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1 Att lisa innan vi borjar

En elev dr den som tar del av undervisning och da oftast i en skola. Den
som mer sjalvstindigt bedriver studier vid en hégskola brukar ddremot
kallas student. Ordet elev ar slikt med verbet elevera, som betyder lyfta
upp. Eleven dr alltsa den som blir upplyft till hégre insikter av sin ldrare,
medan studenten sa att sdga far lyfta sig sjilv i haret.

Wikipedia — https://sv.wikipedia.org/wiki/Elev

1.1 Varfor lasa matematik?

Studier av matematisk teori ar ett ypperligt tillfille att lira sig att analysera,
resonera, argumentera, strukturera och ordna. Matematik bygger pa abstrak-
tion och den som behérskar abstraktion besitter en enorm styrka i analytiska
sammanhang.

Manga fenomen i var vérld beskrivs av matematiska modeller vars analys
kréaver en fortrogenhet med mer eller mindre avancerad matematik.

1.2 Uppmaning till lasaren av detta hifte

Detta &ar ett héfte, som pa ett kompakt vis beskriver de grundlaggande be-
greppen inom envariabelanalys. Lésaren uppmanas att ldsa héftet med ett
rakneblock bredvid sig for att komplettera med de steg som uteldmnas. Dessa
steg ska forhoppningsvis vara mojliga for den engagerade ldsaren att genom-
fora. Det ar med andra ord inte forvintat att lasaren endast ska kunna sitta
med héftet och tillgodogora sig innehallet. Till varje kapitel finns det Gvningar
for att lasaren ska kunna se om vederborande har tillgodogjort sig materialet.

For de lasare som inte dr vana att arbeta med abstrakta synsétt kommer
héftet kanske att verka onddigt komplicerat skrivet. Abstraktioner kan verka
krangligt for den som &r ovan, men for den som blivit van med abstraktioner &r
de en enorm killa till forenkling. Abstraktion mojliggdr att metoder, designer
och forhallningssétt kan fa storre genomslagkraft och bli applicerbara i manga
konkreta situationer. Det &r i denna anda som detta héfte &r skrivet. Se detta
som en mojlighet att lara dig det abstrakta synsétt, som &r ett sa ovirderligt
redskap inom alla vetenskapliga discipliner.

Till de flesta definitioner och satser foljer konkretiserande exempel. Dessa ex-
empel ar inte i fokus, utan tjanstgor som redskap for att forsta vad definitionen
eller satsen innebar.

Att ldsa matematik ar svart. Det finns inte nagra genvigar till att beméstra
dess struktur. Fokuserat, malinriktat och reflekterande arbete dr den enda
viagen till insikt. Med denna insikt foljer sjalvfértroende inom abstraktion,
generaliserande och analytiskt ténkande. De flesta foretags frontlinje utgor



utforskning av det okénda. Det &r infor den situationen en ingenjor maste
forbereda sig.

Anvand garna wikipedia for att s6ka pa de begrepp och metoder som ni grubb-
lar pa.

I lydelsen till en del uppgifter finns ett datum angivet. Det hor till en tentamen
som aterfinns pa denna sida
http://www.math.kth.se/math/GRU/Extentor2/SF1625.html.

1.3 Larandemal i SF1673

Studenten forviantas/skall efter genomgéangen godkéand kurs

o Visa forstaelse av funktionsbegreppet, inklusive definitions- och varde-
méngd, sammansatta och inversa funktioner. (3.1 —3.2))

e Kunna egenskaperna hos, och definitionen av, de elementéra funktioner-
na: polynom, rationella funktioner, potensfunktioner, exponential- och
logaritmfunktioner, trigonometriska funktioner samt deras inverser, ar-

cusfunktionerna. Kunna deras derivator inkl. hiarledning. f
:

e Kunna definitionen av kontinuitet och grénsvirde samt anvinda dessa

for att berakna gransvirden i enklare fall. (4.1]

e Kunna grénsviardeslagarna inkl. héarledning, samt kunna berdkna all-
ménna gransviarden med hjilp av dessa samt med Taylors formel och

L’Hospitals regel. E[)

e Kunna derivatans definition samt kunna hérleda allménna deriverings-

regler och tillimpa dem. (8.1]

o Kunna formulera, och hérleda, medelvardessatsen (differentialkalkylens),
dess konsekvenser for att bestdmma var funktioner vixer resp. avtar.
Kunna anvianda detta i problem.

e Kunna formulera och anvinda satserna om mellanliggande varden och
existens av storsta och minsta viarden for kontinuerliga funktioner pa
slutna och begransade intervall. ([7.2)

e Kunna med derivatans hjalp karakterisera lokala och globala extrem-
punkter, utféra kurvundersokning, samt hérleda olikheter. —-18.13)

e Kunna bestdmma primitiva funktioner till enklare elementéra funktio-
ner, inkl. allmédnna metoder for detta, bl. a. substitution och partialin-

tegrering samt deras hérledning. (11.7]—[L1.10))

e Kunna formulera, och hérleda, integralkalkylens huvudsats och hur den
anvands for att berdkna integraler med hjalp av primitiva funktioner.
(11.7)


http://www.math.kth.se/math/GRU/Extentor2/SF1625.html

e Kunna avgora huruvida givna enklare generaliserade integraler och serier

konvergerar eller divergerar.

e Kunna anvénda integraler for att hérleda formler for kurvldngd, areor
och volymer, samt kunna anvinda formlerna. ([14)

e Kunna l6sa enklare forsta ordningens differentialekvationer, specifikt lin-
jara och separabla differentialekvationer. (15.1} {15.4)

e Kunna l6sa andra ordningens linjara differentialekvationer med konstan-
ta koefficienter, inklusive begynnelse- och liknande problem, samt be-

stdmning av partikuldrlosning i enklare fall. (15.2[—[15.3))

e Kunna formulera Taylors formel och bestdmma Taylorpolynom samt

skatta resttermen i enklare fall. (8.4 [o] [11.11])

o Lasa, tolka och tillgodogora sig en matematisk text, samt att kunna
uttrycka sig matematiskt korrekt i berdkningar och bevis. (1] -

o Kunna tolka matematiska koncept och satser intuitvt och grafiskt, t.ex.
genom att skissa grafer, forklara den geometriska innebérden av ett ar-
gument, eller rita en enkel skiss som belyser idéen bakom ett bevis.

e Visa forstaelse for matematiskt teoribygge, t.ex rollen av satser, defini-
tioner och bevis och hur dessa hjilper oss att genomfora berdkningar.
Visa forstaelse for den matematiska (axiomatiska) metoden genom att
kunna analysera satser, skapa motexempel och kunna avgéra vad som
ar ett bevis och vad som ar ett informellt argument.

For hogre betyg ska studenten ocksa:

e Kunna l6sa svarare, mer sammansatta problem och visa storre insikt i
teorin och begreppen.

e Visa god forstaelse for teorin om kontinuerliga funktioner och reella tal.
Specifikt skall rollen av kompletthetsaxiomet kunna forklaras och an-
vindas for att visa existens av gransviarden, mellanliggande véirden etc.

e Kunna generalisera och anpassa metoderna till delvis nya situationer.

Kursen &r dven en inkorsport till den hogre matematiken. Detta innebar att
ni troligen kommer att pa att dndra uppfattning om vad matematik &r. Ni
kommer att fokusera pa analysen av begrepp och pa satser, definitioner och
bevis. Mélsdttningen ar att ni, efter avslutad kurs, skall ha en annan bild av
vad matematik dr och vad matematisk kunskap innebér och en mycket djupare
forstaelse av den matematik som ni ldrde er i gymnasiet.



1.4 Definitioner, satser och bevis

Matematik struktureras i huvudsak med hjilp av definitioner och satser. En
definition ar ett inforande av ett begrepp. Foljande &ar ett exempel pa en
definition

Definition 1.1. Ett heltal ¢ dr jamnt om det finns ett heltal b sddant att
a = 2b.

En sats dr inget annat dn ett pastaende, och ett bevis av satsen ar ett logiskt
bindande resonemang som visar att satsen ar sann. Exempelvis har vi

Sats 1.2. Produkten av tva jimna tal dr ett jimnt tal.

BEvis: Lat a; och ag vara tva jamna tal, d.v.s. enligt definitionen finns det
tal b1 och by sddana att a; = 2b; och as = 2by. Produkten kan skrivas som

aijay = (2b1)(252) = 4[)1[)2 = 26,

dér ¢ = 2b1by. Eftersom c ar ett heltal ar produkten aterigen enligt definitionen
ett jamnt tal. [

1.5 Ekvivalenser och Implikationer

For att kunna resonera och formulera pastaenden sa anvands oftast implikatio-
ner och ekvivalenser. Pastaenden eller utsagor ar information som antingen
ar sanna eller falska. Exempelvis dr det sant att Mdnniskan dr ett djur och
att 42 = 42. Exempel pa ett falskt pastdende ar att 39 = 41. Ett uttryck som
exempelvis /7 skiljer sig fran ett pastaende ty det har inget sanningsvérde.

For att kunna analysera ett pastaendes sanningsviarde sa anvands ofta san-
ningsvirdetabeller. Exempelvis definieras sanningsvirdena for och (notation
A) och eller (notation V) foljande:

ANB AV B

(1.1)

Yo
0w bW
T2l eS|

Yo
0w bW
n nn <

Lat A vara ett pastaende. Symbolen —A betecknar icke A. Pastaendet —A ar
sant om A &r falskt och falskt om A ar sant.

Exempel 1.3. Pastdendet (42 = 42 och 7 = 9) &r falskt. Medan pastaendet
(42 = 42 eller 7 =9) ar sant. A



Definition 1.4. Lat A och B vara pastaenden. Vi definierar pastaendet A &ar
ekvivalent med B eller i notation A <= B till att ha sanningsviardet som
ges av foljande tabell

A B|A < B

F F S

F S F (1.2)
S F F

S S S

Sanningstabellen sédger att A ar ekvivalent med B om och endast om A och B
ar sanna eller om A och B ér falska.

Exempel 1.5. Pastaendet (7 =9 om och endast om 15 = 21) dr sant. A
Exempel 1.6. Pastiendet (2 = 4 om och endast om x = 4+2) ir sant. A

Definition 1.7. Lat A och B vara pastaenden. Vi definierar pastdendet A im-
plicerar B eller i notation A = Beller B <= A till att ha sanningsvéirdet
som ges av féljande tabell

A B|A— B

F F S

F S S (1.3)
S F F

S S S

Notera att A <= B om och endast om A = B och A «— B.

Exempel 1.8. Pastaendet (om 7 =9 sd ar 15 = 15) ar sant. A

Det ar fornuftigt att definiera implikationen sa som det ar gjort. Ett exempel
som hjélper till med intuitionen ar kanske féljande: Om du ska bevisa Om det
regnar i morgon sd har Kalle paraply. sa racker det med att konstatera att
Kalle har paraply givet att det regnar i morgon. Fallet att det inte regnar &ar
ointressant!

1.6 Mangder

En mangd ar en samling ting, exempelvis tal, symboler eller andra ménger.
Dessa ting kallar vi for element i mangden. Det enklaste sdttet att beskriva
en mangd ar att rdkna upp dess element. Vi anvinder oss da av en kommase-
parerad upprékning av elementen innanfor symbolerna {}. Ett sadant exempel
ar mangden

A={1,3,a,7, Pelle}.

10



Detta betyder att A &r en méngd som innehaller elementen 1,3, a, 7 och Pelle.
Vi séager att A 4r méngden av 1,3,a,7 och Pelle.

Om A ar en méngd och x ar ett element i mangden A sa skriver vi z € A och
sager att = tillhor A. Exempelvis géller att 3 € {1,3,7} och b € {a,b, 10, 3}.
Att ett element x inte tillhér méngden A skrivs ¢ A. Den tomma mangden
innehaller ingenting och betecknas @.

Ett annat sitt att beskriva en mingd ar att skriva
{z € D : villkor pa z}. (1.4)

Med detta menar man méangden av alla element i D som uppfyller de givna
villkoren. Vi tar oss dven friheten att uteldmna méngden D om den &r given
utifran villkoren pa x. Som exempel tar vi

B={ne{1,2,3,...}: narudda} = {n: n ar ett positivt udda heltal}

och
C={ye{l1,2,3,4} : y > 2}.

Méangden B innehéller alla udda positiva heltal, medan C' innehaller alla ele-
ment fran méngden {1,2,3,4} som &r storre an 2. Alltsa har vi

B={1,3,5,7,9,11,...} och C ={3,4}.

Det finns ytterligare ett sédtt att beskriva méngder, ndmligen att skriva dem
pa formen
{uttryck i z: x € D}.

Med detta menar man méngden av virden som uttrycket kan anta nar x 16per
genom alla element i mdngden D. Som exempel tar vi

E={2n:ne{1,2,3,...}}.

Detta &r helt enkelt ett alternativt sétt att beskriva méngden av jdmna positiva
heltal. Med andra ord géaller att

{2n:ne{1,2,3,...}} ={ne{1,2,3,...}: n ir jamnt}.

Exempel 1.9. Lat A = {4,5,8,4711,12,18} och B = {x € A: z > 10}. Da
ar B = {12,18,4711} medan {z € A : x < 3} = @. Vidare har vi att 4 € A
och 4 ¢ B. A

Vi bryr oss inte om i vilken ordning eller hur manga ganger elementen réknas
upp och dédrmed géller till exempel

{1,2,3,4} = {3,1,4,2} = {1,3,3,1,2,4,4,1,3,2,4}.

Vi anvander dven notationen ay, as, ..., a, € A for att sdga att a; € A, as € A
och a,, € A.

11



Definition 1.10. Lat A och B vara méngder. Vi sdger att A dr en delméngd
av B om for varje x € A sa géller att x € B. Detta betecknas A C B.

Exempel 1.11. Méngden {1,a} &r en delméngd till {1,3,a}, eftersom alla
element i {1,a} finns i médngden {1,3,a}. Vi skriver {1,a} C {1, 3,a}. A

Definition 1.12. Antag att A och B a4r mingder. Unionen av A och B
bestar av de element som ligger i ndgon av mangderna och betecknas A U B.
Snittet av A och B bestar av de element som ligger i bada méngderna och
betecknas AN B.

Exempel 1.13. Lat A = {1,3,5,6} och B ={5,3,4711}. Da har vi AUB =
{1,3,5,6,4711} och AN B = {3,5}. A

Det ar dags att titta pa nagra viktiga talméngder. Den méngd vi anviander for
att rdkna foremal dr de naturliga talen

N=1{0,1,2,3,...}.
Tar vi med negativa tal far vi heltalen
Z=A...,-3,-2,-1,0,1,2,3,...}.

Beteckningen kommer fran tyskans zahl som betyder tal. Braken eller de ra-
tionella talen

@:{Z:a,bez,b;éo}.

Hér kommer beteckningen fran engelskans quotient. Med R betecknar vi de
reella talen. De reella talen kan ses som méngden av alla tal pa tallinjen,
exempelvis 0, —1,3/2, —527/3, /2 och 7. Det ligger utanfér ramarna for detta
héfte att gora en stringent definition av de reella talen. Vi betecknar med

C={a+1ib: a,b € R,i &r den imaginidra enheten}

de komplexa talen. Notera att N C Z C Q C R C C. Det sista, att R C C,
foljer eftersom de komplexa talen med endast realdel kan identifieras med det
reella talen.

Exempel 1.14. Vi har att N={n € Z:n > 0}. A

Exempel 1.15. Mangden {n € Z : n = 2k for nagot k € Z} &r méingden av
alla jamna heltal. Denna méngd kan ocksé skrivas som {2k: k € Z}, eller som
(.., —4,-2,0,2,4,...}. A

Exempel 1.16. Lat oss papeka att en mangd dven kan ha andra méngder
bland dess element. Exempelvis kan vi lata

A={2,3{-1,1},4},
och vi har att {—1,1} € A, det vill sdga mangden {—1,1} &r ett element i
méngden A. Observera att —1 ¢ A. A
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Lat A vara en mingd. For att ta bort element ur A anvénds symbolen \. Vi
definierar A\ B = {x € A: x ¢ B}. Exempelvis ar R\ {0, 1} méngden av alla
reella tal utom 0 och 1.

1.7 Ovningar

Ovning 1.1. Definiera vad som menas med ett udda heltal. Visa dérefter med
hjalp av definitionen att

a) summan av tre udda tal &r udda
b) produkten av tva udda tal ar udda

Ovning 1.2. Reflektera 6ver anvindningen av implikationer och/eller ekvi-
valenser genom att 16sa ekvationerna

a) V2—z=x
b) V2zr+5—-1==x

Ovning 1.3. Lat A och B vara pastienden. Visa med hjilp av sanningsvir-
detabeller att

a)
(A = B) < (-AV B) (1.5)

b) De Morgans lagar géller:
(FAAN-B) <= —(AVB) (1.6)

Ovning 1.4. Lat X = {-1,{-2},0,2,{@,1}}. Vilka av foljande pastdenden
ar sanna?’

Ovning 1.5. Betrakta foljande pastienden:

a) Min hatt, den har tre kanter.
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b) Tre kanter har min hatt.

¢) Och har den ej tre kanter, sa dr den ej min hatt.

Lat A(x) vara pastaendet x dr min hatt och 1at B(x) vara pastaendet = har
tre kanter. Skriv ovanstdende pastaenden med hjélp av A(x), B(x), implika-
tionspilar ( =) och negationer ().

Ar nagra av dessa pastaenden ekvivalenta? Implicerar nigot av dem nigot av
de andra? Skriv upp alla implikationer som géller mellan dessa pastaenden.

Ovning 1.6. Visa med hjilp av sanningstabeller att A = B ér ekvivalent
med B = —A.

ﬁvning 1.7. Lat b > 2 vara ett heltal. Definiera vad som menas med att ett
heltal &r delbart med b. Visa darefter med hjélp av definitionen att

a) om aj och ay bada ar delbara med b sa ar a3 — az ocksa delbart med b,
b) om a &r delbart med 13 sa ar a + 1 inte delbart med 13.

Ovning 1.8. Lat A(z) vara pastaendet 22 = 25 och 1at B(z) vara pastiendet
z < 10. Bestdm sanningsvéirdet for alla pastaenden i nedanstdende tabell.

A(0) | B(O) | A(0) — B(0)
AG) | BG) | A(B) — B(5)
A(10) | B(10) | A(10) = B(10)
A(15) | B(15) | A(15) = B(15)

Visa att det géller for alla z € R att A(x) = B(x).
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2 Delmangder av reella tal

Learning requires inefficiency. Businesses, which seek to maximize pro-
ductivity and profit, would rarely accept such a trade-off.

Nicholas Carr — The Atlantic

2.1 Intervall

Lat a och b vara reella tal. Foljande méngder kallas intervall

a) [a,b] :={z € R: a <z < b},
b) [a,b) == {z €R: a <z < b},
¢) (a,b] = {z €R:a <z < b},
d) (a,b) :={z €R: a <z <b},
¢) [a,00) :={z € R: a <=},

f) (a,00) = {z €R: a <z},

g) (—o0,b] :={z e R: x < b},
h) (—o00,b) = {z € R: z < b},

i) (—o00,00) :=R.

Héar star tecknet := for att vénsterledet &r definierat som hogerledet. Talen
a och b kallas &ndpunkter eller randpunkter till intervallet. Vi anvénder
symbolen [ om a tillhér intervallet och ( om a inte tillhor intervallet. De fem
sista intervallen &r obegrédnsade och har farre randpunkter. O&ndlighetssym-
bolen oo anvéinds bara for att beteckna att intervallet inte tar slut och den &r
alltsa inte beteckningen for ndgon maérklig sorts randpunkt.

Om alla randpunkterna tillhér intervallet kallas intervallet slutet. Om inga
av randpunkterna tillhor intervallet kallas intervallet 6ppet.

Exempel 2.1. Intervallen (1,5), (—00,4), (—3,00) och (—o0,00) &r 6ppna
intervall eftersom alla randpunkter till intervallen ej tillhér intervallen. Inter-
vallen [1,4], [-2, 00) och (—00, c0) ar slutna for alla randpunkter till intervallen
aven tillhor intervallen. Intervallet [2,3) dr varken &ppet eller slutet. Lasaren
kan notera att intervallet (—oo, 00) bade ar 6ppet och slutet, eftersom det inte
finns nagra randpunkter. A
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2.2 Egenskaper for delmingder av reella tal

En omgivning till en punkt a € R ar ett 6ppet intervall I som innehéaller a.
Exempelvis dr det 6ppna intervallet (0,1) en omgivning till talet 3/4

0 3/4 1

och intervallen (—1/n,1/n) for n > 0 &r alla omgivningar till 0. En punkterad
omgivning till en punkt a ar en omgivning till @ dar vi har tagit bort talet
a.

Exempel 2.2. Méingden {z € (—1,2) : = # 0} = (—1,0) U (0,2) &r en
punkterad omgivning till 0. A

Definition 2.3. Ett tal m sdgs vara en 6vre begriansning av en mingd A
om x < m for varje x € A. En méngd som har en 6vre begrinsning kallas
uppat begransad, annars uppat obegriansad.

Undre begriansning till en méngd, en nedat begrinsad mingd och en
nedat obegrinsad méngd definieras pa ett analogt sitt. En méngd som ar
uppat begrédnsad och nedat begrénsad ségs vara begriansad, annars obegran-
sad. Exempel pa begriinsade méiingder &r [1, 3], (—2,10) och {z € R : 22 < 25}.
Talet 5 ar en 6vre begransning av [1, 3] och 6 &r en 6vre begransning av mang-
derna (1,6) och [1,6]. Ett exempel pa en obegrdnsad méngd &r intervallet
[2,00) = {x € R: 2 < z} som &r uppat obegrinsad och nedat begriansad.

Definition 2.4. Ett tal m sigs vara supremum av en mangd A och betecknas
sup A om m ar den minsta 6vre begrinsningen av A.

Exempel 2.5. Supremum &r enkelt att finna for uppat begrinsade intervall.
Vi har att
sup[a, b] = supla, b) = sup(—oc, b) = b.

A

P& samma vis definieras infimum av en mingd A som den stoérsta undre
begriansningen av A och betecknas inf A.

Man kan visa att de reella talen uppfyller supremumegenskapen, som siger
att varje uppat begriansad delméngd av de reella talen har en minsta 6vre be-
grinsning. I denna text kommer vi ta de reella talen och supremumegenskapen
for givna.

Supremumegenskapen siger med andra ord att om A &r en méangd av reella
tal som ar uppat begrinsad sa finns talet sup A.

A:{ in :neN}.
n—+1
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Visa att sup A = 4.

LOSNING: Enligt definitionen fér supremum géller det att visa att 4 ar en
6vre begransning av A och att det inte finns en 6vre begrinsning av A som &r
mindre an 4.

For att se att 4 4r en Ovre begransning av A riacker det med att notera att for
en godtycklig punkt i A galler att
an 4dn

= < — =4
an n+1 n

Alltsa ar alla a,, < 4 och dirmed &dr 4 en O6vre begriansning av A. Faktiskt
galler att a, < 4 med strikt olikhet, men det kvittar, givet det vi ska visa.

Det aterstar att visa att det inte kan finnas nagra mindre 6vre begransningar
av A dn 4. Lat oss utfora ett motsidgelsebevis. Anta att det finns en mindre
Ovre begrinsning av A dn 4. Vi kan skriva detta tal pa formen 4 — e, dér nagot
€ > 0. For att f4 en motsigelse méaste vi visa att det finns tal i A som &r storre
an 4 — ¢, vilket skulle motsiga att 4 — ¢ ar en 6vre begriansning.

Vi kan skriva om a,, enligt féljande:

4dn 4
T n+1 (21)
Fragan dr med andra ord om vi kan finna ett n sddant att
4— >4 —¢e? 2.2
e € (2.2)
Loser vi ut n far vi att (2.2]) géller om och endast om
4
n>-—1 (2.3)

9

For alla n som uppfyller att n > 4/ — 1 géller alltsa att a,, > 4 —e. Vi har
fatt en motsigelse och alltsé &r 4 den minsta 6vre begransningen. A

Exempel 2.7. Ett sitt att illustrera supremumegenskapen &r att visa att de
rationella talen QQ inte uppfyller denna egenskap, d.v.s. varje uppat begransad
delméngd av Q har inte en minsta 6vre begransning i Q. Studera mangden
A ={z € Q: %<2} Om vi godkinner reella tal si ir sup A = /2. Detta
tal 4r dock inte ett rationellt tal (se wiki-linkl om ni inte har sett det tidigare).
Antag att vi har funnit ett rationellt tal ¢ som &r supremum av A, d.v.s. ¢ ar
en 6vre begriansning av A och ¢ dr den minsta 6vre begriansningen av A.

Eftersom /2 ¢ Q sé foljer att ¢ dr antingen storre eller mindre én /2. Om
q < /2 sé foljer att det finns rationella tal i intervallet (q,+/2) som strider
mot att ¢ dr en 6vre begransning. Om ¢ > /2 s& finns det rationella tal i
intervallet (v/2, q) som dr mindre 6vre begrinsningar én ¢. Alltsa ér ¢ inte den
minsta 6vre begrénsningen av A. A
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2.3 Ovningar
Ovning 2.1. Visa att méngden

—6
————:neN 2.4
{(n +2p " } 24)
ar begransad och bestdm inf M och sup M. Gissa férst och visa dérefter att

dina gissningar stimmer.

Ovning 2.2.

a) Bevisa att det inte finns nagot storsta reellt tal. Med andra ord, visa att
det for varje reellt tal a finns ett reellt tal b sadant att b > a.

b) Kan man pé liknande sétt visa att det inte finns nagot storsta naturligt
tal?

Ovning 2.3. Visa att méingden

1 2
ar begrédnsad och bestdm inf M och sup M.

Ovning 2.4. Visa att méngden
1
M:{x—:x>0} (2.6)
x

varken ar uppat eller nedat begrénsad.

Ovning 2.5. Lat

meenm) e

Bestam sup M och inf M.
Ovning 2.6. Lat

M={V2t+a?—z:z>0}. (2.8)
Bestdm sup M och inf M.

Ovning 2.7. Skriv foljande méngder som ett enda intervall

a) (1,5)U(2,7)
b) (1,5)N(2,7)
c) (L,5)\(2,7)
d) (2,5)U(1,7)
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e) (2,5)N(1,7)

Ovning 2.8. Hitta reella tal a < b och ¢ < d sa att (a,b) U (c,d) inte dr ett
intervall.

Ovning 2.9. Lat
A ={d e N: d ar udda}.

Beskriv méngden {d € A: d &r jamnt}.
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3 Funktioner

3.1 Funktionsbegreppet

Innan vi gor en allmén definition av vad en funktion &r kan det vara pa sin
plats att titta pa nigot vilbekant, nimligen en formel som f(z) = 22 + 1, for
x > 0. Formeln séger att om vi tar ett tal = > 0 sa far vi ett nytt tal f(z) € R
genom att géra berdkningen z2 + 1; till exempel far vi f(2) = 22 +1 = 5.
Vi séger att f ar en funktion fran de positiva reella talen till de reella talen,
eftersom det vi stoppar in, z, dr ett positivt reellt tal och det vi far ut, f(x),
ar ett reellt tal. Vi betecknar detta med f: (0,00) — R. Nu till den allménna
definitionen.

Definition 3.1. Lat X och Y vara méngder. En funktion f: X — Y ar ett
satt att till varje element z € X tilldela ett vélbestdmt element y € Y. Vi
skriver f(z) = y. Vi sdger att = avbildas pa y och att y ar bilden av z.
Elementet = kallas argument till f. Mdngderna X och Y kallas definitions-
méngd respektive malméngd. For definitionsméngden for f anvinds dven
beteckningen Dy-.

Kommentar 3.2. Beteckningen f: X — Y utléses: f ar en funktion fran
X till Y. Ett vanligt alternativ till ordet funktion dr avbildning. Vi kan se
funktionen som ett eget objekt som utfér en handling som bilden nedan visar.

reX flz)eY

Exempel 3.3. Ett exempel pa en funktion fran de positiva reella talen till
de reella talen ar f: {r € R: x > 0} — R, sadan att f(z) = 1+ 23"
Definitionsméangden dr Dy = {x € R: x > 0} och malméngden &r R. A

Vardemaiangden till en funktion f: X — Y definieras som
Vi={yeY:y= f(x) for nagot x € X}
och beskriver méangden av alla element vi kan fa.

Exempel 3.4. Betrakta mingderna A = {1,2,3} och B = {1,2,...,100}.
Ett exempel pa funktion f: A — B ges av f(n) = 2n for n € A. Vi har alltsa
att f(1) =2, f(2) =4 och f(3) = 6. Per definition maste vi ha f(z) € B for
alla x € A, och detta géller ju hér eftersom

f(l)=2€eB, f(2)=4€B, och f(3)=6¢B.

Vi ser hér att virdeméngden V; = {2,4,6}.
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I detta exempel definieras funktionen f av formeln f(n) = 2n, men det ar inte
alls nédvéndigt att det finns en formel som beskriver hur funktionen verkar.
Om vi som hér har en funktion fran den dndlige méngden A = {1,2,3} kan
man till exempel definera funktionen med hjélp av en tabell:

)

=
CNEIN e

w N 3

A

Om inget anges om definitionsméngden antas funktionen vara definierad pa sa
stor delméngd av de reella talen som méjligt och malméngd antas alltid vara
R. Detta ar en konvention mellan er som ldsare och oss som skribenter.

Exempel 3.5. Lat h(z) = 322/2 — 23. Detta definierar en funktion h fran R
till R. Vi har exempelvis att

A

Vi kommer tydligt skilja pa f och f(z), det forsta &r funktionen f, medan det
andra ar funktionens véirde i punkten x. Som ett exempel pa denna notation
sa definierar vi summan och produkten av tva reellvirda funktioner f och g,
sddana att Dy = D, C R enligt

Bildmaéssigt kan vi se additionen som

[+g

f
. P _1 f(@) + 9(a)
L]

Om vi inte vill namnge den funktion som vi arbetar med eller introducerar
anvinds notationen x +— 1+ 22 istéllet for f(z) = 1 + 22. Denna notation ar
véildigt vanlig i programmering nér man vill definiera anonyma funktioner.
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3.2 Inverser och inverterbarhet

Definition 3.6. En funktion f: X — Y séges vara injektiv om det for varje
z,y € X géller att om f(z) = f(y) sd ar x = y.

Exempel 3.7. Funktionen f : [0,3] — [0, 10] som ges av f(x) = 2z dr injektiv
ty om f(x) = f(y) sa géller att 2x = 2y och dirmed att z = y. A

En logisk omskrivning av definitionen ger att en funktion f: X — Y ar injektiv
om och endast om det for varje z,y € X géller att om x # y sa ar f(z) # f(y).
Uttryckt i ord sdger den hér definitionen att funktionen aldrig skickar tva olika
element i X pa samma element i Y.

f f
X _—>—_ Y X _—>—_ Y
\\\ T l—
B />><\
. > N S S
Exempel da f ej ar injektiv Exempel da f ar injektiv

Definition 3.8. En funktion f: X — Y sdges vara surjektivom V; =Y.

Varje element i Y ar alltsa bilden av nagot x under funktionen f om funktio-
nen ar surjektiv. En funktion &r surjektiv om och endast om dess malméangd
sammanfaller med dess virdeméangd.

f
— — 8
\kk ™~ —_
- —|
Exempel da f ej ar surjektiv Exempel da f &ar surjektiv

En funktion kan vara surjektiv utan att vara injektiv, och tvértom.

Exempel 3.9. Lit Ry beteckna de icke-negativa reella talen. Betrakta funk-
tionen f: R — R som definieras av f(x) = 2%. D4 #r f surjektiv, men inte
injektiv — till exempel har vi f(—2) = f(2) = 4.
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Ett exempel pa en funktion som &r injektiv men inte surjektiv ges av funk-
tionen i exempel Det finns till exempel inget n € {1,2,3} sadant att

f(n)=3.
A

Definition 3.10. En funktion f: X — Y som bade ar injektiv och surjektiv
sidges vara bijektiv, eller en bijektion.

> LT
> \\
Exempel da f ar bijektiv Exempel da f ar bijektiv

Definition 3.11. Lat f: X — Y vara en bijektiv funktion. Inversen till f
ar avbildningen f~': Y — X som ges av f~!(y) = x, diir o ir det entydiga
element i X som uppfyller f(z) = y. En funktion som har en invers kallas
inverterbar.

Vi ser hir att bade injektivitet och surjektivitet &r viktigt. Om f inte &r
injektiv kan det finnas manga x € X med f(z) = y. Om f inte ar surjektiv
kan det vara s& att det inte finns nadgot x med f(z) = y. For inversen géller
att f (f1(y)) =y forallay € Y och f~1(f(z)) =z for alla x € X.

Exempel 3.12. Betrakta funktionen f: R — R som ges av f(z) = 2. Denna
funktion &r injektiv och surjektiv, och ddrmed en bijektion. Inversen till f ges
av funktionen f~': R — R som definieras av f~1(y) = y'/3. A

Exempel 3.13. Bade definitionsméangden och virdemangden maste beaktas
ndr vi underscker om en funktion ar en bijektion. Funktionen f: Ry — Ry
med f(z) = z? #r en bijektion, med invers f~!(y) = VY- Som vi sdg tidigare
ar detta pastaende falskt om vi betraktar f definierad pa hela R. A

Antag att f: X — Y &r en injektiv funktion. Da vet vi att vi kan, for varje
y € Vy, finna ett © € X sadant att f(z) = y. Men, om Y innehaller element
som inte finns i Vy dr funktionen f inte surjektiv och ddrmed inte bijektiv. I
detta fall &r forutsdttningarna for en invers inte uppfyllda. Detta kan i ménga
fall, men inte alla, ses som en teknikalitet. Ty, om vi bara skulle &ndra pa
definitionen av f sa att malméangden Y ar exakt de element vi kan fa, ndmligen
Vr, sé skulle vi ha en bijektiv funktion och alltsd en invers. Vi kan séga att varje
funktion som &r injektiv har en invers definierad pa funktionens virdeméangd
Vi. Dvs, om g: X — Vj ar injektiv s &r den inverterbar.
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Exempel 3.14. Lat f(xz) = x + 2 vara en funktion definierad fér x € [0, 3].
Det ar en enkel verifikation att se att f ar injektiv. Vardeméngden till f ar
Vi =[2,5]. Alltsa ar f inverterbar om f ses som funktionen f: [0,3] — [2,5].
I detta fall &r f~1: [2,5] — [0,3] och f~1(y) =y — 2. A

3.3 Egenskaper for reella funktioner

Definition 3.15. Vi sdger att en reellviard funktion f, dir Dy C R, ar vix-
ande pd en mingd M C D; om det for varje x,y € M for vilka z < y
ger att f(z) < f(y). Om en funktion &r vixande pa hela sin definitionsméngd
kallas f vixande.

Exempel 3.16. Funktionen f : R — R, definierad som f(x) = 22 &r vixande
pa méngden [0, 00), men r inte en vixande funktion. A

Observera att den konstanta funktionen f : R — R och f(z) = 42 &r vaxande.
Den ar ddremot inte strangt vixande som definieras enligt:

Definition 3.17. Vi séger att en reellvird funktion f, ddr Dy C R, ér stringt
viaxande pa en miangd M C Dy om det for varje z,y € M for vilka x <y
ger att f(z) < f(y). Om en funktion ar stringt vixande pa hela sin defini-
tionsméngd kallas f strangt vixande.

Exempel 3.18. Funktionerna f : R — R som ges av f(z) = 3z och ¢ :
[1,3) — R som ges av g(x) = \/x ar striangt vixande funktioner. A

Definition 3.19. En funktion f &r uppat obegrénsad om dess virdeméangd
Vs dr uppat obegransad och uppat begrinsad om dess vardeméngd Vy ar
uppat begriansad.

Egenskaper som avtagande, stringt avtagande, nedat obegrinsade och
nedat begrinsade funktioner definieras pa ett analogt sitt. Vi sédger att
en funktion d4r monoton eller strangt monoton i ett intervall om den &r
viaxande respektive strangt vixande i intervallet eller avtagande respektive
striangt avtagande i intervallet.

Exempel 3.20. Funktionen z — z2 &r nedat begrinsad, uppat obegrin-

sad och varken vixande eller avtagande. Om vi betraktar den pa intervallet
(—00, 0] ar den dock stringt avtagande och pa intervallet [0, 00) &r den strangt
vaxande. A

Exempel 3.21. Lat f : (0,1) — R vara en given positiv funktion. Visa att om
g:(0,1) = R med g(z) = xf(x) uppfyller att V, = [1,2] sa &r f obegrénsad.

