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This document surveys the field of Big Data and the new scientific challenges and opportunities 
posed by Big Data.  Big Data is today a commercial reality, a result of the success of data aggregators 
such as Amazon and Google, and it is supported by advances in flexible cloud computing for storage, 
maintenance and data delivery.  These developments will have a profound impact on the conduct of 
science in fast-moving areas because of their generality.  While in the past, Big Science such as the 
LHC and the confirmation of the existence of the Higgs Boson has involved vast amounts of data 
distributed to a data grid with enormous computing power, these have served one experiment, and a 
small group of people, answering only one question.  Astronomy is an example in which vast 
amounts of data serve a larger group of people, ranging from "black belt" experts in a single 
observational mode, to astrophysicists studying the data in multiple spectral bands, to school 
children around the world.  Biology is the next frontier for Big Data enabling discoveries by many 
scientists to be extracted from the flood of DNA, RNA and protein sequence data now available.  In 
all of these areas, the key to unlocking these secrets is concepts, methods and analytical tools to do 
more and to do different things with Big Data. The document argues that Big Data is a potential area 
of strength of a KTH-Aalto University collaboration which should also be of interest to many of KTH’s 
industrial partners. The document was commissioned by the KTH ICT platform and has been 
produced by a committee of Erik Aurell (CSC, Chair), Scott Kirkpatrick (KTH Dr HonC), Timo Koski 
(SCI), Mikael Skoglund (EES) and Ozan Öktem (SCI), and with the participation of Dr Danny Bickson 
(Carnegie Mellon University, USA),  and Academy of Finland Centre of Excellence on Computational 
Inference Research (Aalto University, Finland). The opinions and recommendations expressed are in 
all cases those of the authors and do not necessarily reflect those of their respective units or 
organizational affiliations. 
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Extended executive summary 

Background and Objective: The last decade has seen an unprecedented acceleration in the 

amount and complexity of data collected and stored, in all spheres of human activity.  The 

total world production of digital data will soon reach Avogadro’s number (6x10
23

) bytes per 

year, while several large projects in science by themselves already produce petabytes (10
15

). 

Big Data on such a scale no longer by itself confers information on which humans can act. 

From Big Data we need to extract Small Information which is actionable, and which can be 

used to advance modern societies, and modern science and technology. The objective is to 

make KTH and Aalto world-wide leaders in this endeavor.   

Challenges and Methods: Big Data can be used in simple ways such as computing averages, 

correlations, etc. The challenges are to use Big Data also in more intelligent ways which scale 

to very large data sizes. This translates to developing tools and theories for inference from Big 

Data for basic tasks such as estimation, prediction, clustering and model learning. The 

underlying assumption is that this can be done if and when Information is much smaller than 

Data.  A confluence of interests in many different fields such as sparse signal processing, 

Bayesian hierarchical modeling and statistical physics and is making this a very active area.  

Opportunities and Timeliness: Sweden and Finland are world leaders in telecommunication, 

and play leading roles in the European Institute for Innovation and Technology (EIT) KIC 

ICTlabs. KTH hosts Swedish Science Council (VR) Centre ACCESS on complex networked 

communication systems, the largest research effort in this area in Europe, recently very 

successfully evaluated by VR. Many groups in ACCESS have recently moved into sparse 

signal processing problems. KTH and partners have created SciLifeLab, a center combining 

advanced technical know-how and state-of-the-art equipment generating many different types 

of Big Data in the life sciences. Finnish research is a long-term world leader in data analysis. 

Aalto University and University of Helsinki host the recently created Academy of Finland 

Centre of Excellence in Computational Inference Research (COIN). In conclusion, there is a 

window of opportunity to establish KTH and Aalto and Sweden and Finland as leaders in a 

Big Data effort, in EIT, in applications to life sciences and health, and more generally.  
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What is Big Data? 

In this report we take Big Data to mean data so large that it cannot be comprehended and 

directly used by humans. It is today a commercial reality, directly with data aggregators such 

as Amazon and Google, but also with credit cards, cell phones, and everywhere else, and is 

supported by advances in flexible cloud computing for storage, maintenance and data 

delivery. We will argue that these developments will have a profound impact on the conduct 

of science and society because of their generality. We will also argue that a main focus should 

be to develop theories, methods and tools to use and to exploit Big Data in novel ways which 

scale to very large data sizes. 

 

While we will be vague on precisely what (present or future) data is or is not “big”, we note 

that petabytes (PB, 10
15

 bytes) of data are reached by today’s largest commercial actors and 

single research projects
1
. Let us recall the storage units of megabyte (MB, 10

6
 bytes), gigabyte 

(GB, 10
9
 bytes), terabyte (TB, 10

12
 bytes) and, on the other side, exabyte (EB, 10

18
 bytes), 

zettabyte (ZB, 10
21

 bytes) and yottabytes (YB, 10
24

 bytes). According to well-known 

estimates the world’s annual production of digital data reached zettabytes in 2011
2
, and could 

reach yottabytes in the next ten years. To put this in perspective, one YB would weigh about 

two hundred million tons if stored in current top-of-the-line hard disks which you, gentle 

reader, may have in your computer
3
. Whatever the accuracy of these projections, in many 

situations and in many applications data much smaller than one PB will for all purposes be 

“big”. We can therefore assume that Big Data is here, and that there will only be more of it.  

