
The 32nd Finnish Summer School on Probability Theory, 2010

Lectures on Statistical Learning Theory for
Chow-Liu Trees

Timo Koski
Institutionen för matematik

Kungliga tekniska högskolan (KTH) , Stockholm

2

Chapter 1

Introduction

1.1 Product Approximation & Chow-Liu Trees

The topic of storing a high dimensional discrete probability distribution (in a
digital medium) appeared very likely for the first time in the journal literature
in [35, 50]. If it should not be possible to store the whole distribution, the idea
suggested and analysed in loc.cit. was a product approximation of the discrete
probability distribution. This special genré of approximation is the point of
departure of these lectures.

The problem of storing probability distributions is another expression of the
’curse of dimensionality’, and it emerges nowadays, e.g., in data mining, as
expounded by H. Mannila et.al. in [34, pp.188−189].

For an intuitive statement of the issues involved we quote P.M. Lewis II in
[50, p.220]:

A product approximation is defined to be an approximation to a
higher order distribution made up of a product of several of its lower
order component distributions such that the product is an extension
of the lower order distributions.

By extension Lewis means that the lower order component distributions can
be obtained by marginalization from the product, and that the product is a
probability distribution. A product of an arbitrary set of lower dimensional
probability distributions will not satisfy these requirements.

The same approach appears in a probabilistic version of knowledge inte-
gration. The fancy catch-phrase ’knowledge integration’ refers, according to
Wikipedia1, to the process of synthesizing multiple knowledge models (or rep-
resentations) into a common model (representation). Probabilists think that
multiple knowledge is represented by a set of probability distributions handling
the uncertain information about a partial domain that, e.g., an agent in artificial
intelligence possesses. Then knowledge integration is understood as the process

1http://en.wikipedia.org/wiki/Knowledge integration

3

4

of constructing a joint probability distribution from a set of lower dimensional
distributions. This requires a condition of acyclicity [10] on the index sets of the
lower dimensional distributions. This kind of condition will also be used in the
product approximation and leads to the definition of dependence structures (or
conditional independencies). A dependence structure saves space when storing
probability tables and saves time when computing and up-dating the probability
of an event.

An influential and effective solution to the product approximation problem
was some ten years after Lewis’ efforts given by C.K. Chow and C.N. Liu [16].
Chow and Liu were associated with Thomas J. Watson Research Center (IBM).
The approximation was restricted to a product of second order marginal distri-
butions.

Chow and Liu gave an algorithm for how to select second-order factors for
the product approximation so that among all such second-order approximations,
the constructed approximation has the minimum Kullback- distance to the ac-
tual distribution to be stored. The approximation produces a tree in the sense
of graph theory [1, chapter 3]. If every edge in the tree is given a weight cor-
responding to the mutual information between the variables at its nodes, then
the tree which provides the optimal second-order approximation to the target
distribution is nothing else but the maximum-weight spanning tree [1, chapter
7.2].

Following the achievement of Chow and Liu there have been a number of
extensions of the algorithm, see, e.g., [63, 57] for the extension to polytrees and
[26] and [72]. It is, however, clear that the complexity of an extended algorithm
increases, as the parent set of a variable has more than one member, see [15].
We shall start with a general theory of product approximation that yields the
Chow-Liu algorithm and a few other algorithms as special cases.

The goals of any product approximation of a high dimensional probabil-
ity distribution may be either data compression (source coding) or inference
(= computation of probabilities of events given instantiations of other events).
Chow-Liu Trees have good properties of probabilistic inference, as the tree is
equal to its junction tree, see, e.g., [45, ch.10] for definition of junction tree in
the theory of decomposable graphs.

1.2 Statistical Learning Theory

Statistical learning theory applies techniques and ideas of statistics, probability
(concentration inequalities), information theory and theoretical computer sci-
ence to questions of model choice (estimation of structures) and classification
and prediction, see, e.g., [14]. Within the framework of these lectures the sta-
tistical learning task can be in general terms expressed as follows, c.f. [39, 72].

We have a target class of probabilities P (X) on a finite but high dimensional
discrete set X and concept class P (X ;S) of probabilities on X depending on
some approximating product structures S. Then one fixes p ∈ P (X) and gets
a sample of N independent configurations in X . The learning task is to find a

5

distribution pS in P (X ;S) such that the Kullback distance between the empir-
ical distribution of the N samples and p is minimized. We are concerned with
finding product distributions to represent high dimensional probability distri-
butions. The question is not to find the true structure of p, but to find the best
distribution in P (X ;S) that permits tractable inference and source coding.

6

Chapter 2

Product Approximations of
Discrete Probability
Distributions

2.1 Multivariate Probability

We introduce a version of an operational calculus for discrete multivariate prob-
ability due to [68], c.f. [31], [74], and [88], too.

Let Xi denote a generic random variable defined in a probability space and
assuming values xi ∈ Xi, an alphabet of discrete symbols with the cardinality
| Xi |<∞. Symbols may be of any kind, not only numerals. Let X = (Xi)

d
i=1,

i.e., X is d-dimensional (d < ∞) block of random variables and thus assumes

values in the alphabet X = ×d
i=1Xi. A configuration is x = (xi)

d
i=1 ∈ X . The

probability of X in the configuration x is

p (x) = P (X = x) .

Then

p = {p (x)}
x∈X

designates the probability distribution on X given by the probabilities p (x).

The distribution p is in the first place to be seen, in the terminology of [68, p.
13], as a tabular distribution, i.e., p is a look-up table that gives the probability
of each configuration according to p.

Example 2.1.1 Let X1 = {x1
1, x

1
2, x

1
3, x

1
4} and X2 = {x2

1, x
2
2, x

2
3}. A probability

table p in the sense above on X1 ×X2 is given by

7

8

p x1
2 x2

2 x3
2

x1
1 0.05 0.10 0.05
x2

1 0.15 0.00 0.25
x3

1 0.00 0.20 0.05
x4

1 0.10 0.00 0.05

E.g., if x = (x1x2) =
(
x2

1x
3
2

)
, then p(x) = 0.25. Thus, be quite precise, one

should in fact write a configuration as

x =
(
xji

i

)d

i=1
∈ X ,

where
xji

i ∈ Xi = {x1
i , . . . x

|Xi|
i }.

This can be kept in mind, but we do not burden the notation for a configuration
by such finer detail.

An algorithmic distribution consists of an algorithm that, possibly with some
numerical information, enables us to compute the probability of a configuration.
An example is the forward-backward algorithm for Hidden Markov Chains [62].
Sometimes the algorithm is parametric in the sense that it consists of a formula,
i.e., a simple algorithm, like e.g. the binomial probability with two parameters.

The representation and storing of a discrete distribution p requires then in
general exponential size tables, as the list of numbers to be stored is in general
of the order | X1 − 1 || X2 − 1 | · · · | Xd − 1 | = O

(
2d
)
. The intended storing is

impossible already for d > 30. Therefore the plan is to represent/approximate
p by some dependence structure (that might be) suitable for storing.

Let next s (X) denote a Borel field1 of subsets of X . A Borel field s (X)
has a finite cardinality given in [77]. Then any probability table p defines a
probability measure Pr on (X , s (X)) by

Pr (A) =
∑

x∈A

p (x) , A ∈ s (X) . (2.1)

This is a finitely additive probability measure on (X , s (X)). Knowledge about
dependence structures (or of conditional independences) saves space when stor-
ing probability tables and saves time when computing and up-dating the prob-
ability Pr (A) of an event A.

Here we have Pr (∅) = 0, as Pr (X) = 1 (by convention). Thus we can
regard p as a density of Pr, e.g., with with respect to µ(A) =| A |, but we shall
not make real use (like a change of density) of this property. If Q is another
probability measure on (X , s (X)) with density q, we write

Pr≪ Q or p≪ q,

1If A ∈ s (X), B ∈ s (X), then A∪B ∈ s (X), A∩B ∈ s (X), X \A ∈ s (X), X \A is the
set of configuations outside A, \ is the setminus.

9

if it holds for any A ∈ s (X) that

Q (A) = 0⇒ Pr (A) = 0. (2.2)

We set

l = {1, 2, . . . , d}.

For a subset A ⊆ l we take

XA = (Xi)i∈A

and with XA = ×i∈AXi the configurations

xA = (xi)i∈A ∈ XA.

If A ⊆ l and B ⊆ l with A ∩B = ∅, we understand by concatenation

xA∪B = (xi)i∈A∪B

of xA = ((xA)i)i∈A and xB = ((xB)i)i∈B the following:

xi =

{
(xA)i if i ∈ A
(xB)i if i ∈ B.

This can be written as

x
↓A
A∪B = xA,x

↓B
A∪B = xB.

In this sense we shall take xA and xB projections of xA∪B onto XA and XB

and write

xA∪B = xA · xB. (2.3)

2.1.1 Marginal Probability

Let Ac designate the set theoretic complement of A ⊆ l. Then we write

x = xA · xAc ,

where xA is the projection of x onto XA and xAc is the projection of x onto
XAc . Then we can define the marginal distribution at A as

pA (xA) = P (XA = xA) =
∑

xAc∈XAc

p (xA · xAc) . (2.4)

In other words, we sum out the variables outside A. In view of the convention
in Example 2.1.1 the summation above is a useful short hand for a much more
extensive expression.

Fact 1 If A = ∅, then p∅ (x∅) = 1.

10

For any A ⊆ l we have the probability table

pA = {pA (xA)}
xA∈XA

.

Let us introduce an additional notation that will be helpful in the sequel. We
designate the marginalization in (2.4) by

pA = p↓A . (2.5)

Also, any p↓A might require a lengthy summation without some simplifying
structure that supports tractable computation.

Fact 2 The preceding implies the vanishing principle: If A ⊂ B ⊆ l and
pA (xA) = 0, then pB (xB) = 0, since

pB (xB) =
∑

xBc∈XBc

p (xB · xBc) =
∑

xBc∈XBc

p
(
xA · xB\A · xBc

)

≤
∑

xB\A∈XB\A

∑

xBc∈XBc

p
(
xA · xB\A · xBc

)
= pA (xA) = 0.

The fact and/or the proof above are perhaps more comprehensible, if re-done
in a simple example.

Example 2.1.2 Take X = {0, 1}4, l = {1, 2, 3, 4}. Suppose that A = {1, 2}
and B = {1, 2, 3}, so that Bc = {4}. Suppose that pA(00) = 0. Then

pB(001) = p(0010) + p(0011)

≤ (p(0010) + p(0000)) + (p(0001) + p(0011))

= pA∪Bc(000) + pA∪Bc(001) = pA(00) = 0.

Fact 3 We put to record another property of the entities introduced above, c.f.,
[68, p.4]. Suppose that W ⊆ A ⊂ l. We can then think of finding pW (xW)
either by direct marginalization, or by first finding pA (xA) and obtaining the
desired margin from this. We take by (2.5)

pA = p↓A , pW = p↓W .

Then we claim that
pW =

(
p↓A

)↓W
. (2.6)

Let us start with computation of
(
p↓A

)↓W
by summing out variables outside W

in pA. This is ∑

xA∩W c∈XA∩Wc

pA (xW · xA∩W c)

11

and by (2.4)

=
∑

xA∩Wc∈XA∩Wc

∑

xAc∈XAc

p (xW · xA∩W c · xAc) .

But the configuration xA∩W c · xAc is equal to xW c and thus we get

=
∑

xWc∈XWc

p (xW · xA∩W c · xAc) =
∑

xWc∈XWc

p (xW · xW c)

= pW (xW) ,

as was desired.

2.1.2 Conditional Probability

Let A ⊆ l and B ⊆ l with A ∩B = ∅, and use the concatenation to define

pA∪B (xA,xB)
def
= pA∪B (xA∪B) ·

i.e.,

pA∪B (xA,xB) =
∑

x(A∪B)c∈X(A∪B)c

p
(
xA∪B · x(A∪B)c

)
.

Thus we can define for pB (xB) > 0 the conditional probability

p (xA | xB) =
pA∪B (xA,xB)

pB (xB)
. (2.7)

This interpreted as P (XA = xA | XB = xB). By the vanishing principle in
Fact 2 we have that pB (xB) = 0 implies pA∪B (xA,xB) = 0. Then p (xA | xB) =
0
0 is undefined. By taking the definition as

pB (xB) · p (xA | xB) = pA∪B (xA,xB) ,

we can by convention attach to p (xA | xB) an arbitrary value in [0, 1].
For the sake of practicing the calculus, let us check a few basic and elemen-

tary consequences of this definition.

Fact 4 We shall establish that
∑

xA∈XA

p (xA | xB) = 1. (2.8)

This holds by the following computation.

∑

xA∈XA

pA∪B (xA · xB) =
∑

xA∈XA

∑

x(A∪B)c∈X(A∪B)c

p
(
xA · xB · x(A∪B)c

)

12

and since x = xA · xB · x(A∪B)c and XA ×X(A∪B)c = XBc , we have

=
∑

xBc∈XBc

p (x) = pB (xB) ,

which gives (2.8).

Hence we can introduce on XA the conditional density or the conditional prob-
ability table

pA|xB
= {p (xA | xB)}

xA∈XA
. (2.9)

Fact 5 If B = ∅, then

p (xA | x∅) =
pA∪∅ (xA∪∅)

p∅ (x∅)
. (2.10)

In view of fact 1 we have

p (xA | x∅) = pA (xA) . (2.11)

2.1.3 Conditional Independence, Independence and the
Chain Rule

We consider three disjoint subsets A,B,C of l. The we say that XA and XB are
conditionally independent given XC , if and only if it holds for all configurations
xA ∈ XA, xB ∈ XB and xC ∈ XC that

pA∪B∪C (xA · xB · xC) · pC (xC) = pA∪C (xA · xC) pB∪C (xB · xC) . (2.12)

We designate the conditional independence as defined above with

A ⊥ B |p C. (2.13)

It is immediately clear that A ⊥ B |p C is equivalent to

p (xA · xB | xC) = p (xA | xC) p (xB | xC) , (2.14)

and to
p (xA | xB · xC) = p (xA | xC) . (2.15)

In view of Fact 5 above we get that

A ⊥ B |p ∅ (2.16)

means that
pA∪B (xA · xB) = pA (xA) pB (xB) , (2.17)

13

which defines independence of XA and XB. We add to this a more formal
definition by a product of tables pA × pB. We write (2.16) this simply as

A ⊥p B. (2.18)

By concatenation we can define the product of two functions with different
domains, or of two marginal probabilities, pA × pB, as

(pA × pB) (xA∪B) = pA (xA) pB (xB) . (2.19)

Suppose now that for A ⊆ l and B ⊆ l with A ∩B = ∅ and for all x ∈ X

p(x) = (pA × pB) (xA∪B) · p
(
x(A∪B)c | xA∪B

)
.

Then, by fact 4, p↓A∪B = pA × pB and

p (xA | xB) = pA (xA) .

Next, let us consider
pi = p↓i, i = 1, . . . , d, (2.20)

and pi = {pi(xi)}xi∈Xi
. Then we get by the preceding the product of tables

×d
i=1pi such that for all x ∈ X

(×d
i=1pi)(x) =

d∏

i=1

pi(xi).

Let L be the probability measure on (X , s (X)) corresponding to ×d
i=1pi by

(2.1). Then for Pr with density p it holds in the sense of (2.2) that

Pr≪ L (2.21)

by the vanishing principle in Fact 2. Sometimes (2.21) is called marginal abso-
lute continuity. This kind of argument can be used, as the probabilities are on
a finite space (X , s (X)), to show that various quantities of information theory
used in the sequel will be finite.

Let (Ai)
k
i=1 be a partition of l with blocks Ai, i.e.,

Ai ∩Aj = ∅, j 6= i,∪k
i=1Ai = l.

By successive applications of (2.7) we have the chain rule

p (x) = pA1 (xA1)
k∏

l=2

p
(
xAl
| xAl−1

, . . . ,xA1

)
. (2.22)

We assume p (x) > 0 in order to avoid discussion of conventions, when there are
blocks of zero probability. The expression in the right hand side is the intuitive
starting point of the theory in the sequel. We shall be dealing with dependence
structure simplification, see [59, 60]. This can also be seen as an introduction of
a simplifying scheme of conditional independencies.

14

2.2 Dependence Structures and Product Approx-

imations

2.2.1 Introduction

Intuitively speaking our aim can now be stated as finding a simple approxima-
tion of p by reduction of the number of variables in the conditioning sets in the
conditional probability tables in the right hand side of the chain rule (2.22).

As far as probability tables and algorithms are concerned, we shall hereby
be advancing an intermediate case. The product approximation is a table which
is obtained from other tables involving only a few variables by the algorithm of
multiplication.

There are 2d − 2 lower dimensional distributions. However, an arbitrary
subfamily of lower dimensional distributions will not serve the desired purpose:
a set of lower dimensional distributions {pWl

}sl=1, s < 2d−2, will have to satisfy
probabilistic consistency conditions, which in fact require that the schema of
sets {Wl}sl=1 will satisfy an acyclicity condition found in the theory of relational
databases in [10].

We consider first the question of existence of extensions with a more general
formulation.

2.2.2 On the Existence of Extensions with Given Margins

We indulge here upon a degree of mathematical generality that will not be
sustained in the sequel. Let a) -c) be given, paraphrasing [42, 43]:

a) a family of non-empty subsets {Wl}sl=1 of l. Without loss of generality we
may assume that l =

⋃s
l=1Wl.

b) the alphabets Xl (in the general case these are Hausdorff spaces). By a),
X = ×s

l=1XWl
.

c) a finite Borel measure pWl
for each Wl, l = 1, . . . , s.

The classical marginal problem concerns the existence of a Borel measure (or its
density) p∗ on X such that for all Wl

pWl
= (p∗)

↓Wl . (2.23)

Some fundamental contributions to this problem are due to H.G. Kellerer,
E. Marczewski, V. Strassen et.al.. We are only interested in the modest spe-
cial case of finite discrete spaces. In fact, the classical marginal problem has
either no solution, one solution or an infinite number of solutions, which feels
intuitively plausible.

In [52] the condition in (2.23) is called collective compatibility. If the sets Wl

are disjoint and the Borel measures are probability measures, the problem has
at least the trivial solution (provided the spaces have a countable base):

p∗ = ×s
l=1pWl

,

15

or (with the appropriate projections of x)

p∗ (x) = pW1 (xW1) · · · pWs (xWs) .

The densities pWl
should also satisfy an additional consistency condition known

as pairwise compatibility, see [52]. By pairwise compatibility one means that
Ci,j = Wi

⋂
Wj , i 6= j implies that the margin at Ci,j is independent of Wi and

Wj , i.e.,

pCi,j = p
↓Ci,j

Wi
= p

↓Ci,j

Wj
. (2.24)

In case Ci,j = ∅, we understand (2.24) by Fact 1.

Remark 2.2.1 The classical marginal problem has, as mentioned in the in-
troduction, by a probabilistic interpretation bearing on knowledge integration.
This is in the sense that pieces of partial knowledge, {pWl

}sl=1, are to be trans-
formed into full knowledge in the form of p∗. If infinitely many solutions exist,
one might use some algorithm like maximum entropy or iterative proportional
fitting [41, 82] to find a unique optimal solution.

The following example (due to [83]) shows that pairwise compatibility does not
imply collective compatibility.

Example 2.2.1 Let l = {1, 2, 3} andW1 = {1, 2},W2 = {2, 3} andW3 = {3, 1}
and let X = {0, 1}3. Three pairwise joint distributions are specified by

pW1(x1x2) x2 = 0 x2 = 1

x1 = 0 1/2 0
x1 = 1 0 1/2

pW2(x2x3) x3 = 0 x3 = 1

x2 = 0 0 1/2
x2 = 1 1/2 0

pW3(x1x3) x3 = 0 x3 = 1

x1 = 0 1/2 0
x1 = 0 0 1/2

These are pairwise compatible, since W1

⋂
W2 = C12 = {2}, W2

⋂
W3 = C23 =

{3}, W3

⋂
W1 = C31 = {1}, and we get

pC12 = pC23 = pC31

with

x 0 1

pCij (x)
1
2

1
2

.

16

Thus, if a common extension, say p∗, with probabilities p∗(x1x2x3), existed on
{0, 1}3, we would have by marginalization

1

2
= pW1(00) = p∗(000) + p∗(001) =

≤ (p∗(100) + p∗(000)) + (p∗(010) + p∗(001))

≤ pW2(00) + pW3(01) = 0 + 0 = 0.

Hence the given probability tables are not collectively compatible.

It turns out that the answer to the question, whether pairwise compatibility is
sufficient for the existence of the probability p∗ with given marginal distributions
pWl

is of purely combinatorial nature, as the answer is independent of the spaces
XWl

and the probabilities pWl
, see [42, 43].

We shall next describe a situation, where the extension is unique, as we
constrain the extension to be of a certain product form in a situation, where
pairwise compatibility implies collective compatibility. Again, without loss of
generality we take l =

⋃s
l=1Wl.

Definition 2.2.1 There is a total ordering of the setsW1,W2, . . . ,Ws such that

for every j > 1 there is l < j s.t. Fj ≡Wj

⋂(⋃j−1
r=1Wr

)
⊆Wl. (2.25)

The property in (2.25) is known as the running intersection property. A set of
subsets of W1,W2, . . . ,Ws having the running intersection property, given some
ordering, is called acyclic.

The acyclicity condition holds trivially, if {Wl}
s
l=1 is partition of l. The

acyclity condition was introduced for design of relational databases and analyzed
in [10].

There are in fact several interesting links (or ways translating) between re-
lational databases and product representations of probability [13, 87, 88] and
Bayesian networks. This means that there exists the possibility of doing prob-
abilistic inference with product approximations using algorithms of databases
for which we refer to [44, 53].