Vi visar detta med hjilp av en motsidgelse. Antag att f ar uppat begransad,
d.v.s. V; ar uppat begrénsad, vilket i sin tur ger att det existerar ett tal N
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sadant att f(z) < N for varje x € (0,1). Vélj nu ett M > 1 sadant att M > N.

Vi observerar att 1/2M € (0, 1) och att
1 1 1
= . < — . M=-=
g(L/(2M)) = o1 FO/@M)) < oo M =

Detta strider mot att V; = [1,2], alltsa &r f obegransad. A

<1

Definition 3.22. En funktion f: R — R séges vara jamn om f(—x) = f(z)
for alla z € R.
Nagra exempel pa jimna funktioner ér: z +— 22, z + z* och z + |z|.

Definition 3.23. En funktion f : R — R séges vara udda om f(—x) = —f(z)
for alla = € R.

Nagra exempel pa udda funktioner &r: z — 3 och x — 7.

Observera att en funktion som inte ar jamn inte behéver vara udda. Exempel-
vis ar  +— 1 +  varken jamn eller udda.

3.4 Trigonometriska funktioner

Vi ska i detta delkapitel definiera sinus och cosinus och vilka grundliggande
egenskaper som de besitter.

Lat oss betrakta en punkt P pa enhetscirkeln vars linje in mot origo bildar vin-
keln 6 till den positiva delen av z-axeln om vi anvinder orienteringen moturs
fran z-axeln. Vi kallar koordinaterna i P for (cos#,sin#). Direkt far vi fran
Pythagoras sats att

sin?0 + cos? 0 =1

vilket kallas for den trigonometriska ettan. Dér sin” 6 for n € N ar defini-
erat som (sin@)".

------- sin 6

/

cosf
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Det &r viktigt att vi infér en enhet eller skala for vinkeln 6. Lat oss sdga att
vinkeln § = 1 om ldngden pa den cirkelbage som bildas har ldngden 1. Denna
enhet kallas radianer och dr pa manga sétt den naturliga skalan for vinklar.
Vi kommer i detta héfte alltid férutsiatta att vinklar méts i radianer.

[ ~(cos0,sin0)

Vi har bildat funktionerna € + cos# och 6 — sin @ for 6 € [0, 27). Vi utvidgar
dessa funktioner periodiskt till hela R, d.v.s.

cos 0 = cos(0 + n2w),
sin @ = sin(0 + n2w)

for alla n € Z. Funktionen x — sin x kallas sinus och x — cos x kallas cosinus.

Av symmetriskal far vi foljande relationer direkt fran definitionen ovan

sin @ = cos(0 — 7/2),
cosf = sin(6 + 7/2),
cos(—0) = cos b,
sin(—0) = —sin#,
cos = —cos(f + ),
sinf = —sin( + 7).

A~ N /N N /S
S O~ W N =
— — — — ~— —

Relationerna ({3.3) och (3.4]) sédger att cosinus och sinus ar en jamn respektive
udda funktion.

Grafen till funktionerna sinus och cosinus ar
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Figur 3.1: Grafen till funktionen x — sin z.

respektive

VANY/\NVAN

Figur 3.2: Grafen till funktionen x — cosz.

Exempel 3.24. Observera att vi kan med hjilp av sinus och cosinus relatera
sidor och vinklar med varandra i ratvinkliga trianglar. Lat oss borja med den
ratvinkliga triangeln med sidorna a, b och ¢

Om vi skalar denna triangel sa att hypotenusan far langden 1 sa far vi den
likformiga triangeln

a/c

Om vi nu skriver in denna triangeln i enhetscirkeln sé far vi de 6nskade rela-
tionerna
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Vi ser att

b
cosf =2 och sing=-. (3.7)
c c

Vi behover en generalisering av Pythagoras sats som heter Cosinussatsen, ndm-
ligen

Sats 3.25 (Cosinussatsen). Lat a, b och ¢ vara sidlingderna i en triangel. Da
galler att

? = a4+ b? — 2abcos ¥, (3.8)

ddr 0 dr den vinkel i triangeln ddar sidldngderna a och b méts.

Bevis: I fallet § = 7/2 sa aterfar vi Pythagoras sats. Vi bevisar cosinussatsen
for spetsiga och trubbiga vinklar var for sig.

Vi borjar med fallet da vinkeln 0 < 7/2, alltsa da 6 &r spetsig. Vi infér hojden
h och later z vara en del av sidan b som i figuren nedan
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Vi anvinder nu Pythagoras sats i de tva ratvinkliga trianglarna och far

a®? = h? + 22
2 =h?+(b—z)?

Vi 16ser ut h2 i den forsta ekvationen och sétter in resultatet i den andra
ekvationen och far

A =a?>—2>+ (b—2)* =a® + b — 20z

Det aterstar att konstatera att z = a cos @ vilken foljer fran formel (3.7).

Det andra fallets 16sning dr nést intill lika. Med hjilp av en bild lamnar vi det
som en Ovning at ldsaren.

Sats 3.26. Féljande identitet gdller

cos(z — y) = cosx cosy + sinzsiny (3.9)

BEvIs: Observera att vi med hjélp av Pythagoras sats far att d i figuren nedan
ges av

d= \/(cosx —cosy)? + (sinz — siny)?2.

(cosx,sinx)

o (cosy,siny)
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Cosinussatsen [3.25] ger att
(cosx — cosy)? + (sinz —siny)? =14+ 1 — 2cos(z — y).
Om vi férenklar med hjélp av den trigonometriska ettan far vi
2 —2cosxcosy — 2sinxsiny = 2 — 2cos(z — y)
cosx cosy + sinz siny = cos(z — y)
vilket skulle bevisas. n

Foljdsats 3.27. Féljande identiteter gdller

cos(x +y) = cosxcosy —sinzsiny (3.10)
sin(z + y) = sinz cosy + cos xsiny (3.11)
sin(x — y) = sinx cosy — cosxsiny (3.12)
cos(2x) = cos? z — sin? z (3.13)
sin(2z) = 2sinz cos (3.14)

BEevis: Vi bevisar har (3.10). Lat y = —z i (3.9)). Vi far da

cos(z + z) = cos x cos(—z) + sin z sin(—z)

= CcOsSx Cosz — sinxsin z

Bevisen for (3.11)) — (3.14]) foljer pa liknande vis och med hjélp av (3.1)) — (3.6))
|

och lamnas som en O6vning at lasaren.

Definition 3.28. Funktionen tan: {z € R: x # n/2+nm,n € Z} — R, sadan
att

(3.15)

kallas tangens.

Grafen for tangens ar
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Figur 3.3: Grafen till funktionen x — tanx.

Exempel 3.29. Lat oss studera tva speciella trianglar som ger oss mojlighet
att exakt berdkna virdet av de trigonometriska funktionerna fér punkterna %,
7 och . Vi borjar med en likbent och riatvinklig triangel dér kateterna ér av
langden 1, alltsa

T T _ 1 .. .. T _
som ger att sin 7 = cos = 7 och darmed ar tan 7 = 1.

Nésta triangel ar en liksidig triangel med sidan 2 som vi delar mitt itu.
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Vi ser att sin X = cosZ = 4 och sinZ = cosZ = V3 darmed ar tan Z =
6 3 2 3 6 2 6

och tang = /3.

> Sl

3.5 Cyklometriska funktioner

Vi bérjar med att observera att funktionen f: R — [—1, 1] sddan att f(z) =
sinx inte ar injektiv, ty vi har t.ex. att f(0) = f(m), och dr dérmed inte
inverterbar. Om vi ddremot begransar definitionsmangden D till det slut-
na intervallet [—m/2,7/2] blir f bijektiv och har en invers. Vi gor foljande
definition:

Definition 3.30. Lat f: [-7/2,7/2] — [—1, 1] sidan att f(x) = sinz. Inver-

sen till f kallas arcussinus och betecknas f~!(y) = arcsiny.

Observera att den generella formeln sin(arcsiny) = y géller for alla y € [—1,1]
och arcsin(sinz) = z géller for alla x € [—7/2,7/2]. Grafen for arcussinus ar

vol3
1
T

B

Figur 3.4: Grafen till funktionen x — arcsin x.

Kommentar 3.31. Vi skulle ha kunnat vélja ndgot annat intervall dn
[—7/2,7/2] for att fa x — sinz bijektiv. Detta intervall d&r dock standar-
diserat runt om i vérlden, sa om inget annat anges kan man med sdkerhet
anta att det ar detta intervall man menar nir man pratar om inversen till
T — sinz.

P& liknande sétt konstaterar vi att funktionerna x — cos x och x + tan z kan
goras inverterbara genom att inskrinka definitionsméngden. Ett naturligt sétt
att véilja ett intervall dir funktionerna &r injektiva ar att vélja det intervall
som ar narmast origo.
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Definition 3.32. Lat f: [0, 7] — [—1,1] sddan att f(x) = cosz. Inversen till
f kallas arcuscosinus och betecknas f~!(y) = arccosy.

Grafen for arcuscosinus ar

7'('__

Figur 3.5: Grafen till funktionen x — arccos x.

Exempel 3.33. Visa att sin(arccosz) = V1 — z2.

LOSNING: Lat y = arccos z. Alltsa 4r x = cosy och vi kan illustrera relationen
mellan x och y med hjalp av triangeln

1 V1—22

Att en katet ar v/1 — 22 f6ljer av Pythagoras sats och didrmed foljer att siny =
V1 — 22 A

Definition 3.34. Lat f: (—7/2,7/2) — R sadan att f(x) = tanx. Inversen
till f kallas arcustangens och betecknas f~!(y) = arctany.

Grafen for arctangens ar
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B

Figur 3.6: Grafen till funktionen x — arctan z.

3.6 Exponentialfunktionen

Vi kommer inte i detta héfte definiera exponentialfunktionen x — a®, dér
a > 1. Istéllet antas att ldsaren &r bekvidm med funktionen som en stréngt
vaxande funktion med virdeméngd (0, 00) som uppfyller riaknelagarna

d) a*=1/a"

e) (") = a™

Att introducera exponentialfunktionen pa ett korrekt vis &r langt ifran en
enkel sak och ligger utanfér ramarna for detta héfte. Med hjélp av @ kan
vi definiera exponentialfunktionen for 0 < a < 1. Vi har for 0 < a < 1 att
1/a > 1 och

Grafen for exponentialfunktionen &r
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Figur 3.7: Exponentialfunktioner av typen x — 2% for olika véirden pa a.

3.7 Logaritmfunktionen

Lat f : R — (0,00) sadan att f(x) = a*, for nagot a > 1. Da géller att
f ar inverterbar. Vi definierar logaritmfunktionen som inversen till f och
betecknar f~!(y) = log,y. Alltsd har vi att Dy = (0,00) och V-1 = R.
Grafen for logaritmfunktionen &r

Figur 3.8: Grafen till funktionen x — log, x.

Inversen uppfyller foljande riknelagar:

Sats 3.35. Ldt a > 1, da gdller att logaritmfunktionen uppfyller
a) log,1=0

b) log,(zy) = log, = + log, v, x>0,y >0
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¢) log, z¥ = ylog, x, x>0

BEVIS: Generellt géller att vi vill 6verfora exponentialfunktionens rdknelagar
till dess inversfunktion. Vi kommer hela tiden att anvinda oss av att x = y
om och endast om a* = a¥. Detta &r en direkt f6ljd av att x +— a” &r injektiv.

a) Vi vill visa att log, 1 = 0 eller ekvivalent att a'°%! = a". Vinsterledet
uppfyller att a!°8«! = 1 och hogerledet att a® = 1. Alltsa stimmer alla
pastaenden.

b) Vi vill visa att log,(zy) = log, « + log, y eller ekvivalent att a'%%(*¥) =
alo8avtlog. v For vansterledet giller att al°8(*¥) = 2y och for hogerledet
via exponentialfunktionens riknelagar att @l°8« *t1°8.¥ = gloga zglog.v —

xy.

c) Vi vill visa att log, 2¥ = ylog, z eller ekvivalent att a8« = q¥1°8a®,
Vinsterledet dr 2¥ och hogerledet dr a¥'°8a® = (@8 %)Y = 2¥ och vi ar
klara.

3.8 Absolutbelopp

Definition 3.36. Lat x € R, da definieras absolutbeloppet alternativt be-
loppet av x som

2| = V2. (3.16)

Absolutbeloppet beskriver avstandet fran x till origo. En direkt foljd av defi-
nitionen ar att

; 2 0,
2| = {x v (3.17)
-z, x<0.
Grafen har foljande utseende

3__

2__

1__

-3 -2 -1 1 2 3

Figur 3.9: Grafen till funktionen x — |z|.
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Observera att funktionen x — |z| &r jamn.

Exempel 3.37. Vi har enligt definitionen att | — 5| = —(=5) = 5, |5| = 5,
| —7| = —(—m) = moch |0] = 0. Vi har hér varit 6vertydliga med anvindningen
av minustecken. A

I detta héfte kommer vi i ett flertal tillfillen att anvidnda absolutbeloppet
pa formen |z — a] = b som betyder att avstandet fran = — a till origo, eller
avstandet fran x till a, ar b.

Exempel 3.38. Skissa méngden A = {z € R: |x — a| < p}, dér p > 0.

LOSNING:
a—p a a+p
A
Observera att definitionen direkt ger att
x < |z, (3.18)
for varje z € R. Foljande sats visas exempelvis med hjélp av fallindelning.
Sats 3.39. Ldt x,y € R, da gdller
|z - y| =[] - [y, (3.19)
|z +y| < |z]+ |y|- (3.20)

Olikheten kallas for triangelolikheten.

Bevis: Vi lamnar beviset av till lasaren som en Ovning.
Beviset av gor vi med hjilp av fallindelning.

Antag att x > 0 och y > 0. Olikheten &r i detta fall en likhet, ty

| +yl=x+y=|z|+ |y

Antag nu att x > 0 och y < 0. Symmetriskil gor att fallet x < 0 och y > 0
kan behandlas analogt, varfor vi utelimnar det. Aven hér vill vi dela upp i tva
fall. Det ena ar da x +y > 0 och det andra d& = 4+ y < 0. Vi borjar med fallet
dad x +y > 0. Vi far (kom ihdg att y < 0)

ztyl=z+y<z-y=z+(-y) = |z[+yl.
Nu till delfallet att x +y < 0. Vi far
[zt+yl=—-(@+y) =—r—-—y<z-—y=z+(-y) =lz[+][y]
Slutligen det sista fallet d4 < 0 och y < 0. Vi far
[z +yl=—(r+y) = -2+ (-y) = |z + [yl

och olikheten ar visad. [ |
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Definition 3.40. For ett komplext tal z = = + iy sd definieras absolutbe-

loppet av z som
|z| = /2% + 2. (3.21)

3.9 De elementira funktionernas grafer

I detta delkapitel ritas graferna ut till delar av de elementéra funktionerna.
Dessa grafer ar lampliga att kunna. Vi ritar funktionerna och dess inverser
gemensamt for att illustrera sambanden.

T +— 2%

T +— arcsin x
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T — COST

X — arccosx

s
™
R i

e Tl il

—7+

Figur 3.10: Den réda grafen ar x — arctan « och den blda grafen ar x — tan x.
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3.10 Owvningar

Ovning 3.1. Ange definitions- och virdemingd till f(z) = h(g(z)) om g(z) =
x 4+ 1 och h(z) = sin/z.

Ovning 3.2. [2006-12-20, uppgift 2] Funktionen

fe) =2+

r 1—=x

ar uppenbarligen definierad da x # 0 och x # 1. Bestdm virdeméangden for f
da Dy = (0,1).

Ovning 3.3. [2008-06-04, uppgift 2] Lat f(z) = /1 + In(z + 1)
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a) Bestdm alla reella 2 for vilka f ar definierad som en reellvird funktion.
b) Bestdm tangenten till kurvan y = f(x) i punkten (0, 1).

Ovning 3.4. Bestdm definitionsméngd, viardeméingd och inversen for funk-
tionerna

a) x+— In(y/1 —x),
b) z s eVeT4
c) r—x

Ovning 3.5. Gar det att bestimma en malméngd sé att foljande funktioner
ar inverterbara? Bestdm i s fall inversen

a) f(x) =a2%+4x +5, Dy = [-1,0),
b) f(z) =+/1+1/z, Dy = (0,00).

Ovning 3.6. Gar det att bestimma en malméingd sa att foljande funktioner
ar inverterbara? Bestdm i s fall inversen

a) f(z)=a/(z®+1), Dy =[1,00),
b) f(z) = 1z, Dy =R\ {0},

Ovning 3.7. Lat f : R — R vara en udda funktion och ¢ : R — R vara en
jamn funktion. Visa att

a) f(0) =0,
b) produkten av f och g dr en udda funktion.
¢) summan av f och g inte nédvéandigtvis dr en udda funktion.

Ovning 3.8. Los foljande ekvationer

a) sinz = 3,

b) cosz = —%.
Ovning 3.9. Visa att sin? 2z = 4tan? (1 — sin® x)(cos 2z + sin? z).
Ovning 3.10. Beriikna cos(7/12) genom att anvinda att cos(m/6) = @

Ovning 3.11. Bestam definitionsméngden och virdeméngden till funktioner-
na

a) x > arcsinz,

b) z — arccosz,
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c) x > arctanz.
Ovning 3.12. [2007-03-13, uppgift 1] Berdkna sin(arcsin(7/8) 4 arccos(1/4)).
Ovning 3.13. Los ekvationerna

a) arcsinz = — 37,

b) arctanz = 7.
Ovning 3.14. Bestim
a) sin(arcsin(1/2)),

b) arcsin(sin(27/3)).
Ovning 3.15. Visa att

. ™
arcsin & + arccos r = 5,

for varje x € [—1,1].

Ovning 3.16. Visa att

1 s x>0
t tan — = q 2’
arctan x + arc anan {_g’ <0
Ovning 3.17. Visa att
a)
t t
ta1a(:v+y)Z—anxjL any
1 —tanztany
b)
2tanx
tan(2z) = ————
an( x) 1—tanZzx

Ovning 3.18. Visa den andra delen i beviset av cosinussatsen.

Ovning 3.19. Visa (3.11) — (3.14).

Ovning 3.20. Visa att

a) log,(2® — zy?) — log, (x + y) — log, x = log,(z — ),
b) ((3%)" —3%)37 + 1 = 30,

Ovning 3.21. Los ekvationen 3 + Inz = In /7.

Ovning 3.22. Visa likhet .

Ovning 3.23. Los olikheten |22 — 4| < 5.
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Ovning 3.24. Visa att om |z — 1] < 188 dr |z + 1| < 3.

Ovning 3.25. Lat f: R — R vara en stringt vixande funktion. Visa att f ar

injektiv.

Ovning 3.26. [2008-06-04, uppgift 1] For vilka reella tal a har ekvationen
4%y o=t — ¢

nagon reell 16sning? Bestdm de reella 16sningarna for dessa a.

Ovning 3.27. Lat funktionen g: R\ {0} — R definieras av g(z) = 1/22. For
vilka z € R\ {0} géller att g(g(2)) = g(2)?

Ovning 3.28. Lat f: A — B och g: B — C vara funktioner och 1t h =
g o f vara deras sammansattning. Med andra ord géller att h(z) = g(f(x)).
Motivera varfor dina svar ar korrekta.

a) e Antag att f och g dr surjektiva. Visa att h ocksa &r surjektiv.
e Antag att f och g &r injektiva. Visa att h ocksa ar injektiv.

b) « Antag att h och f ir surjektiva. Ar g nédvindigtvis surjektiv?
« Antag att h och f &r injektiva. Ar g nédvindigtvis injektiv?

c) e Antag att h och g ir surjektiva. Ar f nodvindigtvis surjektiv?
« Antag att h och g dr injektiva. Ar f nodvindigtvis injektiv?
Ovning 3.29. Los ekvationerna
a) 1+ |z +1]— |z —2| ==z,
b) 1+jz+1|—|z—-2|=2+2,

d

)
)
c) 1+jz+1]— |z —2|=z+3,
) 1+ |z+1|— |z —2| =2z
)

e) Finns det nagot a € R sa att ekvationen 1 + |z + 1| — | — 2| = ax har
exakt en 16sning?

Ovning 3.30. Los ekvationerna
a) In|z| =1,
b) |Inz| =1,
¢) |In|z|| =1.
Ovning 3.31. Los ekvationen
In(z® — 3z) = In(x).
Ovning 3.32.

a) Visa att ekvationen In(x + 2) = In(x) In(2) saknar 16sningar.

b) Los ekvationen In(z + 1) = In(z) In(1).
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4 Talfoljder

Andra njutningar kommer av de skapande vdardena, de om vilka mdnni-
skan kan sdga: “Det hdr har jag gjort och jag dr ndjd. Jag har fort in
nagot i tillvaron som inte tidigare fanns och det ger en tillfredsstdillel-
se.” Att placera nagot man sjalv skapat — garna under viss vanda, misstro
och efter flera forsék — ar i sig en tillfredsstallelse. Men skapandet krdver
tid. Kreativitetens glidje dr svar att ersdtta med nagot annat. I sjdlva
arbetet ligger en wvila, men det skapande arbetet leder samtidigt till en
tillfredsstallelse som inte liknar ndgonting annat, utan féljer efter ett
“val forrattat varv”.

Owe Wikstrom (Prof. Religionspsykologi) — Lingsamhetens Lov

4.1 Definitionen och konvergens

Definition 4.1. En ordnad f6ljd av tal a1, as, as, ... kallas fér en talféljd och
betecknas (ay)52 ;. Vi séger att talféljden (a,)0; dr vixande om a,41 = an,
for varje n > 1 och att den &r uppat begriansad om det finns ett tal M
sadant att a, < M for varje n > 1.

Figur 4.1: Exempel pa en talfoljd som &ar vixande och uppat begrénsad av M.

Vi definierar pa ett analogt sdtt vad som menas med att en talféljd ar avta-
gande och nedat begransad. En talfcljd sdgs vara begriansad om den ar
béde uppat och nedat begrinsad.

Exempel 4.2. Om a,, = f—fl sa blir (ay)22, talfljden 2/2,4/3,6/4,8/5,. ...

Talfoljden &r uppat begriansad av talet 2 men dven av talet 14, ty
2 <
an = - S
" n+1
Den &r dessutom vixande eftersom
2 >0
py1 — Oy = ———— 2 0.
T ) (n+2)
Figur illustrerar denna talfoljd. A
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Definition 4.3. En talfoljd (a,)52; sidgs konvergera mot griansviardet A
om det for alla ¢ > 0 finns ett N sadant att |a, — A| < ¢ {6r varje n > N. Vi
infér beteckningen

lim a, = A.

n—oo
En talfoljd med denna egenskap kallas konvergent, annars kallas talfoljden
divergent.

Figuren nedan illustrerar definitionen.

Adet
A—et

Exempel 4.4. Visa att talféljden (a,)2>; dér talen ges av a, = 2+ 37"
konvergerar mot 2 d& n — oo.

LOsNING: Enligt definitionen ska vi forst lata ett tal € > 0 vara givet. Vi vill
nu finna ett N, som kommer att bero av ¢, sadant att |a, — 2| < € for varje
n > N. Vi ser att |a, — 2| < ¢ dr ekvivalent med 37" < ¢ och ddrmed &ven
med 1/e < 3". Eftersom logaritmfunktionen x — logs x ar strangt vixande
sa foljer att 1/e < 3™ &r ekvivalent med —logze < mn. Alltsa har vi att om
n > —logs e sa &r |a, — 2| < e. Vi kan ddrmed vélja N till ndgot tal storre én
eller lika med —logs e, lat oss ta N = —logse. A

Vi séger att talféljden (a,)?2, har det oegentliga grénsvirdet oo om det
for varje M existerar ett N sadant att a, > M {6r varje n > N. Vi betecknar
detta med

lim a, = co.
n—oo
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Observera att talfoljder som har oegentliga grinsviarden &dr divergenta. Det
finns dven talfoljder som helt saknar gréansvirde, exempelvis a,, := (—1)", som
pendlar mellan —1 och 1. Det ar lamnat till ldsaren att visa att en konvergent
talfoljd ar begransad.

Sats 4.5. Lat (a,)52, och (b,)22, wvara konvergenta talféljder med grins-
vardena A respektive B. Da foljer att

a) (an +bn)S, dr konvergent med gransvirdet A+ B,

b) (anbn)Se, dar konvergent med grinsvirdet AB,

¢) om B # 0 har vi att (a,/bn)22, dr konvergent med grinsvirdet A/B,
d) om an < by, for varje n sa gdller att A < B.

Kommentar 4.6. Den observante noterar att vi i maste anta att b, # 0
for alla de n som &r inkluderade i (a,/b,). Eftersom vi &r intresserade av
grinsviardet da n — oo kan vi exkludera tal i borjan av foljden. Da vi vet att
B # 0 sa kan vi vélja ett N sadant att |b, — B| < |B|/2, for alla n > N. Alltsa
foljer att b, # 0, da n > N. Vi kan nu omformulera [c)|som att (ay/bn)02 5 &r
konvergent med griansvirdet A/B.

BEVIS: Vi anviander oss av definitionen.

a) Tage > 0. Vivill visa att det finns ett N sadant att |a,+b,—A—B| < ¢
for alla n > N. Enligt triangelolikheten (3.20]) har vi

lan, + b, — A — B| < |ap, — Al + |by, — B|

Da (an)52; konvergerar mot A och (b,)52; konvergerar mot B far vi att
det finns tal N7 och N3 sa att

9
|an—A] < 5,

da n > Ny och
€
|b, — B| < 2

da n > No. Detta ger att
|an, + b, — A — B| < ¢,
da n > max{Ny, No}. Alltsa kan vi vilja N = max{Ny, Na}.

b) Tag e > 0. Vi vill visa att det finns ett N sadant att |a,b, — AB| < &
for alla n > N. Enligt triangelolikheten (3.20]) har vi

lanb, — AB| = |apb, — anB + a, B — AB|
< |apby — anB| + |a, B — AB)|
= |an||bn, — B| + | Bl|an — A|.
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Eftersom (a,)52; dr konvergent s& ar den begriansad, d.v.s. det finns ett
tal K > 0 sadant att |a,| < K for varje n > 1. Da (ay,)52; konvergerar
mot A och (b,)5°; konvergerar mot B far vi att det finns tal N; och N
sadana att

€
b, — Bl < —
bn = Bl < 3%
da n > Nj och
€
Al =
= A< 3
d& n > Nj. Detta ger att
lanb, — AB| < e,

da n > max{Ny, No}. Alltsa kan vi vilja N = max{Ny, Nao}.
c) Detta bevis lamnas som en 6vning at ldsaren.

d) Lat oss gora ett motsdgelsebevis. Antag att B < A. Bilda talféljden

¢n = by — an. Vi har att ¢, > 0, for varje n > 1. Talfoljden (c,)2%,
har gransviardet C' := B — A < 0. Tag e = —C/2 > 0. Fran definitionen
existerar det ett N sadant att C'+ C/2 < ¢, < C/2, for varje n > N.
Men da C < 0 sa far vi att ¢, < C/2 < 0 for n > N. Detta strider mot

att ¢, > 0, for varje n > 1. Alltsa dr A < B.
[ |

Sats 4.7 (Instdngningssatsen). Ldt a, < b, < ¢, for varje n och lat a, — A
och ¢, — A da n — oco. Da gdller att b, — A dd n — 0.

Bevis: Tag e > 0. Vi vill visa att det finns ett N sadant att |b, — A| < ¢
dd n > N. Vi vet att det finns ett N, och ett N, sidana att |a, — A] < ¢
for varje n > N, och |¢, — A| < e for varje n > N.. Vi har att for alla
n > N = max(N,, N.) géller att

A—e<ap,<b,<c, < A+e,
d.v.s. |b, — A| < € och satsen ar visad. |

Sats 4.8. Om (a,)22, ar en vdzande och uppdt begransad talfoljd sa dar den
konvergent och
Jim_ay, = sup {an :n > 1}.

Bevis: Eftersom {a,: n > 1} ar en delméngd av de reella talen som ar uppéat
begrinsad sa finns enligt supremumegenskapen en minsta Gvre begransning.
Lat oss kalla denna minsta 6vre begransning till (ay)2>; for K, d.v.s. K =
sup{a, : n > 1}. D4 K &r den minsta 6vre begriansningen till talféljden sa
finns det element i talféljden godtyckligt ndra K och i vissa fall dven lika stora
som K. Alltsa, for varje givet £ > 0 finns ett N sadant att |ay — K| < e. Men
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da talfoljden ar vixande kommer |a, — K| < € for alla n > N. Vi &r klara och
har visat att gransvirdet av talféljden ar precis K, d.v.s.
nh_>ngo a, = K.
|

Pa samma sitt visas att om (a,)52, ar en avtagande och nedéat begridnsad
talfoljd sa &r den konvergent och

nh_}lgo ap = inf {a, : n > 1}.

Satsen som foljer siger att n?, \/n och n har det oegentliga grinsvirdet oo,
da n — oo, medan n~! och n=1/2 gar mot noll, dd n — oo. Beviset ar lamnat
som en Ovning for ldsaren.

Sats 4.9. Féljande gransvdrde gdller

lim n? =
n—oo

oo, omp >0,
0, omp<O0.

4.2 Binomialsatsen

Vi borjar med nagra exempel for att illustrera vad vi vill astadkomma i detta
delavsnitt.

Exempel 4.10. Antag att det finns fem personer och vi fragar oss foljande:
Pa hur ménga sétt kan dessa bilda en k6, d.v.s. en ordnad f6ljd?

Svaret &r att vi har fem méjligheter att vilja den forsta personen, fyra mojlig-
heter att vélja den andra personen, o.s.v.. Vi far alltsa 5-4-3-2-1 = 120
mojligheter. A

Definition 4.11. Lit n € N, da definieras

ol = n-(n—1)-(n—2)---2-1, n>1,
1, n = 0.

Beteckningen kallas n-fakultet.
Exempel 4.12. Antag att det finns tio personer och vi vill bilda en ké be-
staende av fyra personer. P4 hur manga sétt kan vi astadkomma detta?

Svaret dr att vi kan vélja forsta personen pa tio olika sétt, andra personer
pa nio olika sétt, tredje personen pa atta olika sdtt och slutligen den fjérde

personen pa sju olika satt. Alltsa finns det
10! 10!
10-9-8- 7= — = ————
6! (10 — 4)!

olika sétt. Den sista identiteten ar dar for att illustrera hur svaret beror av
parametrarna fran fragestéllningen. A

48



Léasaren kan sjalv verifiera att detta resonemang leder till att vi kan vélja ut
en ko pa k personer fran n stycken pa

n!
(n —k)!

olika satt. Har forutsatts att & < n.

Exempel 4.13. Antag att det finns tio personer och vi vill bilda en grupp
bestaende av fyra personer. Dar ordningen pa de utvalda inte spelar nagon
roll. P& hur méanga sétt kan vi astadkomma detta?

Vi vet fran det tidigare exemplet att varje ko av fyra personer fran tio kan
valjas ut pa 10!/(10 — 4)! olika sétt. Det betyder att om vi nu tar bort den
inbordes ordningen sa finns varje grupp med 4! ganger for mycket. Det vi vill
ar att dessa 4! olika kéer ar en och samma grupp. Vi maéste alltsa dividera
med 4!. Svaret ar att vi kan vélja ut fyra personer av tio till en grupp pa

10!
(10 — 4)14!

olika sétt. Det &ar vért att bekrifta att detta svar ar symmetriskt i 4 och 10 —4.
Jag menar att vi kunde lika gérna ha valt ut fyra personer genom att vélja ut
vilka sex personer som inte ska vara med. Att vilja ut sex personer fran tio
till en grupp kan enligt ovan goras pa

10!
(10 — 6)16!

olika satt. I bada fallen ar svaret

10!
416!

Mer allmént

Definition 4.14. Lat n, k € N sddana att k& < n. Vi definierar n-Gver-k som

n n!
(k:) T (n— k)

Vi har alltsa definierat en notation och talesétt for svaret pa den viktiga fragan:
P& hur manga satt kan vi vélja ut k stycken saker fran n stycken?

For att beskriva satsen som delavsnittet handlar om s& anvinder vi symbolen
> for att summera termer. Vi definierar uttrycket

n
Zak:ao+a1+a2—|—...+an. (4.1)
k=0
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Sats 4.15 (Binomialsatsen). Lat n € N, da gdller att

(a+b)" = z”: (Z) a™Fbr.

k=0

BEvis: Vansterledet bestar av en multiplikation av n stycken faktorer av typen
(a+b). Om vi utfér parentesmultiplikation sa far vi termer av typen a*b" %,
sa att den totala antalet faktorer ar n. Fragan ar hur manga termer av denna
typ vi far. Att vélja ut k stycken a ur n parenteser kan goras pa (Z) olika sétt.
Alltsa ar vi klara. [ |

4.3 Talet le

Exempel 4.16. Antag att vi har x kr pa banken och att banken ger oss xr kr
i rdnta varje ar. Efter ett ar har vi alltsa (1 + r)x kr. Antag vidare att banken
ger oss halva rédntan om vi endast har pengarna insatta halva aret och analogt
for andra tidsperioder av aret. I vart fall betyder det att vi har (1 +r/2)z kr
efter ett halvar. Vi kan da utnyttja detta genom att ha x kr insatta ett halvar
for att ta ut (14 r/2)z. Nu sétter vi in (1 +r/2)z samma dag och plockar vid
arets slut ut (1 + r/2) ganger pengarna, dvs. (1 +7/2)(1 + r/2)x. Det senare
kan skrivas om som

<1+;> <1+;)x=<1+;)2x= <1+r+’j>x.

Vi har vunnit 22 /4 pa kuppen.
Om vi nu gor sa har varje dag blir det fran binomialsatsen

<1+T>365x— 1+r+ 369 Lﬂ + +7r365 €T
365 a 2 /3652 77 365365

Om vi gor det n ganger sa blir det

vad hander nu da n — oco?

Vi kommer senare (se exempel se att detta grédnsvirde gar mot e"x, dar
e ar ett tal. Alltsd har vi e"x pengar efter ett ar. Banken kan nu anvinda
strategin att de betalar ut rdnta utefter denna modell redan fran bérjan. Om
en kund vill ta ut pengar efter halva aret sa far de e’/2 ganger pengarna. Med
denna modell sa kan de inte tjina mer genom att ta ut och sétta in pengarna
vid upprepade tillfallen. Fér en kund som har z pengar och gor detta efter
ett halvar far vi, e’/2e"/2z = ¢"z. Alltsd &r rinta pa ranta redan inkluderad.
Arsrantan ar 1 + Tyear = €' eller ryeq, =€ — 1. A
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Definition 4.17. Vi definierar talet
1 n
e = lim (1 + ) .
n—00 n

For att definitionen ovan skall vara av ndgon mening sa méaste vi visa att
grinsvardet existerar.

Sats 4.18. Tulféljden (a,)52, med
()
ap = |14+ —
n

Bevis: Vi vill verifiera att (ay)52; ar vixande och uppat begriansad och an-
vinda sats [4.8l Lat oss anvinda binomialsatsen [A.15]

£ B ()

k=0

ar konvergent.

Vi studerar varje term i detalj.

<n>1 n! 1 n-(n=1)-n—=2)---(n—k+1)

E)nk ~ Kln—k)nk Kl nk
_l n n—1 n—2 n—k+1
kKl on n n n

S [CoRE!

For att nu inse att talfoljden &r vixande studerar vi a, och a,1.

"1 1 2 k-1
=141 —(1==)(1=-2)-(1-
omtere g (12 0) (1=5) - (1-55)

och analogt foljer att

n+1
1 1 2 k—1
141 ~(1- 1— (1 - :
In+1 + +kz::2k! ( n—f—l)( n—l—l) ( n—l—l)

Lat oss jamfora de termer vi far for ett givet k. Vi har att

-t =12, k-1
n n+1

vilket ger att

(2) 0 5) < Ooi) )

For varje k i summorna &ar termen fran a,41 storre &n den fran a,. Dessutom
innehaller a,y1 en term mer dn a, som ocksa ger ett positivt bidrag. Alltsa
ar any1 > a, for allan > 1.
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Lat oss nu dven verifiera att (a,)%, &r uppat begrinsad. Aterigen anvinder
vi oss av framstallningen

"1 1 2 k—1 "1
e — (1= 1—Z)... (1= < —,
W= (1-3) (-3) - (-) <X

k=0

da varje parentes dr mindre &dn 1.

