure for matching features over time.



Besides avoiding explicit selection of scale levels for feature detection, the fea-
ture detection procedure with automatic scale selection allows us to track image
features over large size variations. As demonstrated, this mechanism can sub-
stantially improve the performance relative to a �xed-scale feature tracker.

Since the scale levels reect the spatial extent of the image structures, we
can also use this context information for avoiding explicit settings of distance
thresholds and prede�ned window sizes for matching. Moreover, by including
the scale, position and signi�cance information associated with the image fea-
tures from the scale selection procedure into a multi-cue similarity measure, we
showed how we in this way can improve the reliability of the low-level matching
procedure.

Of course, there are inherent limitations in tracking each feature individually
as done in this work, and there are always a number of situations where the
tracking algorithm will fail. Typically, this occurs because of rapid changes in
the local grey-level pattern around the feature, corresponding to violations of
the assumption about small inter-frame motions.

A notable conclusion that can be made in this context, is that despite these
limitations, we have shown by examples that the resulting tracking procedure
is able to track most of the visible features that can be followed over time in
the sequences presented in this article. By this we argue that the type of frame-
work presented here provides an important step towards overcoming some of the
limitations in previous feature tracking algorithms.

We have also shown an example of a situation where temporal �ltering highly
improves the tracking performance. We are convinced that in a integrated track-
ing system, working in a spatio-temporal scale-space, mechanisms for automatic
selection of both spatial and temporal scales are necessary.
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