Remark 2.2.2 In example 2.2.1 above we have

W3 ∩ (W1 ∪W2) = {1, 3},

but {1, 3} is not a subset of either W1 or of W2. Hence the (2.25) does not hold
for this ordering. It is easy to check that there is no other ordering that gives
(2.25). Hence acyclicity does not hold in the example 2.2.1.

17

It is shown by Malvestuto [52] that acyclicity is equivalent to that pairwise
compatibility for all i, j implies collective compatibility. Then Malvestuto shows
that the extension in the product form

p∗ (x) =

∏s
l=1 pWl

(xWl
)

∏s−1
h=1 pVl

(xVh
)

(2.26)

exists and is unique. Here each Vl is a subset of two or more Wl’s. The
uniqueness requires, however, as pointed out in [60], e.g., the assumption that
pWl

(xWl
) > 0 for all l and all configurations (c.f. the vanishing principle in

Fact 2).
The extension in (2.26) is the precise general expression for the product

approximation envisaged by Lewis et.al. [50]. We are thus led by the result in
(2.26) to introduce our dependence structure simplification.

2.2.3 Dependence Structures

We shall now study the extension of a family of lower dimensional probability
distributions by the product representation in (2.26).

As in the discussion preceding the expression in (2.26) we suppose that we
have W1,W2, . . . ,Wk with ∪s

l=1Wl = l and satisfying the running intersection
property (2.25) with this ordering. Then we set B1 = ∅ and

Bj = Wj

⋂
(

j−1⋃

k=1

Wk

)
, j = 2, . . . , k

and
Aj = Wj \Bj ⇔Wj = Aj ∪Bj , j = 1, . . . , k.

Now we can readily check that (Ai)
k
i=1 is a partition of l and that the Bi’s

satisfy
Bj ⊂ ∪

j−1
i=1Ai.

We use, for reasons of easy reference, (Ai, Bi)
k
i=1 thus obtained as our depen-

dence structure. This hides the running intersection property and acyclicity in
the background.

Definition 2.2.2 [Dependence Structure] Let (Ai)
k
i=1 be a partition of l, and

let S be a sequence of pairs of subsets of l

S = (Ai, Bi)
k
i=1 (2.27)

such that
B1 = ∅, Br ⊂ ∪

r−1
i=1Ai ⊆ l, r = 2, . . . , k. (2.28)

Then S is a dependence structure.

18

Now we can define in an exact manner the product approximation introduced
Lewis.

Definition 2.2.3 Let S be a dependence structure. Then the probability dis-
tribution defined by

p (x | S) = pA1 (xA1)

k∏

i=2

p (xAi | xBi) ,x ∈ X , (2.29)

is called a product approximation of the distribution p.

The product (2.29) is identified as (2.26), if we take V· ↔ B· and W· ↔ A· ∪B·

and p∗↔ pS .
With a generic S as in (4.2), we introduce from (2.29)

pS = {p (x | S)}
x∈X . (2.30)

In order to secure uniqueness of pS without arbitrary conventions, we should
assume that and p (x) > 0 for all configurations, where we recall the vanishing
principle in Fact 2.

Due to (2.11) we have for any Bi = ∅, that p (xAi | xBi) = p (xAi). This
will be tacitly used a number of times in the examples below.

Example 2.2.2 Take k = d, Ai = {i} for i = 1, 2, . . . , d and Bi = ∅ for
i = 1, 2, . . . , d. This is a dependence structure. Then we can write

p (x | S) =

d∏

i=1

pi (xi) , x = (xi)
d
i=1 ∈ X . (2.31)

This corresponds to approximating (and storing) a probability table p by a
product of its first order marginal distributions or by the independence of the
sequence of random variablesX1, . . . , Xn. This is sometimes known as the náıve
approximation of p.

Example 2.2.3 Take k = d, Ai = {i} for i = 1, 2, . . . , d and Bi = {i − 1},
i = 2, . . . , d, B1 = ∅. This is a valid dependence structure. Then we can write

p (x | S) = p1 (x1)

d∏

i=2

p (xi | xi−1) , x = (xi)
d
i=1 ∈ X . (2.32)

This is, of course, the joint distribution of the sequence X1, X2, . . . , Xd, which
satisfies the (standard) Markov property.

19

Example 2.2.4 Let r be an integer in l. We take the blocks of the partition as

A1 = {1, 2, . . . , r}, Ai = {r + i− 1}, i = 2, . . . , k = d− r + 1.

and define
B1 = ∅, B2 = A1.

Bi = [{r + i− 2} ∪Bi−1] \ {i− 2}, i = 3, . . . , k = d− r + 1.

This is easier to glance as the product approximation

p (x | S) = pA1 (x1, . . . , xr) p (xr+1 | xr, . . . , x1) · · · p (xd | xd−1, . . . , xd−r)
(2.33)

for any x ∈ X . This is, for natural reasons, called rth-order Markov property
for X1, X2, . . . , Xd, but is, when dealing with binary alphabets [6], known as a
Chow expansion of order r.

Example 2.2.5 Let G = (l, E) be a directed and acyclic graph (this will be
defined in the sequel). The set of nodes is l = {1, . . . , d} and the edges are
ordered pairs of l× l, i.e.,

E = {(j, k)|j ∈ l, k ∈ l, j 6= k}.

If (j, k) ∈ E, the node j is said to be a parent of the node k. We can always
(see Lemma 2.1 in [68]) enumerate the nodes of a directed and acyclic graph so
that the parents of the node i are included in {1, 2, . . . , i− 1}. The node 1 has

no parents. This ordering of nodes is called well ordering. We let Bi
def
= parents

of i. Then
S = ({i}, Bi)

k
i=1 (2.34)

is a dependence structure in the sense of Definition 2.2.2. This implies

p (x | S) = p1 (x1)

d∏

i=2

p
(
xi | xBi−1

)
,x ∈ X . (2.35)

The pair consisting of a directed and acyclic graph and a probability distribution
factorized as in (2.35) is known as a Bayesian network for the random variables
X1, . . . , Xd, [45, 57].

Example 2.2.6 Directed or causal polytrees, to be treated in section 4.4.1
below, are a special case of the preceding example. The algorithm of Chow and
Liu, the topic of the next lectures, can be extended to polytrees with tractable
computability.

20

2.2.4 Sum-Product Algorithm and Properties of the Prod-
uct Approximation

We shall now endeavour to verify and/or derive a few basic properties of pS .
The fundamental computational tool in all of this and in much of everything
that will follow is the Sum-Product formula or algorithm.

Let A and B be disjoint subsets of l and ϕ (xA) and ϕ (xB) be any two
(nonnegative) functions (assuming values in a semi-ring) defined on XA and
XB, respectively. Then the simplest version of the Sum-Product formula is

∑

xA∈XA

ϕ (xA) · ϕ (xB) = ϕ (xB) ·
∑

xA∈XA

ϕ (xA) . (2.36)

The proof is by the distributive law xz + yz = z(x+ y) valid by assumption in
all rings. The obvious application of this will be to various marginalizations of
pS , which are of the form

∑∑
. . .
∑

pA1 (xA1)

k∏

i=2

pAi (xAi | xBi) .

The work [3] finds generalizations of the Sum-Product formula in new effective
algorithms for marginalization, (2.4), and not only for probability distributions.
The effectiveness of the algorithms is a consequence of product representations
of a function β (x) that is to be marginalized. It is assumed that β (x) can be
written as a finite product of functions αi (xSi) with local domains Si and values
in a semi-ring. Clearly, this generalizes the idea of product approximation, where
we have αi (xSi) = p (xAi | xBi), so that xSi = xAi · xBi .

Fact 6 We should check the coherence of the definition 2.2.2, i.e., whether it
holds that ∑

x∈X

p (x | S) = 1. (2.37)

To establish this, we write

∑

x∈X

p (x | S) =
∑

x∈X

pA1 (xA1)

k∏

i=2

p (xAi | xBi) .

As (Ai)
k
i=1 is a partition of l, then X = ×k

i=1XAi , and we get

=
∑

xA1∈XA1

. . .
∑

xAk
∈XAk

pA1 (xA1)

k∏

i=2

p (xAi | xBi)

and we use the Sum-Product formula (2.36) and k − (k − 1) − . . . − 1 as the
elimination order, to get

=
∑

xA1∈XA1

pA1 (xA1)
∑

xA2∈XA2

p (xA2 | xB2) . . .
∑

xAk
∈XAk

p (xAk
| xBk

) .

21

Recall that the indices in Bi are not involved in summation over XAi and there-
fore we have for every Ai by (2.8) that

∑

xAi
∈XAi

p (xAi | xBi) = 1,

and we can work from the innermost summation
∑

xAk
∈XAk

to the left, which

establishes (2.37).

Fact 7 We should, of course, check collective compatibility, i.e., (2.23), too.
Thus we need to show that

p↓Ar∪Br

S = {p (xAr | xBr) pBr (xBr)}xAr ·xBr∈XAr∪Br
.

This can be written in a less compact notation as

pAr∪Br (xAr∪Br | S) = p (xAr | xBr) pBr (xBr) , (2.38)

where 1 ≤ r ≤ k. We start with

p (x | S) = pA1 (xA1)
k∏

i=2

p (xAi | xBi) ,x ∈ X ,

where we can sum out xAk
. . .xAr+1 by the same marginalization strategy i.e.,

the Sum-Product formula (2.36) and the elimination order k−(k−1)−. . .−(r+1)
as in the preceding Fact 6 to obtain

p∪r
i=1Ai

(
x∪r

i=1Ai | S
)

=
∑

xAr+1
∈XAr+1

. . .
∑

xAk
∈XAk

p (x | S) , (2.39)

which gives

p∪r
i=1Ai

(
x∪r

i=1Ai | S
)

= p (xAr | xBr)

[
pA1 (xA1)

r−1∏

i=2

p (xAi | xBi)

]
. (2.40)

But since {Ai}
r−1
i=1 is a partition of l\(Ai)

k
i=r, the second factor in the expression

above is a probability density (this follows as in fact 6 above) on ×r−1
i=1Xi, i.e.,

p∪r−1
i=1 Ai

(
xA1 , . . . ,xAr−1

)
= pA1 (xA1)

r−1∏

i=2

p (xAi | xBi) .

Thus we sum out all the variables outside Br and get

pBr (xBr) =
∑

xBc
r
∈

„
XQr−1

i=1
Ai

«
\XBr

p∪r−1
i=1 Ai

(
xA1 , . . . ,xAr−1

)
,

22

and from (2.40)
∑

xBc
r
∈

„
XQr−1

i=1
Ai

«
\XBr

p∪r
i=1Ai

(
x∪r

i=1Ai | S
)

= p (xAr | xBr) pBr (xBr) ,

which is the desired property as claimed in (2.38).

Fact 8 (The Causal Markov Property) An important feature of the prod-
uct pS is the set of conditional independences inherent in it. We show next one
of these properties, or that we have for any r with 1 < r ≤ k

Ar ⊥
(
∪r−1

i=1Ai

)
\Br |pS Br. (2.41)

The goal is to check the condition in (2.14) and we begin with

pAr∪[(∪r−1
i=1 Ai)\Br]∪Br

(
xAr · x(∪r−1

i=1 Ai)\Br
· xBr

)
=

= pAr∪(∪r−1
i=1 Ai)

(
xAr · x∪r−1

i=1 Ai

)
,

since {A}ki=1 is a partition of l and Br ⊆ ∪
r−1
i=1Ai. Then we apply (2.40) above

to get

= p (xAr | xBr)

[
pA1 (xA1)

r−1∏

i=2

p (xAi | xBi)

]

= p (xAr | xBr) · p∪r−1
i=1 Ai

(
x∪r−1

i=1 Ai

)

= p (xAr | xBr) · p[(∪r−1
i=1 Ai)\Br]∪Br

(
x(∪r−1

i=1 Ai)\Br
· xBr

)

= p (xAr | xBr) · p
(
x(∪r−1

i=1 Ai)\Br
| xBr

)
pBr (xBr) .

Collecting from the above we have shown that

pAr∪[(∪r−1
i=1 Ai)\Br]∪Br

(
xAr · x(∪r−1

i=1 Ai)\Br
· xBr

)

= p (xAr | xBr) p
(
x(∪r−1

i=1 Ai)\Br
| xBr

)
pBr (xBr) .

By division of both sides in this equality by pBr (xBr) we get

p
(
xAr · x(∪r−1

i=1 Ai)\Br
| xBr

)
= p (xAr | xBr) p

(
x(∪r−1

i=1 Ai)\Br
| xBr

)
. (2.42)

By (2.14) this establishes (2.41) as claimed. In view of the examples of de-
pendence structures given above we should recognize (2.41) as a more general
sort of Markov property. One reference for (2.41) is causal Markov property
[71, pp.29−30]. There is a open discussion about the interpretation of the word
’causal’ depending on the interpretation of probability, too, [86].

23

2.2.5 What is lost by a Product Approximation ?

A result in [58] shows that one can construct for any distribution a directed
acyclic graph by means of the causal Markov condition given a total ordering
of the variables.

MORE TO FOLLOW

2.3 Bayesian Update, Approximation of Bayesian
Diagnosis and Bayesian Classification

Suppose that x = xS ·xD, where D = l \ S. We have evidence e in the form of
instantiations on XS , which means (see [57, p.152]) that we have observed the
values of the variables XS , e = {XS = xS}. Then we are asked to update our
probability table p↓D taking this evidence into account. A standard solution
goes as follows.

Let qD = p↓D be the (prior) table on XD before the update. Then d ∈ XD

denotes a generic configuration. We apply (2.9) and get the conditional density

pS|d = {p (xS | d)}
xS∈XS

on XS . Then the desired up-date of qD is, of course, the posterior probability
pD|e given by

qD 7→ pD|e = {p (d | e)}d∈XD
,

where

p (d | e) =
p (e | d) q (d)

pS (e)
. (2.43)

Here we have

pS (e) =
∑

d∈XD

p (e | d) q (d) =
∑

d∈XD

p (e,d) .

Of course, since e = {XS = xS}, we are inserting the configuration xS in the
formula above. The notation e points out the distinction of interpretation, i.e.,
that xS is an instantiation in the sense of a passively observed sample of XS .

Many of the techniques of supervised and semisupervised learning, or clas-
sification, employ (2.43), i.e., Bayes, rule. This requires in many applications
the estimation of probability distribution on a high number dimensions. Hence
very large ensembles of sample data, c.f. [6], may be needed that in many real
applications may be difficult to obtain. Thus a product approximation can be
of merit.

Let us think of S as symptom variables, and D as diagnosis variables. We
want to find the best estimate of the configuration xD using the evidence e. Let
as above d ∈ XD. Then we consider

P (d) =
{
pA|d | pA|d = p↓A

S|d A ⊆ S
}
, (2.44)

24

where we applied the notation in (2.9). In other words, P (d) is the set of lower
dimensional marginals of pS|d.

Hence, we are led to approximate pS|d in (2.43) by a product of marginals
in P (d). We denote by pS|d;SD

the product satisfying the required conditions
of consistency on XS . Then the approximate Bayesian maximum a posteriori
diagnosis or the configuration in XD with maximum probability given e under
the product approximation is

d̂ (e) = arg max
d∈XD

qS (d) · p (e | d;SD) .

For the applications to supervised learning or classification/identification one
usually formulates the model a bit differently. Let XD 7→ C and XD 7→ X in the
preceding, and C is an alphabet of class indices c. Then (x, c) ∈ X × C. Then
we have

p (x, c) = p (x | c) q (c) .

Let e = {X = x}. Then the maximum a posterior estimate of c, or the
supervised classification of e, ĉ (e) is

ĉ (e) = argmaxc∈Cp (c | e) = argmaxc∈Cp (e | c) q (c) .

Then we approximate each p (e | c) with a product approximation p (e | S, c)
and get

ĉ (e;S) = argmaxc∈Cp (e | S, c) q (c) .

The impact of this product approximation on the probability of error in super-
vised classification is studied in [28]. In fact, the work by Chow and Liu in
[16] seems to be motivated by a study of supervised learning with a product
approximation. We shall discuss classification or unsupervised learning aided
by the Chow-Liu theory of second order product approximations in more detail
in section 7.3 below.

There existed a conjecture that the Chow and Liu algorithm (to be derived
below) also minimizes the Bayesian probability of classification error, but this
was shown to be a truth with an ample number of modifications, see [8].

2.3.1 Other Variants of Approximation

The final examples are intended to illustrate other strategies of approximating
a probability table, where one truncates an additive expansion of a probability
table. The example can be omitted without loss of continuity.

Example 2.3.1 Consider the alphabet X = {0, 1}d known as the binary hyper-
cube in d dimensions. For the binary hypercube we need in general to specify
a probability table with 2d − 1 entries. Hence we may encounter a difficulty
with storing. To recapitulate the Bahadur-Lazarsfeld -Streitberg representation
of any positive (p(x) > 0 for all x) probability function on {0, 1}d we define the
margins

pi = p↓i, i = 1, . . . , d. (2.45)

25

so that pi = {pi(xi)}xi∈{0,1}, where

pi(xi) = fxi

i (1− fi)
1−xi

and 0 < fi < 1, i.e., fi = P (Xi = 1). Then we set

(×d
i=1pi)(x) =

d∏

i=1

pi(xi).

Let us next define

yi = yi (x) =
xi − fi√
fi (1− fi)

, i = 1, . . . , d. (2.46)

We take w = (w1, w2, . . . , wd) ∈ {0, 1}d , a binary vector and we denote by
Uw (x) products of all subsets of y1, . . . , yd

Uw (x) =

d∏

i=1

yi (x)
wi , U0 (x) = 1.

Then we can find unique the coefficients βw such that

finteractions(x) =
∑

w∈{0,1}d

βwUw (x) . (2.47)

This is to be checked against the corrections in [73]. We can think of the
coefficients βw as interactions of order R(w) minus one, where the rank R(w)
of the polynomial Uw,c is defined as

R(w) =

d∑

i=1

wi.

Here β0 = 1, and if R(w) = 1, then βw = 0. For R(w) = 2 the coefficients
{βw} are correlations. Then the Bahadur-Lazarsfeld -Streitberg representation
is

p(x) = (×d
i=1pi)(x)finteractions(x). (2.48)

The multivariate Bernoulli distribution ×d
i=1pi is the first order term. Since

Pr≪ L (see (2.21)) we could consider finteractions as the Radon-Nikodym deriva-
tive

dPr

dL
(x) = finteractions(x).

Clearly one can define an approximation a probability table p by truncation in
finteractions(x) of kth order, i.e., by taking βw = 0 for R(w) > k. This has a
difficulty, as one does not automatically obtain a valid probability distribution.
Hence other ways of approximating p(x) on {0, 1}d can be easier to use.

26

Example 2.3.2 D. Wedelin gives in [84] a version of product approximation
based on representation of probability distributions on Bd in terms of positive
potentials that are functions of Hadamard transforms of the original variables.

Chapter 3

Reverse I-Projection and
the Optimal Product
Approximation

3.1 Kullback-Leibler Distance

The relative entropy or the information divergence or the I-divergence or the
Kullback distance D (p ‖ pS) between p and pS in (2.30) is defined by

Definition 3.1.1

D (p ‖ pS)
def
=
∑

x∈X

p (x) ln
p (x)

p (x | S)
. (3.1)

By an application of Jensen,s inequality we can show, see section A.1.4 in the
Appendix, that

D (p ‖ pS) ≥ 0. (3.2)

Also, D (p ‖ pS) = 0 if and only if p = pS . If p≪ pS , in the sense of (2.2) (as
probably should be the case), then D (p ‖ pS) < ∞, otherwise D (p ‖ pS) =
+∞. In fact, in finite spaces

D (p ‖ pS) <∞⇔ p≪ pS .

The logarithm is the natural logarithm unless otherwise stated, whereby relative
entropy is measured in nats (per sample). The Kullback distance is not really
a distance with the properties of a metric on the set of probabilities on X .

Why should the Kullback distance be applied here? Let us keep in mind,
as stated in the introduction, that one goal of storing is data compression,
i.e., source coding. The Kullback distance is the expected length of redun-
dancy, when coding a configuration x, generated by the distribution p, using
⌈− log2 pS (x)⌉ bits, see [20, chapter 5,thm.5.4.3] or [65, ch.3] (and below).

27

28

One should from this point of view add to D (p ‖ pS) the number of bits
needed thereto for storing the probability tables in pS . The expression DL (pS)
in (B.2) of Appendix B gives this number. Thus we should be minimizing

D (p ‖ pS) + ln 2 ·DL (pS) .

This gives a hint at the minimum description length (MDL) criterion for selec-
tion of pS , see, e.g., [49, 76]. The MDL criterion is, however, usually given in a
different form.

The task of Optimal Product Approximation of p is thus to find a dependence
structure S such that D (p ‖ pS) is minimized.

Definition 3.1.2 (Optimal Product Approximation) Find an S∗ such that

S∗ ∈ argminpS
D (p ‖ pS) . (3.3)

Following [24], we call pS∗ a Reverse I-Projection of p onto the set of all prob-
ability measures with S as dependence structure. This is delibrately vague, as
we should restrict the domain, where S is confined to lie, before it makes good
sense to talk about the intended minimization. These matters will be made
more precise later, but before that our goal will be to rewrite D (p ‖ pS) for a
generic S in an instructive form found by Lewis, see [50].

Remark 3.1.1 A measure q∗ in some convex set E of probability measures
with D (p ‖ q) <∞ satisfying

q∗ = argminp∈ED (p ‖ q) . (3.4)

is the I-Projection of q, see [21]. This defines the method of minimum discrimi-
nation information for approximation of distributions by lower order margins in
[47]. I-Projections emerge in the Sanov theorem 6.1.1 to be used in the sequel
for the large deviation theory of learning of (Chow-Liu) trees.