Vi behover olikheten k! > 2% for alla k > 4. Olikheten kan ekvivalent beskrivas
som k!/2F > 1, for alla k > 4. Vi har féljande

B _k(i-D(k-2--2.1 kk-1 43 2 1_kk-1 5_
2k 2:2:2-..2 2 2 2 2 2272 2 277
eftersom varje faktor ar storre an 1.
Detta passar nu perfekt fér var uppskattning.
"1 1 1 1 1 "1 11 &1
= _ _ _ 7<2 _ _ _
I;)k! 0!+1!+2!+3!+,§k! +2+6+k§2k

1 1 1 1 1 1 "1
=24 ool —m - — = — <1 —
* 2 + 6 2 4 8 + kz_: 2k + z_: 2k
=0 k=0
Vi paminner oss nu om formeln for en geometrisk summa,

n 1— xn—f—l

» ah = X @ £1, (4.2)

k=0

dar 20 definieras till 1 for z = 0. Formeln limnas som en évning att verifiera

(se 6vning [4.11)). I vart fall far vi
)<s.

Vi har nu visat att (a,)52; bade &r vixande och uppat begrénsad vilket ger
att (an)>2, ar konvergent. |

n 1 n 1 1_(l)n+l 1

2
ZH<1+227I€:1+ l_l _1+2(1_2n+1
k=0 k=0 2

Exempel 4.19. Vi far dven talet e som gransvarde ifall vi later n — —oo.

Namligen,
1 n
lim (1 + ) =e.
n——oo n

LOSNING: Lat m = —n, vi far

1\" 1N ™™
lim <1 + ) = lim <1 — >
n——oo n m—00 m

m m 1 m
= lim (> = lim (1 + > .
m—oo \ m — 1 m—oo m—1

Lat nu k = m — 1 och nyttja @ Alltsa ar

) 1 m ) 1 k+1 . 1 k 1
di (145 2g) =i (1) = (1) (14 g) =
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Definition 4.20. Inversen till exponentialfunktionen med e som bas kallas
for den naturliga logaritmfunktionen och betecknas z — In .

4.4 Standardgransvirden vid oo

Nasta sats sdger oss att exponentiell tillvaxt dr snabbare &n polynomiell till-
vixt och fakultet vixer snabbare 4n exponentiell tillvixt.

Sats 4.21. Lat a > 1 och b > 0. Dd gdller att

n

lim & = 00, (4.3)
n—00 7,

n!
Jm -2 = co. (4.4)

BEvIs: Vi bérjar med att visa (4.3). Eftersom a > 1 sa géller att o'/ > 1. Vi
later a'/® =1+ p, dér p > 0. Vi har att

e () ()

Det racker nu att visa att

1 n
lim 7( +7) =00

n—00 n

Med hjilp av binomialsatsen (se sats[4.15)), dir vi endast kommer att utnyttja
en term, far vi

1+p)" 1~(n\,_1(n\, nn-1p> (n—1)p
—_—_— - 2 —_ g = — s
n nkX:% k p n\2 p 2n 2 o

da n — oo.

Lat oss nu visa (4.4). Bilda
n!
Cp = bfﬂ
Notera att
(n+1)! (n+1)-n! n+1

T Ty T T T Ty
Lat N vara sddant att N > 2b, vi har att

N+j N+j—-1 N+1

CN4i = . en = 2eny — oo
N+j b b b N =z N 3

da j — oo. [
Exempel 4.22. Bestdm griansvardet

.2 4n?42
Iim ———
n—oo 4 .4n — 4
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LOSNING: Lat oss dividera téljare och ndmnare med det uttryck som véxer
snabbast. I detta fall 4r det 4", alltsa far vi

2 4n?+2 Gt _lthtg 1 (45)
4.4 -4 A2 _4 44 4’ ‘

da n — oco. Att vi far ta gransvérdet for tdljare och ndmnare var for sig och
dessutom termvis foljer fran sats[L.5] Att exponentialfunktioner vixer snabbare
an potensfunktioner foljer av sats [4.21] A

Exempel 4.23. Bestdm gransvardet
) 2n-n! + 2"
lim ——.
n—oo n3 4 (n 4 1)!

LOSNING: Lat oss dividera téljare och ndmnare med det uttryck som véxer
snabbast. I detta fall 4r det (n + 1)!, alltsa far vi

! 2" 242"
2n-nl+2" (Jiﬁ‘). TGy _ AR (4.6)
3 | - ) :
n? + (n+ 1)’ (n+1)' +1 (n—i—l)' +1

da n — oo. Att fakultetsfunktionen vixer snabbare &n exponentialfunktioner

foljer av sats A

4.5 Bolzano-Weierstrass| sats

Lat (an)92, vara en talféljd. Om vi endast studerar en del av talen a,, men
fortfarande oandligt manga, och bildar en egen talfoljd av dessa sa ségs denna
nya talféljd vara en delf6ljd av den ursprungliga talféljden. Den nya talféljden
betecknas ofta (an, )3, dér ni, € Noch (ng)32, dr en stréngt vixande talféljd.
Vi ger ett exempel for att klargéra notationen.

Exempel 4.24. Lat a,, = 2n. Talf6ljden (ay)2>; ges da av 2,4, 6,8, .... En
delfoljd till denna ar nar vi endast betraktar var femte tal, alltsa 2, 12, 22, 32,

. Den nya talf6ljden betecknas (an, )72, dar ny = 5(k — 1) + 1. D.v.s., for
ny (da k = 1) far vi ap, = a1 = 2, for ny (da k = 2) far vi an, = ag = 12,
0.8.V. A

Sats 4.25 (Bolzano-Weierstrass sats). Ldt (a,,)22, vara en begrinsad talfoljd.
Da finns det en konvergent delféljd.

BEvis: Om vi lyckas visa att det finns en vixande eller avtagande delféjd sa
vet vi fran sats [4.8| att den kommer att vara konvergent.

Lat A = {n: a, > an,, for varje m > n}. Méngen A beskriver alla index nj av
tal i (an)52, sadana att alla resterande tal i f6ljden &r mindre eller lika med
talet an, .
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I figuren ovan innehaller A indexen 2, 6, 8, 10, 17, 19, 21, ....

Om antalet index nj i A &r odndligt manga bildar (a,, )72, en avtagande
delfoljd. Vi ar fardiga i detta fall.

Om antalet index i A ar dndligt manga och A inte 4r tomma méngden sa finns
det ett storsta index i A, 1at oss kalla detta index for M. Nu kan vi vilja
vart forsta tal i talfoljden (ay, )52 till apr4q eller ap i fallet att A var tomma
méangden. Eftersom detta index ar storre &n M sa finns det storre tal &n aps41
i talfoljden (an);2 ;- Lét ng vara ett index sddant att a,, > apry1. Eftersom
ny ¢ A sa finns det ett index ng > ny sadant att a,, > an,. Denna process
leder till en vixande talféljd (ay, )5, som ar konvergent enligt sats

4.6 Ovningar

Ovning 4.1. Bestim foljande griansvirden

a)

n?—n+1
m ———
n—00 1—|—2n2

i

b)
2" 4 27"
m —————5-.
n—oco 22n + 2—2n

Ovning 4.2. Visa att talfoljden

d.v.s. talfoljden (a,)5e;, dér

{ 1/n, n udda
an =

3/n, n jamnt

ar konvergent.
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Ovning 4.3. Bevisa sats

Ovning 4.4. Visa med hjilp av definitionen att

o2 +2
i 212043,

n—00 n2 +1

Ovning 4.5. Visa att om n? —n < a, < n?+ n giller for n > 1 sa giller att
lim 22— g
n—00 n

Ovning 4.6. Visa att en konvergent talfoljd &r begrinsad.

Ovning 4.7. Bevisa sats Ett tips ar att forst visa satsen for p > 1,
déarefter for 0 < p < 1 och slutligen for p < 0.

Ovning 4.8. Visa med hjilp av Binomialsatsen att

(3) 3 @ . @ _...+<—1>"<Z> —o,
o) () ) e) =

Ovning 4.9. Lat a € R. Los ekvationen (x — a)? = 23 — a3.

Ovning 4.10. Konvergerar talféljden
(2n — 1!
(2n)! 7
dir 2n—1)=1-3-5-...-(2n—1) och 2n)!! =2-4-6-...-2n?
Ovning 4.11. Verifiera formeln for en geometrisk summa, d.v.s. att
" 11—t

> sk =

k=0

, x# 1

1—=x

Ovning 4.12. Bestdm

2) ,}E&(?—S)n
()
° 3;120(1 )
()"

lim
n—oo

lim
n—oo
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Ovning 4.13. Bestim

1 1/n
a) lim (1 + )

n—00 2n

b) lim n*™

n—o0

1 n
c) lim <2 + )
n—oo n
Ovning 4.14. Bestiam

. onenl4 2040t
lim .
n—oo (n+ 1)l 4 37 4 nb

Ovning 4.15. Hitta talfsljder (a,,)3; och (b,)%; som ir divergenta, men
anda ar sadana att (a,b,)5%; ar konvergent.

Ovning 4.16. Om (c,,)22; dr konvergent och (d,, )2, ér divergent, kan (¢, d,,)S,
vara konvergent?

Ovning 4.17. Hitta talféljder (a,)3%; och (b,)2; sidana att a, < b, men

n=1
sa att det inte géller att lim, .o a, < limy, o0 by,.

Ovning 4.18. Bestam

sinn

a) lim
n—oo

b) lim cosn

n—oo lnn

Ovning 4.19. For vilka = € R existerar gransvirdet
lim cos(x)"?
n—oo

Bestam gransvirdet for dessa x.
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5 Gransvarden av funktioner vid odndligheten

En stor upptickt loser ett stort problem, men det finns en kdrna av upp-
tickt i losningen av varje problem. Problemet ma vara obetydligt, men
om det utmanar ens nyfikenhet och sitter igang ens uppfinningsformaga
och om man loser det utan hjdlp av nagon, kan man kdinna den spinning
och triumf som kdnnetecknar varje upptickt. Om en person gor sadana
erfarenheter i en mottaglig alder kan de ge honom eller henne smak for
tankeverksamhet och pragla sinne och karaktar for en hel livstid.

George Polya — Problemlisning : En handbok i rationellt tinkande

5.1 Definitionen och konvergens

Definition 5.1. Lat f vara en reellvird funktion definierad i (a, c0) f6r nagot
a. Vi sdger att f konvergerar mot grinsviardet A da z gar mot oo om det for
varje € > 0 finns ett NV sadant att |f(x) — A| < e for varje x > N. Vi skriver
detta

lim f(z) = A.

T—r00

Alternativt skriver vi att f(z) — A da x — oo. Om inget sddant A existerar
kallas f divergent da = gar mot oco.

Atet

L \

/ T

Exempel 5.2. Visa att

Jm e =0.

Lat e > 0 vara givet. Vi vill visa att det finns ett N sadant att |f(z) — 0| < e
for varje & > N. Vi har att |f(z) — 0] < € om och endast om ﬁ < €. Det
senare géller om och endast om = > 2—\1/5 Vi kan alltsa vélja IV till ndgot tal

. .. . 1
storre an eller lika med ENGE
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O+et

‘H T

0—et N

e

Observera att IV ar beroende av €. Fordndras € sa kan vi behéva byta virdet
pa N. Vi kan fortydliga detta genom att skriva N = N (e). A

Definition 5.3. Lat f vara en funktion definierad i (a,oc0) fér nagot a. Vi
sidger att f har det oegentliga griansvirdet co da x gar mot co om det for
varje M finns ett N sadant att f(x) > M for varje z > N. Vi skriver detta

lim f(x) = oc.

T—00

N

P& samma vis som ovan definierar vi gransviarden och oegentliga gransvirden
mot —oo.

Precis som for talféljder sa géller foljande sats

Sats 5.4. Ldt f och g vara funktioner sidana att f(x) — A och g(x) — B,
dd x — o0o. Da féljer att

a) f(x)+g(x) > A+ B, di z — oo,

b) f(x)g(z) - AB, dd x — oo,
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c) om B # 0 sd foljer att f(x)/g(x) — A/B, dd x — .

d) om f(x) < g(x), for alla x € (a,00) sd gdller att A < B.

Beviset for denna sats sammanfaller sandr som pa notation beviset for sats
5] Det &r lamnat till lisaren, som en 6vning i notation, att utfora dessa bevis.
For )| géller att a behover viljas tillrackligt stort sa att g(z) # 0, for varje
x € (a,00).

Det &r vért att notera att vi kan tillata att A = oo och/eller B = co med de
formella rdknereglerna:

00 - 00 = 00,
00 + 00 = 00,
r-00 =00, darxz >0,

r4+o00o=o00, dirzxeR.

Observera dock att foljande uttryck ar odefinierade

JE
g
|
E
(aw]
2

Sats 5.5. Lat f: (a,00) = R for nagot a € R vara vizande och uppat begran-
sad. Da gdller att

xll)nolof(x) =sup{f(z): z > a}.

Beviset dr analogt med beviset av sats [£.§ och lamnat som en Gvning till
lasaren.

Sats 5.6 (Instédngningssatsen). Lat f(z) < g(x) < h(zx) for varje x € (a, 00)
for nagot a och lat f(x) — A och h(x) — A dd x — oo. Da gdller att g(x) — A
da x — oo.

Beviset dr analogt med beviset av sats [£.7] och lamnat som en Gvning till
lasaren.

60



5.2 Standardgransviarden vid oo

T +— 2%

z+— 10lnz

//

Sats 5.7. Lat a > 1 och b > 0 da gdller foljande gransvdrden

. oa’
xh_)ngoﬁ = 00, (5.1)
b
lim —— = oc. (5.2)

z—o0 log, x

BEevis: Vi borjar med att visa (b.1) genom att éverféra problemet pa (4.3).
Lat m vara ett heltal som uppfyller att z — 1 < m < x. Precis som i beviset
av (4.3]) sa racker det med att visa att

T

. a
lim — = oo.
T—00 o
Vi har for x > 1 att
a® a™ 1 a™
halll — - 5.3
r_ 2m 2 m oo (5.3)

da x — oo, enligt (4.3).
For att visa (5.2) s& later vi # = a’. Detta medfor att & — oo blir ekvivalent
med att ¢t — oco. Vi far alltsa att

b bt b\t
lim —— = lim “— = lim (@) = 00, (5.4)
00 loga T t—oo t—oco t

enligt (5.1)). [ |

5.3 Ovningar

Ovning 5.1. Undersok om foljande grinsvirden existerar och bestim dem i
féorekommande fall.
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3z2 42z —1
im ————————
T—00 3x + 2
322 — 20z — 5
im —
z—o0 Hrd —4x+1

a)

b)
24+ 4r+1
300 322 4+ 2z

m ————
T—00 (x3 + 2)2

c)
d)

. x?+4x+10
e) lim ——
z—oo  x + 100
Ovning 5.2. Undersok om foljande grénsvirden existerar och bestim dem i
forekommande fall.
I et + 2x
2) 2500 4e? + 2
. Inzx
b) Jy, s
Inz + 22
im ———
z—00 In 23 + 32

c)

. 2% 4 a?

. Inz + 210 + 2%
R

Ovning 5.3. Undersok om foljande grinsvirden existerar och bestim dem i
forekommande fall.

a) lim Va2 —z

T—00
b) lim Va?+1-z+1

Ovning 5.4. Bevisa sats

Ovning 5.5. [2007-05-31, uppgift 1] Berikna grinsvirdet

lim Va2 4z — .
r—r00

Ovning 5.6. [2009-06-01, uppgift 1] Berdkna

lim (\/3:2 tdr — a2+ 23:) .
T—r00
Ovning 5.7. [2008-12-15, uppgift 1] Berdkna

. 4o + 2
lim ————.
=00 \/Bx? + 22 + 1
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6 Lokala griansviarden

6.1 Definitionen och konvergens

Definition 6.1. Lat f vara en reellvird funktion, med Dy C R, sddan att
varje punkterad omgivning till = a innehaller punkter i D. Vi séger att f
konvergerar mot A da z giar mot a om det for varje € > 0 finns ett ¢ sddant
att |f(z) — A| < € for varje € Dy som uppfyller att 0 < [z —a| < 6. Vi
skriver detta

lim f(z) = A.

r—a

eller f(z) — A, d& x — a.

Vinster- och hégergriansviarden definieras genom att endast studera funk-
tionsvardena for z < a, respektive x > a. Vi anvidnder da notationen z — a—
for vinstergransviarde och © — a+ for hogergransviarde. Om en funktion f &r
definierad i en punkterad omgivning till a sa géller att f har ett gransvéirde
da x gar mot a om och endast om vénster- och hogergrénsvirdena existerar
och &r lika, d.v.s.
lm fz) =A <= lim f(z) = lim f(z)=A

Exempel 6.2. Visa att

lim 22 = 9.

z—3
Lat € > 0, vi vill finna ett § sddant att |22 — 9] < &, d4d 0 < |z — 3| < §. Lét
oss anta att J kan véljas sa att § < 1. Vi har att

2% — 9| = |z + 3| - |z — 3| < 20|z — 3| < 200,

dér talet 20 inte &r optimalt valt (men det kvittar). Vi vill att detta ska vara
mindre dn €, dvs.
200 < e,
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vilket ar ekvivalent med att -
0 < —.
20

Vi véljer alltsa § till nagot tal mindre &n £/20 och 1. A

Exempel 6.3. Lat
r, omx<1
€Tr) =
(@) {3—3:, omx > 1

Da limy,—;— f(z) = 1 och lim,_14 f(x) = 2 sa existerar inte lim, 1 f(z).
Grafen nedan illustrerar vad som hénder.

A

Definition 6.4. Lat f vara en funktion sddan att varje punkterad omgivning
till x = a innehaller punkter i D. Vi sager att f har det oegentliga gréns-
virdet co da = gar mot a om det for varje K finns ett § sadant att f(z) > K
for varje 0 < |z — a| < 4. Vi skriver detta

lim /(@) = .

Vi definierar oegentliga vinster- och hogergriansviarden och mot —oco pé ett
analogt vis.




Sats 6.5. Lat f och g vara funktioner sidana att f(x) — A och g(x) — B,
dd x — a. Dd féljer att

a) f(x)+g(x) > A+ B, di v — a,
b) f(z)g(z) - AB, dd v — a,
c) om B #0 sa foljer att f(z)/g(x) — A/B, da x — a,

d) om f(x) < g(x) for varje x i en punkterad omgivning av a sa foljer att
A< B.

Beviset for denna sats sammanfaller sandr som pa notation beviset for sats
Det ar lamnat till ldsaren, som en 6évning i notation, att utféra dessa bevis.

Exempel 6.6. Visa att
o 2?4z
lim
=0 ||

inte existerar.

Losningen &r att studera hoger- respektive vanstergransvirde separat. Vi bor-
jar med hogergransvéirdet. Vi far
x2 +x . 22 +x

lim = lim
=0+ |z =0+ T z—0+

dar den sista likheter foljer fran 6vning [6.2] Vénstergransvirdet blir

2 2
lim ~ T lim ~ tr_ lim (—z—1) = -1
z—0— |:L’| z—0— —X z—0—

D& hoger- och vénstergransviardet inte sammanfaller finns inte gransvirdet. A

Sats 6.7. Lat f: (a — d,a) — R for ndgot § > 0 vara vizande och uppat
begrinsad. Da gdller att

lim f(z)=sup{f(z): xz € (a—4d,a)}.

r—a—

Beviset ar analogt med beviset av sats och lamnat som en Gvning till
lasaren.

6.2 Ovningar

Ovning 6.1. Bevisa sats
Ovning 6.2. Visa att
lim(z +a) = q,
z—0
for alla reella tal a.
Ovning 6.3. Lit a > 0. Visa, t.ex. genom variabelbytet x = 1/t, att
lim z%lnz = 0.
z—0+
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7 Kontinuitet

Den goda dppenheten forutsdtter att man kan byta asikt nar det kravs.
Stora mdanniskor byter asikt. Ndr ny information blir tillginglig sa far
inte gammal kunskap sta ¢ vdagen, da maste gardagens gjutformar slas
sonder. Det dr bland annat av det skilet det dr sa viktigt att mdéta och
lyssna till manniskor med annan asikt dn den egna. Bara de kan rucka
pa det som cementerats i min syn pd livet, det kan inte de som tycker
och tror precis som jag.

Tomas Sjodin — Eftervirme

7.1 Definitionen och exempel

Definition 7.1. Lat f vara en reellvird funktion, med Dy C R, sddan att
varje punkterad omgivning till z = a innehéller punkter fran Dy och a € Dy.
Vi sédger att f &r kontinuerlig i a om

lim f(z) = f(a). (7.1)

Tr—a
Vi siger att f dr kontinuerlig om f ar kontinuerlig i a, for varje a € Dy.
Lat f vara definierad i en omgivning av a. Da kan vi sitta x till a + h i

definition och fa ett alternativt sitt att uttrycka kontinuitetsvillkoret. Vi
har da att f &r kontinuerlig i ¢ om och endast om

lim f(a+h) = f(a) (7.2)
h—0

och att f 4r kontinuerlig om och endast om
lim f(z + h) = f(x) (7.3)
h—0

for varje x € Dy.

Att en funktion f &r kontinuerlig i a € Dy betyder att vénstergrénsvérdet,
hogergréansvirdet och funktionsvirdet i @ sammanfaller. Detta visar dven att
det finns en omgivning till a dir funktionen ar begrénsad, vilket vi kommer
att utnyttja i sats [7.9]

Kontinuitet ger f6ljande rikneregel:

Sats 7.2. Ldt f vara kontinuerlig i punkten b och lit g(x) — b , dd x — a.
Da gdller att

tim £lg(e) = f (tim, g(a).

givet att vinsterledet dr definierat.

66



BEevis: Hogerledet kan skrivas som f(b) eftersom g(x) — b, da x — a. Vi vill
visa att vinsterledet ar f(b). Tag € > 0. Vi vill visa att det finns ett ¢ sddant
att | f(g(z))— f(b)] <edd 0 < |r—a|] <d.Da f ar kontinuerlig i b sa foljer att
det finns ett 6; sadant att |f(y) — f(b)| < e, da |y — b| < 6;. Da g(x) — b, da
xr — a sa foljer att vi kan vilja ett § sa att |g(x) —b| < d1,da 0 < |z —a| < 4.
Vilket visar satsen.

Kommentar 7.3. Vi kan dven tillita att a = oo i sats [7.2l Beviset blir da
lite annorlunda och l&mnas som en 6vning at lasaren.

Foljdsats 7.4. Lat f och g vara kontinuerliga funktioner. Da féljer att sam-
mansdttningen x — (f o g)(x) = f(g(x)) ar kontinuerlig.

BEvIs: Resultatet foljer direkt av sats [7.2 ]
Sats 7.5. Funktionerna x — sinx och x — cosz dr kontinuerliga.
BEevis: Vi anvinder (7.3)) for att visa kontinuiteten. Vi vill visa att sin(z +

h) —sinz — 0 och cos(x + h) — cosz — 0, d& h — 0. Studera bilden nedan
(dar vi har antagit att = och h &r positiva)

——————————————— sin(z + h)

x

T+ h

Vi ser att det kortaste avstandet mellan punkterna (cosz,sinz) och (cos(z +
h),sin(x + h)) &r fran Pythagoras sats

\/(cos($ + h) —cosx)? + (sin(z + h) — sinx)? < h.

Att det kortaste avstandet dr mindre dn h foljer av att h dr ldngden av den
bagnade delen av enhetscirkeln mellan de aktuella punkterna. I fallet att A < 0
blir olikheten

\/(cos(x + h) —cosz)? + (sin(z + h) — sinx)? < |h). (7.4)
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Vi har att

|sin(z + h) —sinzx| = \/(sin(az + h) —sinz)?

< \/(cos(a: + h) — cosz)? + (sin(z + h) — sinx)?
< |h| =0,

da h — 0. Vi har visat att « — sinz &dr kontinuerlig. Rédkningen for att visa
x > cosz ar kontinuerlig ar analogt fran ((7.4)). [ |

Sats 7.6. FExponentialfunktionen x — a® dr kontinuerlig.

Bevis: Enligt ((7.2) sa ska vi visa att

: z+h _ Ty _
%g%(a a®) =0 (7.5)

vilket dr ekvivalent med att visa att a” — 1, d& h — 0.
Anta forst att a = 2 och x > 0.

Eftersom x — 2% &r véxande (se delkapitel [3.6) sa rdacker det att visa att

2/m 1, dd n — oco. Eftersom foljden (21/7)%° | &r nedat begrinsad ty

21/7 > 0 och avtagande s& konvergerar den mot ett virde A. Vi har att
ot/m . gl/n — 92/m _, 4, (7.6)
da n — oo och fran Sats 4.5b)| far vi att
gl/m . gl/n _y 42, (7.7)

dd n — oo. Alltsa dr A% = A och da A # 0 s& foljer att A = 1. Vi har visat
att

. 1
Lat nu x < 0. D& géller att
lim 2% = lim L:1 (7.9)
z—0— z—0— 27T ’ ’
fran (7.8]).
Antag nu att a # 2. Da foljer att
a® = 2%los2a — (g7)logza (7.10)

och resultatet blir en konsekvens av Sats [[.4]
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7.2 Satser om kontinuerliga funktioner

Sats 7.7. Lat f: [a,b] — R vara en kontinuerlig funktion. Dd dr f begrinsad.

BEvis: Lat oss visa att f dr uppat begrinsad med hjilp av ett motségelsebevis.
Antag darfor att f ar uppat obegrdnsad. Da géller att for varje heltal £ sa
finns ett z; sddant att

f(zg) > k. (7.11)

Alltsa kan vi bilda talféljden (x,)5%,, dar =, € [a,b] for varje n, med egen-
skapen att f(z,) > n.

Eftersom x,, € [a,b] for varje n, ar talféljden begrénsad och enligt Bolzano-
Weierstrass sats (se sa finns det en konvergent delfoljd (z, )72 ;. Lat oss
beteckna gransvirdet med x, alltsa x,, — x, dd k — oo. Eftersom z € [a, b]
och f &r kontinuerlig i « sa har vi att f(z,,) — f(z), d& k — oo. Men fran
och konstruktionen av talfoljden géller att

Jm f(zg,) = oo.

Vi har en motséigelse.

Pa liknande sétt kan vi visa att f &r nedat begrédnsad. [ |

Exempel 7.8. Funktionen f: (0,1] — R sddan att f(x) = ~! &r kontinuerlig
men inte begrénsad. Sats ar inte applicerbar eftersom definitionsméngden
inte ar ett slutet intervall. A

Sats 7.9. Summan och produkten av kontinuerliga funktioner dr kontinuerlig.

BEVIS: Detta ar en direkt foljd av sats @ och @ ]

Foljdsats 7.10. Polynom dar kontinuerliga funktioner.

BEvis: Eftersom polynom &r summor och produkter av réta linjer av typen
y = kx + m s ricker det enligt sats [7.9] att konstatera att dessa linjer &r
kontinuerliga. u

Exempel 7.11. Polynomet f(z) = 22* —2+3 = (27) -2 -2 2+ (-2 +3) och
kan med andra ord beskrivas som summor och produkter av de rita linjerna
2x, x och —x + 3. A

Sats 7.12. Lat A och B vara intervall och lat f: A — B vara en kontinuerlig,
inverterbar och stringt vizande funktion. Dd gdller att inversen f~': B — A
ar kontinuerlig och strangt varande.
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BEvis: Antag att f: A — B &r kontinuerlig, inverterbar och striangt vixande,
dir A och B ér intervall. Lat oss forst visa att f~': B — A ar stringt vixande.

Vi vill visa att om y; < yo sa géller att f~!(y1) < f~!(y2). Detta foljer av att
f ar strangt vixande, ty

yi <y & ) <) & i) <) (T12)

LAt oss nu visa att f~! dr kontinuerlig. Lat yo € B och tag € > 0. Vi vill visa
att det finns ett § sddant att |f~(yo) — f~ (y)| < e da |yo — y| < 4.

Antag att o = f~!(yo) dr en inre punkt av A, d.v.s. det finns en omgivning
I till zy sddan att I C A. Vi kan vélja I = (a,b) sidan att

ro—e<a<xzyg<b<xy+e. (7.13)

Eftersom f ar strangt vixande sa foljer att

fla) < f(xo) = yo < f(b). (7.14)

Vélj § = min{yy — f(a), f(b) — yo}. Om y € B uppfyller att |y — yo| < J sa
foljer att f(a) <y < f(b). Eftersom f &r strédngt vixande sa foljer att

a< fHy) <b (7.15)

vilket ger att |f~1(y) — f~(yo)| < . Vi éir klara. |

Satsen kan formuleras analogt for stringt avtagande funktioner. En foljd av
satsen ar att funktionerna x +— Inz, x +— arctanzx, z +— arcsinz och x +—
arccos x ar kontinuerliga.

Exempel 7.13. Visa att funktionen f : (0,00) sddan att f(x) = 2® ar konti-
nuerlig.

LOSNING: Observera att

¥ =e = et

Det senare dr en sammansittning av de kontinuerliga funktionerna x +— zInz

och z +— e”. Alltsa &r o® kontinuerlig. A

Exempel 7.14. Bestam
T n
lim (1 + ) .
n— 00 n

LOSNING: Om x = 0 sa foljer att gransviardet ar 1.

Om 2 > 0 kan uttrycket skrivas om enligt féljande

2= o) = (o))
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Eftersom funktionen ¢ — t* enligt exempel [7.13] ar kontinuerlig har vi identi-

teten
lim ((1—!—1) > —(hm (1—1—1) ) .
n—o00 n/x n—o00 n/x

Med hjalp av variabelbytet y = n/x far vi

1 n/z\ 1\ ¥\ %
lim <1+) —(lim <1+)> .
n—o0 n/x Yy—00 Yy

Vi kan slutligen visa att det senare gréansvéirdet kan 6verforas till gransvérdet
av en talfoljd. Lat m <y < m + 1, alltsa géller

1 \™ 1\Y 1\mH
lim (1+) < lim (1+) < lim (1+) .

m—00 m+1 Y—00 Y m—00 m

Vi far fran definition .17 och sats .5 att

1 m 1 m+1 1 -1
lim (1+) — lim (1+> lim <1+> —e
m—00 m+1 m—00 m+ 1 m—00 m-+1
och
m—+1 1\™ 1
lim (1 + ) = lim (1 + ) lim (1 + > =e.
m— 00 m m—00 m m—00 m

Fran instdngningssatsen foljer att

1\
lim <1 + ) =e
Yy—00 Yy

1\\"*
(lim <1—|—> ) = e”.
Y—00 Y

Lemma 7.15 (Intervallhalvering). Lat [a;,b;] vara intervall, for varje j €
N, med egenskapen att givet [aj,b;| sd viljer vi [aj41,bj41] genom att lita
aj+1 = aj och bji1 vara mittpunkten pa [a;,b;] eller genom att lata aj1 vara
mittpunkten pd [a;,b;] och bji1 = bj. Dd gdller att det finns ett unikt tal x
sadant att x € [aj,b;], for varje j € N.

och darmed ar

A

?
a 1
1
[ |
as bs
1
r : {
a2 : bo
1
r ; {
a
1 ! by
1
ag x bo

71



BEvis: Talféljden (a;)72, &r vixande och uppat begridnsad av by. Enligt sats
konvergerar (a;)52, mot x, := sup{a; : j € N}. Aven (bj)52, konvergerar
mot xp := inf{b; : j € N} eftersom den ar avtagande och nedat begrénsad av
ag.

Ett tal x ligger i alla intervallen om och endast om z, < x < xp. Satsen foljer
alltsd om vi kan visa att x, = xp.

Fran sats far vi att x, > x,. Eftersom a; < z, < 23 < b for varje j € N
sa far vi att

|zp — 2o = — 24 < bj —a; = — 0, (7.16)

da j — oo. Alltsa ar x, = xp. [ |

Lemma 7.16. Ldt f vara kontinuerlig i punkten a och f(a) > u, for nagot
w € R. Da finns en omgivning I kring a sadant att f(x) > p for alla x € 1.

BEevis: Tag € > 0 sadant att f(a) — p > ¢, vilket ar ekvivalent med att
f(a) —e > p. Da f ar kontinuerlig i a géller att

lim f(x) = f(a)

som i sin tur betyder att vi kan finna ett 6 > 0 sadant att |f(z) — f(a)| < €
da |z —a| < d. Att |f(z) — f(a)|] < € betyder att f(a) —e < f(z) < f(a) +e¢,
vilket ger att u < f(a) —e < f(x) for alla x € I :=={z: |z —a| < 6}. |

Sats 7.17 (Satsen om mellanliggande véirde). Ldt f wvara en reellvird och
kontinuerlig funktion definierad pd [a,b]. Dd antar f alla varden mellan f(a)
och f(b).

Kommentar 7.18. Satsen sdger att om f(a) < m < f(b) (eller f(b) <
m < f(a)) sa finns det ett € [a,b] sadant att f(x) = m. Observera att
beviset for denna sats beskriver en algoritm som enkelt kan implementeras
i nagot programsprak. Det teoretiska existensresonemanget maste i verkliga
situationer verifieras innan algoritmen kors eftersom algoritmen kan svara med
viarden dven i fallet d& det saknas 16sning.

fla) -

R_-_____________

Q4+ -=-=-===

[ T g g g g g S i

72



BEvIs: Antag att f(a) < m < f(b). Vi vill visa att det finns ett z € [a,b]
sddant att f(z) = m. Lat oss nyttja intervallhalvering, alltsa hjalpsats [7.15
Lat ap = a, by = b och ¢ vara mittpunkten pa intervallet [ag, bp]. Alltsa,

ag + by
5
Om f(c) > m, sa véljer vi a1 = ag och by = ¢, annars véljer vi a; = ¢ och
by = bp. Vi upprepar nu denna algoritm och konstaterar fran hjélpsats [7.15]
att det finns ett unikt element  som har egenskapen att = € [a;, b;], for varje
7 € N. Vi har att

flag) <m < f(by),
for varje 7 € N. Om vi later j — oo och anvénder oss av @ och kontinui-
teten av f sa far vi relationen f(x) < m < f(z). Alltsa ar f(x) = m och vi é&r
klara. |

Exempel 7.19. Har ekvationen z® — 5z 4+ 3 = 0 nigon 16sning i intervallet
[—1,1]7
LOSNING: Bilda funktionen f(x) = 2® — 5z + 3. Eftersom f dr kontinuerlig och

f(=1) =7 och f(1) = —1 sa finns det enligt satsen om mellanliggande véirde
(se sats [7.17)) ett zp € (—1,1) sddant att f(zo) = 0. Alltsa har ekvationen
nagon 16sning i intervallet [—1,1]. A

Sats 7.20. Ldt f: [a,b] — R wvara en kontinuerlig funktion. Dd antar f ett
storsta och ett minsta virde, d.v.s. det finns x1, 2 € [a,b] sddana att sup Vy =

f(x1) och inf Vi = f(x2).

BEvis: Vi visar att f antar ett storsta viarde. Att f antar ett minsta virde
bevisas pa ett analogt vis. Fran sats @ vet vi att Vy dr begridnsad. Alltsa
existerar M := sup Vy och f(z) < M, for varje x € [a,b]. Vi anvander ett
motsigelsebevis. Antag att f(x) # M, for varje x € [a,b]. Da ar
= 1
w e —
M — f(x)
definierad pa [a, b] och kontinuerlig. Fran sats|7.7|ar den begrénsad, alltsa finns
en konstant C' sadan att

(7.17)

1
M=) <C (7.18)
eller
Fz) < M-~ (7.19)
C
Alltsa &r M — 1/C en 6vre begrénsning till Vy vilket motséger att M &r den
minsta 6vre begrénsningen till V7. |

Exempel 7.21. Funktionen f: [0,1) sidan att f(x) = 22 &r kontinuerlig, men
saknar maxvérde. Sats [7.20] 4r inte applicerbar ty definitionsméngden &r inte
ett slutet intervall. A
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7.3 Lokala standardgransvarden
Hjalpsats 7.22. Olikheten

|sinz| < |z| < |tanz, (7.20)
gdller for alla x € (—m/2,7/2).

