
Envariabelanalys för
Teknisk Fysik och Tekninsk Matematik

Speciellt framtagen för kursen SF1673

Tomas Ekholm

Institutionen för matematik

30 september 2025



Innehåll

1 Att läsa innan vi börjar 6
1.1 Varför läsa matematik? . . . . . . . . . . . . . . . . . . . . . 6
1.2 Uppmaning till läsaren av detta häfte . . . . . . . . . . . . . 6
1.3 Lärandemål i SF1673 . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Definitioner, satser och bevis . . . . . . . . . . . . . . . . . . 9
1.5 Ekvivalenser och Implikationer . . . . . . . . . . . . . . . . . 9
1.6 Mängder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Delmängder av reella tal 15
2.1 Intervall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Egenskaper för delmängder av reella tal . . . . . . . . . . . . 16
2.3 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Funktioner 20
3.1 Funktionsbegreppet . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Inverser och inverterbarhet . . . . . . . . . . . . . . . . . . . 22
3.3 Egenskaper för reella funktioner . . . . . . . . . . . . . . . . 24
3.4 Trigonometriska funktioner . . . . . . . . . . . . . . . . . . . 25
3.5 Cyklometriska funktioner . . . . . . . . . . . . . . . . . . . . 32
3.6 Exponentialfunktionen . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Logaritmfunktionen . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 Absolutbelopp . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 De elementära funktionernas grafer . . . . . . . . . . . . . . . 38
3.10 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Talföljder 44
4.1 Definitionen och konvergens . . . . . . . . . . . . . . . . . . . 44
4.2 Binomialsatsen . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Talet e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Standardgränsvärden vid ∞ . . . . . . . . . . . . . . . . . . . 53
4.5 Bolzano-Weierstrass sats . . . . . . . . . . . . . . . . . . . . . 54
4.6 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Gränsvärden av funktioner vid oändligheten 58
5.1 Definitionen och konvergens . . . . . . . . . . . . . . . . . . . 58
5.2 Standardgränsvärden vid ∞ . . . . . . . . . . . . . . . . . . . 61
5.3 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Lokala gränsvärden 63
6.1 Definitionen och konvergens . . . . . . . . . . . . . . . . . . . 63
6.2 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Kontinuitet 66
7.1 Definitionen och exempel . . . . . . . . . . . . . . . . . . . . 66

2

http://en.wikipedia.org/wiki/E_%28mathematical_constant%29
http://en.wikipedia.org/wiki/Bernard_Bolzano
http://en.wikipedia.org/wiki/Karl_Weierstrass


7.2 Satser om kontinuerliga funktioner . . . . . . . . . . . . . . . 69
7.3 Lokala standardgränsvärden . . . . . . . . . . . . . . . . . . . 74
7.4 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Derivata 79
8.1 Definitionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 Derivatan av elementära funktioner . . . . . . . . . . . . . . 80
8.3 Derivationsregler . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.4 Linjär approximation och Newton’s metod . . . . . . . . . . . 85
8.5 Derivatan av inversa funktioner . . . . . . . . . . . . . . . . . 87
8.6 Definitioner av lokala max- och minpunkter . . . . . . . . . . 89
8.7 Medelvärdessatsen . . . . . . . . . . . . . . . . . . . . . . . . 92
8.8 L’Hôpitals regel . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.9 Konvexitet och konkavitet (överkurs) . . . . . . . . . . . . . . 97
8.10 Asymptoter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.11 Grafritning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.12 Variationsolikheter . . . . . . . . . . . . . . . . . . . . . . . . 104
8.13 Optimering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.14 Sammanfattning av derivator av elementära funktioner . . . 106
8.15 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9 Taylors formel 111
9.1 Några trevande försök till approximation . . . . . . . . . . . 111
9.2 Formulering av satsen . . . . . . . . . . . . . . . . . . . . . . 113
9.3 Stora ordonotationen . . . . . . . . . . . . . . . . . . . . . . . 119
9.4 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10 Serier 125
10.1 Definitionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.2 Geometrisk serie . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.3 Jämförelsesatser . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.4 Absolutkonvergens . . . . . . . . . . . . . . . . . . . . . . . . 129
10.5 Taylorserier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.6 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

11 Integralen 134
11.1 Introduktion . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11.2 Integraler av trappfunktioner på slutna intervall . . . . . . . 135
11.3 Integraler av begränsade funktioner på slutna intervall . . . . 137
11.4 Integrerbarhet av kontinuerliga funktioner . . . . . . . . . . . 140
11.5 Räkneregler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.6 Medelvärdessatser för integraler . . . . . . . . . . . . . . . . . 144
11.7 Analysens huvudsats . . . . . . . . . . . . . . . . . . . . . . . 145
11.8 Partiell integration . . . . . . . . . . . . . . . . . . . . . . . . 147
11.9 Variabelbyte . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
11.10 Integration av rationella funktioner . . . . . . . . . . . . . . . 149
11.11 Taylors formel med integration . . . . . . . . . . . . . . . . . 154

3

http://en.wikipedia.org/wiki/Linear_approximation
https://en.wikipedia.org/wiki/Newton%27s_method


11.12 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

12 Integration över obegränsade intervall 162
12.1 Definitionen och jämförelsesatser . . . . . . . . . . . . . . . . 162
12.2 Samband mellan summor och integraler . . . . . . . . . . . . 165
12.3 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

13 Lokal integrerbarhet 171
13.1 Definitionen och jämförelsesatser . . . . . . . . . . . . . . . . 171
13.2 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

14 Integralens tillämpningar 175
14.1 Riemannsummor . . . . . . . . . . . . . . . . . . . . . . . . . 175
14.2 Areaberäkning . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.3 Volymberäkning . . . . . . . . . . . . . . . . . . . . . . . . . 178

14.3.1 Rotation kring x-axeln . . . . . . . . . . . . . . . . . 178
14.3.2 Rotation kring y-axeln . . . . . . . . . . . . . . . . . 180

14.4 Kurvlängd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
14.5 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

15 Differentialekvationer 184
15.1 Linjära ODE av första ordningen med konstanta koefficienter 184
15.2 Homogena linjära ODE av andra ordningen med konstanta

koefficienter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
15.3 Partikulärlösningar . . . . . . . . . . . . . . . . . . . . . . . . 187
15.4 Separabla differentialekvationer . . . . . . . . . . . . . . . . . 190
15.5 Övningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

16 Repetitionsfrågor 193

17 Svar till övningar 194

4



Föreläsningsplan

Nr Namn Innehåll Uppgifter
1 Matematisk struktur, utsagor och reella tal 1 – 2 1.1, 1.2, 1.3, 1.4, 2.1,

2.4, 2.6
2 Funktioner, inverterbarhet och trigonometri 3.1 – 3.4 3.1, 3.5, 3.7, 3.8, 3.9
3 Cyklometriska funktioner, x 7→ ax och x 7→ loga x 3.5 – 3.9 3.11, 3.13, 3.15, 3.19, 3.20,

3.21, 3.22, 3.23, 3.24
4 Talföljder, Binomialsatsen 4.1 – 4.2 4.1, 4.2, 4.3, 4.4, 4.8
5 Talet e, standardgränsvärden vid ∞ 4.3 – 4.5 4.5, 4.10, 4.12, 4.14, 4.16, 4.17
6 Gränsvärden för funktioner vid ∞ och lokalt 5 – 6 5.1, 5.4, 5.5, 6.2, 6.3
7 Kontinuitet och lokala standardgränsvärden 7 7.1, 7.2, 7.4, 7.5, 7.14, 7.15
8 Derivata, linjär approximation 8.1 – 8.5 8.1, 8.2, 8.3, 8.4, 8.24
9 Extrempunkter, konvexitet och optimering 8.6 – 8.14 8.7, 8.8, 8.10, 8.13, 8.17,

8.18, 8.26, 8.30
10 Taylors formel m.h.a. derivata 9 9.1, 9.3, 9.6, 9.8, 9.9
11 Serier 10 10.1, 10.2, 10.5, 10.6
12 Integralens definition och räkneregler 11.1 – 11.5 11.1, 11.2, 11.3, 11.4, 11.7
13 Analysens huvudsats och integrationstekniker 11.6 – 11.10 11.5, 11.6, 11.13, 11.19 11.22
14 Taylors formel m.h.a. integration 11.11 11.14, 11.15, 11.16, 11.21
15 Generaliserade integraler vid ∞ 12 12.3, 12.4, 12.6, 12.7, 12.8
16 Lokal integrerberhet 13 13.1, 13.2, 13.3, 13.4
17 Integralens tillämpningar 14 14.3, 14.5, 14.11, 14.13
18 Differentialekvationer 15 15.4, 15.10
19 Repetition I 1 – 15
20 Repetition II 1 – 15
21 Repetition III 1 – 15

5



1 Att läsa innan vi börjar

En elev är den som tar del av undervisning och då oftast i en skola. Den
som mer självständigt bedriver studier vid en högskola brukar däremot
kallas student. Ordet elev är släkt med verbet elevera, som betyder lyfta
upp. Eleven är alltså den som blir upplyft till högre insikter av sin lärare,
medan studenten så att säga får lyfta sig själv i håret.

Wikipedia – https://sv.wikipedia.org/wiki/Elev

1.1 Varför läsa matematik?

Studier av matematisk teori är ett ypperligt tillfälle att lära sig att analysera,
resonera, argumentera, strukturera och ordna. Matematik bygger på abstrak-
tion och den som behärskar abstraktion besitter en enorm styrka i analytiska
sammanhang.
Många fenomen i vår värld beskrivs av matematiska modeller vars analys
kräver en förtrogenhet med mer eller mindre avancerad matematik.

1.2 Uppmaning till läsaren av detta häfte

Detta är ett häfte, som på ett kompakt vis beskriver de grundläggande be-
greppen inom envariabelanalys. Läsaren uppmanas att läsa häftet med ett
räkneblock bredvid sig för att komplettera med de steg som utelämnas. Dessa
steg ska förhoppningsvis vara möjliga för den engagerade läsaren att genom-
föra. Det är med andra ord inte förväntat att läsaren endast ska kunna sitta
med häftet och tillgodogöra sig innehållet. Till varje kapitel finns det övningar
för att läsaren ska kunna se om vederbörande har tillgodogjort sig materialet.
För de läsare som inte är vana att arbeta med abstrakta synsätt kommer
häftet kanske att verka onödigt komplicerat skrivet. Abstraktioner kan verka
krångligt för den som är ovan, men för den som blivit van med abstraktioner är
de en enorm källa till förenkling. Abstraktion möjliggör att metoder, designer
och förhållningssätt kan få större genomslagkraft och bli applicerbara i många
konkreta situationer. Det är i denna anda som detta häfte är skrivet. Se detta
som en möjlighet att lära dig det abstrakta synsätt, som är ett så ovärderligt
redskap inom alla vetenskapliga discipliner.
Till de flesta definitioner och satser följer konkretiserande exempel. Dessa ex-
empel är inte i fokus, utan tjänstgör som redskap för att förstå vad definitionen
eller satsen innebär.
Att läsa matematik är svårt. Det finns inte några genvägar till att bemästra
dess struktur. Fokuserat, målinriktat och reflekterande arbete är den enda
vägen till insikt. Med denna insikt följer självförtroende inom abstraktion,
generaliserande och analytiskt tänkande. De flesta företags frontlinje utgör
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utforskning av det okända. Det är inför den situationen en ingenjör måste
förbereda sig.
Använd gärna wikipedia för att söka på de begrepp och metoder som ni grubb-
lar på.
I lydelsen till en del uppgifter finns ett datum angivet. Det hör till en tentamen
som återfinns på denna sida
http://www.math.kth.se/math/GRU/Extentor2/SF1625.html.

1.3 Lärandemål i SF1673

Studenten förväntas/skall efter genomgången godkänd kurs

• Visa förståelse av funktionsbegreppet, inklusive definitions- och värde-
mängd, sammansatta och inversa funktioner. (3.1 – 3.2)

• Kunna egenskaperna hos, och definitionen av, de elementära funktioner-
na: polynom, rationella funktioner, potensfunktioner, exponential- och
logaritmfunktioner, trigonometriska funktioner samt deras inverser, ar-
cusfunktionerna. Kunna deras derivator inkl. härledning. (3.4 – 3.7, 3.9,
8.1 – 8.2, 8.5)

• Kunna definitionen av kontinuitet och gränsvärde samt använda dessa
för att beräkna gränsvärden i enklare fall. (4.1, 5.1, 6.1, 7.1)

• Kunna gränsvärdeslagarna inkl. härledning, samt kunna beräkna all-
männa gränsvärden med hjälp av dessa samt med Taylors formel och
L’Hospitals regel. (4.1, 5.1, 6.1, 8.8, 9)

• Kunna derivatans definition samt kunna härleda allmänna deriverings-
regler och tillämpa dem. (8.1, 8.3)

• Kunna formulera, och härleda, medelvärdessatsen (differentialkalkylens),
dess konsekvenser för att bestämma var funktioner växer resp. avtar.
Kunna använda detta i problem. (8.7)

• Kunna formulera och använda satserna om mellanliggande värden och
existens av största och minsta värden för kontinuerliga funktioner på
slutna och begränsade intervall. (7.2)

• Kunna med derivatans hjälp karakterisera lokala och globala extrem-
punkter, utföra kurvundersökning, samt härleda olikheter. (8.6 – 8.13)

• Kunna bestämma primitiva funktioner till enklare elementära funktio-
ner, inkl. allmänna metoder för detta, bl. a. substitution och partialin-
tegrering samt deras härledning. (11.7 – 11.10)

• Kunna formulera, och härleda, integralkalkylens huvudsats och hur den
används för att beräkna integraler med hjälp av primitiva funktioner.
(11.7)
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• Kunna avgöra huruvida givna enklare generaliserade integraler och serier
konvergerar eller divergerar. (10, 12, 13)

• Kunna använda integraler för att härleda formler för kurvlängd, areor
och volymer, samt kunna använda formlerna. (14)

• Kunna lösa enklare första ordningens differentialekvationer, specifikt lin-
jära och separabla differentialekvationer. (15.1, 15.4)

• Kunna lösa andra ordningens linjära differentialekvationer med konstan-
ta koefficienter, inklusive begynnelse- och liknande problem, samt be-
stämning av partikulärlösning i enklare fall. (15.2 – 15.3)

• Kunna formulera Taylors formel och bestämma Taylorpolynom samt
skatta resttermen i enklare fall. (8.4, 9, 11.11)

• Läsa, tolka och tillgodogöra sig en matematisk text, samt att kunna
uttrycka sig matematiskt korrekt i beräkningar och bevis. (1 – 15)

• Kunna tolka matematiska koncept och satser intuitvt och grafiskt, t.ex.
genom att skissa grafer, förklara den geometriska innebörden av ett ar-
gument, eller rita en enkel skiss som belyser idéen bakom ett bevis.

• Visa förståelse för matematiskt teoribygge, t.ex rollen av satser, defini-
tioner och bevis och hur dessa hjälper oss att genomföra beräkningar.
Visa förståelse för den matematiska (axiomatiska) metoden genom att
kunna analysera satser, skapa motexempel och kunna avgöra vad som
är ett bevis och vad som är ett informellt argument.

För högre betyg ska studenten också:

• Kunna lösa svårare, mer sammansatta problem och visa större insikt i
teorin och begreppen.

• Visa god förståelse för teorin om kontinuerliga funktioner och reella tal.
Specifikt skall rollen av kompletthetsaxiomet kunna förklaras och an-
vändas för att visa existens av gränsvärden, mellanliggande värden etc.

• Kunna generalisera och anpassa metoderna till delvis nya situationer.

Kursen är även en inkörsport till den högre matematiken. Detta innebär att
ni troligen kommer att på att ändra uppfattning om vad matematik är. Ni
kommer att fokusera på analysen av begrepp och på satser, definitioner och
bevis. Målsättningen är att ni, efter avslutad kurs, skall ha en annan bild av
vad matematik är och vad matematisk kunskap innebär och en mycket djupare
förståelse av den matematik som ni lärde er i gymnasiet.
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1.4 Definitioner, satser och bevis

Matematik struktureras i huvudsak med hjälp av definitioner och satser. En
definition är ett införande av ett begrepp. Följande är ett exempel på en
definition

Definition 1.1. Ett heltal a är jämnt om det finns ett heltal b sådant att
a = 2b.

En sats är inget annat än ett påstående, och ett bevis av satsen är ett logiskt
bindande resonemang som visar att satsen är sann. Exempelvis har vi

Sats 1.2. Produkten av två jämna tal är ett jämnt tal.

Bevis: Låt a1 och a2 vara två jämna tal, d.v.s. enligt definitionen finns det
tal b1 och b2 sådana att a1 = 2b1 och a2 = 2b2. Produkten kan skrivas som

a1a2 = (2b1)(2b2) = 4b1b2 = 2c,

där c = 2b1b2. Eftersom c är ett heltal är produkten återigen enligt definitionen
ett jämnt tal. ■

1.5 Ekvivalenser och Implikationer

För att kunna resonera och formulera påståenden så används oftast implikatio-
ner och ekvivalenser. Påståenden eller utsagor är information som antingen
är sanna eller falska. Exempelvis är det sant att Människan är ett djur och
att 42 = 42. Exempel på ett falskt påstående är att 39 = 41. Ett uttryck som
exempelvis

√
π skiljer sig från ett påstående ty det har inget sanningsvärde.

För att kunna analysera ett påståendes sanningsvärde så används ofta san-
ningsvärdetabeller. Exempelvis definieras sanningsvärdena för och (notation
∧) och eller (notation ∨) följande:

A B A ∧ B

F F F
F S F
S F F
S S S

A B A ∨ B

F F F
F S S
S F S
S S S

(1.1)

Låt A vara ett påstående. Symbolen ¬A betecknar icke A. Påståendet ¬A är
sant om A är falskt och falskt om A är sant.

Exempel 1.3. Påståendet (42 = 42 och 7 = 9) är falskt. Medan påståendet
(42 = 42 eller 7 = 9) är sant. ▲
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Definition 1.4. Låt A och B vara påståenden. Vi definierar påståendet A är
ekvivalent med B eller i notation A ⇐⇒ B till att ha sanningsvärdet som
ges av följande tabell

A B A ⇐⇒ B

F F S
F S F
S F F
S S S

(1.2)

Sanningstabellen säger att A är ekvivalent med B om och endast om A och B
är sanna eller om A och B är falska.

Exempel 1.5. Påståendet (7 = 9 om och endast om 15 = 21) är sant. ▲

Exempel 1.6. Påståendet (x2 = 4 om och endast om x = ±2) är sant. ▲

Definition 1.7. Låt A och B vara påståenden. Vi definierar påståendet A im-
plicerar B eller i notation A =⇒ B eller B ⇐= A till att ha sanningsvärdet
som ges av följande tabell

A B A =⇒ B

F F S
F S S
S F F
S S S

(1.3)

Notera att A ⇐⇒ B om och endast om A =⇒ B och A ⇐= B.

Exempel 1.8. Påståendet (om 7 = 9 så är 15 = 15) är sant. ▲

Det är förnuftigt att definiera implikationen så som det är gjort. Ett exempel
som hjälper till med intuitionen är kanske följande: Om du ska bevisa Om det
regnar i morgon så har Kalle paraply. så räcker det med att konstatera att
Kalle har paraply givet att det regnar i morgon. Fallet att det inte regnar är
ointressant!

1.6 Mängder

En mängd är en samling ting, exempelvis tal, symboler eller andra mänger.
Dessa ting kallar vi för element i mängden. Det enklaste sättet att beskriva
en mängd är att räkna upp dess element. Vi använder oss då av en kommase-
parerad uppräkning av elementen innanför symbolerna {}. Ett sådant exempel
är mängden

A = {1, 3, a, 7, P elle}.
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Detta betyder att A är en mängd som innehåller elementen 1, 3, a, 7 och Pelle.
Vi säger att A är mängden av 1, 3, a, 7 och Pelle.
Om A är en mängd och x är ett element i mängden A så skriver vi x ∈ A och
säger att x tillhör A. Exempelvis gäller att 3 ∈ {1, 3, 7} och b ∈ {a, b, 10, 3}.
Att ett element x inte tillhör mängden A skrivs x ̸∈ A. Den tomma mängden
innehåller ingenting och betecknas ∅.
Ett annat sätt att beskriva en mängd är att skriva

{x ∈ D : villkor på x}. (1.4)

Med detta menar man mängden av alla element i D som uppfyller de givna
villkoren. Vi tar oss även friheten att utelämna mängden D om den är given
utifrån villkoren på x. Som exempel tar vi

B = {n ∈ {1, 2, 3, . . .} : n är udda} = {n : n är ett positivt udda heltal}

och
C = {y ∈ {1, 2, 3, 4} : y > 2}.

Mängden B innehåller alla udda positiva heltal, medan C innehåller alla ele-
ment från mängden {1, 2, 3, 4} som är större än 2. Alltså har vi

B = {1, 3, 5, 7, 9, 11, . . .} och C = {3, 4}.

Det finns ytterligare ett sätt att beskriva mängder, nämligen att skriva dem
på formen

{uttryck i x : x ∈ D}.

Med detta menar man mängden av värden som uttrycket kan anta när x löper
genom alla element i mängden D. Som exempel tar vi

E = {2n : n ∈ {1, 2, 3, . . .}}.

Detta är helt enkelt ett alternativt sätt att beskriva mängden av jämna positiva
heltal. Med andra ord gäller att

{2n : n ∈ {1, 2, 3, . . .}} = {n ∈ {1, 2, 3, . . .} : n är jämnt}.

Exempel 1.9. Låt A = {4, 5, 8, 4711, 12, 18} och B = {x ∈ A : x > 10}. Då
är B = {12, 18, 4711} medan {x ∈ A : x < 3} = ∅. Vidare har vi att 4 ∈ A
och 4 /∈ B. ▲

Vi bryr oss inte om i vilken ordning eller hur många gånger elementen räknas
upp och därmed gäller till exempel

{1, 2, 3, 4} = {3, 1, 4, 2} = {1, 3, 3, 1, 2, 4, 4, 1, 3, 2, 4}.

Vi använder även notationen a1, a2, . . . , an ∈ A för att säga att a1 ∈ A, a2 ∈ A
och an ∈ A.
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Definition 1.10. Låt A och B vara mängder. Vi säger att A är en delmängd
av B om för varje x ∈ A så gäller att x ∈ B. Detta betecknas A ⊂ B.

Exempel 1.11. Mängden {1, a} är en delmängd till {1, 3, a}, eftersom alla
element i {1, a} finns i mängden {1, 3, a}. Vi skriver {1, a} ⊂ {1, 3, a}. ▲

Definition 1.12. Antag att A och B är mängder. Unionen av A och B
består av de element som ligger i någon av mängderna och betecknas A ∪ B.
Snittet av A och B består av de element som ligger i båda mängderna och
betecknas A ∩ B.

Exempel 1.13. Låt A = {1, 3, 5, 6} och B = {5, 3, 4711}. Då har vi A ∪ B =
{1, 3, 5, 6, 4711} och A ∩ B = {3, 5}. ▲

Det är dags att titta på några viktiga talmängder. Den mängd vi använder för
att räkna föremål är de naturliga talen

N = {0, 1, 2, 3, . . .}.

Tar vi med negativa tal får vi heltalen

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}.

Beteckningen kommer från tyskans zahl som betyder tal. Bråken eller de ra-
tionella talen

Q =
{

a

b
: a, b ∈ Z, b ̸= 0

}
.

Här kommer beteckningen från engelskans quotient. Med R betecknar vi de
reella talen. De reella talen kan ses som mängden av alla tal på tallinjen,
exempelvis 0, −1, 3/2, −527/3,

√
2 och π. Det ligger utanför ramarna för detta

häfte att göra en stringent definition av de reella talen. Vi betecknar med

C = {a + ib : a, b ∈ R, i är den imaginära enheten}

de komplexa talen. Notera att N ⊂ Z ⊂ Q ⊂ R ⊂ C. Det sista, att R ⊂ C,
följer eftersom de komplexa talen med endast realdel kan identifieras med det
reella talen.

Exempel 1.14. Vi har att N = {n ∈ Z : n ⩾ 0}. ▲

Exempel 1.15. Mängden {n ∈ Z : n = 2k för något k ∈ Z} är mängden av
alla jämna heltal. Denna mängd kan också skrivas som {2k : k ∈ Z}, eller som
{. . . , −4, −2, 0, 2, 4, . . .}. ▲

Exempel 1.16. Låt oss påpeka att en mängd även kan ha andra mängder
bland dess element. Exempelvis kan vi låta

A = {2, 3, {−1, 1}, 4},

och vi har att {−1, 1} ∈ A, det vill säga mängden {−1, 1} är ett element i
mängden A. Observera att −1 ̸∈ A. ▲
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Låt A vara en mängd. För att ta bort element ur A används symbolen \. Vi
definierar A \ B = {x ∈ A : x ̸∈ B}. Exempelvis är R \ {0, 1} mängden av alla
reella tal utom 0 och 1.

1.7 Övningar

Övning 1.1. Definiera vad som menas med ett udda heltal. Visa därefter med
hjälp av definitionen att

a) summan av tre udda tal är udda

b) produkten av två udda tal är udda

Övning 1.2. Reflektera över användningen av implikationer och/eller ekvi-
valenser genom att lösa ekvationerna

a)
√

2 − x = x

b)
√

2x + 5 − 1 = x

Övning 1.3. Låt A och B vara påståenden. Visa med hjälp av sanningsvär-
detabeller att

a)

(A =⇒ B) ⇐⇒ (¬A ∨ B) (1.5)

b) De Morgans lagar gäller:

(¬A ∧ ¬B) ⇐⇒ ¬(A ∨ B) (1.6)

Övning 1.4. Låt X = {−1, {−2}, 0,∅, {∅, 1}}. Vilka av följande påståenden
är sanna?

a) −1 ∈ X

b) ∅ ⊂ X

c) ∅ ∈ X

d) 1 ∈ X

e) {∅} ∈ X

f) −2 ∈ X

g) {0, {∅, 1}} ⊂ X

Övning 1.5. Betrakta följande påståenden:

a) Min hatt, den har tre kanter.
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b) Tre kanter har min hatt.

c) Och har den ej tre kanter, så är den ej min hatt.

Låt A(x) vara påståendet x är min hatt och låt B(x) vara påståendet x har
tre kanter. Skriv ovanstående påståenden med hjälp av A(x), B(x), implika-
tionspilar ( =⇒ ) och negationer (¬).
Är några av dessa påståenden ekvivalenta? Implicerar något av dem något av
de andra? Skriv upp alla implikationer som gäller mellan dessa påståenden.

Övning 1.6. Visa med hjälp av sanningstabeller att A =⇒ B är ekvivalent
med ¬B =⇒ ¬A.

Övning 1.7. Låt b ⩾ 2 vara ett heltal. Definiera vad som menas med att ett
heltal är delbart med b. Visa därefter med hjälp av definitionen att

a) om a1 och a2 båda är delbara med b så är a1 − a2 också delbart med b,

b) om a är delbart med 13 så är a + 1 inte delbart med 13.

Övning 1.8. Låt A(x) vara påståendet x2 = 25 och låt B(x) vara påståendet
x ⩽ 10. Bestäm sanningsvärdet för alla påståenden i nedanstående tabell.

A(0) B(0) A(0) =⇒ B(0)
A(5) B(5) A(5) =⇒ B(5)
A(10) B(10) A(10) =⇒ B(10)
A(15) B(15) A(15) =⇒ B(15)

Visa att det gäller för alla x ∈ R att A(x) =⇒ B(x).
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2 Delmängder av reella tal

Learning requires inefficiency. Businesses, which seek to maximize pro-
ductivity and profit, would rarely accept such a trade-off.

Nicholas Carr – The Atlantic

2.1 Intervall

Låt a och b vara reella tal. Följande mängder kallas intervall

a) [a, b] := {x ∈ R : a ⩽ x ⩽ b},

b) [a, b) := {x ∈ R : a ⩽ x < b},

c) (a, b] := {x ∈ R : a < x ⩽ b},

d) (a, b) := {x ∈ R : a < x < b},

e) [a, ∞) := {x ∈ R : a ⩽ x},

f) (a, ∞) := {x ∈ R : a < x},

g) (−∞, b] := {x ∈ R : x ⩽ b},

h) (−∞, b) := {x ∈ R : x < b},

i) (−∞, ∞) := R.

Här står tecknet := för att vänsterledet är definierat som högerledet. Talen
a och b kallas ändpunkter eller randpunkter till intervallet. Vi använder
symbolen [ om a tillhör intervallet och ( om a inte tillhör intervallet. De fem
sista intervallen är obegränsade och har färre randpunkter. Oändlighetssym-
bolen ∞ används bara för att beteckna att intervallet inte tar slut och den är
alltså inte beteckningen för någon märklig sorts randpunkt.
Om alla randpunkterna tillhör intervallet kallas intervallet slutet. Om inga
av randpunkterna tillhör intervallet kallas intervallet öppet.

Exempel 2.1. Intervallen (1, 5), (−∞, 4), (−3, ∞) och (−∞, ∞) är öppna
intervall eftersom alla randpunkter till intervallen ej tillhör intervallen. Inter-
vallen [1, 4], [−2, ∞) och (−∞, ∞) är slutna för alla randpunkter till intervallen
även tillhör intervallen. Intervallet [2, 3) är varken öppet eller slutet. Läsaren
kan notera att intervallet (−∞, ∞) både är öppet och slutet, eftersom det inte
finns några randpunkter. ▲
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2.2 Egenskaper för delmängder av reella tal

En omgivning till en punkt a ∈ R är ett öppet intervall I som innehåller a.
Exempelvis är det öppna intervallet (0, 1) en omgivning till talet 3/4

0 3/4 1

och intervallen (−1/n, 1/n) för n > 0 är alla omgivningar till 0. En punkterad
omgivning till en punkt a är en omgivning till a där vi har tagit bort talet
a.

Exempel 2.2. Mängden {x ∈ (−1, 2) : x ̸= 0} = (−1, 0) ∪ (0, 2) är en
punkterad omgivning till 0. ▲

Definition 2.3. Ett tal m sägs vara en övre begränsning av en mängd A
om x ⩽ m för varje x ∈ A. En mängd som har en övre begränsning kallas
uppåt begränsad, annars uppåt obegränsad.

Undre begränsning till en mängd, en nedåt begränsad mängd och en
nedåt obegränsad mängd definieras på ett analogt sätt. En mängd som är
uppåt begränsad och nedåt begränsad sägs vara begränsad, annars obegrän-
sad. Exempel på begränsade mängder är [1, 3], (−2, 10) och {x ∈ R : x2 < 25}.
Talet 5 är en övre begränsning av [1, 3] och 6 är en övre begränsning av mäng-
derna (1, 6) och [1, 6]. Ett exempel på en obegränsad mängd är intervallet
[2, ∞) = {x ∈ R : 2 ⩽ x} som är uppåt obegränsad och nedåt begränsad.

Definition 2.4. Ett tal m sägs vara supremum av en mängd A och betecknas
sup A om m är den minsta övre begränsningen av A.

Exempel 2.5. Supremum är enkelt att finna för uppåt begränsade intervall.
Vi har att

sup[a, b] = sup[a, b) = sup(−∞, b) = b.

▲

På samma vis definieras infimum av en mängd A som den största undre
begränsningen av A och betecknas inf A.
Man kan visa att de reella talen uppfyller supremumegenskapen, som säger
att varje uppåt begränsad delmängd av de reella talen har en minsta övre be-
gränsning. I denna text kommer vi ta de reella talen och supremumegenskapen
för givna.
Supremumegenskapen säger med andra ord att om A är en mängd av reella
tal som är uppåt begränsad så finns talet sup A.

Exempel 2.6. Låt
A =

{ 4n

n + 1 : n ∈ N
}

.
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Visa att sup A = 4.
Lösning: Enligt definitionen för supremum gäller det att visa att 4 är en
övre begränsning av A och att det inte finns en övre begränsning av A som är
mindre än 4.
För att se att 4 är en övre begränsning av A räcker det med att notera att för
en godtycklig punkt i A gäller att

an := 4n

n + 1 ⩽
4n

n
= 4.

Alltså är alla an ⩽ 4 och därmed är 4 en övre begränsning av A. Faktiskt
gäller att an < 4 med strikt olikhet, men det kvittar, givet det vi ska visa.
Det återstår att visa att det inte kan finnas några mindre övre begränsningar
av A än 4. Låt oss utföra ett motsägelsebevis. Anta att det finns en mindre
övre begränsning av A än 4. Vi kan skriva detta tal på formen 4−ε, där något
ε > 0. För att få en motsägelse måste vi visa att det finns tal i A som är större
än 4 − ε, vilket skulle motsäga att 4 − ε är en övre begränsning.
Vi kan skriva om an enligt följande:

an = 4n

n + 1 = 4 − 4
n + 1 . (2.1)

Frågan är med andra ord om vi kan finna ett n sådant att

4 − 4
n + 1 > 4 − ε? (2.2)

Löser vi ut n får vi att (2.2) gäller om och endast om

n >
4
ε

− 1. (2.3)

För alla n som uppfyller att n > 4/ε − 1 gäller alltså att an > 4 − ε. Vi har
fått en motsägelse och alltså är 4 den minsta övre begränsningen. ▲

Exempel 2.7. Ett sätt att illustrera supremumegenskapen är att visa att de
rationella talen Q inte uppfyller denna egenskap, d.v.s. varje uppåt begränsad
delmängd av Q har inte en minsta övre begränsning i Q. Studera mängden
A = {x ∈ Q : x2 ⩽ 2}. Om vi godkänner reella tal så är sup A =

√
2. Detta

tal är dock inte ett rationellt tal (se wiki-link om ni inte har sett det tidigare).
Antag att vi har funnit ett rationellt tal q som är supremum av A, d.v.s. q är
en övre begränsning av A och q är den minsta övre begränsningen av A.
Eftersom

√
2 ̸∈ Q så följer att q är antingen större eller mindre än

√
2. Om

q <
√

2 så följer att det finns rationella tal i intervallet (q,
√

2) som strider
mot att q är en övre begränsning. Om q >

√
2 så finns det rationella tal i

intervallet (
√

2, q) som är mindre övre begränsningar än q. Alltså är q inte den
minsta övre begränsningen av A. ▲
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2.3 Övningar

Övning 2.1. Visa att mängden

M =
{ −6

(n + 2)3 : n ∈ N
}

(2.4)

är begränsad och bestäm inf M och sup M . Gissa först och visa därefter att
dina gissningar stämmer.

Övning 2.2.

a) Bevisa att det inte finns något största reellt tal. Med andra ord, visa att
det för varje reellt tal a finns ett reellt tal b sådant att b > a.

b) Kan man på liknande sätt visa att det inte finns något största naturligt
tal?

Övning 2.3. Visa att mängden

M =
{ 1

n2 − 2
m

: n, m ∈ Z \ {0}
}

(2.5)

är begränsad och bestäm inf M och sup M .

Övning 2.4. Visa att mängden

M =
{

x − 1
x

: x > 0
}

(2.6)

varken är uppåt eller nedåt begränsad.

Övning 2.5. Låt

M =
{3n + 2

2n + 3 : n ∈ N \ {0}
}

. (2.7)

Bestäm sup M och inf M .

Övning 2.6. Låt

M =
{√

2 + x2 − x : x ⩾ 0
}

. (2.8)

Bestäm sup M och inf M .

Övning 2.7. Skriv följande mängder som ett enda intervall

a) (1, 5) ∪ (2, 7)

b) (1, 5) ∩ (2, 7)

c) (1, 5) \ (2, 7)

d) (2, 5) ∪ (1, 7)
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e) (2, 5) ∩ (1, 7)

Övning 2.8. Hitta reella tal a < b och c < d så att (a, b) ∪ (c, d) inte är ett
intervall.

Övning 2.9. Låt
A = {d ∈ N : d är udda}.

Beskriv mängden {d ∈ A : d är jämnt}.
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3 Funktioner

3.1 Funktionsbegreppet

Innan vi gör en allmän definition av vad en funktion är kan det vara på sin
plats att titta på något välbekant, nämligen en formel som f(x) = x2 + 1, för
x > 0. Formeln säger att om vi tar ett tal x > 0 så får vi ett nytt tal f(x) ∈ R
genom att göra beräkningen x2 + 1; till exempel får vi f(2) = 22 + 1 = 5.
Vi säger att f är en funktion från de positiva reella talen till de reella talen,
eftersom det vi stoppar in, x, är ett positivt reellt tal och det vi får ut, f(x),
är ett reellt tal. Vi betecknar detta med f : (0, ∞) → R. Nu till den allmänna
definitionen.

Definition 3.1. Låt X och Y vara mängder. En funktion f : X → Y är ett
sätt att till varje element x ∈ X tilldela ett välbestämt element y ∈ Y . Vi
skriver f(x) = y. Vi säger att x avbildas på y och att y är bilden av x.
Elementet x kallas argument till f . Mängderna X och Y kallas definitions-
mängd respektive målmängd. För definitionsmängden för f används även
beteckningen Df .

Kommentar 3.2. Beteckningen f : X → Y utläses: f är en funktion från
X till Y . Ett vanligt alternativ till ordet funktion är avbildning. Vi kan se
funktionen som ett eget objekt som utför en handling som bilden nedan visar.

x ∈ X
f

f(x) ∈ Y

Exempel 3.3. Ett exempel på en funktion från de positiva reella talen till
de reella talen är f : {x ∈ R : x > 0} → R, sådan att f(x) = 1 + 2 · 3x.
Definitionsmängden är Df = {x ∈ R : x > 0} och målmängden är R. ▲

Värdemängden till en funktion f : X → Y definieras som

Vf := {y ∈ Y : y = f(x) för något x ∈ X}

och beskriver mängden av alla element vi kan få.

Exempel 3.4. Betrakta mängderna A = {1, 2, 3} och B = {1, 2, . . . , 100}.
Ett exempel på funktion f : A → B ges av f(n) = 2n för n ∈ A. Vi har alltså
att f(1) = 2, f(2) = 4 och f(3) = 6. Per definition måste vi ha f(x) ∈ B för
alla x ∈ A, och detta gäller ju här eftersom

f(1) = 2 ∈ B, f(2) = 4 ∈ B, och f(3) = 6 ∈ B.

Vi ser här att värdemängden Vf = {2, 4, 6}.
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I detta exempel definieras funktionen f av formeln f(n) = 2n, men det är inte
alls nödvändigt att det finns en formel som beskriver hur funktionen verkar.
Om vi som här har en funktion från den ändliga mängden A = {1, 2, 3} kan
man till exempel definera funktionen med hjälp av en tabell:

n f(n)
1 2
2 4
3 6

▲

Om inget anges om definitionsmängden antas funktionen vara definierad på så
stor delmängd av de reella talen som möjligt och målmängd antas alltid vara
R. Detta är en konvention mellan er som läsare och oss som skribenter.

Exempel 3.5. Låt h(x) = 3x2/2 − x3. Detta definierar en funktion h från R
till R. Vi har exempelvis att

h(1) = 1
2 och h(−2) = 14.

▲

Vi kommer tydligt skilja på f och f(x), det första är funktionen f , medan det
andra är funktionens värde i punkten x. Som ett exempel på denna notation
så definierar vi summan och produkten av två reellvärda funktioner f och g,
sådana att Df = Dg ⊂ R enligt

(f + g)(x) := f(x) + g(x)
(f · g)(x) := f(x)g(x)

Bildmässigt kan vi se additionen som

f + g

x

f
f(x)

g

+

g(x)

f(x) + g(x)

Om vi inte vill namnge den funktion som vi arbetar med eller introducerar
används notationen x 7→ 1 + x2 istället för f(x) = 1 + x2. Denna notation är
väldigt vanlig i programmering när man vill definiera anonyma funktioner.
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3.2 Inverser och inverterbarhet

Definition 3.6. En funktion f : X → Y säges vara injektiv om det för varje
x, y ∈ X gäller att om f(x) = f(y) så är x = y.

Exempel 3.7. Funktionen f : [0, 3] → [0, 10] som ges av f(x) = 2x är injektiv
ty om f(x) = f(y) så gäller att 2x = 2y och därmed att x = y. ▲

En logisk omskrivning av definitionen ger att en funktion f : X → Y är injektiv
om och endast om det för varje x, y ∈ X gäller att om x ̸= y så är f(x) ̸= f(y).
Uttryckt i ord säger den här definitionen att funktionen aldrig skickar två olika
element i X på samma element i Y .

X Y
f

Exempel då f ej är injektiv

X Y
f

Exempel då f är injektiv

Definition 3.8. En funktion f : X → Y säges vara surjektiv om Vf = Y .

Varje element i Y är alltså bilden av något x under funktionen f om funktio-
nen är surjektiv. En funktion är surjektiv om och endast om dess målmängd
sammanfaller med dess värdemängd.

X Y
f

Exempel då f ej är surjektiv

X Y
f

Exempel då f är surjektiv

En funktion kan vara surjektiv utan att vara injektiv, och tvärtom.