 

Big Data has been surveyed and high-lighted in many contexts in the last years. A 2010 White 

Paper from TIVIT – the Finnish Strategic Centre for Science, Technology and Innovation in 

the Field of ICT
4
 – focuses on data reserves as a potentially strategically important resource, 

i.e. on the direct ownership of the data as well as of the physical devices where it is stored: 

 

Finland is a small, safe country at the very center of current western civilization. Finland is 

also a neutral and technically advanced country – with a good or arguably leading position 

in many global rankings [...] Internet world allows us to build as many bridges as we need 

to serve Europe, Russia, USA or China or any other global market. Finland’s strong 

bedrock, clean water, secured energy availability and even empty factories are also assets 

in the data reserves business, where safety and stability are important (Paajanen and 

Kuosmanen 2010, Sect 9). 

 

The above scenario is already a reality as shown by the Google Hamina data center in 

Summa, Finland
5
 and the new server farm to be built by Facebook in Luleå, Sweden

6
. The 

                                                           
1
 Google had about 1 PB under active management in 2006. The LHC at CERN produced about 25 PB per year 

in the search for the Higgs boson. 
2
 Wikipedia, Zettabyte, http://en.wikipedia.org/wiki/Zettabyte 

3
 A Seagate Barracuda model ST3000DM001 stores 3 TB and weighs 626 g. One would need 3 x 10

11
 such 

devices to store 10
24

 bytes which would weigh about 2 x 10
11

 kg.  One YB would also weigh about four kilo if 

stored in double-stranded DNA, the most compact, scalable and stable storage medium currently known. 

Sources: Wikipedia, http://www.invitrogen.com/site/us/en/home/References/Ambion-Tech-Support/rna-tools-

and-calculators/dna-and-rna-molecular-weights-and-conversions.html, and elementary estimates. 
4
 Reijo Paajanen and Pauli Kuosmanen  ”White Paper: Finland and Data Reserves”,  Tieto- ja 

viestintäteollisuuden tutkimus TIVIT Oy, 15.9.2010. 
5
 Helsingin Sanomat, 2010-15-1 ”Google raotti ovea hakukoneen uumeniin Summassa” and 

http://www.google.com/about/datacenters/locations/hamina/ 

http://www.invitrogen.com/site/us/en/home/References/Ambion-Tech-Support/rna-tools-and-calculators/dna-and-rna-molecular-weights-and-conversions.html
http://www.invitrogen.com/site/us/en/home/References/Ambion-Tech-Support/rna-tools-and-calculators/dna-and-rna-molecular-weights-and-conversions.html
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Hamina data centre currently employs around 100 people, mostly Finnish and from the local 

community, working on site as computer technicians, water/air engineers, in catering, security 

and in other roles; the Facebook Luleå server farm is expected to create at least about the 

same number of jobs when in operation. 

 

The perspective of this white paper is that data storage, data management and data ownership 

are only aspects of one side of the issue, and that an equally important challenge is what to do 

with the Big Data one has access to. Much of it will always be publically available, either as 

produced by large research projects, or as generated in government or by citizens. This 

evaluation is supported by the conclusions of a 2011 McKinsey report
7
 making the following 

(strong) recommendation: 

 

Following a comprehensive study, we note that recent big data technological trends are 

to meet huge computational requirements, by using distributed systems and cloud 

computing, ultimately requiring high energy consumption and data communication 

bottlenecks. We note there is no concerted large scale effort to develop new analysis and 

inference tools […] we believe that the glaring lack in developing new analysis and 

inferring tools will soon bring saturation in big data handling performance.  

 

Ericsson has launched the vision of “50 billion devices” or “everything that can benefit from a 

network connection will have one”, stressing that in the future most digital data will be 

actually or potentially linked to the Internet and thus actually or potentially accessible by 

anyone (or anything) and from anywhere, allowing for many new types of Big Data.  While a 

recent Ericsson White Paper
8
 focuses on the concomitant business, policy and technological 

challenges, it is also pointed out that 

The human aspect of more than 50 billion connected devices goes way beyond smart living 

and new gaming devices. Ubiquitous connectivity is about being able to control things in a 

way that saves time and simplifies life […] Consumers would prefer not to be bombarded 

with generic, irrelevant information and messages. If consumers choose to opt in to 

advertising- or promotion-funded services, the messages and information they are sent 

needs to align with their interests, whether they are out shopping or visiting a new area. 

Such capabilities are already about to be realized, but can be enhanced through service 

enablement and data analyses, for example of location, interests and history (Ericsson 

White Paper op cit, page 9). 

 

In other words, learning to do more with Big Data one has, as opposed to getting more Big 

Data to what one already knows to do, is also part of Ericsson’s “50 billion devices” vision. In 

addition, Ericsson has clearly pointed out Big Data as one main area for new collaboration 

with KTH, in the framework of the newly established KTH—Ericsson strategic partnership. A 

similar view is offered by The World Economic Forum, which in 2012 conducted several 

                                                                                                                                                                                     
6
 Invest in Sweden  http://www.investsweden.se/Sverige/Press-information/Facebook-till-Lulea/ and e.g. Ny 

Teknik, November 7, 2012 as well as continuous coverage in Norrbottenskuriren and Norrländska 

Socialdemokraten. 
7
 J. Manyika, M. Chui, J. Bughin, B. Brown, R. Dobbs, C. Roxburgh, and A. H. Byers, “Big data: The next 

frontier for innovation, competition, and productivity,” McKinsey Global Institute, 2011. 
8
 “More than 50 billion connected devices”, Ericsson white paper 284 23-3149 Uen | February 2011 

http://www.investsweden.se/Sverige/Press-information/Facebook-till-Lulea/
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panel discussions on Big Data, producing a report from which one can quote the following 

summary
9
: 

 

A flood of data is created every day by the interactions of billions of people using 

computers, GPS devices, cell phones, and medical devices. Many of these interactions 

occur through the use of mobile devices being used by people in the developing world, 

people whose needs and habits have been poorly understood until now. Researchers and 

policymakers are beginning to realise the potential for channelling these torrents of data 

into actionable information that can be used to identify needs, provide services, and predict 

and prevent crises for the benefit of low-income populations. Concerted action is needed by 

governments, development organisations, and companies to ensure that this data helps the 

individuals and communities who create it. 