BEvVIs: Antag forst att « € [0,7/2). Vi vill da visa att sinz < z < tanz. Lat
oss studera tre areor enligt figuren

Den minsta arean ar den vi far fran triangeln som har héjden sin z och bredden
ett. Den mittersta arean far vi fran cirkelsektorn med vinkeln x och den storsta
arean far vi fran den triangel som har héjden tan x och bredden ett. Areornas

relationer ar
sin x x tan
<

)
N
3

)

eller enklare
sinz <z <tanzx.

Antag nu att x € (—7/2,0). Da dr —z € (0,7/2) och fran den bevisade delen
av satsen har vi att

sin(—z) < —z < tan(—x),

eller
—ginz < —x < —tanx.

Déa z € (—7n/2,0) dr —sinx = |sinz|, —z = |z| och —tanx = |tan z|. Darmed
foljer att
|sinz| < |z| < |tanz|

aven giller da z € (—n/2,0). [ |
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Sats 7.23 (Lokala standardgrénsvirden). Féljande grinsvirden gdller

lim =1 (7.21)
x—0 T

x J—
lim &1 1 (7.22)
z—0 €T
lim S = 1 (7.23)
z—0 X

BEvis:
Bevis av (7.21]): Vi borjar med att skriva om uttrycket enligt

In(1+x)
T

1
x

1
:;ln(l—i—:r):ln(l—i—:r)

Lat oss utfora variabelbytet s = 1/x. Gransvardet x — 0 kommer att samman-
falla med s — +oo (obs tva griansvirden!). Da vi vet att logaritmfunktionen
ar kontinuerlig, far vi att

lim (ln(1+1> >:1n< lim (1+1> )zlnezl.
s—=+o0 S s—+oo S

Bevis av ([7.22): Lat oss direkt utfora variabelbytet e — 1 = s, vilket ger
z =1In(1+s) och

x
-1
c = i — 1, d& s — 0 (vilket dr detsamma som =z — 0).
x In(1+s)

Bevis av ([7.23]): Enligt sats har vi relationen
|sinz| < |z| < |tanz, (7.24)

for alla z i en liten omgivning av 0. Lat oss dividera med |z|. Vi far att

| sin z| <1< |sinz| 1 (7.25)
|| |z| cosz
och darmed att
cosz < S (7.26)
|z|
Da x — 0 far vi att
lim 1502 _ (7.27)
=0 |z
Observera till sist att
sin x 0.
T
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for alla  # 0 sadana att |z| < 7/2. Detta ger énskad likhet. |

Tz et —1

94 x— In(1+ x)

T~ sinx 1 /

Figur 7.1: De lokala standardgrénsvirdena siger att kvoten av tva av dessa
funktioner gar mot ett da x gir mot noll.

Exempel 7.24. Bestdm
In(1 4+ 2x)
a—0 tanbxr
Losningen ar att utnyttja standardgransviarden. Vi far
In(1+2z) . <2 In(1+2z) 5z
m-——:-=lim | -
z—0 tandzr z—0

. . 5¢ ) .
5 2z sin bx €08 x)

Den andra och den tredje faktorn ar standardgriansvirden och gar bada mot ett
enligt sats Vi utnyttjar nu sats @ for kunna utfora dessa gransviarden
var for sig. Vi far att
) (2 In(1+2z) b5z
lim { = - - —

) 2x sin 5x

2 2
-COSS$)=-1-1~1:.
5 5

z—0

7.4 Ovningar

Ovning 7.1. [2006-12-20, uppgift 1] Bestim talet a sa att funktionen

22 —xr—1
fay= a-1 "7t

a r=1,
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blir kontinuerlig i punkten x = 1.

Ovning 7.2. [2008-06-04, uppgift 5] Berdkna foljande grinsvirden

a) lim xsin (1)

z—0 €T

1
b) lim xsin ()
T—r00 €T

COS T

c) lim
=00

d) Jim. z(In(z +1) —Inz)

1/x

Ovning 7.3. Bestam griansvirdet av z — /%, da z — cc.

Ovning 7.4. Bestiam konstanterna a och b sa att

in(2
sin(2z) + aarctanx + b.

lim f(r) =3, lim f(x)=n dir f(z) =

Ovning 7.5. Visa att sats galler aven for a = oo, d.v.s. lat f(x) vara
kontinuerlig i punkten b och lat g(z) — b, da x — oo. Da géller att

lim f(g(z)) = f ( lim g(z)

T—00 (z—>oo ) )

Visa med hjélp av denna sats att

1 2z
lim In (1 + ) = 2.
T—00 T
Ovning 7.6. Bestim konstanten k si att funktionen

In(1
n(l + kx) 40,
3 z =0,

blir kontinuerlig.

Ovning 7.7. En parkeringsmétare tar betalt enligt foljande: den forsta pa-
borjade timmen kostar 4 kronor och darefter kostar det 2 kronor for varje
ytterligare paborjad timme, upp till det maximala dygnsbeloppet 10 kronor.
Lat h(t) vara parkeringskostnaden som funktion av tiden ¢ timmar. Skissa
funktionsgrafen y = h(t) for 0 <t < 24. Ar h en kontinuerlig funktion?

Ovning 7.8. Berikna

a)
o sin(2x)
z—0 x
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b)

sinx
im ———.
=0 In(1 + z)
Ovning 7.9. For vilka a,b > 0 géller att

sin ax
lim —————— = 57

Ovning 7.10. Bestim
. sin(sinx)
lim ———=.
z—0 x

Ledning: Borja med att bestdmma,
lim sm('sm 9:)
z—0 sinx
Ovning 7.11. Bestiam
lim xIn(sinz).
z—0t

Ovning 7.12. Betrakta f: (0,1) — R definierad av

)=+ 4

xr 1l—2a

Det géller att f(x) > 9 for alla x och att f(1/3) = 9. Bestdm funktionens
viardeméangd.

Ovning 7.13. Visa att kontinuitet &r ett viktigt antagande i satsen om mel-
lanliggande virden. Med andra ord, hitta en funktion f: [a,b] — R och nagot
m € [f(a), f(b)] s& att det inte finns nagot ¢ € [a,b] med f(c) = m.

Ovning 7.14. For varje n € N, 1at f,,: [0,1] — [0, 1] definieras av
fu(z) =2"
Definiera for varje x
foolz) = lim f(z).
a) For fixerat n € N, ar funktionen f,, kontinuerlig?

b) Bestim funktionen fs,. Ar funktionen f., kontinuerlig?

Ovning 7.15. Lat f,g: R — R vara kontinuerliga funktioner. Antag att
f(x) = g(zx) for alla x € Q. Visa att f(x) = g(x) for alla = € R.

Ledning: Om =z € R\ Q sa finns det en f6ljd (z,)5>; sadan att =, € Q for
varje n, och x,, — x, dd n — oo.
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8 Derivata

Perfection is achieved, not when there is nothing more to add, but when
there is nothing left to take away.

Antoine de Saint-FExupéry — Airman’s Odyssey

8.1 Definitionen

Definition 8.1. Lat f vara en reellviard funktion definierad i en omgivning
av xg. Vi siger att f ar deriverbar i punkten xy om

F(z0) = lim f(zo+h) = f(zo)

h—0 h

(8.1)

existerar. Vardet f’(zg) kallas derivatan av f i punkten xg. Om f dr deriver-
bar i varje punkt i sin definitionsméngd sa kallas f deriverbar och funktionen
f" med definitionsméngden Dy = Dy kallas for derivatan av f.

Figur 8.1: Forandringskvoten for givet A > 0.

Lutningen pa linjen i figuren beskriver medellutningen i intervallet [xg, 29+
h] och ges av

f(zo+h) — f(z0)
- .

Det ar vart att notera att vi endast kan derivera en funktion i en punkt om
funktionen ar definierad i en omgivning av punkten. Alltsa kan vi inte derivera
funktioner i &ndpunkter av intervall.

Med hjalp av derivatans definition kan vi derivera funktioner som exemplet
nedan visar. Vi kommer senare i kapitlet att bestimma allménna derivator for
de elementéra funktionerna for att enklare finna derivator.

Exempel 8.2. Derivara funktionen f(z) = 2z3.
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LOSNING: Enligt (8.1) finns derivatan av f i punkten 2 om foljande gransvirde
existerar

flz+h) - f(z) 2(z + h)* — 22

W h = h
= lim (622 + 62h + 2h?) = 622
h—0
Alltsd &r f deriverbar med derivatan f’(x) = 622. A

Exempel 8.3. Visa att f(z) = |z| ej &r deriverbar i punkten 0.

LOSNING: Lat oss visa att gransvirdet
||

i JO R = fO) _ (R
h—0 h h—0 h

inte existerar. Vi berdknar hoger- respektive vinstergriansvirdet. Vi far

I _

och

Eftersom hoger- och vinstergriansviardet ar olika sa existerar inte gransvardet
i punkten O. A

8.2 Derivatan av elementara funktioner

Exempel 8.4. Derivera funktionen f(x) = e”.

LOSNING: Enligt definitionen och (7.22)) &ar

+h T z  h T h
, et —e . eTe—e ofq. €e*—1 .
f(x) lim . lim . e < im ) e

Alltsa ar f deriverbar med derivatan f'(z) = e”. A
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Exempel 8.5. Derivera funktionen f: {x € R: x # 0} — R, dér f(z) = In|z|.
LOSNING: Lat forst > 0. Vi far enligt definitionen och (7.21)) att
1 —1 In (1 1 In (1 1
f(x) = lim n@+n) -z = lim In(1+h/z) = — lim In(1+h/z) =—.

h—0 h h—0 h T h—0 h/x x

Lat nu x < 0. Vi far for tillrackligt smé h, sidana att  + h < 0 att
In(—(x +h)) — In(—=x) In(l+h/z) 1

/ 1 T [
J) = ilzli% h N ilzlg%) h x
Alltsa ar f deriverbar med derivatan f/(z) = 1/x. A

Exempel 8.6. Derivera funktionen f(x) = sinz.

LOSNING: Enligt definitionen och ([7.23)) &r

f/(:z) — Im sin(z + h) —sinx ~ i sinx cosh + cosxsinh — sinx
h—0 h h—0 h
. . cosh—1 ~ sinh
=sinz | im ————) +cosx | lim
h=0  h h—0 h
. . cosh—1
=sginx }{%T + cos .

Lat oss ndrmare studera uttrycket

cosh—1 1-2sin?(h/2) -1 2sin?(h/2) sin(h/2)
_ - = 2> gin(h/2
N N . e sin(h/2) — 0,

da h — 0, ty

_sin(h/2)
ho0  hJ2 =1

och
lim si = 0.
lim sin(h/2) =0
Alltsa ar f deriverbar med derivatan f/(x) = cosz. A

Det ar lamnat som en 6vning att verifiera att %(cos x) = —sinx.

Sats 8.7. Lat funktionen f vara deriverbar i intervallet (a,b). Da ar f konti-
nuerlig i (a,b).

BEevis: Antag att f dr deriverbar i punkten x € (a,b), d.v.s. gransvirdet
Lo f@th) — ()
h—0 h

existerar. Vi vill visa att f &r kontinuerlig i x. Enligt (7.2) sa vill vi visa att
f(x+h)— f(x) = 0,dad h — 0. Vi har att

lim (F(z 4+ h) — f(2)) = Jim L& EM = 7(@)

h—0 h—0 h
Vi ar klara. [ ]

-h:f/(a?)-}llir%h:O.
—
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8.3 Derivationsregler

Sats 8.8. Lat f och g vara funktioner deriverbara i punkten x. Da féljer att
f+g och fg dr deriverbara i punkten x. Derivatorna har féljande samband:

(f +9)(z) = f'(2) + g'(2), (8.2)
(f9)'(x) = f(x)g(x) + f(z)g'(2). (8.3)
Om dessutom g(x) # 0 sa foljer att f/g dar deriverbar i punkten x och
1Y oy _ F@le) ~ f@)g @)
(5) 0= T (&4

Bevis: Om vi visar sambanden (8.2, (8.3) och (8.4) sa foljer att f + g, fg

och f/g &r deriverbara i punkten x, (eftersom hogerleden existerar fran férut-
sattningarna i satsen).

Lat oss visa att (f + g)'(z) = f'(x) + ¢'(x). Vi har

(f+9)@+h)—-(F+9) (=) fla+h)+gx+h)—fz)—g(x)
h h
fla+h) = fz)  gl@th)—g(z)
h h

= f'(z) +g'(2),

da h — 0.
Lat oss visa produktregeln (8.3)).

(fg)(x+h)—(fg)(x)
h
_ f@+h)g(z+h) - f(x)g(z)
h
fx+h)glx+h) — f(x+h)g(x) + f(z + h)g(x) — f(z)g(x)

- h
fle+ (g +h) —g(@)  (flz+h) = f(z))g(2)

h h
e+ TR =gl UG = I,
= f(@)g' (@) + ' (2)g(w)

da h — 0. Det sista steget foljer av sats @ och @

For att visa (8.4) skriver vi f/g som f-1/g. Om vi vet hur vi deriverar 1/g
sa kommer resultatet att folja fran produktregeln (8.3)).

Lat oss derivera 1/g. Antag att g(x) # 0. Eftersom ¢ ar deriverbar i punkten
x ar g enligt sats [8.7] kontinuerlig i punkten z och dirmed &r g enligt lemma
skild fran noll i nagon omgivning av punkten z. Antag att |h| dr sa
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litet i rdkningen nedan s att z + h tillhdr denna omgivning och dérmed &r
g(x 4+ h) # 0. Vi har

1 1

g@th) — gw _ g(x) —g(z+h)
h hg(x + h)g(x)
__glez+h)—g(@) 1
h g(x + h)g(z)
_g'(=)
ITESEE

da h — 0. Det sista steget foljer av sats @ Alltsa har vi att

& (707) ~—5er

Fran produktregeln ({8.3)) far vi

Ay Y = ) (22 4
i (1) 557) =10 (-Gp) + 10
_ P@)ole) ) @)
g(x)? '

Vi ar klara.

Ett specialfall av (8.3]) ar da funktionen g ar en konstant. D& dr ¢’ = 0 och vi
far

Foljdsats 8.9. Ldt f vara en deriverbar funktion i punkten x och a € R. Dd
galler att

(af)'(z) = af'(x).
Exempel 8.10. Derivera funktionen h(z) = e*Inzx.

LOSNING: Vi anvander (8.2) med f(z) = e och g(x) = Inx och far att

W(z) = ['(@)g(@) + f(x)g'(2) = € Inz + ¢* =

x
A
Exempel 8.11. Derivera funktionen h(z) = tanx.
LOSNING: Enligt (8.4])
h,(m):d<sin:ﬂ> :cosmcosx—sinm(—sinx) _ 1
dx \cosx cos? x cos? x
Alltsd &r b/ (z) = 1/ cos? x. A
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Sats 8.12 (Kedjeregeln). Antag att f ar deriverbar i punkten y, g deriverbar
i punkten x och y = g(x). Dd dar f o g deriverbar i punkten x med derivatan

(f 0 9)'(z) = f'(9(x))d (x). (8.5)
BEvis: Eftersom f ar deriverbar s& vet vi att funktionen p definierad som

{f(y+k)—f(y) _Ply), kA0,
0, k=0

(8.6)

uppfyller att p(k) — 0, da kK — 0. Da k # 0 har vi

fly+k) = fy) = k(f'(y) + p(k)). (8.7)
Lat k = k(h) = g(x + h) — g(x) och studera forandringskvoten
flg(z+h)) — flg(x)) _ flg(x)+g(x+h) —g(x) — flg(z))

h h
_ flole) + k)~ Fg())
h
_ (f'(g(@) + plk)k(h)
h

(f'(9(z)) + p(k)) Y
F(g(x))g' (),
da h — 0 och darmed dven k = g(x + h) — g(z) — 0. [

—

Exempel 8.13. Derivera funktionen h(x) = In(cosx).

LOSNING: Funktionen h ar en sammansittning av funktionerna f(zx) = Inx
och g(z) = cosx, ndmligen h(x) = (f o g)(z) = f(g(x)). Kedjeregeln ger att

W (@) = f'(g(e))g'(#) = ——(~sinz) = — tan.

Exempel 8.14. Derivera funktionen f: (0,00) — R sadan att f(x) = 2%, dar
ac€R.

LOSNING: Vi utfor forst omskrivningen
f(a:) — 0 — elnz“ — ealnx

och anvinder oss av kedjeregeln och far att

1 1
f’(x) _ ealnxai = ar®=
T T
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Exempel 8.15. Derivera funktionen h(z) = sin® z*.

LOSNING: Funktionen A dr en sammanséttning av de tre funktionerna f;(z) =
23, fo(xr) = sinz och f3(z) = x* Vi har att h(z) = (fi 0 fa 0 f3)(z) =
fi(f2(f3(x))). Kedjeregeln kan nu appliceras pa detta uttryck. Lat oss forst
skriva ¢ = fo o f3 och anvinda kedjeregeln i tva omgangar. Vi far att

W(x) = fi(g(@))g'(x) = fi(f2(f3(2))) f5(f3(2)) f3()

= 3(sin(2))? cos(z*) 42> = 1223 sin?(z*) cos(z?).

8.4 |Linjar approximation och Newton’s metod

Antag att vi vill studera en funktion f i en omgivning av en punkt zg och att
vi vet viardena av f(zg) och f/(zg). D4 kan vi approximera f i en omgivning
av xo med hjdlp av den réita linje som gar genom punkten (xq, f(x¢)) och som
har derivatan f’(z¢). Denna linje kallas tangenten for f i punkten z( och
approximation med denna tangent kallas linjar approximation.

flao) $--------F

Figur 8.2: Linjir approximation av f i punkten xzg.

Tangenten &r en linje vars funktion ar T'(z) = f'(zo)x+m. Eftersom tangenten
passerar punkten (zg, f(x)) sd ar f(zo) = f’'(z¢)zo+m. Alltsa blir tangentens
funktion

T(x) = f'(x0)(x — o) + f (o). (88)

Den réita linje som gar genom (xo, f (o)) och dr vinkelrdt mot tangenten kallas
for normalen till f i punkten xg.
Exempel 8.16. Anvind linjar approximation for att berdkna 1/4.01sin(0.01).

LOSNING: Lat f(z) = /4 + xzsinz. Enligt produktregeln (8.3) far vi

f(z) = 2\8/1% + V44 -cosz.
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Tangentlinjen for f i punkten x = 0 ges av

T(z) = f'(0)x + f(0) = 2z.
En approximation fér f(0.01) med hjilp av tangenten &r alltsa 7°(0.01) = 0.02.
A

Exempel 8.17. Bestim alla tangenter till kurvan f(z) = 2? som passerar

punkten (—1,—1).

LOSNING: Tangentens funktion i en punkt xg ar enligt
T(x) = 2xox — 2.

Eftersom linjen passerar punkten (—1,—1) sa ar
—1=—2x9— 3.

Loser vi ut zg sa far vi
zo = —1++2.

Tangenterna ges alltsa av
Tia(x) = 2(£V2 — D — (£V2 — 1)

A

Lat f vara en deriverbar funktion och studera ekvationen f(x) = 0 som for
manga f kan vara analytiskt svarlost. En algoritm for att approximera rotter
till ekvationen dr Newtons metod. Algoritmen baseras pa en bra gissning
och déarefter en rekursiv procedur for att successivt forbattra approximationen.
Det rekursiva steget utgar fran tangenten till f i punkten (x,, f(zy)). Vi finner
en (troligen) forbéattrad gissning i den punkt dér denna tangent skir z-axeln.
Vi illustrerar med en bild.

/

'O

Tn+2 Tn+1

- - - -

Funktionens tangent i punkten (z,, (f(z,)) ges enligt (8.8) av
T(x) = f'(zn)(x — 2n) + f(2n).
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Vi far nésta approximation x,41 dar denna tangent skir z-axeln, d.v.s. T'(x) =
0. Alltsa géller att

Tn+l = Tn — ff/((ﬂfn) : (8.9)

Tn)

Metoden har nagra svagheter. Exempelvis fallerar den om f’(z,) = 0 eller sa
ndrmar sig algoritmen inte nagot rot.

Exempel 8.18. Anvind tva iterationer av Newtons metod pa ekvationen
22 — 1 = 0 med startvirdet x; = 3.

LOSNING: Bilda f(x) = 22 — 1. Vi far att
f(zn) _ x?z —1

T T ) T T2z,

och darmed att
3 -1 _ 3 8 o

mEn - =3y
Andra iterationen ger
r3—-1 5 25/9-1 17
T3 = Tg — = - = —
2z 3 10/3 5
/
xrs3 :;2 1'11
Tva iterationer enligt ovan ger rotapproximationen x = 17/15 ~ 1.133. A

8.5 Derivatan av inversa funktioner

Exempel 8.19. Visa att

1
1422

i(aurctan x) =
dz B
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LOSNING: Eftersom arctan ar en hogerinvers till tan har vi identiteten
tan(arctan ) = z, (8.10)

for alla x € R. For att berdkna derivatan av arctan sa deriverar vi vanster- och
hogerledet. Vénsterledet dr en sammansatt funktion och derivatan &r enligt

exempel och sats
1 d

— (t t = — — t . A1
T (tan(arctan z)) cosZ(arctan ) " da (arctan x) (8.11)

Hogerledets derivata dr 1. Alltsa far vi

1 d
—_— — t =1 8.12
cos?(arctanz) dx (arctan.z) (8:.12)
eller
d—(arctan x) = cos?(arctan x). (8.13)
x

Lat @ = arctan z. I fallet da @ > 0 sa har 6 och x det samband som triangeln
nedan visar

V1422

Hypotenusan har vi berdknat med hjalp av Pythagoras sats. Med hjilp av

triangeln ser vi att
1

V1422

Laser kan sjalv verifiera att likheten haller i fallet d& 6 < 0.
Vi har alltsa att

cosf =

d 1 2 1
%(arctan z) = cos?(arctan ) = cos? 0 = (m> =112
Vi har visat att derivatan av z + arctanz ar x +— 1/(1 + z?). A

Exempel 8.20. P4 liknande sitt som exempel sa kan man visa att

d 1
%(arcsin x) = ﬁ, (814)
1
%(arccos x) = Byt (8.15)
Det &r lamnat som en 6vning for ldsaren att verifiera dessa derivator. A
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Exempel och kan generaliseras till

Sats 8.21. Lat f vara en deriverbar och inverterbar funktion. Da gdller att
inversen f~1 dr deriverbar i alla punkter y = f(x), ddr f'(z) # 0, med deri-
vatan

(fF ' = : (8.16)

BEvVIS: Vi vill visa att

T RO R e ) N

h—0 h f(z)

Lat © = f~1(y) och k vara sddant att x+k = f~1(y+h). Alltsd &r f(z+k) =
y+h = f(x) + h. Fran sats far vi att f~! #r kontinuerlig och dérmed
foljer att

k=f"y+h) -y —0, (8.17)
di h — 0. Vi far
Ty +h)— "y _ k L1
h flx+k)—f(z)  f(2)

da k — 0. [ |

Kommentar 8.22. Om vi visste att f~! var deriverbar sa kunde vi utga
ifran identiteten f(f~!(y)) = y, som géller for varje y € D ;1. Derivation med
avseende pa variabeln y ger enligt sats [8.12] att

FU ) - (Y (W) =1 (8.18)
Alltsa har vi att

1 1

—1\/ _ _
)W) = 5100 = Ty

(8.19)

8.6 Definitioner av lokala max- och minpunkter
Definition 8.23. En funktion f ségs ha ett lokalt maximum i punkten

xo € Dy om det finns en omgivning I till z sadan att f(x) < f(xo), for varje
reln Df.
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Figur 8.3: Exempelbild pa ett lokalt maximum i zg. Omgivningen I &r har
orangemarkerad.

Lésaren kan sjilv forverkliga en definition av hur ett lokalt minimum for
en funktion definieras. En funktion som har ett lokalt maximum eller lokalt
minimum i en punkt xg sdgs ha en lokal extrempunkt i xg.

Exempel 8.24. Lat f(z) = 2—|z—1|. Da géller att f har ett lokalt maximum
i punkten 1. Ty, f(1) =2 och f(zx) =2 — |z — 1| < 2, for varje x € R. I detta
fall kunde alltsd omgivningen i definition valjas till R.

f@) =2—lz—1]

N
/]

Sats 8.25. Lat f wvara deriverbar i punkten xo och ha en lokal extrempunkt i
xo. Da gdller att f'(xz¢) = 0.

BEvis: Vi borjar med fallet att f har ett lokalt maximum i punkten xg.

Eftersom f &r deriverbar i punkten xg sa ar f definierad i en omgivning av
zo. Enligt definitionen av derivata vill vi studera gransvardet av

f(zo+h) = f(zo)
Y ;

da h — 0. Téaljaren i detta uttryck ar for sma h alltid icke-positiv eftersom f
har ett lokalt maximum i punkten xy. Namnaren kommer uppenbarligen vara
positiv for positiva h och negativ for negativa h. Alltsa har vi att

f(xo +h) = f(x0)
h

20,
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da h < 0 och

f(xo + h) — f(z0)
h

<0,

da h > 0. Eftersom f ar deriverbar i punkten z( sé vet vi att detta gréansvirde
existerar. Alltsa maste f/(zg) = 0.

Beviset i fallet att f har ett lokalt minimum i punkten xy &r analogt och
ldmnas till ldsaren att kontrollera. |

Vi kallar en punkt zo € Dy for en stationdr punkt om f/(zg) = 0. Om-
vandningen av sats giller inte, d.v.s. om xg dr en stationir punkt till en
funktion f, sd har f nédvindigtvis inte ett lokalt extremvéirde i punkten xg.
Funktionen z + 2 har en stationir punkt i 0, men inte ett lokalt extremvirde
i punkten O.
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Figur 8.4: Funktionen z + /5 kring 0.

Definition 8.26. En funktion f sdgs ha ett globalt maximum i punkten
xo € Dy om f(z) < f(xo), for varje x € Dy.

8.7 Medelvardessatsen

Sats 8.27 (Rolles sats). Ldt f: [a,b] — R vara en kontinuerlig funktion som
ar deriwerbar pa (a,b) och lat f(a) = f(b). Da existerar det en punkt p € (a,b)
sadan att f'(p) = 0.

BEvis: Vi borjar med att inse att om f(z) = f(a), for varje x € [a,b] sd
galler att f/'(z) = 0, for varje x € (a,b). Detta gor att punkten p kan viljas
godtyckligt inom (a,b).

Antag nu att f(z) > f(a), for nagot x € (a,b). Eftersom f &r kontinuerlig
pa det slutna intervallet [a,b] s& antar f enligt sats sitt maxvarde. D4
f(a) = f(b) sa géller att maxvérdet antas i en inre punkt ¢ € (a, b). Eftersom
f ar deriverbar i den punkt som ger maxvirdet sa géller enligt sats [8.25] att
f'(q) = 0. Alltsa kan p viljas till detta gq.

Fallet d& f(x) < f(a) behandlas pa ett analogt sétt. |

Sats 8.28 (Medelvirdessatsen). Lat f: [a,b] — R vara en kontinuerlig funk-
tion som dar deriverbar pa (a,b). Da existerar det en punkt p € (a,b) sadan
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att

F'p)(b—a) = f(b) ~ f(a). (8.20)
\V
J
a  p b

Beviset foljer genom att sitta g(z) = x i foljande sats:

Sats 8.29 (Generaliserade medelvirdessatsen). Ldt f och g vara reellvirda
och kontinuerliga funktion pa [a,b] som dr deriverbara pa (a,b). Dd existerar
det en punkt p € (a,b) sidan att

) (gb) - 9(a) = ¢ )T G) — Fla)). (8.21)
Om g(a) # g(b) och g'(p) # 0
F@) f®) - fa)
7) ~ 90) —gla)’ (8.22)

Bevis: Vi vill visa att det existerar en punkt p sa att

f'(p)(g(b) — g(a)) — ¢'(p)(f(b) — f(a)) = 0. (8.23)
Bilda
h(z) = f(2)(g(b) — g(a)) — g(z)(f(b) — f(a)) (8.24)
och notera att
h(a) = h(b) = f(a)g(b) — f(b)g(a) (8.25)

Rolles sats siger att det existerar en punkt p € (a,b) sidan att '(p) = 0.
Eftersom

h(z) = f'(z)(g(b) — g(a)) — ¢'(x)(f(b) — f(a)) (8.26)
sa foljer . ]

Foljdsats 8.30. Lat f vara en deriverbar funktion pd ett intervall (a,b) C Dy.
Da gdller att
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a) f'(x) =0 for varje x € (a,b) om och endast om f konstant pd (a,b).
b) f'(x) =0 for varje x € (a,b) om och endast om f ar vizande pd (a,b).

c) f'(x) > 0 for varje x € (a,b) implicerar att f ar strangt vizande pa

(a,b).

d) f'(x) <0 for varje x € (a,b) om och endast om f ar avtagande pd (a,b).

e) f'(z) < 0 for varje x € (a,b) implicerar att f dr stringt avtagande pa
(a,b).

BEevis: Lat xg och x; vara tva godtyckliga punkter i (a, b) sddana att xg < x1.
Vi borjar med att visa @

Antag forst att f/(x) = 0, for varje x € (a,b). Vi vill visa att funktionsvirdena
sammanfaller i dessa punkter, d.v.s. att f(zg) = f(z1). Vi anvinder oss av
medelvirdessatsen Alltsa finns det ett ¢ € (zg, 1) sddant att

f(x1) = fzo) = f'(c)(x1 — x0) = 0,

ty f'(c) =0.
Antag nu att f ar konstant. Vi vill visa att f'(z) = 0, for varje x € (a,b).
Detta foljer direkt fran definitionen.

Lat oss nu visa @

Antag forst att f'(z) > 0, for varje = € (a,b). Vi vill visa att f ar vixande,
d.v.s. att f(xg) < f(x1). Vi anvdnder oss av medelvirdessatsen Alltsa
finns det ett ¢ € (zg,x1) sadant att

f(x1) — f(zo) = f'(c)(x1 — 20) >0,

ty f'(¢) = 0 och 1 — xg > 0 enligt antagande.

Antag nu det omvénda, att f ar vixande pa (a,b). Vi vill visa att f'(z) > 0,
for varje « € (a,b). Fran definitionen har vi att

flz+h) - f(x)

! — 1i > .
7/(r) = tim T >0, (8.27)

ty om h > 0ar f(x+h)— f(x) 20o0chom h <0 éar f(x+h)— f(x) <O0.
Bevisen av |c)|— Eﬂ foljer pa ett analogt vis. [ ]

Notera att det i och |e)| ar implikation, och inte ekvivalens. Ett exempel pa
en funktion som &r stridngt vixande utan att ha positiv derivata Overallt ar
x — 3. P4 samma sitt ar 2 — —23 ett exempel pa en funktion som &r strangt
avtagande utan att dess derivata ar negativ Gverallt.
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8.8 L’Hopitals regel

Sats 8.31. Lat f och g vara reellvdrda, deriverbara funktioner i en omgivning
I av a sadana att

lim (z) = lim g() = 0. (5.29)
Da gdller att
_flx) L f()
M gw) ) (529

BEvis: Fran den generaliserade medelviardessatsen [8.23| att for varje x € [
finns ett p mellan a och z sadant att

f@) o f@) = @) P )

li w = = . 8.30
B o)~ ) —ga) S g) ) (530
Alltsa galler (8.29)) som kallas L’Hopitals regel. [ |

Notera att L’Hopitals regel inte kan anvindas for att visa standard gréansvar-
dena sats[7.23] Detta ty vi behover veta att exempelvis z — sin x ar deriverbar
for att anvanda L’Hopitals regel pa
. sinz
lim
z—0 X

(8.31)

Detta gransviarde behéver vi redan kénna till for att veta att x — sinax ar
deriverbar. Vi far ett cirkelbevis.

Exempel 8.32. Berdkna

lim £ In(1+z)

=0 42 (8:32)

LOSNING: Bilda f(z) = x — In(1 + x) och g(z) = 422, Vi far att f'(z) =
1-1/(14+2)=2a/(1+z) och ¢’'(x) = 8z. L’Hoptials regel ger nu

rx—In(l42) g 11
by T T Msars T (8:33)
A
Sats 8.33. Lat
lim (@) =L, lim f(x)=+00 och limg(zx)=+o0 (8.34)
T—a g/(;z;) T z5a T—a ) )
Da gdller att
lim @) =1L (8.35)
T—a q x)
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BEVIS: Vi visar att hogergréansvardet for (8.35)) giller. Vanstergransvirdet f61-
jer pa ett analogt vis.

Lat a < b < c. Den generaliserade medelviardessatsen [8.23| sdger att det exi-
sterar ett tal p € (b, c) sidant att

f'(p)(g(c) — g(b) = g'(p)(f(c) — £(D)). (8.36)
Lat oss 16sa ut f(b). Vi far

Vi dividerar med g(b) och far
fo) _ f'llp) | 1 o — oo L @)
0~ 70 aw O~ 1055) (8.38)
vilket kan skrivas om till
AN 0 B S YRR ()
2L b @ -seg). e)

For att visa (8.35]) sa tar vi ett € > 0 och vill visa att d& b och ¢ ar tillrackligt
néra a sa giller att

f(b) ‘

—= —-Ll<e. 8.40

g(b) (540
Vi anvinder triangelolikheten ((3.20]) och att det finns ett tal 4; > 0 s& att om
c—a < 47 sa giller att

gllgi - L’ < % (8.41)
for att fa
f) DG B S Py (0]
20 1 <5 U pan e -9 (8.42)
< 5+ o (@ + @12+ </2) (8.43)
€ K

diar K = |f(c)| + |g(c)||L + €] &r en konstant for givet c. Fran (8.34]) vet vi att
det finns ett tal do sa att om b — a < d9 sa géller att

€
— < = (8.45)
lg(b)] 2
Med andra ord ar
(b) ‘
2 _[l<e 8.46
g(b) (8.46)
vilket ger (8.35]). [
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8.9 Konvexitet och konkavitet (6verkurs)

Definition 8.34. En funktion f sigs vara konvex i intervallet [a,b] C Dy
om det for varje x1, z2 € [a, b] géller att

[ty + (1 —t)w) < tf(w1) + (1 —1)f(z2) (8.47)
for alla ¢t sadana att 0 < ¢ < 1.

Kommentar 8.35. En funktion f som &r konvex pa [a, b] uppfyller att varje
sekant| fran (x1, f(x1)) till (z2, f(z2)), med x1,x2 € [a,b], ligger ovanfor eller
sammanfaller med f.

(z2, f(72))
tf(z) + (1 —t)f(z2) L
flz1+ (1 —t)x2) T

(w1, f(x1))

a try + (1 —t)xe b

Figur 8.5: En sekant &r aldrig under en konvex funktion.

For att visa detta sa tar vi fram den orangefiargade linjens funktion. Eftersom
linjen passerar punkterna (x1, f(x1)) och (z2, f(z2)) sa blir funktionen

L(z) = (f(z2) = f(z1))x + z2f(21) — xlf(fl:Q)'

T2 — X1

Om vi nu beréknar virdet i = tx; + (1 — t)xy far vi
Ltey + (1 = t)wg) = tf(x1) + (1 — 1) f(22).
Alltsé ar sekanten ej under f i intervallet (zy, z9).

Exempel 8.36. Visa att funktionen f(z) = 1— |x| inte &r konvex i intervallet
[_2a 2]

LOSNING: Funktionen f &r ej konvex ty for 1 = —1, 29 = 1 och t = 1/2 far
vi att vansterledet i (8.47)) &r f(0) = 1 medan hogerledet ar
f=1 Q@)
AN A )
2 * 2
A
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Exempel 8.37. Visa att funktionen g(x) = 22 &r konvex.

LOSNING: Lat z1,2z9 € R och 0 < ¢t < 1. Vi vill visa att hogerledet minus
vinsterledet 1 (8.47)) ar icke-negativt. Alltsa

te? + (1 — t)zd—(tzy + (1 — t)z)?
=t(1 —t)z? +t(1 — t)a3 — 2t(1 — t)z 29
= t(l — t)(l’l — 1‘2)2 2 0.

Detta ger att g ar en konvex funktion. A

Sats 8.38. Lat f vara deriverbar i intervallet (a,b) C Dy. Da gdller att f dr
konvex i (a,b) om och endast om f' dr vizande i (a,b).