Exempel 3.9. Låt R+ beteckna de icke-negativa reella talen. Betrakta funk-
tionen f : R → R+ som definieras av f(x) = x2. Då är f surjektiv, men inte
injektiv — till exempel har vi f(−2) = f(2) = 4.
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Ett exempel på en funktion som är injektiv men inte surjektiv ges av funk-
tionen i exempel 3.4. Det finns till exempel inget n ∈ {1, 2, 3} sådant att
f(n) = 3.

▲

Definition 3.10. En funktion f : X → Y som både är injektiv och surjektiv
säges vara bijektiv, eller en bijektion.

X Y
f

Exempel då f är bijektiv

X Y
f

Exempel då f är bijektiv

Definition 3.11. Låt f : X → Y vara en bijektiv funktion. Inversen till f
är avbildningen f−1 : Y → X som ges av f−1(y) = x, där x är det entydiga
element i X som uppfyller f(x) = y. En funktion som har en invers kallas
inverterbar.

Vi ser här att både injektivitet och surjektivitet är viktigt. Om f inte är
injektiv kan det finnas många x ∈ X med f(x) = y. Om f inte är surjektiv
kan det vara så att det inte finns något x med f(x) = y. För inversen gäller
att f

(
f−1(y)

)
= y för alla y ∈ Y och f−1 (f(x)) = x för alla x ∈ X.

Exempel 3.12. Betrakta funktionen f : R → R som ges av f(x) = x3. Denna
funktion är injektiv och surjektiv, och därmed en bijektion. Inversen till f ges
av funktionen f−1 : R → R som definieras av f−1(y) = y1/3. ▲

Exempel 3.13. Både definitionsmängden och värdemängden måste beaktas
när vi undersöker om en funktion är en bijektion. Funktionen f : R+ → R+
med f(x) = x2 är en bijektion, med invers f−1(y) = √

y. Som vi såg tidigare
är detta påstående falskt om vi betraktar f definierad på hela R. ▲

Antag att f : X → Y är en injektiv funktion. Då vet vi att vi kan, för varje
y ∈ Vf , finna ett x ∈ X sådant att f(x) = y. Men, om Y innehåller element
som inte finns i Vf är funktionen f inte surjektiv och därmed inte bijektiv. I
detta fall är förutsättningarna för en invers inte uppfyllda. Detta kan i många
fall, men inte alla, ses som en teknikalitet. Ty, om vi bara skulle ändra på
definitionen av f så att målmängden Y är exakt de element vi kan få, nämligen
Vf , så skulle vi ha en bijektiv funktion och alltså en invers. Vi kan säga att varje
funktion som är injektiv har en invers definierad på funktionens värdemängd
Vf . Dvs, om g : X → Vg är injektiv så är den inverterbar.
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Exempel 3.14. Låt f(x) = x + 2 vara en funktion definierad för x ∈ [0, 3].
Det är en enkel verifikation att se att f är injektiv. Värdemängden till f är
Vf = [2, 5]. Alltså är f inverterbar om f ses som funktionen f : [0, 3] → [2, 5].
I detta fall är f−1 : [2, 5] → [0, 3] och f−1(y) = y − 2. ▲

3.3 Egenskaper för reella funktioner

Definition 3.15. Vi säger att en reellvärd funktion f , där Df ⊂ R, är väx-
ande på en mängd M ⊂ Df om det för varje x, y ∈ M för vilka x < y
ger att f(x) ⩽ f(y). Om en funktion är växande på hela sin definitionsmängd
kallas f växande.

Exempel 3.16. Funktionen f : R → R, definierad som f(x) = x2 är växande
på mängden [0, ∞), men är inte en växande funktion. ▲

Observera att den konstanta funktionen f : R → R och f(x) = 42 är växande.
Den är däremot inte strängt växande som definieras enligt:

Definition 3.17. Vi säger att en reellvärd funktion f , där Df ⊂ R, är strängt
växande på en mängd M ⊂ Df om det för varje x, y ∈ M för vilka x < y
ger att f(x) < f(y). Om en funktion är strängt växande på hela sin defini-
tionsmängd kallas f strängt växande.

Exempel 3.18. Funktionerna f : R → R som ges av f(x) = 3x och g :
[1, 3) → R som ges av g(x) =

√
x är strängt växande funktioner. ▲

Definition 3.19. En funktion f är uppåt obegränsad om dess värdemängd
Vf är uppåt obegränsad och uppåt begränsad om dess värdemängd Vf är
uppåt begränsad.

Egenskaper som avtagande, strängt avtagande, nedåt obegränsade och
nedåt begränsade funktioner definieras på ett analogt sätt. Vi säger att
en funktion är monoton eller strängt monoton i ett intervall om den är
växande respektive strängt växande i intervallet eller avtagande respektive
strängt avtagande i intervallet.

Exempel 3.20. Funktionen x 7→ x2 är nedåt begränsad, uppåt obegrän-
sad och varken växande eller avtagande. Om vi betraktar den på intervallet
(−∞, 0] är den dock strängt avtagande och på intervallet [0, ∞) är den strängt
växande. ▲

Exempel 3.21. Låt f : (0, 1) → R vara en given positiv funktion. Visa att om
g : (0, 1) → R med g(x) = xf(x) uppfyller att Vg = [1, 2] så är f obegränsad.
Vi visar detta med hjälp av en motsägelse. Antag att f är uppåt begränsad,
d.v.s. Vf är uppåt begränsad, vilket i sin tur ger att det existerar ett tal N
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sådant att f(x) ⩽ N för varje x ∈ (0, 1). Välj nu ett M > 1 sådant att M ⩾ N .
Vi observerar att 1/2M ∈ (0, 1) och att

g(1/(2M)) = 1
2M

· f(1/(2M)) ⩽ 1
2M

· M = 1
2 < 1.

Detta strider mot att Vg = [1, 2], alltså är f obegränsad. ▲

Definition 3.22. En funktion f : R → R säges vara jämn om f(−x) = f(x)
för alla x ∈ R.

Några exempel på jämna funktioner är: x 7→ x2, x 7→ x4 och x 7→ |x|.
Definition 3.23. En funktion f : R → R säges vara udda om f(−x) = −f(x)
för alla x ∈ R.

Några exempel på udda funktioner är: x 7→ x3 och x 7→ x7.
Observera att en funktion som inte är jämn inte behöver vara udda. Exempel-
vis är x 7→ 1 + x varken jämn eller udda.

3.4 Trigonometriska funktioner

Vi ska i detta delkapitel definiera sinus och cosinus och vilka grundläggande
egenskaper som de besitter.
Låt oss betrakta en punkt P på enhetscirkeln vars linje in mot origo bildar vin-
keln θ till den positiva delen av x-axeln om vi använder orienteringen moturs
från x-axeln. Vi kallar koordinaterna i P för (cos θ, sin θ). Direkt får vi från
Pythagoras sats att

sin2 θ + cos2 θ = 1

vilket kallas för den trigonometriska ettan. Där sinn θ för n ∈ N är defini-
erat som (sin θ)n.

1

θ

cos θ

sin θP = (cos θ, sin θ)
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Det är viktigt att vi inför en enhet eller skala för vinkeln θ. Låt oss säga att
vinkeln θ = 1 om längden på den cirkelbåge som bildas har längden 1. Denna
enhet kallas radianer och är på många sätt den naturliga skalan för vinklar.
Vi kommer i detta häfte alltid förutsätta att vinklar mäts i radianer.

1

1 1

(cos θ, sin θ)

Vi har bildat funktionerna θ 7→ cos θ och θ 7→ sin θ för θ ∈ [0, 2π). Vi utvidgar
dessa funktioner periodiskt till hela R, d.v.s.

cos θ = cos(θ + n2π),
sin θ = sin(θ + n2π)

för alla n ∈ Z. Funktionen x 7→ sin x kallas sinus och x 7→ cos x kallas cosinus.
Av symmetriskäl får vi följande relationer direkt från definitionen ovan

sin θ = cos(θ − π/2), (3.1)
cos θ = sin(θ + π/2), (3.2)
cos(−θ) = cos θ, (3.3)
sin(−θ) = − sin θ, (3.4)
cos θ = − cos(θ + π), (3.5)
sin θ = − sin(θ + π). (3.6)

Relationerna (3.3) och (3.4) säger att cosinus och sinus är en jämn respektive
udda funktion.
Grafen till funktionerna sinus och cosinus är
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−3π −2π −π π 2π 3π

1

−1

Figur 3.1: Grafen till funktionen x 7→ sin x.

respektive

−3π −2π −π π 2π 3π

1

−1

Figur 3.2: Grafen till funktionen x 7→ cos x.

Exempel 3.24. Observera att vi kan med hjälp av sinus och cosinus relatera
sidor och vinklar med varandra i rätvinkliga trianglar. Låt oss börja med den
rätvinkliga triangeln med sidorna a, b och c

a

b
c

θ

Om vi skalar denna triangel så att hypotenusan får längden 1 så får vi den
likformiga triangeln

a/c

b/c1

θ

Om vi nu skriver in denna triangeln i enhetscirkeln så får vi de önskade rela-
tionerna
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a/c

b/c1

θ

Vi ser att

cos θ = a

c
och sin θ = b

c
. (3.7)

▲

Vi behöver en generalisering av Pythagoras sats som heter Cosinussatsen, näm-
ligen

Sats 3.25 (Cosinussatsen). Låt a, b och c vara sidlängderna i en triangel. Då
gäller att

c2 = a2 + b2 − 2ab cos θ, (3.8)

där θ är den vinkel i triangeln där sidlängderna a och b möts.

a

b

c

θ

Bevis: I fallet θ = π/2 så återfår vi Pythagoras sats. Vi bevisar cosinussatsen
för spetsiga och trubbiga vinklar var för sig.
Vi börjar med fallet då vinkeln θ < π/2, alltså då θ är spetsig. Vi inför höjden
h och låter x vara en del av sidan b som i figuren nedan

a
c

θ

h

b− xx
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Vi använder nu Pythagoras sats i de två rätvinkliga trianglarna och får{
a2 = h2 + x2

c2 = h2 + (b − x)2

Vi löser ut h2 i den första ekvationen och sätter in resultatet i den andra
ekvationen och får

c2 = a2 − x2 + (b − x)2 = a2 + b2 − 2bx.

Det återstår att konstatera att x = a cos θ vilken följer från formel (3.7).
Det andra fallets lösning är näst intill lika. Med hjälp av en bild lämnar vi det
som en övning åt läsaren.

h a
c

θ

bx

■

Sats 3.26. Följande identitet gäller

cos(x − y) = cos x cos y + sin x sin y (3.9)

Bevis: Observera att vi med hjälp av Pythagoras sats får att d i figuren nedan
ges av

d =
√

(cos x − cos y)2 + (sin x − sin y)2.

d

x

x − y

y

(cos y, sin y)

(cos x, sin x)
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Cosinussatsen 3.25 ger att

(cos x − cos y)2 + (sin x − sin y)2 = 1 + 1 − 2 cos(x − y).

Om vi förenklar med hjälp av den trigonometriska ettan får vi

2 − 2 cos x cos y − 2 sin x sin y = 2 − 2 cos(x − y)
cos x cos y + sin x sin y = cos(x − y)

vilket skulle bevisas. ■

Följdsats 3.27. Följande identiteter gäller

cos(x + y) = cos x cos y − sin x sin y (3.10)
sin(x + y) = sin x cos y + cos x sin y (3.11)
sin(x − y) = sin x cos y − cos x sin y (3.12)
cos(2x) = cos2 x − sin2 x (3.13)
sin(2x) = 2 sin x cos x (3.14)

Bevis: Vi bevisar här (3.10). Låt y = −z i (3.9). Vi får då

cos(x + z) = cos x cos(−z) + sin x sin(−z)
= cos x cos z − sin x sin z

Bevisen för (3.11) – (3.14) följer på liknande vis och med hjälp av (3.1) – (3.6)
och lämnas som en övning åt läsaren. ■

Definition 3.28. Funktionen tan: {x ∈ R : x ̸= π/2+nπ, n ∈ Z} → R, sådan
att

tan x = sin x

cos x
, (3.15)

kallas tangens.

Grafen för tangens är
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−4

−3

−2

−1

1

2

3

4

−3π
2

−π −π
2

π
2

π 3π
2

Figur 3.3: Grafen till funktionen x 7→ tan x.

Exempel 3.29. Låt oss studera två speciella trianglar som ger oss möjlighet
att exakt beräkna värdet av de trigonometriska funktionerna för punkterna π

6 ,
π
4 och π

3 . Vi börjar med en likbent och rätvinklig triangel där kateterna är av
längden 1, alltså

1

1

√
2π

4

π
4

som ger att sin π
4 = cos π

4 = 1√
2 och därmed är tan π

4 = 1.

Nästa triangel är en liksidig triangel med sidan 2 som vi delar mitt itu.

π
3

π
6

√
3

1

2

1

2

π
3
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Vi ser att sin π
6 = cos π

3 = 1
2 och sin π

3 = cos π
6 =

√
3

2 därmed är tan π
6 = 1√

3
och tan π

3 =
√

3. ▲

3.5 Cyklometriska funktioner

Vi börjar med att observera att funktionen f : R → [−1, 1] sådan att f(x) =
sin x inte är injektiv, ty vi har t.ex. att f(0) = f(π), och är därmed inte
inverterbar. Om vi däremot begränsar definitionsmängden Df till det slut-
na intervallet [−π/2, π/2] blir f bijektiv och har en invers. Vi gör följande
definition:

Definition 3.30. Låt f : [−π/2, π/2] → [−1, 1] sådan att f(x) = sin x. Inver-
sen till f kallas arcussinus och betecknas f−1(y) = arcsin y.

Observera att den generella formeln sin(arcsin y) = y gäller för alla y ∈ [−1, 1]
och arcsin(sin x) = x gäller för alla x ∈ [−π/2, π/2]. Grafen för arcussinus är

−1 1

π
2

π
2

Figur 3.4: Grafen till funktionen x 7→ arcsin x.

Kommentar 3.31. Vi skulle ha kunnat välja något annat intervall än
[−π/2, π/2] för att få x 7→ sin x bijektiv. Detta intervall är dock standar-
diserat runt om i världen, så om inget annat anges kan man med säkerhet
anta att det är detta intervall man menar när man pratar om inversen till
x 7→ sin x.

På liknande sätt konstaterar vi att funktionerna x 7→ cos x och x 7→ tan x kan
göras inverterbara genom att inskränka definitionsmängden. Ett naturligt sätt
att välja ett intervall där funktionerna är injektiva är att välja det intervall
som är närmast origo.

32



Definition 3.32. Låt f : [0, π] → [−1, 1] sådan att f(x) = cos x. Inversen till
f kallas arcuscosinus och betecknas f−1(y) = arccos y.

Grafen för arcuscosinus är

−1 1

π
2

π

Figur 3.5: Grafen till funktionen x 7→ arccos x.

Exempel 3.33. Visa att sin(arccos x) =
√

1 − x2.
Lösning: Låt y = arccos x. Alltså är x = cos y och vi kan illustrera relationen
mellan x och y med hjälp av triangeln

x

√
1− x21

y

Att en katet är
√

1 − x2 följer av Pythagoras sats och därmed följer att sin y =√
1 − x2. ▲

Definition 3.34. Låt f : (−π/2, π/2) → R sådan att f(x) = tan x. Inversen
till f kallas arcustangens och betecknas f−1(y) = arctan y.

Grafen för arctangens är
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−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

π
2

−π
2

Figur 3.6: Grafen till funktionen x 7→ arctan x.

3.6 Exponentialfunktionen

Vi kommer inte i detta häfte definiera exponentialfunktionen x 7→ ax, där
a > 1. Istället antas att läsaren är bekväm med funktionen som en strängt
växande funktion med värdemängd (0, ∞) som uppfyller räknelagarna

a) a0 = 1

b) a1 = a

c) ax+y = axay

d) a−x = 1/ax

e) (ax)y = axy

Att introducera exponentialfunktionen på ett korrekt vis är långt ifrån en
enkel sak och ligger utanför ramarna för detta häfte. Med hjälp av d) kan
vi definiera exponentialfunktionen för 0 < a < 1. Vi har för 0 < a < 1 att
1/a > 1 och

ax =
(1

a

)−x

.

Grafen för exponentialfunktionen är
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√
2−x

2−x 4x

2x

−4 −2 2 4

1
2
3
4
5
6
7

Figur 3.7: Exponentialfunktioner av typen x 7→ 2ax för olika värden på a.

3.7 Logaritmfunktionen

Låt f : R → (0, ∞) sådan att f(x) = ax, för något a > 1. Då gäller att
f är inverterbar. Vi definierar logaritmfunktionen som inversen till f och
betecknar f−1(y) = loga y. Alltså har vi att Df−1 = (0, ∞) och Vf−1 = R.
Grafen för logaritmfunktionen är

1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

Figur 3.8: Grafen till funktionen x 7→ log2 x.

Inversen uppfyller följande räknelagar:

Sats 3.35. Låt a > 1, då gäller att logaritmfunktionen uppfyller

a) loga 1 = 0

b) loga(xy) = loga x + loga y, x > 0, y > 0
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c) loga xy = y loga x, x > 0

Bevis: Generellt gäller att vi vill överföra exponentialfunktionens räknelagar
till dess inversfunktion. Vi kommer hela tiden att använda oss av att x = y
om och endast om ax = ay. Detta är en direkt följd av att x 7→ ax är injektiv.

a) Vi vill visa att loga 1 = 0 eller ekvivalent att aloga 1 = a0. Vänsterledet
uppfyller att aloga 1 = 1 och högerledet att a0 = 1. Alltså stämmer alla
påståenden.

b) Vi vill visa att loga(xy) = loga x + loga y eller ekvivalent att aloga(xy) =
aloga x+loga y. För vänsterledet gäller att aloga(xy) = xy och för högerledet
via exponentialfunktionens räknelagar att aloga x+loga y = aloga xaloga y =
xy.

c) Vi vill visa att loga xy = y loga x eller ekvivalent att aloga xy = ay loga x.
Vänsterledet är xy och högerledet är ay loga x = (aloga x)y = xy och vi är
klara.

■

3.8 Absolutbelopp

Definition 3.36. Låt x ∈ R, då definieras absolutbeloppet alternativt be-
loppet av x som

|x| =
√

x2. (3.16)

Absolutbeloppet beskriver avståndet från x till origo. En direkt följd av defi-
nitionen är att

|x| =
{

x, x ⩾ 0,

−x, x < 0.
(3.17)

Grafen har följande utseende

−3 −2 −1 1 2 3

1

2

3

Figur 3.9: Grafen till funktionen x 7→ |x|.
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Observera att funktionen x 7→ |x| är jämn.
Exempel 3.37. Vi har enligt definitionen att | − 5| = −(−5) = 5, |5| = 5,
|−π| = −(−π) = π och |0| = 0. Vi har här varit övertydliga med användningen
av minustecken. ▲

I detta häfte kommer vi i ett flertal tillfällen att använda absolutbeloppet
på formen |x − a| = b som betyder att avståndet från x − a till origo, eller
avståndet från x till a, är b.
Exempel 3.38. Skissa mängden A = {x ∈ R : |x − a| ⩽ p}, där p > 0.
Lösning:

a − p a a + p

▲

Observera att definitionen direkt ger att

x ⩽ |x|, (3.18)

för varje x ∈ R. Följande sats visas exempelvis med hjälp av fallindelning.
Sats 3.39. Låt x, y ∈ R, då gäller

|x · y| = |x| · |y|, (3.19)
|x + y| ⩽ |x| + |y|. (3.20)

Olikheten (3.20) kallas för triangelolikheten.
Bevis: Vi lämnar beviset av (3.19) till läsaren som en övning.
Beviset av (3.20) gör vi med hjälp av fallindelning.
Antag att x ⩾ 0 och y ⩾ 0. Olikheten är i detta fall en likhet, ty

|x + y| = x + y = |x| + |y|.

Antag nu att x ⩾ 0 och y ⩽ 0. Symmetriskäl gör att fallet x ⩽ 0 och y ⩾ 0
kan behandlas analogt, varför vi utelämnar det. Även här vill vi dela upp i två
fall. Det ena är då x + y ⩾ 0 och det andra då x + y < 0. Vi börjar med fallet
då x + y ⩾ 0. Vi får (kom ihåg att y < 0)

|x + y| = x + y ⩽ x − y = x + (−y) = |x| + |y|.
Nu till delfallet att x + y < 0. Vi får

|x + y| = −(x + y) = −x − y ⩽ x − y = x + (−y) = |x| + |y|.

Slutligen det sista fallet då x < 0 och y < 0. Vi får

|x + y| = −(x + y) = −x + (−y) = |x| + |y|
och olikheten är visad. ■
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Definition 3.40. För ett komplext tal z = x + iy så definieras absolutbe-
loppet av z som

|z| =
√

x2 + y2. (3.21)

3.9 De elementära funktionernas grafer

I detta delkapitel ritas graferna ut till delar av de elementära funktionerna.
Dessa grafer är lämpliga att kunna. Vi ritar funktionerna och dess inverser
gemensamt för att illustrera sambanden.

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4 x 7→ 2x

x 7→ log2 x

−5 −4 −3 −2 −1 1 2 3 4 5

−2

−1

1

2

x 7→ sin x

x 7→ arcsin x
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2
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x 7→ cos x

x 7→ arccos x

−3π
2

−π −π
2

π
2

π 3π
2

π

π
2

−π
2

−π

Figur 3.10: Den röda grafen är x 7→ arctan x och den blåa grafen är x 7→ tan x.
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4 x 7→ 1/x

−5 −4 −3 −2 −1 1 2 3 4 5

1

2

3

4 x 7→ 1/x2

3.10 Övningar

Övning 3.1. Ange definitions- och värdemängd till f(x) = h(g(x)) om g(x) =
x + 1 och h(x) = sin

√
x.

Övning 3.2. [2006-12-20, uppgift 2] Funktionen

f(x) = 1
x

+ 4
1 − x

är uppenbarligen definierad då x ̸= 0 och x ̸= 1. Bestäm värdemängden för f
då Df = (0, 1).

Övning 3.3. [2008-06-04, uppgift 2] Låt f(x) =
√

1 + ln(x + 1)
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a) Bestäm alla reella x för vilka f är definierad som en reellvärd funktion.

b) Bestäm tangenten till kurvan y = f(x) i punkten (0, 1).

Övning 3.4. Bestäm definitionsmängd, värdemängd och inversen för funk-
tionerna

a) x 7→ ln(
√

1 − x),

b) x 7→ e
√

x−4,

c) x 7→ x

Övning 3.5. Går det att bestämma en målmängd så att följande funktioner
är inverterbara? Bestäm i så fall inversen

a) f(x) = x2 + 4x + 5, Df = [−1, ∞),

b) f(x) =
√

1 + 1/x, Df = (0, ∞).

Övning 3.6. Går det att bestämma en målmängd så att följande funktioner
är inverterbara? Bestäm i så fall inversen

a) f(x) = x/(x2 + 1), Df = [1, ∞),

b) f(x) = 1/x, Df = R \ {0}.

Övning 3.7. Låt f : R → R vara en udda funktion och g : R → R vara en
jämn funktion. Visa att

a) f(0) = 0,

b) produkten av f och g är en udda funktion.

c) summan av f och g inte nödvändigtvis är en udda funktion.

Övning 3.8. Lös följande ekvationer

a) sin x = 1
2 ,

b) cos x = − 1√
2 .

Övning 3.9. Visa att sin2 2x = 4 tan2 x(1 − sin2 x)(cos 2x + sin2 x).

Övning 3.10. Beräkna cos(π/12) genom att använda att cos(π/6) =
√

3
2 .

Övning 3.11. Bestäm definitionsmängden och värdemängden till funktioner-
na

a) x 7→ arcsin x,

b) x 7→ arccos x,
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c) x 7→ arctan x.

Övning 3.12. [2007-03-13, uppgift 1] Beräkna sin(arcsin(7/8)+arccos(1/4)).

Övning 3.13. Lös ekvationerna

a) arcsin x = −5π
6 ,

b) arctan x = π
4 .

Övning 3.14. Bestäm

a) sin(arcsin(1/2)),

b) arcsin(sin(2π/3)).

Övning 3.15. Visa att

arcsin x + arccos x = π

2 ,

för varje x ∈ [−1, 1].

Övning 3.16. Visa att

arctan x + arctan 1
x

=
{

π
2 , x > 0
−π

2 , x < 0

Övning 3.17. Visa att

a)
tan(x + y) = tan x + tan y

1 − tan x tan y

b)
tan(2x) = 2 tan x

1 − tan2 x

Övning 3.18. Visa den andra delen i beviset av cosinussatsen.

Övning 3.19. Visa (3.11) – (3.14).

Övning 3.20. Visa att

a) loga(x3 − xy2) − loga(x + y) − loga x = loga(x − y),

b) ((3a)b − 3a)3−a + 1 = 3ab−a.

Övning 3.21. Lös ekvationen 3 + ln x = ln
√

x.

Övning 3.22. Visa likhet (3.19).

Övning 3.23. Lös olikheten |x2 − 4| < 5.
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Övning 3.24. Visa att om |x − 1| < 1 så är |x + 1| < 3.
Övning 3.25. Låt f : R → R vara en strängt växande funktion. Visa att f är
injektiv.
Övning 3.26. [2008-06-04, uppgift 1] För vilka reella tal a har ekvationen

4x + 2x+1 = a

någon reell lösning? Bestäm de reella lösningarna för dessa a.
Övning 3.27. Låt funktionen g : R \ {0} → R definieras av g(z) = 1/z2. För
vilka z ∈ R \ {0} gäller att g(g(z)) = g(z)?
Övning 3.28. Låt f : A → B och g : B → C vara funktioner och låt h =
g ◦ f vara deras sammansättning. Med andra ord gäller att h(x) = g(f(x)).
Motivera varför dina svar är korrekta.

a) • Antag att f och g är surjektiva. Visa att h också är surjektiv.
• Antag att f och g är injektiva. Visa att h också är injektiv.

b) • Antag att h och f är surjektiva. Är g nödvändigtvis surjektiv?
• Antag att h och f är injektiva. Är g nödvändigtvis injektiv?

c) • Antag att h och g är surjektiva. Är f nödvändigtvis surjektiv?
• Antag att h och g är injektiva. Är f nödvändigtvis injektiv?

Övning 3.29. Lös ekvationerna

a) 1 + |x + 1| − |x − 2| = x,

b) 1 + |x + 1| − |x − 2| = x + 2,

c) 1 + |x + 1| − |x − 2| = x + 3,

d) 1 + |x + 1| − |x − 2| = 2x.

e) Finns det något α ∈ R så att ekvationen 1 + |x + 1| − |x − 2| = αx har
exakt en lösning?

Övning 3.30. Lös ekvationerna

a) ln |x| = 1,

b) | ln x| = 1,

c) | ln |x|| = 1.
Övning 3.31. Lös ekvationen

ln(x3 − 3x) = ln(x).
Övning 3.32.

a) Visa att ekvationen ln(x + 2) = ln(x) ln(2) saknar lösningar.

b) Lös ekvationen ln(x + 1) = ln(x) ln(1).
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4 Talföljder

Andra njutningar kommer av de skapande värdena, de om vilka männi-
skan kan säga: “Det här har jag gjort och jag är nöjd. Jag har fört in
något i tillvaron som inte tidigare fanns och det ger en tillfredsställel-
se.” Att placera något man själv skapat – gärna under viss vånda, misstro
och efter flera försök – är i sig en tillfredsställelse. Men skapandet kräver
tid. Kreativitetens glädje är svår att ersätta med något annat. I själva
arbetet ligger en vila, men det skapande arbetet leder samtidigt till en
tillfredsställelse som inte liknar någonting annat, utan följer efter ett
“väl förrättat värv”.

Owe Wikström (Prof. Religionspsykologi) – Långsamhetens Lov

4.1 Definitionen och konvergens

Definition 4.1. En ordnad följd av tal a1, a2, a3, ... kallas för en talföljd och
betecknas (an)∞

n=1. Vi säger att talföljden (an)∞
n=1 är växande om an+1 ⩾ an

för varje n ⩾ 1 och att den är uppåt begränsad om det finns ett tal M
sådant att an ⩽ M för varje n ⩾ 1.

M

Figur 4.1: Exempel på en talföljd som är växande och uppåt begränsad av M .

Vi definierar på ett analogt sätt vad som menas med att en talföljd är avta-
gande och nedåt begränsad. En talföljd sägs vara begränsad om den är
både uppåt och nedåt begränsad.

Exempel 4.2. Om an = 2n
n+1 så blir (an)∞

n=1 talföljden 2/2, 4/3, 6/4, 8/5, . . ..
Talföljden är uppåt begränsad av talet 2 men även av talet 14, ty

an = 2 − 2
n + 1 ⩽ 2.

Den är dessutom växande eftersom

an+1 − an = 2
(n + 1)(n + 2) ⩾ 0.

Figur 4.1 illustrerar denna talföljd. ▲
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Definition 4.3. En talföljd (an)∞
n=1 sägs konvergera mot gränsvärdet A

om det för alla ε > 0 finns ett N sådant att |an − A| < ε för varje n > N . Vi
inför beteckningen

lim
n→∞ an = A.

En talföljd med denna egenskap kallas konvergent, annars kallas talföljden
divergent.

Figuren nedan illustrerar definitionen.

A − ε
A + ε

N

Exempel 4.4. Visa att talföljden (an)∞
n=1 där talen ges av an = 2 + 3−n

konvergerar mot 2 då n → ∞.
Lösning: Enligt definitionen ska vi först låta ett tal ε > 0 vara givet. Vi vill
nu finna ett N , som kommer att bero av ε, sådant att |an − 2| < ε för varje
n > N . Vi ser att |an − 2| < ε är ekvivalent med 3−n < ε och därmed även
med 1/ε < 3n. Eftersom logaritmfunktionen x 7→ log3 x är strängt växande
så följer att 1/ε < 3n är ekvivalent med − log3 ε < n. Alltså har vi att om
n > − log3 ε så är |an − 2| < ε. Vi kan därmed välja N till något tal större än
eller lika med − log3 ε, låt oss ta N = − log3 ε. ▲

Vi säger att talföljden (an)∞
n=1 har det oegentliga gränsvärdet ∞ om det

för varje M existerar ett N sådant att an > M för varje n > N . Vi betecknar
detta med

lim
n→∞ an = ∞.

M

N
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Observera att talföljder som har oegentliga gränsvärden är divergenta. Det
finns även talföljder som helt saknar gränsvärde, exempelvis an := (−1)n, som
pendlar mellan −1 och 1. Det är lämnat till läsaren att visa att en konvergent
talföljd är begränsad.

Sats 4.5. Låt (an)∞
n=1 och (bn)∞

n=1 vara konvergenta talföljder med gräns-
värdena A respektive B. Då följer att

a) (an + bn)∞
n=1 är konvergent med gränsvärdet A + B,

b) (anbn)∞
n=1 är konvergent med gränsvärdet AB,

c) om B ̸= 0 har vi att (an/bn)∞
n=1 är konvergent med gränsvärdet A/B,

d) om an ⩽ bn, för varje n så gäller att A ⩽ B.

Kommentar 4.6. Den observante noterar att vi i c) måste anta att bn ̸= 0
för alla de n som är inkluderade i (an/bn). Eftersom vi är intresserade av
gränsvärdet då n → ∞ kan vi exkludera tal i början av följden. Då vi vet att
B ̸= 0 så kan vi välja ett N sådant att |bn −B| < |B|/2, för alla n > N . Alltså
följer att bn ̸= 0, då n > N . Vi kan nu omformulera c) som att (an/bn)∞

n=N är
konvergent med gränsvärdet A/B.

Bevis: Vi använder oss av definitionen.

a) Tag ε > 0. Vi vill visa att det finns ett N sådant att |an +bn −A−B| < ε
för alla n > N . Enligt triangelolikheten (3.20) har vi

|an + bn − A − B| ⩽ |an − A| + |bn − B|

Då (an)∞
n=1 konvergerar mot A och (bn)∞

n=1 konvergerar mot B får vi att
det finns tal N1 och N2 så att

|an − A| <
ε

2 ,

då n > N1 och
|bn − B| <

ε

2 ,

då n > N2. Detta ger att

|an + bn − A − B| < ε,

då n > max{N1, N2}. Alltså kan vi välja N = max{N1, N2}.

b) Tag ε > 0. Vi vill visa att det finns ett N sådant att |anbn − AB| < ε
för alla n > N . Enligt triangelolikheten (3.20) har vi

|anbn − AB| = |anbn − anB + anB − AB|
⩽ |anbn − anB| + |anB − AB|
= |an||bn − B| + |B||an − A|.
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Eftersom (an)∞
n=1 är konvergent så är den begränsad, d.v.s. det finns ett

tal K > 0 sådant att |an| < K för varje n ⩾ 1. Då (an)∞
n=1 konvergerar

mot A och (bn)∞
n=1 konvergerar mot B får vi att det finns tal N1 och N2

sådana att
|bn − B| <

ε

2K
,

då n > N1 och
|an − A| <

ε

2|B| ,

då n > N2. Detta ger att

|anbn − AB| < ε,

då n > max{N1, N2}. Alltså kan vi välja N = max{N1, N2}.

c) Detta bevis lämnas som en övning åt läsaren.

d) Låt oss göra ett motsägelsebevis. Antag att B < A. Bilda talföljden
cn = bn − an. Vi har att cn ⩾ 0, för varje n ⩾ 1. Talföljden (cn)∞

n=1
har gränsvärdet C := B − A < 0. Tag ε = −C/2 > 0. Från definitionen
existerar det ett N sådant att C + C/2 < cn < C/2, för varje n > N .
Men då C < 0 så får vi att cn < C/2 < 0 för n > N . Detta strider mot
att cn ⩾ 0, för varje n ⩾ 1. Alltså är A ⩽ B.

■

Sats 4.7 (Instängningssatsen). Låt an ⩽ bn ⩽ cn för varje n och låt an → A
och cn → A då n → ∞. Då gäller att bn → A då n → ∞.

Bevis: Tag ε > 0. Vi vill visa att det finns ett N sådant att |bn − A| < ε
då n > N . Vi vet att det finns ett Na och ett Nc sådana att |an − A| < ε
för varje n > Na och |cn − A| < ε för varje n > Nc. Vi har att för alla
n > N = max(Na, Nc) gäller att

A − ε < an ⩽ bn ⩽ cn < A + ε,

d.v.s. |bn − A| < ε och satsen är visad. ■

Sats 4.8. Om (an)∞
n=1 är en växande och uppåt begränsad talföljd så är den

konvergent och
lim

n→∞ an = sup {an : n ⩾ 1}.

Bevis: Eftersom {an : n ⩾ 1} är en delmängd av de reella talen som är uppåt
begränsad så finns enligt supremumegenskapen en minsta övre begränsning.
Låt oss kalla denna minsta övre begränsning till (an)∞

n=1 för K, d.v.s. K =
sup {an : n ⩾ 1}. Då K är den minsta övre begränsningen till talföljden så
finns det element i talföljden godtyckligt nära K och i vissa fall även lika stora
som K. Alltså, för varje givet ε > 0 finns ett N sådant att |aN − K| < ε. Men
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då talföljden är växande kommer |an − K| < ε för alla n > N . Vi är klara och
har visat att gränsvärdet av talföljden är precis K, d.v.s.

lim
n→∞ an = K.

■

På samma sätt visas att om (an)∞
n=1 är en avtagande och nedåt begränsad

talföljd så är den konvergent och

lim
n→∞ an = inf {an : n ⩾ 1}.

Satsen som följer säger att n2,
√

n och n har det oegentliga gränsvärdet ∞,
då n → ∞, medan n−1 och n−1/2 går mot noll, då n → ∞. Beviset är lämnat
som en övning för läsaren.

Sats 4.9. Följande gränsvärde gäller

lim
n→∞ np =

{
∞, om p > 0,

0, om p < 0.

4.2 Binomialsatsen

Vi börjar med några exempel för att illustrera vad vi vill åstadkomma i detta
delavsnitt.

Exempel 4.10. Antag att det finns fem personer och vi frågar oss följande:
På hur många sätt kan dessa bilda en kö, d.v.s. en ordnad följd?
Svaret är att vi har fem möjligheter att välja den första personen, fyra möjlig-
heter att välja den andra personen, o.s.v.. Vi får alltså 5 · 4 · 3 · 2 · 1 = 120
möjligheter. ▲

Definition 4.11. Låt n ∈ N, då definieras

n! =
{

n · (n − 1) · (n − 2) · · · 2 · 1, n ⩾ 1,

1, n = 0.

Beteckningen kallas n-fakultet.

Exempel 4.12. Antag att det finns tio personer och vi vill bilda en kö be-
stående av fyra personer. På hur många sätt kan vi åstadkomma detta?
Svaret är att vi kan välja första personen på tio olika sätt, andra personer
på nio olika sätt, tredje personen på åtta olika sätt och slutligen den fjärde
personen på sju olika sätt. Alltså finns det

10 · 9 · 8 · 7 = 10!
6! = 10!

(10 − 4)!
olika sätt. Den sista identiteten är där för att illustrera hur svaret beror av
parametrarna från frågeställningen. ▲
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Läsaren kan själv verifiera att detta resonemang leder till att vi kan välja ut
en kö på k personer från n stycken på

n!
(n − k)!

olika sätt. Här förutsätts att k ⩽ n.

Exempel 4.13. Antag att det finns tio personer och vi vill bilda en grupp
bestående av fyra personer. Där ordningen på de utvalda inte spelar någon
roll. På hur många sätt kan vi åstadkomma detta?
Vi vet från det tidigare exemplet att varje kö av fyra personer från tio kan
väljas ut på 10!/(10 − 4)! olika sätt. Det betyder att om vi nu tar bort den
inbördes ordningen så finns varje grupp med 4! gånger för mycket. Det vi vill
är att dessa 4! olika köer är en och samma grupp. Vi måste alltså dividera
med 4!. Svaret är att vi kan välja ut fyra personer av tio till en grupp på

10!
(10 − 4)!4!

olika sätt. Det är värt att bekräfta att detta svar är symmetriskt i 4 och 10−4.
Jag menar att vi kunde lika gärna ha valt ut fyra personer genom att välja ut
vilka sex personer som inte ska vara med. Att välja ut sex personer från tio
till en grupp kan enligt ovan göras på

10!
(10 − 6)!6!

olika sätt. I båda fallen är svaret

10!
4!6! .

▲

Mer allmänt

Definition 4.14. Låt n, k ∈ N sådana att k ⩽ n. Vi definierar n-över-k som(
n

k

)
= n!

(n − k)!k! .

Vi har alltså definierat en notation och talesätt för svaret på den viktiga frågan:
På hur många sätt kan vi välja ut k stycken saker från n stycken?
För att beskriva satsen som delavsnittet handlar om så använder vi symbolen∑ för att summera termer. Vi definierar uttrycket

n∑
k=0

ak = a0 + a1 + a2 + . . . + an. (4.1)
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Sats 4.15 (Binomialsatsen). Låt n ∈ N, då gäller att

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk.

Bevis: Vänsterledet består av en multiplikation av n stycken faktorer av typen
(a + b). Om vi utför parentesmultiplikation så får vi termer av typen akbn−k,
så att den totala antalet faktorer är n. Frågan är hur många termer av denna
typ vi får. Att välja ut k stycken a ur n parenteser kan göras på

(n
k

)
olika sätt.

Alltså är vi klara. ■

4.3 Talet e

Exempel 4.16. Antag att vi har x kr på banken och att banken ger oss xr kr
i ränta varje år. Efter ett år har vi alltså (1 + r)x kr. Antag vidare att banken
ger oss halva räntan om vi endast har pengarna insatta halva året och analogt
för andra tidsperioder av året. I vårt fall betyder det att vi har (1 + r/2)x kr
efter ett halvår. Vi kan då utnyttja detta genom att ha x kr insatta ett halvår
för att ta ut (1 + r/2)x. Nu sätter vi in (1 + r/2)x samma dag och plockar vid
årets slut ut (1 + r/2) gånger pengarna, dvs. (1 + r/2)(1 + r/2)x. Det senare
kan skrivas om som(

1 + r

2

)(
1 + r

2

)
x =

(
1 + r

2

)2
x =

(
1 + r + r2

4

)
x.

Vi har vunnit r2x/4 på kuppen.
Om vi nu gör så här varje dag blir det från binomialsatsen 4.15(

1 + r

365

)365
x =

(
1 + r +

(
365
2

)
r2

3652 + . . . + r365

365365

)
x.

Om vi gör det n gånger så blir det(
1 + r

n

)n

x,

vad händer nu då n → ∞?
Vi kommer senare (se exempel 7.14) se att detta gränsvärde går mot erx, där
e är ett tal. Alltså har vi erx pengar efter ett år. Banken kan nu använda
strategin att de betalar ut ränta utefter denna modell redan från början. Om
en kund vill ta ut pengar efter halva året så får de er/2 gånger pengarna. Med
denna modell så kan de inte tjäna mer genom att ta ut och sätta in pengarna
vid upprepade tillfällen. För en kund som har x pengar och gör detta efter
ett halvår får vi, er/2er/2x = erx. Alltså är ränta på ränta redan inkluderad.
Årsräntan är 1 + ryear = er eller ryear = er − 1. ▲
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Definition 4.17. Vi definierar talet

e = lim
n→∞

(
1 + 1

n

)n

.