Fact 9 In the derivations to follow we need a computation that will, as a
byproduct, define the Shannon entropy, H(A), for pA. For any A ⊆ l we
observe the following

−
∑

x∈X

pA (x) ln p (xA) = −
∑

xA∈XA

pA (xA) ln pA (xA)
∑

xAc∈XAc

p (xAc | xA)

(3.5)

and by (2.8)

= −
∑

xA∈XA

pA (xA) ln pA (xA) .

29

We set
H (A)

def
= −

∑

xA∈XA

pA (xA) ln pA (xA) . (3.6)

If A = ∅, we define, by the fact 1, H (A) = 0. Hence, H (A) as given above is
the Shannon entropy (in natural logarithms or ’nats’) of the probability table
pA (or of the random variable XA).

When we apply the definition in (3.6) with A = l we get H (l), which is

H (l) = −
∑

x∈X

p (x) ln p (x) .

Now we can state explicitly the result [20, chapter 5,thm.5.4.3] mentioned above.
We recall, e.g., the Huffmann code [1, pp. 94−102] and let

Ep [⌈− log2 pS (X)⌉] =
∑

x∈X

p (x) ⌈− log2 pS (x)⌉.

Then we clearly obtain the two inequalities

H (l) +D (p ‖ pS) ≤ Ep [⌈− log2 pS (X)⌉] ≤ H (l) +D (p ‖ pS) + 1.

This shows the Kullback distance (in bits) as the expected source coding length
redundancy, within one bit, when coding a configuration x, generated by the
distribution p, using ⌈− log2 pS (x)⌉ bits.

Now we can we can write (3.1) as

D (p ‖ pS) =
∑

x∈X

p (x) ln p (x)−
∑

x∈X

p (x) ln p (x | S)

= −H (l)−
∑

x∈X

p (x) ln p (x | S) . (3.7)

Then we can use the partition (Ai)
k
i=1 of l in the definition 2.2.3 to write the

second term in the right hand side above as

−
∑

x∈X

p (x) ln p (x | S) = −
∑

xA1∈XA1

. . .
∑

xAk
∈XAk

p (x) ln p (x | S) .

and use the expression in (2.29) to get

= −
∑

xA1∈XA1

. . .
∑

xAk
∈XAk

p (x) ln

[
pA1 (xA1)

k∏

k=2

p (xAk
| xBk

)

]

= −
∑

xA1∈XA1

. . .
∑

xAk
∈XAk

p (x)

[
ln pA1 (xA1) +

k∑

i=2

ln p (xAi | xBi)

]
.

30

We apply the Sum-Product rule (2.36) rule to obtain

= −
∑

xA1∈XA1

. . .
∑

xAk
∈XAk

p (x) ln pA1 (xA1)−
k∑

i=2

∑

xA1∈XA1

. . .
∑

xAk
∈XAk

p (x) ln p (xAi | xBi)

 .

We use the argument in (3.5) to get

−
∑

xA1∈XA1

. . .
∑

xAk
∈XAk

p (x) ln pA1 (xA1) = H (A1) = H (A1 ∪B1)−H (B1) ,

(3.8)
since B1 = ∅, so that H (B1) = H (∅) = 0. As

p (xAi | xBi) =
pAi∪Bi (xAi ,xBi)

pBi (xBi)

we obtain again with the same steps of computation as in (3.5), in view of the
fact that Ak ∩Bi = ∅ for i < k, that

∑

xA1∈XA1

. . .
∑

xAk
∈XAk

p (x) ln p (xAi | xBi)

=
∑

xAi∪Bi
∈XAi∪Bi

pAi∪Bi (xAi∪Bi) ln pAi∪Bi (xAi∪Bi)−
∑

xBi
∈XBi

pBi (xBi) ln pBi (xBi) ,

which is equal to
= −H (Ai ∪Bi) +H (Bi) . (3.9)

Collecting the results from (3.7) − (3.9) and taking into account the appropriate
minus signs, we have obtained the following formula valid for any dependence
structure S,

D (p ‖ pS) = −H (l) +

k∑

i=1

[H (Ai ∪Bi)−H (Bi)] . (3.10)

We shall find a couple of additional representations of D (p ‖ pS) by rewriting
(3.10) using mutual (multi)information to be defined next.

3.2 Mutual Information

Mutual information can be understood as a quantity indicating the degree of
dependence between the random variables XA and XB for arbitrary A ⊆ l and
B ⊆ l with A∩B = ∅. A more illuminative interpretation of mutual information
and the other quantities introduced below is given in the diagram in Appendix
A.2.

The formal definitions and formulas to be introduced below are standard
identities in information theory, see, e.g., [20, chapter 2], adapted to the present
notation.

31

Definition 3.2.1 The mutual information I(A,B) between the random vari-
ables XA and XB with A ∩B = ∅ is defined as

I(A,B)
def
= H (A) +H (B)−H (A ∪B) . (3.11)

We have clearly the symmetry property

I(A,B) = I(B,A). (3.12)

If we want to consider (3.11) in a less compact form, we can readily check that

I(A,B) =
∑

xA∪B∈XA∪B

pA∪B (xA∪B) ln
pA∪B (xA∪B)

pA (xA) pB (xB)
. (3.13)

In view of (3.1) and (2.19) this means that

I(A,B) = D (pA∪B ‖ pA × pB) ,

and therefore due to (3.2), that I(A,B) ≥ 0. Furthermore I(A,B) = 0, if and
only if pA∪B = pA × pB . Since pA∪B ≪ pA × pB (c.f., the argument yielding
(2.21)) we have that I(A,B) <∞.

Let us also define

H(A | B)
def
= H (A ∪B)−H (B) . (3.14)

This equals by the preceding

H(A | B) =
∑

xB∈XB

pB (xB)
∑

xA∈XA

(−1) · p (xA | xB) ln p (xA | xB) .

When we apply (3.14) to (3.10), we get

D (p ‖ pS) = −H (l) +

k∑

i=1

[H (Ai | Bi)] . (3.15)

Since we have by definitions (3.11) and (3.14) that

I(A,B) = H(A)−H(A | B), (3.16)

we obtain in (3.15) that

D (p ‖ pS) = −H (l) +
k∑

i=1

H (Ai)−
k∑

i=1

I(Ai, Bi). (3.17)

We observe here that H (l) is independent of the product approximation. Hence
we have re-formulated (3.3) as maximization of the objective function

Q (S) = −
k∑

i=1

H (Ai) +

k∑

i=1

I(Ai, Bi) (3.18)

32

to find the Optimal Product Approximation. An important observation is that
Q (S) depends on the probability distribution p only through the lower dimen-
sional marginal distributions at (Ai, Bi)

k
i=1, as pointed out by P.M. Lewis [50],

who first discovered a version of (3.18). This formula has been rediscovered
a number of times in the literature on Bayesian networks. K-U. Höffgen [39]
and N. Srebro [72] have presented generalizations of the Lewin formula for pac-
learning of concepts and for tree-width Markov networks, respectively.

With Q (S) in (3.18) and a set of pairwise consistent lower dimensional
marginal distributions with acyclic domains we can maximize Q (S) by evalua-
tion.

Alternatively, we might want to find S so that D (p ‖ pS) < ǫ for a given
ǫ > 0, see [59], in which case the set of available marginal distributions may be
complete.

Remark 3.2.1 For an interpretation (in framework of the theory for digital
communication) of the identities (3.14), (3.11) and (3.16) we refer to the diagram
A.1 in the Appendix. It holds by the preceding development that we also have

Q (S) = −
k∑

i=1

H (Ai | Bi) . (3.19)

Hence, the maximization Q (S) can be, by reference to the diagram in Appendix
A.2, seen as minimization of the sum of uncertainties of Ai’s given Bi’s.

Remark 3.2.2 Claude E. Shannon [67] observed that, with our notation,

d (A,B) = H (A | B) +H (B | A) (3.20)

is a metric between XA and XB (or between pA and pB). This fact is used in
[66] to find dependence trees with a technique different from that to be treated
in the sequel.

3.3 Statistical Learning of Dependence Struc-
ture

The maximization of Q (S) in (3.18) becomes a technique of statistical learning
of the dependence structure S (in some restricted domain of such structures), if
we replace the known density p with an empirical distribution p̂ for a set of N
of observations of X as data.

In the context of Example 2.2.5 this amounts to learning of the structure
of a directed acyclic graph from data. In plain words, we want to estimate
statistically which node is connected to which node. We refer to [15, 49] for
surveys and methods based on mutual information.

33

For the purpose of statistical estimation of lower dimensional marginals we
may want to constrain the general dependence structure in definition 2.2.2 by

|Ai ∪Bi| ≤ l; 1 ≤ l ≤ d. (3.21)

Here |Ai ∪Bi| is the cardinality of the set.
Even with (3.21), the maximization of (3.18) may turn out to be difficult in

a majority of cases.
There is a special scenario that permits an effective solution of the Optimal

Product Approximation problem. This is the framework for the algorithm of
C.K. Chow and C.N. Liu in [16]. Here one restricts the components of the
product approximation to two dimensional distributions, or, requires in (3.21)
that l = 2.

34

Chapter 4

The Chow-Liu Theory for
the Optimal Product
Approximation Problem

In this chapter we shall derive the algorithm of [16] known as the Chow-Liu
Algorithm for maximization of Q (S). This is valid for a dependence structure
such that the cardinalities are constrained by

|Ai ∪Bi| ≤ 2. (4.1)

In other words we shall give pS as a product of second order marginal distribu-
tions.

We recapitulate first, for ease of exact reference, some standard definitions
and facts of of graph theory, c.f., [1, 85].

4.1 Spanning Trees and Weighted Trees

Consider the undirected graph is G = (l, E), i.e., the set of nodes is l = {1, . . . , d}
and the edges are unordered pairs of l× l, i.e.,

E = {(j, k)|j ∈ l, k ∈ l, j 6= k}.

The graphs considered here are simple in the sense that there are no loops, i..e.,
edges of the form (j, j), and that there are no multiple edges between two nodes.
The nodes j and k are said to be the ends of the edge (j, k).

A graph G is called complete, if there is an edge in E for every possible pair
of nodes. The degree of a node is is defined as the number of edges incident1 on
it. A path of between two nodes is a sequence of distinct edges with an initial
and final node. A graph is said to be connected, if there is a path between any

1the edge (j, k) is incident on j and k

35

36

pair of nodes in the graph. A cycle is a path, where the initial and final nodes
coincide.

A subgraph H of G is a graph H = (lH , EH) such that lH ⊆ l and EH ⊆ E.
A subgraph H is induced by A ⊆ l, if every edge in E having both its ends in A
is also in EH . A subgraph H of G is spanning subgraph of G, if lH = l.

An (undirected) tree T is a connected undirected graph that has no cycles.
It follows that there is a unique path between any two nodes. A spanning tree
of a graph is a spanning graph of G, which is itself a tree.

A labelled tree is a tree on d nodes is a tree, where each node is labelled by
one of the integers in {1, 2, . . . , d}. In the sequel we are mostly going to refer to
labelled trees as trees.

A weighted undirected graph is

G = ((l, E)|w),

where w is a map from E to the non-negative real numbers defined on the edges
(j, k) ∈ E. The weight of a graph (a tree) is the sum of its edge weights. The
weight to be used by the Chow-Liu Algorithm will be defined via the mutual
information in (3.15):

w(j, k)
def
= I(j, k) = H (j) +H (k)−H (j ∪ k) .

4.2 The Chow-Liu Tree with known p

4.2.1 Chow-Liu Dependence Structure and the Optimal
Product

We start with the following special case of dependence structures (2.2.2).

Definition 4.2.1 [Chow-Liu Dependence Structure] Let (ir)
d
r=1 be an arbitrary

permutation of l = {1, 2, . . . , d}. The singleton sets Ar = {ir}, r = 1, . . . , d, are
a partition of l. Let σ be a sequence of pairs of singletons of l

σ = (ir, jr)
d
r=1 , (4.2)

where
j1 = ∅, jr ∈ {i1, . . . , ir−1} ⊆ l, r = 2, . . . , d. (4.3)

Then σ is a Chow-Liu dependence structure.

The name tree (or labelled tree) for a Chow-Liu dependence structure is intuitive
and correct, since any Chow-Liu dependence structure corresponds to a spanning
tree. In fact we may take (ir)

d
r=1 as nodes of a graph and join id with jd with an

arrowhead pointing from jr to ir (thereby introducing direction). We continue
with (id−1, jd−1) and further downwards in the ordering. Since we are in fact
dealing with a well ordering, i.e., jr ∈ {i1, . . . , ir−1}, we cannot create a cycle.

37

Hence the procedure will depict a tree. As the tree connects all the nodes, it is
a spanning tree. If jr = ∅, there is no arrow pointing to the node ir. Any node
in a directed tree with jr = ∅ is called a root. By construction (or selection of
permutation) i1 is a root. If there is only one root, the (directed) tree is called
proper.

By the causal Markov property (2.41)

ir ⊥ {i1, . . . , ir−1} \ jr |pS jr. (4.4)

This implies that by conditioning on any jr we can cut the tree into two con-
ditionally independent trees. Hence a Chow-Liu tree is an example of Markov
trees.

An example of a Chow-Liu dependence tree for the nodes l = {1, 2, 3, 4, 5, 6, 7}
(in this order) is given by

(j1, j2, j3, j4, j5, j6, j7) = (∅, 1, 2, 1, 4, 5, 3).

This dependence structure, (r, jr)
7
r=1, could be the outcome of step 2. of Al-

gorithm 4 in the Appendix, i.e, before the step of random permutation in the
algorithm.

As a tree this is depicted in Figure 4.1. In this figure each node is labelled
with the variable associated with it.

x
1

x
2 x 3

x
7

x x
54 x

6

Figure 4.1: A Chow-Liu Dependence Tree

The Chow-Liu algorithm, as defined later, will always output a connected
tree. We shall in section 7.2.4 below present a small modification, based on
stochastic complexity, that may deliver a disconnected Chow-Liu dependence
tree (also known as a forest). An illustration of this for seven nodes is given by

(j1, j2, j3, j4, j5, j6, j7) = (∅, 1, ∅, ∅, 4, 4, 5)

38

x
1

x
2 x 3

x x
54

x
6

x 7

Figure 4.2: A Forest of Chow-Liu Dependence Trees

and the trees are depicted in Figure 4.2 below. For a σ as defined above we
have in (3.18)

Q (σ) = −
d∑

r=1

H (ir) +

d∑

r=1

I(ir, jr).

In addition, a Chow-Liu dependence structure defines a product approximation
of a known probability distribution p as

p (x | σ) = pi1 (xi1)

d∏

r=2

p (xir | xjr)

(4.5)

=

d∏

r=1

pir (xir)

d∏

r=2

pir∪jr (xir , xjr)

pir (xir) pjr (xjr)
, x = (xi)

d
i=1 ∈ X .

For the trees in the figures 4.1 and 4.2 the joint distributions p (x1, . . . , x7) are

p (x1) p (x2|x1) p (x3|x2) p (x4|x1) p (x5|x4) p (x6|x5) p (x7|x3)

and
p (x1) p (x2|x1) p (x3) p (x4) p (x6|x4) p (x7|x5) , (4.6)

respectively. The following theorem recapitulates the first main result in [16].

Theorem 4.2.1 Let p be a probability distribution on X . Let

G = ((l, E)|w),

39

be a complete weighted graph with w given by

w(j, k) = I(j, k), (j, k) ∈ E, (4.7)

where I(j, k)’s are computed using p↓i,j ’s respectively. Then the maximum
weight spanning tree of G defines a Chow-Liu dependence structure σ, which
maximizes

Q (σ) = −
d∑

r=1

H (ir) +

d∑

r=1

I(ir, jr) (4.8)

Proof: C.f., [31]. Let us note that

d∑

r=1

H (ir) =

d∑

i=1

H (i)

and the first term in Q (σ) is in fact independent of σ. Hence it suffices to

maximize
∑d

r=1 I(ir, jr).

We show first that any (weighted) spanning tree Td = ((l, F)|w) of G defines
a Chow-Liu dependence structure σ in the sense of definition 4.2.1. Since there
are no cycles, there has to be at least one node id ∈ l with degree one. More
precisely, take the node with degree one that has the highest index and renum-
ber. If we delete id and the corresponding edge (id, jd) ∈ F , we get a subgraph
Td−1 (of Td)

Td−1 = {(l \ id, F \ (id, jd))|w},

which is connected and contains no cycles, i.e., Td−1 is a tree. We can again
eliminate a node id−1 ∈ l \ id with degree one in Td−1 and the corresponding
edge (id−1, jd−1) ∈ F \(id, jd), jd−1 ∈ l\(id, id−1). If we proceed in this manner,
we are going to exhaust all d − 1 edges of the spanning tree Td until there is
only one isolated node with j1 = ∅. The resulting sequence of pairs of nodes

σ = (ir, jr)
d
r=1

satisfies the requirement in definition 4.2.1.

Conversely, we have established above that any dependence structure σ as
given in definition 4.2.1 uniquely defines a spanning tree of G.

The weight of Td is computed as

W (Td) =

d∑

r=2

I(ir, jr). (4.9)

Let next T ∗
d denote a maximum weight spanning tree of G, and let σ∗ be its

Chow-Liu dependence structure. We want to prove that

Q (σ∗) ≥ Q (σ) ,

40

where σ is the Chow-Liu dependence structure of any other spanning tree T .
Let us next suppose that there existed a σ (and therefore a spanning tree of G)
such that

Q (σ) > Q (σ∗) .

Since T ∗
d has maximum weight, we have

W (T ∗
d) =

d∑

r=2

I(i∗r , j
∗
r) ≥W (Td) =

d∑

r=2

I(ir, jr).

But in view of (4.8) the assumption Q (σ) > Q (σ∗) implies that

d∑

r=2

I(i∗r , j
∗
r) <

d∑

r=2

I(ir, jr).

An algorithm for finding the Chow-Liu dependence structure or the Chow-Liu
tree for a known p is given in section 4.3.4 below.

4.3 The Chow-Liu Algorithm with unknown p:
Maximum Likelihood Estimate of Chow-Liu
Dependence Structure

In case p is unknown, we suppose that there is data (or a training set) D, which
consists a sample of N independent observations (passively observed instantia-
tions of configurations in X) of X = (Xi)

d
i=1. We set

D = {x(1),x(2), . . . ,x(N)},

where

x
(n) =

(
x

(n)
i

)d

i=1
∈ X .

We shall hereby apply maximum likelihood estimation for finding the Chow-Liu
dependence structure σ. It turns out that the maximum likelihood estimate is
nothing else but the procedure obtained in the preceding section, if the proba-
bilities pi∪j (xi, xj), pi (xi), pj (xj), i.e., the mutual informations, are replaced
by their relative frequency, also known as plug-in, estimates. This is the second
main result in [16]. But first we present an observation that links maximum
likelihood to the reverse I-projection (3.3).

4.3.1 Maximum Likelihood and the Reverse I-projection

First we need certain additional notations. Let P (X) be the set of all probability
distributions (expressed as densities) on X , i.e.,

P (X) =
{
p | p = {p (x)}

x∈X

}
. (4.10)

41

Let Td = (l, σ) be a spanning tree on l, where σ is a Chow-Liu dependence
structure as given in definition 4.2.1. Let us designate by Td the set of all
spanning trees on l. Then

P (X ,Td) =
{
pσ | pσ = {p (x | σ)}

x∈X , Td = (l, σ) ∈ Td

}
(4.11)

is the set of all tree dependent probability distributions on X and P (X ,Td) ⊂
P (X).

We set for any x ∈ X

Ix

(
x

(n)
)

=

{
1 if x = x

(n)

0 otherwise.

Then we define the empirical probability on X based on D as

p̂N (x) =
1

N

N∑

n=1

Ix

(
x

(n)
)
. (4.12)

If we let the empirical probability table on X be given as

p̂N = {p̂N (x)}
x∈X , (4.13)

then we can find the maximum likelihood estimate p̂ML
N as

p̂ML
N = arg min

p∈P(X ,Td)
D (p̂N ‖ p) . (4.14)

To check this, we compute as in (3.7)

D (p̂N ‖ p) = −ĤN (l)−
∑

x∈X

p̂N (x) ln p (x) ,

where ĤN (l) = −
∑

x∈X p̂N (x) ln p̂N (x). Now we get from (4.12)

∑

x∈X

p̂N (x) ln p (x) =
1

N

N∑

n=1

∑

x∈X

Ix

(
x

(n)
)

ln p (x)

=
1

N

N∑

n=1

ln p
(
x

(n)
)
,

so that

D (p̂N ‖ p) = −ĤN (l)−
1

N

N∑

n=1

ln p
(
x

(n)
)
. (4.15)

Obviously, the first term ĤN (l) is independent of the tree dependence. Hence
we verify the claim in (4.14), i.e, D (p̂N ‖ p) is minimized by maximization of
1
N

∑N
n=1 ln p

(
x

(n)
)
, which is the loglikelihood function. Hence, in the present

situation, the maximum likelihood probability distribution is the reverse I-
projection of p̂N onto the set of tree dependent distributions P (X ,Td).

We shall next find the maximum likelihood tree-dependent distribution, but
the first step is to write 1

N

∑N
n=1 ln p

(
x

(n)
)

as a loglikelihood in a more explicit
manner.

42

4.3.2 The Loglikelihood Function

When σ = (ir, jr)
d
r=1 is a Chow-Liu dependence structure as in (4.2) and (4.3)

above, we introduce the parameter P as the set of two dimensional distributions
given by

P = {pi∪j (xi, xj) ; (i, j) ∈ l× l, i 6= j}.