BEVIS: Antag forst att f/ ar vixande i (a,b). Vi vill visa att f ar konvex, d.v.s.
att for varje x1,x2 € (a,b) giller att

tf(xr) + (1 =) f(z2) = f(txr + (1 — t)z2) > 0, (8.48)

for varje t € [0,1]. Lat ¢ = tx1 + (1 — t)z2. Vi har att

tf (@) + (1 =) f(z2) — f(e) = tf (21) + (1 =) fz2) — (E+ 1= 1) f(c)
= t(f(z1) = () + (L =) (f(z2) = f(¢))

och fran medelvardessatsen [8.28] att

t(f(z1) = fe)) + (1= 8)(f(22) = f(e))
=tf'(di)(z1 —¢) + (1 = ) f'(d2)(w2 — ¢),

dar dy € (x1,c¢) och dg € (¢, z2). Om vi nu anvénder oss av ¢ = txy + (1 —t)z2,
s& far vi att

tf'(dr)(x1 — ) +(1 —t) f'(do) (22 — c)
=t(1 = t)(f'(d2) — f'(d1)) (22 — 1) 2 0,

eftersom alla faktorerna &r icke-negativa.

Antag nu att f dr konvex. Vi vill visa att f’ ar vixande, d.v.s. om z7 < x3
ar f'(x1) < f'(x3). Lat oss borja med att visa att for konvexa funktioner ar
sekanternas lutning vixande. Lat x1 < xo < x3. Vi illustrerar med en bild
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Figur 8.6: Relationen mellan olika sekanters lutning

Lat Lio och Li3 vara réta linjer mellan punkterna P; och P, respektive P;
och Ps. I kommentar sa visades att f(z2) dr mindre dn eller ssmmanfaller
med Liz(x2). Alltsa ar lutningen pa Lis mindre &n lutningen pa Liz. Om f
dessutom ar deriverbar och vi later x9 — z1 sa far vi fran sats @ att

f(z3) — f(x1)

f(x1) < Lis(x) = T (8.49)

Pa samma vis kan vi visa att

f(zs) — f(x1)

L < () (8.50)

13(2) =
Alltsa ar f'(x1) < f'(x3) och vi ar klara. ]

Foljdsats 8.39. Lat f vara tvd gdanger deriverbar i intervallet (a,b) € Dy.
Da gdller att f"(z) > 0, for varje x € (a,b) om och endast om f dr konvex.

Bevis: Fran sats[8.30b)|har vi att f”(z) > 0, for varje z € [a, b] om och endast
om f’ ar vixande. Fran sats har vi att f’ dr vixande om och endast om
f &ar konvex. ]

Definition 8.40. En funktion f ségs vara konkav i [a,b] € Dy om —f &r
konvex i [a, b].

Definition 8.41. Lat f vara en funktion definierad pa ett intervall I. En
punkt zoy € I sdgs vara en inflexionspunkt till f om det finns ett 6 > 0
sadant att f dr konvex i ett av intervallen [xg — 0, x| och [zg,xo + 0], och
konkav i det andra.

Sats 8.42. Lat f vara tvd ganger deriverbar och lat f” vara kontinuerlig. Om
f har en inflexionspunkt i xo sd dar f"(xg) = 0.
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BEVIS: Antag att f har en inflexionspunkt i xp. Vi kan anta att det finns da
ett § > 0 sadant att f ar konvex i [zg — 0, z¢] och konkav i [zg, ¢ + J]. Enligt
sats s& dr f"(z) > 0, for varje x € (zg — J,x0) och enligt Gvning [8.6]s& ar
f"(x) <0, for varje = € (xg, 29+ 9). Eftersom f” ar kontinuerlig i z¢ sa maste
f" (o) = 0. u

8.10 Asymptoter

Definition 8.43. En linje x = a ségs vara en lodrit asymptot till en funk-
tion f om f(x) gar mot +oo eller —oo da z — a+ eller d& x — a—.

Exempel 8.44. Funktionen f(z) = 1/(z — 1), definierad for > 1 har den
lodrata asymptoten z = 1. Ty, f(z) — +o0, da z — 1+.

—_
1
T
g

Figur 8.7: Den streckade linjen &r asymptoten x = 1.

Definition 8.45. En linje y = kx + m ar en sned asymptot till en funktion
f om

xlg]go(f(x) —(kz+m))=0 (8.51)
eller
mli)IPoo(f(I) — (kz +m)) =0. (8.52)
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Om en funktion f har en sned asymptot d& x — oo s kan vi berdkna k och
m. Vi observerar forst att fran (8.51) far vi att

flx) — (kx +m)

lim =0. (8.53)
T—00 T
Eftersom m/x — 0, d& © — oo sa géller att
k= lim M (8.54)
z—00
Fran (8.51)) har vi dven att
m = xlglolo(f(x) — kx). (8.55)

Exempel 8.46. Funktionen f(z) = 3x/10 4 arctan x har de sneda asympto-
terna hi(z) = 3x/10 + w/2 och ha(x) = 3x/10 — /2.
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8.11 Grafritning

Exempel 8.47. Rita kurvan till f(x) = ze™*, definierad f6r > 0, med hjalp
av att

a) bestam stationdra punkter och avgor, med hjilp av ett teckenschema av
f!, var f ar strangt avtagande och striangt vixande.

b) bestdm inflextionspunkter och avgor, med hjalp av ett teckenschema av
f", var f ar konvex och konkav.

c¢) berdkna eventuella asymptoter.
LOSNING:

a) Lat oss derivera f. Vi far att
fllx)=e®—xe ™ =(1—-2)e ",

definierad for alla z € (0,00). I detta fall har vi endast en stationér
punkt i z = 1. Vi gor ett teckenschema enligt f6ljande, dér symbolen *
betyder att funktionen i fraga inte ar definierad

T 0 1
fi@) [ =] +
fle) [0 A e [N\

b) Vi deriverar f’ och far att
ff(z)=—€e"—(1—2)e "= (x—2) "

Vi far att f har en inflextionspunkt i z = 2. Vi gor ett teckenschema
enligt f6ljande

T 0 2
)|« =] 0 |+
f@) [0 ~]2e72] —

c) Eftersom funktionen &r kontinuerlig pa ett slutet intervall sa finns det
inga lodrata asymptoter. Om y = kx + m ar en sned asymptot sa far vi
k genom

k= lim m: lim e * =0
=00 —00

och m genom
m = lim (f(x) — kx) = lim a—}

T—00 r—00 ¥

Alltsé &r y = 0 en sned asymptot.
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Grafen far foljande utseende

Figur 8.8: Grafen till f(z) = ze™".

Notera att funktionen &r konkav fore den orangefargade pricken och konvex
dérefter. A

Exempel 8.48. Rita kurvan

e*I

T or—1

f(x)

med hjélp av ett teckenstudium av derivatan. Bestam alla lokala extrempunk-
ter och asymptoter.

LOSNING: Forst noterar vi att Dy = R\ {1/2} och bestdmmer derivatan som
blir

oy € 2z +1)
Stationdra punkter blir sdledes endast = —1/2. Vi far f6ljande teckenschema
x —1/2 1/2
F@ [+ 0 =]~ |-
f@) [/ =ve/2 N x|\

Lat oss nu leta efter sneda asymptoter. Eftersom

lim M—

r——00 I

saknas sned asymptot vid —oco. Men da

lim @) =0 och lim f(z) =0

r—00 T—00

s& finns den sneda asymptoten y = 0 vid oo.

Vad giller lodrita asymptoter sa maste vi undersoka vad som hénder kring
x =1/2. Vi far att

li =— h li = 0.
I_>111}12_ f(x) 00 oc :c—>11r§12+f(x) 00

Alltsa ar x = 1/2 en lodrét asymptot.
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Nu har vi all information och far grafen

-1/2| 1

i
)

—x

Figur 8.9: Grafen till f(z) = 5—.

8.12 Variationsolikheter

Exempel 8.49 (Tentamen 2011-10-18, 35%). Visa att e > 1+sinz, for varje
x > 0.

LOSNING: Om vi sétter f(x) = e* — 1 — sinx sa blir uppgiften att visa att
f(z) = 0 for varje x > 0. Eftersom e” > 1 och cosz < 1 da = > 0 sa ser vi att
f(x) = €e® —cosx > 0 da z > 0. Eftersom derivatan f’ ar positiv da = > 0
(och f kontinuerlig da = > 0) foljer att funktionen f &r striangt vixande da
x > 0. Eftersom f(0) = 0 sa foljer det nu att f(z) > 0 {or alla = > 0. A

8.13 Optimering

Exempel 8.50. Ett foretag vill minimera materialatgangen vid tillverkningen
av cylinderformade konservburkar av en viss volym. Vilket forhallande ska da
rada mellan burkens hojd och radie?

LOSNING: Lat h och r vara hojden respektive radien av burken. Vi har att
volymen &r

V = mrh.
Arean bestar av tva ytor av storleken 772
bredden 27r. Alltsd ar arean

samt sidan som har hojden h och
v

A(r) = 2nr? 4 2nrh = 270 + 2—.
r
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Eftersom volymen V &r konstant vill vi nu minimera funktionen A, da r > 0.

Vi ser direkt att

lim A(r) =oc0 och lim A(r)= co.

r—0+ r—00

D& A ar deriverbar maste minvirdet finnas i nadgon stationar punkt. Lat oss
derivera,

2V

Al(r) = dnr — =

De stationdra punkterna uppfyller att A’(r) = 0, alltsa

2V

drr — 2 =0,
mr 7’2

Vi 1oser ut r och far att arean ar minimerad da

v 1/3
Tmin = () .
2

Forhéllandet mellan héjden och radien ska alltsa vara

oY

3
T'min TT min

Exempel 8.51 (Tentamen 2011-10-18, 53%). Lat x > 0 och y > 0 vara tva
tal vars summa dr 6. Ange det minimala virdet som uttrycket 222 4 y? kan
anta.

LOsSNING: Eftersom vi vet att  +y = 6 kan vi skriva y = 6 — z. Problemet &r
alltsd att hitta minimum av funktionen f(z) = 222 + (6 — x)? pa intervallet
[0,6]. Genom att kvadratkomplettera ser vi att

f(z) =222 + (6% + 2% — 122) = 32% — 122 + 36 = 3(2? — 4z + 12)
=3((x — 2)% +8).
Det minsta virde som f kan anta (pa hela reella axeln) &r 3 - 8 = 24, som

antas da x = 2. Eftersom = = 2 ligger i intervallet [0, 6] foljer att f:s minsta
viarde pa detta intervall ar 24.

A

Exempel 8.52. Bestim det minsta avstandet fran kurvan y = z? — 4 till
origo.

LOSNING: Vi vill minimera uttrycket /a2 + 32, da (z,y) &r en punkt pa den
givna kurvan. For att slippa rottecknet sa véljer vi att minimera avstandet i
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kvadrat, vars 16sning sammanfaller med det efterfragade svaret. Alltsa vill vi
minimera
flx) =22 +y? =22 + (22 — 4)? =2 — 72 + 16,

for z € R. Eftersom funktionen ar deriverbar och

lim f(z)= oo,

r—7Fo00

s& finner vi minimivirdet i en stationdr punkt. Derivation ger att f'(x) = 423 —
14z. Alltsi dr det stationdira punkterna x = 0 och @ = £,/7/2. Vi beriiknar
funktionens viirde i dessa punkter och far att f(0) = 16 och f(+./7/2) = 15/4.
Alltsa dr det minsta avstandet fran kurvan y = 22 — 4 till origo v/15/2.

A

8.14 Sammanfattning av derivator av elementira funktioner

I tidigare delkapitel har vi bland annat visat féljande samband

d

— () =¢" 8.56
L= (8.56)
d 1

| S :

2 (ol = 2 (8.57)
d

T (%) = az® !, a #0 (8.58)
d

. (sinz) = cosz (8.59)
d

. (cosz) = —sinx (8.60)
d 1

% (ta.n ) COSQ 7 (861)

i(a cta )—; (8.62)

dg TR T T )

4 (arcsinz) = L (8.63)

dx ! o V11— 2 )

d 1

(8.64)

8.15 Owvningar

Ovning 8.1. Derivera foljande funktioner

a) x> rsinxcosx?

b) T emsinm

c) +— xlnz? +4ax, dir a € R

106



d) 2+ cosz(sinz)~!

Ovning 8.2. Visa att derivatan av z — cosz &r « — —sin .

Ovning 8.3. [2009-06-01, uppgift 2] Bestdm ett virde pa konstanten a sé att
kurvorna y = az? och y = Inz har samma tangent i nigon gemensam punkt.

Ovning 8.4. Visa (8.14) och (8.15).

Ovning 8.5. Lat f vara deriverbar i intervallet (a,b). Visa att f dr konkav
om och endast om [’ ar avtagande i (a, b).

Ovning 8.6. Lat f vara tva ganger deriverbar i intervallet (a,b). Visa att f
ar konkav om och endast om f”(z) < 0, for varje x € (a,b).

Ovning 8.7. Bestiam det storsta och minsta virdet som uttrycket

j2

(1)
antar for j € {n € N:n > 2}.

Ovning 8.8. [2006-12-20, uppgift 5] Visa att
1 1/21’
In <( + x) ) > 1,
1—=x

Ovning 8.9. [2008-12-15, uppgift 2] Lat funktionen

da0 <z <1

vara definierad for 1 < z < co. Bestam virdeméngden for f.

Ovning 8.10. Lat f(z) = zlnz.

a) Vad ar definitionsméngden for f?

b) Ar f begrinsad?

c) Ar f striangt vixande?

)
)
)
d) Finns det nagot intervall dér f &r striangt avtagande?
e) Ar f inverterbar?

)

f) Ar det sant att f(z) > —1/3 for alla positiva tal z?

Ovning 8.11. Studera ekvationen z° — 6z + 1 = 0.

a) Visa att det finns minst en 16sning i intervallet [—1, 1].
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b) Bestdam det exakta antalet 16sningar i intervallet [—1,1].

Ovning 8.12. Lat g(t) = te=t*/2. Bestim alla lokala extrempunkter och alla
eventuella asymptoter, skissa kurvan y = g(t) och bestdm virdeméngden till
funktionen.

Ovning 8.13. Lat g(t) = In(1 + ¢?) — arctant. Bestdm alla lokala extrem-
punkter och alla eventuella asymptoter, skissa kurvan y = ¢(t) och bestam
viardeméngden till funktionen.

Ovning 8.14. Bestdm det storsta och minsta virdet som funktionen
f(z) = arcsin(4z) + 2/1 — 1622

antar i intervallet [—1/4,1/4].

Ovning 8.15. [2007-05-31, uppgift 2] Visa att e*(1 — z) < 1 for alla .

Ovning 8.16. [2007-05-31, uppgift 5] Avgér om ekvationen z~% = 3 har en
16sning da x > 0.

Ovning 8.17. [2007-12-17, uppgift 1] Lat f(z) = ze~/*, da = # 0. Berdkna
gransvardena lim, o4 f(z) och lim,_,o— f(x), samt bestam eventuella sneda
asymptoter da z — £oo. Anvind dessa resultat for att skissera funktionens
graf.

Ovning 8.18. [2007-12-17, uppgift 2] Visa att Inz < 2 —1 da = > 0.

Ovning 8.19. [2007-12-17, uppgift 5] Visa att y(z) = sinh def (e —e ™) /2
har en invers pa intervallet (—oo, 00), samt berdkna denna.

Ovning 8.20. [2008-03-10, uppgift 6] Bestdm virdeméngden till funktionen

22
f(z) = arctan (23:2 + 1) — arctan 1)

Ovning 8.21. [2008-12-15, uppgift 5] Visa att

-1
lnx>2L,
z+1

da z > 1.

Ovning 8.22. [2009-03-09, uppgift 2] Berikna storsta och minsta virdet av
funktionen f(x) =+/1 — x4 arcsinzx for z € [—1,1].

Ovning 8.23. [2009-03-09, uppgift 7] Lat f(z) = e* + ™% — .
a) Bestdm funktionens eventuella stationdra punkter.

b) Har funktionen ett minsta virde? Bestdm i sa fall en punkt dar detta
varde antas.
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Ovning 8.24. Lat h(z) = (22 — 1)e?*~4

a) Bestdm en ekvation for tangenten till kurvan y = h(z) i den punkt pa
kurvan som har z-koordinat 2.

b) Anvénd linjar approximation i x = 2, dvs tangentlinjen, fér att uppskat-
ta funktionsvardet h(2.1).

Ovning 8.25. Vid laseroptimering forsoker man minimera laserflickens stor-
lek pa malet genom att variera stralen ut fran lasern pa lampligt satt. Man

anvinder formeln
Az 2
w=woi/l+|—=3
TWg
dér w &r radien av laserflicken pa malet, wy dr radien ut fran lasern, A ar
vaglangden (fix) och z &r avstandet till mélet. Om vagldngden ar 500 nm, hur
liten laserflick kan man f4 om lasern riktas mot ett mal pa manen?

Ovning 8.26. I artikeln Weak perturbations of the p-Laplacian av T. Ekholm,
H. Kovarik och R. L. Frank finner vi att

2)

d

—d (d\rp-d  _»_
xp_A.’I,'d> —L ()P Apﬁd,
p p
dar z, A, p och d &ar positiva konstanter och p > d. Kan du verifiera

olikheten?
b)

2 d d p%.zd d
_p_ — -

sup (Apv—va—d> = ATB "7 (p) -,
v>0 p p
diar A, B, p och d &r positiva konstanter och p > d. Kan du verifiera

likheten?

Ovning 8.27. Anvind linjirapproximation av z — /z runt = = 4 for att
approximera

a) VAT,
b) VL

Forklara varfér den ena approximationen dr mycket battre &n den andra.

Ovning 8.28. Bestdm alla virden pa konstanten ¢ € R si att kurvorna
y = ax + a och y = 22 har samma tangent i nidgon gemensam punkt.

Ovning 8.29. Lat

z2sin(1/z om x
fa) - { (1/) 0,

0 om z = 0.

For z # 0 kan vi anvinda deriveringsreglerna for att konstatera att f ar
deriverbar i « och for att berdkna derivatan.
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a) Visa (forslagsvis med definitionen av derivata) att f dr deriverbar iz = 0.
Bestam f/(0).

b) Bestam f'(z) for alla x € R\ 0.

c¢) Ar f’ en kontinuerlig funktion?

Ovning 8.30. [2008-03-10, uppgift 8] Vilket av talen {/n dr storst, dir n > 2
ar ett heltal?
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9 Taylors formel

It is our choices, Harry, that show what we truly are, far more than our
abilities.

Albus Dumbledore — Chamber of Secrets

9.1 NaAagra trevande forsok till approximation

Funktionen x +— arctan x har féljande graf

Vi skulle kunna forsoka fa en battre approximation genom att lagga till hogre
gradtal i var polynomapproximation. Eftersom funktionen z — arctanx &r
udda forséker vi korrigera med en 23 term. Vi testar med z — z — 23/8
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Kanske blir det béttre nira 0 med polynomet z +— z — 23 /4

Vi fortsitter med en korrigering av en x° term. Vi testar med x +— x — 23 /4 +
5
x°/10

eller kanske x +— x — 23 /4 + 2°/7
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I nésta delkapitel kommer vi kunna bestdmma det polynom som bést approx-
imerar den givna funktionen.

9.2 Formulering av satsen

I detta delkapitel &r det nédvéandigt att derivera funktioner manga ganger. Vi
infor dirfor notationen £ (z) som den n:te derivatan av f. Exempelvis &r

alltsa fO)(z) = f(2), fM(2) = f'(z) och fO)(z) = f"(x).

Sats 9.1 (Taylors formel). Ldt f vara en n gainger deriverbar funktion defini-
erad i en omgivning av 0, sadan att f7 dr kontinuerlig. Dé foljer att

n=1 (k) () (o)™

|
=0 n:

for nagot a mellan 0 och x.
BEVIS: Vi noterar forst att (9.1) stammer for x = 0. Lat

n—1 (k)
pla) = Y TVt 92)
k=0 :

och definiera for fixerat x # 0 konstanten

x
Identitet (9.1]) &r ekvivalent med att visa identiteten
Cn! = f™(a). (9.4)
Notera att definitionen av p medfor att
£(0) = p(0), f'(0) =p(0), ..., F*7D(0) = p"D(0). (9.5)

Bilda
g(t) = f(t) —p(t) — Ct".
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Fran foljer att
9(0) = g'(0) =...= g D(0) = 0. (9.6)

Eftersom éven g(z) = 0 fran definitionen av C' s foljer att medelvirdessatsen
att det finns ett 21 mellan 0 och x sadant att ¢’(x1) = 0. Nu foljer igen av
medelvirdessatsen att det finns ett 25 mellan 0 och z1 sddant att g”(x2) = 0.
Denna procedur tar slut efter n steg.

Det sista steget séger att det finns ett o = x,, mellan 0 och z,_1 sadant att
g™ (z,) = 0. Alltsa har vi

0=g™(x,) = f™(xn) — Cnl,
vilket ger (9.4]). Alltsa ar satsen visad. [ |

Definition 9.2. Lat f vara n ganger deriverbar. Polynomet

kallas Taylorpolynomet till f kring a av gradtal n.

xT

Exempel 9.3. Bestdm Taylorpolynomet av grad fyra kring 0 till f(z) = e*.

LOSNING: Det som efterfragas ar

4. r(k)
p4(3?) _ ];) f k'(a) (.I' _ a)k
/ 1)z fO0)  fH(0)z!
= f(0) + f(0)x + TR TR AT
Vi har att £(0) = f/(0) = ... = f*(0) = 1. Alltsa blir polynomet
2 3 4
p4(x):1+x—|—%+%+;—4.
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Figur 9.1: Den bla grafen &r f och den réda &r py.

Exempel 9.4 (Tentamen 2011-10-18, 52%).
a) Bestdm Taylorpolynomet av grad 1 kring = = 0 till funktionen

flx)y=(01+ 1‘)3/2.

b) Visa att om vi anvinder detta Taylorpolynom P(x) for att approximera
virdet (1 + a)%? for tal a i intervallet [—1/2,1/2], kan vi d& vara sikra
pa att felet, d.v.s. ’P(a) — (14 a)3/?|, alltid blir mindre &n 1/5?

LOSNING:

a) Eftersom f(z) = (1+x)%2 har vi f/(z) = 3(1+2)/2 och f"(z) = 4\/%.

Taylorpolynomet av grad 1 till f kring z = 0 ges av

P(z) = f(0)+ f'(0)z =1+ 3?:”

b) Enligt Taylors formel har vi f6r varje —1 < z < 1 att

fla) = Pla) + 1022
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dér talet o ligger mellan 0 och z. Lat a € [-1/2,1/2]. Da har vi enligt
formeln ovan att

f(@) 5 ‘ 3 3 1

fle) = Plal === = s A" | Ssvizin 4
V2 6 1
_v2_6 1
322 “32°5

eftersom « ligger mellan 0 och a, d.v.s. vi vet att a € [—1/2,1/2]. Alltsa
har vi sett att felet blir mindre &n 1/5.

A
Exempel 9.5. Lat f(z) =In(1 + ).
a) Bestdm Taylor polynomet po till f av gradtal 2 kring z = 0.
b) Ange resttermen R3(x) = f(z) — p2(z).
c¢) Visa att |R3(z)| < 1/3000 for alla 0 < 2 < 1/10.
LOSNING:
a) Eftersom f/(z) = (1+ )"t och f"(x) = —(1 + )72 s far vi
0z :L’2
(@) = JO) + 5O+ T <o T
b) D& f"(x) = 2(1 + 2)~3 blir
B f”’(a)x3 B xS
Bs(@) = —5r— = 30
dér o dr nagot tal mellan 0 och z.
c¢) Vi har att
z? 1 1
R = < < .
[Ra(w)] ‘3(1 T )’ ‘3000(1 +a)3| = 3000
A

Exempel 9.6. Det &r intressant att se hur Taylorpolynomen till en given
funktion blir battre och battre ju fler termer som vi inkluderar. Studera f(z) =
cosz. Eftersom f29(0) = (=1)" och fZ+1(0) = 0, for i € N, sa har vi att
Taylorpolynomet po, till f ges av

an(m):l_f'F*_*‘ﬁ-...—{—(—l)n



Figur 9.2: Den bla grafen dr x — cosx och den réda ér po(x) = 1.

Figur 9.5: Den bl grafen dr z ~ cosx och den rdda r pg(z) = 1 — 22/2! +
xt /4! — 25 /6!.
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Figur 9.6: Den bla grafen &r x — cosz och den roda ar pg.

A

Foljdsats 9.7 (Taylors formel kring godtycklig punkt). Lat f vara enn ganger
deriverbar funktion definierad i en omgivning av a, sédan att f dr kontinu-
erlig. Da foljer att

ol k) (g ) (a)(z — a)™

n!
for nagot o mellan a och x.

Bevis: Bilda funktionen g¢(t) = f(t + a). Da géller att g uppfyller forut-
siattningarna for sats Vi far att det finns ett ap mellan 0 och ¢ sadant
att

n—l (k) (o (n) mn
g 9" («
gt)y=>" k'( )k S%!O) . (9.9)
k=0
Uttryckt i f blir det
f(’“ ™ (a + ag)t™
ft+a) Z ot - , (9.10)

eftersom g% (t) = f*) (¢t + a), for varje k > 0. Lat nu t = 2 — a, vi far att

(O ™) (q + ap)(z — a)”
fly = 3 Ty TROF 0l g )
= k! !

Det racker med att observera att o« = a + o ar ett tal mellan a och x.

[ |
Exempel 9.8. Bestdm Taylorpolynomet i punkten 7 av ordning 3 till funk-
tionen f(z) = sinz.

LOSNING: Det sokta polynomet pg ar

f(m(x—m? () = m)*

ps(z) = f(m) + f'(m)(x — 7) + 5 5
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Vi deriverar darfor f och far att
f'(x) =cosz, f"’(x)=—sinz, och f"(x)=—cosx.

Satter vi in de sokta vardena far vi

Man kan utveckla parenteserna om man vill, men sjalv tycker jag att ovansta-
ende uttryck dr den bésta formen att presentera svaret pa. Med formen

(2) 3 ma? n (7?2 —=2)r 7w —6n

xr=—— — —

b3 6 2 2 6

ar det till och med svart att direkt se att ps(mw) = 0. A

9.3 Stora ordonotationen

Definition 9.9. Lat f och g vara funktioner definierade i (a, o0), for nagot a.
Vi séger att f tillhor méngden stora ordo av funktionen g da = — oo, och
skriver O(g(x)) om det finns tal M och xg sddana att

|f(@)| < Mlg(2)],

for varje = > xo.

Exempel 9.10. Funktionen z — z Inz tillhér O(z®) dd  — oo, ty standard-
gransvirden (se sats[5.7) ger

|z Inz| < ’x?’

)

for varje z > 1. I detta fallet &r M och zg fran definitionen bada 1. A

Definition 9.11. Lat f och g vara funktioner definierade i en omgivning till
a. Vi sdger att f tillhor médngden stora ordo av funktionen g kring a, och
skriver O(g(x)) om det finns tal M och ¢ > 0 sidana att

[f (@) < M|g(x)],
for varje x € (a — d,a + 9).

Exempel 9.12. Funktionen x + 4z tillhér O(2?) kring 0, ty for M = 4 och
0 = 1 i definitionen far vi
‘4:64‘ <4 ‘mQ

Y

for varje z € (—1,1). A
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Vi kommer i givna situationer, da det klart framgéar, att utelamna informatio-
nen om O(g(x)) betraktas kring en punkt eller vid odndligheten.

I ménga sammanhang &r det praktiskt att inféra konventionen

f(z) = O(g(x))

dar f och g ar givna funktioner. Det vi menar ar att f &r ndgon funktion i
méngden O(g(z)). Med denna notation kan vi formulera réknereglerna

Sats 9.13. Ldt f och g vara funktioner sadana att O(f(x)) och O(g(x)) dar
definierade kring en punkt eller vid oo, da gdller att

O(f(x)) O(g(x)) = O(f(x)g(x)) . (9.12)
Om m < n gdller kring 0 att
Ox™)+ O(z") = O(x™). (9.13)
och kring oo galler att

O@@™) 4+ O(z") = O(z"). (9.14)

BEvis: Lat oss visa dessa identiteter i fallet att stora ordo &r kring 0. En
méngdidentitet kan erhéllas genom att visa att vinsterledet dr en delméngd
av hogerledet och tvart om.

Vi bérjar med (9.12). Lat oss visa att O(f(z)) O(g(z)) C O(f(z)g(z)). Tag
h € O(f(x)) O(g(x)), da finns enligt konventionen en funktion hy € O(f(x))
och hy € O(g(x)) sadana att h = hy - hy. Vi vill visa att h € O(f(x)g(z)). Da

hy € O(f(x)), sa finns det My och 05 > 0 sadana att

by ()] < Mg f ()],

for varje x € (—dy,d7). Liknande géller for hy med konstanterna M, och 4.
Vi har att

[l = [hyl - [hgl < MyMg|f(z)g()],
for varje x € (—6,0), dir 6 = min{d1,do}. Alltsa ar O(f(z)) O(g(x)) C
O(f(x)g(x)).
Lat oss nu visa det omvéanda, att O(f(x)g(z)) C O(f(z)) O(g(x)). Tag h €
O(f(x)g(z)), d.v.s. det finns tal M och § > 0 sidana att

|h(z)| < M|f(z)g(x)], (9.15)
for varje x € (—0,0). Antag att g(x) # 0 i en omgivning av x = 0. Lat oss
bilda hi(z) = h(z)/g(x) och ha(x) = g(x), da giller att h = hy - hg, dar
b1 € O(f(x)) och hy € O(g(w)). Alltsa ir O(f(x)g(x)) € O(f(x)) O(g(x)).

Om g¢(z) = 0 i nagon punkt s& maste aven h(x) = 0 for att (9.15) ska gélla. I
dessa punkter kan vi definiera bade hy(z) = ho(z) =0

Vi lamnar bevisen av (9.13]) och (9.14]) som en 6vning till ldsaren. |
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Exempel 9.14. Sats siiger exempelvis att 220 (2%) = O(25) och att

O) _ o(s?).

X

A

Sats 9.15. Ldt f vara n gdnger deriverbar och f) wvara kontinuerlig i en
omgivning av 0. Da gdller att

n=1 r(k)
fl@) =3 mmk +O(z"), (9.16)

P k!
kring 0.

BEVIS: Vi méaste visa att resttermen fran sats

(n) n
R, (z) := f?(j)m,

déir o ér ett tal mellan 0 och z, tillhor O(z™) kring 0. Eftersom £ &r konti-
nuerlig i en omgivning av 0 sa ar den begrédnsad dar, d.v.s. det finns ett tal K
och § > 0 sddant att

F(@) <K,

for varje x € (—0,9). Alltsa géller att

f(a)z"

n!

n

S 5T,

K
n!
for varje x € (—0,9), vilket betyder att R, € O(2") kring 0. [
Exempel 9.16. Visa att

y ln(1+x)—m+§ 1
sy 33 9

LOSNING: Lat oss Taylorutveckla In(1 + z) kring 0. Vi far

2 3

ln(1+x):x—%+%+(’)(a:4).

Alltsa géller att

n(l+2z) -2+ % x—%—k%—l—@(m‘l)—x—k%
33 33
3
Z+0(@Y) 1+0@ 1 1
327 3 g TOW =g

da x — 0. A
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Exempel 9.17. Berdkna

2 .2
lig (R F2)" =27
z—0 :p3

LOSNING: Fran Exempel 7?7 har vi att

In(1+z) :x—w;—l—O(mg)

vilket ger att

(In(1 + )% — 2? (x —2%/24 O(a?))* —

lim = lim
x—0 LL’S x—0 LL’S
. 2?2 — 23+ O(zt) — 22
= lim
x—0 [E3
! 4
o T8t O(z*)
x—0 :173
= lim (=14 0(z)) = -1

Sats 9.18 (Entydightet). Lat f vara n ganger deriverbar, ™) wara kontinu-
erlig i en omgivning av 0, ar, € R och lat
n—1
f(z) = Z apx”® + O(z"), (9.17)

k=0

kring 0. Da gdller att

Bevis: Om vi sitter z = 0 sa blir (9.17) f(0) = ao.

Om vi deriverar j ganger, dir j < n, sa far vi

k!
(k= 7)!

n—1
fO@) = ay 2k 4 O@nﬁ') :
k=

och later vi x — 0 sa blir endast termen d& k& = j kvar och

F9(0) = a 5!,

vilket visar satsen. [ ]
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9.4 Ovningar

Ovning 9.1. Visa att Taylorpolynomet av grad sex i punkten 0 for

a) cosx ar

) x?2 2t af
PTG
b) sinz ar
3 2P
T g + g
c) e* ar
2 3 4 5 6

d) In(1+x) ar

2 P e
m_i —_— e — —_— e —
2 3 4 ) 6
e) arctanx ar
2 5
T3 TE

Ovning 9.2. Anviind Taylorpolynomet av grad 2 kring = 0 till f(z) =
v 100 + z for att berdkna ett ndrmevéirde till 4/104. Skriv upp feltermen och
avgor om felet i ditt nadrmevarde ar till beloppet mindre dn 0.01.

Ovning 9.3. [2007-12-17, uppgift 4] Visa att

4

‘ef"’“ﬂ -1 —I—m2‘ < 5
for alla x.

Ovning 9.4. [2007-05-31, uppgift 8] Berikna grinsvirdet

— g 2
lim (r —sinx)

a—0 (coshx — 1)3’
dér coshz = (e 4+ e~*)/2 och kallas cosinus hyperbolicus.

Ovning 9.5. [2007-12-17, uppgift 8] Berikna grinsvirdet

I 1 1
a:lg%) sin? x2)’

Ovning 9.6. [2006-12-20, uppgift 4] Berikna grinsvirdet

. T —sinx
lim ———.
x—0 22 — sin 2z
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Ovning 9.7. [2008-06-04, uppgift 4] Berikna de fem forsta noll-skilda ter-
merna i Taylorutvecklingen av funktionen

11—z
= t
f(x) = arctan (1 +x) ,
kring z = 0.
Ovning 9.8. [2008-06-04, uppgift 8] Funktionen f uppfyller att

2z

/ —
f(x)_l'2+3l‘+2’

dd z ¢ {—2,—1} och att f(1) = 2.

a) Beridkna Taylorutvecklingen av f omkring punkten z = 1 till och med
grad 2.

b) Berikna gransvardet
lim 3f(x) —xz—5
z—1 (x —1)2

Ovning 9.9. [2008-12-15, uppgift 8] Betrakta funktionen f(x) = /1 + .

a) Bestam Taylorpolynomet py av grad 2 kring = = 0 och tillhérande rest-
term Rs, sa att f(z) = pa(z) + Rs(z).

b) Visa att da « > 0 sa géller att

3

T
< —.
Rao)| < T

¢) Anvénd resultaten ovan for att berdkna ett ndrmevérde till v/17 och f6r
att uppskatta feltermen:

v/ 17 = narmevarde + felterm.
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10 Serier
Simplicity is prerequisite for reliability.

Edsger W. Dijkstra — How do we tell truths that might hurt?

10.1 Definitionen

Definition 10.1. Lit (a;)52, vara en talféljd och 1at (sn);2, vara talfoljden
dar

n
Sn =Y aj. (10.1)
§=0

Vi definierar serien 3 7% a; som

n—oo

Zaj = lim s,. (10.2)
=0

Talen s, kallas for seriens delsummor. Om griansvéirdet lim,, . $, existerar
ségs serien vara konvergent och gransvérdet kallas for seriens summa, i annat
fall divergent. En serie sdgs vara positiv om a; > 0, for varje j € N.

Observera att det inte spelar nagon roll var serien ovan bérjar pa for index,
detta ar endast en namngivning. Det gar alltid att dopa om termerna sa att
serien borjar med index noll.

Lésaren kan sjilv verifiera att sats ger att om » 7% a; och >32%,b; ar
konvergenta serier sa uppfyller de de linjéra egenskaperna

Z(aj+bj) :Za]‘—i-ij, (10.3)
=0 =0 =0

o0 oo
anj = cZaj, (10.4)
=0 =0

dar c € R.

Sats 10.2. Om serien 3 72 a; dr konvergent sd gdller att a; — 0, dd j — oo.

Bevis: Lat s, = Z?:o a; beteckna delsummorna for serien och lat S vara
seriens summa. Nu foljer satsen fran eftersom

Ap = Spn — Sp_1 — S —85=0,

da n — oo. [ ]
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Exempel 10.3. Visa att

> 1
jz:l cosj—

1

ar divergent.

LOSNING: Vi har att a; = 1/cosj~! —1,da j — oo. Enligt sats ar serien
divergent. A

10.2 Geometrisk serie

En geometrisk serie } 72 a; ér en serie vars termer (a;)72, bildar en geo-
metrisk talfoljd, d.v.s. a; = 27, for nadgot x € R. Detta ér en av fa serier som
vi faktiskt kan berdkna, givet att x uppfyller att |z| < 1.