 

On the research funding side, in March 2012, the US federal government announced a 

national “Big Data Research and Development Initiative”
10

 with a funding budget of USD 

200 million and an additional USD 250 million investment by the Department of Defense 

(USA) to improve the tools and techniques needed to access, organize, and clean discoveries 

from huge volumes of digital data. In Finland the Academy of Finland finances a Centre of 

Excellence in Computational Inference Research (COIN, Aalto University and University of 

Helsinki) while in Sweden there is as of today no directed research funding to Big Data
11

. 

 

Finally, in June 2012 the Royal Society (UK) released “Science as an open enterprise”
12

 with 

a number of recommendations for the generation, preservation and dissemination of data to 

facilitate maximal impact from research data, and enhance its reproducibility in an age of 

Big Data. In particular, this report identifies six main areas where change is needed:  

 

(1) developing greater openness in data sharing; (2) developing appropriate reward 

mechanisms for data generation, analysis and dissemination; (3) developing data 

standards to enable interoperability; (4) making data associated with published papers 

accessible, and amenable to assessment and reuse; (5) developing a cadre of ’data 

scientists’; (6) developing new tools for data analysis.  

 

While first five areas are more policy requirements, the sixth area requires new technological 

breakthroughs and speaks directly to the focus of this white paper. 

Case studies of Big Data and its uses 

Astronomy 

                                                           
9 “Big data, big impact: New possibilities for international development,” A report by World Economic Forum, 

2012. 
10  “Obama administration unveils “Big Data” initiative: Announces $200 million in new R&D investments”, 

Executive Office of the President of United States, 2012. 
11

 Some support may be obtained if calls will be launched within the areas “Data mining” and “Streaming data” 

listed in Swedish Foundation for Strategic Research  Research Strategy 2012-17, Section 5.5 “Data-X” , from 

the Swedish Science Council currently running program “Statistics in the Empirical Sciences”, as well as from 

the Wallenberg foundation and other national and international research funding bodies. 
12

 “Science as an open enterprise,” The Royal Society Science Policy Centre report 02/12, 2012. 
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The UK Royal Society's report "Science as an open enterprise" (Ref 12, op cit) presents 

numerous examples of the social structures and infrastructure that enable fields of science 

such as biology to advance faster through widely shared access to and reuse of experimental 

data.  Astronomy figures prominently in this as it was one of the first sciences to face Big 

Data issues and as it lacks the complication of commercial applications.  New astronomical 

data needs to be kept private only long enough to allow careful analysis before it is first 

published, and publication usually requires that the data be placed in a public archive, a 

service that is often provided by the telescope facilities at which the data is gathered.  Since 

telescopes are expensive and long-lived, and serve many astronomers, access to them is 

competitive.  Making the eventual data public is typically one of the requirements that every 

proposed measurement program in astronomy must meet.  

There are many specialties within astronomy, distinguished principally by the spectral band 

within which the observations are made.  The newer modes, such as x-ray (done only from 

satellites), and radio (which may use antenna arrays) provide data which is very useful in 

combination with more conventional observations, but require special skills to calibrate and 

assess.  As a result, the issues of metadata standards are now being addressed by international 

organizations that have been created from the bottom up by astronomers to permit "virtual 

astronomy (VA)."  A very recent trend is telescopes that are operated as survey instruments, 

scanning the whole sky and placing their data immediately into a public archive for analysis.  

The Large Synoptic Survey Telescope (LSST) is a very high technology example of this.  

When completed in 2022 it will be producing 100s of PB of data per day.  Many of the 

currently most active questions explored in astronomy require comparing observations of the 

same parts of the sky that are made by these very different techniques, so means of finding the 

highly distributed data held at different facilities' archives, and of detecting anomalous or 

"interesting" combinations of characteristics needed for a particular study are critical.  

Registries that locate data at various frequencies from a particular object are being created by 

the US (NSF-sponsored) VAO and the Euro-VO and standardized though international 

organizations such as the IVAO.  But the newest observational facilities, for example, the 

ALMA radio telescope array in Chile, will deliver data not as brightness as a function of 

spherical angle (the inverse of looking down at the earth and recording its color) but in 

"hypercubes" that lump together observations made continuously as a function of energy and 

time at each position.  This richer data allows chemical analysis of the molecules found in 

space ("origins of life?") and treatment of the many interesting non-stellar phenomena now 

seen, such as jets of material entering black holes, or interstellar dust out of which stars are 

forming, or the many planets now characterized around nearby stars.  The recent Nobel Prize-

winning discoveries of dark energy and the ongoing search for dark matter have benefitted 

from the availability of multi-spectral data from the sky. 

Tools for reducing the raw observational data to permit reuse and for analysis of the calibrated 

results to reach scientific conclusions have evolved along a path that applies to other fields 

besides astronomy.  In each observational mode, the first experiments required developing 

and sharing calibration methods so that experimental reproducibility could be achieved.  