Then we write from (4.5) p (x | σ,P) as the corresponding parametric probabil-
ity is

p (x | σ,P) = pi1 (xi1)
d∏

r=2

p (xir | xjr) ,

(4.16)

=

d∏

r=1

pir (xir)

d∏

r=2

pir∪jr (xir , xjr)

pir (xir) pjr (xjr)
x = (xi)

d
i=1 ∈ X .

The likelihood function for the parameter (σ,P) given D is

L (σ,P) =

N∏

n=1

p
(
x

(n) | σ,P
)
.

For any i ∈ l and ξ ∈ Xi we introduce

Iξ,i

(
x

(n)
)

=

{
1 if ξ = x

(n)
i

0 otherwise.

Thus the first line in (4.16) gives

L (σ,P) =

N∏

n=1

∏

ξ∈Xi1

pi1

(
x

(n)
i1

)Iξ,i1(x
(n)) d∏

r=2

∏

ξ∈Xir

∏

η∈Xjr

[
p
(
x

(n)
ir
| x

(n)
jr

)]Iξ,ir (x
(n))Iη,jr (x

(n))

=
∏

ξ∈Xi1

N∏

n=1

pi1

(
x

(n)
i1

)Iξ,i1(x
(n)) d∏

r=2

∏

ξ∈Xir

∏

η∈Xjr

[
N∏

n=1

p
(
x

(n)
ir
| x

(n)
jr

)]Iξ,ir (x
(n))Iη,jr (x

(n))

.

(4.17)
Then we take the loglikelihood function as

l (σ,P) = lnL (σ,P) =
1

N

N∑

n=1

ln p
(
x

(n) | σ,P
)
.

In view of (4.17) this loglikelihood l (σ,P) equals

=
∑

ξ∈Xi1

1

N

N∑

n=1

Iξ,i1

(
x

(n)
)

ln pi1

(
x

(n)
i1

)

43

+

d∑

r=2

∑

ξ∈Xir

∑

η∈Xjr

1

N

N∑

n=1

Iξ,ir

(
x

(n)
)
Iη,jr

(
x

(n)
)

ln p
(
x

(n)
ir
| x

(n)
jr

)
. (4.18)

Let now for any i ∈ l and ξ ∈ Xi

p̂i (ξ) =
1

N

N∑

n=1

Iξ,i

(
x

(n)
)
, (4.19)

which is the relative frequency of ξ ∈ Xi in our data set D, or, the plug-in
estimate of pi. Thereto we have

p̂ij (ξ, η) =
1

N

N∑

n=1

Iξ,i

(
x

(n)
)
Iη,j

(
x

(n)
)
, (4.20)

which is the relative frequency of the pair (ξ, η) ∈ Xi ×Xj in D. Here we may
observe that in the first term of (4.18)

1

N

N∑

n=1

Iξ,i1

(
x

(n)
)

ln pi1

(
x

(n)
i1

)
=

1

N

N∑

n=1

Iξ,i1

(
x

(n)
)

ln pi1 (ξ)

= ln pi1 (ξ)
1

N

N∑

n=1

Iξ,i1

(
x

(n)
)

= p̂i1 (ξ) ln pi1 (ξ) .

Similar straightforward rearrangements yield that

l (σ,P) =
∑

ξ∈Xi1

p̂i1 (ξ) ln pi1 (ξ)+

d∑

r=2

∑

η∈Xjr

p̂jr (η)
∑

ξ∈Xir

p̂irjr (ξ, η)

p̂jr (η)
ln pir |jr

(ξ | η) ,

(4.21)
where we have introduced the auxiliary notation pir |jr

(ξ | η) to designate the
conditional probability of Xir = ξ given Xjr = η.

4.3.3 Maximum Likelihood

Now we maximize (4.21) as a function of σ,P . Let us first fix the structure σ.
Gibbs’ inequality (A.10) (or the fact that the Kullback distance is nonnegative)
yields that the maximum likelihood (ML) estimates are

pML
i1 (ξ) = p̂i1 (ξ) , ξ ∈ Xi1 ,

pML
ir|jr

(ξ | η) =
p̂irjr (ξ, η)

p̂jr (η)
, ξ ∈ Xir , η ∈ Xjr , r = 2, . . . , d.

If we insert these estimates back in (4.21) we get

l
(
σ,PML

)
=
∑

ξ∈Xi1

p̂i1 (ξ) ln p̂i1 (ξ) +

d∑

r=2

∑

η∈Xjr

∑

ξ∈Xir

p̂irjr (ξ, η) ln
p̂irjr (ξ, η)

p̂jr (η)

44

=

d∑

r=1

∑

ξ∈Xir

p̂ir (ξ) ln p̂ir (ξ) +

d∑

r=2

∑

η∈Xjr

∑

ξ∈Xir

p̂irjr (ξ, η) ln
p̂irjr (ξ, η)

p̂ir (ξ) p̂jr (η)
,

where we invoked the identities

d∑

r=2

∑

η∈Xjr

∑

ξ∈Xir

p̂irjr (ξ, η) ln
1

p̂ir (ξ)
=

d∑

r=2

∑

η∈Xjr

∑

ξ∈Xir

(−1) ln p̂ir (ξ) p̂irjr (ξ, η)

=

d∑

r=2

∑

ξ∈Xir

(−1) ln p̂ir (ξ)
∑

η∈Xjr

p̂irjr (ξ, η) = −
d∑

r=2

∑

ξ∈Xir

ln p̂ir (ξ) p̂ir (ξ) .

In other words, we have the profile likelihood function

l
(
σ,PML

)
=

d∑

r=1

∑

ξ∈Xir

p̂ir (ξ) ln p̂ir (ξ) +

d∑

r=2

Î(ir, jr), (4.22)

where we have introduced the plug-in estimate of mutual information

Î(ir, jr) =
∑

η∈Xjr

∑

ξ∈Xir

p̂irjr (ξ, η) ln
p̂irjr (ξ, η)

p̂ir (ξ) p̂jr (η)
. (4.23)

Clearly, the loglikelihood function in (4.22) is the empirical version, or plug-in

estimate, of (4.8). The first term
∑d

r=1

∑
ξ∈Xir

p̂ir (ξ) ln p̂ir (ξ) does not depend

on σ. Hence, we find the maximum likelihood estimate σML of the structure σ
by

σML = argmaxσ

{
d∑

r=2

Î(ir, jr)

}
. (4.24)

The number of trees with d nodes is finite. Hence in principle we could find
σML by exhaustive search and evaluation of l

(
σ,PML

)
. Nevertheless, since the

number of spanning trees with d nodes is dd−2 [85, Cayley
′

s formula p.82],
exhaustive search is infeasible in practice. Hence the second main result of [16]
is the observation that there exists a computationally effective way of finding
σML.

4.3.4 The Algorithm

The Chow-Liu Tree Algorithm is outlined below. The input is the data set

D = {x(1),x(2), . . . ,x(N)}

There are well known standard algorithms for finding the maximum weight
spanning tree, e.g., the Kruskal algorithm or the Prim algorithm [1], indepen-
dently discovered by several others, too, c.f., [48, 79]. The algorithm finds the
maximum weight spanning tree in O

(
d2 ln d

)
time.

45

Algorithm 1 CHOW-LIU-TREE (D)

1: Determine the the marginal distributions p̂ij and p̂i

2: Compute w ← Î(i, j)
3: do MST-KRUSKAL (G,w)
4: return σML

In other words, in order to use the theorem above for product approximation,
we must first compute the d(d− 1)/2 (c.f., (3.12)) numbers (c.f., 4.23))

Î(i, j) =
∑

xi∈Xi

∑

xj∈Xj

p̂i∪j (xi, xj) ln
p̂i∪j (xi, xj)

p̂i (xi) p̂j (xj)
. (4.25)

(see (3.10)) for all pairs of i ∈ l, j ∈ l. Then one finds the maximal weight span-
ning tree of the corresponding complete weighted graph by MST-KRUSKAL in
Algorithm 2 modified from [19, pp.504-509].

Algorithm 2 MST-KRUSKAL (G,w)

1: A → ∅
2: for each node i ∈ l
3: do MAKE-SET(i)
4: sort the edges of l by nonincreasing weight w
5: for each edge (i, j) ∈ l, in order by nonincreasing w
6: do if FIND-SET(i)6= FIND-SET(j)
7: then A← A ∪ {(i, j)}
8: UNION(i, j)
9: return A

FIND-SET(i) returns a representative element from the set that contains
i. Lines 1-3 initialize the set A to the empty set and create |V | trees, one
containing each node. The edges in l are sorted into order by nonincreasing
weight in line 4. The for loop in lines 5-8 checks, for each edge (i, j), whether
the endpoints i and j belong to the same tree. If they do, then the edge (i, j)
cannot be added to the first forest without creating a cycle, and the edge (i, j)
is discarded. Otherwise, the two edges belong to different trees, and the edge
(i, j) is added to A in line 7, and the edges of the two trees are merged in line
8.

Remark 4.3.1 Edmonds, algorithm or the Chu-Liu-Edmonds algorithm solves
a directed maximum spanning tree problem, i.e., finds a maximum/minimum
weight spanning tree from directed edges, see [30] for an implementation and
for references.

46

4.4 Extensions and Applications of the Chow-

Liu Algorithm

4.4.1 Causal Polytrees

Rebane and Pearl [63] introduced the (causal) polytree2, which is a directed
graph with at most one undirected path between any two nodes. A polytree
has thus no undirected cycles either. Every directed tree is a polytree, but not
every polytree is a directed tree. A polytree can be found using edge weights
by the MST-KRUSKAL (G,w) in Algorithm 2, as will be shown below.

Let PolTd be a polytree with d nodes. σ is the dependence structure of
PolTd.

Since a polytree is a an acyclic directed graph, the dependence structure is
found in Example 2.2.5 above. Thus Ai = {i} and Bi = the set of parents of
the node i. We assume that the nodes are well ordered, as defined in Example
2.2.5.

There is, however, an important property not holding for Bayesian networks
in general. Let Bi = {ji(1), . . . , ji(m)} be the set of parents of i. In a polytree
it holds for every i ∈ l that

pBi (xBi | σ) =

m∏

l=1

pji(l)

(
xji(l)

)
. (4.26)

We shall demonstrate this. An ancestor of the node r in PolTd is a node j (< r)
such that there is path (thus unique) from j to r. We set

ANr = { the ancestors of r in PolTd}. (4.27)

Thus, for any jr(k) and jr(l), l 6= k, in Br

jr(k) /∈ ANjr(l), jr(l) /∈ ANji(k),

because otherwise there would be multiple paths to r. Furthermore

ANjr(k) ∩ANjr(l) = ∅,

as, if this was not true, there would again exist multiple paths. We have thus
in (4.27) the union of disjoint sets

ANr = ∪m
k=1

[
{jr(k)} ∪ANjr(k)

]
. (4.28)

Then we can eliminate, i.e., sum out with the strategy generically expressed in
(2.39), variables so that we get the joint density

pANr (xANr | S) .

2Polytree is a well defined notion of graph theory, but the corresponding article
http://en.wikipedia.org/wiki/Polytree in Wikipedia is what is known as a stub.

47

By the partition in (4.28) we get

pANr
(xANr

| S) =

= p∪m
k=1[{jr(k)}∪ANjr(k)]

((
xjr(1) · xANjr(1)

)
·
(
xjr(2) · xANjr(2)

)
· · ·
(
xjr(m) · xANjr(m)

)
| S
)
.

But, since p (x | σ) is factorized as in (2.35) we get the last expression as

=

m∏

l=1

p(l)

(
xjr(l) · xANjr(l)

)
, (4.29)

where we have pulled together the factors over the various subpolytrees as

p(l)

(
xjr(l) · xANjr(l)

)
= p

(
xjr(l) | Bjr(l)

)
·

∏

i∈ANjr(l)

p (xi | Bi) .

This is possible, as there are no common variables between the various blocks
jr(l) ∪ANjr(l). Each and every one of p(l)

(
xjr(l) · xANjr(l)

)
is joint probability

density. Thus we may sum out ANjr(l) and get the margin p(l)

(
xjr(l)

)
and do

this separately for each l. Therefore we get from (4.29) the desired product in
(4.26).

Example 4.4.1 An polytree is given in Figure 4.3. We shall exemplify the
proof of (4.26). In the Figure 4.3 we have

Figure 4.3: A polytree

p (x | σ) = p(x9 | x8)p(x8 | x4x7)p(x6 | x4x5)p(x4 | x1x2x3)p(x1)p(x2)p(x3)p(x5)p(x7).

48

We use the elimination order 9− 8− 7− 6− 5 and the Sum-Product rule to get

p1∪2∪3∪4 (x1∪2∪3∪4 | σ) =
∑

x5

∑

x6

∑

x7

∑

x8

∑

x9

p (x | σ)

= p(x4 | x1x2x3)p(x1)p(x2)p(x3)

When we as the final step sum out x4 in the last expression, we obtain

p1∪2∪3 (x1∪2∪3 | σ) = p(x1)p(x2)p(x3). (4.30)

This verifies the equality (4.26) with respect to B4 in Figure 4.3.
Also, if we use the elimination order 9− 6− 5− 8 we obtain

p1∪2∪3∪4∪7 (x1∪2∪3∪4∪7 | σ) =
∑

x8

∑

x5

∑

x6

∑

x9

p (x)

= p(x4 | x1x2x3)p(x1)p(x2)p(x3)p(x7)

and, when we use (4.30),

= p(x1x2x3x4 | σ)p(x7).

Then

p4∪7 (x4∪7 | σ) =
∑

x1

∑

x2

∑

x3

p(x1, x2, x3, x4)p(x7) = p(x4)p(x7),

which verifies the claim with respect to B8 in Figure 4.3.

Next we show, see [63], that the Chow-Liu algorithm can be extended to
polytrees. This requires a lemma and an auxiliary quantity. For the auxiliary,
we define in view of (3.13) a conditional mutual information as

I(A,C|B) =
∑

xA∪B∪C∈XA∪B∪C

pA∪B∪C (xA∪B∪C) ln
p (xAxC | xB)

p (xA|xB) p (xC |xB)
.

(4.31)

Lemma 4.4.2 Assume that A ⊥ B |p C. Then it holds for the mutual infor-
mations that

min (I(A,C), I(B,C)) ≥ I(A,B). (4.32)

Proof: We shall prove the following identities under A ⊥ B |p C.

I(A,B) + I(A,C|B) = I(A,C), (4.33)

I(A,B) + I(C,B|A) = I(B,C). (4.34)

49

We start with (4.33). The ratio in (4.31) can be written as

p (xAxC | xB)

p (xA|xB) p (xC |xB)
=
p (xA | xBxC) p (xC | xB)

p (xA|xB) p (xC |xB)

=
p (xA | xBxC)

p (xA | xB)
. (4.35)

Now we use the right hand side of (4.35) in the following product:

p (xA | xB)

pA (xA)
·
p (xA | xBxC)

p (xA | xB)

=
p (xA | xBxC)

p (xA)
. (4.36)

Here A ⊥ B |p C implies (2.15), and thus

p (xA | xBxC)

p (xA)
=
p (xA | xC)

p (xA)
. (4.37)

Hence we get in the right hand side of (4.36) that

=
p (xA | xC)

p (xA)
. (4.38)

When we take logarithms of both sides of (4.35), (4.36) and (4.38) we obtain

ln
p (xA | xB)

pA (xA)
+ ln

p (xAxC | xB)

p (xA|xB) p (xC |xB)
= ln

p (xA | xC)

p (xA)
. (4.39)

In view of (3.13) and (4.31) we multiply both sides of (4.39) by pA∪B∪C (xA∪B∪C)
and sum over XA∪B∪C . This yields (4.33). The equality (4.34) is proved analo-
gously. The equalities (4.33) and (4.34) entail (4.32).

Theorem 4.4.3 Let pσ be a known probability table on X such that pσ (x) > 0
for all x ∈ X , where σ is dependence structure of a polytree PolTd. Then the
algorithm MST-KRUSKAL (G,w) in Algorithm 2 will find PolTd.

Proof: Let A = {i}, B = {j} and D = {k} be three distinct nodes. We shall
argue first that the inequality (4.32) is strict.

Now we assume that i ⊥ j |pσ k. This happens by the Markov property
(2.41) in the following cases

i→ k → j, i← k ← j, i← k→ j (4.40)

in PolTd.

50

We are assuming that pσ (x) > 0, hence we get in all of the three cases above
that I(i, k|j) > 0 and I(k, j|i) > 0. Hence in (4.32)

min (I(i, k), I(j, k)) > I(i, j). (4.41)

As stated in the preceding, the MST-KRUSKAL algorithm assigns the two
edges of largest weight to the tree, then examines the next edge with the next
largest weight, and if it does not create a cycle, it is added to the tree, else it is
discarded and the edge with the next largest weight is examined.

Hence the inequality (4.41) implies that the algorithm will not pick the edge
(i, j), if there is in σ the node k between i and j.

The final case is i → k ← j, of two colliding nodes in σ. In this case i and
j are parents of k, and we have seen above in (4.26) that i ⊥pσ j, and hence
I(i, j) = 0. Thus the algorithm MST-KRUSKAL (G,w) in Algorithm 2 will
find the true tree skeleton of σ, i.e., a polytree without directions.
The paper by Pearl and Rebane [63] develops an algorithm for directing the
edges, too.

Additional extensions of the learning theory for the Chow-Liu trees and
polytrees are given in [26] and [72].

4.4.2 Further Extensions and Applications

The Chow-Liu tree is equal to its junction tree, see [45, ch.10], and this enhances
inference (or belief propagation) by means of this product approximation. The
work in [56] checks and compares the space and time complexity of inference in
a Chow-Liu tree with other models for query approximation.

The expressivity of Chow-Liu tree models is expanded by polytrees, and
can be vastly enhanced by mixtures of Chow-Liu trees, see [55]. Of course, a
mixture of tree dependent distributions is no longer a tree dependent distri-
bution. Marina Meila, [55], has developed an efficient learning method by the
EM-algorithm combined with the Chow-Liu algorithm.

An acceleration of the Chow-Liu algorithm is found in [54]. This algorithm
takes advantage of the sparsity of the data in computation of the empirical
marginals. In [40] one introduces a tree, whose nodes are subsets of variables.
Joe Suzuki discusses in [75] an extension of the Chow-Liu trees to variables with
continuous alphabets. It is shown in [12] that one can construct spanning trees
by a χ2 statistic, see (A.13) in the Appendix for a hint at the connection.

There is a lot of work on finding interesting patterns with applications to
e-commerce, data analysis in molecular biology and text data mining. One
example of interesting set of patterns is given by (frequent) itemsets and low
entropy itemsets. Applications of Chow-Liu trees to finding itemsets are given
in [36, 80, 66].

Chapter 5

Consistency of the
Maximum Likelihood
Estimate of the Chow-Liu
Tree

5.1 The Chow-Liu Maximum Likelihood Tree

We shall now investigate the asymptotic properties of σML(N) or, more precisely,
of W

(
T ML

d (N)
)
, computed by CHOW-LIU-TREE (D) in Algorithm 1, as the

number N of independent observations in D = {x(1),x(2), . . . ,x(N)} 1 increases
to +∞.

With the notations in section 4.3.1 above, the maximum likelihood estimate
p̂ML

N is recalled as

p̂ML
N = arg max

p∈P(X ,Td)

1

N

N∑

n=1

ln p
(
x

(n)
)
. (5.1)

In view of the results in section 4.3.3 we have the following theorem.

Theorem 5.1.1 [Chow-Liu Tree Learning]

p̂ML
N =

{
p̂
(
x | σML(N)

)}
x∈X

(5.2)

with σML(N) given in (4.24) and

p̂
(
x | σML(N)

)
=

d∏

r=1

p̂ir (xir)

d∏

r=2

p̂ir∪jr (xir , xjr)

p̂ir (xir) p̂jr (xjr)
, (5.3)

1In the sequel D will also be denoted as XN and x
N .

51

52

and where p̂ir and p̂ir∪jr are the empirical relative probabilities calculated in
(4.19) and in (4.20), respectively.

5.2 An Aside on the True but Unknown Distri-
bution

For the asymptotic analysis we are going to invoke the ’true’ but unknown
distribution p(o) ∈ P (X). The meaning of this notion, as passed on by the
textbooks2, is that a set of real data D is generated like it was sampled from a
table of pseudo-random numbers with a suitable transformation to obtain the
targeted distribution, and that this distribution represents the information in
D as well as in all future data sets.

Serious criticisms have been levelled against such a concept. To begin with,
if we take samples from a distribution in a class of models for some data, we are
going to get some or many samples that deviate starkly from the patterns in
the real set of data (for which the true but unknown distribution in the model
class is supposed to be responsible). In fact it may be difficult to explain, how
any finite set of real data can be seen as a set of samples of any distribution,
unless we are successful in finding a good predicting distribution prior to any
access to data. Furthermore, many of the complex data sets to be modelled
today, e.g., in genetics and molecular biology, are the output of several layers
of intelligent data processing based on statistical and other methods applied to
primary sets of data. This can make it difficult to convince oneself about the
physical presence of direct samples from a ’true’ but unknown distribution in
some known family of distributions, parametric or non-parametric.

One of the vocal critical reviewers of the notion of the true but unknown dis-
tribution, Jorma Rissanen, chooses to call the true but unknown distribution ’a
metaphysical assumption’ [65]. One recommended understanding of statistical
inference without the true but unknown distribution, R. Solomonoff,s inductive
inference, is recapituled in a relatively non-technical manner in [69, 70].

In the preceding chapters, there was no necessity for assuming the true but
unknown distribution. This was because we were in the first place approxi-
mating a known distribution or finding the reverse I-projection of the empirical
distribution on tree dependent distributions.

We may, of course, engage ourselves in the asymptotic analysis merely as a
piece of theoretical statistics.