Sats 10.4. Om |z| < 1 sd gdller att

0 .
IR
j=0

1
1—2a

(10.5)

BEvVIs: Lat s, beteckna delsummorna till serien. Delsummorna dr da geomet-
riska summor och darav har vi att

n 1— xn—i—l

sp=y 1) = ——,

1—=x

se 6vning Eftersom |z| < 1 foljer att

1_xn+1 1
= —
on 1—=z 1 -2’

da n — oo. [ |

10.3 Jamforelsesatser

Sats 10.5. Ldt 0 < aj < bj, for varje j € N. Dd gdller att om 37724 b; dr
konvergent sa dr dven Z?io a; konvergent.

BEVIS: Antag att 3272 b; ir konvergent med summan B och att 0 < a; < b;

for varje 7 € N. Vi vill visa att Z;?io a; ar konvergent, vilket per definition
betyder att

n
Sp = Z a;
=0
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ar konvergent da n — oco. Enligt satsféljer detta om vi visar att (s,)52 ar
vixande och uppat begrénsad. Talféljden (s,)52, ér vixande eftersom a; > 0,
for varje j > 0. Den &r dven uppat begriansad av B eftersom

n n
Sp = Z a; < bj — B,
=1 =1

da n — oo. Vi ar klara. [ |

Kontrapositiven| av ovanstaende sats formuleras nedan.

Foljdsats 10.6. Ldt 0 < a; < bj, for varje j € N. Dd gdller att om 3272 a;
ar divergent sa dr dven Z?io b; divergent.

Nésta exempel visar att en serie inte nédvéandigtvis konvergerar bara for att
termerna gar mot noll. Tyvérr ar detta en vanlig missuppfattning fér den som
inte tagit till sig teorin om serier pa ett tillrackligt vis.

Exempel 10.7. Visa att serien
i :
=

ar divergent.

LOSNING: Lat s, beteckna delsummorna for serien och 14t m vara det storsta
heltal sddant att n > 2"*. Da galler att

Detta ger att

da n — oo och didrmed aven m — oo. A

Sats 10.8. Serien
o0
1
> - (10.6)
=17

ar konvergent om och endast om p > 1.
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BEvis: Vi édr klara om vi lyckas visa att serien divergerar da p < 1 och att
den konvergerar da p > 1.

Lat oss borja med att visa att serien divergerar da p < 1. Detta foljer direkt
fran exempel [10.7} ty olikheten j? < j ger

o0 o
P EDNE
Det aterstar att visa att serien konvergerar dad p > 1. Vi anvénder liknande
metoder som i exempel [I0.7] d.v.s. gruppera termerna pa ett effektivt sitt. Lat
sn, beteckna delsummorna for serien och lat m vara det minsta heltal sadant
att n < 2™ — 1. D4 géller att

R SISO S I SN I SISO
S = _ _ _ — X —_ [R— [R—
" 20 30 4P np 20 30 4P (2m —1)p

(i 1 1
=1+ 27)4-@ + 2Tp+'”+% + -

cia (L 1 1 1
<lt(pty)tlmtte)t

Alltsd har vi

1 1
Sp<14+2—422—— 4...42m7!

2p 22p

1 1 2 1 3 1 m—1
e (G () e ()

Detta ar en geometrisk serie och ddrmed far vi

1 m
- () 1
Sn < 1 1 — 1 T
T o1 T op-1

dad n — oo eftersom konstruktionen av m ger att m > logy(1 +n) — oo, da
n — oo. |

Sats 10.9. Lat Z;'io a; och Z]"-‘;O b; vara tvd positiva serier vars termer upp-
fyller att

lim Y = K, (10.7)

for nagot K # 0. Da géller att Z?io a;j konvergerar om och endast om Z;’;’O b;
konvergerar.

128



BEvIS: Antag att Z 2obj ar konvergent med summan B. Vi vill visa att
Z 20 aj ar konvergent genom att anvinda sats Det &r klart att Z _1a;j
ar véixande eftersom a; > 0 och alltsd kvarstar det att visa att delsummorna
ar uppat begrinsade.

Fran (10.7)) vet vi att det for varje ¢ > 0 finns ett N sadant att

K—5< <K+6
bj

for varje j > N. Alternativt,
bj(K — 6) <a; < bj(K+8),

for varje 7 > N. Vi far att

n N n N n N
daj=>aj+ > a; <> aj+(K+e) > b <> a;+(K+¢)B
j=1 j=1 J=N+1 j=1 J=N+1 J=1

och alltsd dr >°_; a; uppét begrinsad och dérmed &ven konvergent.

Det omvéinda resultat foljer av symmetriskéal eftersom

lim b— #0

j—oo a;

Exempel 10.10. Ar serien

> (5-(3))
Z - —Ssin | —
S\ J
konvergent?

LOSNING: L&t aj := 1/j — sin(1/4) och b; = 1/j3. Lat oss Taylorutveckla
sin(1/j) kring 0. Vi har att

o _3-m() -(-ap+o(#) 1
TR I 3

da j — oo. Fran sats har vi att eftersom > 72, b; &r konvergent s ér
2721 a; konvergent. A

10.4 Absolutkonvergens

Definition 10.11. Serien Z;’io a; sags vara absolutkonvergent om serien
> 720 |aj| ir konvergent.

Sats 10.12. Om en serie dr absolutkonvergent sa dr den konvergent.
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BEvis: Lat 3772 a; vara absolutkonvergent, d.v.s. 1at 372 [a;| vara konver-
gent. Lat oss dela upp summan som differensen av tva positiva serier,

o
Saj= aj— > (-a).
7=0 a; =0 a;<0

Den forsta serien innehéller alla icke-negativa termer och den andra all nega-
tiva termer. Lat oss visa att dessa tva serier d4r konvergenta. Vi har att

oo
0< > a; <Y layl
=0

a; >0
och -
0< Y (—aj) <Y lajl
a;<0 =0

?ch“ fran sa;is ér serierna 35, o a; och 35, .o(—a;) konvergenta. Hérmed
dr dven > 2% a; konvergent. |

Exempel 10.13. Visa att serien Y372, Sinj(gm) ar konvergent for alla x.

LOSNING: Serien dr konvergent om den ar absolutkonvergent. Lat oss visa att

> |sin(jx)
ar konvergent. Eftersom
0< smgjx) %
J J
och serien 772, J% dr konvergent sa ar ) 22, Smj(g 2) konvergent. A

10.5 Taylorserier

Lat f vara en funktion som é&r deriverbar godtyckligt manga ganger. Diffe-
rensen mellan f och det (n — 1):te Taylorpolynomet ges av resttermen Ry, (x).

Enligt (9.1) &r
F™(a)z"

n!

Ry(z) = f(z) — pn-1(z) = : (10.8)

dér o = a(x). Lat oss fixera € R och konstatera att om R,(z) — 0, da
n — oo, sa har vi for detta = identiteten

& fB(0)2t
f(x) _;;]T.

Det storsta talet r for vilket serien ovan konvergerar for varje |z| < r kallas
Taylorseriens konvergensradie.
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Exempel 10.14. Visa att

> ( )k $2k:+1
sinz = E 1)
= (2k + 1)!

for alla x € R.

LOSNING: Lat oss forst visa att termerna i Taylorutvecklingen av f(z) := sinz
overensstammer med de i serien. Darefter visar vi att for varje givet x gar
resttermen mot noll.

Lat oss Taylorutveckla f kring z = 0. Vi far for i € Natt f#)(0) = 0, f(4+1D(0) =
1, f@+2)(0) = 0 och f#+3)(0) = —1. Alltsa &r Taylorpolynomet av grad
2n — 1, for n > 1, féljande

IL’3 1'5 xQn—l
_ -4 (-1
P2m1(@) = @ = g DT G T
och resttermen uppfyller att
(2n) 2n 2n
fe | ||
(2n)! (2n)!
da n — oo. Gréansvirdet ar en direkt foljd av (4.4)). A

Exempel 10.15. Konvergensradlen for z — In(1+x) ar 1. Lasaren kan SJalv

verifiera att f'(z) = (14+2)~ ', f"(z) = —(1 +z)~2, fO)(z) = 2(1 + )3 och

allmént géller att
fO@) = ()G - DA +2)7

Enligt Taylors formel far vi

n—1
In(l+z) = Z(l)k“f + Ry (z), (10.9)
k=1
dar
ARG n "
o) = = 0

Om —1 <z < 1sa gar Ry(x) — 0, da n — oo. Eftersom x — In(1 + x) inte
ar definierad for < —1 sa ar konvergensradien 1.
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DPs

b3
]_ 4
b2
-2 -1 1 2
11 2
Pe

Figur 10.1: Héar skissas funktionen tillsammans med négra Taylorpolynom.

10.6 Ovningar

Ovning 10.1. Avgér om foljande serier konvergerar

a) nf:l % c) nf:l # e) nf:l 100(;:))1:3”
b) g:l \/%3 d) 24‘"
Ovning 10.2. Avgor om foljande serier konvergerar
a) ;i % c) kiz ,jil °) kil I<:7kj1
9> i )3 0%

Ovning 10.3. Avgér om foljande serier konvergerar

s < 1+4n > 9n
a2 b) > 2
n=1 n=1 n=1
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Ovning 10.4. [2007-05-31, uppgift 4] Ar serien
i 1
= (2+n)"
ar konvergent?
Ovning 10.5. [2008-12-15, uppgift 4] Undersok huruvida serien
i 1
1 3"Vn+3
ar konvergent eller inte.

Ovning 10.6 (Utmaning). Visa D’Alemberts kvotkriterium fran ar 1768. Det-
ta kriterium séger att om Z?‘;O a; ar en positiv serie som uppfyller att

. a;
lim it fg<1
J—00 CL]'

s& &r serien konvergent.

Ovning 10.7 (Utmaning). Visa Cauchys| rotkriterium, d.v.s. om d52paj ar
en positiv serie som uppfyller att

lim a;/j:H<1

Jj—o0
s& &r serien konvergent.

Ovning 10.8 (Leibnitz sats om alternerande serier). Lat (aj)52, vara en
avtagande foljd sddan att a; > 0, for varje j och a; — 0, da j — oo. Visa att
0 .
> (=1)"a;

Jj=1

ar konvergent. Du far girna bli inspirerad av foljande bild
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11 Integralen

11.1 Introduktion

Ett skil till att infora integraler ar att vi vill berdkna arean mellan z-axeln
och grafen till en funktion f i intervallet [a, b]. Den del av arean som &r ovanfor
r-axeln kommer vi att definiera som positiv och den del som dr under z-axeln

som negativ.

Idén ar att approximera arean genom att berdkna arean av ett antal rektanglar,
som &ar inskrivna mellan grafen och z-axeln.

Till rektangelns hojd tar man, som i bilden, ndgot funktionsvérde i stapelns
intervall. Vi kan ténka oss att om vi minskar bredden, d.v.s. véljer fler och

134



fler staplar med mindre och mindre bredd, sa kommer vi att f4 en béattre och
béattre approximation till den riktiga arean.

Vi ska berdkna arean genom att lata bredden av staplarna ga mot 0 och
ddrmed antalet mot odndligheten.

11.2 Integraler av trappfunktioner pa slutna intervall

En trappfunktion ¥ pa det slutna intervallet [a,b] ar en funktion av typen

U(z) =1 (11.1)

dér c¢q,ca,...,c, ar reella konstanter och a = 9 < 1 < 29 < ... < z,, = .
Lat oss illustrera definitionen med en graf
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Co +

Zo Tl €2 T

Méngden {z;}!" , kallas en uppdelning av intervallet [a,b] och intervallen
[xi—1,x;] kallas ett delintervall av uppdelningen.

Integralen av en trappfunktion ¥ : [a,b] — R vill vi ska vara arean mellan
z-axeln och grafen till W. Darfor véljer vi att definiera integralen av W Gver
[a,b] som

vilket dr arean av n stycken rektanglar med héjden ¢; och bredden x; — ;1.
Vénsterledet i ovanstaende definition anger dven var beteckning pa integralen
av ¥ 6ver det slutna intervallet [a, b]. Vi illustrar definitionen med en figur.

Exempel 11.1. Bestdm

4
/ f(z) dz, (11.2)



for

2 ,—1 <2 <0
fl@)=4¢-3 ,0<z<2 (11.3)
5 ,2< <4

/4 fx)de =200 — (1)) + (=3)(2 - 0) + 5(4 — 2) (11.4)
—2-6+10=6.

11.3 Integraler av begrinsade funktioner pa slutna intervall

Lat f : [a,b] — R vara en begrénsad funktion. Eftersom f &r begrdnsad finns
det trappfunktioner ® och ¥ sadana att

O(z) < flx) < V(2),

for varje x € [a,b]. Funktioner ® och ¥ som uppfyller ovanstaende kallas
undertrappa respektive 6vertrappa till f och deras integraler kallas un-
dersumma respektive 6versumma till f.

Figur 11.1: Hér ar ett exempel pa en undertrappa och dess integral

Vi ser fran figur att integralen av undertrappan &r en nedre begrénsning
av arean mellan z-axeln och grafen for f. Pa samma vis ar integralen av
overtrapporna ovre begriansningar av arean. Lat L(f) vara méngden av alla
undersummor till f och U(f) vara méngden av alla éversummor till f, d.v.s.

L(f) = {/ab ®(z) dx : ® dr en undertrappa till f} , (11.5)

U(f) = {/ab‘ll(az) dx : W &r en Gvertrappa till f} . (11.6)
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Observera att méngderna L(f) och U(f) ar delméngder av reella tal sadana
att L(f) ar uppat begrdnsad av varje tal i U(f) och tvart om. Supremu-
megenskapen séger att sup L(f) och inf U(f) existerar. A priori géller att
sup L(f) <inf U(f). Vi gor foljande definition

Definition 11.2. Lat f : [a,b] — R vara en begransad funktion. Om

sup L(f) = inf U()

sa sigs f vara integrerbar och integralen av f over [a,b] ar

/abf(x) dz = sup L(f) = inf U ().

Exempel 11.3. Funktionen f : [0,1] — R definierad som

)1, e
o=y Tee

Uppfyller att sup L(f) = 0 och supremum antas fér undertrappan ®(z) = 0,
medan inf U(f) = 1 och antas for 6vertrappan ¥ (z) = 1. Eftersom sup L(f) #
inf U(f) sa &r f inte integrerbar. A

Sats 11.4. Lat f : [a,b] — R vara en begrinsad funktion. Da dar f integrerbar
om och endast om det for varje e > 0 finns en undertrappa ® och en dvertrappa
U tll f sadana att

/abqf(x) dx — /abq>(x) dr < e. (11.7)

BEvIS: Antag forst att f ar integrerbar, d.v.s. I := sup L(f) = inf U(f). Lat
e > 0. Eftersom I = sup L(f) sa finns det en undersumma ® som uppfyller
att

<

I- /b<I>(:L‘) dx < 5 (11.8)

och eftersom I = inf U(f) sa finns det en 6versumma ¥ som uppfyller att

3

b
/ \Il(az)dac—I<2

Kombinerar vi (11.8]) och (11.9) sa far vi (11.7)).

Antag nu att det for varje ¢ > 0 finns en undertrappa ® och en évertrappa ¥
till f sadana att (11.7)) géller. Vi gor ett motségelsebevis. Antag att sup L(f) =
It < Iy = infU(f), da far vi motségelser av vart antagande for varje € som
uppfyller att

(11.9)

e< (IU —IL)/2.
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Exempel 11.5. Visa med hjilp av definitionen att f(z) = x &r integrerbar i
intervallet [0, 1] och berdkna med hjélp av definitionen vérdet av

1
/ x dx.
0

LOSNING: Lat oss dela in intervallet [0, 1] i n stycken delar med bredden 1/n.

7
—
313

12 3
n n n

|

Lat ¥(n) vara den 6vertrappa till f som fas genom att lata virdet pa intervallet
[i/n, (i 4+ 1)/n] vara det f((i +1)/n). Vi far 6verintegralen

Lit11 a(n+1) 11
Z‘I’ 2; I

n n =0
(11.10)

dar vi anvant att

zn:j _nn+l) (11.11)

) . n 1 1
Lin)=3 o =52 i= 5 =5 g (11.12)
1 1
U(n)—L(n)=—+——<———>=—<a (11.13)
om n > 1/e. Alltsa ar f integrerbar och

1 1
/ rdr = lim U(n) = lim L(n)zﬁ.
0

n—oo n—oo

139



11.4 Integrerbarhet av kontinuerliga funktioner

Lat f vara en kontinuerlig funktion pa intervallet [a, b] och 1at {x;}], vara en
uppdelning av [a, b]. Lat

A, =z —xi—1, M;= max f(x) och m;= min f(x).
a)E[Z‘i_l,Z‘i} $€[$i—17$i}

Vi vill i detta delkapitel visa satsen

Sats 11.6. Lat f vara en kontinuerlig funktion pa intervallet [a,b]. Dd dr f
integrerbar pa [a,b]. Dessutom gdller att

zaniAH/bf(x)dx, (11.14)
i=1 a

och
n b
Zm,Ai—>/ f(z)de, (11.15)
i=1 a

da max A; — 0.

Att intervallet i satsen ar slutet gor att funktionen lite slarvigt uttryckt inte
kan variera okontrollbart. Se figurerna nedan pa funktionerna x — 1/x och
x + sin(1/x) kring 0. De dr bada kontinuerliga pa det 6ppna intervallet (0, 1).

A /A
W

Definition 11.7. En funktion f séigs vara likformigt kontinuerlig pa inter-
vallet T om det for varje ¢ > 0 existerar ett 6 > 0 sadant att |f(z) — f(y)| < e
for varje x,y € I som uppfyller att |x — y| < 4.

Det som skiljer kontinuitet och likformig kontinuitet dr att for likformigt kon-
tinuerliga funktioner kan § i definitionen véljas oberoende av inparametrarna
till funktionen.
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Sats 11.8. Lat f vara kontinuerlig pa intervall [a,b]. Dd dr f likformigt kon-
tinuerlig pd [a,b].

BEvIs: Lat oss gora ett motsédgelsebevis. Antag att f adr kontinuerlig men inte
likformigt kontinuerlig pa [a, b].

Tag € > 0. For varje 0 > 0 finns det zy, yi € [a,b], sddana att |xp — yr| < O
och |f(zx) — f(yk)| = e. Lat oss nu vilja o = 1/k. Da géller att |z — yi| —
0, dd k — oo. Eftersom {x;}72, dr en begrinsad talféljd, sa ger Bolzano-
Weierstrass sats, se sats att det finns en konvergent delféljd, sig x>,
som konvergerar mot ett tal p € [a,b]. Vi har &ven att

da i — oo.
Da f &r kontinuerlig i p géller att f(zx,) — f(p) och f(yx,) = f(p) da i — oc.
Triangelolikheten ger nu att

e <|f(xw,) — flur) < |f(zr,) = @I+ 1f(p) = flyr)| = 0,

da i — oco. Detta motsiger att € > 0. Alltsa ar f likformigt kontinuerlig. W

Nu ar vi redo for beviset av sats [1.6

BEVIS AV SATS 1.6l Lat oss bevisa satsen genom att anvinda oss av sats
Lat € > 0. Vi vill finna en 6vertrappa ¥ och en undertrappa ® sadana
att
b b
/ U(z)dx —/ O(z)dr < e.
a a
Enligt sats har vi att f ar likformigt kontinuerlig. Valj § > 0 sadant att

om |r —y| < § sa ar
€

@)= F@)l < 7.

Lat nu {x;}_, vara en uppdelning av [a, b] bestaende av n delintervall [x;_1, x;]
med egenskapen att ldngderna av varje delintervall 4r mindre &n 4, alltsa
A, =x —ximq < 0.

Da f ar kontinuerlig sa antar f ett minvirde m; och ett maxvirde M; pa
varje slutet intervall [z;_1,;]. Vi kan nu konstruera en Gversumma och en
undersumma med egenskapen

ZMZAZ — ZmzAz = (Mz — Tle)AZ < c ZAZ = ¢&. (11.16)
i=1 i=1 i=1 b—ai

Alltsé ar f integrerbar enligt sats Vi har dessutom visat genom var
konstruktion att (11.14]) och (11.15) 4r samma. |
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11.5 Rakneregler

Antag att a < b och att f &r en integrerbar funktion pa [a,b], da definierar vi
a b
/ flx)dx = 7/ f(x) dx.
b a

Foljande rédkneregler visas forst for trappfunktioner och dérefter generalise-
ras de till integrerbara funktioner. Vi lamnar beviset fér trappfunktioner till
lasaren och bevisar hur generaliseringen till integrerbara funktioner gar till.

Sats 11.9. Ldt f och g vara integrerbara funktioner pa intervallet [a,b] och
c € R. Da gdller att

/ab(f(ﬂﬁ) + g(x)) dx = /abf(a:) dx + /abg(g;) dz, (11.17)
/abcf(x)dx:c/abf(x)dx, (11.18)
/abf(:v)d:c:/acf(a:)da;—k/cbf(x)dx, (11.19)

/abf(:c) dz| < /ab \f ()] dz. (11.20)

Om f(x) < g(x), for varje x € |a,b] sa gdller att
b b
/ f(z)de < / g(x) da. (11.21)

BEvis: Vi visar (11.17]) och ldmnar resterande bevis som en 6vning till lasaren.

Aven verifieringen av (11.17) i fallet att f och g ér trappfunktioner limnas till
ldsaren att verifiera.

Vi behéver nu utvidga (11.17)) till godtyckliga integrerbara funktioner. Ef-
tersom f och g ar integrerbara finns det undertrappor @,  och ®, , samt
overtrappor ¥,, r och ¥, , for f respektive g sidana att

b b 1
U, (2)de— | @, ¢(z)de < —
[ vns@ o= [ @@ de < 5

och
b b 1
v, dr — d, d —
| vnst@yar = [ @ny@yar < o

Trappfunktionerna &, := ®,, y + &, och ¥,, := ¥, ¢ + ¥, , dr en under-
respektive overtrappa till f + g. Funktionen f + g dr ddrmed integrerbar ef-
tersom

/ab\I/n(x) dx — /abfbn(:r) dx < i

n
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Denna olikhet séger att

/ D, ( d:n—>/ )) dz,

da n — 0o. Med andra ord har vi att

/ab(f(x)—l-g( dr = lim / D, (

= lim (@ nf () + Ppg(2)) do

n—o0 a

b b
:n]ggo ; q)n’f(x)dx+7}1$%o/cl D, 4(z) dx

:/abf(x)dx—k/abg(x)dx

vilket visar (11.17)). ]

Exempel 11.10 (Tentamen 2011-10-18, 11%).

a) Visa att
1
/ ¢®” sin 5z dx < 10.
0

b) Visa att det finns ett tal N sddant att

N

n®—1
S s
“—, 1+n*+logn

LOSNING:

a) Eftersom e! ir viixande for alla ¢ och 22 &r vixande d& 0 < z, s foljer
att ¢ dr vixande da 0 < x. Alltsa ar e’ < e —eom0 <z <1
Daértill vet vi att sint < 1 for alla t. Om vi anvinder dessa tva olikheter
sa far vi att

2

&’ sin(bz) < e <e

om 0 < z < 1. En egenskap hos integralen ar att den bevarar olikheter
och alltsa &r

1, 1, 1
/ e’ sin(bx)dx < / e’ dx < / edr = e < 10.
0 0 0

b) Betrakta serien
00 2 1 k

LA T o B et S
—1+n?+logn koo f% 1+ n? +logn
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Vi vet att om en serie > -2, ay, ar konvergent sa ar lim, ., a, = 0.
Eftersom

n®—1 1- 24
lim —— = lim ——— 2 =1#0
n—oo 1 +n —|-10gn n%oo%_i_l (;Lg;z

sa foljer att var serie ar divergent. Eftersom serien ocksa &r positiv sa
vrs . 2 . .

foljer att limpg_.oo 22:2 % = 00. Att limg_o by = oo, for en
talfoljd by, betyder att by blir hur stor som helst bara k ar tillrackligt
stort. Mer precist formulerat: for varje tal B finns ett tal N sadant att

b, > B for varje n > N. Alltsa vet vi att det finns ett tal N sadant att

N 2

-1
ool
= 1+n*+logn

11.6 Medelvardessatser for integraler

Sats 11.11 (Medelvirdessatsen for integraler). Lat f vara kontinuerlig i [a, b].
Da finns det ett tal a € (a,b) sadant att

[ 1@yde = f(@)6 -~ 0).

Satsen foljer direkt fran en nagot mer generell sats, ndmligen genom att sétta
g(z) = 11 foljande sats

Sats 11.12 (Generaliserade medelvéirdessatsen for integraler). Ldt f och g
vara kontinuerliga funktioner i [a,b] och g = 0. Dd finns det ett tal o € [a, b
sadant att

[ sz = fio) [ o) da.

BEvis: I fallet att g = 0 foljer satsen direkt.

Antag att g # 0. Eftersom f &ar kontinuerlig s& har f ett max- och minvirde
pa [a,b]. Lat M och m vara max respektive minvirdet for f pa [a,b]. Vi har
att m < f(z) < M, for varje x € [a,b] och ddrmed &ven

m/abg(x)dxé/abf(:c)g(a:)dng/abg(:c)d:E

eller omskrivet . ,
m < 7/ z)g(x)dr < M.
e

Satsen om mellanliggande véirde siger att det finns ett tal a € [a, b] sddant att
1 b
fla zi/fxg:c dx,
@)= o [ @)

vilket ger 6nskad likhet. [ ]
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11.7 Analysens huvudsats

Definition 11.13. Lat f vara en funktion definierad pa ett intervall [a, b]. En
funktion F' sigs vara en primitiv funktion till f pa [a,b] om F'(z) = f(z),
for varje x € (a,b) och F &r kontinuerlig i [a, b].

Lat Fy och F vara tva primitiva funktioner till en funktion f, alltsa F} = Fj =
f. Om vi nu studerar G = F} — Fy sa farviatt G' = F{ — F, = f — f = 0.
Enligt sats @ ar G(x) = C, for nagon konstant C' € R. Alltsa géller att
tva primitiva funktioner skiljer sig endast pa en konstant.

Méngden av alla primitiva funktioner till en funktion f betecknas med

/f(a;) dzx.

Sats 11.14 (Analysens huvudsats). Lat f vara en kontinuerlig funktion pd
intervallet [a,b]. Da galler att

Flz) = / F(t) dt
ar en primitiv funktion till f i intervallet [a,b].

BEviIs: Lat oss anvianda derivatans definition. Vi vill alltsa visa att

i Fla+h) = F(z)
h—0 h

= f(@).

Vi har att

2ww+m—Fu»=;<fomw—LﬂﬁmQ=;L”Uuwt

Medelvardessatsen [11.11] ger att det finns ett « € (z,x + h) sadant att

z+h
2@ = 5 b)) = f(@) = S)
da h — 0. Vilket skulle visas. |

Sats 11.15 (Insédttningsformeln). Ldt f vara kontinuerlig i [a,b] och lat F
vara en primitiv funktion till f pa [a,b]. Da galler att

/ab f(x)de = F(b) — F(a).

BEvis: Eftersom primitiva funktioner endast skiljer sig pa en konstant kan vi
skriva F' pa foljande vis:

Flz)=C+ / () dt,
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déar C &ar nagon konstant. Vi har nu att

F(b)—F(a):C+/abf(t)dt—0—/aaf(t)dt:/abf(t)dt.

Det ar praktiskt att i detta laget infora notationen

har ar det underforstatt att x &r den variabel som ska ersadttas med a och b.

Exempel 11.16. Bestdm
5
/ (2 — z + 22°) da.
2

LOSNING: Enligt sats kan vi integrera termvis. Alltsa far vi att

5 2 477
/(2—x+2x3)dx: or— L 4L

2 2 2 )
25 625

=10 - T+ == — (4 —2+8) = 300.

Exempel 11.17. Bestdm arean mellan z-axeln, funktionen x + (1 4 22)71,
z=0ochx=1.

LOSNING: Eftersom integralen

1 1
/ dx
0o 1+ 22

beskriver just denna area sa géller det att berdkna dess virde. Eftersom

d ( ; ) 1
— (arctanz) =
dx 1+ 22

s& far vi enligt sats att
| s T
1
/0\ mdx:[arctanw]ozz—ozz.

Den sokta arean ér alltsa /4. A
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11.8 Partiell integration

Sats 11.18 (Partiell integration). Lat f, g och ¢’ vara kontinuerliga i [a,b]
och lat F vara en primitiv funktion till f i [a,b]. Da gdller att

b b b ,
/a f(@)g(x) do = [F(2)g(2)]" — / F(2)d (z) de. (11.22)

BEvis: Detta resultat dr en integrerad version av produktregeln fér derivator.
Produktregeln for derivator ger att

(Fg)(z) = f(z)g(x) + F(2)g'(x).

Integrerar vi denna identitet far vi

/a b(Fg)’(:v) dx = /a bf(x)g(:c) dx + /a bF(x)g’(g:) da.

Notera att .

| F) @)do = [F@)g@)];,
vilket ger . ]
Exempel 11.19. Berikna integralen

w/2 9
/ x°coszdr.
0

LOSNING: Lat oss anvianda partiell integration i tva steg,

/2 5 5 /2 /2
/ z°cosxdr = [x Sinz]o —/ 2z sin x dz
0 0

2 w/2
:7; — ([21‘(— Cos:l:)]g/Q—/ 2(—cos ) da:)
0
2 /2
=7 —/0 2cosxdx
2
:7; —2[si1r1:rz]g/2
2
= T —2
4

Exempel 11.20. Bestdm en primitiv funktion till z — Inz.

LOSNING: Vi anvander partiell integration med f(x) = 1 och g(x) = lnz. Vi

far enligt (11.22)) att
1

/lnxdx:/l-lnxdx: [wlnx]—/x—dw:xlnx—/dac:xlnx—m—i—(?,
x

dar C ar en reell konstant. A
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Exempel 11.21. Beridkna integralen
™
/ 2% sin(2z) da.
0

LOSNING: Vi anvénder oss av partiell integration i tva etapper. Vi far att

/07r 2% sin(2x) dx = {xQ (—COS;QJ:))]Z - /O7T 2x (_coséQa:)) dx

2

S +/ x cos(2z) dz
2 0

)

T sin(2x)17 T sin(2z)
- S B e S |
T S N A el
2 1 /7
:—1—7/ sin(2zx) dzx
2 2 Jo
__772_1[605(2@}”__%2
22 2 |y 2

11.9 Variabelbyte

Sats 11.22. Ldt g och ¢’ vara kontinuerliga i [a,b] och ldt [ vara kontinuerlig
mellan g(a) och g(b). Da gdller att

g(b) b
[ t@da= [ flga)g @) da
g(a) a

BEvIs: Detta resultat dr en integrerad version av kedjeregeln for derivator.
Fran kedjeregeln har vi att

dx
Integration av bada leden ger

b b
*(Pla@)de = [ flola))g (@) d.

o dT

Vinsterledet kan omformas enligt

b d
a%

Vilket visar satsen. [ ]
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Exempel 11.23 (Tentamen 2011-10-18, 55%). Bestdm integralen

5 1
[
2 zyv/r—1
LOSNING: Vi berdknar integralen med hjilp av variabelbyte:

/7@: r=12+1 :/ ot
2 ave—1 dt = da /(27— 1) Ll

— [2arctant]? = 2(arctan 2 — arctan 1)

T
= 2arctan2 — —.

11.10 Integration av rationella funktioner

Lat f vara en rationell funktion, d.v.s.

déar p och ¢ ar polynom. Vi ska visa en strategi for att berdkna integraler av
denna typ av funktioner. Denna strategi bestar av stegen

a) utfor polynomdivision,

)
b) faktorisera ndmnaren,
c¢) partialbraksuppdela,
d)

integrera termvis.

Arcustangenstermen

Exempel 11.24. Bestdm alla primitiva funktioner till funktionen

T
5+ 2022

LOSNING: Vi far att

e o L
5 + 20z2 5(1 + 422 5 1+ ( 2:75 dt = 2dx

=% / 2 1 " t2 =10 arctant +C = 1—70 arctan(2x) + C,

dar C ar en godtycklig reell konstant. A
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Lite mer generellt har vi for reella a,b # 0 och ¢ # 0 identiteten

a a CX

En identisk 16sning av foregdende exempel foljer
a 1 a 1
7dx:a/7dx:—/7dx
/¢W+§ﬁ p(r+%g) b*J 14 (<)?

_ t=9% _a 1 0
_{ dt = Sdx }_b?/l+t2cdt

a 1 a
=— [ —_dt=—arctant + C
bc/l—l—t2 pe AR +
= i arctan (CZJ) + C,

dér C &r en godtycklig reell konstant.

Exempel 11.25. Bestdm alla primitiva funktioner till

1
2 +4x+5

LOSNING: Da nadmnaren inte kan faktoriseras i reella polynom, s& anvander vi
oss av kvadratkomplettering. Notera att

2?44 = (x4 2)? — 4,

vilket ger att

/1 d:n—/1 dx = t=at2
22 +4x+5 ) (@+2)2+1 7 | dt=dx

1
— /m dt = arctant + C = arctan(z + 2) + C

A

Aven detta fall kan beskrivas med generella konstanter. Lat a och b > 0 vara
godtyckliga reella konstanter sidana att b — a? > 0. Med hjilp av kvadrat-
komplettering far vi

/71 dm—/ 1 dr = i
r24+2ax+b ) (x+a)2+b—a? o dt = dzx

1
= [ ——— dt.
/b—a2+t2

Nu kan vi anvinda ((11.23)) och far

1 1 t
dt = t —_— C
e maman<m)+



Alltsa géller att

1 1 r+a
—————— drx = ———= arct —— 11.24
/:1:2+2a:1:+b x b_a2arcan< F—cﬁ)—kc ( )

Logaritmtermen

Exempel 11.26. Bestdm alla primitiva funktioner till funktionen
4 — 3
2243z +3
LOSNING: Lat oss ordna sa att derivatan av ndmnaren, namligen 2z + 3, ater-
finns i téljaren. Vi far att
dr — 3 2z — 3 2z +3— 3
243z +3 2243z +3 x? 43z +3
2 1
([ O L)
22+ 3z +3 2) 22 +3x+3
Den férsta integralen 16ser vi genom variabelbytet t = 2% + 3z + 3. Vi fir att
dt = (2x 4 3)dz och ddrmed ar

22+ 3 dt 2
——————dr = | — =1Int =1
/x2+3x+3 x /t nt+ C; =In(z* 4+ 3z +3) + Cy,
dar C7 &r en reell konstant.

Den andra integralen uppfyller villkoren for (11.24) och vi far

1 1 z+3/2
7(&1’) = ——arctan | ——— +C
/x2+3x+3 3-9/4 ( 3—9/4) ?

2 2x+3)
— ) +C
( V3 2

dar Cy ar en godtycklig reell konstant.

Sammantaget far vi

4z — 3 9 2 2z +3
— _dr=2In(z*>+3 3) — ——=arct () C
/x2+3x—|—3 x n(z* + 3z + 3) 2\/gaurcam 7 +Cs
22+ 3
:21n(x2+3x+3)—3\/§arctan< vt ) + Cs,
V3
dér Cs ar en godtycklig reell konstant. A

Allmént giller att for reella konstanter a, b, ¢ och d sidana att d — ¢ > 0

2ax +b B 9 b — 2ac r+c
/mdx—aln(:n +2cx +d) + — arctan<m> +C,
(11.25)
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dar C ar en godtycklig reell konstant. Vi anvinder oss av vart tidigare exempel

och (|11.24])

2ax + b 2z + 2c b _9¢
/:L‘2+20x+d v a(/m2+2cm+d x+/$2+26$+d a:)
dx
_ 2 _
=aln(z*+2cz +d) + (b 2ac)/x2+20x+d

b — 2ac ( r+c
—————=arct

=aln(z? + 2cx +d) + —_—
( ) e

)+c,

— 2

dar C ar en godtycklig reell konstant.

Partialbraksuppdelning

Vi inleder med ett exempel som illustrerar vad vi vill &stadkomma.