Subsequent analyses were first done by "black belt" astronomers (and their close disciples) 
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using tools that few others could master.  As the analyses have become better understood, a 

wider group of astronomers and cosmologists can take advantage of larger amounts of data, or 

propose useful experiments without the same deep knowledge of instrument and technique 

that the "black belt" group had.  Visualization tools and statistical packages also become 

shared by different types of astronomers.   

The above developments can be seen as templates more or less shared by many other data-

rich sciences. A prime example of making data public is the publication (and hence sharing) 

of sequence data in the Life Sciences. In large targeted research projects it is inevitable that 

the discoveries primarily go to the groups developing and/or having first access to the latest 

instruments. Two of the most important examples would be the sequencing of the human 

genome
13

 and the recent discovery of the Higgs boson
14

. Big Data however also allows for 

serendipitous discoveries such as Dark Energy and the accelerated expansion of the Universe 

– arguably the most important discovery in fundamental Physics since quantum mechanics 

and relativity theory – re-using data and/or re-using existing massive data-generating 

equipment in novel ways. An analogous example in the Life Sciences would be the discovery 

that Neanderthals interbred with modern humans
15

 – one of the most important advances of 

all time in the understanding of human origins and pre-history. 

Life Sciences  

The stunning development of life sciences has to a large extent revolved around the ability to 

acquire data on a variety of scales of biological organization. Such data can be grouped into 

three kinds: image data, sequence data, and text data. Medical imaging of anatomical 

structures and microscopy imaging of tissues have for a long time been an indispensable part 

of healthcare, and microscopy imaging of cells and sub-cellular structures is central in modern 

molecular and cellular biology.  Sequence data are the result of fundamental breakthroughs in 

DNA sequencing with applications to transcriptomics (RNA data) and epigenomics (DNA 

modification and structure data), and many other fields.  Text data are medical records and 

biomedical scientific publications and any other large data source in text format, and will in 

this document be discussed below in Commercial Big Data, Social networks, and Health 

care. Due to their greater chemical diversity and available techniques, large-scale data on 

proteins (proteomics) and of small metabolites (metabolomics) are typically acquired by 

methods relying on imaging and can (in the present context) be considered image data. 3D 

structures of macromolecules and macromolecular assemblies have also mainly been acquired 

by imaging, but sequence data (as outlined below) and text data as documented in the 

scientific literature are also very important.  

                                                           
13

 "Initial sequencing and analysis of the human genome" and "Finishing the euchromatic sequence of the 
human genome", International Human Genome Sequencing Consortium, Nature 409 860–921 (2001);   431  
931–45 (2004). 
14

 ”A new boson with a mass of 125 GeV observed with the CMS experiment at the Large Hadron Collider”, The 
CMS Collaboration, Science 338 1569-1575 (21 December 2012); “A particle consistent with the Higgs boson 
observed with the ATLAS detector at the Large Hadron Collider”, The ATLAS Collaboration, Science 338 1576-
1582 (21 December 2012). 
15

 “A Draft Sequence of the Neandertal Genome”, R Green et al, Science 328 710-722 (7 May 2010). 
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We first note that not long ago, all these data were not “Big”. Microscopic images were 

inspected by eye by the microscopist, genes were sequenced one at a time in the “one PhD 

student, one gene” mode, and medical records and data were not digitalized. Today, all of 

these data are however naturally “Big”: microscopic images can be obtained automatically in 

large quantities and analysed by software, and whole genomes can be sequenced in one batch.  

One characteristic aspect of Big Data of the image kind is that they immediately call for 

advanced data processing, the prime example being various tomography techniques in 

medical imaging (CT, PET/SPECT, MRI/fMRI, etc.) which rely on inverse techniques. We 

will discuss inverse problems and inference below. Other examples from structural biology 

are to understand the structural 3D/4D conformation of proteins and macromolecular 

assemblies to understand their function in biological processes in time and space. X-ray 

crystallography
16

, NMR and 3D Electron Microscopy
17 are all examples of methods that 

combine data collection strategies with methods for inference to provide such information.  

The main usage of inference in imaging has mostly been relegated to situations where 

measured data are not interpretable by humans, e.g., a human cannot by inspecting 

tomographic data easily visualize the 3D structures that give rise to this data. The potential for 

inference of Big Data is however yet to be fully exploited in the analysis of images and this is 

currently one of the main issues in imaging, i.e., to automate the imaging pipeline.  

GenBank, the central repository of gene sequences, today contains about 37 GB annotated 

data
18

. By comparison, this is only about 50 times the human genome (3∙10
9
 nucleotides, 0.75 

GB) reflecting the fact that most DNA in humans and other higher organisms does not code 

for annotated genes. A single modern high through-put experiment can on the other hand 

produce of hundreds of millions of short DNA sequences called “reads”, which is also in the 

tens to hundreds GB depending on the platform. Recently individual human cells where 

sequenced
19

. Such experiments rely (at least at present) on the same modern whole-genome 

technologies which can be used to sequence environmentally collected samples, profile RNA 

and epigenetic changes and anything else. As the costs of such technologies continue to fall 

one can envisage sequencing thousands of individual cells. This would give TBs or even PBs 

of data on e.g. genomic diversity in tumors. One can also envisage sequencing millions of 

patients and/or samples of the bacterial flora from millions patients which would give PBs or 

even EBs of data. It is clear that the economic basis for such massive data gathering will be 

present as the cost is already today relatively low.  