2for a very precise statement, see, e.g., pp. 173−177 in H. Cramér: Sannolikhetskalkylen

och n̊agra av dess användningar. Almqvist & Wiksell, Stockholm, 1966.

53

5.3 A Consistency Property

Suppose now that there is a table p(o) ∈ P (X), which is the ’true’ but unknown
probability density on X . Then

pσ(o) = argminp∈P(X ,Td)D
(
p(o) ‖ p

)
(5.4)

is the tree dependent probability, which is the reverse I-projection of p(o) and
σ(o) is a corresponding Chow-Liu dependence structure. Let us observe that
σ(o) needs not to be unique. If p(o) happened to be in P (X ,Td), then of course
pσ(o) = p(o).

If T
(o)

d is the tree corresponding to σ(o), then, as in (4.9), we have

W
(
T

(o)
d

)
=

d∑

r=2

I(o)(i(o)
r , j(o)

r),

where I(o)(i
(o)
r , j

(o)
r) are the mutual informations computed with (pσ(o))

↓i(o)
r ,j(o)

r .
This is the maximal tree weight in P (X ,Td) by theorem 4.2.1.

When we compute the reverse I-projection of p̂N onto the set of tree de-
pendent distributions we get, as just shown, the maximum likelihood estimate
σML(N) of the Chow-Liu dependence structure based on the data D and the
corresponding tree dependent distribution, i.e.,

p̂σML(N) = argminp∈P(X ,Td)D (p̂N ‖ p) , (5.5)

where we write
p̂σML(N) =

{
p̂
(
x | σML(N)

)}
x∈X

.

Let
W
(
T ML

d (N)
)

denote the Chow-Liu dependence tree weight based on σML(N) and p̂σML(N).

We shall show that W
(
T ML

d (N)
)

converges almost surely to W
(
T

(o)
d

)
, i.e., to

the maximum the tree weight w.r.t. pσ(o) . The result is given in [17] without a
proof.

Theorem 5.3.1

W
(
T ML

d (N)
)
→W

(
T

(o)
d

)
p(o) − a.s.

as N →∞.

Proof: The strong law of large numbers implies in (4.12) that as N →∞

| p̂N (x)− p(o) (x) |→ 0, p(o) − a.s.,

for all x ∈ X . Since X is finite, we have furthermore

max
x∈X

| p̂N (x)− p(o) (x) |→ 0, p(o) − a.s..

54

This implies the almost sure convergence of all of the empirical marginal distri-
butions p̂ij and p̂i (ξ) in

Î(ir, jr) =
∑

η∈Xjr

∑

ξ∈Xir

p̂irjr (ξ, η) ln
p̂irjr (ξ, η)

p̂ir (ξ) p̂jr (η)
. (5.6)

For any Chow-Liu dependence structure σ we let Td ∈ Td be the corresponding
Chow-Liu dependence tree and set

W (Td;N) =

d∑

r=2

Î(ir, jr). (5.7)

The intention is now to freeze a tree but update
∑d

r=2 Î(ir, jr) for new samples
x

(N+1),x(N+2) . . . by evaluating the plug-in estimates of mutual informations
under the given tree dependence and then to run this in parallel for every
Td ∈ Td. Then for every N

W (Td;N) ≤W
(
T ML

d (N)
)
. (5.8)

By simultaneous convergence of each and every one of the empirical marginal
distributions p̂ij and p̂i (ξ) we obtain, by continuity of x log x for 0 < x ≤ 1 with
0 log 0 = 0, for every Td ∈ Td, as N →∞, that

W (Td;N)→W (Td) p(o) − a.s., (5.9)

where

W (Td) =

d∑

r=2

I(o)(ir, jr)

is computed using Td and p(o). Since Td is a finite set, we have also

max
Td∈Td

|W (Td;N)−W (Td) |→ 0, p(o) − a.s.. (5.10)

Let now
T

(o)
d =

{
Td ∈ Td |W (Td) = W

(
T

(o)
d

)}
. (5.11)

Since Td is a finite set, there is by (5.10) a positive δ such that

0 < δ = min
Td∈Td\T

(o)
d

|W
(
T

(o)
d

)
−W (Td) | .

Let us next choose N large enough, or N > Nδ, so that p(o) - almost surely

max
Td∈Td

|W (Td;N)−W (Td) |≤ δ/2.

Since (5.10) holds, there is Nδ such that, if N > Nδ, then there is a tree in T
(o)
d

in (5.11), say T
(o)

d , so that W
(
T ML

d (N)
)

= W
(
T

(o)
d ;N

)
and

|W
(
T ML

d (N)
)
−W

(
T

(o)
d

)
|≤ δ/2.

55

In other words, for any ε > 0 with δ/2 > ε it holds that for N > Nε

|W
(
T ML

d (N)
)
−W

(
T

(o)
d

)
|≤ ε.

p(o) - almost surely.
The result above does not assert convergence of the sequence of Chow-Liu de-
pendence trees T ML

d (N). The next chapter will take a more detailed look at
the nature of T ML

d (N). A learnability result, which is in a sense stronger than
the one above, is found [39], who uses the model of PAC-learning and derives
the sample complexity of learning a Chow-Liu tree.

56

Chapter 6

A Large Deviation Analysis
of Learning of Chow-Liu
Trees

6.1 An Outline of Large Deviations and the Sanov
Theorem for Finite Alphabets

We shall next investigate the speed of convergence to zero of the probability of
error in maximum likelihood estimation of the Chow-Liu dependence structure.
This involves the technique of error exponents widely used in coding theorems
[22] and is based on large deviation techniques.

Large deviation theory, see, e.g., [38], is concerned with events that have
small probability and decrease to zero, as a function of some variable. Typically,
the convergence to zero is exponential. We shall now briefly outline the large
deviation result known as the Sanov Theorem in a finite space.

Let x
N def

= x
(1),x(2), . . . ,x(N) be a sequence of configurations x

(n) in X =
{a1, . . . , a|X |}, an auxiliary notation introduced for the present needs. We regard
the configurations in x

N as independent, identically distributed samples drawn
from the distribution Q in P (X) (= the set of probability distributions on X).

Then we take for each i the indicators

Iai

(
x

(n)
)

=

{
1 if x

(n) = ai

0 otherwise

and denote the relative frequency of ai ∈ X in x
N by

P
x

N (ai) =
1

N

N∑

n=1

Iai

(
x

(n)
)
.

57

58

Authors in information theory, see [20, 23], call

p
x

N = {P
x

N (ai)}
|X |
i=1 (6.1)

the type of of x
N , but point out also that this is nothing but the empirical

distribution p̂N (c.f., (4.12)) induced by x
N . Every type is in P (X). Then we

define
PN = the set of types on X with fixed N . (6.2)

It may be of interest to observe the following fact.

Fact 10 If X
(1),X(2), . . .X(N) are independent and identically distributed

random variables distributed according to Q (x), then the probability of x
N

depends only on its type, and, if QN is the product measure ×N
i=1Q, then

QN
(
x

N
)

= e−N(H(P
x

N)+D(P
x

N ‖Q)).

Let next B ⊂ P (X) be a set of probability measures on X , which does not
include the true measure Q. Then the probability of interest (QN is the product
measure ×N

i=1Q) is

Pr (p̂N ∈ B) = QN
(
{xN | p

x
N ∈ B}

)
.

We need one more definition. For Π ⊂ P (X) we set

D (Π ‖ Q)
def
= inf

p∈P(X)
T

Π
D (p ‖ Q) .

Then we may state the Sanov theorem, see [7, 37, 38].

Theorem 6.1.1 Let X
(1),X(2), . . .X(N) be independent and identically dis-

tributed random variables distributed according to Q (x). For B ∈ P (X) such
that Q /∈ B and if the set B is such that

lim
N→∞

D
(
B
⋂
PN ‖ Q

)
= D (B ‖ Q) , (6.3)

then with
p∗ = arg min

p∈B
D (p ‖ Q) .

we have

−
1

N
lnPr (p̂N ∈ B)→ D (p∗ ‖ Q) , (6.4)

almost surely, as N →∞.

A pedagogical proof is found in [20, p. 293], who uses the method of types
developed by Csiszár [23]. There are other conditions on B (than the one stated
above) that also make the Sanov theorem valid, see, e.g., [23, p.2509].

59

A proof of the Sanov theorem starts with (we follow [23])

Pr (p̂N ∈ B) = QN
(
{xN | p

x
N ∈ B

)
=

=
∑

p∈B
T

PN

QN
(
AN

p

)
,

where we have the type class

AN
p = {xN ∈ XN | p

x
N = p}.

Then it holds by some algebra and combinatorics [20, ch. 12.1] that

1

|P(X)|
· e−ND(p‖Q) ≤ QN

(
AN

p

)
≤ e−ND(p‖Q).

Hence we get

1

|P(X)|
· e−ND(B

T
PN‖Q) ≤ Pr (p̂N ∈ B) ≤ |P(X)|e−ND(B

T
PN‖Q)

and the Sanov theorem follows.

6.2 Error event and error exponent

Next we shall present a portion of the recent work due to A. Willsky et.al. in
[78]. First, it is proved using the large deviation techniques summarized above,
that the most likely error in T ML

d (N), defined in the preceding chapter, is a

spanning tree which differs from the true tree T
(o)

d by a single edge. The second
result is the exact error exponent for the maximum likelihood estimation of

T
(o)

d .
The setting is simplified by assuming that Xi = X , so that any configuration

x lies in X d.

Let x
N def

= x
(1),x(2), . . . ,x(N) be independent, identically distributed con-

figurations in X d drawn from p(o) (the true but unknown distribution). The
maximum likelihood Chow-Liu tree is T ML

d (N) =
(
l, σML(N)

)
∈ Td. As above

pσ(o) is the reverse I-projection of p(o) and σ(o) is a corresponding Chow-Liu

dependence structure (or spanning tree topology), so that T
(o)

d =
(
l, σ(o)

)
.

The error event that the set of edges is not estimated correctly is

AN = {xN | σML(N) 6= σ(o)}. (6.5)

Let Pr = ×N
1 p(o) denote the N -fold product (sigma-additive) probability mea-

sure of sample x
N . The error exponent Kp(o) is defined as

Kp(o)
def
= lim

N→∞
−

1

N
lnPr (AN) , (6.6)

60

in case the limit exists, which will be proved in the sequel. We can write

Pr (AN)
·
= e

−NK
p
(o) ,

with the convention that if {an} and {bn} are two sequences, we write an
·
= bn

if and only if limn→∞
1
n ln an

bn
= 0.

In words, if Kp(o) > 0, then the probability of error in maximum likelihood
learning of Chow-Liu tree dependence decays exponentially in N , the number
of training samples.

We are first going to define a simpler error event, the crossover error event,
and find the error for it, and then exploit this to to derive Kp(o) .

6.3 Crossover error event and its error exponent

Since the maximum likelihood estimation of the Chow-Liu tree dependence finds
the maximum weight spanning tree with the plug-in estimates of mutual infor-
mations as the edge weights, we are naturally led to consider the relative orders
of plug-in estimates as a source of estimation error.

Let us consider two pairs of distinct nodes, i, j, i,, j, ∈ l, and set e = (i, j)
and e, = (i,, j,). The marginal distributions (c.f. (2.5)) are

pe = (pσ(o))
↓e ∈ P

(
X 2
)
, pe, = (pσ(o))

↓e,

∈ P
(
X 2
)

and
pe,e, = (pσ(o))

↓(e,e,) ∈ P
(
X 4
)
,

and induce the true mutual informations

I(o)(e), I(o)(e,).

We shall assume that the true distribution is such that

I(o)(e) > I(o)(e,). (6.7)

Furthermore we have the empirical measure in (4.13) with its margins

p̂e = (p̂N)
↓e
, p̂e, = (p̂N)

↓e,

,

and
p̂e,e, = (p̂N)

↓e,e,

∈ P (Xe,e,) .

With these we compute the plug-in estimates

Î(e), Î(e,).

The crossover event (w.r.t. 6.7) is

Ce,e, =
{
Î(e,) ≥ Î(e)

}
. (6.8)

61

In words this event occurs, when we obtain a sample x
N such that the corre-

sponding empirical distribution (or type, as discussed above) has margins such

that Î(e,) ≥ Î(e), while the true distribution satisfies (6.7).

As N → ∞, the plug-in estimates Î converge to the true values I(o) with
p(o) - probability one. Hence the probability of Pr (p̂e,e, ∈ Ce,e,) falls to zero.

There seems to be a special difficulty with this formulation. This is that
Ce,e, in Pr (p̂e,e, ∈ Ce,e,) depends also on the empirical distribution. Hence we
shall consider the set of probability measures

B = {Q ∈ P
(
X 4
)
| I(Qe,) ≥ I(Qe)}. (6.9)

Thus it holds that there is a crossover event, if it occurs that

p̂e,e, ∈ B.

Hence Pr (p̂e,e, ∈ B) → 0, as N → ∞. If this decrease is exponential, the
crossover error exponent is

Je,e,
def
= lim

N→∞
−

1

N
lnPr (p̂e,e, ∈ B) . (6.10)

In the theorem below we introduce the Kullback distance D (Q ‖ pe,e,),
where Q is a generic probability measure in B ⊂ P

(
X 4
)

and pe,e, is the margin

of the true distribution satisfying I(o)(e) > I(o)(e,).
We assume that pe,e, is a positive distribution,i.e.,

pe,e,

(
xi,j,i′ ,j′

)
> 0 for all xi,j,i′ ,j′ ∈ Xe,e, .

This simplifies the proof, as we do not have to worry about possible infinities in
the Kullback distances.

Theorem 6.3.1 Assume that pe,e, is a positive distribution in P
(
X 4
)

and that

I(o)(e) > I(o)(e,). (6.11)

Then the crossover error rate Je,e, in (6.10) is given by

Je,e, = min
Q∈P(X 4)∩Λ

D (Q ‖ pe,e,) , (6.12)

where the constraint set is

Λ = {Q ∈ P
(
X 4
)
| I(Qe) = I(Qe,)}, (6.13)

and where Qe and Qe, ∈ P
(
X 2
)

are defined for a Q ∈ P
(
X d
)

as

Qe = Q↓e, Qe, = Q↓e,

and satisfy
Qe = (Qe,e,)

↓e
, Qe, = (Qe,e,)

↓e,

.

The numbers I(Qe) and I(Qe,) are the respective mutual informations.
The minimum in (6.12) is attained by some distribution Q∗

e,e, ∈ P
(
X 4
)
,

which satisfies I(Q∗
e) = I(Q∗

e,) and Je,e, > 0.

62

Proof: The proof is decomposed into four steps I − IV .
Step I invokes the Sanov theorem [7, 37] to show that the limit in (6.10)

exists.
In Step II, we assume that a probability measure Q∗

e,e, in B exists such that

D
(
Q∗

e,e, ‖ pe,e,

)
= min

Q∈B∩P(X 4)
D (Q ‖ pe,e,) .

Then it is shown that Q∗
e,e, must satisfy I(Q∗

e,) = I(Q∗
e).

In Step III we prove the existence of the minimizer Q∗
e,e, , so that we may

use min instead of inf in (6.12). These claims follow from the compactness of
the constraint set Λ, and the Weierstrass extreme value theorem.

Step IV exploits the results in steps I − III to show that Je,e, > 0. This
step requires the assumption that two selected pairs of nodes satisfy (6.11).

Step I As we assume that e, e, share no common nodes, then p̂e,e, ∈ P
(
X 4
)
.

The Sanov theorem, see 6.1.1 in the Appendix, tells that

−
1

N
lnPr (p̂e,e, ∈ B)→ inf

Q∈P(X 4)∩B
D (Q ‖ pe,e,) , (6.14)

for any set B ⊆ P
(
X 4
)

such that B satisfies certain extra properties to
be given below, see also [23, p 2509] .

For the purpose of applying the Sanov theorem let us take

B = {Q ∈ P
(
X 4
)
| I(Qe,) ≥ I(Qe)}.

Then it holds that B is an open set, since I(Qe,) and I(Qe) are continuous
functions, so there can be no isolated points in B and B is not empty.

Let PN be, c.f., (6.2), the set of types/empirical distributions on Xe,e, for
x

N . Let us next set
BN = B ∩ PN

and compute

D (BN ‖ pe,e,) = inf
Q∈B∩PN

D (Q ‖ pe,e,) ,

which is finite, as B is non-empty. Similarly,

D (B ‖ pe,e,) = inf
Q∈B∩P(X 4)

D (Q ‖ pe,e,) ,

Then, it follows by the openness of B, as shown in [7, Lemma 5.2, p. 18]
that

D (BN ‖ pe,e,)→ D (B ‖ pe,e,) ,

as N →∞, which requires that pe,e, is a positive distribution in P
(
X 4
)
,

[7, loc.cit.]. This implies that the limit in (6.14) exists, see [7, p. 18−19].

63

Step II Let us now suppose that there exists Q∗ in B such that

D (Q∗ ‖ pe,e,) = min
Q∈B∩P(X 4)

D (Q ‖ pe,e,) .

Now we establish that Q∗
e,e, , supposing it exists (as will be shown in Step

III), will satisfy I(Q∗
e,) = I(Q∗

e).

We define
g (Q)

def
= I (Qe′)− I (Qe) . (6.15)

This is a continuous function, as mutual information for finite alphabets
is composed of continuous functions.

As it is supposed that Q∗
e,e, with the value D

(
Q∗

e,e, ‖ pe,e,

)
is in B, we

may assume that it were I(Q∗
e,) > I(Q∗

e). Then

g
(
Q∗

e,e,

)
> 0.

Since g(·) is continuous, there is a δ > 0 such that

Nδ

(
Q∗

e,e,

)
= {R |‖ R−Q∗

e,e, ‖∞< δ},

where we use the variation distance defined in (A.17), so that image of
Nδ

(
Q∗

e,e,

)
under g(·) is inside the open interval (0,∞).

Let us now consider the convex combination

Q∗∗
e,e, = (1−

1

2δ
)Q∗

e,e, +
1

2δ
pe,e, .

Then Q∗∗
e,e, ∈ Nδ

(
Q∗

e,e,

)
and hence is inside the set of feasible Q for

inf
Q∈B∩P(X 4)

D (Q ‖ pe,e,) ,

as g
(
Nδ

(
Q∗

e,e,

))
⊆ (0,∞), i.e., I

(
Q∗∗

e′

)
− I (Q∗∗

e) > 0 .

We shall now prove that

D
(
Q∗∗

e,e, ‖ pe,e,

)
< D

(
Q∗

e,e, ‖ pe,e,

)
,

which contradicts the optimality of Q∗
e,e, . We have

D
(
Q∗∗

e,e, ‖ pe,e,

)
= D

(
(1−

1

2δ
)Q∗

e,e, +
1

2δ
pe,e, ‖ pe,e,

)

≤ (1−
1

2δ
)D
(
Q∗

e,e, ‖ pe,e,

)
+

1

2δ
D (pe,e, ‖ pe,e,) ,

since the Kullback distance is convex see Theorem A.1.7,

= (1−
1

2δ
)D
(
Q∗

e,e, ‖ pe,e,

)

since D (pe,e, ‖ pe,e,) = 0, and therefore

< D
(
Q∗

e,e, ‖ pe,e,

)
.

Thus we conclude that the optimal solution must satisfy I(Q∗
e,) = I(Q∗

e).

64

Step III As stated above, this step is to prove the existence of a minimizer Q∗
e,e,

so that we can write

D
(
Q∗

e,e, ‖ pe,e,

)
= min

Q∈P(X 4)∩Λ
D (Q ‖ pe,e,) ,

where the constraint set Λ is defined in (6.13).

We note first that the Kullback distance D (Q ‖ pe,e,) is real valued and
continuous in both arguments (regarded as real vectors). Hence it suffices
to prove that Λ in (6.13) is compact. It is clearly non-empty, since the
uniform distribution Q(xe,e,) = 1

|X 4| lies there. We shall show that Λ in

(6.13) is bounded and closed. Boundedness is clear, since P
(
X 4
)

is a
bounded set of real numbers.

Thus with g from (6.15)
Λ = g−1(0),

where g−1(0) is the inverse image of 0. Since g(·) is continuous, and {0}
is a closed set in the usual topology of the real line, it follows that B is
closed. Hence there exists a minimizer Q∗

e,e, ∈ B.

Step IV Hence, as Λ ⊂ B, there exists Q∗ ∈ P
(
X 4
)

such that

D (Q∗ ‖ pe,e,) = min
Q∈∩Λ∩P(X 4)

D (Q ‖ pe,e,) .

As pe,e, satisfies (6.11) in P
(
X 4
)

andQ∗ ∈ B∩P
(
X 4
)
, so thatD (Q∗ ‖ pe,e,) >

0. Hence the crossover error rate Je,e, > 0 will be positive and is given as
in (6.12).

6.4 Error Exponent for Structure Learning

Let us rewrite the error event in (6.5) as

AN = {xN | T ML
d (N) 6= T

(o)
d } (6.16)

and recall

Kp(o)
def
= lim

N→∞
−

1

N
lnPr (AN) . (6.17)

Then we define

UN (Td) =

{
{xN | T ML

d (N) = Td} if Td ∈ Td \ T
(o)

d

∅ otherwise
(6.18)

Clearly UN (Td) ∩ UN

(
T

′

d

)
= ∅ as soon as Td 6= T

′

d . Then we obtain in (6.16)

Pr (AN) =
∑

Td∈Td\T
(o)

d

Pr (UN (Td)) . (6.19)

65

The large deviation exponent for each error event UN (Td) is

Υ (Td) = lim
N→∞

−
1

N
lnPr (UN (Td)) , (6.20)

whenever the limit exists. We identify the error event with the slowest rate of
decay, or the dominant error tree.