Exempel 11.27. Antag att vi vill finna primitiv funktion till funktionen

4
x(z+1)(z+2)

Eftersom vi klarar att finna primitiv funktion till

1
och ——,
r+1 x+2

1

>

x
sa kan vi forsoka skriva var ursprungliga funktion som en kombination av
dessa. Vi ansétter darfor

4 A B C

x(x+1)(z+2) E+x+1+x—|—2'

Hogerledet kan skrivas om med hjilp av minsta gemensamma ndmnare enligt

A B C Alx+1)(z+2)+ Bx(z+2)+ Cx(z+ 1)
r x+1 x+2 z(z+1)(z+2)
B Ax? 4+ 3Azx +2A + B2? + 2Bz + C2? 4+ Cx
N z(x 4+ 1)(z + 2)
(A+ B+ )22+ (3A+2B+C)z + 24
z(z+1)(x+2) '

Alltsé har vi identiteten
4 (A+ B+ C)x? + (3A+2B + O)x + 24

z(z+1)(z+2) z(z+1)(z+2)

Det racker nu att jamfor koefficienterna for téljarnas polynom. Vi far att
A4+ B+C=0,34A4+2B+C =0o0ch 24 = 4. Alltsd a&r A = 2. Vi kan l6sa
ut resterande konstanter ur ekvationssystemet

B + C = =2
2B + C = -6
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Losningen B = —4 och C' = 2 fas med ldmplig metod. Vi har lyckats med
omformuleringen och far att

/x(x+4lc)k(vx+2) :/(j}_wi1+$12> de

=2In|z| —4In|z+ 1|+ 2In|z + 2|+ C,

dar C' ar en godtycklig konstant. A

Tips vid partialbraksuppdelning
Om den faktoriserade ndmnaren innehéller faktorer av typen
(@ +a)",

for nagot a € R och nagot heltal n > 2 sa ansétt termerna

Ay n As T An
r+a (x+a)? = (z+a)

och om den innehéller faktorer av typen
2
°+ax+b
s& ansétt termen

Ax + B
2 +axr+b

Exempel 11.28. Los integralen

1/2 2dzx
/0 (22 4+ 1)(z - 1)*

LOSNING: Lat oss ansatt termerna

2 _A.TU+B+ C N D
(2 +1)(x—-1)2 2241 -1 (z—1)2

Genom att skapa minsta gemensamma nédmnare i hogerledet far vi

Ax+ B C D
241 +x—1+(x—1)2
(Ar+B)(z —1)2+C(2? +1)(z — 1) + D(2* + 1)
(2 4+1)(x —1)2
(A+C)2®+ (-2A+ B—-C+ D)2+ (A—2B+C)x+ (B—-C+ D)
(22 +1)(z —1)2

153



Genom att jimfora koefficienter i téljarna far vi ekvationssystemet

A + C = 0
—-2A + B - C + D =0
A - 2B + C = 0

B - C + D = 2

Losningen &r A=1, B=0, C = —1 och D = 1. Alltsa har vi

1/2 2da 120 1 1
/ :/ ( — + ) dx
o (24+1)(z—1)2 0 2?2+1 -1 (z—1)2

1 1 112
:{lnx +1) ln]a;—l\—}
2 r—1],
11 1 —|—2 1
2 "1 M)
1l 5+1
=—In
2

11.11 Taylors formel med integration

Vi borjar med ett alternativt bevis av sats Taylors formel som bygger pa
partialintegration.

BEVIS AV SATS [0.1k Fran insdttningsformeln har vi att
| rwde= @ - o).
Med hjalp av partiell integration kan vi fa ut term efter term enligt
0+ [ swyde= o+ ["1- o
0
= £+ [t-2)f O] / (t—a)f"(t)di
0
2 z T (4 — )2
— f ([ x) ] _/ (Qx)f(?’)(t) dt)
0

= f(0) + f'(0)x + f10) +/ (t—2)° 3)(t) dt

2
f70) 5 | (- m)3f(3) (t)E B /Ow (t _3!$)3f(4) (t) dt

= f(0) + f(0)z + 5 x? +

" (3) T (t_— )3
= £(0) + f(0)z + / 2(0)a:2+ ! 3!(0)333 —/0 (¢ A ) FO(¢) dt.
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Om vi fortsiatter pd samma séatt far vi

W0 not1 [T =)™
f(x)_’;) a4 (1) 1/0 NPT AROLE

Vi tillampar nu den generaliserade medelvéirdessatsen [11.12]for integraler med

(l‘ _ t)n—l

>
(n—1)! >0,

g(t) =

da t € (0,z). Vi far fér nagot a € (0, ) att

= K o (n—1)!
n—l (k) (o (") (g
k=0 ' '
Vilket avslutar beviset. [ |

Med hjélp av formeln for en geometrisk summa sa kan vi pa ett relativt enkelt
satt bestdmma Taylorutvecklingen av funktionerna = +— In(1 + z) och = —
arctan .

Sats 11.29. Foljande Taylorutvecklingar galler

2 3 n—1,.n n.n+1
¢ x (=) 'z (=1)"x
In(1 =r——+—=—4... 11.26
n(l+z)==x 2—|—3+ + - CEIETS) ( )
3 5 n—1,2n—-1 n,.2n+1
x° oz (=) 'z (=1)"x
t =r——4+——... 11.27
aretane == gty st Tornaray
ddr « dr nagot tal mellan O och x.
BEvis: Enligt formeln for en geometrisk summa har vi for x # 1 att
1 — g™
:): =14z+22+23+.. 42",
11—z
som kan skrivas om till
1 n
— :1—|—m—|—m2—|—...—|—xn_1—|—L.
11—z 1—2z
Lat oss sédtta o = —t. Vi far da
Loy -+Q—U"—%”—1+(—1yltn (11.28)
1+t o 1+t '
Lat oss nu integrera likheten fran 0 till s. Vi far
2 3 n s n
s s s t
In(1 =s——+ = ...+ (-1 1= -4"/‘ dt.
n(l+s)=s 5 T3 +(—1) n+()01+t
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Om vi anvinder den generaliserade medelvirdessatsen (se sats|11.12]) s& far vi
for nagot o mellan 0 och s,

52 S3 (71)n—18n (71)71 s
In(1 =s——=+—=——... t"dt
n(l+s)=s 2+3 + - +1+a/0
2§ (—1)n—tsn (—1)nsntt
—s——— — ...+ + .
2 3 n (n+1)(1+ a)
Detta visar (|11.26)).
For att visa (11.27) utgar vi fran (11.28). Vi sétter ¢ = y? och far
1 y2n
n

- 11— 2 4_.“ _1n71 2n—2 -1 )
e Y-ty +(=D)"y T+ ( )1+y2

Vi integrerar likheten fran 0O till v och anvinder den generaliserade medel-

vardessatsen (se sats[11.12)) och far

3 5 n—1,2n—1 2n
u (1) tu vy
arctanu = u 3+5 + o — 1 +(—-1) 0 114 Yy
u3 u5 (_1)n71u2n71 (_1)nu2n+1
=u——+—=——...+ 571
3 5 2n —1 (2n+1)(1 + a?)
déar o dr nagot tal mellan 0 och u, vilket visar satsen. |
21 P9 D5
T — arctanx
1 +
-3 -2 -1 1 2 3
14
P11 pr7 p3
-2

Figur 11.2: Héar skissas funktionen tillsammans med Taylorpolynomen ps, ps,
p7, P9 och pi1.

156



Exempel 11.30. Beridkna ett approximativt virde av

3
/ cos/z dx,
0

samt uppskatta felet i berdkningen.
LOsNING: Enligt Taylors formel &r

2t 6
cost =1— Bl + - Cos(a)a
kring ¢t = 0, dar « &r ett tal mellan 0 och ¢. Om vi substituerar ¢t = \/z sa far
vi att
2 3
xr x x
cosyr =1-— 5 + o cos(a)a (11.29)
kring x = 0, dar nu « ar ett tal mellan 0 och /x. Lat oss skissa cos+/z och
1—2/2+4 22/4!

Figur 11.3: Den bla funktionen ar x +— cos \/x och den réda ar approximatio-
nen med hjalp av Taylorutveckling.

Det #r enkelt att berikna integralen av 1 — z/2 + 22 /4! 6ver intervallet [0, 3].
Vi far det approximativa virdet

3 x 2 22 1:33

. 9 81 135
0

Stitm T

Felet i var utrdkning ges av integralen av differensen mellan cos+/z och 1 —
x/2 + 22 /4! pa intervallet [0,3]. Enligt (11.29)) far vi att felet kan uppskattas

3
g /
0

3 23 3
—d
/0 cos(a) o 9%

3 g3 zt 81
doe < | dr = -
! /0 720 l2880] L, 2880
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Alltsa géller att

135, 81
/Cosfdx_ 72~ 2880°

11.12 Ovningar

Ovning 11.1. Berikna integralen

5
| r@)de,
0
dér
1 ,0<z <1
9 ,3 <z <10
Ovning 11.2.

a) Visa med hjilp av definitionen att f(x) = 22

[0, 1]. Eventuellt behovs

ar integrerbar i intervallet

z”: n+1).

b) Berdkna med hjilp av definitionen virdet av

1
/ 22 dz.
0
Du kan anvianda resultatet

- n(n+1)(2n+1)
.

Ovning 11.3. Berikna foljande integraler genom att anvinda sats [11.15
2 9 w/2
a) / (x — 27 7)dx c) / sin(2x) dx
1 0

2 1
b) / (2271 4 23) dx d)/ cos x dx
1

-1

Ovning 11.4. Berikna foljande integraler genom att anvinda sats [11.15
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5 ™
a)/ || dx C)/ (cosx + |sinzx|) dx
-1

2 4
b) / | sin z| d d) /Q(x— 2| dz
0 —
Ovning 11.5. Beriikna virdet av foljande integraler
2 4 dx
2z
d d
2) /o o ) /2 rzlnx
2 1 d
% rdx
b) /0 xe dx e) /0 Tt a2p
12 dx Lrr=  6de
Y o [ (] o)
) 0 1— 22 ) o \Jo (1+462)2
Ovning 11.6. Bestim
2) / dx 0) / dx
z2(z2 + 1) (x+1)%(22+1)
r+1 rdr
b ———d d
) /mz(:z:2+1) . ) /(x+1)2(x2+1)

Ovning 11.7. [2011-10-18, uppgift 3] En stillastdende bil startar fran ett
trafikljus och okar farten med konstant acceleration upp tills farten ar 25 m/s.
Dérefter fortsdtter bilen med den konstanta hastigheten 25 m/s. Efter 23 s
har bilen tillryggalagt strdckan 500 m. Hur lang tid efter starten nadde bilen
farten 25 m/s?

Ovning 11.8. [2007-12-17, uppgift 3] Berdkna /cos3xsin2xd:1:.
Ovning 11.9. [2006-12-20, uppgift 3] Berikna integralen
1 3
/0 #—;4_5 dz.

Ovning 11.10. [2007-05-31, uppgift 3] Beriikna integralen

/ T owde

0o Jr+1

Ovning 11.11. [2007-05-31, uppgift 7] Bestdm en primitv funktion till 5633796

+1

Ovning 11.12. [2008-06-04, uppgift 3] Beriikna integralen

/ﬂ_gsgj)gdx.
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Ovning 11.13. [2009-03-09, uppgift 8] Antag att f(0) =2, f'(0) =1, f'(1) =

0 samt . .
/f(az)exdaz:/ ' (x)e” dx.
0 0

Berdkna f(1).

Ovning 11.14. Lat f vara en oéindligt deriverbar funktion sddan att f(0) = 1,
f1(0) =0, f7(0) =1, f&(0) = 0 och f®(0) = 0. Dessutom ér alla derivator
till f uppat begrinsade av 4 och nedat begrdnsade av —2 i intervallet [0, 1].
Visa att

1
419 < 360/ F(x)da < 422.
0

Ovning 11.15. Berikna approximativt virdet av integralen

/2 ginx
/ dx
0 x

sa att felet ar mindre an en tusendel.

Ovning 11.16. Bestim det positiva talet = si att integralen

/$(4t—t2)dt
0

maximeras. Bestdm ocksa integralens maximala vérde.

Ovning 11.17. Lat f och f’ vara kontinuerliga funktioner pa intervallet [0, a]
och 1at f(0) = 0. Visa att

[ir@iae = [*1r) s

Ovning 11.18. [2007-03-13, uppgift 8] Lat

r—1
V1422 — 22

a) Bestdm ekvationen for normalen till f i punkten (2, 1).

fz) =

b) Funktionen f och dess normal i punkten (2,1) begrénsar tillsammans
med z-axeln ett dndligt omrade. Berdkna dess area.

Ovning 11.19. Berikna integralen

/77/2 1+ cosz
—dx
0 2 —sinz

LEDNING: Anvénd substitutionen tanz/2 = u.

Ovning 11.20. Berikna integralen

w/2 1 J
/0 2 —sinx .

LEDNING: Anvénd substitutionen tanz/2 = u.

160



Ovning 11.21. Berikna integralen

1
/ sin 2 dx
0

med ett fel som ar mindre &n 1073.

Ovning 11.22. Ett specialfall av Jensens olikhet séiger att for varje kontinu-
erlig funktion f pa [0, 1] géller att

</01f($) dx)2 . /Olf@)de' 11.30)

Anvind specialfallet for att visa att

b 2 b
(/ f(:c)da:) <(b—a)/a F(2)? da. (11.31)

géller da a < b och f ar kontinuerlig pa [a, b].
Ovning 11.23. T artikeln Hardy inequalities for magnetic Dirichlet forms av

A. Laptev och T. Weidl finner vi olikheten

8 — )2 B
/a lu(r)|*r dr < (62)/ \u'(r)]QTdr (11.32)

[0}

for u som uppfyller att u och v’ &r kontinuerliga, u(8) = 0 och 8 > a > 0.
Anvind Ovning [11.22] fér att verifiera den.
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12 Integration Gver obegriansade intervall

12.1 Definitionen och jamforelsesatser

Definition 12.1. Lat f vara en funktion som &r integrerbar pa [a, R], for
varje R > a. Da definieras integralen

R—o0

/aoof(x)da: = lim /aRf(a:)dm.

Om detta griansvirde existerar sdgs integralen vara konvergent, i annat fall
divergent.

Integration som inkluderar —oo definieras pa ett analogt vis.

Lat f vara en integrerbar funktion pa varje slutet och begrinsat intervall. Om
integralerna

/ f(z)dz och / f(z)dx (12.1)
ar konvergenta sé sigs integralen
/ Fz) da (12.2)

vara konvergent, i annat fall divergent. Om integralen (12.2)) 4r konvergent sa
definieras viardet som

/_0:0 f(z)dx = /aoo f(z)dx + /aoo f(z) d, (12.3)

for nagot a € R. Notera att definitionen ar oberoende av valet av a.

S|
/ —dzx
1 xP

ar konvergent om och endast om p > 1.

Sats 12.2. Integralen

BEvis: Antag forst att p #£ 1. Da géller att

o 1 R or " RP 1
/ —dzr = lim —dx = lim = lim ——.
1 aP R—o J1 P R—oo |1 —p 1 Rwoo\1l—p 1-—p

Detta griansvirde dr konvergent om och endast om R'™P? — 0, d& R — oo,
vilket sker om och endast om p > 1.

I fallet att p =1 har vi
<1 R
/ —dr = lim ~dz = lim [Inz]f= lim InR = oo.
1

X R—> J1 X R—o0 R—o0

Alltsé &r integralen konvergent om och endast om p > 1. |
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Sats 12.3. Lat f och g vara integrerbara funktioner i [a, R], for varje R > a,
sddana att 0 < f(z) < g(x), for varje x > a. Da gdller att om [;° g(x)dx dr
konvergent sd dr dven [.° f(x)dz konvergent.

Beviset dr nést intill identiskt med sats [10.5| och ldmnas darfor som en 6vning
till lasaren.

Foljdsats 12.4. Lat f och g vara integrerbara funktioner i [a, R], for varje
R > a, sadana att 0 < f(x) < g(x), for varje © > a. Da gdller att om
[° f(z) dx dr divergent s ar dven [° g(x)dx divergent.

BEVIS: Resultatet &r kontrapositionen av sats [12.3] |

Exempel 12.5. Visa att integralen
oo 2
3 2+

LOSNING: Notera att vi kan utfora foljande uppskattningar

22 22 1

< < = —.
St A+ 0 22

o ]
—d
/:axQx

ar konvergent enligt sats [12.2) sa ar enligt sats [12.3] integralen

00 1.2
3 I+

konvergent. A

ar konvergent.

Eftersom

Exempel 12.6. Visa att integralen
0o g2
[
3 x°+x
ar divergent.

LOSNING: Vi vill nyttja sats [12.4 Forst konstaterar vi att = < z® for alla
x > 3. Alltsa géller att for x > 3 har vi

x2 22 1

= — = —.
B4+r” B+ 2

Eftersom
s 2

ar divergent enligt sats [12.2]s& &ar enligt sats [12.4] integralen

o0 $2
/ 3 dx
3 x°+x

divergent. A
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Sats 12.7. Ldt f och g vara positiva och integrerbara funktioner i [a, R], for
varje R > a, sadana att
f(z)

lim —= = K,
T—00 g(z)

for nagot K # 0. Da gdller att

oo o
/ f(x) dx konvergerar om och endast om / g(x) dx konvergerar.
a a

Beviset &r ndst intill identiskt med sats[10.9] och ldmnas dérfér som en 6vning
till 18saren.

Foljande exempel visar att konvergenta integralers integrand inte behoéver ga
mot noll vid oandligheten.

Exempel 12.8. Visa att
o
/ sin(a:Q) dz (12.4)
1

ar konvergent. Funktionen har utseendet

IANARIN VI
IRV RNV L L

LOSNING: Vi utfor variabelbytet t = 22 och integrerar direfter partiellt och

far att
R 9 R? gint — cost] R? cost
/ sin(:c)da::/ dt:[ —/ ——dt
1 1 2Vt 2Vt 14 1 4t3/2
cos(R?)  cosl R* cost
2R 2 1 4t3/2

Om vi nu later R — oo sa far vi
o0 cos1 > cost
/ sin(z?) dz = - dt
1

dt

2 1 4t3/2
och kan konstatera att ((12.4]) 4r konvergent om och endast om
© cost
e dt
ar konvergent. Vi har att
cost 1
A43/2 | TS 443/2°
Eftersom
A _—
1 $3/2
ar konvergent sa ar ((12.4) konvergent. A
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12.2 Samband mellan summor och integraler

Sats 12.9. Lat f vara en avtagande funktion i intervallet [m,n|, ddr m och

n dr heltal sadana att m < n. Da gdller att

F%:Hf(j) < /m

m m+1

r< ) f0) (12.5)

n—1 n

Figur 12.1: Summor och integraler

BEVIS: Beviset foljer direkt fran figure [I2.1] Notera att vinsterledet och ho-
gerledet dr en undersumma respektive éversumma till integralen. |

Notera att (12.5) kan omformuleras till

n

n) + /m f@)de < 3 1G) < f(m)

j=m

Exempel 12.10. Visa att

S

o0
S2gips

J=1

;2

wm
.

wm

(12.7)

LOSNING: Eftersom funktionen f(z) = v/3/(3 + x?) ér avtagande, positiv och
kontinuerlig sa kan vi nyttja sats Den ger oss att

/N+1\/§d<N V3
1

32" 32
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Vi berédknar nu integralerna,

N 3 N1 1 N 1
A
0 0 0 x
1+ (%)
N/V3q N
= [:U =/3t,dx = \/§dt} = /0 e dt = arctan <\/§>
och pa liknande sétt
N+l /3 (N+1)/V3  q
/ V= B
1 34a? 1/v/3 1+1¢2

. <N+1> . (1)
= arctan { ——— | — arctan | —
V3 V3

. <N+1> T

— arctan { ——— —_ —.

V3 6

Alltsé géller att

N+1 N3 N
arctan <+)—W<Z \[,2<arctan( >
V3 6~ =3+ V3
Da N — oo foljer att
(o]
Ty Yo
3 j:13+]2 2

Exempel 12.11. Ange en delsumma till serien

=1
;1+j4

som approximerar serien med ett fel mindre &n 1/1000.

LOSNING: Vi kan forst dela upp summan enligt

> N o 1
Do a=d oAt X T
j:11+] Sl j:N+11+‘7

och forsoka bestamma N sa att

i L1
1+54 1000

j=N+1
Enligt definitionen ar
> 1 A
2 = jim >,
4 4
]:N+11+‘7 RHOO]':N-{—I +7



Eftersom funktionen f(x) := 1/(1+ %) &r positiv, kontinuerlig och avtagande
sa géller enligt sats [12.9] att

/R dx

<[ —.

1+ 54 N 14zt

Nu foljer att
/R dx </Rdx_[ 1]R_ LS S
N 1+a2t vy 24 | 323y  3R3  3N3 " 3N¥

di R — oco. Vi séker ett N siddant att 1/(3N3) < 1/1000. Vi ser att vi kan
villja N = 10 for d& ar 1/(3N3) = 1/3000. Alltsa kan vi summera 10 termer.

A

Versionen av sats [12.9 for vixande funktioner blir
Sats 12.12. Lat f vara en vizande funktion i intervallet [m,n], dar m och n
ar heltal sadana att m < n. Da gdller att

n

n—1 n
3 f6) < / f@yde< Y £0) (12.8)
j=m m j

=m-+1

Vi illustrerar satsen med en figur

m m+1 n—1 n

Figur 12.2: Summor och integraler

Sats 12.13 (Cauchys integralkriterium). Lat f vara en positiv och avtagande
funktion i (m,00), dd gdller att 3772, f(j) dr konvergent om och endast om
Jo¢ f(x) dx dr konvergent.

BEvis: Antag forst att 3222, f(j) &r konvergent med summan S. Vi vill visa
att gransvérdet

Jim /m * H) da (12.9)
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existerar. Att gransvirdet existerar foljer fran sats [4.8] om vi lyckas visa att
R — frf f(z) dz ar vixande och uppat begrédnsad. Da f ar positiv sa ar det
klart att R — ff f(z)dzr ar viaxande. Lat n vara det minsta heltalet som
uppfyller att R < n. Enligt sats har vi att

n—1

R n
| r@de< [ f@de< Y 56) = 8.

Jj=m
da R — oo och da dven n — oo. Alltsa existerar gransvirdet ((12.9)).

Omvént géller att om [>° f(x) dz existerar si visar vi pa liknande sitt att
i f(j) dr vixande, ty f &r positiv, och uppdt begrénsad fran sats m

12.3 Owvningar

Ovning 12.1. Avgér om den generaliserade integralen [ e~ dz &r konver-
gent.

Ovning 12.2. Bestdm det minsta antalet termer i serien 54 k% som behovs
for att approximera summan med ett fel som &r mindre dn 1,/4000.

Ovning 12.3. Bevisa sats m
Ovning 12.4. Bevisa sats m

Ovning 12.5. Berikna integralen

/OO dx
0 Vo+ 222+

Ovning 12.6. Avgér om foljande serier konvergerar

[o.¢] 1 o
b —Vn
2) nz::gnlnn ) nz::le
Ovning 12.7.

a) Konvergerar eller divergerar integralen

o0 T
dx?
/—oo$2+1 v

b) Bestam vérdet av

. B
lim ——dx.
Rooo)_pa?+1
c) Bestdm vérdet av
2R
lim dx.

RoooJ_g 22 +1
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d) Kan du av svaren fran b) och c) besvara a)?

Ovning 12.8. Visa att

a) foljande integral ar divergent

® 1+
/ 5 dz.
o T+ 1

b)
R
lim 2+ Y do = .
R—oo)_pa*+1
¢) Bestdm vérdet av
2B 1+

dz.

lim
R—oo J_R 2 +1

Ovning 12.9. [2008-12-15, uppgift 3] Berikna den generaliserade integralen

/°° dx
0o er e T

Ovning 12.10.

. . . o© dx
a) Berikna den generaliserade integralen / (
1

T+ 1)z

> 1
b) Visa att serien _—
) kz::l (k+1VEk

med hjélp av uppgift @

ar konvergent. Uppskatta seriens summa

Ovning 12.11. [2006-12-20, uppgift 8]

o0
a) Berdkna integralen / e VT dx.
0

o
b) Visa att serien Z e VE p konvergent.
k=1

Ovning 12.12. [2009-03-09, uppgift 4] Bestim n s& att

x "o
D w1 T,
STk 1tk

dér resttermen r &r mindre &n 1,/4000.

Ovning 12.13. En integral av typen
o0
|t ds
a
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sdgs vara absolutkonvergent om

| @lde

ar konvergent. Visa att om
o0
| i@ ds
a

ar absolutkonvergent sa ar den konvergent.
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13 Lokal integrerbarhet

Bakgrunden &r att vi vill integrera en funktion éver ett intervall dér det finns
punkter dar funktionen inte ar definierad. Problemstéllningen &r enkel: Gar
det? Och i sa fall: Hur gor vi?

13.1 Definitionen och jamforelsesatser

Definition 13.1. Lat f : (a,b] — R vara en integrerbar funktion i intervallet
[a + €,b], for varje litet € > 0. Vi definierar

b b
/a f(x)dx = lim f(x)dx.

€20 Jate

Om detta gréansvirde existerar sags integralen vara konvergent, i annat fall
divergent. Om integralen ar konvergent sigs funktionen f vara integrerbar i
intervallet (a, b].

Lésaren kan sjalv formulera definitionen i fallet att funktionen f inte skulle
vara definierad i punkten b.

Vi anvinder rakneregel (11.19)) i fallet att f inte ar definierad i en inre punkt
av [a, b].

Definition 13.2. Lat f vara en funktion definierad i intervallen [a,c) och
(¢, b], odefinierad i punkten ¢ € (a,b) och integrerbar pa varje slutet intervall
I Cla,c)U (c,b]. Da definieras

/abf(:v)dac :/:f(x)dac—i—/cbf(:n)dx.

Om bada integralerna i hogerledet &r konvergenta sa ségs integralen [ f f(x)dx
vara konvergent, annars divergent.

|
/—dm
o xt

ar konvergent om och endast om q < 1.

Sats 13.3. Integralen

Vi skulle kunna bevisa denna sats pa ett liknande séitt som beviset av sats
Vi véljer hir att 6verfora denna situation pa resultatet av sats [12.2

BEvis: Vi har att

11 r=1 111 © 1
— dz = t :—/ 7—dt:/ —— dt.
/oxq v {dm——g} s (1/t)9¢2 1 2

Vi vet fran sats [12.2] att integralen konvergerar om och endast om 2 — ¢ > 1,
vilket dr detsamma som g < 1. ]
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Sats 13.4. Lat f och g vara integrerbara funktioner i [a+¢,b], for varjee > 0,
sadana att 0 < f(x) < g(z), for varje x € (a,b]. Da gdller att om f;g(x) dx
dr konvergent sd ar dven [, f(x)dx konvergent.

Beviset ar nést intill identiskt med sats [10.5| och ldmnas darfér som en 6vning
till l&saren.

Foljdsats 13.5. Ldt f och g vara integrerbara funktioner i [a+¢,b], for varje
e > 0, sadana att 0 < f(x) < g(x), for varje x € (a,b]. Da galler att om
f(f f(z)dx ar divergent sa ar dven f;g(x) dx divergent.

BEVIS: Resultatet &r kontrapositionen av sats [12.3] |

Sats 13.6. Lat f och g vara positiva och integrerbara funktioner i [a + €,b),
for varje € > 0, sadana att

o flx)
Jim o K, (13.1)

for nagot K > 0. Da gdller att

b b
/ f(x) dx konvergerar om och endast om / g(z) dz konvergerar.
a a

BEvis: Antag att f: f(x) dz ar konvergent. Vi vill visa att fé’g(x) dz ar kon-
vergent, d.v.s. att gransvirdet
b

lim x)dzx

Jim a+59( )
existerar. Vi visar detta genom att visa att integralen véxer och &ar uppat
begrinsad d& € minskar.
Da g(z) > 0 sa géller att integralen ff +e 9(7) dx vixer di ¢ minskar. Vi har
kvar att visa att | : . 9() dx &r uppat begrinsad.
Fran (13.1) har vi att det for varje e; > 0 finns det ett §; sadant att da
a<x<a-+0d; saar

f(z)

K- <—7—=<KH+e¢.

g9(z)

Speciellt for e; = K/2 géller att det finns ett § sd att dd a <z < a+ ¢ sa ar
K _fl@ 3K

< < .
2 g(x) 2
Kom ihag i rdkningarna nedan att ¢ ar fixerat och det ar vart € som inte ar
fixerat. Nar ¢ ar litet géller att € < § och vi far

b a+0 b
/ g(x)dx :/ g(x)dx +/ g(x)dz
a+e a+e a+§

) a+d b
< —/ f(z) dw+/ g(x) dx
K ate a+4d

b b
< f{/a f(:n)d:v+/a+5g(:n)dm
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Den forsta integralen ar konvergent fran vart antagande och den andra inte-
gralen dr integrerbar fran satsens forutsattningar. Alltsa ar | ; '+ 9(7) dx uppéat
begrinsad och ddrmed konvergent da e — 0+.

Den omvéinda implikationen foljer analogt fast med olikheten

3Kg(z)
fla) < S0,
[ |
Exempel 13.7. Visa att integralen
|
/ - dzx
0 SInx
ar divergent.
LOSNING: Vi véljer att jamfora med funktionen 1/z. Vi har att
1/
/sinz L,
1/z
da x — 0 och att
11
/ —dz
0o T
ar divergent. Alltsa &r ursprungsintegralen divergent. A

Exempel 13.8 (Tentamen 2011-10-18, 31%).

a) Pa vilket sitt ar integralen
1
cos
/0 peVEY dx

b) Avgor om integralen dr konvergent eller divergent.

generaliserad?

LOSNING:

a) Integranden &r funktionen f(r) = §. Denna funktion &r kontinuer-
xT

lig pa intervallet (0,00), men lim, ,5+ f(x) = oo. Integralen ar alltsa
generaliserad eftersom integranden ar odefinierad i punkten 0.

1
T < — forallaze (0,1

0<
21/3 S g1

b) Pa intervallet (0,1] ér 0 < cos(z) < 1 och 0 < /3, s vi har
73

Den generaliserade integralen fol 2~ Y3dz ir konvergent enligt sats m
eftersom 1/3 < 1.
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13.2 Ovningar

Ovning 13.1. Avgor om den generaliserade integralen N % dx ar konver-

T
gent.

Ovning 13.2. Ar foljande integraler generaliserade? Ange i forekommande
fall pa vilket sétt de &r generaliserade och avgdr om de konvergerar. Berdkna
slutligen integralerna.

de 3
b 2¢ — 1| d
a>/01_x >/0\x | dz

Ovning 13.3. Undersok om foljande integraler ér konvergenta och berdkna i
s fall deras virde

2) /1 dx 0 I zdx
0 sinz 0 Va(l—z)
oo T dr

b) /01 arctan (%) dx d) A W

Ovning 13.4. Undersék om f5ljande integraler ar konvergenta?

Vo dr 0 /Oll_da:\/5

1
a) 0o Sinz

N d) /oodf”
)/0 et — 1 v 1 vz -1

Ovning 13.5. Lat f : (a,b] — R. En integral av typen

/ ' fe) do

sigs vara absolutkonvergent om

[ 1@

ar konvergent. Visa att om
b
[ r@da
a

ar absolutkonvergent sé &r den konvergent.
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14 Integralens tillampningar

14.1 Riemannsummor

Lat P, = {:rm}fvz"o vara en uppdelning av [a, b], d.v.s. fér varje givet n ar P,
en uppdelning av [a, b] som bestar av N,, antal delintervall. Vi har att

a=2Tpo<Tpi<Tp2<...<ZTpN,_; <TnpN, =0

Lat o € [Tn,i—1,Tni] och Ay = 2 — Tpio1.

Summan
Nn

Z f(an,i)An,i’

=1

kallas en Riemannsumma for f i intervallet [a, b].

f(an,l) A \

f(an,Q) o i -

xn7N7l

Figur 14.1: Riemannsumma for fixerat n

Exempel 14.1. Summan
n
Z 1

i=1 1+ (1)2

n

S

ar en Riemannsumma for funktionen

1

@) =1

pa uppdelningen 0,1/n,2/n,...,1. Har ar alla delintervall av lika ldngd, men
s& behdver inte vara fallet. A
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Foljande sats sdger att Riemannsummor av kontinuerliga funktioner kan an-
viandas for att approximera integraler.

Sats 14.2. Lat f vara kontinuerlig i intervallet [a,b] och lat (P,)>2, vara en
foljd av uppdelningar av [a,b] sidana att det stérsta delintervallets lingd

max{A,;: 1 <i< Ny} =0,

da n — oo. Da gdller att Riemannsumman
Ny, b
> fon)dni = [ fla)d
i=1 @

da n — oo.

BEevis: For givet n 1at m,, ; och M,, ; vara det minsta respektive storsta vardet
av f pa intervallet [z, ;—1,Zy4]. Vi har att Riemannsumman &r instédngd av

Np Np, Np,
> milni <D fani)Ani <Y MiAn.
i=1 i=1 i=1

Enligt (11.14) och (11.15) sa géller att bade hoger- och vénsterled gar mot
b
[ ) do
a

och dérmed foljer satsen. [ |

Exempel 14.3. Bestam

. “ 1
2
LOSNING: Summan
~ 1 - 1 1
;Hﬂ/n :; 1+ (j/n)? n

ir en Riemannsumma for f(z) = 1/(1 + 22) 6ver intervallet [0,1], dir den
hogra dndpunkten i varje intervall ar vald. Alltsa géller att

- 1 1_>/1 dv  w
jzll—i-(j/n)Q n o 1+22 47

da n — oo. A

Exempel 14.4. Bestam

n

, 2 +n—1\""
nl;ngo'z;ln <n> .
J:
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LOSNING: Vi noterar forst att

n

Zl <2j+n—1>

z”: (2; tn— 1) 1

= n

1< 2j+n—1
-3 ():
Hér behover vi justera delintervallen fran 1/n till 2/n sa att o := (2j+n—1)/n

matchar intervallen. Lat
Pn:{n n+2 n+4 ?)n}

S v

) ) ey
n n n n

vara en uppdelning av intervallet [1, 3]. Vi far da att intervallaingderna &r 2/n.
Summan ovan ar en Riemannsumma av f(x) = Inz 6ver uppdelningen P,. Vi
har valt att berdakna f i mittpunkten péa varje intervall. Alltsa foljer att

n

2 1 2 3
Zl <]+n >-%/lnxdmz[mlnxazﬁ:?)ln?)l
n 1

da n — oo. A

14.2 Areaberikning

Exempel 14.5. Berdkna arean som sténgs in av en ellips, alltsa arean av alla
punkter (z,y) som uppfyller att
2 2

Yy
2 S

Y

dér a och b ar positiva reella tal.

LOSNING: Arean ar den som bildas mellan funktionerna

2 b
y(r) = by /1 - % =+—Va? — 22,
a a

definierade for x € [—a, al.

yol) = ~LVa? — 2
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Av symmetriskél uppfyller arena A att

a

A= [ @ -pen =1 [ n@ar=2 ["VE=ia

—a

— asint b /2
:{dg: asin }: Va2 — a2sin? tacost dt

x = acostdt a Jo

w/2 w/2
= 4ab/ V1 —sin?tcostdt = 4ab/ cos® t dt.
0 0

Vi anviander nu trigonometriska identiteten

1 + cos(2t)

2
cos“t =
2

och far att

w/2 w/2 1 21
dab / cos® t dt = dab / L+cos(2t) o,
0 0

2
t  sin(2t)]™/?
=4dab |-
ab 5+ ]0
= abr
Hir ser vi att cirkelskivans area, da a = b = r, blir 7r2. A

14.3 Volymberikning
14.3.1 Rotation kring x-axeln

Antag att f ar en kontinuerlig funktion definierad pa intervallet [a,b]. Om vi
later f rotera kring x-axeln bildas en kropp som vi vill berdkna volymen av.
Forst approximerar vi volymen med hjilp av cirkelskivor med viss bredd och
dérefter forfinar vi approximationen genom att lata bredden ga mot noll.
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Antag att vi delar in intervallet [a,b] i n stycken delintervall [z;, ;1] av
lika storlek. Bredden pa varje sadant intervall blir A, := (b — a)/n. Vi later
radien av varje cirkelskiva vara bestdmd av funktionens vérde i den vénstra
andpunkten z; pa intervallet [z;, z;41]. Volymen kan approximeras av summan
av dessa n cirkelskivor av bredd A,. Approximationen ges av

Vn = Zﬂ'f(xj)QAx.
j=1
Enligt sats giller att volymen V uppfyller
b
V= lim V, = / 7 f(x)? d.