One should acknowledge that the discrepancy between the amount of data generated and the 

amount of useful information obtained has often been criticized in Biology, perhaps most 

famously by Sidney Brenner 

                                                           
16

 de La Fortelle & Bircogne, Methods Enzymol. 276, 1997 
17

 Förster et al, Methods Enzymol. 483 2010 
18

 NCBI-GenBank Release 193.0 (December 15 2012) held 161140325 loci, 148 390 863 904 bases, from 
161140325 reported sequences. 
19

 “Genome-wide detection of single-nucleotide and copy-number variations in a Single Human Cell”, C Zong et 
al, Science 338 1622-1626 (21 December 2012); “Probing meiotic recombination and aneuploidy of single 
sperm cells by whole-genome sequencing”, S Lu et al, Science 338 1627-1630 (21 December 2012); 
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It is what I call 'low input, high throughput, no output science'!
20

 

A recent report in “Issues Online: In Science and Technology” highlights the challenges of 

Big Data in the Life sciences from the viewpoint of the Human Microbiome Project (HMP)
21

. 

Although this very large sequencing project has been the subject of high-profile recent 

publications
22

, in an interview in Science, June 6, 2012, George Weinstock, one of the 

principal investigators for the HMP, also stated  

“despite the huge amount of the work that has been done on the human microbiome, the 

number of rigorously proved connections between disease and microbiome are few to 

none” 

 

What is missing in the above is a) the prosaic point that a “a few” rigorously proved 

connections could well be worth all the effort from the societal point of view, even if the 

scientists involved had hoped for much more, and b) the methodological point that most likely 

not all that could be done with the data has been done. A somewhat related example are 

genome-wide association studies (GWAS)  linking risk of disease to personal biomedical data 

and which use single-nucleotide polymorphisms (SNP) arrays to probe for hundreds of 

thousands to millions of genetic variants. The ultimate goal of such research is to create a 

database of disease signatures that can be used to predict the risk of disease in an individual, 

and then customize appropriate prevention or therapeutic efforts for personalized medicine. 

While there have been many reports that GWAS studies have not delivered all the information 

initially hoped for – perhaps because the analysis tools available have not been powerful 

enough – there is no question that single results in this direction, even if they are relatively 

rare, can be crucially important for single patients.  

We will end this brief overview by mentioning a high-profile serendipitous discovery using 

Big Data accumulated by many research teams and using sequence data combined with 

inference. It has recently been realized that 3D protein structure can reliably be inferred from 

the statistics of thousands of similar but not identical protein sequences
23

 in some sense 

solving the long-standing protein structure prediction problem. Let us recall that life tends to 

re-use the same building blocks, such that similar proteins performing similar functions can 

be found throughout all forms of life. A protein's 3D-structure leaves an echo of correlations 

in the evolutionary record, and in current sequencing projects many thousands of new 

genomes are produced every year. This direct coupling analysis to determine 3D-structure 

from many protein sequences is a paradigm for intelligent use of Big Data from the ongoing 

sequencing revolution, and will likely have far-reaching implications. 

 

                                                           
20

 Interview in Nature Reviews Molecular Cell Biology 9, 8-9 (January 2008)  
21

 M. Sagoff, “Data deluge and the human microbiome project,” Issues Online: In Science and Technology 

(National Academy of Sciences (US) , National Academy of Engineering (US), Institute of Medicine (US), and 

University of Texas at Dallas), 2012. 
22

 The Human Microbiome Project Consortium “Structure, function and diversity of the healthy human 

microbiome”,   Nature 486, 207–214 (14 June 2012) 
23

 F. Morcos et al, "Direct-coupling analysis of residue co-evolution captures native contacts across many protein 

families", PNAS 108: E1293-1301 (2011) & T Hopf et al, “Three-Dimensional Structures of Membrane Proteins 

from Genomic Sequencing”, Cell 149, 1607-1621 (2012). 
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Commercial Big Data, Social networks, and Health care 

A fast growing area in practical deployment of Big Data use today is personalization and 

recommendations. In the past, companies focused their marketing efforts towards advertising 

popular items. With the growth of data collected about user history and preferences, inference 

methods can be used to personalize user experience by potentially computing for each user a 

personalized set of recommendations.  The problem is that computing for each user a 

recommendation is communication intensive task (vs. the task of computing a single 

recommendation for the whole population of users).  

The Netflix contest gave a significant boost to this area, proposing a one million dollar prize 

for researchers who can optimize their recommendation engine in 10%
24

. While in theory the 

winning method achieved the requested improvement, it was too difficult to implement on the 

full dataset because of algorithm complexity and data magnitude, and thus only a subset is 

actually deployed in Netflix today
25

. 

To emphasize how demanding is the personalization task we give some example related to 

Facebook data magnitude
26

. One billion Facebook users exchange 6 billion messages a day 

and upload 300 million photos a day. It is clear that computing personalization for one billion 

different users which have rich historical, geographical and social information is a 

computation intensive task. 

Unfortunately, there is a big gap between the computation framework and tools for managing 

big data and the increasing magnitude of the data. There is still a significant amount of work 

needed for continuing developing algorithms and tools to catch up the growing data 

magnitude. Furthermore, according to a recent McKinsey report
27

: 

The study projects there will be approximately 140,000 to 190,000 unfilled positions of 

data analytics experts in the U.S. by 2018 and a shortage of 1.5 million managers and 

analysts who have the ability to understand and make decisions using big data. 