Definition 6.4.1 A dominant error tree is a spanning tree T ∗
d = (l, σ∗) given

by
T ∗

d = arg min
Td∈Td\T

(o)
d

Υ (Td) . (6.21)

A dominant error tree is, roughly speaking, the most likely candidate to be
T ML

d (N) in case of error.

Theorem 6.4.1 The error exponent in (6.17) is the error exponent of the dom-
inant error tree, or

Kp(o) = Υ (T ∗
d) . (6.22)

Proof: By (6.19) and the convention on
·
= we write

Pr (AN)
·
=

∑

Td∈Td\T
(o)

d

e−NΥ(Td)

·
= e−NΥ(T ∗

d), (6.23)

by the principle of worst exponent wins, and since there is only a finite number
of terms.

Consequently, the question is to find the dominant error tree. It turns out to
be useful to study the crossover events (6.8). We consider thus a pair of nodes
(or an edge in the complete graph) e, = (u, v) such they are not neighbors in
σ(o). There is, however, Path

(
e,;σ(o)

)
, defined as

Path
(
e,;σ(o)

)
a unique path of edges in σ(o) that connects u and v. (6.24)

The argument for this is depicted in Figure 6.1. The edge e, and Path
(
e,;σ(o)

)

form a cycle. Hence, if we remove any edge in Path
(
e,;σ(o)

)
from σ(o) and

replace it with e,, the resulting set of edges
(
σ(o) \ {e}

)
∪ {e,}

is still a spanning tree.
Hence all such replacements are feasible outputs of the Chow-Liu algorithm,

i.e., of maximum likelihood estimation. We do not, fortunately, need to consider
all crossover events. By the worst exponent wins - principle we need only con-
sider the crossover event between a non-neighbour node pair e, and its dominant
replacement edge, r (e,), to be defined next, when determining Kp(o) .

66

Figure 6.1: Dominant replacement edge

Definition 6.4.2 For each edge e, not in σ(o), its dominant replacement edge
r (e,) ∈ σ(o) is defined as the edge in the unique path along σ(o) connecting the
nodes in e, with the minimum crossover rate

r (e,)
def
= arg min

e∈Path(e,,σ(o))
Je,e, , (6.25)

where the crossover rate Je,e, is given in (6.12).

The crossover rate Je,e, in (6.12) is by construction defined for two pairs of
nodes with no common node.

At this point we are ready to characterize the structure learning error expo-
nent Kp(o) in terms of the crossover rate between non-neighbour pairs and their
dominant replacement edges.

Theorem 6.4.2 The error exponent for AN = {xN | T ML
d (N) 6= T

(o)
d }, i.e.,

67

the maximum likelihood tree estimation error exponent is given by

Kp(o) = Jr(e∗),e∗ = min
e, /∈T

(o)
d

min
e∈Path(e,,σ(o))

Je,e, , (6.26)

where r (e∗) is the dominant replacement edge, defined in (6.25), associated to
e∗ ∈ σ(o) and e∗ is the optimizing non-neighbor node pair

e∗ = arg min
e, /∈σ(o)

Jr(e,),e, . (6.27)

The dominant error tree T ∗
d = (l, σ∗) in (6.21) has the edge set

σ∗ = σ(o) ∪ {e∗} \ {r (e∗)}. (6.28)

Proof: We shall again decompose the proof into main steps and subcases. In
Step I we show that σ∗ in T ∗

d will differ from σ(o) in exactly one edge.
In Step II the probability Pr (AN) is bounded upwards by the elementary

union bound (i.e., Pr(A
⋃
B) ≤ Pr(A) + Pr(B)) and worst exponent wins -

principle to conclude the that the rate that dominates is the minimum of Jr(e,),e,

over all possible non-neighbour node pairs e, /∈ σ(o).
In Step III the probability Pr (AN) is readily bounded downwards, which

completes the proof.

Step I We show that σ∗ in T ∗
d will differ from σ(o) in exactly one edge. To do

this, assume the contrary, that T ∗
d differs from T

(o)
d by two edges. Let

T ML
d = T

(o)
d \ {e1, e2} ∪ {e

,
1, e

,
2},

where e,
1, e

,
2 /∈ σ(o) are the two edges that have replaced e1, e2 ∈ σ(o),

respectively.

Since T ML
d =

(
l, σML

)
is a tree, these edges must satisfy (recall (6.24))

{e1, e2} ∈ Path
(
e,
1, σ

(o)
)
∪ Path

(
e,
2, σ

(o)
)

for the tree property to be satisfied. Now we shall study Υ
(
T ML

d

)
to

establish the crucial property of the dominant error tree.

Case i) For i = 1, 2, ei ∈ Path
(
e,

i, σ
(o)
)

and ei /∈ Path
(
e,

j , σ
(o)
)

for i, j = 1, 2,
i 6= j. See Figure 6.2. We note first that

I

((
p(o)

)↓
ei

)
≥ I

((
p(o)

)↓
e,

i

)

in view of theorem 4.2.1. Let us recall (6.20)

Υ
(
T ML

d

)
= lim

N→∞
−

1

N
lnPr

(
UN

(
T ML

d

))
,

68

Figure 6.2: Case i)

We have that (by P (A
⋂
B) ≤ max{P (A) , P (B)})

Υ
(
T ML

d

)
= lim

N→∞
−

1

N
lnPr

⋂

i=1,2

(
I
(
(p̂N)

↓
ei

)
≤ I

(
(p̂N)

↓
e,

i

))

≥ max
i=1,2

lim
N→∞

−
1

N
lnPr

((
I
(
(p̂N)

↓
ei

)
≤ I

(
(p̂N)

↓
e,

i

)))

= max{Je1,e,
1
, Je2,e,

2
}. (6.29)

We have that Jei,e
,
i
= Υ (Ti), where Ti =

(
l,
(
σ(o) \ {ei}

)
∪ {e,

i}
)
.

In view of theorem 6.4.1 the error exponent associated to the domi-
nant error tree is Kp(o) = Υ (T ∗

d), where

T ∗
d = arg min

Td∈Td\T
(o)

d

Υ (Td) .

Hence from (6.29), T ML
d cannot be the dominant error tree, and the

dominant error tree should differ from T (o) by one and only one node.

69

Cases The additional cases can be handled in similar manner.

Step II

Pr (AN) = Pr

⋃

e, /∈σ(o)

{
e, replaces any e ∈ Path

(
e,;σ(o)

)
in T ML

d

}

= Pr

⋃

e, /∈σ(o)

⋃

e∈Path(e,;σ(o))

{
e, replaces e in T ML

d

}

and by the union bound

≤
∑

e, /∈σ(o)

∑

e∈Path(e,;σ(o))

Pr
({
e, replaces e in T ML

d

})

and by definition of crossover rate and as the rate of the event the output
of the Chow-Liu T ML

d is (6.20),

≤
∑

e, /∈σ(o)

∑

e∈Path(e,;σ(o))

Pr
({

I
(
(p̂N)↓e

)
≤ I

(
(p̂N)↓e,

)})

·
=

∑

e, /∈σ(o)

∑

e∈Path(e,;σ(o))

e−NJe,e,

·
= e

−N min
e, /∈σ(o) min

e∈Path(e,;σ(o))
Je,e,

,

where we used the worst exponent wins principle once more. Thus we
conclude

Pr (AN) ≤ e−NJr(e∗),e∗

by the definition of the dominant replacement edge r (e,) and the dominant
non-neigbour edge e∗ in (6.25) and (6.27), respectively.

Step III The lower bound is trivial from the observation that if e∗ /∈ σ(o) replaces
r (e∗), then the error AN occurs, or

{
east /∈ σ(o) replaces r (e∗)

}
⊂ AN

and
Pr (AN) ≥ Pr

({
e∗ /∈ σ(o) replaces r (e∗)

})

·
= e−NJr(e∗),e∗ .

Hence
Pr (AN)

·
= e−NJr(e∗),e∗ ,

which proves the assertion.

70

Chapter 7

Stochastic Complexity and
the Predictive Chow-Liu
Likelihood

7.1 Redundant Source Coding and Statistical

Learning

Let us now modify our notational apparatus to the effect that the distribution p
in P (X) depends (continuously) on a real valued parameter θ in a compact Θ ⊂
Rn. We write this as pθ. Let the corresponding joint probability of independent
and identically distributed random variables X1, . . . ,XN with distribution pθ

be

pN
θ =

{
N∏

i=1

pθ

(
x

(i)
)}

x
(1)∈X ,...,x(N)∈X

.

We take a generic probability measure q ∈ P
(
XN

)
. Then the corresponding

Kullback distance is written as

D
(
pN

θ ‖ q
)
.

Let now w(θ) be a prior probability density on Θ. Then we compute

Rw (q)
def
=

∫

Θ

D
(
pN

θ ‖ q
)
dw(θ). (7.1)

We shall now find the q minimizing Rw (q).

Fact 11 Let next

m∗ = arg min
q∈P(XN)

Rw (q) . (7.2)

71

72

Then (see [2])

m∗
(
x

(1), . . . ,x(N)
)

=

∫

Θ

N∏

i=1

pθ

(
x

(i)
)
dw(θ). (7.3)

To prove this we write (by some abuse of our notations) that

Rw (q) =

∫

Θ

D
(
pN

θ ‖m∗
)
dw(θ) +

∫

Θ

∑

x∈XN

pN
θ (x) ln

[
m∗(x)

q(x)

]
dw(θ),

=

∫

Θ

D
(
pN

θ ‖m∗
)
dw(θ) +

∑

x∈XN

[∫

Θ

pN
θ (x) dw(θ)

]
ln

[
m∗(x)

q(x)

]

=

∫

Θ

D
(
pN

θ ‖m∗
)
dw(θ) +

∑

x∈XN

m∗(x) ln

[
m∗(x)

q(x)

]
.

Thus the conclusion follows.

Fact 12 There is furthermore a result, see [14, ch. 1.2.2], establishing that

min
q

max
Θ

D
(
pN

θ ‖ q
)

= max
w

∫

Θ

D
(
pN

θ ‖m∗
)
dw(θ).

Furthermore, the least favorable w can often be taken as a Jeffrey’s prior, see
section D.2 for a intuitive definition.

The distribution m∗ is called the predictive distribution of X1, . . . ,XN . Fur-
thermore, if XN = {x(1), . . . ,x(N)},

SC
(
XN ;M

) def
= − lnm∗

(
x

(1), . . . ,x(N)
)

used to be called the stochastic complexity [89] of the family of models

M = {pθ | θ ∈ Θ}.

This does not necessarily presuppose an underlying true distribution in M or
elsewhere. Jorma Rissanen, who introduced the concept of stochastic complexity
in the sense stated above, has himself moved further to a revised notion of
stochastic complexity, see, e.g., [64, 65], which is free from dependence on the
prior w.

Stochastic complexity can be understood as a generalization of Shannon’s in-
formation,− log

∏N
i=1 pθ

(
x

(i)
)
, which depends on a single θ, whereas SC

(
XN ;M

)

73

is defined with respect to the wholeM. Rissanen has shown, see e.g. [65], that
SC plays an essential role in statistical learning, as SC is a tight lower bound
on the total predictive code length, and as it is a basis for the MDL (= mini-
mum description length) principle in model choice. MDL approximates SC in
a non-predictive manner, and asserts that the best model inM explaining XN

is the one which can best compress the data XN adding to the length the bits
needed for the compression of the model.

In [9] V. Balasubramanian uses tools of statistical mechanics to introduce
the notion of razor of a model family, which can be seen as a version of SC
under the assumption of a true distribution generating the data. The razor is a
measure of the trade-off between simplicity and accuracy in description of the
data XN sampled from a true distribution. A formula for the razor is found in
Appendix D.

We shall next compute the predictive distribution and stochastic complexity
for a family of pθ ∈ P (X ,Td), i.e., for tree dependent distributions. In the fam-
ily of models we restrict ourselves to binary alphabets and a related parameter
space, which makes it possible to use a suitable special representation of pN

θ .

7.2 Chow Representation of Likelihood

We consider the Chow-Liu dependence structure with binary alphabet Xi at
each node of the tree, i.e., xi ∈ {0, 1}. Let Bd denote the binary hypercube and
let x denote its elements with d binary components, i.e.,

x ∈ Bd =
{
x | x = (xi)

d
i=1 , xi ∈ {0, 1}

}
.

Let us now consider the generic joint Chow-Liu tree dependent distribution
factorized, for some permutation of nodes, so that

p(x) = p1 (x1) · p (x2|xj2) . . . p
(
xd−1|xjd−1

)
· p (xd|xjd

) . (7.1)

The conditional probabilities p (xi|xji) are written as

p (xi|xji) =
(
θxi

i (1− θi)
(1−xi)

)xji

·
(
φxi

i (1− φi)
(1−xi)

)1−xji

, (7.2)

where for i = 2, . . . , d we have the (unknown) parameters

θi = p (xi = 1|xji = 1) , (7.3)

and
φi = p (xi = 1|xji = 0) , (7.4)

and
p (x1) = θx1

1 (1− θ1)
(1−x1) .

We introduce
pθi,φi (xi|xji) ≡ p (xi|xji) (7.5)

74

and
pθ1 (x1) ≡ p (x1)

We set from (7.3) and (7.4)

θ = (θ1, . . . , θd) , φ = (φ2, . . . , φd) .

The probability of the configuration x given the tree Td and the parameters θ
and φ from (7.2) is now represented as

pθ,φ(x) = pθ1 (x1) ·
d∏

i=2

pθi,φi (xi|xji) . (7.6)

Let Xt =
{
x

(l)
}t

l=1
be a set of configuations x

(l) ∈ Bd, which are seen as
independent samples of the variables labelling the tree Td. Note that the data
is supposed to be complete, no binary symbol are missing in any x

(l). Then we
obtain from (7.6) the Chow representation

t∏

l=1

pθ,φ(x(l)) = θn1

1 (1− θ1)
t−n1

d∏

i=2

θ
ni(1,1)
i (1− θi)

ni(0,1) ·φ
ni(1,0)
i (1− φi)

ni(0,0) ,

(7.7)
where, as all x are instantiations of the same dependence tree,

ni(1, 1) =

t∑

l=1

x
(l)
i x

(l)
ji
, ni(1, 0) =

t∑

l=1

x
(l)
i

(
1− x

(l)
ji

)
,

ni(0, 1) =

t∑

l=1

(
1− x

(l)
i

)
x

(l)
ji
, ni(0, 0) =

t∑

l=1

(
1− x

(l)
i

)(
1− x

(l)
ji

)
,

for i = 2, . . . , d, and

n1 =
t∑

l=1

x
(l)
1 .

Obviously, ni(1, 1) counts the number of times we have simultaneously x
(l)
i = 1

and x
(l)
ji

= 1 in Xt =
{
x

(l)
}t

l=1
and the interpretations of the rest of the counts

above are also obvious. We set also

ni(1), nji(1), ni(0), nji(0)

as the count of ones (1) in Xt at position i e.t.c..
Let next Θ and Φ denote respective copies of the d-fold and d−1-fold product

of the unit interval, then θ ∈ Θ and φ ∈ Φ.

Given a prior probability density w
(
θ, φ
)

on Θ×Φ, we obtain the predictive
likelihood corresponding to the Chow expansion as

m
(
Xt|Td

)
=

∫

Θ

∫

Φ

t∏

l=1

pθ,φ

(
x

(l)
)
w
(
θ, φ
)
dθdφ. (7.8)

75

We can choose the prior w
(
θ, φ
)

by local meta independence of parameters, see
[25] for a precise definition of the fancy sounding concept,

w
(
θ, φ
)

=

d∏

i=1

h (θi)

d∏

i=2

g (φi) . (7.9)

7.2.1 Expressions and an Asymptotic Expansion of the
Stochastic Complexity of a Chow-Liu Tree

From the formulas above we shall derive an expression of the stochastic com-
plexity for any Chow-Liu tree.

We assume that every h (θi) and g (φi) is a Be(α1, α2) distribution given in
(D.1) in Appendix D.1.

Then, by applications of (7.7), the Beta integral in (D.2) and (7.9) on (7.8),
we obtain the stochastic complexity for any tree Td as

− logm
(
Xt|Td

)
= (7.10)

= log
Γ (α1) · Γ (α2)

Γ (α1 + α2)
+ log

Γ (t+ α1 + α2)

Γ (n1 + α1) · Γ (t− n1 + α2)

+

d∑

i=2

log
Γ (α1) · Γ (α2)

Γ (α1 + α2)

Γ (ni(1, 1) + ni(0, 1) + α1 + α2)

Γ (ni(1, 1) + α1) · Γ (ni(0, 1) + α2)

+

d∑

i=2

log
Γ (α1) · Γ (α2)

Γ (α1 + α2)

Γ (ni(1, 0) + ni(0, 0) + α1 + α2)

Γ (ni(1, 0) + α1) · Γ (ni(0, 0) + α2)
,

In the next step all the hyperparameters are chosen as α1 = α2 = 1/2. This
defines in fact the prior w a product of Jeffreys’ priors in (7.9). With this we
derive an asymptotic expansion of − logm (Xt|Td).

Theorem 7.2.1 If m (Xt|Td) is evaluated assuming both local meta indepen-
dence and Jeffreys’ prior or the Beta distribution Be(1/2, 1/2) for each of the
parameters, then

− logm
(
Xt|Td

)
= log

t!

Γ (n1 + 1/2) · Γ (t− n1 + 1/2)

+ t ·
d∑

i=2

h (ni(1)/t)− t ·
d∑

i=2

Îi,ji

+
1

2

d∑

i=2

log (nji(1)) + log (nji(0)) + C, (7.11)

where h is the binary entropy function, and Îi,ji is the empirical mutual infor-
mation on the edge (i, ji) in Td and C is bounded in t.

76

7.2.2 Proof of the Representation in (7.10)

The integral on the right hand side of (7.8) will in view of (7.9) be factorized as

m
(
Xt|Td

)
= I1 · I2 · I3, (7.12)

where

I1 =

∫ 1

0

θn1
1 (1− θ1)

t−n1 h (θ1) dθ1, (7.13)

I2 =

d∏

i=2

∫ 1

0

θ
ni(1,1)
i (1− θi)

ni(0,1)
h (θi) dθi, (7.14)

and

I3 =

d∏

i=2

∫ 1

0

φ
ni(1,0)
i (1− φi)

ni(0,0) g (φi) dφi. (7.15)

There is an explicit expression for each of the factors I1, I2 and I3, as the prior
densities h(·) and g(·) are Beta densities. The Beta integral (D.2) gives, e.g., in
each factor of I2 in (7.14)

∫ 1

0

θ
ni(1,1)
i (1− θi)

ni(0,1)
h (θi) dθi =

Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (ni(1, 1) + α1) · Γ (ni(0, 1) + α2)

Γ (ni(1, 1) + ni(0, 1) + α1 + α2)
.

Thus we have

I2 =

d∏

i=2

Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (ni(1, 1) + α1) · Γ (ni(0, 1) + α2)

Γ (ni(1, 1) + ni(0, 1) + α1 + α2)
,

I3 =
d∏

i=2

Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (ni(1, 0) + α1) · Γ (ni(0, 0) + α2)

Γ (ni(1, 0) + ni(0, 0) + α1 + α2)
,

as well as

I1 =
Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (n1 + α1) · Γ (t− n1 + α2)

Γ (t+ α1 + α2)
.

7.2.3 Proof of Theorem 7.2.1

With α1 = α2 = 1/2 we obtain the generic term (denoted by E
(2)
1/2) in I2 (see

(7.10)) as

E
(2)
1/2 ≡

Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (ni(1, 1) + α1) · Γ (ni(0, 1) + α2)

Γ (ni(1, 1) + ni(0, 1) + α1 + α2)

=
1

π

Γ (ni(1, 1) + 1/2) · Γ (ni(0, 1) + 1/2)

Γ (ni(1, 1) + ni(0, 1) + 1)
.

77

By invoking, c.f. [46], a formula (D.5) for Stirling approximation of Euler’s

Gamma function Γ in − logE
(2)
1/2, this entails

− logE
(2)
1/2 = (ni(1, 1) + ni(0, 1))h

(
θ̂i

)
+

1

2
log (ni(1, 1) + ni(0, 1))+C, (7.16)

where C is a bounded in t and h (x) = −x log x−(1−x) log(1−x), 0 ≤ x ≤ 1, is
the binary entropy function (in natural logarithms) of the empirical distribution

(
θ̂i, 1− θ̂i

)
=

(
ni(1, 1)

ni(1, 1) + ni(0, 1)
,

ni(0, 1)

ni(1, 1) + ni(0, 1)

)
. (7.17)

Here θ̂i is the maximum likelihood estimate (based onXt) of θi = P
(
xi = 1|xji) = 1

)
.

For a generic term (denoted by − logE
(3)
1/2) in − log I3 in (7.10) we obtain in

the same way

− logE
(3)
1/2 = (ni(1, 0) + ni(0, 0))h

(
φ̂i

)
+

1

2
log (ni(1, 0) + ni(0, 0))+C, (7.18)

where φ̂i is the maximum likelihood estimate of φi = P (xi = 1|xji = 0).
Next we consider the result of inserting the terms

(ni(1, 1) + ni(0, 1))h
(
θ̂i

)

and
(ni(1, 0) + ni(0, 0))h

(
φ̂i

)

in the right hand side of (7.10). This gives the following expression

d∑

i=2

[
(ni(1, 1) + ni(0, 1))h

(
θ̂i

)
+ (ni(1, 0) + ni(0, 0))h

(
φ̂i

)]
.

The generic term in the sum is

(ni(1, 1) + ni(0, 1))h
(
θ̂i

)
+ (ni(1, 0) + ni(0, 0))h

(
φ̂i

)
.