Exempel 14.6 (Klotets volym). Lat oss berdkna volymen av ett klot. Som ni
kanske redan misstéanker sa ska vi berdkna volymen genom att rotera en cirkel.
En cirkel med radien r fis av de punkter z och y som uppfyller 22 4 y? = r2.

Ur detta uttryck kan vi losa ut y enligt
y=+Vr?— 2

For att gora det enkelt for oss noterar vi att om vi roterar grafen av en
fjardedels cirkel kring x-axeln sa far vi ett halvt klot. Alltsd blir hela klotets
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volym tva ganger rotationsintegralen av y

3 T

' T 4
V:27T/ y2d$=27r/ r? — 2?dr =27 7“23:—3:— 2
0 0 3 0 3

3

Ett svar som vi vil kéinner igen fran geometrin. A

14.3.2 Rotation kring y-axeln

Lat f vara en kontinuerlig funktion definierad pa intervallet [a, b]. Om vi later
f rotera kring y-axeln bildas en kropp under grafen som vi vill berdkna voly-
men av. Aterigen delar vi in intervallet i n stycken lika stora intervall. Forst
approximerar vi med en Riemannsumma och dérefter forfinar vi approxima-
tionen med hjalp av sats [14.2

Approximationen ges av differensen mellan de tvd tartorna med radie z;1
respektive z;. Alltsa

Il
WE

Vi 7Tf(ﬂcj)(flcgz-|-1 - %2)

<.
Il
_

I
M=

mf(zj)(Tjp1 + x5)(Tj41 — T5)

.
Il
—

Il
M=

wf(xj) (2:cj + b ;L a) A,

1

.
I

n b _
mf(@)2e5 80 + Y mf(@)) A,

J=1

Il
NE

.
Il
—

eftersom A, = x4 —x; och zj 41 +2; = 2z + (b—a)/n. Den férsta summan
uppfyller enligt sats [14.2] att

n

b
nlbrgozlwf(xj)2xij :27r/a xf(x)dx
J:
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och den andra summan uppfyller enligt sats och sats att

) n b—a  b—a & b
T}LIEOZﬂf(xj)TAzz lim Zﬂf(%‘)A:c:O'W/a f(z)dx = 0.

J=1 J=1

Alltsa ar volymen V' vid rotation kring y-axeln

V—QW/bxf(x)dac.

14.4 Kurvlingd

Lat f vara en deriverbar funktion definierad pa intervallet [a,b]. For att be-
stimma ldngden av kurvan sa anvinder vi Riemannsummor. Lat (a;)i, va-
ra en uppdelning av intervallet [a,b] och bilda rita linjer genom punkterna

(ai, f(ai)).

Léangden av de réata linjerna blir med hjélp av Pythagoras sats

n—1
L= (@i —a)’ + (flais) — fla:))’ (14.1)

i=0
n—1 . _ ;i 2

=> \/1 + (f(azﬂ) A l)) (ait1 —a;). (14.2)
=0

Ai+1 — a4

Om foljden (a;) véljs sa att
max |a;j+1 — ai| — 0, (14.3)
(2

da n — oo och eftersom

— f'(a:), (14.4)



da aj+1 —a; — 0, sa géller enligt sats [14.2] att

L, — /b V14 f(z)?dx (14.5)

da n — oco. Vi definierar darfor lingden av funktionen f mellan a och b som

/ab 1+ fl(x)?da. (14.6)

Exempel 14.7. [2009-06-01, uppgift 3] Berdkna lingden av kurvan f(z) =
vV1—z24+arcsinz da 0 <z < 1.

LosNING: D3

R e

far vi att langden ges av

1 1 1—12)2
L:/O ,/1+f/(m)2dx:/0 ‘/1+(1_x3dm (14.8)
A L dx
:ﬁfo,/l_xde:\/i/[)m (14.9)

=2V2 [\/1 ¥ x]; =4 —2V2. (14.10)

14.5 Ovningar

Gvning 14.1. Approximera integralen

2.dt
1t

med hjélp av en Riemannsumma med

a) 2 termer,

b) 4 termer.

Forklara varfor dina svar pa Eﬂ och |EZ| kan anvandas som approximationer av
In 2.

Ovning 14.2. [2007-03-13, uppgift 3] Berikna arean av det omradet D =
{(z,y) eR?:0< 2 < 1,0 <y < arctanz}.
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Ovning 14.3. [2007-03-13, uppgift 5] En behallare full med vitska har formen
av den rotationskropp som uppstar da omradet

{(x,y)eR2:0<y< (x_;)(x_4>,5<x}

roterar ett varv kring x-axeln. Behallaren har en kran som slédpper ut viatskan
med en volym enhet per sekund. Hur mycket tid behévs for att tomma ut hela
behallaren?

Ovning 14.4. [2008-06-04, uppgift 7] Berdkna férst arean A(b) av det omrade
i zy-planet som begrinsas av z-axeln, de vertikala linjerna x = 0, = b (déar
b > 0) och kurvan y(z) = z- (22 +2)~%/2. Visa sedan att limy_,o, A(b) existerar
samt berakna detta gransvéarde.

Ovning 14.5. [2008-12-15, uppgift 7] Beriikna volymen av den rotationskropp
som uppstar da omradet mellan parablerna y = x2 och y = 8 — 22 roterar kring
x-axeln.

Ovning 14.6. Berikna volymen av den rotationskropp, begriansad av 2 = 0
och x = 1, som uppkommer di vi roterar f(x) = 2 kring z-axeln.

Ovning 14.7. Genom att rotera funktionen f(z) = (1+ 1:)% far vi nagonting
som med lite vilja kan tdnkas likna ett vattenglas. Antag att du vill méta upp
exakt 4 volymenheter av vatten i glaset. Hur hogt upp i glaset skall du fylla?

Ovning 14.8. Berikna volymen av den rotationskropp, begrinsad av z = 0
och z = 7/2, som uppkommer da vi roterar f(x) = \/cos(z) kring z-axeln.

Ovning 14.9. Bestidm det begrinsade omrade som innesluts av kurvorna
y = 42> + 122 och y = 1622. Berikna omradets area.

Ovning 14.10. Berikna volymen av den rotationskropp som genereras da
omradet mellan kurvan y = sinzx, 0 < x < 7, och x-axeln roteras ett varv runt
xr-axeln.

Ovning 14.11. Berikna volymen av den rotationskropp som genereras da
omradet mellan kurvan y = sinx, 0 < x < 7, och z-axeln roteras ett varv runt
y-axeln.

Ovning 14.12.

a) Bestam definitionsméngd for var och en av de tva funktionerna f(x) =

V=32 —z och g(x) = vV—a? — 32z.

b) Beridkna den area som dessa funktioner naturligen definierar, ndmligen
arean under grafen.

Ovning 14.13. [2006-12-20, uppgift 7] Berikna lingden av kurvan

fla) = 5 + e,

dir 0 <z < In2.
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15 Differentialekvationer

En ordinir differentialekvation (ODE) dr en ekvation som innehaller en
eller flera envariabelfunktioner och deras derivator. Ett exempel &r ekvationen

/@) + V(@) = By(a), (15.1)

som beskriver vagfunktionen y for en kvantmekanisk partikel i ett tillstand med
energi F. I ekvationen, som &r ett exempel pa en tidsoberoende Schréding-
erekvation, &r h Plancks konstant, m partikelns massa, och V en funktion
som beskriver partikelns potentiella energi som funktion av positionen.

Om en differentialekvation kan skrivas pa formen

Y™+ fos1 @)y 4+ @)y + fi(@)Y + fol)y = h(z),  (15.2)

sdgs den vara linjar och av ordning n. Om h = 0 sdgs ekvationen vara
homogen annars inhomogen.

15.1 Linjara ODE av forsta ordningen med konstanta koeffici-
enter

Sats 15.1. Lat a € R. En funktion y loser differentialekvationen
Y +ay=0
om och endast om
y(z) =Ce %,
dir C € R.

BEvis: Lat oss forst visa att y(x) = Ce™* 16ser differentialekvationen. Vi har
att
y' () + ay(z) = Ce " (—a) + aCe™* =0,

alltsa loser y(x) = Ce™** differentialekvationen.

Lat y1(x) = Cre™**, for ndgon konstant Cy # 0. Antag att y ar en losning till
differentialekvationen 3’ + ay = 0. Eftersom y; # 0 géller att losningen y kan
skrivas pa formen

— (o Y@)

Lat oss kalla w(z) = y(x)/y1(z). Eftersom y; ar en 16sning till differentia-
lekvationen har vi att

Y (x) + ay(x) = yy (z)w(z) + y1(x)w'(z) + ayi (z)w(z)
(1 () + ay1 (x))w(z) + y1(@)w' (x)
= y1(x)w'(x) = 0.
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Vilket ger att w'(z) = 0, alltsd ar w(z) = Cq, dar Cy € R ar en konstant. En
godtycklig 16sning y dr darfor alltid pa formen

y(@) = yi(@)w(x) = Cre”*"Cy = Ce™*".

Vilket skulle bevisas. [ |

15.2 Homogena linjira ODE av andra ordningen med konstan-
ta koefficienter

Definition 15.2. Lat y” +ay’ + by = 0 vara en differentialekvation, diar a och
b &r reella tal. Polynomet
r 12 +ar+b,

kallas det karakteristiska polynomet till differentialekvationen och r2+ar+
b = 0, kallas den karakteristiska ekvationen for differentialekvationen.

Sats 15.3. Lat a,b € R och lat r1 och ro vara l6sningarna till den karakteris-
tiska ekvationen 12 + ar +b = 0.

En funktion y loser den homogena differentialekvationen
y" +ay +by=0 (15.3)
om och endast om y uppfyller nedanstaende

a) I fallet r1 och ro dr reella och ri # ra, sd dr

y(x) = Cre™® 4 Coe”™", (15.4)
b) I fallet r1 = ro, sd dr
y(z) = (C1 + Cax)e”, (15.5)
c) I fallet r1 = ¢+ di och ro = ¢ — di, dar d # 0, sa ar
y(x) = e“(C cos(dz) + Cy sin(dz)), (15.6)

dir Cy,Cy € C. En losning till (15.3) kallas for en homogen losning.

Hjilpsats 15.4. Ldt 1 och ry vara rétterna till ekvationen r? + ar + b = 0.
Da gdller att ry + ro = —a.

BEvis: Enligt faktorsatsen ar
2 far+b=(r—r)(r—r).

Utvecklar vi hogerledet far vi 72 — (r1+r9)r+mrire. Identifierar vi koefficienter
sa far vi onskad identitet. |
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BEvIs: Det ar en direkt rdkning for att verifiera att om gy &r pa nagon av
formerna - sa loser y differentialekvationen. Det svara ar att visa
omvandningen, d.v.s. att det finns inga andra funktioner &n dessa som léser
differentialekvationen.

Antag att y ar en 16sning av ((15.3)). Eftersom en exponentialfunktion aldrig
antar virdet noll sa kan vi skriva y pa formen

y(@) = yi(z)w(z), (15.7)

dér y1(z) = e"*. Problemet handlar nu om att ta reda pa hur w ser ut.
Eftersom y{ 4+ ay} + b = 0 har vi att
y' +ay' + by = yfw + 2w + g’ + a(yiw + ') + byrw
= (W + ayi + byn)w + 2w + y1w” + ayrw’
=2y’ + y1w” + ayrw’
= (2rw +w" + aw')e™”"
= (w" + (a+ 2r)w)e”
Losningen till differentialekvationen (w')’ + (a + 2r1)(w’) = 0 ar enligt sats

[[5.1] funktionen
w’(x) _ Cle—(a—l—er)x

och fran sats far vi att a + 2r; = r1 — ro. Alltsa ar
w'(z) = Crelrz=mz, (15.8)
I fallet att ro # r1 har vi

C
w(x) = 7“27_17416(7’2_“):6 + Cy = Cge(TQ_Tl)x + C,

dar C3 = Tﬁlﬁ. Instoppat i (15.7)) ger

y(z) = 7 (C3el"27T 4+ Oy) = O3 + Coe™”,

vilket visar @i fallet att 1 och ro &r reella. Om r; och 79 &r komplexa sé ar
r1 = T2, ty a och b &r reella. Vi kan déarfor skriva att r; = ¢+di och ro = c—di
och far att

y(l‘) = (03€"% 4 Che™® = C3e(c+di)x + C2€(c—di)x
_ ecx(c3eidx + Czefidx).

Hir utnyttjar vi att e = cos +isinf och e ¥ = cos# — isin 6. Alltsa ar

e“*(C3(cos(dx) + isin(dx)) + Ca(cos(dz) — isin(dx)))

e ((C3 + Cy) cos(dx) + (C5 — Cy)isin(dz))
e (Cy cos(dzx) + Cs sin(dz))

y(x)
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dar Cy och Cs ar komplexa konstanter, vilket visar

I fallet att r1 = ro sd utgar vi fran (15.8). Den sdger i detta fall att w'(x) = Cy
och didrmed ar w(z) = Cix + C och y blir darfor

y(x) =¥ (Crx + Cy)

vilket visar @ [ |

15.3 Partikulirlosningar

Vi ska nu studera hur man loser ekvationer av typen
Y () + ay'(x) + by(x) = h(x), (15.9)

dér a,b € R och h ar en reellviard funktion.

Lat yp vara den allménna l6sningen till den homogena ekvationen
Y (z) + ay'(z) + by(z) = 0. (15.10)

Notera att den allménna l6sningen innehaller tva konstanter som kan véljas
godtyckligt. For att finna en 16sning till den inhomogena ekvationen ((15.9))
maste vi finna en funktion y, sadan att

Yy () + ayy(z) + byp(x) = h(z). (15.11)

Loésningen y, kallas for en partikulérlosning till (15.9). Det &r klart att y, inte
kan vara i méngden av homogena l6sningar eftersom vénsterledet blir noll vid
insattning av homogena losningar.

Den allménna 16sningen till ges dd av y = yp, + yp. Det ricker med att
finna ndgon partikulérlésning. Dvs om y,, och y,, &r partikulérlosningar, kan
den allménna lésningen skrivas som y = ¥, + yp, for ndgot val av y;,, men
ocksd som y = yp, + yn, for nagot val av y;. Detta foljer om vi kan visa att
Ypr = Ypo + Y, fOr ndgot val av y,. Lat nu y = vy, — yp,. Vi har att

Y +ay +by = y;,/l + ay;,1 + byp, — y;; — ay;2 —byp, =h—h=0 (15.12)
Alltsa tillhor y,, — yp, den homogena 16sningen. Med andra ord &r

Yp1 = Ypa T Yhs (15.13)

for nagot val av yy.

For att finna en partikuldrlosning kan man anta att den ser ut pa ett visst
vis och dérefter verifiera att den verkligen ar sadan. Fardigheten att gora bra
gissningar kommer frén erfarenhet. Gissa med funktioner som paminner om
det aktuella hogerledet.
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Exempel 15.5. Bestim den allménna losningen till v + 2y 4+ y = 222 + 1.

LOSNING: Vi borjar med att bestimma den allménna lésningen till den homo-
gena ekvationen y” +2y’+y = 0. Den karaktéristiska ekvationen 72 +2r+1 =0
har 16sningen r; = r9 = —1 och ddrmed ges den homogena l6sningen av

yn(x) = (Az + B)e™".
L&t oss prova med att ansiitta y,(z) = ax? + bz + c. Vi far att

yg+2y;,—l—yp:2a+4a:c—|—2b+ax2—|—bx+c:a:p2+(4a+b)x+2a—|—2b+c.

Kan vi fa detta till 222 + 1?7 Vi far a = 2, b = —8 och ¢ = 13 och dirmed ges
en partikulérlésning av

yp(r) = 222 — 8z + 13.

Den allménna 16sningen ges av

y(x) = yp(x) + yp(x) = (Az + B)e™ + 222 — 8x + 13.

Exempel 15.6 (Tentamen 2011-10-18, 52%). Betrakta differentialekvationen
y'(x) + 2/ () —y(x) = —2we™"

a) Visa att y(x) = ze™™ &r en l6sning till differentialekvationen.

b) Bestdam den allmédnna lésningen till differentialekvationen.

c) Berdkna gréansvirdena

lim y(x) och lim y(x)

T—00 Tr——00

i fallet d& y(z) l6ser differentialekvationen och (0) = 1 och 3/(0) = —/2.
LOSNING:

a) Vi borjar med att derivera funktionen u(x) = xe™* och far
W(@)=01—-x)e ™ och u'(r)=(x—-2)e "

Om vi nu sétter y(x) = u(z) i differentialekvationens vénsterled sa far
vi

u"(z) + 20 () —u(x) =e " ((x —2) +2(1 —z) —z) = —2ze™ %,

vilket dr differentialekvationens hogerled och alltsé &r u(z) en l6sning.
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b)

Det karakteristiska polynomet till den homogena ekvationen

y' (@) +2y/ () —y(z) =0
ar lika med
A2 —1=A+1-vV2)(\+1+V2).
Den allménna l6sningen till den homogena ekvationen ges darmed av
Ce1HV2e | pe(-1-V2)a
dér C och D ar godtyckliga konstanter. I foregdende uppgift sag vi att
u(x) = ze™™ var en 16sning till y”(x) + 2y (z) — y(z) = —2xze™* sa den

allménna I6sningen till denna ekvation far vi genom att ldgga till den
homogena ekvationens l6sningar:

ze + Ce"1TV2r 4 pe(-1-V2)z,

Om differentialekvationen ska uppfylla y(0) = 1 och y/(0) = —/2 s far
vi fran uttrycket for den allménna losningen i féregaende uppgift att

1=0-¢ 04 CelHV20 1 pe-1-V20 _ ¢4 p

och (genom att derivera)

~V2 = (1-0) e+ C(~14+v2)e VDO D(—1 - vZ)el 17V =
=1-(C+D)+V2(C—D)=V2(C-D).

Alltsa &r C+ D =1 och C — D = —1 vilket ger att C =0 och D = 1.
Sa losningen &r i detta fall lika med xe ™ + e1-V2e Om 2 — oo
s& ser vi att e(-1-V2z _5 0 (eftersom —1 — /2 < 0) och ze ™™ — 0
(standardgransvérde), och alltsa &r

lim (ze™ ™ + e(_1_\/§)x) = 0.

T—00

Daérefter har vi att

lim (ze™® + e(_l_ﬁ)x) = lim e(_l_ﬁ)x(xe‘/% +1) = o0,

T—r—00 T—r—00

pa grund av att

; V2 _ _ _;1_- -t _
R (B Ry

och lim,_,_ e(F1mV2) — o
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15.4 Separabla differentialekvationer

En differentialekvation pa formen

9(y())y () = f(z) (15.14)
kallas en separabel differentialekvation.
Kedjeregeln ger att hogerledet i (15.14)) kan skrivas som

2 (Gl = ) (15.15)

diar G ar primitiv funktion till g. Genom att ta primitiv funktion pd bada
leden far vi

G(y(z)) = F(z) + C, (15.16)

dar F' ar primitiv funktion till f och C en godtycklig konstant. Om G ar
inverterbar far vi

y(xz) = G YF(z)+ ). (15.17)

Vi illustrerar med ett exempel.

Exempel 15.7. Bestdm den 16sning till yy’ = —4x som uppfyller y(0) = —1.
LOSNING: Vi far fran (15.16)

2
y(';) — _21,2 + C,
dar C € R. Villkoret y(0) = —1 ger att
ooy _1
2 2

Alltsd dr y(z)? = 1 — 422 och eftersom y(0) = —1 dr 16sningen

y(@) = —V1—4a?,

for x| < 1/2. A

15.5 Ovningar

Ovning 15.1. For vilka virden pa konstanten A > 0 har randvérdesproblemet

{y”(fﬂ) +MNy(z) =0
y(0) =y(1) =0

icke-triviala losningar, d.v.s. ldsningar som inte &r identiskt noll?
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Ovning 15.2. I X-stad bor idag 10000 ménniskor. Man riknar med att sta-
dens befolkning varje ar 6kar med 0.1 procent, till f6ljd av att det &r fler
personer som foéds d&n som dor. Dessutom har staden en nettoinflyttning pa
100 personer varje ar, dvs det ar 100 fler som flyttar in till staden &n det &r
som flyttar darifran. Gér en matematisk modell i form av en differentialekva-
tion som beskriver befolkningsutvecklingen i staden. Vilket begynnelsevillkor
bor uppfyllas? Nar ar stadens befolkning 11 0007 Hur realistisk &r modellen
pa lang sikt?

Ovning 15.3. Efter en gasolycka borjar det sippra in fororenad luft i en lokal
vars volym &r 2000 kubikmeter. Den fororenade luften har en koncentration
av 10 procent av det giftiga &mnet och sipprar in i en takt av 0.1 kubikmeter
per minut. Samtidigt sugs lika mycket av (den vil blandade) luften i lokalen
ut. Nar ar koncentrationen av det giftiga &mnet i lokalen uppe i 1 procent?

Ovning 15.4. Los differentialekvationerna

a) 4y” +y = 3sinzx

b) v/ +y —2y=2a%+1
d) v’ + 4y + 5y =10

e) y' —4y +4y=2x+38

) 4
)
c) ¥y +2y +y=e*
)
)
f) o' — 4y = ze® + sin(27)
Ovning 15.5. Bestim den allméinna lésningen till differentialekvationen

Y — 3y + 2y = > cos .

Ovning 15.6. [2007-03-13, uppgift 7] Bestim den allminna lésningen till
ekvationen
y" — 8y’ + 16y = 80z — 40 + 5e7.

Ovning 15.7. [2008-12-15, uppgift 6] Bestim den 16sning till differentialekva-
tionen
Yy’ + 4y = 2sinzx

som uppfyller att y(0) = 3'(0) = 0.
Ovning 15.8. Los differentialekvationen 3/ = x2y2.

Ovning 15.9. Los begynnelsevirdesproblemet

{y” —y —2y=u,
y(0) = 2,y/(0) = 0.

Ovning 15.10. Los differentialekvationerna
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a) (14+2%)y +14+y*=0,y(0) = -1
b) yy' = 2x(y +1), y(1) =0

)y = (1+$)(1+y2),y(0)=0
d) y'V1I—22=1-¢2y(1)=0

Ovning 15.11. [2007-05-31, uppgift 6] Bestim den 16sning till differentia-
lekvationen

C

y// + 4y — :L,2
vars graf tangerar den rédta linjen y = x i origo.

Ovning 15.12. [2008-03-10, uppgift 5] Bestdm den 16sning till differentia-
lekvationen
y" — 2y + 4y = 13sinx

som uppfyller y(0) = 0 och 3/(0) = 0.
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16

Repetitionsfragor

Hér foljer nagra bra repetitionsfragor om teorin i denna kurs.

Definiera begreppet konvergent, vixande och uppat begriansad talféljd.
Definiera supremum och infimum av en méngd.

Formulera supremumegenskapen och visa att vixande och uppat begrén-
sade talfoljder dr konvergenta.

Lat A € R. Definiera vad som menas med att en funktion f(z) — A, da
x — 00.

Lét a, A € R. Definiera vad som menas med att en funktion f(z) — A,
da z — a.

Definiera begreppet kontinuerlig funktion.
Formulera och bevisa satsen om mellanliggande vérde.

Bevisa att en kontinuerlig funktion pa ett slutet och begréinsat intervall
har ett storsta och minsta viarde dér.

Bevisa att om en deriverbar funktion har ett lokalt extremvérde i en inre
punkt s& dr derivatan noll i denna punkt.

Bevisa Rolles sats.
Bevisa den generaliserade medelvéirdessatsen for derivator.

Visa att om f’ = 0 pa ett intervall s ar f konstant i intervallet. Vad
giller om f/ > 0, f/ > 0, f/ < 0 eller f/ <0 i intervallet? Bevisa dina
pastéenden. For vilka pastdenden géiller omvindningen?

Formulera och bevisa formeln fér derivation av en produkt och for par-
tiell integration.

Definiera Riemannintegralen.
Formulera och bevisa integralkalkylens medelvardessats.
Bevisa analysens huvudsats och insdttningsformeln.

Formulera och bevisa Taylors formel.

oo
Vad menas med att / f(x) dx ar konvergent?
a

b
Lat f: (a,b] — R, vad menas med att / f(z)dx &r konvergent?

a
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17 Svar till 6vningar

[1] Att ldsa innan vi borjar
1.2

a) r=1 b) x =2

L4l a,b,coch g

a) A(x) = B(x), c) "B(x) = —-A(z)
b) A(z) = B(x),

a, b och ¢ ar alla ekvivalenta.

Det &ar ocksa mojligt att tolka texten pa ett sddant siatt att de tva forsta
pastaendena dr C' A (A(z) = B(x)) dér C ar pastaendet Jag har en hatt. 1
s& fall giller fortfarande att « <= b = ¢, men ingen av implikationerna
¢ = a och ¢ = b géller langre.

I8

M| | |
M| ta| L
| n| k| »

Delmingder av reella tal

sup M = 0 och inf M = —3/4.
sup M = 3 och inf M = —2.

Ledning: Anviand motségelsebevis, d.v.s. antag att M &r uppat begrinsad
av ett tal m och visa att du far en motségelse.

sup M = 3/2 och inf M = 1.
sup M = /2 och inf M = 0. Ledning: Anviinda att

B (a—0b)(a+Db)
a-b="
2.7
a) (1,7) c) (1,2] e) (2,5)
b) (2,5) d) (1,7)
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2.9 o

[3] Funktioner

Dy =[-1,00) och Vy = [-1,1]

[9, 00).
3.3

a) [-1+e 1 00) b) y=1+z/2
3.4l

a) Definitionsméngd ar (—oo, 1), virdeméngd ar R och inversen ges av y —
1— e

b) Definitionsméngd &r [4,00), virdeméngd &r [1,00) och inversen ges av
y— 4+ (Iny)?

¢) Definitionsméngd och virdeméngd ar R, inversen ges av y — y

a) Ja. Malméngden blir [2,00] och f~(y) = -2+ /y — 1

b) Ja. Malméngden blir (1,00) och f~!(y) =1/(y* — 1)

a) Ja. Malméngden blir (0,1/2] och f~1(y) = %(1 + /1 —4y?)

b) Ja. Mélméngden blir R\ {0} och f~1(y) = %

Ledning: Det finns endast definitionerna fér udda och jimn funktion att
utga ifran och dessa racker for att 16sa uppgiften.

3.8

a) x =m/6+ 2mn, for n € Z eller x = 57/6 + 27n, for n € Z

b) z = £37/44 2mn

3.10. x = \/ 2 +4\/§

B.111

a) Definitionsmangd ar [—1, 1] och vardeméngd ar [—m/2,7/2]
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b) Definitionsméngd &r [—1, 1] och virdeméngd &r [0, 7]

c¢) Definitionsméngd ar R och virdeméngd ar (—7/2,7/2)

11/16

B.13l

a) Ekvationen saknar l6sning. b) 1
B.14

a) 1/2 b) 7/3
B.21l 2 =6
B23l -3<x<3
3.26L a > 0 och z = In(Vita-1)

In2

B.27 » = +1
3.28

a) .

b) g ar nodvandigtvis surjektiv, men inte nédviandigtvis injektiv. Ett i

méngden av motexempel ar f : [0,00) = R, f(z) = z, g : R = R,

g(z) = 22.

c) f dr nodvandigtvis injektiv, detta géller d&ven om g inte ar det, men inte

nodvéindigtvis surjektiv. Ett motexempel ar f : [0,00) — R, f(z) = =,
2

g:R - [0,00), g(z) = a2.
3.29

a) x € {—2,0,4} d) =z €[-1,2]

b) z € {—4,2}

c) x € {5} e) a € (—00,0]U(2,00).
3.30)

a) ¥ € {—e,e} c) ¥ €{—e,—e el e}

b) z € {e ! e}

B.31 v =2

Talfoljder

4.1l
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a) 1/2 b) 0

Tips: a,B — Ab,, = a, B — a,b, + anb, — Ab,.
Tips: Nyttja lampliga tal pa a och b i binomialsatsen.

Om a = 0 ar ekvationen uppfylld for alla x € R. Om a # 0 sd dr rétterna
z =0 och x = a.

Ja, den konvergerar. Tips dr att anvinda sats
4,12

a) 0o c) Ve

a) 0 b) 0

Gréansvirdet existerar om och endast om x inte dr en udda multipel av
7, det vill sdga om och endast om z # (2k + 1)7 for alla k € Z.

1  om x = 2kw for nagot k € Z,

lim cos(z)" =
n—00 0 omux¢{kr:keZ}

Gransvarden av funktioner vid oandligheten

6.1
a) 3 c) 1/3 e) oo
b) 0 d) 1

0.2l
a) 1/4 c) 1/3 e) 1
b) 0 d) o

5.3l
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a) 0 b) 1

1/2. Ett tips ar att anvinda sig av konjugatregeln.
1
4/V5

Kontinuitet

Tl a=3

(.2

a) 0 c) 0
b) 1 4 1

T4 a=2(r—1)/mochb=1
7.8l

a) 2 b) 1

Alla sadana att a/b = 5.
1
I3l 0
9,50
.14l
a) Ja

b) Nej, eftersom

0 z€(0,1)
f“(x)_{l 2| =1

Derivata
8.1
: 2 2 2 9
a) SIN X COSXT —‘r L COST COSIT™ — QZE SN x S1in xr

rsinz

)

b) (sinz + zcosx)e

c) 2lnz +2+4a
)

d) —1/sin’x

198



a =1/2e (och z = \/e)
Storsta varde ar 2 och minsta viarde saknas.

Tips ar att visa att olikheten ar ekvivalent med

In(l+2)—1In(l —z)—2z>0.

[—1,5/27]

<

a Df = (0,00)

b) Nej, ty limy o0 f(z) = 00

d) Ja i intervallet (0,1/e] (observera att virdet 1/e dr inkluderat)

[§]

)
)
¢) Nej, ty f'(z) > 0 om och endast om = > 1/e
)
) Nej. Varken injektiv eller surjektiv.

)

f) Nej, ty f(1/e) = —1/e.

B.11l
a) -
b) 1

Funktionen har en minvirde i x = —1 och maxvirde i x = 1. Asymptoter
vid oo dry =0, Vy = [—e~1/2,e71/2]. Grafen &r enligt foljande

Funktionen har en minvirde fér x = 1/2. Asymptoter saknas. Vérde-
méangden &r [In(5/4) — arctan(1/2), 0o). Grafen &r enligt f6ljande
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Stérsta vérde dr 7/6 + v/3 och minsta dr —m /2.
Losning saknas.

limy 04 f(z) = 0, limy—o— f(z) = —o0 och y = = — 1 &r en sned
asymptot vid bade +oo.

8.19L Inversen blir z(y) = In (y + VY2 + 1)
{r/4)
Minsta véirdet &r /2 — /2 och stérsta virde ar /2.

a) r=1In (1+2\/5) b) z =1In (1+2\/5)
8.24)
a) y =10z — 17 b) 4

Tips ar att bilda f(z) = 2P — Axz? och studera minimum fér denna

funktion.

a € {—4,0}. Da a = 0 far vi tangenten y = 0 i punkten (0,0). Da a = —4
far vi tangenten y = —4x — 4 i punkten (—2,4).

8.29

2) 1(0) = 0.
b) f'(x) = 2zsin(1/z) — cos(1/x)

c) Nej.
/3. Ett satt ar att anvianda att e®® = z.
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[9] Taylors formel

2/9
1/3
1/8

™ l'g 335 1'7
o7l T4 T T
. 1 T3 T T

a) 1+§— %+ fér nagot £ mellan 0 och x.

@
16(1+€)5/27

¢) nirmeviirdet &r 4 4 1/8 — 1/512 och felet mellan 0 och g

[0 Serier
10.1l
a) konvergent c) divergent e) divergent
b) konvergent d) konvergent
10.2
a) divergent ¢) konvergent e) konvergent
b) konvergent d) divergent f) divergent
[10.3l
a) konvergent b) konvergent c¢) konvergent

Den ar konvergent.
Den ar konvergent.
Ett tips ar att anvdnda definitionen av griansvéirde och geometrisk serie.

Ett tips ar att anvdnda definitionen av griansvéirde och geometrisk serie.
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Integraler

Ai.dl 13
11.2

a) - b) 1/3

a) 1 b) 2In2+15/4 c) 1

1
a) —— —arctanz + C
x

1 1
b) In|z| — - iln(l + 2%) — arctanz 4 C

1 1 1 1

Sl 4a| - 2 —— — ~In(l + 22
c) 2n| + z| 5711 4n( +az°)+C
Q) 4 Larctanz + ©

——— + —arctanx

2z +1) 2

I1.7 6s

3

11.8, sz _siwe 4 ¢

h‘72 + arctan 3 — arctan 2
11.10L 141/10

V3

221
1112} 2=l + O
11.13] f(1) =e!
[I1.15] Genom att lata

Sinibzl’—a—{— =]
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11.11} In o + 1] — 224D 4 Baretan 2221 4 ¢

cos(a)x

d) 2sinl
d) —4
e) 3/16

f) (1—m/4)/2



diar 0 < a < z sa far vi att en approximation till integralens virde ar 71/144
och felet ar 1/19200 < 1/1000.

11.16} Integralen maximeras da x = 4 och vérdet ar 32/3.
I1.18

a) y=2—x/2 b)\/i

2
11.19 In2 + -

33
e
13/42
Tips: Bilda h(x) = f(z + a) och utfér lampligt variabelbyte.

Integration 6ver obegrinsade intervall

Konvergent. Ett sétt att visa dr att nyttja att 22 > x, da = > 1.
12

12.5. m

12.6!

a) Divergerar, fas genom att med hjéilp av Cauchys integralkriterium jam-
fora med lamplig integral (exempelvis [5° x(li% vilken kan integreras ef-
tersom 1/x &r derivatan av lnx).

b) Konvergerar, dven den fas genom att med hjilp av Cauchys integralkri-
terium jamfora med lamplig integral (exempelvis [ e VZdz som inte-
greras med variabelsubstitution, limnas som en 6vning till ldsaren).

12.7

a) Divergent, kan delas upp i tva integraler som bada enskilt divergerar.

Gransvardet ar In 2.

)
b) Gréansvérdet ar 0.
¢)

)

d) Viser att gransvirdena &r olika beroende pa hur vi later integralens 6vre

begransning gd mot oédndligheten, vilket inte &r rimligt om integralen
konvergerar.

12.8l

a) Genom uppdelning av integralen och evaluering av delintegralerna far vi
att integralen &r divergent. Liknar utrdkningen i tidigare uppgift.
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b) Fas genom direkt evaluering av integralen.

c)
RIEI;O 2; 111_52 dr=m+1n2.
/4
12111
a) 2

[2.12l T.ex. funkar det med n = 11.

Lokal integrerbarhet

[13.1] Divergent. Observera att det finns tvd punkter dér integralen ar gene-
raliserad.

13.2

a) Generaliserad vid = = 1. Divergent.

b) Ej generaliserad. Virdet ar 13/2.
13.3l

a) Divergent

b) Konvergent med virdet 1

c) Konvergent med véirdet /2. En ledtrad ar att utfora lampligt variabel-

byte t = V1 — 22
d) Divergent
13.4.
a) Konvergent c¢) Divergent
b) Divergent d) Konvergent

Integralens tillampningar

m—21In2
14.2] 7=2n2

14.3] ™23 g

14.4] A(b) =
5127/3
14.11] 272
14.13) 3/4

204



[15] Differentialekvationer

y = Acos5 + Bsin§ —sinx

-

) y=Ae® + Be™?* —z%/2 —2/2 —5/4

¢) y= (Ax + B)e %e?* /9

Q.

) y=(Acosz + Bsinz)e %" +2
e) y=(Ar+ B)e* +2/2+5/2

f) y = Ae?*® + Be 2% — (/3 +2/9)e* — 75111%295)

15.50 y(z) = Ae® + Be** + ef—g(cosx + 3sinz).
15.6 y(z) = (Az + B)e*® + 5z + 5¢°*
15.7. y(z) = 1(2sinz — sin2z)
15.8. y(xz) =0 eller y(z) = xg__fc
3e2* xz 1
15.9L = T — 4=
115.10
a) y=(z+1)/(z-1)
b) y—In(y+1)=2>-1
c) y = tan(x + x3/3)
d) y=—22v1—22 for 1/v/2<x<1
15.11 y(:L‘) _ cosSQx + sin22:5 + % _é
1
_ oo 1 B .
15.12, y(z) =e < 7 sin \/333) 2cos (\/§SU>) + 3sinx + 2cosx
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