The basis of advanced training is research, and academic research in Big Data issues is 

therefore indirectly also highly relevant to the commercial sector. As we will argue below, it 

is of particular importance to KTH and Aalto and Sweden and Finland that Big Data research 

and then advanced training of Big Data professionals on levels of second cycle (MSc) third 

cycle (PhD) and beyond are carried out here.  

One sector where large data of the social network type is and will be available to academic 

researchers (at least in countries with largely socialized medicine) is however medicine and 

health care. Traditionally, drug discovery/development as well as medical therapies has been 

oriented toward diagnosing and treating individual organ systems, focusing on one disease at 

a time.  Hence, current treatment guidelines are geared toward treating a "standard" patient 
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with a single illness. Most of us patients do not fit these narrow profiles, especially as we 

grow older and things get complicated.  We (patients) might display symptoms common to a 

variety of illnesses, or we may already be suffering from multiple diseases while treatment 

guidelines are sometimes vague and may not exist at all when a patient has multiple diseases 

or is at risk for developing them. Treating patients with multiple conditions is also costly. To 

reduce costs, doctors need ways to identify early intervention opportunities that address not 

only the primary disease but also any additional conditions that a patient might develop. 

Consequently, health care providers are forced to adopt ad hoc strategies that include relying 

on their own personal experiences (and knowledge), among other approaches.  Straying from 

those guidelines (where available) may not deliver the best outcomes. 

Inference from Big Data should enable healthcare providers to use individual patient data 

(including both structured and unstructured data) as well as insights from a similar patient 

population to enhance clinical decision-making.  Healthcare providers and payers should also 

be able to move beyond a one-size-fits-all approach to deliver data-driven, personalized care 

that helps improve outcomes, increase the quality of care and reduce costs. An example of 

usefulness of inference of Big Data analytics in the health care domain is IBM’s DeepQA
28

, a 

technical platform for analysis of textual data that can be used for analysis of hospital records.  

 

Where are the research challenges? 

The title of this white paper is “Big Data to Small Information.” The overall research 

challenge we address is how to take Big Data whatever its size and shape and transform it to 

actionable information, in new ways. This holds as much in science, where information can be 

the basis of a hypothesis or the means to falsify a hypothesis, as in the commercial world, 

where information underlies business decisions. 

Let us set the stage by outlining two types of research challenges not considered in this 

document. 

First, Big Data needs to be stored, indexed, delivered, curated and otherwise managed, and for 

petabyte scale and up this is very challenging. Referring to the 2010 TIVIT white paper 

(Paajanen & Kuosmanen, op cit) such questions underlie – and are crucial to – functioning 

Data Reserves. For this cloud computing and suitable infrastructures and advances in 

hardware, distributed computing and related fields will be needed. Such research challenges 

are not covered here. 

Second, referring to the discovery of the Higgs boson, it is well known that out of all the 

proton-proton collisions in the LHC only a very tiny fraction produced Higgs bosons, and 

only some of these decayed in ways that could be observed. For each observable channel e.g. 

H→γγ (Higgs boson decaying into two photons) enormous efforts were needed to find such 
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events in the data, and also to determine the expected background i.e. how many similar 

photon pairs would be produced in the experiment by other physical processes. The discovery 

then appears as a relatively small deviation above the background curve at a definite energy
29

. 

Such results can only be conceived if and when scientists know exactly what to look for. Such 

research challenges are not covered here. 

Turning now to our goal of how to turn Big Data into Small Information, we can frame it as 

how to perform the basic signal processing tasks of estimation, prediction, clustering and 

model learning – in the Big Data context. 

Estimation 

Estimation is the task of compressing data into a small set of meaningful numbers (what is the 

average? what is the largest and the smallest? how do these change with time? are there 

correlations in the data?). In network management such a task could also be called 

aggregation. The challenges are how to find the small sets of aggregates, how to visualize 

them to make them meaningful to humans, and how to compute such numbers. Swedish 

statistician Hans Rosling (KTH Prize Winner 2010) has shown how data on global health can 

be distilled and displayed giving surprising new insights
30

. This work uses innovative 

information design, is grounded in an intimate knowledge of the domain, and is positioned in 

the world-wide debate of the most important policy questions of our time
31

. We expect that 

similar bottom-up efforts, starting from an understanding of the phenomenon and proceeding 

through innovative visualization, may similarly transform the exploitation of Big Data in 

many other fields. 

Estimation from Big Data serves several purposes. From a stream of data too large to keep we 

need to filter out, summarize or extract the salient events, just as CERN had to with all of the 

mostly irrelevant data collected by the LHC. In general, we are still in the early stages of 

learning how to do that. A special case where one can efficiently learn complex properties 

only looking once at the data as it arrives is if the data can be described by Bayesian models 

with conjugate priors
32

. As the data streams in, one can then recursively apply Bayes' theorem 

to update the posterior distribution. On a more general note, C.R. Rao, one of the leading 

statisticians of the past century, has pointed out that the emergence of computer intensive 

practices of data analysis will probably require a complete re-thinking of the theories of 

model based hypothesis testing and estimation theory
33

.  

Prediction 
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A prediction or forecast is a statement about the way things will happen in the future, often 

but not always based on experience or knowledge
34

. Prediction is typically connected to 

estimation, where estimated values are needed for the prediction, and prediction is used to 

improve the estimates. The Kalman filter and its generalizations have been mainstays of 

control theory for over half a century. 