För att definitionen ovan skall vara av någon mening så måste vi visa att
gränsvärdet existerar.

Sats 4.18. Talföljden (an)∞
n=1 med

an =
(

1 + 1
n

)n

är konvergent.

Bevis: Vi vill verifiera att (an)∞
n=1 är växande och uppåt begränsad och an-

vända sats 4.8. Låt oss använda binomialsatsen 4.15(
1 + 1

n

)n

=
n∑

k=0

(
n

k

)( 1
n

)k

1n−k =
n∑

k=0

(
n

k

)
1

nk
.

Vi studerar varje term i detalj.(
n

k

)
1

nk
= n!

k!(n − k)!nk
= 1

k! · n · (n − 1) · (n − 2) · · · (n − k + 1)
nk

= 1
k! · n

n
· n − 1

n
· n − 2

n
· · · n − k + 1

n

= 1
k! ·

(
1 − 1

n

)(
1 − 2

n

)
· · ·
(

1 − k − 1
n

)
.

För att nu inse att talföljden är växande studerar vi an och an+1.

an = 1 + 1 +
n∑

k=2

1
k! ·

(
1 − 1

n

)(
1 − 2

n

)
· · ·
(

1 − k − 1
n

)
och analogt följer att

an+1 = 1 + 1 +
n+1∑
k=2

1
k! ·

(
1 − 1

n + 1

)(
1 − 2

n + 1

)
· · ·
(

1 − k − 1
n + 1

)
.

Låt oss jämföra de termer vi får för ett givet k. Vi har att

1 − i

n
< 1 − i

n + 1 , i = 1, 2, ..., k − 1

vilket ger att(
1 − 1

n

)
· · ·
(

1 − k − 1
n

)
<

(
1 − 1

n + 1

)
· · ·
(

1 − k − 1
n + 1

)
.

För varje k i summorna är termen från an+1 större än den från an. Dessutom
innehåller an+1 en term mer än an som också ger ett positivt bidrag. Alltså
är an+1 > an för alla n ⩾ 1.
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Låt oss nu även verifiera att (an)∞
n=1 är uppåt begränsad. Återigen använder

vi oss av framställningen

an =
n∑

k=0

1
k! ·

(
1 − 1

n

)(
1 − 2

n

)
· · ·
(

1 − k − 1
n

)
⩽

n∑
k=0

1
k! ,

då varje parentes är mindre än 1.
Vi behöver olikheten k! > 2k för alla k ⩾ 4. Olikheten kan ekvivalent beskrivas
som k!/2k > 1, för alla k ⩾ 4. Vi har följande

k!
2k

= k(k − 1)(k − 2) · · · 2 · 1
2 · 2 · 2 · · · 2 = k

2
k − 1

2 · · · 4
2 · 3

2 · 2
2 · 1

2 >
k

2
k − 1

2 · · · 5
2 > 1,

eftersom varje faktor är större än 1.
Detta passar nu perfekt för vår uppskattning.

n∑
k=0

1
k! = 1

0! + 1
1! + 1

2! + 1
3! +

n∑
k=4

1
k! < 2 + 1

2 + 1
6 +

n∑
k=4

1
2k

= 2 + 1
2 + 1

6 − 1 − 1
2 − 1

4 − 1
8 +

n∑
k=0

1
2k

< 1 +
n∑

k=0

1
2k

.

Vi påminner oss nu om formeln för en geometrisk summa,
n∑

k=0
xk = 1 − xn+1

1 − x
, x ̸= 1, (4.2)

där x0 definieras till 1 för x = 0. Formeln lämnas som en övning att verifiera
(se övning 4.11). I vårt fall får vi

n∑
k=0

1
k! < 1 +

n∑
k=0

1
2k

= 1 +
1 −

(
1
2

)n+1

1 − 1
2

= 1 + 2
(

1 − 1
2n+1

)
< 3.

Vi har nu visat att (an)∞
n=1 både är växande och uppåt begränsad vilket ger

att (an)∞
n=1 är konvergent. ■

Exempel 4.19. Vi får även talet e som gränsvärde ifall vi låter n → −∞.
Nämligen,

lim
n→−∞

(
1 + 1

n

)n

= e.

Lösning: Låt m = −n, vi får

lim
n→−∞

(
1 + 1

n

)n

= lim
m→∞

(
1 − 1

m

)−m

= lim
m→∞

(
m

m − 1

)m

= lim
m→∞

(
1 + 1

m − 1

)m

.

Låt nu k = m − 1 och nyttja 4.5 b). Alltså är

lim
m→∞

(
1 + 1

m − 1

)m

= lim
k→∞

(
1 + 1

k

)k+1
= lim

k→∞

(
1 + 1

k

)k (
1 + 1

k

)
= e.

▲
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Definition 4.20. Inversen till exponentialfunktionen med e som bas kallas
för den naturliga logaritmfunktionen och betecknas x 7→ ln x.

4.4 Standardgränsvärden vid ∞

Nästa sats säger oss att exponentiell tillväxt är snabbare än polynomiell till-
växt och fakultet växer snabbare än exponentiell tillväxt.

Sats 4.21. Låt a > 1 och b > 0. Då gäller att

lim
n→∞

an

nb
= ∞, (4.3)

lim
n→∞

n!
bn

= ∞. (4.4)

Bevis: Vi börjar med att visa (4.3). Eftersom a > 1 så gäller att a1/b > 1. Vi
låter a1/b = 1 + p, där p > 0. Vi har att

an

nb
=
(

an/b

n

)b

=
((1 + p)n

n

)b

.

Det räcker nu att visa att

lim
n→∞

(1 + p)n

n
= ∞.

Med hjälp av binomialsatsen (se sats 4.15), där vi endast kommer att utnyttja
en term, får vi

(1 + p)n

n
= 1

n

n∑
k=0

(
n

k

)
pk ⩾

1
n

(
n

2

)
p2 = n(n − 1)p2

2n
= (n − 1)p2

2 → ∞,

då n → ∞.
Låt oss nu visa (4.4). Bilda

cn = n!
bn

.

Notera att
cn+1 = (n + 1)!

bn+1 = (n + 1) · n!
b · bn

= n + 1
b

cn.

Låt N vara sådant att N > 2b, vi har att

cN+j = N + j

b
· N + j − 1

b
· · · N + 1

b
cN ⩾ 2jcN → ∞,

då j → ∞. ■

Exempel 4.22. Bestäm gränsvärdet

lim
n→∞

22n + n2 + 2
4 · 4n − 4 .
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Lösning: Låt oss dividera täljare och nämnare med det uttryck som växer
snabbast. I detta fall är det 4n, alltså får vi

22n + n2 + 2
4 · 4n − 4 =

22n

4n + n2

4n + 2
4n

4·4n

4n − 4
4n

=
1 + n2

4n + 2
4n

4 − 4
4n

→ 1
4 , (4.5)

då n → ∞. Att vi får ta gränsvärdet för täljare och nämnare var för sig och
dessutom termvis följer från sats 4.5. Att exponentialfunktioner växer snabbare
än potensfunktioner följer av sats 4.21. ▲

Exempel 4.23. Bestäm gränsvärdet

lim
n→∞

2n · n! + 2n

n3 + (n + 1)! .

Lösning: Låt oss dividera täljare och nämnare med det uttryck som växer
snabbast. I detta fall är det (n + 1)!, alltså får vi

2n · n! + 2n

n3 + (n + 1)! =
2n·n!

(n+1)! + 2n

(n+1)!
n3

(n+1)! + 1
=

2
1+ 1

n

+ 2n

(n+1)!
n3

(n+1)! + 1
→ 2, (4.6)

då n → ∞. Att fakultetsfunktionen växer snabbare än exponentialfunktioner
följer av sats 4.21. ▲

4.5 Bolzano-Weierstrass sats

Låt (an)∞
n=1 vara en talföljd. Om vi endast studerar en del av talen an, men

fortfarande oändligt många, och bildar en egen talföljd av dessa så sägs denna
nya talföljd vara en delföljd av den ursprungliga talföljden. Den nya talföljden
betecknas ofta (ank

)∞
k=1, där nk ∈ N och (nk)∞

k=1 är en strängt växande talföljd.
Vi ger ett exempel för att klargöra notationen.

Exempel 4.24. Låt an = 2n. Talföljden (an)∞
n=1 ges då av 2, 4, 6, 8, . . . . En

delföljd till denna är när vi endast betraktar var femte tal, alltså 2, 12, 22, 32,
. . . . Den nya talföljden betecknas (ank

)∞
k=1, där nk = 5(k − 1) + 1. D.v.s., för

n1 (då k = 1) får vi an1 = a1 = 2, för n2 (då k = 2) får vi an2 = a6 = 12,
o.s.v. ▲

Sats 4.25 (Bolzano-Weierstrass sats). Låt (an)∞
n=1 vara en begränsad talföljd.

Då finns det en konvergent delföljd.

Bevis: Om vi lyckas visa att det finns en växande eller avtagande delföjd så
vet vi från sats 4.8 att den kommer att vara konvergent.
Låt A = {n : an ⩾ am, för varje m ⩾ n}. Mängen A beskriver alla index nk av
tal i (an)∞

n=1 sådana att alla resterande tal i följden är mindre eller lika med
talet ank

.
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an

2 6 8 10 17 19 21

I figuren ovan innehåller A indexen 2, 6, 8, 10, 17, 19, 21, . . . .
Om antalet index nk i A är oändligt många bildar (ank

)∞
k=1 en avtagande

delföljd. Vi är färdiga i detta fall.
Om antalet index i A är ändligt många och A inte är tomma mängden så finns
det ett största index i A, låt oss kalla detta index för M . Nu kan vi välja
vårt första tal i talföljden (ank

)∞
k=1 till aM+1 eller a1 i fallet att A var tomma

mängden. Eftersom detta index är större än M så finns det större tal än aM+1
i talföljden (an)∞

n=M+1. Låt n2 vara ett index sådant att an2 > aM+1. Eftersom
n2 ̸∈ A så finns det ett index n3 > n2 sådant att an3 > an2 . Denna process
leder till en växande talföljd (ank

)∞
k=1 som är konvergent enligt sats 4.8.

■

4.6 Övningar

Övning 4.1. Bestäm följande gränsvärden

a)

lim
n→∞

n2 − n + 1
1 + 2n2 ,

b)

lim
n→∞

2n + 2−n

22n + 2−2n
.

Övning 4.2. Visa att talföljden

1,
3
2 ,

1
3 ,

3
4 ,

1
5 ,

3
6 ,

1
7 , . . . ,

d.v.s. talföljden (an)∞
n=1, där

an =
{

1/n, n udda
3/n, n jämnt

är konvergent.
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Övning 4.3. Bevisa sats 4.5 c).

Övning 4.4. Visa med hjälp av definitionen att

lim
n→∞

2n2 + 2n + 3
n2 + 1 = 2.

Övning 4.5. Visa att om n2 − n ⩽ an ⩽ n2 + n gäller för n ⩾ 1 så gäller att

lim
n→∞

a2n − an

n2 = 3.

Övning 4.6. Visa att en konvergent talföljd är begränsad.

Övning 4.7. Bevisa sats 4.9. Ett tips är att först visa satsen för p ⩾ 1,
därefter för 0 < p < 1 och slutligen för p < 0.

Övning 4.8. Visa med hjälp av Binomialsatsen att

(
n

0

)
−
(

n

1

)
+
(

n

2

)
− . . . + (−1)n

(
n

n

)
= 0,

(
n

0

)
+
(

n

1

)
+
(

n

2

)
+ . . . +

(
n

n

)
= 2n.

Övning 4.9. Låt a ∈ R. Lös ekvationen (x − a)3 = x3 − a3.

Övning 4.10. Konvergerar talföljden

(2n − 1)!!
(2n)!! ,

där (2n − 1)!! = 1 · 3 · 5 · . . . · (2n − 1) och (2n)!! = 2 · 4 · 6 · . . . · 2n?

Övning 4.11. Verifiera formeln för en geometrisk summa, d.v.s. att
n∑

k=0
xk = 1 − xn+1

1 − x
, x ̸= 1.

Övning 4.12. Bestäm

a) lim
n→∞

(
2 − 3

n

)n

b) lim
n→∞

(
1 + 1

n

)2n

c) lim
n→∞

(
1 + 1

2n

)n

d) lim
n→∞

(
1 + 1

n

)1/n
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Övning 4.13. Bestäm

a) lim
n→∞

(
1 + 1

2n

)1/n

b) lim
n→∞ n2/n

c) lim
n→∞

(
2 + 1

n

)n

Övning 4.14. Bestäm

lim
n→∞

n · n! + 2n + n4

(n + 1)! + 3n + n6 .

Övning 4.15. Hitta talföljder (an)∞
n=1 och (bn)∞

n=1 som är divergenta, men
ändå är sådana att (anbn)∞

n=1 är konvergent.

Övning 4.16. Om (cn)∞
n=1 är konvergent och (dn)∞

n=1 är divergent, kan (cndn)∞
n=1

vara konvergent?

Övning 4.17. Hitta talföljder (an)∞
n=1 och (bn)∞

n=1 sådana att an < bn men
så att det inte gäller att limn→∞ an < limn→∞ bn.

Övning 4.18. Bestäm

a) lim
n→∞

sin n

n

b) lim
n→∞

cos n

ln n

Övning 4.19. För vilka x ∈ R existerar gränsvärdet

lim
n→∞ cos(x)n?

Bestäm gränsvärdet för dessa x.
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5 Gränsvärden av funktioner vid oändligheten

En stor upptäckt löser ett stort problem, men det finns en kärna av upp-
täckt i lösningen av varje problem. Problemet må vara obetydligt, men
om det utmanar ens nyfikenhet och sätter igång ens uppfinningsförmåga
och om man löser det utan hjälp av någon, kan man känna den spänning
och triumf som kännetecknar varje upptäckt. Om en person gör sådana
erfarenheter i en mottaglig ålder kan de ge honom eller henne smak för
tankeverksamhet och prägla sinne och karaktär för en hel livstid.

George Pólya – Problemlösning : En handbok i rationellt tänkande

5.1 Definitionen och konvergens

Definition 5.1. Låt f vara en reellvärd funktion definierad i (a, ∞) för något
a. Vi säger att f konvergerar mot gränsvärdet A då x går mot ∞ om det för
varje ε > 0 finns ett N sådant att |f(x) − A| < ε för varje x > N . Vi skriver
detta

lim
x→∞ f(x) = A.

Alternativt skriver vi att f(x) → A då x → ∞. Om inget sådant A existerar
kallas f divergent då x går mot ∞.

A − ε
A + ε

N

Exempel 5.2. Visa att

lim
x→∞

1
4x2 = 0.

Låt ε > 0 vara givet. Vi vill visa att det finns ett N sådant att |f(x) − 0| < ε
för varje x > N . Vi har att |f(x) − 0| < ε om och endast om 1

4x2 < ε. Det
senare gäller om och endast om x > 1

2
√

ε
. Vi kan alltså välja N till något tal

större än eller lika med 1
2
√

ε
.
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1
2
√

ε
N0 − ε

0 + ε

Observera att N är beroende av ε. Förändras ε så kan vi behöva byta värdet
på N . Vi kan förtydliga detta genom att skriva N = N(ε). ▲

Definition 5.3. Låt f vara en funktion definierad i (a, ∞) för något a. Vi
säger att f har det oegentliga gränsvärdet ∞ då x går mot ∞ om det för
varje M finns ett N sådant att f(x) > M för varje x > N . Vi skriver detta

lim
x→∞ f(x) = ∞.

M

N

På samma vis som ovan definierar vi gränsvärden och oegentliga gränsvärden
mot −∞.
Precis som för talföljder så gäller följande sats

Sats 5.4. Låt f och g vara funktioner sådana att f(x) → A och g(x) → B,
då x → ∞. Då följer att

a) f(x) + g(x) → A + B, då x → ∞,

b) f(x)g(x) → AB, då x → ∞,
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c) om B ̸= 0 så följer att f(x)/g(x) → A/B, då x → ∞.

d) om f(x) ⩽ g(x), för alla x ∈ (a, ∞) så gäller att A ⩽ B.

Beviset för denna sats sammanfaller sånär som på notation beviset för sats
4.5. Det är lämnat till läsaren, som en övning i notation, att utföra dessa bevis.
För c) gäller att a behöver väljas tillräckligt stort så att g(x) ̸= 0, för varje
x ∈ (a, ∞).
Det är värt att notera att vi kan tillåta att A = ∞ och/eller B = ∞ med de
formella räknereglerna:

∞ · ∞ = ∞,

∞ + ∞ = ∞,

x · ∞ = ∞, där x > 0,

x + ∞ = ∞, där x ∈ R.

Observera dock att följande uttryck är odefinierade

∞
∞ , ∞ − ∞, 0 · ∞.

Sats 5.5. Låt f : (a, ∞) → R för något a ∈ R vara växande och uppåt begrän-
sad. Då gäller att

lim
x→∞ f(x) = sup {f(x) : x ⩾ a}.

Beviset är analogt med beviset av sats 4.8 och lämnat som en övning till
läsaren.

Sats 5.6 (Instängningssatsen). Låt f(x) ⩽ g(x) ⩽ h(x) för varje x ∈ (a, ∞)
för något a och låt f(x) → A och h(x) → A då x → ∞. Då gäller att g(x) → A
då x → ∞.

Beviset är analogt med beviset av sats 4.7 och lämnat som en övning till
läsaren.
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5.2 Standardgränsvärden vid ∞

x 7→ 2x

x 7→ x2

x 7→ 10 ln x

Sats 5.7. Låt a > 1 och b > 0 då gäller följande gränsvärden

lim
x→∞

ax

xb
= ∞, (5.1)

lim
x→∞

xb

loga x
= ∞. (5.2)

Bevis: Vi börjar med att visa (5.1) genom att överföra problemet på (4.3).
Låt m vara ett heltal som uppfyller att x − 1 < m ⩽ x. Precis som i beviset
av (4.3) så räcker det med att visa att

lim
x→∞

ax

x
= ∞.

Vi har för x ⩾ 1 att

ax

x
⩾

am

2m
= 1

2 · am

m
→ ∞, (5.3)

då x → ∞, enligt (4.3).
För att visa (5.2) så låter vi x = at. Detta medför att x → ∞ blir ekvivalent
med att t → ∞. Vi får alltså att

lim
x→∞

xb

loga x
= lim

t→∞
abt

t
= lim

t→∞
(ab)t

t
= ∞, (5.4)

enligt (5.1). ■

5.3 Övningar

Övning 5.1. Undersök om följande gränsvärden existerar och bestäm dem i
förekommande fall.

61



a) lim
x→∞

3x2 + 2x − 1
3x + x2

b) lim
x→∞

3x2 − 20x − 5
5x3 − 4x + 1

c) lim
x→∞

x2 + 4x + 1
3x2 + 2x

d) lim
x→∞

(x2 + 1)3

(x3 + 2)2

e) lim
x→∞

x2 + 4x + 10
x + 100

Övning 5.2. Undersök om följande gränsvärden existerar och bestäm dem i
förekommande fall.

a) lim
x→∞

ex + 2x

4ex + x2

b) lim
x→∞

ln x

x1/5

c) lim
x→∞

ln x + x2

ln x3 + 3x2

d) lim
x→∞

2x + x2

3x + x3

e) lim
x→∞

ln x + x10 + 2x

4x/2

Övning 5.3. Undersök om följande gränsvärden existerar och bestäm dem i
förekommande fall.

a) lim
x→∞

√
x2 − x

b) lim
x→∞

√
x2 + 1 − x + 1

Övning 5.4. Bevisa sats 5.4.

Övning 5.5. [2007-05-31, uppgift 1] Beräkna gränsvärdet

lim
x→∞

√
x2 + x − x.

Övning 5.6. [2009-06-01, uppgift 1] Beräkna

lim
x→∞

(√
x2 + 4x −

√
x2 + 2x

)
.

Övning 5.7. [2008-12-15, uppgift 1] Beräkna

lim
x→∞

4x + 2√
5x2 + 2x + 1

.
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6 Lokala gränsvärden

6.1 Definitionen och konvergens

Definition 6.1. Låt f vara en reellvärd funktion, med Df ⊂ R, sådan att
varje punkterad omgivning till x = a innehåller punkter i Df . Vi säger att f
konvergerar mot A då x går mot a om det för varje ε > 0 finns ett δ sådant
att |f(x) − A| < ε för varje x ∈ Df som uppfyller att 0 < |x − a| < δ. Vi
skriver detta

lim
x→a

f(x) = A.

eller f(x) → A, då x → a.

A
A− ε

A+ ε

a− δ a+ δ

Vänster- och högergränsvärden definieras genom att endast studera funk-
tionsvärdena för x < a, respektive x > a. Vi använder då notationen x → a−
för vänstergränsvärde och x → a+ för högergränsvärde. Om en funktion f är
definierad i en punkterad omgivning till a så gäller att f har ett gränsvärde
då x går mot a om och endast om vänster- och högergränsvärdena existerar
och är lika, d.v.s.

lim
x→a

f(x) = A ⇐⇒ lim
x→a+

f(x) = lim
x→a−

f(x) = A.

Exempel 6.2. Visa att
lim
x→3

x2 = 9.

Låt ε > 0, vi vill finna ett δ sådant att |x2 − 9| < ε, då 0 < |x − 3| < δ. Låt
oss anta att δ kan väljas så att δ < 1. Vi har att

|x2 − 9| = |x + 3| · |x − 3| ⩽ 20|x − 3| < 20δ,

där talet 20 inte är optimalt valt (men det kvittar). Vi vill att detta ska vara
mindre än ε, dvs.

20δ < ε,
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vilket är ekvivalent med att
δ <

ε

20 .

Vi väljer alltså δ till något tal mindre än ε/20 och 1. ▲

Exempel 6.3. Låt

f(x) =
{

x, om x ⩽ 1
3 − x, om x > 1

Då limx→1− f(x) = 1 och limx→1+ f(x) = 2 så existerar inte limx→1 f(x).
Grafen nedan illustrerar vad som händer.

−1 1 2 3
−1

1

2

▲

Definition 6.4. Låt f vara en funktion sådan att varje punkterad omgivning
till x = a innehåller punkter i Df . Vi säger att f har det oegentliga gräns-
värdet ∞ då x går mot a om det för varje K finns ett δ sådant att f(x) > K
för varje 0 < |x − a| < δ. Vi skriver detta

lim
x→a

f(x) = ∞.

Vi definierar oegentliga vänster- och högergränsvärden och mot −∞ på ett
analogt vis.

K

a− δ a+ δ
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Sats 6.5. Låt f och g vara funktioner sådana att f(x) → A och g(x) → B,
då x → a. Då följer att

a) f(x) + g(x) → A + B, då x → a,

b) f(x)g(x) → AB, då x → a,

c) om B ̸= 0 så följer att f(x)/g(x) → A/B, då x → a,

d) om f(x) ⩽ g(x) för varje x i en punkterad omgivning av a så följer att
A ⩽ B.

Beviset för denna sats sammanfaller sånär som på notation beviset för sats
4.5. Det är lämnat till läsaren, som en övning i notation, att utföra dessa bevis.
Exempel 6.6. Visa att

lim
x→0

x2 + x

|x|
inte existerar.
Lösningen är att studera höger- respektive vänstergränsvärde separat. Vi bör-
jar med högergränsvärdet. Vi får

lim
x→0+

x2 + x

|x| = lim
x→0+

x2 + x

x
= lim

x→0+
(x + 1) = 1,

där den sista likheter följer från övning 6.2. Vänstergränsvärdet blir

lim
x→0−

x2 + x

|x| = lim
x→0−

x2 + x

−x
= lim

x→0−
(−x − 1) = −1.

Då höger- och vänstergränsvärdet inte sammanfaller finns inte gränsvärdet. ▲

Sats 6.7. Låt f : (a − δ, a) → R för något δ > 0 vara växande och uppåt
begränsad. Då gäller att

lim
x→a−

f(x) = sup {f(x) : x ∈ (a − δ, a)}.

Beviset är analogt med beviset av sats 4.8 och lämnat som en övning till
läsaren.

6.2 Övningar

Övning 6.1. Bevisa sats 6.5.
Övning 6.2. Visa att

lim
x→0

(x + a) = a,

för alla reella tal a.
Övning 6.3. Låt a > 0. Visa, t.ex. genom variabelbytet x = 1/t, att

lim
x→0+

xa ln x = 0.
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7 Kontinuitet

Den goda öppenheten förutsätter att man kan byta åsikt när det krävs.
Stora människor byter åsikt. När ny information blir tillgänglig så får
inte gammal kunskap stå i vägen, då måste gårdagens gjutformar slås
sönder. Det är bland annat av det skälet det är så viktigt att möta och
lyssna till människor med annan åsikt än den egna. Bara de kan rucka
på det som cementerats i min syn på livet, det kan inte de som tycker
och tror precis som jag.

Tomas Sjödin – Eftervärme

7.1 Definitionen och exempel

Definition 7.1. Låt f vara en reellvärd funktion, med Df ⊂ R, sådan att
varje punkterad omgivning till x = a innehåller punkter från Df och a ∈ Df .
Vi säger att f är kontinuerlig i a om

lim
x→a

f(x) = f(a). (7.1)

Vi säger att f är kontinuerlig om f är kontinuerlig i a, för varje a ∈ Df .

Låt f vara definierad i en omgivning av a. Då kan vi sätta x till a + h i
definition 7.1 och få ett alternativt sätt att uttrycka kontinuitetsvillkoret. Vi
har då att f är kontinuerlig i a om och endast om

lim
h→0

f(a + h) = f(a) (7.2)

och att f är kontinuerlig om och endast om

lim
h→0

f(x + h) = f(x) (7.3)

för varje x ∈ Df .
Att en funktion f är kontinuerlig i a ∈ Df betyder att vänstergränsvärdet,
högergränsvärdet och funktionsvärdet i a sammanfaller. Detta visar även att
det finns en omgivning till a där funktionen är begränsad, vilket vi kommer
att utnyttja i sats 7.9.
Kontinuitet ger följande räkneregel:

Sats 7.2. Låt f vara kontinuerlig i punkten b och låt g(x) → b , då x → a.
Då gäller att

lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)

,

givet att vänsterledet är definierat.

66



Bevis: Högerledet kan skrivas som f(b) eftersom g(x) → b, då x → a. Vi vill
visa att vänsterledet är f(b). Tag ε > 0. Vi vill visa att det finns ett δ sådant
att |f(g(x))−f(b)| < ε då 0 < |x−a| < δ. Då f är kontinuerlig i b så följer att
det finns ett δ1 sådant att |f(y) − f(b)| < ε, då |y − b| < δ1. Då g(x) → b, då
x → a så följer att vi kan välja ett δ så att |g(x) − b| < δ1, då 0 < |x − a| < δ.
Vilket visar satsen.

■

Kommentar 7.3. Vi kan även tillåta att a = ∞ i sats 7.2. Beviset blir då
lite annorlunda och lämnas som en övning åt läsaren.

Följdsats 7.4. Låt f och g vara kontinuerliga funktioner. Då följer att sam-
mansättningen x 7→ (f ◦ g)(x) = f(g(x)) är kontinuerlig.

Bevis: Resultatet följer direkt av sats 7.2. ■

Sats 7.5. Funktionerna x 7→ sin x och x 7→ cos x är kontinuerliga.

Bevis: Vi använder (7.3) för att visa kontinuiteten. Vi vill visa att sin(x +
h) − sin x → 0 och cos(x + h) − cos x → 0, då h → 0. Studera bilden nedan
(där vi har antagit att x och h är positiva)

sin x

sin(x + h)

x + h

x
1

Vi ser att det kortaste avståndet mellan punkterna (cos x, sin x) och (cos(x +
h), sin(x + h)) är från Pythagoras sats√

(cos(x + h) − cos x)2 + (sin(x + h) − sin x)2 ⩽ h.

Att det kortaste avståndet är mindre än h följer av att h är längden av den
bågnade delen av enhetscirkeln mellan de aktuella punkterna. I fallet att h < 0
blir olikheten√

(cos(x + h) − cos x)2 + (sin(x + h) − sin x)2 ⩽ |h|. (7.4)
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Vi har att

| sin(x + h) − sin x| =
√

(sin(x + h) − sin x)2

⩽
√

(cos(x + h) − cos x)2 + (sin(x + h) − sin x)2

⩽ |h| → 0,

då h → 0. Vi har visat att x 7→ sin x är kontinuerlig. Räkningen för att visa
x 7→ cos x är kontinuerlig är analogt från (7.4). ■

Sats 7.6. Exponentialfunktionen x 7→ ax är kontinuerlig.

Bevis: Enligt (7.2) så ska vi visa att

lim
h→0

(ax+h − ax) = 0 (7.5)

vilket är ekvivalent med att visa att ah → 1, då h → 0.
Anta först att a = 2 och x > 0.
Eftersom x 7→ 2x är växande (se delkapitel 3.6) så räcker det att visa att
21/n → 1, då n → ∞. Eftersom följden (21/n)∞

n=1 är nedåt begränsad ty
21/n > 0 och avtagande så konvergerar den mot ett värde A. Vi har att

21/n · 21/n = 22/n → A, (7.6)

då n → ∞ och från Sats 4.5b) får vi att

21/n · 21/n → A2, (7.7)

då n → ∞. Alltså är A2 = A och då A ̸= 0 så följer att A = 1. Vi har visat
att

lim
x→0+

1
2x

= 1. (7.8)

Låt nu x < 0. Då gäller att

lim
x→0−

2x = lim
x→0−

1
2−x

= 1, (7.9)

från (7.8).
Antag nu att a ̸= 2. Då följer att

ax = 2x log2 a = (2x)log2 a (7.10)

och resultatet blir en konsekvens av Sats 7.4.
■
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7.2 Satser om kontinuerliga funktioner

Sats 7.7. Låt f : [a, b] → R vara en kontinuerlig funktion. Då är f begränsad.

Bevis: Låt oss visa att f är uppåt begränsad med hjälp av ett motsägelsebevis.
Antag därför att f är uppåt obegränsad. Då gäller att för varje heltal k så
finns ett xk sådant att

f(xk) > k. (7.11)

Alltså kan vi bilda talföljden (xn)∞
n=1, där xn ∈ [a, b] för varje n, med egen-

skapen att f(xn) > n.
Eftersom xn ∈ [a, b] för varje n, är talföljden begränsad och enligt Bolzano-
Weierstrass sats (se 4.25) så finns det en konvergent delföljd (xnk

)∞
k=1. Låt oss

beteckna gränsvärdet med x, alltså xnk
→ x, då k → ∞. Eftersom x ∈ [a, b]

och f är kontinuerlig i x så har vi att f(xnk
) → f(x), då k → ∞. Men från

(7.11) och konstruktionen av talföljden gäller att

lim
k→∞

f(xnk
) = ∞.

Vi har en motsägelse.
På liknande sätt kan vi visa att f är nedåt begränsad. ■

Exempel 7.8. Funktionen f : (0, 1] → R sådan att f(x) = x−1 är kontinuerlig
men inte begränsad. Sats 7.7 är inte applicerbar eftersom definitionsmängden
inte är ett slutet intervall. ▲

Sats 7.9. Summan och produkten av kontinuerliga funktioner är kontinuerlig.

Bevis: Detta är en direkt följd av sats 6.5 a) och b). ■

Följdsats 7.10. Polynom är kontinuerliga funktioner.

Bevis: Eftersom polynom är summor och produkter av räta linjer av typen
y = kx + m så räcker det enligt sats 7.9 att konstatera att dessa linjer är
kontinuerliga. ■

Exempel 7.11. Polynomet f(x) = 2x4 − x + 3 = (2x) · x · x · x + (−x + 3) och
kan med andra ord beskrivas som summor och produkter av de räta linjerna
2x, x och −x + 3. ▲

Sats 7.12. Låt A och B vara intervall och låt f : A → B vara en kontinuerlig,
inverterbar och strängt växande funktion. Då gäller att inversen f−1 : B → A
är kontinuerlig och strängt växande.
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Bevis: Antag att f : A → B är kontinuerlig, inverterbar och strängt växande,
där A och B är intervall. Låt oss först visa att f−1 : B → A är strängt växande.
Vi vill visa att om y1 < y2 så gäller att f−1(y1) < f−1(y2). Detta följer av att
f är strängt växande, ty

y1 < y2 ⇔ f(f−1(y1)) < f(f−1(y2)) ⇔ f−1(y1) < f−1(y2) (7.12)

Låt oss nu visa att f−1 är kontinuerlig. Låt y0 ∈ B och tag ε > 0. Vi vill visa
att det finns ett δ sådant att |f−1(y0) − f−1(y)| < ε då |y0 − y| < δ.
Antag att x0 = f−1(y0) är en inre punkt av A, d.v.s. det finns en omgivning
I till x0 sådan att I ⊂ A. Vi kan välja I = (a, b) sådan att

x0 − ε < a < x0 < b < x0 + ε. (7.13)

Eftersom f är strängt växande så följer att

f(a) < f(x0) = y0 < f(b). (7.14)

Välj δ = min{y0 − f(a), f(b) − y0}. Om y ∈ B uppfyller att |y − y0| < δ så
följer att f(a) < y < f(b). Eftersom f är strängt växande så följer att

a < f−1(y) < b (7.15)

vilket ger att |f−1(y) − f−1(y0)| < ε. Vi är klara. ■

Satsen kan formuleras analogt för strängt avtagande funktioner. En följd av
satsen är att funktionerna x 7→ ln x, x 7→ arctan x, x 7→ arcsin x och x 7→
arccos x är kontinuerliga.

Exempel 7.13. Visa att funktionen f : (0, ∞) sådan att f(x) = xx är konti-
nuerlig.
Lösning: Observera att

xx = eln xx = ex ln x.

Det senare är en sammansättning av de kontinuerliga funktionerna x 7→ x ln x
och x 7→ ex. Alltså är xx kontinuerlig. ▲

Exempel 7.14. Bestäm

lim
n→∞

(
1 + x

n

)n

.

Lösning: Om x = 0 så följer att gränsvärdet är 1.
Om x > 0 kan uttrycket skrivas om enligt följande

(
1 + x

n

)n

=
(

1 + 1
n/x

)n

=
((

1 + 1
n/x

)n/x
)x

.
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Eftersom funktionen t 7→ tx enligt exempel 7.13 är kontinuerlig har vi identi-
teten

lim
n→∞

((
1 + 1

n/x

)n/x
)x

=
(

lim
n→∞

(
1 + 1

n/x

)n/x
)x

.

Med hjälp av variabelbytet y = n/x får vi(
lim

n→∞

(
1 + 1

n/x

)n/x
)x

=
(

lim
y→∞

(
1 + 1

y

)y)x

.

Vi kan slutligen visa att det senare gränsvärdet kan överföras till gränsvärdet
av en talföljd. Låt m ⩽ y ⩽ m + 1, alltså gäller

lim
m→∞

(
1 + 1

m + 1

)m

⩽ lim
y→∞

(
1 + 1

y

)y

⩽ lim
m→∞

(
1 + 1

m

)m+1
.

Vi får från definition 4.17 och sats 4.5 att

lim
m→∞

(
1 + 1

m + 1

)m

= lim
m→∞

(
1 + 1

m + 1

)m+1
lim

m→∞

(
1 + 1

m + 1

)−1
= e

och

lim
m→∞

(
1 + 1

m

)m+1
= lim

m→∞

(
1 + 1

m

)m

lim
m→∞

(
1 + 1

m

)
= e.

Från instängningssatsen 5.6 följer att

lim
y→∞

(
1 + 1

y

)y

= e

och därmed är (
lim

y→∞

(
1 + 1

y

)y)x

= ex.

▲

Lemma 7.15 (Intervallhalvering). Låt [aj , bj ] vara intervall, för varje j ∈
N, med egenskapen att givet [aj , bj ] så väljer vi [aj+1, bj+1] genom att låta
aj+1 = aj och bj+1 vara mittpunkten på [aj , bj ] eller genom att låta aj+1 vara
mittpunkten på [aj , bj ] och bj+1 = bj. Då gäller att det finns ett unikt tal x
sådant att x ∈ [aj , bj ], för varje j ∈ N.

a0 b0x

a1 b1

a2 b2

a3 b3

a4 b4
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Bevis: Talföljden (aj)∞
j=0 är växande och uppåt begränsad av b0. Enligt sats

4.8 konvergerar (aj)∞
j=0 mot xa := sup{aj : j ∈ N}. Även (bj)∞

j=0 konvergerar
mot xb := inf{bj : j ∈ N} eftersom den är avtagande och nedåt begränsad av
a0.
Ett tal x ligger i alla intervallen om och endast om xa ⩽ x ⩽ xb. Satsen följer
alltså om vi kan visa att xa = xb.
Från sats 4.5d) får vi att xb ⩾ xa. Eftersom aj ⩽ xa ⩽ xb ⩽ bj för varje j ∈ N
så får vi att

|xb − xa| = xb − xa ⩽ bj − aj = b0 − a0
2j

→ 0, (7.16)

då j → ∞. Alltså är xa = xb. ■

Lemma 7.16. Låt f vara kontinuerlig i punkten a och f(a) > µ, för något
µ ∈ R. Då finns en omgivning I kring a sådant att f(x) > µ för alla x ∈ I.

Bevis: Tag ε > 0 sådant att f(a) − µ > ε, vilket är ekvivalent med att
f(a) − ε > µ. Då f är kontinuerlig i a gäller att

lim
x→a

f(x) = f(a)

som i sin tur betyder att vi kan finna ett δ > 0 sådant att |f(x) − f(a)| < ε
då |x − a| < δ. Att |f(x) − f(a)| < ε betyder att f(a) − ε < f(x) < f(a) + ε,
vilket ger att µ < f(a) − ε < f(x) för alla x ∈ I := {x : |x − a| < δ}. ■

Sats 7.17 (Satsen om mellanliggande värde). Låt f vara en reellvärd och
kontinuerlig funktion definierad på [a, b]. Då antar f alla värden mellan f(a)
och f(b).
Kommentar 7.18. Satsen säger att om f(a) ⩽ m ⩽ f(b) (eller f(b) ⩽
m ⩽ f(a)) så finns det ett x ∈ [a, b] sådant att f(x) = m. Observera att
beviset för denna sats beskriver en algoritm som enkelt kan implementeras
i något programspråk. Det teoretiska existensresonemanget måste i verkliga
situationer verifieras innan algoritmen körs eftersom algoritmen kan svara med
värden även i fallet då det saknas lösning.

a x b

f(a)

m

f(b)
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Bevis: Antag att f(a) < m < f(b). Vi vill visa att det finns ett x ∈ [a, b]
sådant att f(x) = m. Låt oss nyttja intervallhalvering, alltså hjälpsats 7.15.
Låt a0 = a, b0 = b och c vara mittpunkten på intervallet [a0, b0]. Alltså,

c = a0 + b0
2 .

Om f(c) > m, så väljer vi a1 = a0 och b1 = c, annars väljer vi a1 = c och
b1 = b0. Vi upprepar nu denna algoritm och konstaterar från hjälpsats 7.15
att det finns ett unikt element x som har egenskapen att x ∈ [aj , bj ], för varje
j ∈ N. Vi har att

f(aj) ⩽ m ⩽ f(bj),
för varje j ∈ N. Om vi låter j → ∞ och använder oss av 6.5 d) och kontinui-
teten av f så får vi relationen f(x) ⩽ m ⩽ f(x). Alltså är f(x) = m och vi är
klara. ■

Exempel 7.19. Har ekvationen x3 − 5x + 3 = 0 någon lösning i intervallet
[−1, 1]?
Lösning: Bilda funktionen f(x) = x3 −5x+3. Eftersom f är kontinuerlig och
f(−1) = 7 och f(1) = −1 så finns det enligt satsen om mellanliggande värde
(se sats 7.17) ett x0 ∈ (−1, 1) sådant att f(x0) = 0. Alltså har ekvationen
någon lösning i intervallet [−1, 1]. ▲

Sats 7.20. Låt f : [a, b] → R vara en kontinuerlig funktion. Då antar f ett
största och ett minsta värde, d.v.s. det finns x1, x2 ∈ [a, b] sådana att sup Vf =
f(x1) och inf Vf = f(x2).

Bevis: Vi visar att f antar ett största värde. Att f antar ett minsta värde
bevisas på ett analogt vis. Från sats 7.7 vet vi att Vf är begränsad. Alltså
existerar M := sup Vf och f(x) ⩽ M , för varje x ∈ [a, b]. Vi använder ett
motsägelsebevis. Antag att f(x) ̸= M , för varje x ∈ [a, b]. Då är

x 7→ 1
M − f(x) (7.17)

definierad på [a, b] och kontinuerlig. Från sats 7.7 är den begränsad, alltså finns
en konstant C sådan att

1
M − f(x) ⩽ C (7.18)

eller

f(x) ⩽ M − 1
C

. (7.19)

Alltså är M − 1/C en övre begränsning till Vf vilket motsäger att M är den
minsta övre begränsningen till Vf . ■

Exempel 7.21. Funktionen f : [0, 1) sådan att f(x) = x2 är kontinuerlig, men
saknar maxvärde. Sats 7.20 är inte applicerbar ty definitionsmängden är inte
ett slutet intervall. ▲
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7.3 Lokala standardgränsvärden

Hjälpsats 7.22. Olikheten

| sin x| ⩽ |x| ⩽ | tan x|, (7.20)

gäller för alla x ∈ (−π/2, π/2).

