Siegfried Bosch, Tilman Bauer

19. Juni 2007

Übung 1 (Bosch, Aufg. 7.1.3). Sei Φ eine positiv definite symmetrische Bilinearform auf einem \mathbb{R} -Vektorraum V. Für $x,\ y\in\mathbb{R},\ y\neq 0$, sei p(t) die Polynomfunktion $p(t)=|x+ty|^2$ mit $t\in\mathbb{R}$. Bestimmen Sie alle Nullstellen von p(t) und folgern Sie daraus die Schwarzsche Ungleichung

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle \quad (x, y \in \mathbb{R}).$$

Zeigen Sie außerdem, dass Gleichheit genau dann gilt, wenn x und y linear unabhängig sind.

Übung 2 (Bosch, Aufg. 7.1.4). Seien V, Φ wie zuvor und x, $y \in V - \{0\}$. Zeigen Sie:

- (a) $-1 \le \frac{\Phi(x,y)}{|x|\cdot |y|} \le 1$. Also gibt es genau einen Winkel $\omega \in [0,\pi]$ mit $\cos \omega = \frac{\Phi(x,y)}{|x|\cdot |y|}$.
- (b) Der Cosinus-Satz gilt: $|x y|^2 = |x|^2 + |y|^2 2|x| \cdot |y| \cdot \cos \omega$.

Übung 3 (Bosch, Aufg. 7.2.1). Betrachten Sie \mathbb{R}^3 als euklidischen Vektorraum mit dem Standard-Skalarprodukt. Wenden Sie das Schmidtsche Orthonormalisierungsverfahren auf die folgende Basis an:

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Übung 4. Für $n \in \mathbb{N}$ sei $V_n \subseteq \mathbb{R}[T]$ der Untervektorraum aller Polynome vom Grad $\leq n$. Zeigen Sie, dass durch

$$\langle f,g\rangle = \int_{-1}^{1} f(t)g(t) dt, \quad f, g \in V_n,$$

ein positiv definites Skalarprodukt auf V_n definiert wird.

Wenden Sie das Schmidtsche Orthonormalisierungsverfahren auf die Basis 1, T, T^2 von V_2 an.

Übung 5*. Sei $S_n \subseteq \mathbb{R}^{n \times n}$ der Untervektorraum der symmetrischen Matrizen, d.h. solcher Matrizen (s_{ij}) , für die $s_{ij} = s_{ji}$ für alle $1 \le i$, $j \le n$ gilt. Zeigen Sie, dass durch

$$\langle A, B \rangle = \operatorname{Spur}(AB)$$

eine positiv definite symmetrische Bilinearform gegeben ist, und bestimmen Sie eine Orthonormalbasis. Zur Erinnerung: die Spur einer Matrix $A = (a_{ij})$ ist

$$Spur(A) = a_{11} + \cdots + a_{nn}.$$