Big Data calls for on-line prediction algorithms of which the Kalman filter is an important 

example. However, for large data dimensionalities the standard approach may be 

computationally unfeasible or unstable. For instance, if an algorithms needs to invert a matrix 

of correlations, this is ill-defined if the number of dimensions of the data is larger than the 

number of samples (the “high-dimensional statistics” setting, see e.g.
35

). Many Big Data 

sources will also be far from Kalman assumptions of a linear dynamical system where all 

error terms and measurements have a Gaussian distribution. These are very active research 

questions, pursued by various techniques ranging from robust control, various sparsity 

techniques, iterative methods such as particle filtering, re-sampling, Expectation-

Maximization, etc.  

Major goals of Big Data estimation and prediction are to transform research by making data 

readily available and manipulable by the people who will frame the next important questions. 

In the Life Sciences a primary challenge is to integrate diverse large-scale data sets to 

construct models that can predict complex phenotypes such as disease e.g. multiple sclerosis. 

As the scales and diversity of the data grow, this type of modeling will become increasingly 

important for representing complex systems and predicting their behavior. The exabyte scale 

of data will require the development of tools and software platforms that enable the 

integration of large-scale diverse data into models that can be operated on and refined by 

researchers in an interactive and iterative fashion. This is one of the central goals to meet to 

get impact in molecular medicine, biomedicine and the life sciences.  

Clustering 

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects 

in the same group (called cluster) are more similar (in some sense or another) to each other 

than to those in other groups (clusters)
36

. Clustering is central to many commercial 

applications of Big Data including search (Google), social network modeling (Facebook), and 

to pattern recognition, image analysis, information retrieval, and bioinformatics, among other 

fields. 

To cluster data of high dimensionality and/or different data types is not obvious (what is 

similar? what is the distance between objects? is it even meaningful to measure similarity 

between two objects by one number?). By itself clustering is an ill-posed problem since what 
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constitutes a good cluster is at least partly in the eye of the beholder
37

. Preferences can be 

mathematically formalized as clustering criteria, but the choice of which criterion to use in a 

specific application is still with the user. On the other hand, if a criterion is agreed upon, 

different algorithms can be compared as to accuracy and computational aspects, and trade-offs 

will typically depend on the size and type of data. Many methods will also involve 

optimization and calculation of integrals. Alternatively, if a method is based on an iterative 

procedure it would need Monte Carlo sampling. A specific challenge in clustering Big Data is 

therefore how to handle the large-scale computational issues that arise.  

Computer scientists
38

 and mathematicians 
39

have developed methods of spectral clustering 

which have shown surprisingly wide applicability. In this context, data objects are points in a 

space, an abstract representation of the concrete situation being formalized. It is not just an 

ensemble; it carries with it a number of useful concepts and determines what kind of 

mathematical operations one can perform, how to interpret results, and how to relate results 

back to the original problem. This story encourages the belief that advanced concepts from 

mathematics – and perhaps also from information theory and physics and other fields – will 

find new fields of applicability in Big Data. The challenge is here to align the interests and 

desired outcomes of data stake-holders with the rigor and power of the mathematical sciences. 

For this institutional and/or financial support is required, to fund the necessary   “face time” of 

actors from both sides.      

Model learning 

Estimation, Prediction and Clustering are all connected under the heading of Model Learning. 

To estimate properties of the data means to estimate parameters of a (perhaps simple) model, 

to predict future data is one main reason to constructing a model, and to cluster the data is 

often the first step in estimation, prediction and model learning. 

Learning the “truth” from data alone is impossible, at least in the Popperian framework 

adopted in the physical sciences. Learning takes place in a conceptual environment, often a 

formulated as a class of statistical models describing the data. Surveying all (or even a 

fraction of) methods developed for model learning in statistics, information theory and many 

other fields is out of bounds of this document, and we will only point to currently topical 

research directions. 

First, the benchmark of principled model learning is the maximum likelihood principle of 

statistics. This may be extended to Bayesian learning if a prior distribution is taken into 

account. In both cases one aims to maximize the posterior probability of the data over the 

parameters in a model class. For discrete spaces maximizing likelihood amounts to a problem 
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of combinatorial optimization which is typically computationally unfeasible for large data 

sizes.  

Exponential families are an important class of statistical models characterized by smaller set 

of functions of the data known as sufficient statistics. All models in equilibrium statistical 

mechanics are examples of exponential families, where the sufficient statistics are the terms in 

the energy function, and the normalization constant is the free energy. In exponential families 

maximum likelihood models are equivalent to maximum entropy distributions on the 

(empirically measured) sufficient statistics. This allows for a host of variational (approximate) 

approaches which scale to very large data sizes, recently reviewed in
40

. The recent progress 

on the protein structure prediction problem (Morcos et al 2011, Hopf et al 2012, op cit) relied 

on precisely such an approach, as do the famous coding/decoding algorithms implemented in 

hardware in every cell phone and every mobile base station. This is a very active field with 

many open directions e.g. how to extend them to data which arrives incrementally, or how to 

go beyond “Belief Propagation”, or how to combine discrete and continuous data more 

effectively then at present. 

Second, it has been realized that sparse models (described by few parameters) can be 

efficiently determined from data even if is unknown before seeing the data which parameters 

to use
41

. These methods have been the focus of enormous attention in recent years and have 

been found to compete favorably with application specific state-of-the-art approaches in 

imaging and many other fields
42

. The development and the use of such “compressed sensing” 

or “sparse signal processing” techniques will likely only continue to grow.  