Bevis: Antag först att x ∈ [0, π/2). Vi vill då visa att sin x ⩽ x ⩽ tan x. Låt
oss studera tre areor enligt figuren

cos x

sin x

x

tan x

sin x

tan x

Den minsta arean är den vi får från triangeln som har höjden sin x och bredden
ett. Den mittersta arean får vi från cirkelsektorn med vinkeln x och den största
arean får vi från den triangel som har höjden tan x och bredden ett. Areornas
relationer är

sin x

2 ⩽
x

2π
π ⩽

tan x

2
eller enklare

sin x ⩽ x ⩽ tan x.

Antag nu att x ∈ (−π/2, 0). Då är −x ∈ (0, π/2) och från den bevisade delen
av satsen har vi att

sin(−x) ⩽ −x ⩽ tan(−x),

eller
− sin x ⩽ −x ⩽ − tan x.

Då x ∈ (−π/2, 0) är − sin x = | sin x|, −x = |x| och − tan x = | tan x|. Därmed
följer att

| sin x| ⩽ |x| ⩽ | tan x|

även gäller då x ∈ (−π/2, 0). ■

74



Sats 7.23 (Lokala standardgränsvärden). Följande gränsvärden gäller

lim
x→0

ln(1 + x)
x

= 1 (7.21)

lim
x→0

ex − 1
x

= 1 (7.22)

lim
x→0

sin x

x
= 1 (7.23)

Bevis:
Bevis av (7.21): Vi börjar med att skriva om uttrycket enligt

ln (1 + x)
x

= 1
x

ln (1 + x) = ln (1 + x)
1
x .

Låt oss utföra variabelbytet s = 1/x. Gränsvärdet x → 0 kommer att samman-
falla med s → ±∞ (obs två gränsvärden!). Då vi vet att logaritmfunktionen
är kontinuerlig, får vi att

lim
s→±∞

(
ln
(

1 + 1
s

)s)
= ln

(
lim

s→±∞

(
1 + 1

s

)s)
= ln e = 1.

Bevis av (7.22): Låt oss direkt utföra variabelbytet ex − 1 = s, vilket ger
x = ln (1 + s) och

ex − 1
x

= s

ln (1 + s) → 1, då s → 0 (vilket är detsamma som x → 0).

Bevis av (7.23): Enligt sats 7.22 har vi relationen

| sin x| ⩽ |x| ⩽ | tan x|, (7.24)

för alla x i en liten omgivning av 0. Låt oss dividera med |x|. Vi får att

| sin x|
|x| ⩽ 1 ⩽

| sin x|
|x|

1
cos x

(7.25)

och därmed att

cos x ⩽
| sin x|

|x| ⩽ 1. (7.26)

Då x → 0 får vi att

lim
x→0

| sin x|
|x| = 1. (7.27)

Observera till sist att
sin x

x
> 0,
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för alla x ̸= 0 sådana att |x| < π/2. Detta ger önskad likhet. ■

−5 −4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

x 7→ x

x 7→ ex − 1

x 7→ ln(1 + x)

x 7→ sin x

Figur 7.1: De lokala standardgränsvärdena säger att kvoten av två av dessa
funktioner går mot ett då x går mot noll.

Exempel 7.24. Bestäm
lim
x→0

ln(1 + 2x)
tan 5x

.

Lösningen är att utnyttja standardgränsvärden. Vi får

lim
x→0

ln(1 + 2x)
tan 5x

= lim
x→0

(2
5 · ln(1 + 2x)

2x
· 5x

sin 5x
· cos 5x

)
.

Den andra och den tredje faktorn är standardgränsvärden och går båda mot ett
enligt sats 7.23. Vi utnyttjar nu sats 6.5 b) för kunna utföra dessa gränsvärden
var för sig. Vi får att

lim
x→0

(2
5 · ln(1 + 2x)

2x
· 5x

sin 5x
· cos 5x

)
= 2

5 · 1 · 1 · 1 = 2
5 .

▲

7.4 Övningar

Övning 7.1. [2006-12-20, uppgift 1] Bestäm talet a så att funktionen

f(x) =


2x2 − x − 1

x − 1 x ̸= 1,

a x = 1,
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blir kontinuerlig i punkten x = 1.

Övning 7.2. [2008-06-04, uppgift 5] Beräkna följande gränsvärden

a) lim
x→0

x sin
(1

x

)

b) lim
x→∞ x sin

(1
x

)
c) lim

x→∞
cos x

x

d) lim
x→∞ x(ln(x + 1) − ln x)

Övning 7.3. Bestäm gränsvärdet av x 7→ x1/x, då x → ∞.

Övning 7.4. Bestäm konstanterna a och b så att

lim
x→0

f(x) = 3, lim
x→∞ f(x) = π där f(x) = sin(2x)

x
+ a arctan x + b.

Övning 7.5. Visa att sats 7.2 gäller även för a = ∞, d.v.s. låt f(x) vara
kontinuerlig i punkten b och låt g(x) → b , då x → ∞. Då gäller att

lim
x→∞ f(g(x)) = f

(
lim

x→∞ g(x)
)

.

Visa med hjälp av denna sats att

lim
x→∞ ln

(
1 + 1

x

)2x

= 2.

Övning 7.6. Bestäm konstanten k så att funktionen

g(x) =


ln(1 + kx)

x
x ̸= 0,

3 x = 0,

blir kontinuerlig.

Övning 7.7. En parkeringsmätare tar betalt enligt följande: den första på-
började timmen kostar 4 kronor och därefter kostar det 2 kronor för varje
ytterligare påbörjad timme, upp till det maximala dygnsbeloppet 10 kronor.
Låt h(t) vara parkeringskostnaden som funktion av tiden t timmar. Skissa
funktionsgrafen y = h(t) för 0 ≤ t ≤ 24. Är h en kontinuerlig funktion?

Övning 7.8. Beräkna

a)

lim
x→0

sin(2x)
x

,
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b)
lim
x→0

sin x

ln(1 + x) .

Övning 7.9. För vilka a, b > 0 gäller att

lim
x→0

sin ax

ln(1 + bx) = 5?

Övning 7.10. Bestäm
lim
x→0

sin(sin x)
x

.

Ledning: Börja med att bestämma

lim
x→0

sin(sin x)
sin x

.

Övning 7.11. Bestäm
lim

x→0+
x ln(sin x).

Övning 7.12. Betrakta f : (0, 1) → R definierad av

f(x) = 1
x

+ 4
1 − x

.

Det gäller att f(x) ⩾ 9 för alla x och att f(1/3) = 9. Bestäm funktionens
värdemängd.

Övning 7.13. Visa att kontinuitet är ett viktigt antagande i satsen om mel-
lanliggande värden. Med andra ord, hitta en funktion f : [a, b] → R och något
m ∈ [f(a), f(b)] så att det inte finns något c ∈ [a, b] med f(c) = m.

Övning 7.14. För varje n ∈ N, låt fn : [0, 1] → [0, 1] definieras av

fn(x) = xn.

Definiera för varje x
f∞(x) = lim

n→∞ fn(x).

a) För fixerat n ∈ N, är funktionen fn kontinuerlig?

b) Bestäm funktionen f∞. Är funktionen f∞ kontinuerlig?

Övning 7.15. Låt f, g : R → R vara kontinuerliga funktioner. Antag att
f(x) = g(x) för alla x ∈ Q. Visa att f(x) = g(x) för alla x ∈ R.
Ledning: Om x ∈ R \ Q så finns det en följd (xn)∞

n=1 sådan att xn ∈ Q för
varje n, och xn → x, då n → ∞.
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8 Derivata

Perfection is achieved, not when there is nothing more to add, but when
there is nothing left to take away.

Antoine de Saint-Exupéry – Airman’s Odyssey

8.1 Definitionen

Definition 8.1. Låt f vara en reellvärd funktion definierad i en omgivning
av x0. Vi säger att f är deriverbar i punkten x0 om

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

(8.1)

existerar. Värdet f ′(x0) kallas derivatan av f i punkten x0. Om f är deriver-
bar i varje punkt i sin definitionsmängd så kallas f deriverbar och funktionen
f ′ med definitionsmängden Df ′ = Df kallas för derivatan av f .

x0 x0 + h

f(x0)

f(x0 + h)

Figur 8.1: Förändringskvoten för givet h > 0.

Lutningen på linjen i figuren 8.1 beskriver medellutningen i intervallet [x0, x0+
h] och ges av

f(x0 + h) − f(x0)
h

.

Det är värt att notera att vi endast kan derivera en funktion i en punkt om
funktionen är definierad i en omgivning av punkten. Alltså kan vi inte derivera
funktioner i ändpunkter av intervall.
Med hjälp av derivatans definition kan vi derivera funktioner som exemplet
nedan visar. Vi kommer senare i kapitlet att bestämma allmänna derivator för
de elementära funktionerna för att enklare finna derivator.

Exempel 8.2. Derivara funktionen f(x) = 2x3.
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Lösning: Enligt (8.1) finns derivatan av f i punkten x om följande gränsvärde
existerar

lim
h→0

f(x + h) − f(x)
h

= lim
h→0

2(x + h)3 − 2x3

h

= lim
h→0

(6x2 + 6xh + 2h2) = 6x2.

Alltså är f deriverbar med derivatan f ′(x) = 6x2. ▲

Exempel 8.3. Visa att f(x) = |x| ej är deriverbar i punkten 0.

−2 −1 1 2

1

2

Lösning: Låt oss visa att gränsvärdet

lim
h→0

f(0 + h) − f(0)
h

= lim
h→0

|h|
h

inte existerar. Vi beräknar höger- respektive vänstergränsvärdet. Vi får

lim
h→0+

|h|
h

= 1

och

lim
h→0−

|h|
h

= lim
h→0−

−h

h
= −1.

Eftersom höger- och vänstergränsvärdet är olika så existerar inte gränsvärdet
i punkten 0. ▲

8.2 Derivatan av elementära funktioner

Exempel 8.4. Derivera funktionen f(x) = ex.
Lösning: Enligt definitionen och (7.22) är

f ′(x) = lim
h→0

ex+h − ex

h
= lim

h→0

exeh − ex

h
= ex

(
lim
h→0

eh − 1
h

)
= ex.

Alltså är f deriverbar med derivatan f ′(x) = ex. ▲
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Exempel 8.5. Derivera funktionen f : {x ∈ R : x ̸= 0} → R, där f(x) = ln |x|.
Lösning: Låt först x > 0. Vi får enligt definitionen och (7.21) att

f ′(x) = lim
h→0

ln(x + h) − ln x

h
= lim

h→0

ln (1 + h/x)
h

= 1
x

lim
h→0

ln (1 + h/x)
h/x

= 1
x

.

Låt nu x < 0. Vi får för tillräckligt små h, sådana att x + h < 0 att

f ′(x) = lim
h→0

ln(−(x + h)) − ln(−x)
h

= lim
h→0

ln (1 + h/x)
h

= 1
x

.

Alltså är f deriverbar med derivatan f ′(x) = 1/x. ▲

Exempel 8.6. Derivera funktionen f(x) = sin x.
Lösning: Enligt definitionen och (7.23) är

f ′(x) = lim
h→0

sin(x + h) − sin x

h
= lim

h→0

sin x cos h + cos x sin h − sin x

h

= sin x

(
lim
h→0

cos h − 1
h

)
+ cos x

(
lim
h→0

sin h

h

)
= sin x

(
lim
h→0

cos h − 1
h

)
+ cos x.

Låt oss närmare studera uttrycket
cos h − 1

h
= 1 − 2 sin2(h/2) − 1

h
= −2 sin2(h/2)

h
= −sin(h/2)

h/2 sin(h/2) → 0,

då h → 0, ty

lim
h→0

sin(h/2)
h/2 = 1

och

lim
h→0

sin(h/2) = 0.

Alltså är f deriverbar med derivatan f ′(x) = cos x. ▲

Det är lämnat som en övning att verifiera att d
dx(cos x) = − sin x.

Sats 8.7. Låt funktionen f vara deriverbar i intervallet (a, b). Då är f konti-
nuerlig i (a, b).

Bevis: Antag att f är deriverbar i punkten x ∈ (a, b), d.v.s. gränsvärdet

lim
h→0

f(x + h) − f(x)
h

existerar. Vi vill visa att f är kontinuerlig i x. Enligt (7.2) så vill vi visa att
f(x + h) − f(x) → 0, då h → 0. Vi har att

lim
h→0

(f(x + h) − f(x)) = lim
h→0

f(x + h) − f(x)
h

· h = f ′(x) · lim
h→0

h = 0.

Vi är klara. ■
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8.3 Derivationsregler

Sats 8.8. Låt f och g vara funktioner deriverbara i punkten x. Då följer att
f + g och fg är deriverbara i punkten x. Derivatorna har följande samband:

(f + g)′(x) = f ′(x) + g′(x), (8.2)
(fg)′(x) = f ′(x)g(x) + f(x)g′(x). (8.3)

Om dessutom g(x) ̸= 0 så följer att f/g är deriverbar i punkten x och(
f

g

)′
(x) = f ′(x)g(x) − f(x)g′(x)

g(x)2 . (8.4)

Bevis: Om vi visar sambanden (8.2), (8.3) och (8.4) så följer att f + g, fg
och f/g är deriverbara i punkten x, (eftersom högerleden existerar från förut-
sättningarna i satsen).
Låt oss visa att (f + g)′(x) = f ′(x) + g′(x). Vi har

(f + g)(x + h) − (f + g)(x)
h

= f(x + h) + g(x + h) − f(x) − g(x)
h

= f(x + h) − f(x)
h

+ g(x + h) − g(x)
h

→ f ′(x) + g′(x),

då h → 0.
Låt oss visa produktregeln (8.3).

(fg)(x + h) − (fg)(x)
h

= f(x + h)g(x + h) − f(x)g(x)
h

= f(x + h)g(x + h) − f(x + h)g(x) + f(x + h)g(x) − f(x)g(x)
h

= f(x + h)(g(x + h) − g(x))
h

+ (f(x + h) − f(x))g(x)
h

= f(x + h)(g(x + h) − g(x))
h

+ (f(x + h) − f(x))
h

g(x)

→ f(x)g′(x) + f ′(x)g(x),

då h → 0. Det sista steget följer av sats 6.5 a) och b).
För att visa (8.4) skriver vi f/g som f · 1/g. Om vi vet hur vi deriverar 1/g
så kommer resultatet att följa från produktregeln (8.3).
Låt oss derivera 1/g. Antag att g(x) ̸= 0. Eftersom g är deriverbar i punkten
x är g enligt sats 8.7 kontinuerlig i punkten x och därmed är g enligt lemma
7.16 skild från noll i någon omgivning av punkten x. Antag att |h| är så

82



litet i räkningen nedan så att x + h tillhör denna omgivning och därmed är
g(x + h) ̸= 0. Vi har

1
g(x+h) − 1

g(x)
h

= g(x) − g(x + h)
hg(x + h)g(x)

= −g(x + h) − g(x)
h

· 1
g(x + h)g(x)

→ − g′(x)
g(x)2 ,

då h → 0. Det sista steget följer av sats 6.5 b). Alltså har vi att

d

dx

( 1
g(x)

)
= − g′(x)

g(x)2 .

Från produktregeln (8.3) får vi

d

dx

(
f(x) · 1

g(x)

)
= f(x)

(
− g′(x)

g(x)2

)
+ f ′(x) 1

g(x)

= f ′(x)g(x) − f(x)g′(x)
g(x)2 .

Vi är klara.
■

Ett specialfall av (8.3) är då funktionen g är en konstant. Då är g′ = 0 och vi
får

Följdsats 8.9. Låt f vara en deriverbar funktion i punkten x och a ∈ R. Då
gäller att

(af)′(x) = af ′(x).

Exempel 8.10. Derivera funktionen h(x) = ex ln x.
Lösning: Vi använder (8.2) med f(x) = ex och g(x) = ln x och får att

h′(x) = f ′(x)g(x) + f(x)g′(x) = ex ln x + ex 1
x

▲

Exempel 8.11. Derivera funktionen h(x) = tan x.
Lösning: Enligt (8.4)

h′(x) = d

dx

( sin x

cos x

)
= cos x cos x − sin x(− sin x)

cos2 x
= 1

cos2 x

Alltså är h′(x) = 1/ cos2 x. ▲
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Sats 8.12 (Kedjeregeln). Antag att f är deriverbar i punkten y, g deriverbar
i punkten x och y = g(x). Då är f ◦ g deriverbar i punkten x med derivatan

(f ◦ g)′(x) = f ′(g(x))g′(x). (8.5)

Bevis: Eftersom f är deriverbar så vet vi att funktionen ρ definierad som

ρ(k) =


f(y + k) − f(y)

k
− f ′(y), k ̸= 0,

0, k = 0
(8.6)

uppfyller att ρ(k) → 0, då k → 0. Då k ̸= 0 har vi

f(y + k) − f(y) = k(f ′(y) + ρ(k)). (8.7)

Låt k = k(h) = g(x + h) − g(x) och studera förändringskvoten

f(g(x + h)) − f(g(x))
h

= f(g(x) + g(x + h) − g(x)) − f(g(x))
h

= f(g(x) + k) − f(g(x))
h

= (f ′(g(x)) + ρ(k))k(h)
h

= (f ′(g(x)) + ρ(k))g(x + h) − g(x)
h

→ f ′(g(x))g′(x),

då h → 0 och därmed även k = g(x + h) − g(x) → 0. ■

Exempel 8.13. Derivera funktionen h(x) = ln(cos x).
Lösning: Funktionen h är en sammansättning av funktionerna f(x) = ln x
och g(x) = cos x, nämligen h(x) = (f ◦ g)(x) = f(g(x)). Kedjeregeln ger att

h′(x) = f ′(g(x))g′(x) = 1
cos x

(− sin x) = − tan x.

▲

Exempel 8.14. Derivera funktionen f : (0, ∞) → R sådan att f(x) = xa, där
a ∈ R.
Lösning: Vi utför först omskrivningen

f(x) = xa = eln xa = ea ln x

och använder oss av kedjeregeln och får att

f ′(x) = ea ln xa
1
x

= axa 1
x

= axa−1.

▲
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Exempel 8.15. Derivera funktionen h(x) = sin3 x4.
Lösning: Funktionen h är en sammansättning av de tre funktionerna f1(x) =
x3, f2(x) = sin x och f3(x) = x4. Vi har att h(x) = (f1 ◦ f2 ◦ f3)(x) =
f1(f2(f3(x))). Kedjeregeln kan nu appliceras på detta uttryck. Låt oss först
skriva g = f2 ◦ f3 och använda kedjeregeln i två omgångar. Vi får att

h′(x) = f ′
1(g(x))g′(x) = f ′

1(f2(f3(x)))f ′
2(f3(x))f ′

3(x)
= 3(sin(x4))2 cos(x4)4x3 = 12x3 sin2(x4) cos(x4).

▲

8.4 Linjär approximation och Newton’s metod

Antag att vi vill studera en funktion f i en omgivning av en punkt x0 och att
vi vet värdena av f(x0) och f ′(x0). Då kan vi approximera f i en omgivning
av x0 med hjälp av den räta linje som går genom punkten (x0, f(x0)) och som
har derivatan f ′(x0). Denna linje kallas tangenten för f i punkten x0 och
approximation med denna tangent kallas linjär approximation.

x0

f(x0)

Figur 8.2: Linjär approximation av f i punkten x0.

Tangenten är en linje vars funktion är T (x) = f ′(x0)x+m. Eftersom tangenten
passerar punkten (x0, f(x0)) så är f(x0) = f ′(x0)x0+m. Alltså blir tangentens
funktion

T (x) = f ′(x0)(x − x0) + f(x0). (8.8)

Den räta linje som går genom (x0, f(x0)) och är vinkelrät mot tangenten kallas
för normalen till f i punkten x0.
Exempel 8.16. Använd linjär approximation för att beräkna

√
4.01 sin(0.01).

Lösning: Låt f(x) =
√

4 + x sin x. Enligt produktregeln (8.3) får vi

f ′(x) = sin x

2
√

4 + x
+

√
4 + x · cos x.
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Tangentlinjen för f i punkten x = 0 ges av

T (x) = f ′(0)x + f(0) = 2x.

En approximation för f(0.01) med hjälp av tangenten är alltså T (0.01) = 0.02.
▲

Exempel 8.17. Bestäm alla tangenter till kurvan f(x) = x2 som passerar
punkten (−1, −1).
Lösning: Tangentens funktion i en punkt x0 är enligt (8.8)

T (x) = 2x0x − x2
0.

Eftersom linjen passerar punkten (−1, −1) så är

−1 = −2x0 − x2
0.

Löser vi ut x0 så får vi
x0 = −1 ±

√
2.

Tangenterna ges alltså av

T1,2(x) = 2(±
√

2 − 1)x − (±
√

2 − 1)2.

▲

Låt f vara en deriverbar funktion och studera ekvationen f(x) = 0 som för
många f kan vara analytiskt svårlöst. En algoritm för att approximera rötter
till ekvationen är Newtons metod. Algoritmen baseras på en bra gissning
och därefter en rekursiv procedur för att successivt förbättra approximationen.
Det rekursiva steget utgår från tangenten till f i punkten (xn, f(xn)). Vi finner
en (troligen) förbättrad gissning i den punkt där denna tangent skär x-axeln.
Vi illustrerar med en bild.

xn

xn+1xn+2

Funktionens tangent i punkten (xn, (f(xn)) ges enligt (8.8) av

T (x) = f ′(xn)(x − xn) + f(xn).
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Vi får nästa approximation xn+1 där denna tangent skär x-axeln, d.v.s. T (x) =
0. Alltså gäller att

xn+1 = xn − f(xn)
f ′(xn) . (8.9)

Metoden har några svagheter. Exempelvis fallerar den om f ′(xn) = 0 eller så
närmar sig algoritmen inte något rot.

Exempel 8.18. Använd två iterationer av Newtons metod på ekvationen
x2 − 1 = 0 med startvärdet x1 = 3.
Lösning: Bilda f(x) = x2 − 1. Vi får att

xn+1 = xn − f(xn)
f ′(xn) = xn − x2

n − 1
2xn

och därmed att
x2 = x1 − x2

1 − 1
2x1

= 3 − 8
6 = 5

3 .

Andra iterationen ger

x3 = x2 − x2
2 − 1
2x2

= 5
3 − 25/9 − 1

10/3 = 17
5 .

x1x2x3

Två iterationer enligt ovan ger rotapproximationen x = 17/15 ≈ 1.133. ▲

8.5 Derivatan av inversa funktioner

Exempel 8.19. Visa att

d

dx
(arctan x) = 1

1 + x2 .
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Lösning: Eftersom arctan är en högerinvers till tan har vi identiteten

tan(arctan x) = x, (8.10)

för alla x ∈ R. För att beräkna derivatan av arctan så deriverar vi vänster- och
högerledet. Vänsterledet är en sammansatt funktion och derivatan är enligt
exempel 8.11 och sats 8.12

d

dx
(tan(arctan x)) = 1

cos2(arctan x) · d

dx
(arctan x). (8.11)

Högerledets derivata är 1. Alltså får vi

1
cos2(arctan x) · d

dx
(arctan x) = 1 (8.12)

eller
d

dx
(arctan x) = cos2(arctan x). (8.13)

Låt θ = arctan x. I fallet då θ > 0 så har θ och x det samband som triangeln
nedan visar

1

x

√
1 + x2

θ

Hypotenusan har vi beräknat med hjälp av Pythagoras sats. Med hjälp av
triangeln ser vi att

cos θ = 1√
1 + x2 .

Läser kan själv verifiera att likheten håller i fallet då θ < 0.
Vi har alltså att

d

dx
(arctan x) = cos2(arctan x) = cos2 θ =

( 1√
1 + x2

)2
= 1

1 + x2 .

Vi har visat att derivatan av x 7→ arctan x är x 7→ 1/(1 + x2). ▲

Exempel 8.20. På liknande sätt som exempel 8.19 så kan man visa att

d

dx
(arcsin x) = 1√

1 − x2 , (8.14)

d

dx
(arccos x) = − 1√

1 − x2 . (8.15)

Det är lämnat som en övning för läsaren att verifiera dessa derivator. ▲
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Exempel 8.19 och 8.20 kan generaliseras till

Sats 8.21. Låt f vara en deriverbar och inverterbar funktion. Då gäller att
inversen f−1 är deriverbar i alla punkter y = f(x), där f ′(x) ̸= 0, med deri-
vatan

(f−1)′(y) = 1
f ′(x) . (8.16)

Bevis: Vi vill visa att

lim
h→0

f−1(y + h) − f−1(y)
h

= 1
f ′(x) .

Låt x = f−1(y) och k vara sådant att x+k = f−1(y +h). Alltså är f(x+k) =
y + h = f(x) + h. Från sats 7.12 får vi att f−1 är kontinuerlig och därmed
följer att

k = f−1(y + h) − f−1(y) → 0, (8.17)

då h → 0. Vi får

f−1(y + h) − f−1(y)
h

= k

f(x + k) − f(x) → 1
f ′(x) ,

då k → 0. ■

Kommentar 8.22. Om vi visste att f−1 var deriverbar så kunde vi utgå
ifrån identiteten f(f−1(y)) = y, som gäller för varje y ∈ Df−1 . Derivation med
avseende på variabeln y ger enligt sats 8.12 att

f ′(f−1(y)) · (f−1)′(y) = 1. (8.18)

Alltså har vi att

(f−1)′(y) = 1
f ′(f−1(y)) = 1

f ′(x) . (8.19)

8.6 Definitioner av lokala max- och minpunkter

Definition 8.23. En funktion f sägs ha ett lokalt maximum i punkten
x0 ∈ Df om det finns en omgivning I till x0 sådan att f(x) ⩽ f(x0), för varje
x ∈ I ∩ Df .
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x0

f(x0)

Figur 8.3: Exempelbild på ett lokalt maximum i x0. Omgivningen I är här
orangemarkerad.

Läsaren kan själv förverkliga en definition av hur ett lokalt minimum för
en funktion definieras. En funktion som har ett lokalt maximum eller lokalt
minimum i en punkt x0 sägs ha en lokal extrempunkt i x0.

Exempel 8.24. Låt f(x) = 2−|x−1|. Då gäller att f har ett lokalt maximum
i punkten 1. Ty, f(1) = 2 och f(x) = 2 − |x − 1| ⩽ 2, för varje x ∈ R. I detta
fall kunde alltså omgivningen i definition 8.23 väljas till R.

−1 1 2 3

1

2 f(x) = 2− |x− 1|

▲

Sats 8.25. Låt f vara deriverbar i punkten x0 och ha en lokal extrempunkt i
x0. Då gäller att f ′(x0) = 0.

Bevis: Vi börjar med fallet att f har ett lokalt maximum i punkten x0.
Eftersom f är deriverbar i punkten x0 så är f definierad i en omgivning av
x0. Enligt definitionen av derivata vill vi studera gränsvärdet av

f(x0 + h) − f(x0)
h

,

då h → 0. Täljaren i detta uttryck är för små h alltid icke-positiv eftersom f
har ett lokalt maximum i punkten x0. Nämnaren kommer uppenbarligen vara
positiv för positiva h och negativ för negativa h. Alltså har vi att

f(x0 + h) − f(x0)
h

⩾ 0,
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då h < 0 och

f(x0 + h) − f(x0)
h

⩽ 0,

då h > 0. Eftersom f är deriverbar i punkten x0 så vet vi att detta gränsvärde
existerar. Alltså måste f ′(x0) = 0.
Beviset i fallet att f har ett lokalt minimum i punkten x0 är analogt och
lämnas till läsaren att kontrollera. ■

Vi kallar en punkt x0 ∈ Df för en stationär punkt om f ′(x0) = 0. Om-
vändningen av sats 8.25 gäller inte, d.v.s. om x0 är en stationär punkt till en
funktion f , så har f nödvändigtvis inte ett lokalt extremvärde i punkten x0.
Funktionen x 7→ x3 har en stationär punkt i 0, men inte ett lokalt extremvärde
i punkten 0.
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Figur 8.4: Funktionen x 7→ x3/5 kring 0.

Definition 8.26. En funktion f sägs ha ett globalt maximum i punkten
x0 ∈ Df om f(x) ⩽ f(x0), för varje x ∈ Df .

8.7 Medelvärdessatsen

Sats 8.27 (Rolles sats). Låt f : [a, b] → R vara en kontinuerlig funktion som
är deriverbar på (a, b) och låt f(a) = f(b). Då existerar det en punkt p ∈ (a, b)
sådan att f ′(p) = 0.

a p b

f(a) = f(b)

Bevis: Vi börjar med att inse att om f(x) = f(a), för varje x ∈ [a, b] så
gäller att f ′(x) = 0, för varje x ∈ (a, b). Detta gör att punkten p kan väljas
godtyckligt inom (a, b).
Antag nu att f(x) > f(a), för något x ∈ (a, b). Eftersom f är kontinuerlig
på det slutna intervallet [a, b] så antar f enligt sats 7.20 sitt maxvärde. Då
f(a) = f(b) så gäller att maxvärdet antas i en inre punkt q ∈ (a, b). Eftersom
f är deriverbar i den punkt som ger maxvärdet så gäller enligt sats 8.25 att
f ′(q) = 0. Alltså kan p väljas till detta q.
Fallet då f(x) < f(a) behandlas på ett analogt sätt. ■

Sats 8.28 (Medelvärdessatsen). Låt f : [a, b] → R vara en kontinuerlig funk-
tion som är deriverbar på (a, b). Då existerar det en punkt p ∈ (a, b) sådan

92

http://en.wikipedia.org/wiki/Michel_Rolle


att

f ′(p)(b − a) = f(b) − f(a). (8.20)

a p b

Beviset följer genom att sätta g(x) = x i följande sats:

Sats 8.29 (Generaliserade medelvärdessatsen). Låt f och g vara reellvärda
och kontinuerliga funktion på [a, b] som är deriverbara på (a, b). Då existerar
det en punkt p ∈ (a, b) sådan att

f ′(p)(g(b) − g(a)) = g′(p)(f(b) − f(a)). (8.21)

Om g(a) ̸= g(b) och g′(p) ̸= 0

f ′(p)
g′(p) = f(b) − f(a)

g(b) − g(a) . (8.22)

Bevis: Vi vill visa att det existerar en punkt p så att

f ′(p)(g(b) − g(a)) − g′(p)(f(b) − f(a)) = 0. (8.23)

Bilda

h(x) = f(x)(g(b) − g(a)) − g(x)(f(b) − f(a)) (8.24)

och notera att

h(a) = h(b) = f(a)g(b) − f(b)g(a) (8.25)

Rolles sats 8.27 säger att det existerar en punkt p ∈ (a, b) sådan att h′(p) = 0.
Eftersom

h′(x) = f ′(x)(g(b) − g(a)) − g′(x)(f(b) − f(a)) (8.26)

så följer (8.23). ■

Följdsats 8.30. Låt f vara en deriverbar funktion på ett intervall (a, b) ⊂ Df .
Då gäller att
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a) f ′(x) = 0 för varje x ∈ (a, b) om och endast om f konstant på (a, b).

b) f ′(x) ⩾ 0 för varje x ∈ (a, b) om och endast om f är växande på (a, b).

c) f ′(x) > 0 för varje x ∈ (a, b) implicerar att f är strängt växande på
(a, b).

d) f ′(x) ⩽ 0 för varje x ∈ (a, b) om och endast om f är avtagande på (a, b).

e) f ′(x) < 0 för varje x ∈ (a, b) implicerar att f är strängt avtagande på
(a, b).

Bevis: Låt x0 och x1 vara två godtyckliga punkter i (a, b) sådana att x0 < x1.
Vi börjar med att visa a).
Antag först att f ′(x) = 0, för varje x ∈ (a, b). Vi vill visa att funktionsvärdena
sammanfaller i dessa punkter, d.v.s. att f(x0) = f(x1). Vi använder oss av
medelvärdessatsen 8.28. Alltså finns det ett c ∈ (x0, x1) sådant att

f(x1) − f(x0) = f ′(c)(x1 − x0) = 0,

ty f ′(c) = 0.
Antag nu att f är konstant. Vi vill visa att f ′(x) = 0, för varje x ∈ (a, b).
Detta följer direkt från definitionen.
Låt oss nu visa b).
Antag först att f ′(x) ⩾ 0, för varje x ∈ (a, b). Vi vill visa att f är växande,
d.v.s. att f(x0) ⩽ f(x1). Vi använder oss av medelvärdessatsen 8.28. Alltså
finns det ett c ∈ (x0, x1) sådant att

f(x1) − f(x0) = f ′(c)(x1 − x0) ⩾ 0,

ty f ′(c) ⩾ 0 och x1 − x0 > 0 enligt antagande.
Antag nu det omvända, att f är växande på (a, b). Vi vill visa att f ′(x) ⩾ 0,
för varje x ∈ (a, b). Från definitionen har vi att

f ′(x) = lim
h→0

f(x + h) − f(x)
h

⩾ 0, (8.27)

ty om h > 0 är f(x + h) − f(x) ⩾ 0 och om h < 0 är f(x + h) − f(x) ⩽ 0.
Bevisen av c) – e) följer på ett analogt vis. ■

Notera att det i c) och e) är implikation, och inte ekvivalens. Ett exempel på
en funktion som är strängt växande utan att ha positiv derivata överallt är
x 7→ x3. På samma sätt är x 7→ −x3 ett exempel på en funktion som är strängt
avtagande utan att dess derivata är negativ överallt.
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8.8 L’Hôpitals regel

Sats 8.31. Låt f och g vara reellvärda, deriverbara funktioner i en omgivning
I av a sådana att

lim
x→a

f(x) = lim
x→a

g(x) = 0. (8.28)

Då gäller att

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x) . (8.29)

Bevis: Från den generaliserade medelvärdessatsen 8.23 att för varje x ∈ I
finns ett p mellan a och x sådant att

lim
x→a

f(x)
g(x) = lim

x→a

f(x) − f(a)
g(x) − g(a) = lim

x→a

f ′(p)
g′(p) = lim

p→a

f ′(p)
g′(p) . (8.30)

Alltså gäller (8.29) som kallas L’Hôpitals regel. ■

Notera att L’Hôpitals regel inte kan användas för att visa standard gränsvär-
dena sats 7.23. Detta ty vi behöver veta att exempelvis x 7→ sin x är deriverbar
för att använda L’Hôpitals regel på

lim
x→0

sin x

x
. (8.31)

Detta gränsvärde behöver vi redan känna till för att veta att x 7→ sin x är
deriverbar. Vi får ett cirkelbevis.

Exempel 8.32. Beräkna

lim
x→0

x − ln(1 + x)
4x2 . (8.32)

Lösning: Bilda f(x) = x − ln(1 + x) och g(x) = 4x2. Vi får att f ′(x) =
1 − 1/(1 + x) = x/(1 + x) och g′(x) = 8x. L’Hôptials regel ger nu

lim
x→0

x − ln(1 + x)
4x2 = lim

x→0

x
1+x

8x
= lim

x→0

1
8(1 + x) = 1

8 . (8.33)

▲

Sats 8.33. Låt

lim
x→a

f ′(x)
g′(x) = L, lim

x→a
f(x) = ±∞ och lim

x→a
g(x) = ±∞. (8.34)

Då gäller att

lim
x→a

f(x)
g(x) = L. (8.35)
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Bevis: Vi visar att högergränsvärdet för (8.35) gäller. Vänstergränsvärdet föl-
jer på ett analogt vis.
Låt a < b < c. Den generaliserade medelvärdessatsen 8.23 säger att det exi-
sterar ett tal p ∈ (b, c) sådant att

f ′(p)(g(c) − g(b)) = g′(p)(f(c) − f(b)). (8.36)

Låt oss lösa ut f(b). Vi får

f(b) = f(c) + f ′(p)(g(b) − g(c))
g′(p) . (8.37)

Vi dividerar med g(b) och får

f(b)
g(b) = f ′(p)

g′(p) + 1
g(b)

(
f(c) − g(c)f ′(p)

g′(p)

)
(8.38)

vilket kan skrivas om till
f(b)
g(b) − L = f ′(p)

g′(p) − L + 1
g(b)

(
f(c) − g(c)f ′(p)

g′(p)

)
. (8.39)

För att visa (8.35) så tar vi ett ε > 0 och vill visa att då b och c är tillräckligt
nära a så gäller att ∣∣∣∣f(b)

g(b) − L

∣∣∣∣ < ε. (8.40)

Vi använder triangelolikheten (3.20) och att det finns ett tal δ1 > 0 så att om
c − a < δ1 så gäller att ∣∣∣∣f ′(p)

g′(p) − L

∣∣∣∣ <
ε

2 . (8.41)

för att få ∣∣∣∣f(b)
g(b) − L

∣∣∣∣ ⩽ ∣∣∣∣f ′(p)
g′(p) − L

∣∣∣∣+ 1
|g(b)|

∣∣∣∣f(c) − g(c)f ′(p)
g′(p)

∣∣∣∣ (8.42)

<
ε

2 + 1
|g(b)| (|f(c)| + |g(c)||L + ε/2|) (8.43)

= ε

2 + K

|g(b)| , (8.44)

där K = |f(c)| + |g(c)||L + ε| är en konstant för givet c. Från (8.34) vet vi att
det finns ett tal δ2 så att om b − a < δ2 så gäller att

K

|g(b)| <
ε

2 . (8.45)

Med andra ord är ∣∣∣∣f(b)
g(b) − L

∣∣∣∣ < ε (8.46)

vilket ger (8.35). ■
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8.9 Konvexitet och konkavitet (överkurs)

Definition 8.34. En funktion f sägs vara konvex i intervallet [a, b] ⊂ Df

om det för varje x1, x2 ∈ [a, b] gäller att

f(tx1 + (1 − t)x2) ⩽ tf(x1) + (1 − t)f(x2) (8.47)

för alla t sådana att 0 ⩽ t ⩽ 1.

Kommentar 8.35. En funktion f som är konvex på [a, b] uppfyller att varje
sekant från (x1, f(x1)) till (x2, f(x2)), med x1, x2 ∈ [a, b], ligger ovanför eller
sammanfaller med f .

a tx1 + (1 − t)x2 b

tf(x1) + (1 − t)f(x2)
f(tx1 + (1 − t)x2)

(x1, f(x1))

(x2, f(x2))

Figur 8.5: En sekant är aldrig under en konvex funktion.

För att visa detta så tar vi fram den orangefärgade linjens funktion. Eftersom
linjen passerar punkterna (x1, f(x1)) och (x2, f(x2)) så blir funktionen

L(x) = (f(x2) − f(x1))x + x2f(x1) − x1f(x2)
x2 − x1

.

Om vi nu beräknar värdet i x = tx1 + (1 − t)x2 får vi

L(tx1 + (1 − t)x2) = tf(x1) + (1 − t)f(x2).

Alltså är sekanten ej under f i intervallet (x1, x2).

Exempel 8.36. Visa att funktionen f(x) = 1−|x| inte är konvex i intervallet
[−2, 2].
Lösning: Funktionen f är ej konvex ty för x1 = −1, x2 = 1 och t = 1/2 får
vi att vänsterledet i (8.47) är f(0) = 1 medan högerledet är

f(−1)
2 + f(1)

2 = 0.

▲
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Exempel 8.37. Visa att funktionen g(x) = x2 är konvex.
Lösning: Låt x1, x2 ∈ R och 0 ⩽ t ⩽ 1. Vi vill visa att högerledet minus
vänsterledet i (8.47) är icke-negativt. Alltså

tx2
1 + (1 − t)x2

2−(tx1 + (1 − t)x2)2

= t(1 − t)x2
1 + t(1 − t)x2

2 − 2t(1 − t)x1x2

= t(1 − t)(x1 − x2)2 ⩾ 0.

Detta ger att g är en konvex funktion. ▲

Sats 8.38. Låt f vara deriverbar i intervallet (a, b) ⊂ Df . Då gäller att f är
konvex i (a, b) om och endast om f ′ är växande i (a, b).