This expression is by definition of the binary entropy function h, see (A.3),
equal to

= −ni(1, 1) log

(
ni(1, 1)

ni(1, 1) + ni(0, 1)

)
− ni(0, 1) log

(
ni(0, 1)

ni(1, 1) + ni(0, 1)

)

(7.19)

− ni(1, 0) log

(
ni(1, 0)

ni(1, 0) + ni(0, 0)

)
− ni(0, 0) log

(
ni(0, 0)

ni(1, 0) + ni(0, 0)

)
.

Let us introduce the auxiliary quantities

nji(1) = ni(1, 1) + ni(0, 1), nji(0) = ni(1, 0) + ni(0, 0), (7.20)

78

and
ni(1) = ni(1, 1) + ni(1, 0), ni(0) = ni(0, 1) + ni(0, 0). (7.21)

Then we have as an identity from the right hand side of (7.19)

−ni(1, 1) log

(
ni(1, 1)

ni(1, 1) + ni(0, 1)

)
− ni(0, 1) log

(
ni(0, 1)

ni(1, 1) + ni(0, 1)

)

−ni(1, 0) log

(
ni(1, 0)

ni(1, 0) + ni(0, 0)

)
− ni(0, 0) log

(
ni(0, 0)

ni(1, 0) + ni(0, 0)

)
=

= −ni(1, 1) log

(
ni(1, 1)/t · ni(1)/t

nji(1)/t · ni(1)/t

)
− ni(0, 1) log

(
ni(0, 1)/t · ni(0)/t

nji(1)/t · ni(0)/t

)

−ni(1, 0) log

(
ni(1, 0)/t · ni(1)/t

nji(0)/t · ni(1)/t

)
− ni(0, 0) log

(
ni(0, 0)/t · ni(0)/t

nji(0)/t · ni(0)/t

)
.

The quantities in the right hand side of the last equality can be regrouped as

−ni(1, 1) log (ni(1)/t)− ni(0, 1) log (ni(0)/t)

−ni(1, 0) log (ni(1)/t)− ni(0, 0) log (ni(0)/t)

−ni(1, 1) log

(
ni(1, 1)/t

nji(1)/t · ni(1)/t

)
− ni(0, 1) log

(
ni(0, 1)/t

nji(1)/t · ni(0)/t

)

−ni(1, 0) log

(
ni(1, 0)/t

nji(0)/t · ni(1)/t

)
− ni(0, 0) log

(
ni(0, 0)/t

nji(0)/t · ni(0)/t

)
.

The first four terms are equal to

−ni(1, 1) log (ni(1)/t)− ni(0, 1) log (ni(0)/t)

−ni(1, 0) log (ni(1)/t)− ni(0, 0) log (ni(0)/t) =

− (ni(1, 1) + ni(1, 0)) log (ni(1)/t)− (ni(0, 1) + ni(0, 0)) log (ni(0)/t) =

−ni(1) log (ni(1)/t)− ni(0) log (ni(0)/t) = t · h (ni(1)/t) .

The remaining terms are

−ni(1, 1) log

(
ni(1, 1)/t

nji(1)/t · ni(1)/t

)
− ni(0, 1) log

(
ni(0, 1)/t

nji(1)/t · ni(0)/t

)

−ni(1, 0) log

(
ni(1, 0)/t

nji(0)/t · ni(1)/t

)
− ni(0, 0) log

(
ni(0, 0)/t

nji(0)/t · ni(0)/t

)
=

−t · Îi,ji ,

where, as in the preceding,

Îi,ji =

1∑

u=0

1∑

v=0

p̂i,ji (u, v) log
p̂i,ji (u, v)

p̂i (u) · p̂ji (v)
(7.22)

is the plug-in estimate of the mutual information over the edge (i, ji).

79

7.2.4 Thresholding, Chow-Liu Forests and Checks of Sig-
nificance

The theory and applications of the Chow-Liu algorithm and its extensions have
been presented above. There is, however, an aspect of the methodology that
seems to have received much less attention. This is the question of validity
or statistical significance of the output of the algorithm. Needless to say, the
method will produce a tree for completely random data when presented as input
to CHOW-LIU-TREE Algorithm 1.

The statistical learning of the tree by minimizing − 1
t logm (Xt|Td) in (7.11)

as a function of the dependence structure Td. The purpose of stochastic complex-
ity is to find a trade-off between accuracy of description of data and complexity
of the model. We can do this in the following manner, c.f., [75].

First the Chow-Liu tree is estimated using the standard CHOW-LIU-TREE
Algorithm 1. This gives (ir, jr)

d
r=1 (we renumber the nodes). Then (7.11) can

be evaluated. If it happens that

Îi,ji <
1

2t
(log (nji(1)) + log (nji(0))) ,

then one removes the edge (i, ji) from the tree and the expression

−Îi,ji +
1

2t
(log (nji(1)) + log (nji(0)))

is lowerbounded by zero in the right hand side (7.11). This improves (i.e.,reduces)
the value of − 1

t logm (Xt|Td). This thresholding technique can make the tree
disconnected, and produces a forest of Chow-Liu trees. Clearly this procedure
leads to reduction of stochastic complexity − logm (Xt|Td). A study of this is
found in [27].

In [5] one derives asymptotic properties for uniform random spanning trees,
see Appendix C, as the number of d increases to infinity. Since we are study-
ing tree dependent probability distributions forlarge d, it should be possible
to develop some suitable results [5] for testing the significance of an estimated
Chow-Liu tree.

7.3 Classifiers aided by Chow-Liu Forests

The technique above is also applied to taxonomical analysis of various bacterial
fingerprinting or to population genetic questions in [18, 32]. The general outline
is as follows. We recall the notions in section 2.3. Thus C is an alphabet of
class indices c. Then (x, c) ∈ Bd × C. We have

p (x, c) = p (x | c) q (c) .

An algorithm for unsupervised classification of multivariate binary data that
minimizes stochastic complexity is established. A classification is viewed as a

80

model of the data. The model is represented by class-conditional tree depen-
dent probability distributions p (x | c). Within each class, trees are established
from data by maximizing mutual information between pairs of nodes using a
maximum weight spanning tree algorithm. The classifiers are trained by mini-
mization of stochastic complexity (SC), which also selects the number of classes.

We define for any given class cj the class membership indicators

u
(l)
j = 1 if x(l) ∈ cj

and
u

(l)
j = 0 otherwise,

and incorporate these in the table

U t =
{
u

(l)
j

}t,k

l=1,j=1
.

Then we extend the predictive likelihood in (7.8) to

mk

(
Xt|U t,Td

)
=

k∏

j=1

∫

Θj

∫

Φ

t∏

l=1

[
pθj ,φ

j

(
x

(l) | Tj

)
w
(
θj , φj

)]u(l)
j

dθjdφj

where Td = {T1 . . . , Tk} (a tree for each class). This gives the stochastic com-
plexity

mk

(
Xt|U t,Td

)
= − log

k∏

j=1

∫

Θj

∫

Φj

t∏

l=1

[
pθj ,φ

j

(
x

(l) | Tj

)
w
(
θ, φ
)]u(l)

j

dθjdφj
.

The expression of mk (Xt|U t,Td) can be expanded as in theorem 7.2.1 We could
think of finding a classification by maximizing this as function of U t for every k.
However, prevalence is needed for a complete account of stochastic complexity.
This part of the problem is handled by a different manner in [18].

The prevalence of class cj is λj = Pr(u
(l)
j = 1), and {λj}1≥j≥n is a probability

distribution over j.
We write

Pr(U t) =

∫

Λ

k∏

j=1

λ
tj

j ψ(λ)dλ

here tj is the number of items in cj . Then

Pr(U t) =

∫

Λ

k∏

j=1

λ
tj

j ψ(λ)dλ

We take the prior ψ(λ) to be Jeffreys’ prior (= a Dirichlet density with hyper-
parameters =1/2) and then

− log Pr(U t) = log
Γ
(∑k

j=1 tj + 1
2

)

Γ
(

k
2

)
k∏

j=1

Γ
(

1
2

)

Γ
(
tj + 1

2

) .

81

Then the final criterion is minimization of

SCk

(
Xt, U t|Td

)
= − log Pr(U t)− logmk

(
Xt|Td, U

t
)
.

This is to be minimized as a function of Td and U t The interpretation is de-
scription length: − logm (Xt|Td, U

t) is the number of bits needed to describe
the data vectors as members of the classes and − log Pr(U t) is the number of
bits needed to describe the classes. We outline an algorithm for minimizing
SCk (Xt, U t|Td), c.f., [27].

Step 1. Fix k, set w = 0 and store an arbitrary (random) U(w).

Step 2. For U(w) find the maximum likelihood estimates Θ̂(w) and λ̂(w)

yielding

1

t

t∑

l=1

k∑

j=1

[
u

(l)
j log pbθj ,bφ

j

(
x(l)
)]

+

k∑

j=1

λ̂j log λ̂j .

Step 3. Find the structure T̂d(w) maximizing for each l

tl
t

d∑

i=2

Ii,ji

using the the algorithm MST-KRUSKAL 2. Apply the thresholding cor-
rection to the mutual information.

Step 4. Given Θ̂(w), λ̂(w), and T̂d(w) determine U(w+1) =
{
(u

(l)
j)(w+1)

}t,k

j,l=1

using

(u
(l)
j)(w+1) =

{
1 if c

(l)
∗ = j

0 otherwise,

where

c
(l)
∗ = arg max

1≤j≤k
pbθj ,bφ

j

(
x(l) | cj

)
λ̂j .

Step 5. If U(w+1) = U(w), then stop, otherwise set w = w+1 and go to 2..

A more streamlined idea is implemented in

Algorithm 3 MINIMIZE SCk (Xt, U t|Td)

1: given T(w) determine U(w+1) by iteratively ∀l by first removing x(l) from its
cluster and then reinserting it where it reduces SC the most.

2: if then (k = kmin‖SC
[
U(w)

]
< SC [Umax]) then Umax ← U(w)

82

Application 1 We describe an application to bacterial classification.
Over the past decade the advancement of molecular biology has led to the

development of bacterial taxonomies based on detection of the naturally occur-
ring DNA polymorphisms. These polymorphisms are a result of point mutations
or rearrangements in the DNA.

A restriction endonuclease recognizes a specific sequence of nucleotide pairs
and cleaves it. The number and locations of restriction sites vary with nucleotide
sequence. The higher the similarity of the two DNA sequences compared, the
closer the cleavage pattern.

The DNA fingerprinting technique known as AFLP (=Amplified Fragment
Length Polymorphism) is based on the selective amplification of genomic restric-
tion fragments by PCR (=Polymerase Chain Reaction) to differentiate bacterial
strains at the subgeneric level and consists of three steps:

(a) Digestion of total cellular DNA with two restriction enzymes and ligation
of restriction halfsite-specific adaptors to all restriction fragments.

(b) Selective amplification of these fragments with two PCR primers that have
corresponding adaptor- and restriction-site-sequences as their target sites.

(c) Electrophoretic separation of the PCR products on a gel.

In electrophoresis, each organism is characterized by a banding pattern,
which are thus a direct reflection of the genetic relationship between the bac-
terial strains examined and therefore these banding patterns can be considered
as genomic fingerprints allowing computational algorithms for characterization
(typing) and identification purposes. A collection of fingerprints can be trans-
lated into a set Xt of binary variables, band present (1) or band absent (0).
In this application we discuss a classification of bacteria (suggesting an addi-
tional insight into the taxonomy in [81]) using the binary data and tree-aided
classification.

The t =505 FAFLP (=Fluorescent Amplified Fragment Length Polymor-
phism, AFLP without radioactive materials) fingerprints of genomes of Vibrio
strains listed in [81] were binarized. This gives us d =994 bit Vibrionaceae data.
The preceding algorithm was then applied to this set of data with several ran-
domized initial U(w). A recent survey of statistical analysis of AFLP is found
in [11].

The following table gives some values for the complexities observed. The
SC-values were computed using

SCk

(
Xt, U t|Td

)
= − logP (U t)− logmk

(
Xt|Td, U

t
)

and by estimating a Chow-Liu tree for all classes in all classifications. In order to
establish k, the number of classes, this algorithm is used repeatedly for different
k. The table refers to Binclass, which is a software for minimizing stochastic
complexity based on the náıve approximation of p [33]. This is an example,
where the Chow-Liu tree has an appreciable impact, whereas there are sets of
data, where the tree-aided classifiers do not gain much over the náıve classifiers.

83

SC
1 Binclass (50 trials/cluster size) 156029.7
2 Thompson [81] 147960.1
3 Chow-Liu tree (5trials/cluster size) 121021.2

The next table shows the Rand similarities between the classifications above.

1 2 3
1 1.0000 .98603 .77212
2 .98603 1.0000 .78031
3 .77212 .78031 1.0000

Because classification by minimization of SC compresses data, it comes as no
surprise that the optimum number of clusters (classes) found by the algorithm
turns out to be smaller than the number of clusters (=69) established in [81].
The last mentioned clustering is obtained from a hierarchic clustering method
which are standard procedures in analysis of AFLP [11].

The classification minimizing SC should in this context be assessed with
respect to its biological relevance. By inspection of the results one finds that 49
of the 69 clusters in Thompson have remained intact or have all but one or two
of their strains in the same larger class in the classification minimizing SC.

Another way to look at the biological meaning of the result is by means of the
class memberships of the type strains. The clusters in [81] can in broad terms be
described as falling in three categories: (a) isolates with genomes related to only
one known type strain, (b) isolates clustering to one or more type strains, and
(c) isolates with genome unrelated to any type strain (less than 45 % similarity).

It is clear that Bayes rule (as applied in Step 4. above) does not measure
similarity in the same explicit biological sense as, e.g., Dice’s coefficient. Hence
it is interesting to note that in the classification minimizing SC those 49 classes
that have remained intact have the corresponding type strains in the same
cluster in the classification minimizing SC or are clusters that do not have any
type strain either in [81] or in the classification minimizing SC.

84

Appendix A

Appendix: Some Formulas
of Information Theory

A.1 Kullback Distance

Let X = {x1, · · · , xL} be an alphabet and let

f := (f(x1), · · · , f(xL))

and
g := (g(x1), · · · , g(xL))

be two probability distributions defined on X . Then their relative entropy or
the Kullback distance between f and g is defined by

D (f ‖ g) =

L∑

i=1

f(xi) log
f(xi)

g(xi)
. (A.1)

Here we use the conventions 0 · log 0
g(xi)

= 0 and f(xi) log f(xi)
0 = ∞. The

logarithm is the natural logarithm unless otherwise stated.

A.1.1 Entropy

The entropy H (f) is defined as

H (f) = −
L∑

i=1

f(xi) log f(xi). (A.2)

Suppose X is a random variable with the alphabet X = {x1, · · · , xL} and
distribution f . Then we use H(X) as another notation for the entropy in (A.2).
H(X) is a measure of the uncertainty in bits (=binary information units) of
the random variable X. It is also a lower bound for the number of bits (binary
digits) needed on the average to describe the random variable, c.f., [65].

85

86

Example A.1.1 (Binary entropy function) For the special case X = {x1, x2},
with p := fX(x1),

h(p) := −p log2(p)− (1 − p) log2(1− p) (A.3)

is the (binary) entropy function. This is also the entropy of a Bernoulli random
variable X ∈ Be(p) with X = {0, 1}).

A.1.2 Examples

Example A.1.2 (Information Content) If X is a random variable with the
distribution f = (f(x1), · · · , f(xL)), any probabilty distribution on an alphabet
of L symbols, and if g = (1/L, · · · , 1/L) is the uniform distribution, then

D (f ‖ g) = logL−H(X).

This quantity is sometimes known as the information content (of f).

Example A.1.3 (Two Bernoulli distributions) Let X = {0, 1} and 0 ≤
p ≤ 1 and 0 ≤ g ≤ 1. Let f = (1− p, p) and g = (1− g, g) be the two Bernoulli
distributions Be(p) and Be(g), respectively. Then

D (f ‖ g) = (1− p) · log
1− p

1− g
+ p · log

p

g
. (A.4)

We can also rewrite this as

D (f ‖ g) = −(1− p) · log(1− g)− p · log g − h(p),

where h(p) is the binary entropy function (A.3) in natural logarithm.

A.1.3 Calibration

Let us set in (A.4) of the preceding example

D (Be(p) ‖ Be(g)) = −(1− p) · log(1− g)− p · log g − h(p), (A.5)

which is easily plotted as a function of g for any fixed p or vice versa. These
plots suggest a number of the general properties of the relative entropy like that
it is nonnegative, becomes zero only if p = g and that the relative entropy is
quadratic in small neighborhoods of p.

87

The cases where D (f ‖ g) = 0 and D (f | g) = ∞ are easily interpreted in an
intuitive sense. There is a way to understand the other values of D (f ‖ g) by
introducing the following idea of calibration. Let D (f ‖ g) = k be the value of
the Kullback distance between any two probability distributions on the same
alphabet. Then we look for calibration of k or a number g(k) such that the
equation

D (Be (1/2) ‖ Be (g(k))) = k (A.6)

is satisfied. This calibration tells us that the Kullback distance between f and
g is the same as between a Bernoulli distribution Be (1/2), a random or ’fair’
choice of value in {0, 1}, and a Bernoulli distribution Be (g(k)). Therefore, the
closer to 1/2 the calibration is, the more similar f and g are. The calibration
can be found explicitly, since

D (Be (1/2) ‖ Be (g)) = −
1

2
log (4g(1− g)) , (A.7)

which gives an algebraic equation of second degree, where one value of the
calibration can be solved as

g(k) =
1

2

(
1 +

√
1− e−2k

)
. (A.8)

A.1.4 D (f ‖ g) ≥ 0

Next we give a general proof of the important fact that the relative entropy is
nonnegative.

Proposition A.1.4 For any probability distributions f and g on the same al-
phabet

D (f ‖ g) ≥ 0. (A.9)

Proof: Let X be a random variable that has the distribution f . We write
p(x) and g(x) for the generic values of the probability of x ∈ X in the two
distributions. Then we have

D (f ‖ g) = E

[
log

p (X)

g (X)

]

and this equals

D (f ‖ g) = −E

[
log

g (X)

p (X)

]
.

Since φ(x) = − logx is a convex function we have that

−E

[
log

g (X)

p (X)

]
≥ − logE

[
g (X)

p (X)

]
,

where we have used Jensen’s inequality. But

E

[
g (X)

p (X)

]
=

L∑

i=1

f(xi)
g(xi)

f(xi)
= 1

and since log 1 = 0, we have proved our assertion.

88

A.1.5 Further inequalities

The following way of rewriting (A.9) is known as

Gibbs’ inequality :

L∑

i=1

pi log
1

pi
≤

L∑

i=1

pi log
1

gi
(A.10)

for any pi ≥ 0 and gi ≥ 0 with
∑L

i=1 pi =
∑L

i=1 gi = 1.
There is a sharper lower bound for Kullback distance. For this we prove a
generalization of Gibbs’ inequality that will be used below to show convexity of
the Kullback distance.

Lemma A.1.5 [Log sum inequality] If a1, . . . , an and b1, . . . , bn are non-negative
numbers, then

n∑

i=1

ai log
ai

bi
≥

(
n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

. (A.11)

Proof: We assume that the numbers are positive, as can be done without loss
of generality. Let us note that φ(t) = t log t is a strictly convex function. This
means that

n∑

i=1

λiφ (ti) ≥ φ

(
n∑

i=1

λiti

)
,

where
∑n

i=1 λi = 1, λi ≥ 0. Then we set λi = bj/
∑n

i=1 bi and ti = ai/bi and
obtain

n∑

i=1

ai∑n
i=1 bi

log
ai

bi
≥

n∑

i=1

ai∑n
i=1 bi

log

n∑

i=1

ai∑n
i=1 bi

as was to be proved.

Lemma A.1.6 For any pi ≥ 0 and gi ≥ 0 with
∑L

i=1 pi =
∑L

i=1 gi = 1 we have

L∑

i=1

pi ln
pi

gi
≤

L∑

i=1

(pi − gi)
2

gi
. (A.12)

If there is any gi = 0, then both sides are infinite.

Proof:
L∑

i=1

pi ln
pi

gi
=

L∑

i=1

pi ln

(
1 +

(
pi − gi

gi

))
.

We use now the elementary inequality1 ln(1 + x) ≤ x if x ≥ −1. Then

≤
L∑

i=1

pi

(
pi − gi

gi

)
≤

L∑

i=1

((pi − gi) + gi)

(
pi − gi

gi

)

1The IT-olikhet (= IT-inequality), c.f., p. 19, R. Johansson: Informationsteori- grundvalen

för telekommunikation. Studentlitteratur, Lund, 1988

89

=

L∑

i=1

(pi − gi)
2

gi
+

L∑

i=1

(pi − gi) =

L∑

i=1

(pi − gi)
2

gi
.

The quantity
∑L

i=1
(pi−gi)

2

gi
is the χ2 statistic. In fact one can show by a series

expansion that

D (p ‖ g) =
L∑

i=1

pi ln
pi

gi
=

1

2
χ2 + . . . (A.13)

A.1.6 The Convexity of the Kullback distance

The following theorem and the proof are taken from [20].

Theorem A.1.7 If (f1,g1) and (f2,g2) are two pairs of probability distribu-
tions on X , then

D (λf1 + (1 − λ)f2 ‖ λg1 + (1 − λ)g2) ≤ λD (λf1 ‖ g1) + (1− λ)D (f2 ‖ g2)
(A.14)

for all 0 ≤ λ ≤ 1.