Yet another way to reduce the data, in addition to compression which decreases the 

dimensionality of the data items, is active learning which uses only a subset of the data items 

and discards the non-informative ones
43

.  By choosing examples the number of data items to 

be used to learn a concept can often be much lower than the number required in normal 

supervised learning. Finally, Approximate Bayesian computation (ABC) can be used when the 

likelihood function itself is computationally costly to evaluate. ABC has gained popularity 

over the last years for the analysis of complex problems arising in e.g., population genetics, 

ecology, epidemiology, and systems biology
44

, illustrating that “Bigness” can arise as much 

from the (required) model as from the data itself. 

New Theory for Big Data 

One main thrust where a Sweden—Finland collaboration will be able to make serious impact 

is in establishing Big Data as its own field, on solid scientific grounds. As argued by many, 
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e.g. by Noam Chomsky
45

, drawing conclusions from data is sometimes carried out on weak 

scientific grounds. While the explosion in the availability of data has opened up for ample 

opportunity, it is also allowing opportunistic and not always well founded use of the data.  

Information theory is a branch of applied mathematics and CS/EE engineering that builds 

theory for asking and answering questions like “what is information?” - “how much 

information can be stored/conveyed given a set of physical constraints?” - “how can data be 

reduced/compressed and still contain the same amount of pure information?” The new age of 

Big Data challenges the existing theory in several different ways. For example, information 

theory has so far assumed that the raw data itself is available for block-based handling, that is, 

that the data can be stored for processing. However, as outlined before in this document, we 

are now facing scenarios where the data can be so huge that it is impossible to access it all. 

This challenges earlier definitions of “information” – what is the information content in data 

that cannot be accessed?  

Another challenge for information theory is to guide the development of new compression 

schemes. It is well-known that in most existing practical applications compression/encoding is 

fundamentally a non-linear process, and to approach fundamental bounds on performance as 

predicted by information theory, non-linearity cannot be escaped. On the other hand, 

compressed sensing has emerged as a very promising concept for reducing the amount of 

data, based on linear encoding (and non-linear decoding). To increase the amount of 

compression beyond what is presently promised by compressed sensing, it will be necessary 

to consider non-linear schemes. Here guidance from information theoretic achievability 

proofs will serve as an important tool. 

Finally, fruitful interaction has recently emerged between mathematics, statistical physics and 

information theory. So far results in the intersection between these fields have contributed to 

understanding both scaling laws in large wireless networks as well as fundamental aspects of 

decoding error-correcting codes. Based on experience from modeling large-scale phenomena 

and networks, there is ample opportunity for new contributions in the direction of Big Data. 

 

Why KTH and Aalto? 

KTH and Aalto University are the two leading technical universities in Sweden and Finland, 

and have formed a large fraction of the scientific-technical elite in the two countries. They 

have formed a strategic partnership and are in many ways each other’s closest partners on the 

world-wide stage.  A cross-the-Baltic collaboration on Big Data represented by KTH and 

Aalto can be predicted to be fruitful on several different grounds: 

Scandinavia is getting known as a geographically suitability location for setting up data 

centers, that is, vast amounts of data are actually stored in this region, and there is a need for 

new expertise in the general area.  
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Sweden and Finland are known to be at the forefront in the deployment of IT infrastructure 

(optical and wireless), which means that here people and machines can be connected in ways 

that are not possible in most other parts of the world. 

The Region in general hosts world-leading institutions in health-care and biology, and in 

Stockholm the development of the Science for Life Lab represents a unique effort for 

strengthening the area. Hence, there will also be a surging need for know-how in the area of 

Big Data in the Life Sciences. 

The Region also represents academic and industrial expertise at the highest-level ICT systems 

and infrastructure, as developed through the years because of the importance of the Swedish 

and Finish telecommunications industry. 

This document has surveyed the field of Big Data and the new scientific challenges and 

opportunities it poses.  We have argued that Big Data will have a profound impact on the 

conduct of science in fast-moving areas and that the key to unlocking new discoveries is 

concepts, methods and analytical tools to do more and to do different things with Big Data. 

We have shown that Big Data poses challenges for estimation, where there is an urgent need 

for on-line algorithms that analyze and learn from the data as it arrives. We have discussed 

clustering in the Big Data context, and have argued that estimation, prediction and clustering 

are all different aspects of model learning and have highlighted promising recent directions. 

We emphasize the need for new theory for Big Data. Without turning data (big or small) into 

information we face the risk eloquently expressed by Nobel Prize Winner Piotr Kapitza more 

than 30 years ago  

The biggest pollution problem in the world today is brain pollution. From all the missions 

we sent to the moon we got enormous data, but we do not know what to do with it.
46

  

KTH and Aalto already have a strong basis for research in Big Data. The KTH Linnaeus 

Centre ACCESS and the Academy of Finland Centre of Excellence COIN are both among the 

largest and most high-profile research efforts in Europe in the general area of ICT, and Big 

Data issues are addressed by many other groups as well.  

The conclusion of this report is Big Data is an important frontier. We recommend the 

management of KTH and Aalto to take steps to have Big Data issues on the agenda in the 

context of EIT and elsewhere with the aim to establish KTH and Aalto as leaders in the field. 

We also recommend that the effort be as broad and inclusive as possible. Big Data involves 

many research issues not covered in the report. The issues covered in this report can on the 

other hand be addressed by the methods of mathematics, statistics, information theory, 

physics, electrical engineering and computer science, to just name the most obvious stake-

holders. To potential for success is largest if all of these communities can be involved in a 

comprehensive and meaningful manner. We strongly recommend that such an effort is made.   
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