Bevis: Antag först att f ′ är växande i (a, b). Vi vill visa att f är konvex, d.v.s.
att för varje x1, x2 ∈ (a, b) gäller att

tf(x1) + (1 − t)f(x2) − f(tx1 + (1 − t)x2) ⩾ 0, (8.48)

för varje t ∈ [0, 1]. Låt c = tx1 + (1 − t)x2. Vi har att

tf(x1) + (1 − t)f(x2) − f(c) = tf(x1) + (1 − t)f(x2) − (t + 1 − t)f(c)
= t(f(x1) − f(c)) + (1 − t)(f(x2) − f(c))

och från medelvärdessatsen 8.28 att

t(f(x1) − f(c)) + (1 − t)(f(x2) − f(c))
= tf ′(d1)(x1 − c) + (1 − t)f ′(d2)(x2 − c),

där d1 ∈ (x1, c) och d2 ∈ (c, x2). Om vi nu använder oss av c = tx1 + (1 − t)x2,
så får vi att

tf ′(d1)(x1 − c)+(1 − t)f ′(d2)(x2 − c)
= t(1 − t)(f ′(d2) − f ′(d1))(x2 − x1) ⩾ 0,

eftersom alla faktorerna är icke-negativa.
Antag nu att f är konvex. Vi vill visa att f ′ är växande, d.v.s. om x1 < x3
är f ′(x1) ⩽ f ′(x3). Låt oss börja med att visa att för konvexa funktioner är
sekanternas lutning växande. Låt x1 < x2 < x3. Vi illustrerar med en bild
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a x1 x2 x3 b

P1

P2

P3

Figur 8.6: Relationen mellan olika sekanters lutning

Låt L12 och L13 vara räta linjer mellan punkterna P1 och P2 respektive P1
och P3. I kommentar 8.35 så visades att f(x2) är mindre än eller sammanfaller
med L13(x2). Alltså är lutningen på L12 mindre än lutningen på L13. Om f
dessutom är deriverbar och vi låter x2 → x1 så får vi från sats 6.5 d) att

f ′(x1) ⩽ L′
13(x) = f(x3) − f(x1)

x3 − x1
. (8.49)

På samma vis kan vi visa att

L′
13(x) = f(x3) − f(x1)

x3 − x1
⩽ f ′(x3). (8.50)

Alltså är f ′(x1) ⩽ f ′(x3) och vi är klara. ■

Följdsats 8.39. Låt f vara två gånger deriverbar i intervallet (a, b) ∈ Df .
Då gäller att f ′′(x) ⩾ 0, för varje x ∈ (a, b) om och endast om f är konvex.

Bevis: Från sats 8.30 b) har vi att f ′′(x) ⩾ 0, för varje x ∈ [a, b] om och endast
om f ′ är växande. Från sats 8.38 har vi att f ′ är växande om och endast om
f är konvex. ■

Definition 8.40. En funktion f sägs vara konkav i [a, b] ⊆ Df om −f är
konvex i [a, b].

Definition 8.41. Låt f vara en funktion definierad på ett intervall I. En
punkt x0 ∈ I sägs vara en inflexionspunkt till f om det finns ett δ > 0
sådant att f är konvex i ett av intervallen [x0 − δ, x0] och [x0, x0 + δ], och
konkav i det andra.

Sats 8.42. Låt f vara två gånger deriverbar och låt f ′′ vara kontinuerlig. Om
f har en inflexionspunkt i x0 så är f ′′(x0) = 0.
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Bevis: Antag att f har en inflexionspunkt i x0. Vi kan anta att det finns då
ett δ > 0 sådant att f är konvex i [x0 − δ, x0] och konkav i [x0, x0 + δ]. Enligt
sats 8.39 så är f ′′(x) ⩾ 0, för varje x ∈ (x0 − δ, x0) och enligt övning 8.6 så är
f ′′(x) ⩽ 0, för varje x ∈ (x0, x0 + δ). Eftersom f ′′ är kontinuerlig i x0 så måste
f ′′(x0) = 0. ■

8.10 Asymptoter

Definition 8.43. En linje x = a sägs vara en lodrät asymptot till en funk-
tion f om f(x) går mot +∞ eller −∞ då x → a+ eller då x → a−.

Exempel 8.44. Funktionen f(x) = 1/(x − 1), definierad för x > 1 har den
lodräta asymptoten x = 1. Ty, f(x) → +∞, då x → 1+.

1 2 3 4 5 6

1

2

3

4

Figur 8.7: Den streckade linjen är asymptoten x = 1.

▲

Definition 8.45. En linje y = kx + m är en sned asymptot till en funktion
f om

lim
x→∞(f(x) − (kx + m)) = 0 (8.51)

eller

lim
x→−∞

(f(x) − (kx + m)) = 0. (8.52)
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x

f(x)

kx + m

Om en funktion f har en sned asymptot då x → ∞ så kan vi beräkna k och
m. Vi observerar först att från (8.51) får vi att

lim
x→∞

f(x) − (kx + m)
x

= 0. (8.53)

Eftersom m/x → 0, då x → ∞ så gäller att

k = lim
x→∞

f(x)
x

. (8.54)

Från (8.51) har vi även att

m = lim
x→∞(f(x) − kx). (8.55)

Exempel 8.46. Funktionen f(x) = 3x/10 + arctan x har de sneda asympto-
terna h1(x) = 3x/10 + π/2 och h2(x) = 3x/10 − π/2.

−5 −4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

h1

h2

▲
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8.11 Grafritning

Exempel 8.47. Rita kurvan till f(x) = xe−x, definierad för x ⩾ 0, med hjälp
av att

a) bestäm stationära punkter och avgör, med hjälp av ett teckenschema av
f ′, var f är strängt avtagande och strängt växande.

b) bestäm inflextionspunkter och avgör, med hjälp av ett teckenschema av
f ′′, var f är konvex och konkav.

c) beräkna eventuella asymptoter.

Lösning:

a) Låt oss derivera f . Vi får att

f ′(x) = e−x − xe−x = (1 − x)e−x,

definierad för alla x ∈ (0, ∞). I detta fall har vi endast en stationär
punkt i x = 1. Vi gör ett teckenschema enligt följande, där symbolen ⋆
betyder att funktionen i fråga inte är definierad

x 0 1
f ′(x) ⋆ + 0 −
f(x) 0 ↗ e−1 ↘

b) Vi deriverar f ′ och får att

f ′′(x) = −e−x − (1 − x)e−x = (x − 2)e−x.

Vi får att f har en inflextionspunkt i x = 2. Vi gör ett teckenschema
enligt följande

x 0 2
f ′′(x) ⋆ − 0 +
f(x) 0 ⌢ 2e−2 ⌣

c) Eftersom funktionen är kontinuerlig på ett slutet intervall så finns det
inga lodräta asymptoter. Om y = kx + m är en sned asymptot så får vi
k genom

k = lim
x→∞

f(x)
x

= lim
x→∞ e−x = 0

och m genom

m = lim
x→∞(f(x) − kx) = lim

x→∞
x

ex
= 0.

Alltså är y = 0 en sned asymptot.
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Grafen får följande utseende

1 2 3 4 5

e−1

Figur 8.8: Grafen till f(x) = xe−x.

Notera att funktionen är konkav före den orangefärgade pricken och konvex
därefter. ▲

Exempel 8.48. Rita kurvan

f(x) = e−x

2x − 1

med hjälp av ett teckenstudium av derivatan. Bestäm alla lokala extrempunk-
ter och asymptoter.
Lösning: Först noterar vi att Df = R \ {1/2} och bestämmer derivatan som
blir

f ′(x) = −e−x(2x + 1)
(2x − 1)2 .

Stationära punkter blir således endast x = −1/2. Vi får följande teckenschema

x −1/2 1/2
f ′(x) + 0 − ⋆ −
f(x) ↗ −√

e/2 ↘ ⋆ ↘

Låt oss nu leta efter sneda asymptoter. Eftersom

lim
x→−∞

f(x)
x

= −∞

saknas sned asymptot vid −∞. Men då

lim
x→∞

f(x)
x

= 0 och lim
x→∞ f(x) = 0

så finns den sneda asymptoten y = 0 vid ∞.
Vad gäller lodräta asymptoter så måste vi undersöka vad som händer kring
x = 1/2. Vi får att

lim
x→1/2−

f(x) = −∞ och lim
x→1/2+

f(x) = ∞.

Alltså är x = 1/2 en lodrät asymptot.

103



Nu har vi all information och får grafen

−1/2 1/2

Figur 8.9: Grafen till f(x) = e−x

2x−1 .

▲

8.12 Variationsolikheter

Exempel 8.49 (Tentamen 2011-10-18, 35%). Visa att ex ⩾ 1+sin x, för varje
x ⩾ 0.
Lösning: Om vi sätter f(x) = ex − 1 − sin x så blir uppgiften att visa att
f(x) ⩾ 0 för varje x ⩾ 0. Eftersom ex > 1 och cos x ⩽ 1 då x > 0 så ser vi att
f ′(x) = ex − cos x > 0 då x > 0. Eftersom derivatan f ′ är positiv då x > 0
(och f kontinuerlig då x ⩾ 0) följer att funktionen f är strängt växande då
x ⩾ 0. Eftersom f(0) = 0 så följer det nu att f(x) ⩾ 0 för alla x ⩾ 0. ▲

8.13 Optimering

Exempel 8.50. Ett företag vill minimera materialåtgången vid tillverkningen
av cylinderformade konservburkar av en viss volym. Vilket förhållande ska då
råda mellan burkens höjd och radie?
Lösning: Låt h och r vara höjden respektive radien av burken. Vi har att
volymen är

V = πr2h.

Arean består av två ytor av storleken πr2 samt sidan som har höjden h och
bredden 2πr. Alltså är arean

A(r) = 2πr2 + 2πrh = 2πr2 + 2V

r
.
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Eftersom volymen V är konstant vill vi nu minimera funktionen A, då r > 0.
Vi ser direkt att

lim
r→0+

A(r) = ∞ och lim
r→∞ A(r) = ∞.

Då A är deriverbar måste minvärdet finnas i någon stationär punkt. Låt oss
derivera,

A′(r) = 4πr − 2V

r2 .

De stationära punkterna uppfyller att A′(r) = 0, alltså

4πr − 2V

r2 = 0.

Vi löser ut r och får att arean är minimerad då

rmin =
(

V

2π

)1/3
.

Förhållandet mellan höjden och radien ska alltså vara

h

rmin
= V

πr3
min

= 2.

▲

Exempel 8.51 (Tentamen 2011-10-18, 53%). Låt x ⩾ 0 och y ⩾ 0 vara två
tal vars summa är 6. Ange det minimala värdet som uttrycket 2x2 + y2 kan
anta.
Lösning: Eftersom vi vet att x + y = 6 kan vi skriva y = 6 − x. Problemet är
alltså att hitta minimum av funktionen f(x) = 2x2 + (6 − x)2 på intervallet
[0, 6]. Genom att kvadratkomplettera ser vi att

f(x) =2x2 + (62 + x2 − 12x) = 3x2 − 12x + 36 = 3(x2 − 4x + 12)
=3((x − 2)2 + 8).

Det minsta värde som f kan anta (på hela reella axeln) är 3 · 8 = 24, som
antas då x = 2. Eftersom x = 2 ligger i intervallet [0, 6] följer att f :s minsta
värde på detta intervall är 24.

▲

Exempel 8.52. Bestäm det minsta avståndet från kurvan y = x2 − 4 till
origo.
Lösning: Vi vill minimera uttrycket

√
x2 + y2, då (x, y) är en punkt på den

givna kurvan. För att slippa rottecknet så väljer vi att minimera avståndet i
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kvadrat, vars lösning sammanfaller med det efterfrågade svaret. Alltså vill vi
minimera

f(x) = x2 + y2 = x2 + (x2 − 4)2 = x4 − 7x2 + 16,

för x ∈ R. Eftersom funktionen är deriverbar och

lim
x→±∞

f(x) = ∞,

så finner vi minimivärdet i en stationär punkt. Derivation ger att f ′(x) = 4x3−
14x. Alltså är det stationära punkterna x = 0 och x = ±

√
7/2. Vi beräknar

funktionens värde i dessa punkter och får att f(0) = 16 och f(±
√

7/2) = 15/4.
Alltså är det minsta avståndet från kurvan y = x2 − 4 till origo

√
15/2.

▲

8.14 Sammanfattning av derivator av elementära funktioner

I tidigare delkapitel har vi bland annat visat följande samband

d

dx
(ex) = ex (8.56)

d

dx
(ln |x|) = 1

x
(8.57)

d

dx
(xa) = axa−1, a ̸= 0 (8.58)

d

dx
(sin x) = cos x (8.59)

d

dx
(cos x) = − sin x (8.60)

d

dx
(tan x) = 1

cos2 x
(8.61)

d

dx
(arctan x) = 1

1 + x2 (8.62)

d

dx
(arcsin x) = 1√

1 − x2 (8.63)

d

dx
(arccos x) = − 1√

1 − x2 (8.64)

8.15 Övningar

Övning 8.1. Derivera följande funktioner

a) x 7→ x sin x cos x2

b) x 7→ ex sin x

c) x 7→ x ln x2 + 4ax, där a ∈ R
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d) x 7→ cos x(sin x)−1

Övning 8.2. Visa att derivatan av x 7→ cos x är x 7→ − sin x.

Övning 8.3. [2009-06-01, uppgift 2] Bestäm ett värde på konstanten a så att
kurvorna y = ax2 och y = ln x har samma tangent i någon gemensam punkt.

Övning 8.4. Visa (8.14) och (8.15).

Övning 8.5. Låt f vara deriverbar i intervallet (a, b). Visa att f är konkav
om och endast om f ′ är avtagande i (a, b).

Övning 8.6. Låt f vara två gånger deriverbar i intervallet (a, b). Visa att f
är konkav om och endast om f ′′(x) ⩽ 0, för varje x ∈ (a, b).

Övning 8.7. Bestäm det största och minsta värdet som uttrycket

j2

1 + (j − 1)2

antar för j ∈ {n ∈ N : n ⩾ 2}.

Övning 8.8. [2006-12-20, uppgift 5] Visa att

ln
((1 + x

1 − x

)1/2x
)

> 1,

då 0 < x < 1.

Övning 8.9. [2008-12-15, uppgift 2] Låt funktionen

f(x) = 1
x

− 1
x2 − 1

x3

vara definierad för 1 ⩽ x < ∞. Bestäm värdemängden för f .

Övning 8.10. Låt f(x) = x ln x.

a) Vad är definitionsmängden för f?

b) Är f begränsad?

c) Är f strängt växande?

d) Finns det något intervall där f är strängt avtagande?

e) Är f inverterbar?

f) Är det sant att f(x) > −1/3 för alla positiva tal x?

Övning 8.11. Studera ekvationen x5 − 6x + 1 = 0.

a) Visa att det finns minst en lösning i intervallet [−1, 1].
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b) Bestäm det exakta antalet lösningar i intervallet [−1, 1].

Övning 8.12. Låt g(t) = te−t2/2. Bestäm alla lokala extrempunkter och alla
eventuella asymptoter, skissa kurvan y = g(t) och bestäm värdemängden till
funktionen.

Övning 8.13. Låt g(t) = ln(1 + t2) − arctan t. Bestäm alla lokala extrem-
punkter och alla eventuella asymptoter, skissa kurvan y = g(t) och bestäm
värdemängden till funktionen.

Övning 8.14. Bestäm det största och minsta värdet som funktionen

f(x) = arcsin(4x) + 2
√

1 − 16x2

antar i intervallet [−1/4, 1/4].

Övning 8.15. [2007-05-31, uppgift 2] Visa att ex(1 − x) ⩽ 1 för alla x.

Övning 8.16. [2007-05-31, uppgift 5] Avgör om ekvationen x−x = 3 har en
lösning då x > 0.

Övning 8.17. [2007-12-17, uppgift 1] Låt f(x) = xe−1/x, då x ̸= 0. Beräkna
gränsvärdena limx→0+ f(x) och limx→0− f(x), samt bestäm eventuella sneda
asymptoter då x → ±∞. Använd dessa resultat för att skissera funktionens
graf.

Övning 8.18. [2007-12-17, uppgift 2] Visa att ln x ⩽ x − 1 då x > 0.

Övning 8.19. [2007-12-17, uppgift 5] Visa att y(x) = sinh x
def= (ex − e−x)/2

har en invers på intervallet (−∞, ∞), samt beräkna denna.

Övning 8.20. [2008-03-10, uppgift 6] Bestäm värdemängden till funktionen

f(x) = arctan
(
2x2 + 1

)
− arctan

(
x2

x2 + 1

)
.

Övning 8.21. [2008-12-15, uppgift 5] Visa att

ln x > 2x − 1
x + 1 ,

då x > 1.

Övning 8.22. [2009-03-09, uppgift 2] Beräkna största och minsta värdet av
funktionen f(x) =

√
1 − x + arcsin x för x ∈ [−1, 1].

Övning 8.23. [2009-03-09, uppgift 7] Låt f(x) = ex + e−x − x.

a) Bestäm funktionens eventuella stationära punkter.

b) Har funktionen ett minsta värde? Bestäm i så fall en punkt där detta
värde antas.
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Övning 8.24. Låt h(x) = (x2 − 1)e2x−4.

a) Bestäm en ekvation för tangenten till kurvan y = h(x) i den punkt på
kurvan som har x-koordinat 2.

b) Använd linjär approximation i x = 2, dvs tangentlinjen, för att uppskat-
ta funktionsvärdet h(2.1).

Övning 8.25. Vid laseroptimering försöker man minimera laserfläckens stor-
lek på målet genom att variera strålen ut från lasern på lämpligt sätt. Man
använder formeln

ω = ω0

√
1 +

(
λz

πω2
0

)2

där ω är radien av laserfläcken på målet, ω0 är radien ut från lasern, λ är
våglängden (fix) och z är avståndet till målet. Om våglängden är 500 nm, hur
liten laserfläck kan man få om lasern riktas mot ett mål på månen?
Övning 8.26. I artikeln Weak perturbations of the p-Laplacian av T. Ekholm,
H. Kovarik och R. L. Frank finner vi att

a)

xp − Axd ⩾ −p − d

p

(
d

p

) d
p−d

A
p

p−d ,

där x, A, p och d är positiva konstanter och p > d. Kan du verifiera
olikheten?

b)

sup
v>0

(
Apv − Bv

p
p−d

)
= A

p2
d B− p−d

d

(
p − d

p

) p−d
d d

p
,

där A, B, p och d är positiva konstanter och p > d. Kan du verifiera
likheten?

Övning 8.27. Använd linjärapproximation av x 7→ √
x runt x = 4 för att

approximera

a)
√

4.1,

b)
√

64.

Förklara varför den ena approximationen är mycket bättre än den andra.
Övning 8.28. Bestäm alla värden på konstanten a ∈ R så att kurvorna
y = ax + a och y = x2 har samma tangent i någon gemensam punkt.
Övning 8.29. Låt

f(x) =
{

x2 sin(1/x) om x ̸= 0,

0 om x = 0.

För x ̸= 0 kan vi använda deriveringsreglerna för att konstatera att f är
deriverbar i x och för att beräkna derivatan.
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a) Visa (förslagsvis med definitionen av derivata) att f är deriverbar i x = 0.
Bestäm f ′(0).

b) Bestäm f ′(x) för alla x ∈ R \ 0.

c) Är f ′ en kontinuerlig funktion?

Övning 8.30. [2008-03-10, uppgift 8] Vilket av talen n
√

n är störst, där n ⩾ 2
är ett heltal?
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9 Taylors formel

It is our choices, Harry, that show what we truly are, far more than our
abilities.

Albus Dumbledore – Chamber of Secrets

9.1 Några trevande försök till approximation

Funktionen x 7→ arctan x har följande graf

−2 −1 1

−2

−1

1

2

Linjär approximation i punkten 0 av x 7→ arctan x är linjen x 7→ x, alltså

−2 −1 1

−2

−1

1

2

Vi skulle kunna försöka få en bättre approximation genom att lägga till högre
gradtal i vår polynomapproximation. Eftersom funktionen x 7→ arctan x är
udda försöker vi korrigera med en x3 term. Vi testar med x 7→ x − x3/8
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−2 −1 1

−2

−1

1

2

Kanske blir det bättre nära 0 med polynomet x 7→ x − x3/4

−2 −1 1

−2

−1

1

2

Vi fortsätter med en korrigering av en x5 term. Vi testar med x 7→ x − x3/4 +
x5/10

−2 −1 1

−2

−1

1

2

eller kanske x 7→ x − x3/4 + x5/7
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−2 −1 1

−2

−1

1

2

I nästa delkapitel kommer vi kunna bestämma det polynom som bäst approx-
imerar den givna funktionen.

9.2 Formulering av satsen

I detta delkapitel är det nödvändigt att derivera funktioner många gånger. Vi
inför därför notationen f (n)(x) som den n:te derivatan av f . Exempelvis är
alltså f (0)(x) = f(x), f (1)(x) = f ′(x) och f (2)(x) = f ′′(x).

Sats 9.1 (Taylors formel). Låt f vara en n gånger deriverbar funktion defini-
erad i en omgivning av 0, sådan att f (n) är kontinuerlig. Då följer att

f(x) =
n−1∑
k=0

f (k)(0)
k! xk + f (n)(α)xn

n! , (9.1)

för något α mellan 0 och x.

Bevis: Vi noterar först att (9.1) stämmer för x = 0. Låt

p(x) =
n−1∑
k=0

f (k)(0)
k! xk (9.2)

och definiera för fixerat x ̸= 0 konstanten

C = f(x) − p(x)
xn

. (9.3)

Identitet (9.1) är ekvivalent med att visa identiteten

Cn! = f (n)(α). (9.4)

Notera att definitionen av p medför att

f(0) = p(0), f ′(0) = p′(0), . . . , f (n−1)(0) = p(n−1)(0). (9.5)

Bilda
g(t) = f(t) − p(t) − Ctn.
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Från (9.5) följer att

g(0) = g′(0) = . . . = g(n−1)(0) = 0. (9.6)

Eftersom även g(x) = 0 från definitionen av C så följer att medelvärdessatsen
8.28 att det finns ett x1 mellan 0 och x sådant att g′(x1) = 0. Nu följer igen av
medelvärdessatsen att det finns ett x2 mellan 0 och x1 sådant att g′′(x2) = 0.
Denna procedur tar slut efter n steg.

0 xn x2 x1 x· · ·

Det sista steget säger att det finns ett α = xn mellan 0 och xn−1 sådant att
g(n)(xn) = 0. Alltså har vi

0 = g(n)(xn) = f (n)(xn) − Cn!,

vilket ger (9.4). Alltså är satsen visad. ■

Definition 9.2. Låt f vara n gånger deriverbar. Polynomet

n∑
k=0

f (k)(a)
k! (x − a)k (9.7)

kallas Taylorpolynomet till f kring a av gradtal n.

Exempel 9.3. Bestäm Taylorpolynomet av grad fyra kring 0 till f(x) = ex.
Lösning: Det som efterfrågas är

p4(x) =
4∑

k=0

f (k)(a)
k! (x − a)k

= f(0) + f ′(0)x + f ′′(0)x2

2! + f (3)(0)x3

3! + f (4)(0)x4

4!

Vi har att f(0) = f ′(0) = . . . = f (4)(0) = 1. Alltså blir polynomet

p4(x) = 1 + x + x2

2 + x3

6 + x4

24 .
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Figur 9.1: Den blå grafen är f och den röda är p4.

▲

Exempel 9.4 (Tentamen 2011-10-18, 52%).

a) Bestäm Taylorpolynomet av grad 1 kring x = 0 till funktionen

f(x) = (1 + x)3/2.

b) Visa att om vi använder detta Taylorpolynom P (x) för att approximera
värdet (1 + a)3/2 för tal a i intervallet [−1/2, 1/2], kan vi då vara säkra
på att felet, d.v.s.

∣∣∣P (a) − (1 + a)3/2
∣∣∣, alltid blir mindre än 1/5?

Lösning:

a) Eftersom f(x) = (1+x)3/2 har vi f ′(x) = 3
2(1+x)1/2 och f ′′(x) = 3

4
√

1+x
.

Taylorpolynomet av grad 1 till f kring x = 0 ges av

P (x) = f(0) + f ′(0)x = 1 + 3x

2 .

b) Enligt Taylors formel har vi för varje −1 < x < 1 att

f(x) = P (x) + f ′′(α)
2 x2,
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där talet α ligger mellan 0 och x. Låt a ∈ [−1/2, 1/2]. Då har vi enligt
formeln ovan att

|f(a) − P (a)| =
∣∣∣∣f ′′(α)

2 a2
∣∣∣∣ =

∣∣∣∣ 3
8
√

1 + α
a2
∣∣∣∣ ⩽ 3

8
√

1 − 1/2
· 1

4 =

=3
√

2
32 <

6
32 <

1
5 ,

eftersom α ligger mellan 0 och a, d.v.s. vi vet att α ∈ [−1/2, 1/2]. Alltså
har vi sett att felet blir mindre än 1/5.

▲

Exempel 9.5. Låt f(x) = ln(1 + x).

a) Bestäm Taylor polynomet p2 till f av gradtal 2 kring x = 0.

b) Ange resttermen R3(x) = f(x) − p2(x).

c) Visa att |R3(x)| < 1/3000 för alla 0 ⩽ x < 1/10.

Lösning:

a) Eftersom f ′(x) = (1 + x)−1 och f ′′(x) = −(1 + x)−2 så får vi

p2(x) = f(0) + f ′(0)x + f ′′(0)x
2 = x − x2

2 .

b) Då f ′′′(x) = 2(1 + x)−3 blir

R3(x) = f ′′′(α)x3

3! = x3

3(1 + α)3 ,

där α är något tal mellan 0 och x.

c) Vi har att

|R3(x)| =
∣∣∣∣∣ x3

3(1 + α)3

∣∣∣∣∣ <

∣∣∣∣ 1
3000(1 + α)3

∣∣∣∣ <
1

3000 .

.

▲

Exempel 9.6. Det är intressant att se hur Taylorpolynomen till en given
funktion blir bättre och bättre ju fler termer som vi inkluderar. Studera f(x) =
cos x. Eftersom f (2i)(0) = (−1)i och f (2i+1)(0) = 0, för i ∈ N, så har vi att
Taylorpolynomet p2n till f ges av

p2n(x) = 1 − x2

2! + x4

4! − x6

6! + . . . + (−1)n x2n

(2n)! .

116



−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
−1

1

Figur 9.2: Den blå grafen är x 7→ cos x och den röda är p0(x) = 1.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
−1

1

Figur 9.3: Den blå grafen är x 7→ cos x och den röda är p2(x) = 1 − x2/2!.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
−1

1

Figur 9.4: Den blå grafen är x 7→ cos x och den röda är p4(x) = 1−x2/2!+x4/4!.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
−1

1

Figur 9.5: Den blå grafen är x 7→ cos x och den röda är p6(x) = 1 − x2/2! +
x4/4! − x6/6!.
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Figur 9.6: Den blå grafen är x 7→ cos x och den röda är p8.

▲

Följdsats 9.7 (Taylors formel kring godtycklig punkt). Låt f vara en n gånger
deriverbar funktion definierad i en omgivning av a, sådan att f (n) är kontinu-
erlig. Då följer att

f(x) =
n−1∑
k=0

f (k)(a)
k! (x − a)k + f (n)(α)(x − a)n

n! , (9.8)

för något α mellan a och x.

Bevis: Bilda funktionen g(t) = f(t + a). Då gäller att g uppfyller förut-
sättningarna för sats 9.1. Vi får att det finns ett α0 mellan 0 och t sådant
att

g(t) =
n−1∑
k=0

g(k)(0)
k! tk + g(n)(α0)tn

n! . (9.9)

Uttryckt i f blir det

f(t + a) =
n−1∑
k=0

f (k)(a)
k! tk + f (n)(a + α0)tn

n! , (9.10)

eftersom g(k)(t) = f (k)(t + a), för varje k ⩾ 0. Låt nu t = x − a, vi får att

f(x) =
n−1∑
k=0

f (k)(a)
k! (x − a)k + f (n)(a + α0)(x − a)n

n! . (9.11)

Det räcker med att observera att α = a + α0 är ett tal mellan a och x.
■

Exempel 9.8. Bestäm Taylorpolynomet i punkten π av ordning 3 till funk-
tionen f(x) = sin x.
Lösning: Det sökta polynomet p3 är

p3(x) = f(π) + f ′(π)(x − π) + f ′′(π)(x − π)2

2 + f ′′′(π)(x − π)3

6 .
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Vi deriverar därför f och får att

f ′(x) = cos x, f ′′(x) = − sin x, och f ′′′(x) = − cos x.

Sätter vi in de sökta värdena får vi

p3(x) = −(x − π) + (x − π)3

6 .

Man kan utveckla parenteserna om man vill, men själv tycker jag att ovanstå-
ende uttryck är den bästa formen att presentera svaret på. Med formen

p3(x) = x3

6 − πx2

2 + (π2 − 2)x
2 − π3 − 6π

6

är det till och med svårt att direkt se att p3(π) = 0. ▲

9.3 Stora ordonotationen

Definition 9.9. Låt f och g vara funktioner definierade i (a, ∞), för något a.
Vi säger att f tillhör mängden stora ordo av funktionen g då x → ∞, och
skriver O(g(x)) om det finns tal M och x0 sådana att

|f(x)| ⩽ M |g(x)|,

för varje x > x0.

Exempel 9.10. Funktionen x 7→ x ln x tillhör O(x3) då x → ∞, ty standard-
gränsvärden (se sats 5.7) ger

|x ln x| ⩽
∣∣∣x3
∣∣∣ ,

för varje x > 1. I detta fallet är M och x0 från definitionen båda 1. ▲

Definition 9.11. Låt f och g vara funktioner definierade i en omgivning till
a. Vi säger att f tillhör mängden stora ordo av funktionen g kring a, och
skriver O(g(x)) om det finns tal M och δ > 0 sådana att

|f(x)| ⩽ M |g(x)|,

för varje x ∈ (a − δ, a + δ).

Exempel 9.12. Funktionen x 7→ 4x4 tillhör O(x2) kring 0, ty för M = 4 och
δ = 1 i definitionen får vi ∣∣∣4x4

∣∣∣ ⩽ 4
∣∣∣x2
∣∣∣ ,

för varje x ∈ (−1, 1). ▲
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Vi kommer i givna situationer, då det klart framgår, att utelämna informatio-
nen om O(g(x)) betraktas kring en punkt eller vid oändligheten.
I många sammanhang är det praktiskt att införa konventionen

f(x) = O(g(x)) ,

där f och g är givna funktioner. Det vi menar är att f är någon funktion i
mängden O(g(x)). Med denna notation kan vi formulera räknereglerna

Sats 9.13. Låt f och g vara funktioner sådana att O(f(x)) och O(g(x)) är
definierade kring en punkt eller vid ∞, då gäller att

O(f(x)) O(g(x)) = O(f(x)g(x)) . (9.12)

Om m ⩽ n gäller kring 0 att

O(xm) + O(xn) = O(xm) . (9.13)

och kring ∞ gäller att

O(xm) + O(xn) = O(xn) . (9.14)

Bevis: Låt oss visa dessa identiteter i fallet att stora ordo är kring 0. En
mängdidentitet kan erhållas genom att visa att vänsterledet är en delmängd
av högerledet och tvärt om.
Vi börjar med (9.12). Låt oss visa att O(f(x)) O(g(x)) ⊆ O(f(x)g(x)). Tag
h ∈ O(f(x)) O(g(x)), då finns enligt konventionen en funktion hf ∈ O(f(x))
och hg ∈ O(g(x)) sådana att h = hf · hg. Vi vill visa att h ∈ O(f(x)g(x)). Då
hf ∈ O(f(x)), så finns det Mf och δf > 0 sådana att

|hf (x)| ⩽ Mf |f(x)|,

för varje x ∈ (−δf , δf ). Liknande gäller för hg med konstanterna Mg och δg.
Vi har att

|h| = |hf | · |hg| ⩽ Mf Mg|f(x)g(x)|,
för varje x ∈ (−δ, δ), där δ = min{δ1, δ2}. Alltså är O(f(x)) O(g(x)) ⊆
O(f(x)g(x)).
Låt oss nu visa det omvända, att O(f(x)g(x)) ⊆ O(f(x)) O(g(x)). Tag h ∈
O(f(x)g(x)), d.v.s. det finns tal M och δ > 0 sådana att

|h(x)| ⩽ M |f(x)g(x)|, (9.15)

för varje x ∈ (−δ, δ). Antag att g(x) ̸= 0 i en omgivning av x = 0. Låt oss
bilda h1(x) = h(x)/g(x) och h2(x) = g(x), då gäller att h = h1 · h2, där
h1 ∈ O(f(x)) och h2 ∈ O(g(x)). Alltså är O(f(x)g(x)) ⊆ O(f(x)) O(g(x)).
Om g(x) = 0 i någon punkt så måste även h(x) = 0 för att (9.15) ska gälla. I
dessa punkter kan vi definiera både h1(x) = h2(x) = 0.
Vi lämnar bevisen av (9.13) och (9.14) som en övning till läsaren. ■
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Exempel 9.14. Sats 9.13 säger exempelvis att x2O(x3) = O(x5) och att

O(x4)
x

= O
(
x3
)

.

▲

Sats 9.15. Låt f vara n gånger deriverbar och f (n) vara kontinuerlig i en
omgivning av 0. Då gäller att

f(x) =
n−1∑
k=0

f (k)(0)
k! xk + O(xn) , (9.16)

kring 0.

Bevis: Vi måste visa att resttermen från sats 9.1

Rn(x) := f (n)(α)xn

n! ,

där α är ett tal mellan 0 och x, tillhör O(xn) kring 0. Eftersom f (n) är konti-
nuerlig i en omgivning av 0 så är den begränsad där, d.v.s. det finns ett tal K
och δ > 0 sådant att

f (n)(x) ⩽ K,

för varje x ∈ (−δ, δ). Alltså gäller att

f (n)(α)xn

n! ⩽
K

n!x
n,

för varje x ∈ (−δ, δ), vilket betyder att Rn ∈ O(xn) kring 0. ■

Exempel 9.16. Visa att

lim
x→0

ln(1 + x) − x + x2

2
3x3 = 1

9 .

Lösning: Låt oss Taylorutveckla ln(1 + x) kring 0. Vi får

ln(1 + x) = x − x2

2 + x3

3 + O
(
x4
)

.

Alltså gäller att

ln(1 + x) − x + x2

2
3x3 =

x − x2

2 + x3

3 + O(x4)− x + x2

2
3x3

=
x3

3 + O(x4)
3x3 =

1
3 + O(x)

3 = 1
9 + O(x) → 1

9 ,

då x → 0. ▲
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Exempel 9.17. Beräkna

lim
x→0

(ln(1 + x))2 − x2

x3 .

Lösning: Från Exempel ?? har vi att

ln(1 + x) = x − x2

2 + O
(
x3
)

vilket ger att

lim
x→0

(ln(1 + x))2 − x2

x3 = lim
x→0

(
x − x2/2 + O(x3) )2 − x2

x3

= lim
x→0

x2 − x3 + O(x4)− x2

x3

= lim
x→0

−x3 + O(x4)
x3

= lim
x→0

(− 1 + O(x)
)

= −1.

▲

Sats 9.18 (Entydightet). Låt f vara n gånger deriverbar, f (n) vara kontinu-
erlig i en omgivning av 0, ak ∈ R och låt

f(x) =
n−1∑
k=0

akxk + O(xn) , (9.17)

kring 0. Då gäller att

aj = f (j)(0)
j! .

Bevis: Om vi sätter x = 0 så blir (9.17) f(0) = a0.
Om vi deriverar j gånger, där j < n, så får vi

f (j)(x) =
n−1∑
k=j

ak
k!

(k − j)!x
k−j + O

(
xn−j

)
,

och låter vi x → 0 så blir endast termen då k = j kvar och

f (j)(0) = ajj!,

vilket visar satsen. ■
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9.4 Övningar

Övning 9.1. Visa att Taylorpolynomet av grad sex i punkten 0 för

a) cos x är

1 − x2

2! + x4

4! − x6

6!

b) sin x är

x − x3

3! + x5

5!

c) ex är

1 + x + x2

2 + x3

3! + x4

4! + x5

5! + x6

6!

d) ln(1 + x) är

x − x2

2 + x3

3 − x4

4 + x5

5 − x6

6

e) arctan x är

x − x3

3 + x5

5

Övning 9.2. Använd Taylorpolynomet av grad 2 kring x = 0 till f(x) =√
100 + x för att beräkna ett närmevärde till

√
104. Skriv upp feltermen och

avgör om felet i ditt närmevärde är till beloppet mindre än 0.01.

Övning 9.3. [2007-12-17, uppgift 4] Visa att

∣∣∣e−x2 − 1 + x2
∣∣∣ ⩽ x4

2

för alla x.

Övning 9.4. [2007-05-31, uppgift 8] Beräkna gränsvärdet

lim
x→0

(x − sin x)2

(cosh x − 1)3 ,

där cosh x = (ex + e−x)/2 och kallas cosinus hyperbolicus.

Övning 9.5. [2007-12-17, uppgift 8] Beräkna gränsvärdet

lim
x→0

( 1
sin2 x

− 1
x2

)
.

Övning 9.6. [2006-12-20, uppgift 4] Beräkna gränsvärdet

lim
x→0

x − sin x

2x − sin 2x
.
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Övning 9.7. [2008-06-04, uppgift 4] Beräkna de fem första noll-skilda ter-
merna i Taylorutvecklingen av funktionen

f(x) = arctan
(1 − x

1 + x

)
,

kring x = 0.

Övning 9.8. [2008-06-04, uppgift 8] Funktionen f uppfyller att

f ′(x) = 2x

x2 + 3x + 2 ,

då x ̸∈ {−2, −1} och att f(1) = 2.

a) Beräkna Taylorutvecklingen av f omkring punkten x = 1 till och med
grad 2.

b) Beräkna gränsvärdet
lim
x→1

3f(x) − x − 5
(x − 1)2 .

Övning 9.9. [2008-12-15, uppgift 8] Betrakta funktionen f(x) =
√

1 + x.

a) Bestäm Taylorpolynomet p2 av grad 2 kring x = 0 och tillhörande rest-
term R3, så att f(x) = p2(x) + R3(x).

b) Visa att då x > 0 så gäller att

|R3(x)| ⩽ x3

16 .

c) Använd resultaten ovan för att beräkna ett närmevärde till
√

17 och för
att uppskatta feltermen:

√
17 = närmevärde + felterm.
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10 Serier

Simplicity is prerequisite for reliability.

Edsger W. Dijkstra – How do we tell truths that might hurt?

10.1 Definitionen

Definition 10.1. Låt (aj)∞
j=0 vara en talföljd och låt (sn)∞

n=0 vara talföljden
där

sn =
n∑

j=0
aj . (10.1)

Vi definierar serien
∑∞

j=0 aj som

∞∑
j=0

aj = lim
n→∞ sn. (10.2)

Talen sn kallas för seriens delsummor. Om gränsvärdet limn→∞ sn existerar
sägs serien vara konvergent och gränsvärdet kallas för seriens summa, i annat
fall divergent. En serie sägs vara positiv om aj ⩾ 0, för varje j ∈ N.
Observera att det inte spelar någon roll var serien ovan börjar på för index,
detta är endast en namngivning. Det går alltid att döpa om termerna så att
serien börjar med index noll.
Läsaren kan själv verifiera att sats 4.5 ger att om ∑∞

j=0 aj och ∑∞
j=0 bj är

konvergenta serier så uppfyller de de linjära egenskaperna

∞∑
j=0

(aj + bj) =
∞∑

j=0
aj +

∞∑
j=0

bj , (10.3)

∞∑
j=0

caj = c
∞∑

j=0
aj , (10.4)

där c ∈ R.

Sats 10.2. Om serien
∑∞

j=0 aj är konvergent så gäller att aj → 0, då j → ∞.

Bevis: Låt sn = ∑n
j=0 aj beteckna delsummorna för serien och låt S vara

seriens summa. Nu följer satsen från eftersom

an = sn − sn−1 → S − S = 0,

då n → ∞. ■
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Exempel 10.3. Visa att
∞∑

j=1

1
cos j−1

är divergent.
Lösning: Vi har att aj = 1/ cos j−1 → 1, då j → ∞. Enligt sats 10.2 är serien
divergent. ▲

10.2 Geometrisk serie

En geometrisk serie
∑∞

j=0 aj är en serie vars termer (aj)∞
j=0 bildar en geo-

metrisk talföljd, d.v.s. aj = xj , för något x ∈ R. Detta är en av få serier som
vi faktiskt kan beräkna, givet att x uppfyller att |x| < 1.

Sats 10.4. Om |x| < 1 så gäller att

∞∑
j=0

xj = 1
1 − x

. (10.5)

Bevis: Låt sn beteckna delsummorna till serien. Delsummorna är då geomet-
riska summor och därav har vi att

sn =
n∑

j=0
xj = 1 − xn+1

1 − x
,

se övning 4.11. Eftersom |x| < 1 följer att

sn = 1 − xn+1

1 − x
→ 1

1 − x
,

då n → ∞. ■

10.3 Jämförelsesatser

Sats 10.5. Låt 0 ⩽ aj ⩽ bj, för varje j ∈ N. Då gäller att om
∑∞

j=0 bj är
konvergent så är även

∑∞
j=0 aj konvergent.

Bevis: Antag att ∑∞
j=0 bj är konvergent med summan B och att 0 ⩽ aj ⩽ bj ,

för varje j ∈ N. Vi vill visa att ∑∞
j=0 aj är konvergent, vilket per definition

betyder att

sn :=
n∑

j=0
aj
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är konvergent då n → ∞. Enligt sats 4.8 följer detta om vi visar att (sn)∞
n=0 är

växande och uppåt begränsad. Talföljden (sn)∞
n=0 är växande eftersom aj ⩾ 0,

för varje j ⩾ 0. Den är även uppåt begränsad av B eftersom

sn =
n∑

j=1
aj ⩽

n∑
j=1

bj → B,

då n → ∞. Vi är klara. ■

Kontrapositiven av ovanstående sats formuleras nedan.