Proof: We apply the inequality (A.11) with a1, a2, b1, b2 as stated below, to a
generic term in the left hand side of (A.14) to get

=a1︷ ︸︸ ︷
λf1(xi)+

=a2︷ ︸︸ ︷
(1− λ)f2(xi) ln

λf1(xi) + (1− λ)f2(xi)

λg1(xi)︸ ︷︷ ︸
=b1

+ (1− λ)g2(xi)︸ ︷︷ ︸
=b2

≤ λf1(xi) ln
λf1(xi)

λg1(xi)
+ (1− λ)f2(xi) ln

(1− λ)f2(xi)

(1− λ)g2(xi)
.

When this is summed over xi, i = 1, . . . , L, we get the convexity as claimed.

A.1.7 Pinsker,s Inequality

Let

‖ f − g ‖L1

def
=

L∑

i=1

| f(i)− g(i) | .

Then we have

Lemma A.1.8 [Pinsker,s inequality]

D (f ‖ g) ≥
1

2
‖ f − g ‖2L1

. (A.15)

90

A proof is found in [20, p.300]. It can easily be seen that ([20, p.299])

1

2
‖ f − g ‖L1= max

B⊆X
| Pf (B)− Pg(B) |, (A.16)

where in the right hand we have Pf (B) =
∑

xi∈B f(xi) and analogously for
Pg(B). The expression in the left hand side of (A.16) is the variation distance
between f and g and is denoted by

‖ f − g ‖∞
def
= max

B⊆X
| Pf (B)− Pg(B) | . (A.17)

A.2 A Diagram for Interpretation of Mutual In-
formation and the Related Entropy Identi-

ties.

We copy in Figure A.1 the important diagram from [29, p. 431]2.
In the diagram we make the following identifications with respect to the

notations in the main body of text:

I(A,B)↔ HT

H(A,B)↔ H(X,Y)

H(B)↔ H(X), H(A)↔ H(Y)

H(A|B)↔ H(Y |X), H(B|A)↔ H(X |Y)

Then the Figure is read as describing a flow of entropy (like a liquid) passing
a noisy (leaky) channel from left to right. In the left a sender has a source of
messages with the entropy H(B), of which the amount H(B|A) vanishes in the
channel. Here I(A,B) = H(B)−H(B|A) is the difference.

The left side receives noisy messages with the entropy H(A), of which
H(A|B) was not a part of the transmission into the channel but is due to
noise. Thus the information received is I(A,B) = H(A) −H(A|B). Hence, by
symmetry, I(A,B) is the same for the left end and the right end of the chan-
nel, and is properly called the mutual information. An umpire gets to see the
messages in both ends of the channel, and has consequently the total entropy
H(A,B) = H(A) +H(B)− I(A,B).

2A figure with the same insight is found in [51, p.149]

91

Figure A.1: The relationships for mutual information

92

Appendix B

Appendix: Description
Length for Storing of pS

We compute the description length needed for storing pS . In (2.29) we have

p (x | S) = pA1 (xA1)
k∏

i=2

p (xAi | xBi) ,x ∈ X .

Consider (Ai, Bi). We describe first the number of variables in Bi by the car-
dinality | Bi | followed by the index of the set Bi in some enumeration of all

sets

(
d
| Bi |

)
. We can encode the number | Bi | using log2 d bits and we can

encode the index of the set Bi using log2

(
d
| Bi |

)
bits. The same argument

holds for Ai. So we get the description length (in logarithms to the base 2)

DL(Ai,Bi) = 2 log2 d+ log2

(
d
| Bi |

)
+ log2

(
d
| Ai |

)
. (B.1)

In addition we need to describe the probability table p (xAi | xBi). We need
to store | Bi | (| Ai | −1) numbers. This representation length depends on the
number of bits used for each numeric entry, which we count as 1

2 log2 c. Thus
the encoding length of one conditional probability table is

DL (Ai | Bi) =
1

2
| Bi | (| Ai | −1) log2 c.

For A1, B1 the description length is modified in an obvious manner.
Hence the total description length of S is

DLS =

k∑

i=1

[
2 log2 d+ log2

(
d
| Bi |

)
+ log2

(
d
| Ai |

)]

93

94

and the total description length of the conditional probability table is

DLcpt =

k∑

i=1

DL (Ai | Bi) .

Thus the total description length the product approximation pS is

DL (pS) = DLS + DLcpt. (B.2)

Appendix C

Appendix: Spanning trees
with Uniform Distribution

C.1 An Algorithm due to D.J. Aldous

There are several algorithms, [61] and the references therein, for generating
a spanning tree Td on a set of nodes, say l, as a sample from the uniform
distribution, i.e. so that Pr (Td) = 1

dd−2 . David Aldous has in [4] publlished the
following invention.

Algorithm 4 ALDOUS (l)

1: Fix d ≥ 2
2: For 2 ≤ i ≤ d connect node i to the node ji = min (Ui, i− 1), where
U2, . . . , Un are independent and uniform on l = {1, 2, . . . , d}.

3: Relabel the nodes 1, 2, . . . , d as π(1), π(2), . . . , π(d), where π is a uniform
random permutation of 1, 2, . . . , d.

Proposition C.1.1 The random tree Td produced by the Algorithm ALDOUS
is uniform, i.e.,

Pr (Td) =
1

dd−2
. (C.1)

95

96

Appendix D

Appendix: Prior
Distributions and the
Razor; Stirling-Binet
formula

D.1 Beta Density

With αi > 0 for i = 1, 2, we say that a random variable θ with values in [0, 1]
has a Be(α1, α2) distribution, if θ has the probability density

h (θ) =

{
Γ(α1+α2)

Γ(α1)·Γ(α2)θ
α1−1 (1− θ)α2−1

0 ≤ θ ≤ 1

0 elsewhere.
(D.1)

The Beta integral is
∫ 1

0

θα1−1(1 − θ)α2−1dθ =
Γ (α1) · Γ (α2)

Γ (α1 + α2)
. (D.2)

D.2 Jeffreys’ Prior and the Razor

For a parametric model X ∼ f (x|θ), where f (x|θ) is a density with respect to
µ and is differentiable w.r.t to θ ∈ R, we define I (θ), Fisher information of x,
as

I (θ) =

∫

X

(
∂ log f (x|θ)

∂θ

)2

f (x|θ) dµ(x)

Exact conditions for existence of I (θ) can be given. Then Jeffreys’ Prior is

π (θ) :=

√
I (θ)

∫
Θ

√
I (θ)dθ

(D.3)

97

98

assuming that the standardizing integral in the denominator exists. Otherwise
the prior is improper.

Example D.2.1 Let f(x | θ) = θx · (1 − θ)1−x, x = 0, 1, 0 ≤ θ ≤ 1. Then the
Jeffrey’s prior π(θ) is the density of Be

(
1
2 ,

1
2

)
.

The razor of V. Balasubramanian [9] is then formally expressed with π from
(D.3) given as

RN =

∫

Θ

π (θ) e−ND(p‖pθ)dθ. (D.4)

One should study the derivation of this for any further understanding.

D.3 The Binet Formula

Binet formula for Stirling approximation of Euler’s Gamma function is

ln Γ(s) ≈
ln(2π)

2
+

(
s−

1

2

)
ln s− s+ C (D.5)

This is found in
E.T. Whittaker & G.N. Watson: A Course in Modern Analysis (fourth ed.),
Cambridge University Press, Cambridge 1990, pp. 248−249.

Bibliography

[1] A.V. Aho, J. Hopcroft & J.D. Ullman: Data Structures and Algorithms.
Addison-Wesley, Reading Massachusetts, 1985.

[2] J. Aitchison: Goodness of prediction fit. Biometrika,62, 1975, pp. 547−181.

[3] S.M. Aji & R.J.McEliece: The generalized distributive law. IEEE Trans-
actions on Information Theory, 46, 2000, pp. 325−343.

[4] D. Aldous: The random walk construction of uniform spanning trees and
uniform labelled trees. SIAM Journal on Discrete Mathematics, 3, 1990,
pp. 450−465

[5] D. Aldous: The continuum random tree I. The Annals of Probability, 19,
1991, pp. 14−28.

[6] S. Anolouva, P. Fischer, S. Pölt & H.U. Simon: Probably Almost Bayes
Decisions. Information and Computation, 129, 1996, pp.63−71.

[7] R.R. Bahadur: Some Limit Theorems in Statistics. SIAM, Philadelhia,
1971.

[8] K.S. Balagani & V.V. Phoha: On the Relationship between Dependence
Tree Classification Error and Bayes Error Rate. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2007, 29, pp. 1866-1868.

[9] V. Balasubramanian: Statistical inference, Occam’s razor, and statistical
mechanics on the space of probability distributions. Neural computation,9,
1997, pp. 349−368

[10] C. Beeri, R. Fagin, D. Maier & M. Yannakakis: On the desirability of
acyclic database schemes. Journal of the ACM, 30, 1983, pp. 479−513.

[11] A. Bonin, D.Ehrich & S. Manel: Statistical analysis of amplified fragment
length polymorphism data: a toolbox for molecular ecologists and evolu-
tionists. Molecular Ecology, 16, 2007, pp. 3737−3758

[12] C. Borgelt: On Identifying Tree-Structured Perfect Maps. KI 2003: Ad-
vances in Artificial Intelligence. Lecture Notes in Computer Science, Vol-
ume 2821, Springer Berlin / Heidelberg, 2003 pp.385−395.

99

100

[13] C.J. Butz: The relational database theory of Bayesian networks. Ph.D.-
thesis, University of Regina, 2000.

[14] O. Catoni:Statistical learning theory and stochastic optimization: Ecole
d’Eté de Probabilités de Saint-Flour XXXI-2001. Springer Verlag, Berlin,
2004.

[15] J. Cheng & R. Greiner, J. Kelly, D. Belly & W. Liu: Learning Bayesian
Networks from data: An information-theory based approach. Artificial In-
telligence 2003, 137, pp. 43−90.

[16] C.K. Chow & C.N. Liu: Approximating Discrete Probability Distributions
with Dependence Trees. IEEE Transactions on Information Theory, 1968,
14, pp. 462−467.

[17] C.K. Chow & T.J. Wagner: Consistency of an estimate of tree-dependent
probability distributions. IEEE Transactions on Information Theory.
1973, 19 , pp. 369−371.

[18] J. Corander, M. Gyllenberg & T. Koski: Learning genetic population
structures using minimization of stochastic complexity. Entropy, 12, 2010,
pp. 1102−1124

[19] T. Cormen, C.E. Leiserson & R.L. Riverson: Introduction to Algorithms.
The MIT Press, Cambridge Mass. 1991.

[20] T.M. Cover & J.A. Thomas: Elements of Information Theory. J. Wiley &
Sons, Inc., New York, 1991.

[21] I. Csiszár: I-Divergence Geometry of Distributions. Annals of Probability,
3, 1975, pp. 146−158.

[22] I. Csiszár & J. Körner: Information Theory. Coding Theorems for Discrete
Memoryless Systems. Akadémiai Kiadó, Budapest, 1986.

[23] I. Csiszár: The method of types. IEEE Transactions on Information The-
ory,44, 1998, pp. 2505−2523.

[24] I. Csiszár & F. Matus: Information projections revisited. IEEE Transac-
tions on Information Theory, 49, 2003, pp. 1474− 1490.

[25] A.P. Dawid & S.L. Lauritzen: Hyper Markov laws in the statistical anal-
ysis of decomposable graphical models. The Annals of Statistics, 21, 1993,
pp. 1272−1317.

[26] S. Dasgupta: Learning polytrees. Uncertainty in Artificial Intelligence ,99.

[27] M. Ekdahl: Approximations of Bayes Classifiers for Statistical Learning of
Clusters. Linköping Studies in Science and Technology, Thesis No. 1230,
Linköping 2006.

101

[28] M. Ekdahl & T. Koski: Bounds for the Loss in Probability of Correct
Classification Under Model Based Approximation. The Journal of Machine
Learning Research, 7, 2006, pp. 2449−2480.

[29] G. Fritzsche: Theoretische Grundlagen der Nachrichtentechnik. VEB Ver-
lag Technik, Berlin, 1987.

[30] H.N. Gabow, Z. Galil, T. Spencer & R.E. Tarjan: Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs.
Combinatorica, 6, 1986, pp. 109−122,

[31] J. Grim: On structural approximating multivariate discrete probability
distributions. Kybernetika (Prague), 1984, 20, pp. 1−17.

[32] M. Gyllenberg, M., J.Carlsson, & T. Koski: Bayesian Network Classifi-
cation of Binarized DNA Fingerprinting Patterns. In Mathematical Mod-
elling and Computing in Biology and Medicine; Capasso, V. Ed.; Progetto
Leonardo, Bologna, 2003 , pp. 60−66.

[33] M. Gyllenberg, T. Koski , & T. Lund : BinClass: A Software Package for
Classifying Binary Vectors User”s Guide. Technical Report: TUCS-TR-
411, 2001
http://portal.acm.org/citation.cfm?id=893341

[34] D.J. Hand, H. Mannila & P. Smyth: Principles of Data Mining. The MIT
Press, 2001.

[35] J. Hartmanis: Application of Some Basic Inequalities for Entropy. Infor-
mation and Control, 2, 1959, pp. 199−213.

[36] H. Heikinheimo, E. Hinkkanen, H. Mannila, T. Mielikäinen &
J.K. Seppänen: Finding Low Entropy Trees from Binary Data. KDD,07,
2007, pp. 350−359.

[37] W. Hoeffding: Asymptotically Optimal Tests for Multinomial Distribu-
tions. The Annals of Mathematical Statistics, 36, 1965), pp. 369−401, also
in N.I. Fisher and P.K. Sen Editors: The Collected Works of Wassily Ho-
effding, Springer Verlag, New York, 1994, pp. 431−472.

[38] F. den Hollander: Large Deviations. Fields Institute Monograph, American
Mathematical Society, Providence, R.I., 2000.

[39] K.U. Höffgen: Learning and robust learning of product distributions. Pro-
ceedings of the sixth annual conference on Computational Learning Theory,
1993, pp. 77−83.

[40] K. Huang, I. King & M.R. Lyu: Constructing a large node Chow-Liu tree
based on frequent itemsets. Proceedings of the International Conference on
Neural Information Processing, 2002.

102

[41] R. Jirousek: A survey of methods used in probabilistic expert systems for
knowledge integration. Knowledge-Based Systems, 3, 1990, pp. 7−12.

[42] H.G. Kellerer: Verteilungsfunktionen mit gegebenen Marginalverteilungen.
Zeitschrift für Wahrschenlichkeitstheorie und Verwandte Gebiete, 3, 1964,
pp. 247−270.

[43] H.G. Kellerer: Indecomposable marginal problems. Advances in probabil-
ity distributions with given marginals: beyond the copulas, 1991, Springer
Verlag, Berlin, pp. 139−149.

[44] S. Kolahi & L. Libkin: An information-theoretic analysis of worst-case
redundancy in database design. ACM Transactions on Database Systems,
35, 2010, pp. 1−32.

[45] T. Koski & J. Noble: Bayesian Networks. An Introduction. J. Wiley Sons,
New York, London, 2009.

[46] R.E. Krichevsky & V.K. Trofimov: The performance of universal encoding.
IEEE Transactions on Information Theory, 27, 1981, pp. 199−207.

[47] H.H. Ku & S. Kullback: Approximating Discrete Probability Distributions.
IEEE Transactions on Information Theory, 1969, 15 , pp. 444−447.

[48] L. Kučera: Combinatorial Algorithms. Adam Hilger, Bristol, 1990.

[49] W. Lam & F. Bacchus: Learning Bayesian networks: an approach based
on the MDL principle. Computational Intelligence, 10, 1994, pp. 269−293

[50] P.M. Lewis II: Approximating Probability Distributions to Reduce Storage
Requirements. Information and Control, 2, 1959, pp. 1959.

[51] D.J. MacKay: Information Theory, Inference and Learning Algorithms.
Cambridge University Press, 2004 (reprint with corrections).

[52] F.M. Malvestuto: Existence of extensions and product extensions for dis-
crete probability distributions. Discrete Mathematics, 69, 61−77, 1988.

[53] H. Mannila & K-J. Räihä: The design of relational databases, 1992,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

[54] M. Meila: An accelerated Chow and Liu algorithm: fitting tree distribu-
tions to high-dimensional sparse data. MIT AI Memo 1652, CBCL memo
169.

[55] M. Meila-Predoviciu: Learning with mixtures of trees. PhD-thesis, Depart-
ment of Electrical Engineering and Computer Science, MIT, 1999.

[56] D. Pavlov & H. Mannila: Beyond Independence: Probabilistic Models for
Query Approximation on Binary Transaction Data. IEEE Transactions on
Knowledge and Data Engineering, 15, 2003, pp. 1409−1421.

103

[57] J. Pearl: Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann: San Francisco, 1988.

[58] J. Pearl, D. Geiger & T. Verma: Conditional independence and its repre-
sentations. Kybernetika (Prague), 25, 33−44, 1989.

[59] A. Perez: ǫ-admissible simplifications of the dependence structure of ran-
dom variables. Kybernetika (Prague), 13, 1979, pp. 439−449.

[60] A. Perez & M. Studenỳ: Comparison of two methods for approximation of
probability distributions with prescribed marginals. Kybernetika (Prague),
43, 2007, pp. 591−618.

[61] J.G. Propp, and D.B. Wilson: How to get a perfectly random sample from
a generic Markov chain and generate a random spanning tree of a directed
graph. Journal of Algorithms, 27, 1998, pp. 170−217.

[62] L.R. Rabiner: A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77, 1989, pp. 257−286.

[63] G. Rebane & J. Pearl: The recovery of causal poly-trees from statistical
data. AAAI-87 Workshop on Uncertainty in AI, Seattle, Washington, 1987.

[64] J. Rissanen: Stochastic Complexity in Learning. Journal of Computer and
System Science 1997, 55, pp. 89-95.

[65] J. Rissanen: Lectures on statistical modeling theory. Helsinki Institute of
Information Technology, Helsinki, 2004.
http://www.lce.hut.fi/teaching/S-114.300/lectures.pdf

[66] C. Sha, D. Tao & A. Zhou: Finding Dependency Trees from Binary Data.
IEEE 8th International Conference on Computer and Information Tech-
nology Workshops. IEEE, 2008, pp. 80−85.

[67] C.E. Shannon: The lattice theory of information. Claude Elwood Shannon
Collected Papers, Edited by N.J.A. Sloane and A.D. Wyner, IEEE Press,
New York, 1993.

[68] G. Shafer: Probabilistic Expert Systems. SIAM, Philadelphia, 1996.

[69] R. Solomonoff: Two kinds of probabilistic induction. The Computer Jour-
nal, 42, 1999, pp. 256− 260.

[70] R. Solomonoff: Three kinds of probabilistic induction: Universal distribu-
tions and convergence theorems. The Computer Journal, 51, 2008, pp. 566−
571.

[71] P. Spirtes, C.N. Glymour & R. Scheines: Causation, prediction, and search.
The MIT Press, 2001.

104

[72] N. Srebro: Maximum likelihood bounded tree-width Markov networks Ar-
tificial intelligence,143,2003, pp. 123−138.

[73] B. Streitberg: Lancaster Interactions Revisited. Annals of Statistics, 18,
1990, pp. 1878−1885.

[74] M. Studenỳ: Probabilistic Conditional Indpendence Structures, Springer
Verlag, London, 2005.

[75] J. Suzuki: Learning Bayesian belief networks based on the MDL princi-
ple: An efficient algorithm using the branch and bound technique. IEICE
Transactions on Information and Systems E Series D, 1999, 356−367

[76] J. Suzuki: A Generalization of the Chow-Liu Algorithm and its Application
to Statistical Learning. Arxiv preprint arXiv:1002.2240
http://arxiv.org/pdf/1002.2240

[77] G. Szekeres & F.E. Binet: On Borel fields over finite sets, The Annals of
Mathematical Statistics,28, 1957, 494−498.

[78] V.Y.F. Tan, A. Anadkumar, L. Tong, A.S. Willsky: A Large-Deviation
Analysis of the Maximum-Likelihood Learning of Markov Tree. Interna-
tional Symposium on Information Theory, ISIT 2009, IEEE Press 2009.
London, New York, 2009.

[79] R.E. Tarjan: Data Structures and Network Algorithms. SIAM, Philadel-
phia, 1983.

[80] N. Tatti & H. Heikinheimo: Decomposable Families of Itemsets. TKK Re-
port in Information and Computer Science, TKK-ICS-R1, Espoo, 2008.

[81] F.L. Thompson, B. Hoste, K. Vandenmeulebroecke and J. Swings (2001):
Genomic Diversity Amongst Vibrio Isolates from Different Sources Deter-
mined by Fluorescent Amplified Fragment Length Polymorphism. System-
atic and Applied Microbiology, 24, pp. 520−538.

[82] J. Vomlel: Methods of probabilistic knowledge integration. PhD Thesis,
ČVUT v Praze (Czech Technical University in Prague), 1999.

[83] N.N. Vorobév: Consistent families of measures and their extensions. Theory
of Probability and its Applications, 7, 1962, pp. 147−162.

[84] D. Wedelin: Efficient estimation and model selection in large graphical
models. Statistics and Computing, 6, 1996, pp. 313−323.

[85] D.B. West: Introduction to Graph Theory 2nd Ed., Prentice-Hall, 2000.

[86] J. Williamson: Bayesian Nets and Causality, Oxford University Press,
2005.

105

[87] S.K.M. Wong, C.J. Butz & Y. Xiang: A method for implementing a proba-
bilistic model as a relational database. Eleventh Conference on Uncertainty
in Artificial Intelligence, 1995, pp. 556−564.

[88] S.K.M. Wong: An extended relational data model for probabilistic reason-
ing Journal of Intelligent Information Systems,9, 1997, pp. 181−202.

[89] J.K. Yamanishi: A decision-theoretic extension of stochastic complexity
and its applications to learning. IEEE Transactions on Information Theory,
44, 1998, pp. 1424−1439.

