— Blatt 8 —

Siegfried Bosch, Tilman Bauer

22. Mai 2007

Übung 1. Bestimmen Sie die Elementarteiler folgender Matrizen:

(a)
$$\begin{pmatrix} 2 & 6 & 8 \\ 3 & 1 & 2 \\ 9 & 5 & 4 \end{pmatrix}$$
 über $R = \mathbb{Z}$;

(b)
$$\begin{pmatrix} 1 & t & t \\ t^3 - t^2 & (t-1)^2(t^3 + t^2 + 1) & t^4 - t^2 - t + 1 \\ t^4 - 1 & (t^2 - 1)(t^4 + t - 1) & t^5 + t^4 - t^2 - t \end{pmatrix}$$
 über $\mathbb{Q}[t]$.

Übung 2 (Bosch, Aufg. 6.3.3). Es seien a_{11}, \ldots, a_{1n} teilerfremde Elemente eines Hauptidealrings R, d. h. es gelte $ggT(a_{11}, \ldots, a_{1n}) = 1$.

Zeigen Sie, dass es für $2 \le i \le n$, $1 \le j \le n$ Elemente $a_{ij} \in R$ gibt, so dass die Matrix $(a_{ij})_{1 \le i,j \le n}$ invertierbar ist.

Übung 3 (Bosch, Aufg. 6.3.6). Sei M ein endlich erzeugter freier R-Modul. Zeigen Sie:

- (a) *M* besitzt eine endliche Basis.
- (b) Je zwei Basen von *M* bestehen aus gleichviel Elementen. (Wenn Sie möchten, dürfen Sie annehmen, dass *R* ein Integritätsring ist.)

Übung 4 (Bosch, Aufg. 6.4.1). Die *Ordnung* einer Gruppe ist die Anzahl ihrer Elemente und wird mit #G bezeichnet. Sei G eine endliche abelsche Gruppe. Zeigen Sie, dass es zu jedem Teiler $d \mid \#G$ der Ordnung von G eine Untergruppe $H \subseteq G$ der Ordnung G gibt. Zeigen Sie außerdem, dass die Ordnung jeder Untergruppe G die Ordnung von G teilt.

Übung 5*. Sei R ein Hauptidealring und $M \in R^{m \times n}$. Ein d-Minor (oder eine d-Unter-determinante) mit $0 \le d \le \min\{m,n\}$ ist die Determinante einer quadratischen $d \times d$ -Teilmatrix, die durch Streichen von Zeilen und Spalten aus M entsteht. Sei $U_d(M)$ die (endliche) Menge aller d-Minoren von M. Zeigen Sie, dass $ggT(U_d(M))$ das Produkt der ersten d Elementarteiler von M ist.

Wenn Sie möchten, können Sie annehmen, dass R euklidisch ist.