Följdsats 10.6. Låt 0 ⩽ aj ⩽ bj, för varje j ∈ N. Då gäller att om
∑∞

j=0 aj

är divergent så är även
∑∞

j=0 bj divergent.

Nästa exempel visar att en serie inte nödvändigtvis konvergerar bara för att
termerna går mot noll. Tyvärr är detta en vanlig missuppfattning för den som
inte tagit till sig teorin om serier på ett tillräckligt vis.

Exempel 10.7. Visa att serien

∞∑
j=1

1
j

är divergent.
Lösning: Låt sn beteckna delsummorna för serien och låt m vara det största
heltal sådant att n ⩾ 2m. Då gäller att

sn = 1 + 1
2 + 1

3 + 1
4 + 1

5 + · · · + 1
n
⩾ 1 + 1

2 + 1
3 + 1

4 + 1
5 + · · · + 1

2m

= 1 + 1
2 +

(1
3 + 1

22

)
+
(1

5 + · · · + 1
23

)
+ · · · +

( 1
2m−1 + 1 + · · · + 1

2m

)
⩾ 1 + 1

2 +
(1

4 + 1
4

)
+
(1

8 + · · · + 1
8

)
+ · · · +

( 1
2m

+ · · · + 1
2m

)
.

Detta ger att

sn ⩾ 1 + 1
2 + 21

4 + 22 1
23 + 23 1

24 · · · + 2m−1 1
2m

= 1 + m

2 → ∞,

då n → ∞ och därmed även m → ∞. ▲

Sats 10.8. Serien
∞∑

j=1

1
jp

(10.6)

är konvergent om och endast om p > 1.
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Bevis: Vi är klara om vi lyckas visa att serien divergerar då p ⩽ 1 och att
den konvergerar då p > 1.
Låt oss börja med att visa att serien divergerar då p ⩽ 1. Detta följer direkt
från exempel 10.7, ty olikheten jp ⩽ j ger

∞∑
j=1

1
jp

⩾
∞∑

j=1

1
j

= ∞.

Det återstår att visa att serien konvergerar då p > 1. Vi använder liknande
metoder som i exempel 10.7, d.v.s. gruppera termerna på ett effektivt sätt. Låt
sn beteckna delsummorna för serien och låt m vara det minsta heltal sådant
att n ⩽ 2m − 1. Då gäller att

sn = 1 + 1
2p

+ 1
3p

+ 1
4p

+ · · · + 1
np

⩽ 1 + 1
2p

+ 1
3p

+ 1
4p

+ · · · + 1
(2m − 1)p

= 1 +
( 1

2p
+ 1

3p

)
+
( 1

22p
+ · · · + 1

7p

)
+ · · ·

+
( 1

2(m−1)p + · · · + 1
(2m − 1)p

)
⩽ 1 +

( 1
2p

+ 1
2p

)
+
( 1

22p
+ · · · + 1

22p

)
+ · · ·

+
( 1

2(m−1)p + · · · + 1
2(m−1)p

)
.

Alltså har vi

sn ⩽ 1 + 2 1
2p

+ 22 1
22p

+ · · · + 2m−1 1
2(m−1)p

= 1 + 1
2p−1 +

( 1
2p−1

)2
+
( 1

2p−1

)3
+ · · · +

( 1
2p−1

)m−1
.

Detta är en geometrisk serie och därmed får vi

sn ⩽
1 −

(
1

2p−1

)m

1 − 1
2p−1

→ 1
1 − 1

2p−1
,

då n → ∞ eftersom konstruktionen av m ger att m ⩾ log2(1 + n) → ∞, då
n → ∞. ■

Sats 10.9. Låt
∑∞

j=0 aj och
∑∞

j=0 bj vara två positiva serier vars termer upp-
fyller att

lim
j→∞

aj

bj
= K, (10.7)

för något K ̸= 0. Då gäller att
∑∞

j=0 aj konvergerar om och endast om
∑∞

j=0 bj

konvergerar.
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Bevis: Antag att ∑∞
j=0 bj är konvergent med summan B. Vi vill visa att∑∞

j=0 aj är konvergent genom att använda sats 4.8. Det är klart att ∑n
j=1 aj

är växande eftersom aj ⩾ 0 och alltså kvarstår det att visa att delsummorna
är uppåt begränsade.
Från (10.7) vet vi att det för varje ε > 0 finns ett N sådant att

K − ε <
aj

bj
< K + ε,

för varje j > N . Alternativt,

bj(K − ε) < aj < bj(K + ε),

för varje j > N . Vi får att

n∑
j=1

aj =
N∑

j=1
aj +

n∑
j=N+1

aj ⩽
N∑

j=1
aj + (K + ε)

n∑
j=N+1

bj ⩽
N∑

j=1
aj + (K + ε)B

och alltså är ∑n
j=1 aj uppåt begränsad och därmed även konvergent.

Det omvända resultat följer av symmetriskäl eftersom

lim
j→∞

bj

aj
= 1

K
̸= 0.

■

Exempel 10.10. Är serien
∞∑

j=1

(1
j

− sin
(1

j

))

konvergent?
Lösning: Låt aj := 1/j − sin(1/j) och bj = 1/j3. Låt oss Taylorutveckla
sin(1/j) kring 0. Vi har att

aj

bj
=

1
j − sin

(
1
j

)
1
j3

=
1
j −

(
1
j − 1

3!j3 + O
(

1
j5

))
1
j3

→ 1
6 ,

då j → ∞. Från sats 10.9 har vi att eftersom ∑∞
j=1 bj är konvergent så är∑∞

j=1 aj konvergent. ▲

10.4 Absolutkonvergens

Definition 10.11. Serien ∑∞
j=0 aj sägs vara absolutkonvergent om serien∑∞

j=0 |aj | är konvergent.

Sats 10.12. Om en serie är absolutkonvergent så är den konvergent.
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Bevis: Låt ∑∞
j=0 aj vara absolutkonvergent, d.v.s. låt ∑∞

j=0 |aj | vara konver-
gent. Låt oss dela upp summan som differensen av två positiva serier,

∞∑
j=0

aj =
∑
aj⩾0

aj −
∑

aj<0
(−aj).

Den första serien innehåller alla icke-negativa termer och den andra all nega-
tiva termer. Låt oss visa att dessa två serier är konvergenta. Vi har att

0 ⩽
∑
aj⩾0

aj ⩽
∞∑

j=0
|aj |

och
0 ⩽

∑
aj<0

(−aj) ⩽
∞∑

j=0
|aj |

och från sats 10.5 är serierna ∑aj⩾0 aj och ∑aj<0(−aj) konvergenta. Härmed
är även ∑∞

j=0 aj konvergent. ■

Exempel 10.13. Visa att serien ∑∞
j=1

sin(jx)
j2 är konvergent för alla x.

Lösning: Serien är konvergent om den är absolutkonvergent. Låt oss visa att
∞∑

j=1

∣∣∣∣sin(jx)
j2

∣∣∣∣
är konvergent. Eftersom

0 ⩽
∣∣∣∣sin(jx)

j2

∣∣∣∣ ⩽ 1
j2 .

och serien ∑∞
j=1

1
j2 är konvergent så är ∑∞

j=1
sin(jx)

j2 konvergent. ▲

10.5 Taylorserier

Låt f vara en funktion som är deriverbar godtyckligt många gånger. Diffe-
rensen mellan f och det (n − 1):te Taylorpolynomet ges av resttermen Rn(x).
Enligt (9.1) är

Rn(x) = f(x) − pn−1(x) = f (n)(α)xn

n! , (10.8)

där α = α(x). Låt oss fixera x ∈ R och konstatera att om Rn(x) → 0, då
n → ∞, så har vi för detta x identiteten

f(x) =
∞∑

k=0

f (k)(0)xk

k! .

Det största talet r för vilket serien ovan konvergerar för varje |x| < r kallas
Taylorseriens konvergensradie.
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Exempel 10.14. Visa att

sin x =
∞∑

k=0
(−1)k x2k+1

(2k + 1)!

för alla x ∈ R.
Lösning: Låt oss först visa att termerna i Taylorutvecklingen av f(x) := sin x
överensstämmer med de i serien. Därefter visar vi att för varje givet x går
resttermen mot noll.
Låt oss Taylorutveckla f kring x = 0. Vi får för i ∈ N att f (4i)(0) = 0, f (4i+1)(0) =
1, f (4i+2)(0) = 0 och f (4i+3)(0) = −1. Alltså är Taylorpolynomet av grad
2n − 1, för n ⩾ 1, följande

p2n−1(x) = x − x3

3! + x5

5! − . . . + (−1)n−1 x2n−1

(2n − 1)!

och resttermen uppfyller att

∣∣∣∣∣f (2n)(α)x2n

(2n)!

∣∣∣∣∣ ⩽
∣∣∣∣∣ x2n

(2n)!

∣∣∣∣∣ → 0,

då n → ∞. Gränsvärdet är en direkt följd av (4.4). ▲

Exempel 10.15. Konvergensradien för x 7→ ln(1 + x) är 1. Läsaren kan själv
verifiera att f ′(x) = (1 + x)−1, f ′′(x) = −(1 + x)−2, f (3)(x) = 2(1 + x)−3 och
allmänt gäller att

f (j)(x) = (−1)j+1(j − 1)!(1 + x)−j .

Enligt Taylors formel får vi

ln(1 + x) =
n−1∑
k=1

(−1)k+1 xk

k
+ Rn(x), (10.9)

där

Rn(x) = f (n)(α)xn

n! = (−1)n+1 xn

n(1 + α)n
.

Om −1 < x ⩽ 1 så går Rn(x) → 0, då n → ∞. Eftersom x 7→ ln(1 + x) inte
är definierad för x ⩽ −1 så är konvergensradien 1.
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−2 −1 1 2

−1

1

p2

p3

p4

p5

p6

Figur 10.1: Här skissas funktionen tillsammans med några Taylorpolynom.

▲

10.6 Övningar

Övning 10.1. Avgör om följande serier konvergerar

a)
∞∑

n=1

1
n3

b)
∞∑

n=1

1√
n3

c)
∞∑

n=1

1
n1/3

d)
∞∑

n=1
4−n

e)
∞∑

n=1

3n

1000n + 3n

Övning 10.2. Avgör om följande serier konvergerar

a)
∞∑

k=2

k

ln k

b)
∞∑

k=2

1
k2 ln k

c)
∞∑

k=2

k5

k7 − 1

d)
∞∑

k=2

k6

k7 − 1

e)
∞∑

k=1

k5

k7 + 1

f)
∞∑

k=1

k6

k7 + 1

Övning 10.3. Avgör om följande serier konvergerar

a)
∞∑

n=1

n

n! b)
∞∑

n=1

1 + n

n! c)
∞∑

n=1

2n

n!
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Övning 10.4. [2007-05-31, uppgift 4] Är serien
∞∑

n=1

1
(2 + n)n

är konvergent?

Övning 10.5. [2008-12-15, uppgift 4] Undersök huruvida serien
∞∑

n=1

1
3n

√
n + 3

är konvergent eller inte.

Övning 10.6 (Utmaning). Visa D’Alemberts kvotkriterium från år 1768. Det-
ta kriterium säger att om ∑∞

j=0 aj är en positiv serie som uppfyller att

lim
j→∞

aj+1
aj

= H < 1

så är serien konvergent.

Övning 10.7 (Utmaning). Visa Cauchys rotkriterium, d.v.s. om ∑∞
j=0 aj är

en positiv serie som uppfyller att

lim
j→∞

a
1/j
j = H < 1

så är serien konvergent.

Övning 10.8 (Leibnitz sats om alternerande serier). Låt (aj)∞
j=1 vara en

avtagande följd sådan att aj ⩾ 0, för varje j och aj → 0, då j → ∞. Visa att

∞∑
j=1

(−1)j+1aj

är konvergent. Du får gärna bli inspirerad av följande bild

0 . . . a6 a5 a4 a3 a2 a1
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11 Integralen

11.1 Introduktion

Ett skäl till att införa integraler är att vi vill beräkna arean mellan x-axeln
och grafen till en funktion f i intervallet [a, b]. Den del av arean som är ovanför
x-axeln kommer vi att definiera som positiv och den del som är under x-axeln
som negativ.

a

b

f

Idén är att approximera arean genom att beräkna arean av ett antal rektanglar,
som är inskrivna mellan grafen och x-axeln.

a

b

Till rektangelns höjd tar man, som i bilden, något funktionsvärde i stapelns
intervall. Vi kan tänka oss att om vi minskar bredden, d.v.s. väljer fler och
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fler staplar med mindre och mindre bredd, så kommer vi att få en bättre och
bättre approximation till den riktiga arean.

a

b

Vi ska beräkna arean genom att låta bredden av staplarna gå mot 0 och
därmed antalet mot oändligheten.

11.2 Integraler av trappfunktioner på slutna intervall

En trappfunktion Ψ på det slutna intervallet [a, b] är en funktion av typen

Ψ(x) =



c1 , x0 ⩽ x ⩽ x1

c2 , x1 < x ⩽ x2
...

cn , xn−1 < x ⩽ xn

(11.1)

där c1, c2, . . . , cn är reella konstanter och a = x0 < x1 < x2 < . . . < xn = b.
Låt oss illustrera definitionen med en graf
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x0 x1 x2 xn

c2
c1

cn

Mängden {xi}n
i=0 kallas en uppdelning av intervallet [a, b] och intervallen

[xi−1, xi] kallas ett delintervall av uppdelningen.
Integralen av en trappfunktion Ψ : [a, b] → R vill vi ska vara arean mellan
x-axeln och grafen till Ψ. Därför väljer vi att definiera integralen av Ψ över
[a, b] som

∫ b

a
Ψ(x) dx :=

n∑
j=1

cj(xj − xj−1),

vilket är arean av n stycken rektanglar med höjden cj och bredden xj − xj−1.
Vänsterledet i ovanstående definition anger även vår beteckning på integralen
av Ψ över det slutna intervallet [a, b]. Vi illustrar definitionen med en figur.

x0 x1 x2 xn

cn

c1

c2

+ +

+

−

+

Exempel 11.1. Bestäm

∫ 4

−1
f(x) dx, (11.2)
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för

f(x) =


2 , −1 ⩽ x ⩽ 0
−3 , 0 < x ⩽ 2
5 , 2 < x ⩽ 4

(11.3)

Lösning: Vi summerar areorna av staplarna∫ 4

−1
f(x) dx = 2(0 − (−1)) + (−3)(2 − 0) + 5(4 − 2) (11.4)

= 2 − 6 + 10 = 6.

▲

11.3 Integraler av begränsade funktioner på slutna intervall

Låt f : [a, b] → R vara en begränsad funktion. Eftersom f är begränsad finns
det trappfunktioner Φ och Ψ sådana att

Φ(x) ⩽ f(x) ⩽ Ψ(x),

för varje x ∈ [a, b]. Funktioner Φ och Ψ som uppfyller ovanstående kallas
undertrappa respektive övertrappa till f och deras integraler kallas un-
dersumma respektive översumma till f .

Figur 11.1: Här är ett exempel på en undertrappa och dess integral

Vi ser från figur 11.1 att integralen av undertrappan är en nedre begränsning
av arean mellan x-axeln och grafen för f . På samma vis är integralen av
övertrapporna övre begränsningar av arean. Låt L(f) vara mängden av alla
undersummor till f och U(f) vara mängden av alla översummor till f , d.v.s.

L(f) =
{∫ b

a
Φ(x) dx : Φ är en undertrappa till f

}
, (11.5)

U(f) =
{∫ b

a
Ψ(x) dx : Ψ är en övertrappa till f

}
. (11.6)
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Observera att mängderna L(f) och U(f) är delmängder av reella tal sådana
att L(f) är uppåt begränsad av varje tal i U(f) och tvärt om. Supremu-
megenskapen säger att sup L(f) och inf U(f) existerar. A priori gäller att
sup L(f) ⩽ inf U(f). Vi gör följande definition

Definition 11.2. Låt f : [a, b] → R vara en begränsad funktion. Om

sup L(f) = inf U(f)

så sägs f vara integrerbar och integralen av f över [a, b] är∫ b

a
f(x) dx = sup L(f) = inf U(f).

Exempel 11.3. Funktionen f : [0, 1] → R definierad som

f(x) =
{

1, x ∈ Q
0, x ̸∈ Q.

Uppfyller att sup L(f) = 0 och supremum antas för undertrappan Φ(x) = 0,
medan inf U(f) = 1 och antas för övertrappan Ψ(x) = 1. Eftersom sup L(f) ̸=
inf U(f) så är f inte integrerbar. ▲

Sats 11.4. Låt f : [a, b] → R vara en begränsad funktion. Då är f integrerbar
om och endast om det för varje ε > 0 finns en undertrappa Φ och en övertrappa
Ψ till f sådana att ∫ b

a
Ψ(x) dx −

∫ b

a
Φ(x) dx < ε. (11.7)

Bevis: Antag först att f är integrerbar, d.v.s. I := sup L(f) = inf U(f). Låt
ε > 0. Eftersom I = sup L(f) så finns det en undersumma Φ som uppfyller
att

I −
∫ b

a
Φ(x) dx <

ε

2 (11.8)

och eftersom I = inf U(f) så finns det en översumma Ψ som uppfyller att∫ b

a
Ψ(x) dx − I <

ε

2 . (11.9)

Kombinerar vi (11.8) och (11.9) så får vi (11.7).
Antag nu att det för varje ε > 0 finns en undertrappa Φ och en övertrappa Ψ
till f sådana att (11.7) gäller. Vi gör ett motsägelsebevis. Antag att sup L(f) =
IL < IU = inf U(f), då får vi motsägelser av vårt antagande för varje ε som
uppfyller att

ε < (IU − IL)/2.

■
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Exempel 11.5. Visa med hjälp av definitionen att f(x) = x är integrerbar i
intervallet [0, 1] och beräkna med hjälp av definitionen värdet av∫ 1

0
x dx.

Lösning: Låt oss dela in intervallet [0, 1] i n stycken delar med bredden 1/n.

1
n

2
n

3
n

n−1
n

n
n

Låt Ψ(n) vara den övertrappa till f som fås genom att låta värdet på intervallet
[i/n, (i + 1)/n] vara det f((i + 1)/n). Vi får överintegralen

U(n) =
n−1∑
i=0

Ψ(i) 1
n

=
n−1∑
i=0

i + 1
n

1
n

= 1
n2

n−1∑
i=0

(i + 1) = n(n + 1)
2n2 = 1

2 + 1
2n

,

(11.10)

där vi använt att
n∑

j=0
j = n(n + 1)

2 . (11.11)

På liknande sätt kan vi visa att det finns en underintegral med värdet

L(n) =
n−1∑
i=0

i

n

1
n

= 1
n2

n−1∑
i=0

i = (n − 1)n
2n2 = 1

2 − 1
2n

. (11.12)

För att visa att f är integrerbar så använder vi sats 11.4. Tag ε > 0,

U(n) − L(n) = 1
2 + 1

2n
−
(1

2 − 1
2n

)
= 1

n
< ε (11.13)

om n > 1/ε. Alltså är f integrerbar och∫ 1

0
x dx = lim

n→∞ U(n) = lim
n→∞ L(n) = 1

2 .

▲
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11.4 Integrerbarhet av kontinuerliga funktioner

Låt f vara en kontinuerlig funktion på intervallet [a, b] och låt {xi}n
i=0 vara en

uppdelning av [a, b]. Låt

∆i = xi − xi−1, Mi = max
x∈[xi−1,xi]

f(x) och mi = min
x∈[xi−1,xi]

f(x).

Vi vill i detta delkapitel visa satsen

Sats 11.6. Låt f vara en kontinuerlig funktion på intervallet [a, b]. Då är f
integrerbar på [a, b]. Dessutom gäller att

n∑
i=1

Mi∆i →
∫ b

a
f(x) dx, (11.14)

och
n∑

i=1
mi∆i →

∫ b

a
f(x) dx, (11.15)

då max ∆i → 0.

Att intervallet i satsen är slutet gör att funktionen lite slarvigt uttryckt inte
kan variera okontrollbart. Se figurerna nedan på funktionerna x 7→ 1/x och
x 7→ sin(1/x) kring 0. De är båda kontinuerliga på det öppna intervallet (0, 1).

Definition 11.7. En funktion f sägs vara likformigt kontinuerlig på inter-
vallet I om det för varje ε > 0 existerar ett δ > 0 sådant att |f(x) − f(y)| < ε
för varje x, y ∈ I som uppfyller att |x − y| < δ.

Det som skiljer kontinuitet och likformig kontinuitet är att för likformigt kon-
tinuerliga funktioner kan δ i definitionen väljas oberoende av inparametrarna
till funktionen.
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Sats 11.8. Låt f vara kontinuerlig på intervall [a, b]. Då är f likformigt kon-
tinuerlig på [a, b].

Bevis: Låt oss göra ett motsägelsebevis. Antag att f är kontinuerlig men inte
likformigt kontinuerlig på [a, b].
Tag ε > 0. För varje δk > 0 finns det xk, yk ∈ [a, b], sådana att |xk − yk| < δk

och |f(xk) − f(yk)| ⩾ ε. Låt oss nu välja δk = 1/k. Då gäller att |xk − yk| →
0, då k → ∞. Eftersom {xk}∞

k=1 är en begränsad talföljd, så ger Bolzano-
Weierstrass sats, se sats 4.25, att det finns en konvergent delföljd, säg xki

∞
i=1,

som konvergerar mot ett tal p ∈ [a, b]. Vi har även att

|yki
− p| ⩽ |yki

− xki
| + |xki

− p| < 1/ki + |xki
− p| → 0,

då i → ∞.
Då f är kontinuerlig i p gäller att f(xki

) → f(p) och f(yki
) → f(p) då i → ∞.

Triangelolikheten ger nu att

ε ⩽ |f(xki
) − f(yki

)| ⩽ |f(xki
) − f(p)| + |f(p) − f(yki

)| → 0,

då i → ∞. Detta motsäger att ε > 0. Alltså är f likformigt kontinuerlig. ■

Nu är vi redo för beviset av sats 11.6.
Bevis av sats 11.6: Låt oss bevisa satsen genom att använda oss av sats
11.4. Låt ε > 0. Vi vill finna en övertrappa Ψ och en undertrappa Φ sådana
att ∫ b

a
Ψ(x) dx −

∫ b

a
Φ(x) dx < ε.

Enligt sats 11.8 har vi att f är likformigt kontinuerlig. Välj δ > 0 sådant att
om |x − y| < δ så är

|f(x) − f(y)| <
ε

b − a
.

Låt nu {xi}n
i=0 vara en uppdelning av [a, b] bestående av n delintervall [xi−1, xi]

med egenskapen att längderna av varje delintervall är mindre än δ, alltså
∆i = xi − xi−1 < δ.
Då f är kontinuerlig så antar f ett minvärde mi och ett maxvärde Mi på
varje slutet intervall [xi−1, xi]. Vi kan nu konstruera en översumma och en
undersumma med egenskapen

n∑
i=1

Mi∆i −
n∑

i=1
mi∆i =

n∑
i=1

(Mi − mi)∆i <
ε

b − a

n∑
i=1

∆i = ε. (11.16)

Alltså är f integrerbar enligt sats 11.4. Vi har dessutom visat genom vår
konstruktion att (11.14) och (11.15) är samma. ■
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11.5 Räkneregler

Antag att a < b och att f är en integrerbar funktion på [a, b], då definierar vi
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.

Följande räkneregler visas först för trappfunktioner och därefter generalise-
ras de till integrerbara funktioner. Vi lämnar beviset för trappfunktioner till
läsaren och bevisar hur generaliseringen till integrerbara funktioner går till.

Sats 11.9. Låt f och g vara integrerbara funktioner på intervallet [a, b] och
c ∈ R. Då gäller att∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx, (11.17)∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx, (11.18)∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx, (11.19)∣∣∣∣∣

∫ b

a
f(x) dx

∣∣∣∣∣ ⩽
∫ b

a
|f(x)| dx. (11.20)

Om f(x) ⩽ g(x), för varje x ∈ [a, b] så gäller att
∫ b

a
f(x) dx ⩽

∫ b

a
g(x) dx. (11.21)

Bevis: Vi visar (11.17) och lämnar resterande bevis som en övning till läsaren.
Även verifieringen av (11.17) i fallet att f och g är trappfunktioner lämnas till
läsaren att verifiera.
Vi behöver nu utvidga (11.17) till godtyckliga integrerbara funktioner. Ef-
tersom f och g är integrerbara finns det undertrappor Φn,f och Φn,g samt
övertrappor Ψn,f och Ψn,g för f respektive g sådana att

∫ b

a
Ψn,f (x) dx −

∫ b

a
Φn,f (x) dx <

1
2n

och ∫ b

a
Ψn,g(x) dx −

∫ b

a
Φn,g(x) dx <

1
2n

.

Trappfunktionerna Φn := Φn,f + Φn,g och Ψn := Ψn,f + Ψn,g är en under-
respektive övertrappa till f + g. Funktionen f + g är därmed integrerbar ef-
tersom ∫ b

a
Ψn(x) dx −

∫ b

a
Φn(x) dx <

1
n

.
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Denna olikhet säger att∫ b

a
Φn(x) dx →

∫ b

a
(f(x) + g(x)) dx,

då n → ∞. Med andra ord har vi att∫ b

a
(f(x) + g(x)) dx = lim

n→∞

∫ b

a
Φn(x) dx

= lim
n→∞

∫ b

a
(Φn,f (x) + Φn,g(x)) dx

= lim
n→∞

∫ b

a
Φn,f (x) dx + lim

n→∞

∫ b

a
Φn,g(x) dx

=
∫ b

a
f(x) dx +

∫ b

a
g(x) dx

vilket visar (11.17). ■

Exempel 11.10 (Tentamen 2011-10-18, 11%).

a) Visa att ∫ 1

0
ex2 sin 5x dx ⩽ 10.

b) Visa att det finns ett tal N sådant att

N∑
n=2

n2 − 1
1 + n2 + log n

⩾ 100.

Lösning:

a) Eftersom et är växande för alla t och x2 är växande då 0 ⩽ x, så följer
att ex2 är växande då 0 ⩽ x. Alltså är ex2

⩽ e12 = e om 0 ⩽ x ⩽ 1.
Därtill vet vi att sin t ⩽ 1 för alla t. Om vi använder dessa två olikheter
så får vi att

ex2 sin(5x) ⩽ ex2
⩽ e

om 0 ⩽ x ⩽ 1. En egenskap hos integralen är att den bevarar olikheter
och alltså är∫ 1

0
ex2 sin(5x)dx ⩽

∫ 1

0
ex2

dx ⩽
∫ 1

0
e dx = e < 10.

b) Betrakta serien

∞∑
n=2

n2 − 1
1 + n2 + log n

= lim
k→∞

k∑
n=2

n2 − 1
1 + n2 + log n

.
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Vi vet att om en serie ∑∞
n=2 an är konvergent så är limn→∞ an = 0.

Eftersom

lim
n→∞

n2 − 1
1 + n2 + log n

= lim
n→∞

1 − 1
n2

1
n2 + 1 + log n

n2

= 1 ̸= 0

så följer att vår serie är divergent. Eftersom serien också är positiv så
följer att limk→∞

∑k
n=2

n2−1
1+n2+log n

= ∞. Att limk→∞ bk = ∞, för en
talföljd bk, betyder att bk blir hur stor som helst bara k är tillräckligt
stort. Mer precist formulerat: för varje tal B finns ett tal N sådant att
bn > B för varje n > N . Alltså vet vi att det finns ett tal N sådant att

N∑
n=2

n2 − 1
1 + n2 + log n

⩾ 100.

▲

11.6 Medelvärdessatser för integraler

Sats 11.11 (Medelvärdessatsen för integraler). Låt f vara kontinuerlig i [a, b].
Då finns det ett tal α ∈ (a, b) sådant att∫ b

a
f(x) dx = f(α)(b − a).

Satsen följer direkt från en något mer generell sats, nämligen genom att sätta
g(x) = 1 i följande sats
Sats 11.12 (Generaliserade medelvärdessatsen för integraler). Låt f och g
vara kontinuerliga funktioner i [a, b] och g ⩾ 0. Då finns det ett tal α ∈ [a, b]
sådant att ∫ b

a
f(x)g(x) dx = f(α)

∫ b

a
g(x) dx.

Bevis: I fallet att g = 0 följer satsen direkt.
Antag att g ̸= 0. Eftersom f är kontinuerlig så har f ett max- och minvärde
på [a, b]. Låt M och m vara max respektive minvärdet för f på [a, b]. Vi har
att m ⩽ f(x) ⩽ M , för varje x ∈ [a, b] och därmed även

m

∫ b

a
g(x) dx ⩽

∫ b

a
f(x)g(x) dx ⩽ M

∫ b

a
g(x) dx

eller omskrivet
m ⩽

1∫ b
a g(x) dx

∫ b

a
f(x)g(x) dx ⩽ M.

Satsen om mellanliggande värde säger att det finns ett tal α ∈ [a, b] sådant att

f(α) = 1∫ b
a g(x) dx

∫ b

a
f(x)g(x) dx,

vilket ger önskad likhet. ■
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11.7 Analysens huvudsats

Definition 11.13. Låt f vara en funktion definierad på ett intervall [a, b]. En
funktion F sägs vara en primitiv funktion till f på [a, b] om F ′(x) = f(x),
för varje x ∈ (a, b) och F är kontinuerlig i [a, b].

Låt F1 och F2 vara två primitiva funktioner till en funktion f , alltså F ′
1 = F ′

2 =
f . Om vi nu studerar G = F1 − F2 så får vi att G′ = F ′

1 − F ′
2 = f − f = 0.

Enligt sats 8.30 a) är G(x) = C, för någon konstant C ∈ R. Alltså gäller att
två primitiva funktioner skiljer sig endast på en konstant.
Mängden av alla primitiva funktioner till en funktion f betecknas med∫

f(x) dx.

Sats 11.14 (Analysens huvudsats). Låt f vara en kontinuerlig funktion på
intervallet [a, b]. Då gäller att

F (x) :=
∫ x

a
f(t) dt

är en primitiv funktion till f i intervallet [a, b].

Bevis: Låt oss använda derivatans definition. Vi vill alltså visa att

lim
h→0

F (x + h) − F (x)
h

= f(x).

Vi har att

1
h

(F (x + h) − F (x)) = 1
h

(∫ x+h

a
f(t) dt −

∫ x

a
f(t) dt

)
= 1

h

∫ x+h

x
f(t) dt

Medelvärdessatsen 11.11 ger att det finns ett α ∈ (x, x + h) sådant att

1
h

∫ x+h

x
f(t) dt = 1

h
(x + h − x)f(α) = f(α) → f(x),

då h → 0. Vilket skulle visas. ■

Sats 11.15 (Insättningsformeln). Låt f vara kontinuerlig i [a, b] och låt F
vara en primitiv funktion till f på [a, b]. Då gäller att∫ b

a
f(x) dx = F (b) − F (a).

Bevis: Eftersom primitiva funktioner endast skiljer sig på en konstant kan vi
skriva F på följande vis:

F (x) = C +
∫ x

a
f(t) dt,
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där C är någon konstant. Vi har nu att

F (b) − F (a) = C +
∫ b

a
f(t) dt − C −

∫ a

a
f(t) dt =

∫ b

a
f(t) dt.

■

Det är praktiskt att i detta läget införa notationen

[
F (x)

]b
a

= F (b) − F (a),

här är det underförstått att x är den variabel som ska ersättas med a och b.

Exempel 11.16. Bestäm
∫ 5

2
(2 − x + 2x3) dx.

Lösning: Enligt sats 11.9 kan vi integrera termvis. Alltså får vi att

∫ 5

2
(2 − x + 2x3) dx =

[
2x − x2

2 + x4

2

]5

2

= 10 − 25
2 + 625

2 − (4 − 2 + 8) = 300.

▲

Exempel 11.17. Bestäm arean mellan x-axeln, funktionen x 7→ (1 + x2)−1,
x = 0 och x = 1.
Lösning: Eftersom integralen

∫ 1

0

1
1 + x2 dx

beskriver just denna area så gäller det att beräkna dess värde. Eftersom

d

dx
(arctan x) = 1

1 + x2

så får vi enligt sats 11.15 att
∫ 1

0

1
1 + x2 dx = [arctan x]10 = π

4 − 0 = π

4 .

Den sökta arean är alltså π/4. ▲
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11.8 Partiell integration

Sats 11.18 (Partiell integration). Låt f , g och g′ vara kontinuerliga i [a, b]
och låt F vara en primitiv funktion till f i [a, b]. Då gäller att∫ b

a
f(x)g(x) dx =

[
F (x)g(x)

]b
a

−
∫ b

a
F (x)g′(x) dx. (11.22)

Bevis: Detta resultat är en integrerad version av produktregeln för derivator.
Produktregeln för derivator ger att

(Fg)′(x) = f(x)g(x) + F (x)g′(x).

Integrerar vi denna identitet får vi∫ b

a
(Fg)′(x) dx =

∫ b

a
f(x)g(x) dx +

∫ b

a
F (x)g′(x) dx.

Notera att ∫ b

a
(Fg)′(x) dx =

[
F (x)g(x)

]b
a
,

vilket ger (11.22). ■

Exempel 11.19. Beräkna integralen∫ π/2

0
x2 cos x dx.

Lösning: Låt oss använda partiell integration i två steg,∫ π/2

0
x2 cos x dx =

[
x2 sin x

]π/2
0 −

∫ π/2

0
2x sin x dx

= π2

4 −
([

2x(− cos x)
]π/2
0 −

∫ π/2

0
2(− cos x) dx

)

= π2

4 −
∫ π/2

0
2 cos x dx

= π2

4 − 2
[
sin x

]π/2
0

= π2

4 − 2

▲

Exempel 11.20. Bestäm en primitiv funktion till x 7→ ln x.
Lösning: Vi använder partiell integration med f(x) = 1 och g(x) = ln x. Vi
får enligt (11.22) att∫

ln x dx =
∫

1 · ln x dx = [x ln x] −
∫

x
1
x

dx = x ln x −
∫

dx = x ln x − x + C,

där C är en reell konstant. ▲
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Exempel 11.21. Beräkna integralen∫ π

0
x2 sin(2x) dx.

Lösning: Vi använder oss av partiell integration i två etapper. Vi får att∫ π

0
x2 sin(2x) dx =

[
x2
(

−cos(2x)
2

)]π

0
−
∫ π

0
2x

(
−cos(2x)

2

)
dx

= −π2

2 +
∫ π

0
x cos(2x) dx

= −π2

2 +
[
x

sin(2x)
2

]π

0
−
∫ π

0

sin(2x)
2 dx

= −π2

2 − 1
2

∫ π

0
sin(2x) dx

= −π2

2 − 1
2

[cos(2x)
2

]π

0
= −π2

2 .

▲

11.9 Variabelbyte

Sats 11.22. Låt g och g′ vara kontinuerliga i [a, b] och låt f vara kontinuerlig
mellan g(a) och g(b). Då gäller att∫ g(b)

g(a)
f(x) dx =

∫ b

a
f(g(x))g′(x) dx.

Bevis: Detta resultat är en integrerad version av kedjeregeln för derivator.
Från kedjeregeln har vi att

d

dx
(F (g(x))) = f(g(x))g′(x).

Integration av båda leden ger∫ b

a

d

dx
(F (g(x))) dx =

∫ b

a
f(g(x))g′(x) dx.

Vänsterledet kan omformas enligt∫ b

a

d

dx
(F (g(x))) dx =

[
F (g(x))

]b
a

= F (g(b)) − F (g(a))

=
[
F (x)

]g(b)
g(a) =

∫ g(b)

g(a)
f(x) dx.

Vilket visar satsen. ■
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Exempel 11.23 (Tentamen 2011-10-18, 55%). Bestäm integralen∫ 5

2

1
x

√
x − 1

dx.

Lösning: Vi beräknar integralen med hjälp av variabelbyte:

∫ 5

2

1
x

√
x − 1

dx =


t =

√
x − 1

x = t2 + 1
dt = dx/(2

√
x − 1)

 =
∫ 2

1

2
t2 + 1dt

= [2 arctan t]21 = 2(arctan 2 − arctan 1)

= 2 arctan 2 − π

2 .

▲

11.10 Integration av rationella funktioner

Låt f vara en rationell funktion, d.v.s.

f(x) = p(x)
q(x) ,

där p och q är polynom. Vi ska visa en strategi för att beräkna integraler av
denna typ av funktioner. Denna strategi består av stegen

a) utför polynomdivision,

b) faktorisera nämnaren,

c) partialbråksuppdela,

d) integrera termvis.

Arcustangenstermen

Exempel 11.24. Bestäm alla primitiva funktioner till funktionen
7

5 + 20x2 .

Lösning: Vi får att∫ 7
5 + 20x2 dx = 7

∫ 1
5(1 + 4x2) dx = 7

5

∫ 1
1 + (2x)2 dx =

{
t = 2x

dt = 2dx

}

= 7
5

∫ 1
2(1 + t2)dt = 7

10 arctan t + C = 7
10 arctan(2x) + C,

där C är en godtycklig reell konstant. ▲
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Lite mer generellt har vi för reella a, b ̸= 0 och c ̸= 0 identiteten∫
a

b2 + c2x2 dx = a

bc
arctan

(
cx

b

)
+ C. (11.23)

En identisk lösning av föregående exempel följer∫
a

b2 + c2x2 dx = a

∫ 1
b2
(
1 + c2x2

b2

) dx = a

b2

∫ 1
1 +

(
cx
b

)2 dx

=
{

t = cx
b

dt = c
bdx

}
= a

b2

∫ 1
1 + t2

b

c
dt

= a

bc

∫ 1
1 + t2 dt = a

bc
arctan t + C

= a

bc
arctan

(
cx

b

)
+ C,

där C är en godtycklig reell konstant.

Exempel 11.25. Bestäm alla primitiva funktioner till
1

x2 + 4x + 5 .

Lösning: Då nämnaren inte kan faktoriseras i reella polynom, så använder vi
oss av kvadratkomplettering. Notera att

x2 + 4x = (x + 2)2 − 4,

vilket ger att∫ 1
x2 + 4x + 5 dx =

∫ 1
(x + 2)2 + 1 dx =

{
t = x + 2
dt = dx

}

=
∫ 1

1 + t2 dt = arctan t + C = arctan(x + 2) + C

▲

Även detta fall kan beskrivas med generella konstanter. Låt a och b > 0 vara
godtyckliga reella konstanter sådana att b − a2 > 0. Med hjälp av kvadrat-
komplettering får vi∫ 1

x2 + 2ax + b
dx =

∫ 1
(x + a)2 + b − a2 dx =

{
t = x + a
dt = dx

}

=
∫ 1

b − a2 + t2 dt.

Nu kan vi använda (11.23) och får∫ 1
b − a2 + t2 dt = 1√

b − a2 arctan
(

t√
b − a2

)
+ C

= 1√
b − a2 arctan

(
x + a√
b − a2

)
+ C
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Alltså gäller att∫ 1
x2 + 2ax + b

dx = 1√
b − a2 arctan

(
x + a√
b − a2

)
+ C (11.24)

Logaritmtermen

Exempel 11.26. Bestäm alla primitiva funktioner till funktionen

4x − 3
x2 + 3x + 3 .

Lösning: Låt oss ordna så att derivatan av nämnaren, nämligen 2x + 3, åter-
finns i täljaren. Vi får att∫ 4x − 3

x2 + 3x + 3 dx = 2
∫ 2x − 3

2
x2 + 3x + 3 dx = 2

∫ 2x + 3 − 9
2

x2 + 3x + 3 dx

= 2
(∫ 2x + 3

x2 + 3x + 3 dx − 9
2

∫ 1
x2 + 3x + 3 dx

)
.

Den första integralen löser vi genom variabelbytet t = x2 + 3x + 3. Vi får att
dt = (2x + 3)dx och därmed är∫ 2x + 3

x2 + 3x + 3 dx =
∫

dt

t
= ln t + C1 = ln(x2 + 3x + 3) + C1,

där C1 är en reell konstant.
Den andra integralen uppfyller villkoren för (11.24) och vi får∫ 1

x2 + 3x + 3 dx = 1√
3 − 9/4

arctan
(

x + 3/2√
3 − 9/4

)
+ C2

= 2√
3

arctan
(2x + 3√

3

)
+ C2

där C2 är en godtycklig reell konstant.
Sammantaget får vi∫ 4x − 3

x2 + 3x + 3 dx = 2 ln(x2 + 3x + 3) − 9
2

2√
3

arctan
(2x + 3√

3

)
+ C3

= 2 ln(x2 + 3x + 3) − 3
√

3 arctan
(2x + 3√

3

)
+ C3,

där C3 är en godtycklig reell konstant. ▲

Allmänt gäller att för reella konstanter a, b, c och d sådana att d − c2 > 0∫ 2ax + b

x2 + 2cx + d
dx = a ln(x2 + 2cx + d) + b − 2ac√

d − c2 arctan
(

x + c√
d − c2

)
+ C,

(11.25)
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där C är en godtycklig reell konstant. Vi använder oss av vårt tidigare exempel
och (11.24)∫ 2ax + b

x2 + 2cx + d
dx = a

(∫ 2x + 2c

x2 + 2cx + d
dx +

∫ b
a − 2c

x2 + 2cx + d
dx

)

= a ln(x2 + 2cx + d) + (b − 2ac)
∫

dx

x2 + 2cx + d

= a ln(x2 + 2cx + d) + b − 2ac√
d − c2 arctan

(
x + c√
d − c2

)
+ C,

där C är en godtycklig reell konstant.

Partialbråksuppdelning

Vi inleder med ett exempel som illustrerar vad vi vill åstadkomma.

Exempel 11.27. Antag att vi vill finna primitiv funktion till funktionen
4

x(x + 1)(x + 2) .

Eftersom vi klarar att finna primitiv funktion till
1
x

,
1

x + 1 och 1
x + 2 ,

så kan vi försöka skriva vår ursprungliga funktion som en kombination av
dessa. Vi ansätter därför

4
x(x + 1)(x + 2) = A

x
+ B

x + 1 + C

x + 2 .

Högerledet kan skrivas om med hjälp av minsta gemensamma nämnare enligt

A

x
+ B

x + 1 + C

x + 2 = A(x + 1)(x + 2) + Bx(x + 2) + Cx(x + 1)
x(x + 1)(x + 2)

= Ax2 + 3Ax + 2A + Bx2 + 2Bx + Cx2 + Cx

x(x + 1)(x + 2)

= (A + B + C)x2 + (3A + 2B + C)x + 2A

x(x + 1)(x + 2) .

Alltså har vi identiteten
4

x(x + 1)(x + 2) = (A + B + C)x2 + (3A + 2B + C)x + 2A

x(x + 1)(x + 2) .

Det räcker nu att jämför koefficienterna för täljarnas polynom. Vi får att
A + B + C = 0, 3A + 2B + C = 0 och 2A = 4. Alltså är A = 2. Vi kan lösa
ut resterande konstanter ur ekvationssystemet{

B + C = −2
2B + C = −6
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Lösningen B = −4 och C = 2 fås med lämplig metod. Vi har lyckats med
omformuleringen och får att∫ 4 dx

x(x + 1)(x + 2) =
∫ (2

x
− 4

x + 1 + 2
x + 2

)
dx

= 2 ln |x| − 4 ln |x + 1| + 2 ln |x + 2| + C,

där C är en godtycklig konstant. ▲

Tips vid partialbråksuppdelning

Om den faktoriserade nämnaren innehåller faktorer av typen

(x + a)n,

för något a ∈ R och något heltal n ⩾ 2 så ansätt termerna

A1
x + a

+ A2
(x + a)2 + . . . + An

(x + a)n

och om den innehåller faktorer av typen

x2 + ax + b

så ansätt termen
Ax + B

x2 + ax + b
.

Exempel 11.28. Lös integralen∫ 1/2

0

2 dx

(x2 + 1)(x − 1)2 .

Lösning: Låt oss ansätt termerna

2
(x2 + 1)(x − 1)2 = Ax + B

x2 + 1 + C

x − 1 + D

(x − 1)2 .

Genom att skapa minsta gemensamma nämnare i högerledet får vi

Ax + B

x2 + 1 + C

x − 1 + D

(x − 1)2

= (Ax + B)(x − 1)2 + C(x2 + 1)(x − 1) + D(x2 + 1)
(x2 + 1)(x − 1)2

= (A + C)x3 + (−2A + B − C + D)x2 + (A − 2B + C)x + (B − C + D)
(x2 + 1)(x − 1)2
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Genom att jämföra koefficienter i täljarna får vi ekvationssystemet
A + C = 0

−2A + B − C + D = 0
A − 2B + C = 0

B − C + D = 2

Lösningen är A = 1, B = 0, C = −1 och D = 1. Alltså har vi
∫ 1/2

0

2 dx

(x2 + 1)(x − 1)2 =
∫ 1/2

0

(
x

x2 + 1 − 1
x − 1 + 1

(x − 1)2

)
dx

=
[1

2 ln(x2 + 1) − ln |x − 1| − 1
x − 1

]1/2

0

= 1
2 ln 5

4 − ln 1
2 + 2 − 1

= 1
2 ln 5 + 1

▲

11.11 Taylors formel med integration

Vi börjar med ett alternativt bevis av sats Taylors formel som bygger på
partialintegration.
Bevis av sats 9.1: Från insättningsformeln har vi att∫ x

0
f ′(t) dt = f(x) − f(0).

Med hjälp av partiell integration kan vi få ut term efter term enligt

f(x) = f(0) +
∫ x

0
f ′(t) dt = f(0) +

∫ x

0
1 · f ′(t) dt

= f(0) +
[
(t − x)f ′(t)

]x
0 −

∫ x

0
(t − x)f ′′(t) dt

= f(0) + f ′(0)x −
([

(t − x)2

2 f ′′(t)
]x

0
−
∫ x

0

(t − x)2

2 f (3)(t) dt

)

= f(0) + f ′(0)x + f ′′(0)
2 x2 +

∫ x

0

(t − x)2

2 f (3)(t) dt

= f(0) + f ′(0)x + f ′′(0)
2 x2 +

[
(t − x)3

3! f (3)(t)
]x

0
−
∫ x

0

(t − x)3

3! f (4)(t) dt

= f(0) + f ′(0)x + f ′′(0)
2 x2 + f (3)(0)

3! x3 −
∫ x

0

(t − x)3

3! f (4)(t) dt.
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Om vi fortsätter på samma sätt får vi

f(x) =
n−1∑
k=0

f (k)(0)
k! xk + (−1)n−1

∫ x

0

(t − x)n−1

(n − 1)! f (n)(t) dt.

Vi tillämpar nu den generaliserade medelvärdessatsen 11.12 för integraler med

g(t) = (x − t)n−1

(n − 1)! ⩾ 0,

då t ∈ (0, x). Vi får för något α ∈ (0, x) att

f(x) =
n−1∑
k=0

f (k)(0)
k! xk + f (n)(α)

∫ x

0

(x − t)n−1

(n − 1)! dt

=
n−1∑
k=0

f (k)(0)
k! xk + f (n)(α)

n! xn.

Vilket avslutar beviset. ■

Med hjälp av formeln för en geometrisk summa så kan vi på ett relativt enkelt
sätt bestämma Taylorutvecklingen av funktionerna x 7→ ln(1 + x) och x 7→
arctan x.

Sats 11.29. Följande Taylorutvecklingar gäller

ln(1 + x) = x − x2

2 + x3

3 + . . . + (−1)n−1xn

n
+ (−1)nxn+1

(n + 1)(1 + α) , (11.26)

arctan x = x − x3

3 + x5

5 − . . . + (−1)n−1x2n−1

2n − 1 + (−1)nx2n+1

(2n + 1)(1 + α2) , (11.27)

där α är något tal mellan 0 och x.

Bevis: Enligt formeln för en geometrisk summa har vi för x ̸= 1 att

1 − xn

1 − x
= 1 + x + x2 + x3 + . . . + xn−1,

som kan skrivas om till
1

1 − x
= 1 + x + x2 + . . . + xn−1 + xn

1 − x
.

Låt oss sätta x = −t. Vi får då

1
1 + t

= 1 − t + t2 − . . . + (−1)n−1tn−1 + (−1)n tn

1 + t
. (11.28)

Låt oss nu integrera likheten från 0 till s. Vi får

ln(1 + s) = s − s2

2 + s3

3 − . . . + (−1)n−1 sn

n
+ (−1)n

∫ s

0

tn

1 + t
dt.
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Om vi använder den generaliserade medelvärdessatsen (se sats 11.12) så får vi
för något α mellan 0 och s,

ln(1 + s) = s − s2

2 + s3

3 − . . . + (−1)n−1sn

n
+ (−1)n

1 + α

∫ s

0
tn dt

= s − s2

2 + s3

3 − . . . + (−1)n−1sn

n
+ (−1)nsn+1

(n + 1)(1 + α) .

Detta visar (11.26).
För att visa (11.27) utgår vi från (11.28). Vi sätter t = y2 och får

1
1 + y2 = 1 − y2 + y4 − . . . + (−1)n−1y2n−2 + (−1)n y2n

1 + y2 .

Vi integrerar likheten från 0 till u och använder den generaliserade medel-
värdessatsen (se sats 11.12) och får

arctan u = u − u3

3 + u5

5 − . . . + (−1)n−1u2n−1

2n − 1 + (−1)n
∫ u

0

y2n

1 + y2 dy

= u − u3

3 + u5

5 − . . . + (−1)n−1u2n−1

2n − 1 + (−1)nu2n+1

(2n + 1)(1 + α2) ,

där α är något tal mellan 0 och u, vilket visar satsen. ■

−3 −2 −1 1 2 3

−2

−1

1

2

x 7→ arctan x

p3

p5

p7

p9

p11

Figur 11.2: Här skissas funktionen tillsammans med Taylorpolynomen p3, p5,
p7, p9 och p11.
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Exempel 11.30. Beräkna ett approximativt värde av∫ 3

0
cos

√
x dx,

samt uppskatta felet i beräkningen.
Lösning: Enligt Taylors formel är

cos t = 1 − t2

2 + t4

4! − cos(α) t6

6!

kring t = 0, där α är ett tal mellan 0 och t. Om vi substituerar t =
√

x så får
vi att

cos
√

x = 1 − x

2 + x2

4! − cos(α)x3

6! (11.29)

kring x = 0, där nu α är ett tal mellan 0 och
√

x. Låt oss skissa cos
√

x och
1 − x/2 + x2/4!

0 1 2 3
0

1

Figur 11.3: Den blå funktionen är x 7→ cos
√

x och den röda är approximatio-
nen med hjälp av Taylorutveckling.

Det är enkelt att beräkna integralen av 1 − x/2 + x2/4! över intervallet [0, 3].
Vi får det approximativa värdet

∫ 3

0

(
1 − x

2 + x2

4!

)
dx =

[
x − x2

4 + x3

72

]3

0
= 3 − 9

4 + 81
72 = 135

72 .

Felet i vår uträkning ges av integralen av differensen mellan cos
√

x och 1 −
x/2 + x2/4! på intervallet [0, 3]. Enligt (11.29) får vi att felet kan uppskattas
enligt∣∣∣∣∣

∫ 3

0
cos(α)x3

6! dx

∣∣∣∣∣ ⩽
∫ 3

0

∣∣∣∣∣cos(α)x3

6!

∣∣∣∣∣ dx ⩽
∫ 3

0

x3

720 dx =
[

x4

2880

]3

0
= 81

2880 .
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Alltså gäller att ∫ 3

0
cos

√
x dx = 135

72 ± 81
2880 .

▲

11.12 Övningar

Övning 11.1. Beräkna integralen∫ 5

0
f(x) dx,

där

f(x) =


1 , 0 ⩽ x ⩽ 1
−3 , 1 < x ⩽ 3
9 , 3 < x ⩽ 10

Övning 11.2.

a) Visa med hjälp av definitionen att f(x) = x2 är integrerbar i intervallet
[0, 1]. Eventuellt behövs

n∑
j=0

j = n(n + 1)
2 .

b) Beräkna med hjälp av definitionen värdet av∫ 1

0
x2 dx.

Du kan använda resultatet
n∑

j=0
j2 = n(n + 1)(2n + 1)

6 .

Övning 11.3. Beräkna följande integraler genom att använda sats 11.15

a)
∫ 2

1
(x − x−2) dx

b)
∫ 2

1
(2x−1 + x3) dx

c)
∫ π/2

0
sin(2x) dx

d)
∫ 1

−1
cos x dx

Övning 11.4. Beräkna följande integraler genom att använda sats 11.15
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a)
∫ 5

−1
|x| dx

b)
∫ 2π

0
| sin x| dx

c)
∫ π

−π
(cos x + | sin x|) dx

d)
∫ 4

−2
(x − |x|) dx

Övning 11.5. Beräkna värdet av följande integraler

a)
∫ 2

0
e2x dx

b)
∫ 2

0
xe2x dx

c)
∫ 1/2

0

dx√
1 − x2

d)
∫ 4

2

dx

x ln x

e)
∫ 1

0

x dx

(1 + x2)3

f)
∫ 1

0

(∫ x

0

θ dθ

(1 + θ2)2

)
dx

Övning 11.6. Bestäm

a)
∫

dx

x2(x2 + 1)

b)
∫

x + 1
x2(x2 + 1)dx

c)
∫

dx

(x + 1)2(x2 + 1)

d)
∫

x dx

(x + 1)2(x2 + 1)

Övning 11.7. [2011-10-18, uppgift 3] En stillastående bil startar från ett
trafikljus och ökar farten med konstant acceleration upp tills farten är 25 m/s.
Därefter fortsätter bilen med den konstanta hastigheten 25 m/s. Efter 23 s
har bilen tillryggalagt sträckan 500 m. Hur lång tid efter starten nådde bilen
farten 25 m/s?

Övning 11.8. [2007-12-17, uppgift 3] Beräkna
∫

cos3 x sin2 x dx.

Övning 11.9. [2006-12-20, uppgift 3] Beräkna integralen∫ 1

0

x + 3
x2 + 4x + 5 dx.

Övning 11.10. [2007-05-31, uppgift 3] Beräkna integralen∫ 7

0

x dx
3√x + 1

.

Övning 11.11. [2007-05-31, uppgift 7] Bestäm en primitv funktion till 3x

x3 + 1.

Övning 11.12. [2008-06-04, uppgift 3] Beräkna integralen∫
x

(1 − x)3 dx.
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Övning 11.13. [2009-03-09, uppgift 8] Antag att f(0) = 2, f ′(0) = 1, f ′(1) =
0 samt ∫ 1

0
f(x)ex dx =

∫ 1

0
f ′′(x)ex dx.

Beräkna f(1).

Övning 11.14. Låt f vara en oändligt deriverbar funktion sådan att f(0) = 1,
f ′(0) = 0, f ′′(0) = 1, f (3)(0) = 0 och f (4)(0) = 0. Dessutom är alla derivator
till f uppåt begränsade av 4 och nedåt begränsade av −2 i intervallet [0, 1].
Visa att

419 ⩽ 360
∫ 1

0
f(x) dx ⩽ 422.

Övning 11.15. Beräkna approximativt värdet av integralen∫ 1/2

0

sin x

x
dx

så att felet är mindre än en tusendel.

Övning 11.16. Bestäm det positiva talet x så att integralen∫ x

0
(4t − t2) dt

maximeras. Bestäm också integralens maximala värde.

Övning 11.17. Låt f och f ′ vara kontinuerliga funktioner på intervallet [0, a]
och låt f(0) = 0. Visa att∫ a

0
|f ′(x)| dx ⩾

1
a

∫ a

0
|f(x)| dx.

Övning 11.18. [2007-03-13, uppgift 8] Låt

f(x) = x − 1√
1 + 2x − x2 .

a) Bestäm ekvationen för normalen till f i punkten (2, 1).

b) Funktionen f och dess normal i punkten (2, 1) begränsar tillsammans
med x-axeln ett ändligt område. Beräkna dess area.

Övning 11.19. Beräkna integralen∫ π/2

0

1 + cos x

2 − sin x
dx.

LEDNING: Använd substitutionen tan x/2 = u.

Övning 11.20. Beräkna integralen∫ π/2

0

1
2 − sin x

dx.

LEDNING: Använd substitutionen tan x/2 = u.
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Övning 11.21. Beräkna integralen∫ 1

0
sin x2 dx

med ett fel som är mindre än 10−3.

Övning 11.22. Ett specialfall av Jensens olikhet säger att för varje kontinu-
erlig funktion f på [0, 1] gäller att(∫ 1

0
f(x) dx

)2
⩽
∫ 1

0
f(x)2 dx. (11.30)

Använd specialfallet för att visa att(∫ b

a
f(x) dx

)2

⩽ (b − a)
∫ b

a
f(x)2 dx. (11.31)

gäller då a < b och f är kontinuerlig på [a, b].

Övning 11.23. I artikeln Hardy inequalities for magnetic Dirichlet forms av
A. Laptev och T. Weidl finner vi olikheten∫ β

α
|u(r)|2r dr ⩽

(β − α)2

2

∫ β

α
|u′(r)|2r dr (11.32)

för u som uppfyller att u och u′ är kontinuerliga, u(β) = 0 och β ⩾ α ⩾ 0.
Använd Övning 11.22 för att verifiera den.
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12 Integration över obegränsade intervall

12.1 Definitionen och jämförelsesatser

Definition 12.1. Låt f vara en funktion som är integrerbar på [a, R], för
varje R > a. Då definieras integralen∫ ∞

a
f(x) dx := lim

R→∞

∫ R

a
f(x) dx.

Om detta gränsvärde existerar sägs integralen vara konvergent, i annat fall
divergent.

Integration som inkluderar −∞ definieras på ett analogt vis.
Låt f vara en integrerbar funktion på varje slutet och begränsat intervall. Om
integralerna ∫ a

−∞
f(x) dx och

∫ ∞

a
f(x) dx (12.1)

är konvergenta så sägs integralen∫ ∞

−∞
f(x) dx (12.2)

vara konvergent, i annat fall divergent. Om integralen (12.2) är konvergent så
definieras värdet som∫ ∞

−∞
f(x) dx :=

∫ a

−∞
f(x) dx +

∫ ∞

a
f(x) dx, (12.3)

för något a ∈ R. Notera att definitionen är oberoende av valet av a.

Sats 12.2. Integralen ∫ ∞

1

1
xp

dx

är konvergent om och endast om p > 1.

Bevis: Antag först att p ̸= 1. Då gäller att∫ ∞

1

1
xp

dx = lim
R→∞

∫ R

1

1
xp

dx = lim
R→∞

[
x1−p

1 − p

]R

1
= lim

R→∞

(
R1−p

1 − p
− 1

1 − p

)
.

Detta gränsvärde är konvergent om och endast om R1−p → 0, då R → ∞,
vilket sker om och endast om p > 1.
I fallet att p = 1 har vi∫ ∞

1

1
x

dx = lim
R→∞

∫ R

1

1
x

dx = lim
R→∞

[ln x]R1 = lim
R→∞

ln R = ∞.

Alltså är integralen konvergent om och endast om p > 1. ■
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Sats 12.3. Låt f och g vara integrerbara funktioner i [a, R], för varje R > a,
sådana att 0 ⩽ f(x) ⩽ g(x), för varje x ⩾ a. Då gäller att om

∫∞
a g(x) dx är

konvergent så är även
∫∞

a f(x) dx konvergent.

Beviset är näst intill identiskt med sats 10.5 och lämnas därför som en övning
till läsaren.
Följdsats 12.4. Låt f och g vara integrerbara funktioner i [a, R], för varje
R > a, sådana att 0 ⩽ f(x) ⩽ g(x), för varje x ⩾ a. Då gäller att om∫∞

a f(x) dx är divergent så är även
∫∞

a g(x) dx divergent.

Bevis: Resultatet är kontrapositionen av sats 12.3. ■

Exempel 12.5. Visa att integralen∫ ∞

3

x2

x4 + x
dx

är konvergent.
Lösning: Notera att vi kan utföra följande uppskattningar

0 ⩽
x2

x4 + x
⩽

x2

x4 + 0 = 1
x2 .

Eftersom ∫ ∞

3

1
x2 dx

är konvergent enligt sats 12.2 så är enligt sats 12.3 integralen∫ ∞

3

x2

x4 + x
dx

konvergent. ▲

Exempel 12.6. Visa att integralen∫ ∞

3

x2

x3 + x
dx

är divergent.
Lösning: Vi vill nyttja sats 12.4. Först konstaterar vi att x ⩽ x3 för alla
x ⩾ 3. Alltså gäller att för x ⩾ 3 har vi

x2

x3 + x
⩾

x2

x3 + x3 = 1
2x

.

Eftersom ∫ ∞

3

1
2x

dx

är divergent enligt sats 12.2 så är enligt sats 12.4 integralen∫ ∞

3

x2

x3 + x
dx

divergent. ▲
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Sats 12.7. Låt f och g vara positiva och integrerbara funktioner i [a, R], för
varje R > a, sådana att

lim
x→∞

f(x)
g(x) = K,

för något K ̸= 0. Då gäller att∫ ∞

a
f(x) dx konvergerar om och endast om

∫ ∞

a
g(x) dx konvergerar.

Beviset är näst intill identiskt med sats 10.9 och lämnas därför som en övning
till läsaren.
Följande exempel visar att konvergenta integralers integrand inte behöver gå
mot noll vid oändligheten.
Exempel 12.8. Visa att ∫ ∞

1
sin(x2) dx (12.4)

är konvergent. Funktionen har utseendet

Lösning: Vi utför variabelbytet t = x2 och integrerar därefter partiellt och
får att ∫ R

1
sin(x2) dx =

∫ R2

1

sin t

2
√

t
dt =

[− cos t

2
√

t

]R2

1
−
∫ R2

1

cos t

4t3/2 dt

= −cos(R2)
2R

+ cos 1
2 −

∫ R2

1

cos t

4t3/2 dt

Om vi nu låter R → ∞ så får vi∫ ∞

1
sin(x2) dx = cos 1

2 −
∫ ∞

1

cos t

4t3/2 dt

och kan konstatera att (12.4) är konvergent om och endast om∫ ∞

1

cos t

4t3/2 dt

är konvergent. Vi har att ∣∣∣∣ cos t

4t3/2

∣∣∣∣ ⩽ 1
4t3/2 .

Eftersom ∫ ∞

1

1
t3/2 dt

är konvergent så är (12.4) konvergent. ▲
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12.2 Samband mellan summor och integraler

Sats 12.9. Låt f vara en avtagande funktion i intervallet [m, n], där m och
n är heltal sådana att m < n. Då gäller att

n∑
j=m+1

f(j) ⩽
∫ n

m
f(x) dx ⩽

n−1∑
j=m

f(j) (12.5)

m m + 1 n − 1 n

Figur 12.1: Summor och integraler

Bevis: Beviset följer direkt från figure 12.1. Notera att vänsterledet och hö-
gerledet är en undersumma respektive översumma till integralen. ■

Notera att (12.5) kan omformuleras till

f(n) +
∫ n

m
f(x) dx ⩽

n∑
j=m

f(j) ⩽ f(m) +
∫ n

m
f(x) dx. (12.6)

Exempel 12.10. Visa att

π

3 ⩽
∞∑

j=1

√
3

3 + j2 ⩽
π

2 . (12.7)

Lösning: Eftersom funktionen f(x) =
√

3/(3 + x2) är avtagande, positiv och
kontinuerlig så kan vi nyttja sats 12.9. Den ger oss att

∫ N+1

1

√
3

3 + x2 dx ⩽
N∑

j=1

√
3

3 + j2 ⩽
∫ N

0

√
3

3 + x2 dx
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Vi beräknar nu integralerna,∫ N

0

√
3

3 + x2 dx =
√

3
∫ N

0

1
3 + x2 dx = 1√

3

∫ N

0

1

1 +
(

x√
3

)2 dx

=
[
x =

√
3t, dx =

√
3dt
]

=
∫ N/

√
3

0

1
1 + t2 dt = arctan

(
N√

3

)
och på liknande sätt∫ N+1

1

√
3

3 + x2 dx =
∫ (N+1)/

√
3

1/
√

3

1
1 + t2 dt

= arctan
(

N + 1√
3

)
− arctan

( 1√
3

)
= arctan

(
N + 1√

3

)
− π

6 .

Alltså gäller att

arctan
(

N + 1√
3

)
− π

6 ⩽
N∑

j=1

√
3

3 + j2 ⩽ arctan
(

N√
3

)
.

Då N → ∞ följer att
π

3 ⩽
∞∑

j=1

√
3

3 + j2 ⩽
π

2 .

▲

Exempel 12.11. Ange en delsumma till serien
∞∑

j=1

1
1 + j4

som approximerar serien med ett fel mindre än 1/1000.
Lösning: Vi kan först dela upp summan enligt

∞∑
j=1

1
1 + j4 =

N∑
j=1

1
1 + j4 +

∞∑
j=N+1

1
1 + j4

och försöka bestämma N så att
∞∑

j=N+1

1
1 + j4 <

1
1000 .

Enligt definitionen är

∞∑
j=N+1

1
1 + j4 = lim

R→∞

R∑
j=N+1

1
1 + j4 .
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Eftersom funktionen f(x) := 1/(1+x4) är positiv, kontinuerlig och avtagande
så gäller enligt sats 12.9 att

R∑
j=N+1

1
1 + j4 ⩽

∫ R

N

dx

1 + x4 .

Nu följer att∫ R

N

dx

1 + x4 <

∫ R

N

dx

x4 =
[
− 1

3x3

]R

N
= − 1

3R3 + 1
3N3 → 1

3N3 ,

då R → ∞. Vi söker ett N sådant att 1/(3N3) < 1/1000. Vi ser att vi kan
välja N = 10 för då är 1/(3N3) = 1/3000. Alltså kan vi summera 10 termer.

▲

Versionen av sats 12.9 för växande funktioner blir
Sats 12.12. Låt f vara en växande funktion i intervallet [m, n], där m och n
är heltal sådana att m < n. Då gäller att

n−1∑
j=m

f(j) ⩽
∫ n

m
f(x) dx ⩽

n∑
j=m+1

f(j) (12.8)

Vi illustrerar satsen med en figur

m m + 1 n − 1 n

Figur 12.2: Summor och integraler

Sats 12.13 (Cauchys integralkriterium). Låt f vara en positiv och avtagande
funktion i (m, ∞), då gäller att

∑∞
j=m f(j) är konvergent om och endast om∫∞

m f(x) dx är konvergent.

Bevis: Antag först att ∑∞
j=m f(j) är konvergent med summan S. Vi vill visa

att gränsvärdet

lim
R→∞

∫ R

m
f(x) dx (12.9)
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existerar. Att gränsvärdet existerar följer från sats 4.8 om vi lyckas visa att
R 7→ ∫ R

m f(x) dx är växande och uppåt begränsad. Då f är positiv så är det
klart att R 7→ ∫ R

m f(x) dx är växande. Låt n vara det minsta heltalet som
uppfyller att R < n. Enligt sats 12.9 har vi att∫ R

m
f(x) dx ⩽

∫ n

m
f(x) dx ⩽

n−1∑
j=m

f(j) → S,

då R → ∞ och då även n → ∞. Alltså existerar gränsvärdet (12.9).
Omvänt gäller att om

∫∞
m f(x) dx existerar så visar vi på liknande sätt att∑n

j=m f(j) är växande, ty f är positiv, och uppåt begränsad från sats 12.9.
■

12.3 Övningar

Övning 12.1. Avgör om den generaliserade integralen
∫∞

1 e−x2
dx är konver-

gent.

Övning 12.2. Bestäm det minsta antalet termer i serien ∑∞
k=1

1
k4 som behövs

för att approximera summan med ett fel som är mindre än 1/4000.

Övning 12.3. Bevisa sats 12.3.

Övning 12.4. Bevisa sats 12.7.

Övning 12.5. Beräkna integralen∫ ∞

0

dx√
x + 2x2 + x3 .

Övning 12.6. Avgör om följande serier konvergerar

a)
∞∑

n=2

1
n ln n

b)
∞∑

n=1
e−√

n

Övning 12.7.

a) Konvergerar eller divergerar integralen∫ ∞

−∞

x

x2 + 1dx?

b) Bestäm värdet av

lim
R→∞

∫ R

−R

x

x2 + 1dx.

c) Bestäm värdet av

lim
R→∞

∫ 2R

−R

x

x2 + 1dx.
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d) Kan du av svaren från b) och c) besvara a)?

Övning 12.8. Visa att

a) följande integral är divergent∫ ∞

−∞

1 + x

x2 + 1dx.

b)

lim
R→∞

∫ R

−R

1 + x

x2 + 1dx = π.

c) Bestäm värdet av

lim
R→∞

∫ 2R

−R

1 + x

x2 + 1dx.

Övning 12.9. [2008-12-15, uppgift 3] Beräkna den generaliserade integralen∫ ∞

0

dx

ex + e−x
.

Övning 12.10.

a) Beräkna den generaliserade integralen
∫ ∞

1

dx

(x + 1)
√

x
.

b) Visa att serien
∞∑

k=1

1
(k + 1)

√
k

är konvergent. Uppskatta seriens summa

med hjälp av uppgift a).

Övning 12.11. [2006-12-20, uppgift 8]

a) Beräkna integralen
∫ ∞

0
e−√

x dx.

b) Visa att serien
∞∑

k=1
e−

√
k är konvergent.

Övning 12.12. [2009-03-09, uppgift 4] Bestäm n så att

∞∑
k=1

1
1 + k5 =

n∑
k=1

1
1 + k5 + r(n),

där resttermen r är mindre än 1/4000.

Övning 12.13. En integral av typen∫ ∞

a
f(x) dx
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sägs vara absolutkonvergent om ∫ ∞

a
|f(x)| dx

är konvergent. Visa att om ∫ ∞

a
f(x) dx

är absolutkonvergent så är den konvergent.
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13 Lokal integrerbarhet

Bakgrunden är att vi vill integrera en funktion över ett intervall där det finns
punkter där funktionen inte är definierad. Problemställningen är enkel: Går
det? Och i så fall: Hur gör vi?

13.1 Definitionen och jämförelsesatser

Definition 13.1. Låt f : (a, b] → R vara en integrerbar funktion i intervallet
[a + ε, b], för varje litet ε > 0. Vi definierar∫ b

a
f(x) dx = lim

ε→0

∫ b

a+ε
f(x) dx.

Om detta gränsvärde existerar sägs integralen vara konvergent, i annat fall
divergent. Om integralen är konvergent sägs funktionen f vara integrerbar i
intervallet (a, b].

Läsaren kan själv formulera definitionen i fallet att funktionen f inte skulle
vara definierad i punkten b.
Vi använder räkneregel (11.19) i fallet att f inte är definierad i en inre punkt
av [a, b].

Definition 13.2. Låt f vara en funktion definierad i intervallen [a, c) och
(c, b], odefinierad i punkten c ∈ (a, b) och integrerbar på varje slutet intervall
I ⊂ [a, c) ∪ (c, b]. Då definieras∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx.

Om båda integralerna i högerledet är konvergenta så sägs integralen
∫ b

a f(x) dx
vara konvergent, annars divergent.

Sats 13.3. Integralen ∫ 1

0

1
xq

dx

är konvergent om och endast om q < 1.

Vi skulle kunna bevisa denna sats på ett liknande sätt som beviset av sats
12.2. Vi väljer här att överföra denna situation på resultatet av sats 12.2.
Bevis: Vi har att∫ 1

0

1
xq

dx =
{

x = 1
t

dx = −dt
t2

}
= −

∫ 1

∞

1
(1/t)q

1
t2 dt =

∫ ∞

1

1
t2−q

dt.

Vi vet från sats 12.2 att integralen konvergerar om och endast om 2 − q > 1,
vilket är detsamma som q < 1. ■
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Sats 13.4. Låt f och g vara integrerbara funktioner i [a+ε, b], för varje ε > 0,
sådana att 0 ⩽ f(x) ⩽ g(x), för varje x ∈ (a, b]. Då gäller att om

∫ b
a g(x) dx

är konvergent så är även
∫ b

a f(x) dx konvergent.

Beviset är näst intill identiskt med sats 10.5 och lämnas därför som en övning
till läsaren.
Följdsats 13.5. Låt f och g vara integrerbara funktioner i [a + ε, b], för varje
ε > 0, sådana att 0 ⩽ f(x) ⩽ g(x), för varje x ∈ (a, b]. Då gäller att om∫ b

a f(x) dx är divergent så är även
∫ b

a g(x) dx divergent.

Bevis: Resultatet är kontrapositionen av sats 12.3. ■

Sats 13.6. Låt f och g vara positiva och integrerbara funktioner i [a + ε, b],
för varje ε > 0, sådana att

lim
x→a+

f(x)
g(x) = K, (13.1)

för något K > 0. Då gäller att∫ b

a
f(x) dx konvergerar om och endast om

∫ b

a
g(x) dx konvergerar.

Bevis: Antag att
∫ b

a f(x) dx är konvergent. Vi vill visa att
∫ b

a g(x) dx är kon-
vergent, d.v.s. att gränsvärdet

lim
ε→0+

∫ b

a+ε
g(x) dx

existerar. Vi visar detta genom att visa att integralen växer och är uppåt
begränsad då ε minskar.
Då g(x) ⩾ 0 så gäller att integralen

∫ b
a+ε g(x) dx växer då ε minskar. Vi har

kvar att visa att
∫ b

a+ε g(x) dx är uppåt begränsad.
Från (13.1) har vi att det för varje ε1 > 0 finns det ett δ1 sådant att då
a < x < a + δ1 så är

K − ε1 <
f(x)
g(x) < K + ε1.

Speciellt för ε1 = K/2 gäller att det finns ett δ så att då a < x < a + δ så är
K

2 <
f(x)
g(x) <

3K

2 .

Kom ihåg i räkningarna nedan att δ är fixerat och det är vårt ε som inte är
fixerat. När ε är litet gäller att ε < δ och vi får∫ b

a+ε
g(x) dx =

∫ a+δ

a+ε
g(x) dx +

∫ b

a+δ
g(x) dx

<
2
K

∫ a+δ

a+ε
f(x) dx +

∫ b

a+δ
g(x) dx

⩽
2
K

∫ b

a
f(x) dx +

∫ b

a+δ
g(x) dx
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Den första integralen är konvergent från vårt antagande och den andra inte-
gralen är integrerbar från satsens förutsättningar. Alltså är

∫ b
a+ε g(x) dx uppåt

begränsad och därmed konvergent då ε → 0+.
Den omvända implikationen följer analogt fast med olikheten

f(x) <
3Kg(x)

2 .

■

Exempel 13.7. Visa att integralen∫ 1

0

1
sin x

dx

är divergent.
Lösning: Vi väljer att jämföra med funktionen 1/x. Vi har att

1/ sin x

1/x
→ 1,

då x → 0 och att ∫ 1

0

1
x

dx

är divergent. Alltså är ursprungsintegralen divergent. ▲

Exempel 13.8 (Tentamen 2011-10-18, 31%).

a) På vilket sätt är integralen ∫ 1

0

cos x

x1/3 dx

generaliserad?

b) Avgör om integralen är konvergent eller divergent.

Lösning:

a) Integranden är funktionen f(x) = cos x
x1/3 . Denna funktion är kontinuer-

lig på intervallet (0, ∞), men limx→0+ f(x) = ∞. Integralen är alltså
generaliserad eftersom integranden är odefinierad i punkten 0.

b) På intervallet (0, 1] är 0 < cos(x) ⩽ 1 och 0 < x1/3, så vi har

0 <
cos x

x1/3 ⩽
1

x1/3 för alla x ∈ (0, 1].

Den generaliserade integralen
∫ 1

0 x−1/3dx är konvergent enligt sats 13.4
eftersom 1/3 < 1.

▲
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13.2 Övningar

Övning 13.1. Avgör om den generaliserade integralen
∫ π

0

√
x

sin x dx är konver-
gent.

Övning 13.2. Är följande integraler generaliserade? Ange i förekommande
fall på vilket sätt de är generaliserade och avgör om de konvergerar. Beräkna
slutligen integralerna.

a)
∫ 2

0

dx

1 − x
b)
∫ 3

0
|2x − 1| dx

Övning 13.3. Undersök om följande integraler är konvergenta och beräkna i
så fall deras värde

a)
∫ 1

0

dx

sin x

b)
∫ 1

0
arctan

( 1√
x

)
dx

c)
∫ 1

0

x dx√
x(1 − x)

d)
∫ ∞

0

x dx√
x(1 + x)

Övning 13.4. Undersök om följande integraler är konvergenta?

a)
∫ 1

0

√
x dx

sin x

b)
∫ 1

0

ex

ex − 1 dx

c)
∫ 1

0

dx

1 − √
x

d)
∫ ∞

1

dx

x
√

x2 − 1

Övning 13.5. Låt f : (a, b] → R. En integral av typen∫ b

a
f(x) dx

sägs vara absolutkonvergent om ∫ b

a
|f(x)| dx

är konvergent. Visa att om ∫ b

a
f(x) dx

är absolutkonvergent så är den konvergent.
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14 Integralens tillämpningar

14.1 Riemannsummor

Låt Pn = {xn,i}Nn

i=0 vara en uppdelning av [a, b], d.v.s. för varje givet n är Pn

en uppdelning av [a, b] som består av Nn antal delintervall. Vi har att

a = xn,0 < xn,1 < xn,2 < . . . < xn,Nn−1 < xn,Nn = b.

Låt αn,i ∈ [xn,i−1, xn,i] och ∆n,i = xn,i − xn,i−1.
Summan

Nn∑
i=1

f(αn,i)∆n,i,

kallas en Riemannsumma för f i intervallet [a, b].

xn,0 xn,1 xn,Nn

αn,1 αn,2

f(αn,1)

f(αn,2)

Figur 14.1: Riemannsumma för fixerat n

Exempel 14.1. Summan
n∑

i=1

1

1 +
(

i
n

)2
1
n

är en Riemannsumma för funktionen

f(x) = 1
1 + x2

på uppdelningen 0, 1/n, 2/n, . . . , 1. Här är alla delintervall av lika längd, men
så behöver inte vara fallet. ▲
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Följande sats säger att Riemannsummor av kontinuerliga funktioner kan an-
vändas för att approximera integraler.

Sats 14.2. Låt f vara kontinuerlig i intervallet [a, b] och låt (Pn)∞
n=1 vara en

följd av uppdelningar av [a, b] sådana att det största delintervallets längd

max{∆n,i : 1 ⩽ i ⩽ Nn} → 0,

då n → ∞. Då gäller att Riemannsumman

Nn∑
i=1

f(αn,i)∆n,i →
∫ b

a
f(x) dx,

då n → ∞.

Bevis: För givet n låt mn,i och Mn,i vara det minsta respektive största värdet
av f på intervallet [xn,i−1, xn,i]. Vi har att Riemannsumman är instängd av

Nn∑
i=1

mi∆n,i ⩽
Nn∑
i=1

f(αn,i)∆n,i ⩽
Nn∑
i=1

Mi∆n,i.

Enligt (11.14) och (11.15) så gäller att både höger- och vänsterled går mot∫ b

a
f(x) dx

och därmed följer satsen. ■

Exempel 14.3. Bestäm

lim
n→∞

n∑
j=1

1
n + j2/n

.

Lösning: Summan
n∑

j=1

1
n + j2/n

=
n∑

j=1

1
1 + (j/n)2 · 1

n

är en Riemannsumma för f(x) = 1/(1 + x2) över intervallet [0, 1], där den
högra ändpunkten i varje intervall är vald. Alltså gäller att

n∑
j=1

1
1 + (j/n)2 · 1

n
→
∫ 1

0

dx

1 + x2 = π

4 ,

då n → ∞. ▲

Exempel 14.4. Bestäm

lim
n→∞

n∑
j=1

ln
(2j + n − 1

n

)n−1

.
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Lösning: Vi noterar först att
n∑

j=1
ln
(2j + n − 1

n

)n−1

=
n∑

j=1
ln
(2j + n − 1

n

)
· 1

n

= 1
2

n∑
j=1

ln
(2j + n − 1

n

)
· 2

n
.

Här behöver vi justera delintervallen från 1/n till 2/n så att αj := (2j+n−1)/n
matchar intervallen. Låt

Pn =
{

n

n
,
n + 2

n
,
n + 4

n
, . . . ,

3n

n

}
vara en uppdelning av intervallet [1, 3]. Vi får då att intervallängderna är 2/n.
Summan ovan är en Riemannsumma av f(x) = ln x över uppdelningen Pn. Vi
har valt att beräkna f i mittpunkten på varje intervall. Alltså följer att

1
2

n∑
j=1

ln
(2j + n − 1

n

)
· 2

n
→
∫ 3

1
ln x dx = [x ln x − x]31 = 3 ln 3 − 2,

då n → ∞. ▲

14.2 Areaberäkning

Exempel 14.5. Beräkna arean som stängs in av en ellips, alltså arean av alla
punkter (x, y) som uppfyller att

x2

a2 + y2

b2 ⩽ 1,

där a och b är positiva reella tal.
Lösning: Arean är den som bildas mellan funktionerna

y(x) = ±b

√
1 − x2

a2 = ± b

a

√
a2 − x2,

definierade för x ∈ [−a, a].

y1(x) = b
a

√
a2 − x2

y2(x) = − b
a

√
a2 − x2

a

b
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Av symmetriskäl uppfyller arena A att

A =
∫ a

−a
(y1(x) − y2(x)) dx = 4

∫ a

0
y1(x) dx = 4b

a

∫ a

0

√
a2 − x2 dx

=
{

x = a sin t
dx = a cos t dt

}
= 4b

a

∫ π/2

0

√
a2 − a2 sin2 ta cos t dt

= 4ab

∫ π/2

0

√
1 − sin2 t cos t dt = 4ab

∫ π/2

0
cos2 t dt.

Vi använder nu trigonometriska identiteten

cos2 t = 1 + cos(2t)
2

och får att

4ab

∫ π/2

0
cos2 t dt = 4ab

∫ π/2

0

1 + cos(2t)
2 dt

= 4ab

[
t

2 + sin(2t)
4

]π/2

0
= abπ

Här ser vi att cirkelskivans area, då a = b = r, blir πr2. ▲

14.3 Volymberäkning

14.3.1 Rotation kring x-axeln

Antag att f är en kontinuerlig funktion definierad på intervallet [a, b]. Om vi
låter f rotera kring x-axeln bildas en kropp som vi vill beräkna volymen av.
Först approximerar vi volymen med hjälp av cirkelskivor med viss bredd och
därefter förfinar vi approximationen genom att låta bredden gå mot noll.
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a b

Antag att vi delar in intervallet [a, b] i n stycken delintervall [xj , xj+1] av
lika storlek. Bredden på varje sådant intervall blir ∆x := (b − a)/n. Vi låter
radien av varje cirkelskiva vara bestämd av funktionens värde i den vänstra
ändpunkten xj på intervallet [xj , xj+1]. Volymen kan approximeras av summan
av dessa n cirkelskivor av bredd ∆x. Approximationen ges av

Vn =
n∑

j=1
πf(xj)2∆x.

Enligt sats 14.2 gäller att volymen V uppfyller

V = lim
n→∞ Vn =

∫ b

a
πf(x)2 dx.

Exempel 14.6 (Klotets volym). Låt oss beräkna volymen av ett klot. Som ni
kanske redan misstänker så ska vi beräkna volymen genom att rotera en cirkel.
En cirkel med radien r fås av de punkter x och y som uppfyller x2 + y2 = r2.
Ur detta uttryck kan vi lösa ut y enligt

y = ±
√

r2 − x2

För att göra det enkelt för oss noterar vi att om vi roterar grafen av en
fjärdedels cirkel kring x-axeln så får vi ett halvt klot. Alltså blir hela klotets
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volym två gånger rotationsintegralen av y

V = 2π

∫ r

0
y2 dx = 2π

∫ r

0
r2 − x2 dx = 2π

[
r2x − x3

3

]r

0
= 4πr3

3

Ett svar som vi väl känner igen från geometrin. ▲

14.3.2 Rotation kring y-axeln

Låt f vara en kontinuerlig funktion definierad på intervallet [a, b]. Om vi låter
f rotera kring y-axeln bildas en kropp under grafen som vi vill beräkna voly-
men av. Återigen delar vi in intervallet i n stycken lika stora intervall. Först
approximerar vi med en Riemannsumma och därefter förfinar vi approxima-
tionen med hjälp av sats 14.2.

a b

Approximationen ges av differensen mellan de två tårtorna med radie xj+1
respektive xj . Alltså

Vn =
n∑

j=1
πf(xj)(x2

j+1 − x2
j )

=
n∑

j=1
πf(xj)(xj+1 + xj)(xj+1 − xj)

=
n∑

j=1
πf(xj)

(
2xj + b − a

n

)
∆x

=
n∑

j=1
πf(xj)2xj∆x +

n∑
j=1

πf(xj)b − a

n
∆x,

eftersom ∆x = xj+1 − xj och xj+1 + xj = 2xj + (b − a)/n. Den första summan
uppfyller enligt sats 14.2 att

lim
n→∞

n∑
j=1

πf(xj)2xj∆x = 2π

∫ b

a
xf(x) dx
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och den andra summan uppfyller enligt sats 14.2 och sats 4.5 att

lim
n→∞

n∑
j=1

πf(xj)b − a

n
∆x = lim

n→∞
b − a

n

n∑
j=1

πf(xj)∆x = 0 · π

∫ b

a
f(x) dx = 0.

Alltså är volymen V vid rotation kring y-axeln

V = 2π

∫ b

a
xf(x) dx.

14.4 Kurvlängd

Låt f vara en deriverbar funktion definierad på intervallet [a, b]. För att be-
stämma längden av kurvan så använder vi Riemannsummor. Låt (ai)n

i=0 va-
ra en uppdelning av intervallet [a, b] och bilda räta linjer genom punkterna
(ai, f(ai)).

a = a0 a1 · · · b = an

Längden av de räta linjerna blir med hjälp av Pythagoras sats

Ln :=
n−1∑
i=0

√
(ai+1 − ai)2 + (f(ai+1) − f(ai))2 (14.1)

=
n−1∑
i=0

√
1 +

(
f(ai+1) − f(ai)

ai+1 − ai

)2
(ai+1 − ai) . (14.2)

Om följden (ai)n
i=0 väljs så att

max
i

|ai+1 − ai| → 0, (14.3)

då n → ∞ och eftersom

f(ai+1) − f(ai)
ai+1 − ai

→ f ′(ai), (14.4)
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då ai+1 − ai → 0, så gäller enligt sats 14.2 att

Ln →
∫ b

a

√
1 + f ′(x)2 dx (14.5)

då n → ∞. Vi definierar därför längden av funktionen f mellan a och b som∫ b

a

√
1 + f ′(x)2 dx. (14.6)

Exempel 14.7. [2009-06-01, uppgift 3] Beräkna längden av kurvan f(x) =√
1 − x2 + arcsin x då 0 ⩽ x ⩽ 1.

Lösning: Då

f ′(x) = 1 − x√
1 − x2 (14.7)

får vi att längden ges av

L =
∫ 1

0

√
1 + f ′(x)2 dx =

∫ 1

0

√
1 + (1 − x)2

1 − x2 dx (14.8)

=
√

2
∫ 1

0

√
1 − x

1 − x2 dx =
√

2
∫ 1

0

dx√
1 + x

(14.9)

= 2
√

2
[√

1 + x
]1

0
= 4 − 2

√
2. (14.10)

▲

14.5 Övningar

Övning 14.1. Approximera integralen∫ 2

1

dt

t

med hjälp av en Riemannsumma med

a) 2 termer,

b) 4 termer.

Förklara varför dina svar på a) och b) kan användas som approximationer av
ln 2.

Övning 14.2. [2007-03-13, uppgift 3] Beräkna arean av det området D =
{(x, y) ∈ R2 : 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ arctan x}.
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Övning 14.3. [2007-03-13, uppgift 5] En behållare full med vätska har formen
av den rotationskropp som uppstår då området{

(x, y) ∈ R2 : 0 ⩽ y ⩽
1√

(x − 2)(x − 4)
, 5 ⩽ x

}
roterar ett varv kring x-axeln. Behållaren har en kran som släpper ut vätskan
med en volym enhet per sekund. Hur mycket tid behövs för att tömma ut hela
behållaren?

Övning 14.4. [2008-06-04, uppgift 7] Beräkna först arean A(b) av det område
i xy-planet som begränsas av x-axeln, de vertikala linjerna x = 0, x = b (där
b > 0) och kurvan y(x) = x ·(x2 +2)−3/2. Visa sedan att limb→∞ A(b) existerar
samt beräkna detta gränsvärde.

Övning 14.5. [2008-12-15, uppgift 7] Beräkna volymen av den rotationskropp
som uppstår då området mellan parablerna y = x2 och y = 8−x2 roterar kring
x-axeln.

Övning 14.6. Beräkna volymen av den rotationskropp, begränsad av x = 0
och x = 1, som uppkommer då vi roterar f(x) = x2 kring x-axeln.

Övning 14.7. Genom att rotera funktionen f(x) = (1 + x) 1
3 får vi någonting

som med lite vilja kan tänkas likna ett vattenglas. Antag att du vill mäta upp
exakt 4 volymenheter av vatten i glaset. Hur högt upp i glaset skall du fylla?

Övning 14.8. Beräkna volymen av den rotationskropp, begränsad av x = 0
och x = π/2, som uppkommer då vi roterar f(x) =

√
cos(x) kring x-axeln.

Övning 14.9. Bestäm det begränsade område som innesluts av kurvorna
y = 4x3 + 12x och y = 16x2. Beräkna områdets area.

Övning 14.10. Beräkna volymen av den rotationskropp som genereras då
området mellan kurvan y = sin x, 0 ≤ x ≤ π, och x-axeln roteras ett varv runt
x-axeln.

Övning 14.11. Beräkna volymen av den rotationskropp som genereras då
området mellan kurvan y = sin x, 0 ≤ x ≤ π, och x-axeln roteras ett varv runt
y-axeln.

Övning 14.12.

a) Bestäm definitionsmängd för var och en av de två funktionerna f(x) =√
x

√
−32 − x och g(x) =

√
−x2 − 32x.

b) Beräkna den area som dessa funktioner naturligen definierar, nämligen
arean under grafen.

Övning 14.13. [2006-12-20, uppgift 7] Beräkna längden av kurvan

f(x) = 1
2(ex + e−x),

där 0 < x < ln 2.
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15 Differentialekvationer

En ordinär differentialekvation (ODE) är en ekvation som innehåller en
eller flera envariabelfunktioner och deras derivator. Ett exempel är ekvationen

− h

4πm
y′′(x) + V (x)y(x) = Ey(x), (15.1)

som beskriver vågfunktionen y för en kvantmekanisk partikel i ett tillstånd med
energi E. I ekvationen, som är ett exempel på en tidsoberoende Schröding-
erekvation, är h Plancks konstant, m partikelns massa, och V en funktion
som beskriver partikelns potentiella energi som funktion av positionen.
Om en differentialekvation kan skrivas på formen

y(n) + fn−1(x)y(n−1) + . . . + f2(x)y′′ + f1(x)y′ + f0(x)y = h(x), (15.2)

sägs den vara linjär och av ordning n. Om h = 0 sägs ekvationen vara
homogen annars inhomogen.

15.1 Linjära ODE av första ordningen med konstanta koeffici-
enter

Sats 15.1. Låt a ∈ R. En funktion y löser differentialekvationen

y′ + ay = 0

om och endast om
y(x) = Ce−ax,

där C ∈ R.

Bevis: Låt oss först visa att y(x) = Ce−ax löser differentialekvationen. Vi har
att

y′(x) + ay(x) = Ce−ax(−a) + aCe−ax = 0,

alltså löser y(x) = Ce−ax differentialekvationen.
Låt y1(x) = C1e−ax, för någon konstant C1 ̸= 0. Antag att y är en lösning till
differentialekvationen y′ + ay = 0. Eftersom y1 ̸= 0 gäller att lösningen y kan
skrivas på formen

y(x) = y1(x) y(x)
y1(x) .

Låt oss kalla w(x) = y(x)/y1(x). Eftersom y1 är en lösning till differentia-
lekvationen har vi att

y′(x) + ay(x) = y′
1(x)w(x) + y1(x)w′(x) + ay1(x)w(x)

= (y′
1(x) + ay1(x))w(x) + y1(x)w′(x)

= y1(x)w′(x) = 0.
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Vilket ger att w′(x) = 0, alltså är w(x) = C2, där C2 ∈ R är en konstant. En
godtycklig lösning y är därför alltid på formen

y(x) = y1(x)w(x) = C1e−axC2 = Ce−ax.

Vilket skulle bevisas. ■

15.2 Homogena linjära ODE av andra ordningen med konstan-
ta koefficienter

Definition 15.2. Låt y′′ +ay′ + by = 0 vara en differentialekvation, där a och
b är reella tal. Polynomet

r 7→ r2 + ar + b,

kallas det karakteristiska polynomet till differentialekvationen och r2+ar+
b = 0, kallas den karakteristiska ekvationen för differentialekvationen.

Sats 15.3. Låt a, b ∈ R och låt r1 och r2 vara lösningarna till den karakteris-
tiska ekvationen r2 + ar + b = 0.
En funktion y löser den homogena differentialekvationen

y′′ + ay′ + by = 0 (15.3)

om och endast om y uppfyller nedanstående

a) I fallet r1 och r2 är reella och r1 ̸= r2, så är

y(x) = C1er1x + C2er2x, (15.4)

b) I fallet r1 = r2, så är

y(x) = (C1 + C2x)er1x, (15.5)

c) I fallet r1 = c + di och r2 = c − di, där d ̸= 0, så är

y(x) = ecx(C1 cos(dx) + C2 sin(dx)), (15.6)

där C1, C2 ∈ C. En lösning till (15.3) kallas för en homogen lösning.

Hjälpsats 15.4. Låt r1 och r2 vara rötterna till ekvationen r2 + ar + b = 0.
Då gäller att r1 + r2 = −a.

Bevis: Enligt faktorsatsen är

r2 + ar + b = (r − r1)(r − r2).

Utvecklar vi högerledet får vi r2 − (r1 +r2)r +r1r2. Identifierar vi koefficienter
så får vi önskad identitet. ■
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Bevis: Det är en direkt räkning för att verifiera att om y är på någon av
formerna (15.4) – (15.6) så löser y differentialekvationen. Det svåra är att visa
omvändningen, d.v.s. att det finns inga andra funktioner än dessa som löser
differentialekvationen.
Antag att y är en lösning av (15.3). Eftersom en exponentialfunktion aldrig
antar värdet noll så kan vi skriva y på formen

y(x) = y1(x)w(x), (15.7)

där y1(x) = er1x. Problemet handlar nu om att ta reda på hur w ser ut.
Eftersom y′′

1 + ay′
1 + b = 0 har vi att

y′′ + ay′ + by = y′′
1w + 2y′

1w′ + y1w′′ + a(y′
1w + y1w′) + by1w

= (y′′
1 + ay′

1 + by1)w + 2y′
1w′ + y1w′′ + ay1w′

= 2y′
1w′ + y1w′′ + ay1w′

= (2r1w′ + w′′ + aw′)er1x

= (w′′ + (a + 2r1)w′)er1x

Lösningen till differentialekvationen (w′)′ + (a + 2r1)(w′) = 0 är enligt sats
15.1 funktionen

w′(x) = C1e−(a+2r1)x

och från sats 15.4 får vi att a + 2r1 = r1 − r2. Alltså är

w′(x) = C1e(r2−r1)x. (15.8)

I fallet att r2 ̸= r1 har vi

w(x) = C1
r2 − r1

e(r2−r1)x + C2 = C3e(r2−r1)x + C2,

där C3 = C1
r2−r1

. Instoppat i (15.7) ger

y(x) = er1x(C3e(r2−r1)x + C2) = C3er2x + C2er1x,

vilket visar a) i fallet att r1 och r2 är reella. Om r1 och r2 är komplexa så är
r1 = r2, ty a och b är reella. Vi kan därför skriva att r1 = c+di och r2 = c−di
och får att

y(x) = C3er2x + C2er1x = C3e(c+di)x + C2e(c−di)x

= ecx(C3eidx + C2e−idx).

Här utnyttjar vi att eiθ = cos θ + i sin θ och e−iθ = cos θ − i sin θ. Alltså är

y(x) = ecx(C3(cos(dx) + i sin(dx)) + C2(cos(dx) − i sin(dx)))
= ecx((C3 + C2) cos(dx) + (C3 − C2)i sin(dx))
= ecx(C4 cos(dx) + C5 sin(dx))
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där C4 och C5 är komplexa konstanter, vilket visar c).
I fallet att r1 = r2 så utgår vi från (15.8). Den säger i detta fall att w′(x) = C1
och därmed är w(x) = C1x + C2 och y blir därför

y(x) = er1x(C1x + C2)

vilket visar b). ■

15.3 Partikulärlösningar

Vi ska nu studera hur man löser ekvationer av typen

y′′(x) + ay′(x) + by(x) = h(x), (15.9)

där a, b ∈ R och h är en reellvärd funktion.
Låt yh vara den allmänna lösningen till den homogena ekvationen

y′′(x) + ay′(x) + by(x) = 0. (15.10)

Notera att den allmänna lösningen innehåller två konstanter som kan väljas
godtyckligt. För att finna en lösning till den inhomogena ekvationen (15.9)
måste vi finna en funktion yp sådan att

y′′
p(x) + ay′

p(x) + byp(x) = h(x). (15.11)

Lösningen yp kallas för en partikulärlösning till (15.9). Det är klart att yp inte
kan vara i mängden av homogena lösningar eftersom vänsterledet blir noll vid
insättning av homogena lösningar.
Den allmänna lösningen till (15.9) ges då av y = yh + yp. Det räcker med att
finna någon partikulärlösning. Dvs om yp1 och yp2 är partikulärlösningar, kan
den allmänna lösningen skrivas som y = yp1 + yh, för något val av yh, men
också som y = yp2 + yh, för något val av yh. Detta följer om vi kan visa att
yp1 = yp2 + yh, för något val av yh. Låt nu y = yp1 − yp2 . Vi har att

y′′ + ay′ + by = y′′
p1 + ay′

p1 + byp1 − y′′
p2 − ay′

p2 − byp2 = h − h = 0 (15.12)

Alltså tillhör yp1 − yp2 den homogena lösningen. Med andra ord är

yp1 = yp2 + yh, (15.13)

för något val av yh.
För att finna en partikulärlösning kan man anta att den ser ut på ett visst
vis och därefter verifiera att den verkligen är sådan. Färdigheten att göra bra
gissningar kommer från erfarenhet. Gissa med funktioner som påminner om
det aktuella högerledet.
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Exempel 15.5. Bestäm den allmänna lösningen till y′′ + 2y′ + y = 2x2 + 1.
Lösning: Vi börjar med att bestämma den allmänna lösningen till den homo-
gena ekvationen y′′+2y′+y = 0. Den karaktäristiska ekvationen r2+2r+1 = 0
har lösningen r1 = r2 = −1 och därmed ges den homogena lösningen av

yh(x) = (Ax + B)e−x.

Låt oss pröva med att ansätta yp(x) = ax2 + bx + c. Vi får att

y′′
p + 2y′

p + yp = 2a + 4ax + 2b + ax2 + bx + c = ax2 + (4a + b)x + 2a + 2b + c.

Kan vi få detta till 2x2 + 1? Vi får a = 2, b = −8 och c = 13 och därmed ges
en partikulärlösning av

yp(x) = 2x2 − 8x + 13.

Den allmänna lösningen ges av

y(x) = yh(x) + yp(x) = (Ax + B)e−x + 2x2 − 8x + 13.

▲

Exempel 15.6 (Tentamen 2011-10-18, 52%). Betrakta differentialekvationen
y′′(x) + 2y′(x) − y(x) = −2xe−x

a) Visa att y(x) = xe−x är en lösning till differentialekvationen.

b) Bestäm den allmänna lösningen till differentialekvationen.

c) Beräkna gränsvärdena

lim
x→∞ y(x) och lim

x→−∞
y(x)

i fallet då y(x) löser differentialekvationen och y(0) = 1 och y′(0) = −
√

2.

Lösning:

a) Vi börjar med att derivera funktionen u(x) = xe−x och får

u′(x) = (1 − x) e−x och u′′(x) = (x − 2) e−x.

Om vi nu sätter y(x) = u(x) i differentialekvationens vänsterled så får
vi

u′′(x) + 2u′(x) − u(x) = e−x((x − 2) + 2(1 − x) − x
)

= −2xe−x,

vilket är differentialekvationens högerled och alltså är u(x) en lösning.
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b) Det karakteristiska polynomet till den homogena ekvationen

y′′(x) + 2y′(x) − y(x) = 0

är lika med

λ2 + 2λ − 1 = (λ + 1 −
√

2)(λ + 1 +
√

2).

Den allmänna lösningen till den homogena ekvationen ges därmed av

Ce(−1+
√

2)x + De(−1−
√

2)x

där C och D är godtyckliga konstanter. I föregående uppgift såg vi att
u(x) = xe−x var en lösning till y′′(x) + 2y′(x) − y(x) = −2xe−x så den
allmänna lösningen till denna ekvation får vi genom att lägga till den
homogena ekvationens lösningar:

xe−x + Ce(−1+
√

2)x + De(−1−
√

2)x.

c) Om differentialekvationen ska uppfylla y(0) = 1 och y′(0) = −
√

2 så får
vi från uttrycket för den allmänna lösningen i föregående uppgift att

1 = 0 · e−0 + Ce(−1+
√

2)·0 + De(−1−
√

2)·0 = C + D

och (genom att derivera)

−
√

2 = (1−0) e−0 +C(−1+
√

2)e(−1+
√

2)·0 +D(−1−
√

2)e(−1−
√

2)·0 =
= 1 − (C + D) +

√
2(C − D) =

√
2(C − D).

Alltså är C + D = 1 och C − D = −1 vilket ger att C = 0 och D = 1.
Så lösningen är i detta fall lika med xe−x + e(−1−

√
2)x. Om x → ∞

så ser vi att e(−1−
√

2)x → 0 (eftersom −1 −
√

2 < 0) och xe−x → 0
(standardgränsvärde), och alltså är

lim
x→∞(xe−x + e(−1−

√
2)x) = 0.

Därefter har vi att

lim
x→−∞

(xe−x + e(−1−
√

2)x) = lim
x→−∞

e(−1−
√

2)x(xe
√

2x + 1) = ∞,

på grund av att

lim
x→−∞

xe
√

2x =
{

t = −
√

2x
}

= −1√
2

· lim
t→∞

te−t = 0

och limx→−∞ e(−1−
√

2)x = ∞.

▲
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15.4 Separabla differentialekvationer

En differentialekvation på formen

g(y(x))y′(x) = f(x) (15.14)

kallas en separabel differentialekvation.
Kedjeregeln ger att högerledet i (15.14) kan skrivas som

d

dx
(G(y(x))) = f(x), (15.15)

där G är primitiv funktion till g. Genom att ta primitiv funktion på båda
leden får vi

G(y(x)) = F (x) + C, (15.16)

där F är primitiv funktion till f och C en godtycklig konstant. Om G är
inverterbar får vi

y(x) = G−1(F (x) + C). (15.17)

Vi illustrerar med ett exempel.

Exempel 15.7. Bestäm den lösning till yy′ = −4x som uppfyller y(0) = −1.
Lösning: Vi får från (15.16)

y(x)2

2 = −2x2 + C,

där C ∈ R. Villkoret y(0) = −1 ger att

C = y(0)2

2 = 1
2 .

Alltså är y(x)2 = 1 − 4x2 och eftersom y(0) = −1 är lösningen

y(x) = −
√

1 − 4x2,

för |x| < 1/2. ▲

15.5 Övningar

Övning 15.1. För vilka värden på konstanten λ > 0 har randvärdesproblemet{
y′′(x) + λ2y(x) = 0
y(0) = y(1) = 0

icke-triviala lösningar, d.v.s. lösningar som inte är identiskt noll?
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Övning 15.2. I X-stad bor idag 10 000 människor. Man räknar med att sta-
dens befolkning varje år ökar med 0.1 procent, till följd av att det är fler
personer som föds än som dör. Dessutom har staden en nettoinflyttning på
100 personer varje år, dvs det är 100 fler som flyttar in till staden än det är
som flyttar därifrån. Gör en matematisk modell i form av en differentialekva-
tion som beskriver befolkningsutvecklingen i staden. Vilket begynnelsevillkor
bör uppfyllas? När är stadens befolkning 11 000? Hur realistisk är modellen
på lång sikt?

Övning 15.3. Efter en gasolycka börjar det sippra in förorenad luft i en lokal
vars volym är 2000 kubikmeter. Den förorenade luften har en koncentration
av 10 procent av det giftiga ämnet och sipprar in i en takt av 0.1 kubikmeter
per minut. Samtidigt sugs lika mycket av (den väl blandade) luften i lokalen
ut. När är koncentrationen av det giftiga ämnet i lokalen uppe i 1 procent?

Övning 15.4. Lös differentialekvationerna

a) 4y′′ + y = 3 sin x

b) y′′ + y′ − 2y = x2 + 1

c) y′′ + 2y′ + y = e2x

d) y′′ + 4y′ + 5y = 10

e) y′′ − 4y′ + 4y = 2x + 8

f) y′′ − 4y = xex + sin(2x)

Övning 15.5. Bestäm den allmänna lösningen till differentialekvationen

y′′ − 3y′ + 2y = e3x cos x.

Övning 15.6. [2007-03-13, uppgift 7] Bestäm den allmänna lösningen till
ekvationen

y′′ − 8y′ + 16y = 80x − 40 + 5e5x.

Övning 15.7. [2008-12-15, uppgift 6] Bestäm den lösning till differentialekva-
tionen

y′′ + 4y = 2 sin x

som uppfyller att y(0) = y′(0) = 0.

Övning 15.8. Lös differentialekvationen y′ = x2y2.

Övning 15.9. Lös begynnelsevärdesproblemet{
y′′ − y′ − 2y = x,

y(0) = 2, y′(0) = 0.

Övning 15.10. Lös differentialekvationerna
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a) (1 + x2)y′ + 1 + y2 = 0, y(0) = −1

b) yy′ = 2x(y + 1), y(1) = 0

c) y′ = (1 + x2)(1 + y2), y(0) = 0

d) y′√1 − x2 =
√

1 − y2, y(1) = 0

Övning 15.11. [2007-05-31, uppgift 6] Bestäm den lösning till differentia-
lekvationen

y′′ + 4y = x2

vars graf tangerar den räta linjen y = x i origo.

Övning 15.12. [2008-03-10, uppgift 5] Bestäm den lösning till differentia-
lekvationen

y′′ − 2y′ + 4y = 13 sin x

som uppfyller y(0) = 0 och y′(0) = 0.
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16 Repetitionsfrågor

Här följer några bra repetitionsfrågor om teorin i denna kurs.

a) Definiera begreppet konvergent, växande och uppåt begränsad talföljd.

b) Definiera supremum och infimum av en mängd.

c) Formulera supremumegenskapen och visa att växande och uppåt begrän-
sade talföljder är konvergenta.

d) Låt A ∈ R. Definiera vad som menas med att en funktion f(x) → A, då
x → ∞.

e) Låt a, A ∈ R. Definiera vad som menas med att en funktion f(x) → A,
då x → a.

f) Definiera begreppet kontinuerlig funktion.

g) Formulera och bevisa satsen om mellanliggande värde.

h) Bevisa att en kontinuerlig funktion på ett slutet och begränsat intervall
har ett största och minsta värde där.

i) Bevisa att om en deriverbar funktion har ett lokalt extremvärde i en inre
punkt så är derivatan noll i denna punkt.

j) Bevisa Rolles sats.

k) Bevisa den generaliserade medelvärdessatsen för derivator.

l) Visa att om f ′ = 0 på ett intervall så är f konstant i intervallet. Vad
gäller om f ′ > 0, f ′ ⩾ 0, f ′ < 0 eller f ′ ⩽ 0 i intervallet? Bevisa dina
påståenden. För vilka påståenden gäller omvändningen?

m) Formulera och bevisa formeln för derivation av en produkt och för par-
tiell integration.

n) Definiera Riemannintegralen.

o) Formulera och bevisa integralkalkylens medelvärdessats.

p) Bevisa analysens huvudsats och insättningsformeln.

q) Formulera och bevisa Taylors formel.

r) Vad menas med att
∫ ∞

a
f(x) dx är konvergent?

s) Låt f : (a, b] → R, vad menas med att
∫ b

a
f(x) dx är konvergent?
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17 Svar till övningar

1 Att läsa innan vi börjar

1.2.

a) x = 1 b) x = 2

1.4. a, b, c och g
1.5.

a) A(x) =⇒ B(x),

b) A(x) =⇒ B(x),

c) ¬B(x) =⇒ ¬A(x)

a, b och c är alla ekvivalenta.
Det är också möjligt att tolka texten på ett sådant sätt att de två första
påståendena är C ∧ (A(x) =⇒ B(x)) där C är påståendet Jag har en hatt. I
så fall gäller fortfarande att a ⇐⇒ b =⇒ c, men ingen av implikationerna
c =⇒ a och c =⇒ b gäller längre.
1.8.

F S S

S S S

F S S

F F S

2 Delmängder av reella tal

2.1. sup M = 0 och inf M = −3/4.
2.3. sup M = 3 och inf M = −2.
2.4. Ledning: Använd motsägelsebevis, d.v.s. antag att M är uppåt begränsad
av ett tal m och visa att du får en motsägelse.
2.5. sup M = 3/2 och inf M = 1.
2.6. sup M =

√
2 och inf M = 0. Ledning: Använda att

a − b = (a − b)(a + b)
a + b

2.7.

a) (1, 7)

b) (2, 5)

c) (1, 2]

d) (1, 7)

e) (2, 5)
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2.9. ∅

3 Funktioner

3.1. Df = [−1, ∞) och Vf = [−1, 1]
3.2. [9, ∞).
3.3.

a) [−1 + e−1, ∞) b) y = 1 + x/2

3.4.

a) Definitionsmängd är (−∞, 1), värdemängd är R och inversen ges av y 7→
1 − e2y

b) Definitionsmängd är [4, ∞), värdemängd är [1, ∞) och inversen ges av
y 7→ 4 + (ln y)2

c) Definitionsmängd och värdemängd är R, inversen ges av y 7→ y

3.5.

a) Ja. Målmängden blir [2, ∞] och f−1(y) = −2 +
√

y − 1

b) Ja. Målmängden blir (1, ∞) och f−1(y) = 1/(y2 − 1)

3.6.

a) Ja. Målmängden blir (0, 1/2] och f−1(y) = 1
2y (1 +

√
1 − 4y2)

b) Ja. Målmängden blir R \ {0} och f−1(y) = 1
y

3.7. Ledning: Det finns endast definitionerna för udda och jämn funktion att
utgå ifrån och dessa räcker för att lösa uppgiften.
3.8.

a) x = π/6 + 2πn, för n ∈ Z eller x = 5π/6 + 2πn, för n ∈ Z

b) x = ±3π/4 + 2πn

3.10. x =

√
2 +

√
3

4
3.11.

a) Definitionsmängd är [−1, 1] och värdemängd är [−π/2, π/2]
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b) Definitionsmängd är [−1, 1] och värdemängd är [0, π]

c) Definitionsmängd är R och värdemängd är (−π/2, π/2)

3.12. 11/16
3.13.

a) Ekvationen saknar lösning. b) 1

3.14.

a) 1/2 b) π/3

3.21. x = e−6

3.23. −3 < x < 3

3.26. a > 0 och x = ln
(√

1 + a − 1
)

ln 2
3.27. z = ±1
3.28.

a) .

b) g är nödvändigtvis surjektiv, men inte nödvändigtvis injektiv. Ett i
mängden av motexempel är f : [0, ∞) → R, f(x) = x, g : R → R,
g(x) = x2.

c) f är nödvändigtvis injektiv, detta gäller även om g inte är det, men inte
nödvändigtvis surjektiv. Ett motexempel är f : [0, ∞) → R, f(x) = x,
g : R → [0, ∞), g(x) = x2.

3.29.

a) x ∈ {−2, 0, 4}
b) x ∈ {−4, 2}
c) x ∈ {−5}

d) x ∈ [−1, 2]

e) α ∈ (−∞, 0] ∪ (2, ∞).

3.30.

a) x ∈ {−e, e}
b) x ∈ {e−1, e}

c) x ∈ {−e, −e−1, e−1, e}

3.31. x = 2

4 Talföljder

4.1.
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a) 1/2 b) 0

4.3. Tips: anB − Abn = anB − anbn + anbn − Abn.
4.8. Tips: Nyttja lämpliga tal på a och b i binomialsatsen.
4.9. Om a = 0 är ekvationen uppfylld för alla x ∈ R. Om a ̸= 0 så är rötterna
x = 0 och x = a.
4.10. Ja, den konvergerar. Tips är att använda sats 4.8.
4.12.

a) ∞
b) e2

c)
√

e

d) 1

4.13.

a) 1 b) 1 c) ∞

4.14. 1
4.16. Ja.
4.18.

a) 0 b) 0

4.19. Gränsvärdet existerar om och endast om x inte är en udda multipel av
π, det vill säga om och endast om x ̸= (2k + 1)π för alla k ∈ Z.

lim
n→∞ cos(x)n =

{
1 om x = 2kπ för något k ∈ Z,

0 om x /∈ {kπ : k ∈ Z}.

5 Gränsvärden av funktioner vid oändligheten

5.1.

a) 3

b) 0

c) 1/3

d) 1

e) ∞

5.2.

a) 1/4

b) 0

c) 1/3

d) 0

e) 1

5.3.
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a) 0 b) 1

5.5. 1/2. Ett tips är att använda sig av konjugatregeln.
5.6. 1
5.7. 4/

√
5

7 Kontinuitet

7.1. a = 3
7.2.

a) 0

b) 1

c) 0

d) 1

7.4. a = 2(π − 1)/π och b = 1
7.8.

a) 2 b) 1

7.9. Alla sådana att a/b = 5.
7.10. 1
7.11. 0
7.12. [9, ∞)
7.14.

a) Ja

b) Nej, eftersom

f∞(x) =
{

0 x ∈ (0, 1)
1 |x| = 1

8 Derivata

8.1.

a) sin x cos x2 + x cos x cos x2 − 2x2 sin x sin x2

b) (sin x + x cos x)ex sin x

c) 2 ln x + 2 + 4a

d) −1/ sin2 x
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8.3. a = 1/2e (och x =
√

e)
8.7. Största värde är 2 och minsta värde saknas.
8.8. Tips är att visa att olikheten är ekvivalent med

ln(1 + x) − ln(1 − x) − 2x > 0.

8.9. [−1, 5/27]
8.10.

a) Df = (0, ∞)

b) Nej, ty limx→∞ f(x) = ∞

c) Nej, ty f ′(x) > 0 om och endast om x > 1/e

d) Ja i intervallet (0, 1/e] (observera att värdet 1/e är inkluderat)

e) Nej. Varken injektiv eller surjektiv.

f) Nej, ty f(1/e) = −1/e.

8.11.

a) -

b) 1

8.12. Funktionen har en minvärde i x = −1 och maxvärde i x = 1. Asymptoter
vid ±∞ är y = 0, Vf = [−e−1/2, e−1/2]. Grafen är enligt följande

−6 −4 −2 2 4

−2

2

8.13. Funktionen har en minvärde för x = 1/2. Asymptoter saknas. Värde-
mängden är [ln(5/4) − arctan(1/2), ∞). Grafen är enligt följande
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−6 −4 −2 2 4

2

4

8.14. Största värde är π/6 +
√

3 och minsta är −π/2.
8.16. Lösning saknas.
8.17. limx→0+ f(x) = 0, limx→0− f(x) = −∞ och y = x − 1 är en sned
asymptot vid både ±∞.

8.19. Inversen blir x(y) = ln
(
y +

√
y2 + 1

)
8.20. {π/4}
8.22. Minsta värdet är

√
2 − π/2 och största värde är π/2.

8.23.

a) x = ln
(

1+
√

5
2

)
b) x = ln

(
1+

√
5

2

)
8.24.

a) y = 10x − 17 b) 4

8.26. Tips är att bilda f(x) = xp − Axd och studera minimum för denna
funktion.
8.28. a ∈ {−4, 0}. Då a = 0 får vi tangenten y = 0 i punkten (0, 0). Då a = −4
får vi tangenten y = −4x − 4 i punkten (−2, 4).
8.29.

a) f ′(0) = 0.

b) f ′(x) = 2x sin(1/x) − cos(1/x)

c) Nej.

8.30. 3√3. Ett sätt är att använda att eln x = x.
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9 Taylors formel

9.4. 2/9
9.5. 1/3
9.6. 1/8

9.7. π

4 − x + x3

3 − x5

5 − x7

7
9.8.

a) f(x) = 2 + 1
3(x − 1) + 1

36(x − 1)2 + O((x − 1)3)
b) 1/12

9.9.

a) 1 + x
2 − x2

8 + x3

16(1+ξ)5/2 , för något ξ mellan 0 och x.

b) -

c) närmevärdet är 4 + 1/8 − 1/512 och felet mellan 0 och 1
4·163 .

10 Serier

10.1.

a) konvergent

b) konvergent

c) divergent

d) konvergent

e) divergent

10.2.

a) divergent

b) konvergent

c) konvergent

d) divergent

e) konvergent

f) divergent

10.3.

a) konvergent b) konvergent c) konvergent

10.4. Den är konvergent.
10.5. Den är konvergent.
10.6. Ett tips är att använda definitionen av gränsvärde och geometrisk serie.
10.7. Ett tips är att använda definitionen av gränsvärde och geometrisk serie.
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11 Integraler

11.1. 13
11.2.

a) - b) 1/3

11.3.

a) 1 b) 2 ln 2 + 15/4 c) 1 d) 2 sin 1

11.4.

a) 13 b) 4 c) 4 d) −4

11.5.

a) (e4 − 1)/2

b) (3e4 + 1)/4

c) π/6

d) ln 2

e) 3/16

f) (1 − π/4)/2

11.6.

a) − 1
x

− arctan x + C

b) ln |x| − 1
x

− 1
2 ln(1 + x2) − arctan x + C

c) 1
2 ln |1 + x| − 1

2
1

x + 1 − 1
4 ln(1 + x2) + C

d) 1
2(x + 1) + 1

2 arctan x + C

11.7. 6s
11.8. sin3 x

3 − sin5 x
5 + C

11.9. ln 2
2 + arctan 3 − arctan 2

11.10. 141/10

11.11. ln |x + 1| − ln(x2−x+1)
2 +

√
3 arctan 2x−1√

3 + C

11.12. 2x−1
2(1−x)2 + C

11.13. f(1) = e−1

11.15. Genom att låta

sin x = x − x3

3! + cos(α)x5

5! ,
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där 0 ⩽ α ⩽ x så får vi att en approximation till integralens värde är 71/144
och felet är 1/19200 < 1/1000.
11.16. Integralen maximeras då x = 4 och värdet är 32/3.
11.18.

a) y = 2 − x/2 b)
√

2

11.19. ln 2 + 2π

3
√

3
11.20. 2π

33/2

11.21. 13/42
11.22. Tips: Bilda h(x) = f(x + a) och utför lämpligt variabelbyte.

12 Integration över obegränsade intervall

12.1. Konvergent. Ett sätt att visa är att nyttja att x2 ⩾ x, då x > 1.
12.2. 12
12.5. π

12.6.

a) Divergerar, fås genom att med hjälp av Cauchys integralkriterium jäm-
föra med lämplig integral (exempelvis

∫∞
2

dx
x ln x vilken kan integreras ef-

tersom 1/x är derivatan av ln x).

b) Konvergerar, även den fås genom att med hjälp av Cauchys integralkri-
terium jämföra med lämplig integral (exempelvis

∫∞
0 e−√

xdx som inte-
greras med variabelsubstitution, lämnas som en övning till läsaren).

12.7.

a) Divergent, kan delas upp i två integraler som båda enskilt divergerar.

b) Gränsvärdet är 0.

c) Gränsvärdet är ln 2.

d) Vi ser att gränsvärdena är olika beroende på hur vi låter integralens övre
begränsning gå mot oändligheten, vilket inte är rimligt om integralen
konvergerar.

12.8.

a) Genom uppdelning av integralen och evaluering av delintegralerna får vi
att integralen är divergent. Liknar uträkningen i tidigare uppgift.
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b) Fås genom direkt evaluering av integralen.

c)

lim
R→∞

∫ 2R

−R

1 + x

1 + x2 dx = π + ln 2.

12.9. π/4
12.11.

a) 2

12.12. T.ex. funkar det med n = 11.

13 Lokal integrerbarhet

13.1. Divergent. Observera att det finns två punkter där integralen är gene-
raliserad.
13.2.

a) Generaliserad vid x = 1. Divergent.

b) Ej generaliserad. Värdet är 13/2.

13.3.

a) Divergent

b) Konvergent med värdet 1

c) Konvergent med värdet π/2. En ledtråd är att utföra lämpligt variabel-
byte t =

√
1 − x2.

d) Divergent

13.4.

a) Konvergent

b) Divergent

c) Divergent

d) Konvergent

14 Integralens tillämpningar

14.2. π−2 ln 2
4

14.3. π ln 3
2 s

14.4. A(b) = 1√
2

− 1√
b2 + 2

→ 1√
2

, då b → ∞

14.5. 512π/3
14.11. 2π2

14.13. 3/4
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15 Differentialekvationer

15.4.

a) y = A cos x
2 + B sin x

2 − sin x

b) y = Aex + Be−2x − x2/2 − x/2 − 5/4

c) y = (Ax + B)e−xe2x/9

d) y = (A cos x + B sin x)e−2x + 2

e) y = (Ax + B)e2x + x/2 + 5/2

f) y = Ae2x + Be−2x − (x/3 + 2/9)ex − sin(2x)
8

15.5. y(x) = Aex + Be2x + e3x

10 (cos x + 3 sin x).
15.6. y(x) = (Ax + B)e4x + 5x + 5e5x

15.7. y(x) = 1
3(2 sin x − sin 2x)

15.8. y(x) = 0 eller y(x) = −3
x3+C

15.9. y(x) = 3e2x

4 + e−x − x

2 + 1
4

15.10.

a) y = (x + 1)/(x − 1)

b) y − ln(y + 1) = x2 − 1

c) y = tan(x + x3/3)

d) y = −2x
√

1 − x2, för 1/
√

2 < x ⩽ 1

15.11. y(x) = cos 2x
8 + sin 2x

2 + x2

4 − 1
8

15.12. y(x) = ex
(

− 1√
3

sin
(√

3x
)

− 2 cos
(√

3x
))

+ 3 sin x + 2 cos x
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