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Abstract. As a generalization of the ring spectrum of topological modular
forms, we construct a graded ring spectrum of topological Jacobi forms, TJF∗.
This is constructed as the global sections of a sheaf of E∞-ring spectra on
the stacky universal elliptic curve using circle-equivariant TMF. Complete
calculations of its homotopy at odd primes and partial results at p = 2 are
given.
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Modular forms came to prominence in topology through the elliptic genera de-
fined by Ochanine and Witten [Och09, HBJ92]. The Ochanine genus was later seen
as a specialization of the 2-variable elliptic genus on almost-complex manifolds and
studied extensively by algebraic geometers [BL00, BL05]. On manifolds with van-
ishing first Chern class, it takes values in Jacobi forms. As introduced in [EZ85],
these are complex functions of two variables, subject to certain transformation con-
ditions that depend on an index and a weight.

Lifting the Ochanine and Witten genera to maps of spectra was a major moti-
vation for defining elliptic cohomology and topological modular forms TMF. The
resulting map MString → TMF [AHR10] has led to new insights in manifold topol-
ogy [Kra21, BS24].

To replicate a similar success story for the 2-variable elliptic genus, we define
spectra TJFm of topological Jacobi forms for every index m. Since the first versions
of our paper have circulated, Lin–Yamashita [LY24] have shown that the 2-variable
elliptic genus indeed lifts to maps of spectra, taking the form MTSU(m) → TJFm,
and this has led to new divisibility result on Euler characteristics.
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Upon complexification, π∗TJFm agrees with the vector space of Jacobi forms
of index m

2 . But like π∗ TMF, the groups π∗ TJFm contain interesting 2- and 3-
torsion. We give a complete calculation for (π∗TJFm)(3) and partial information
about (π∗TJFm)(2).

Besides its role as a recipient of the 2-variable elliptic genus, TJF is interesting
due to its interpretation as RO(S1)-graded or twisted S1-equivariant TMF. Via
the Segal–Stolz–Teichner program, it conjecturally thus classifies certain forms of
anomalous supersymmetric quantum field theories with U(1)-symmetry [BE24].
On the purely mathematical side, the connection to equivariant TMF allows us to
express TJFm in terms of stunted projective spaces. Forthcoming work of Lin–
Tominaga–Yamashita uses this to calculate Cn-equivariant TMF for n = 2, 3.

A more precise statement of our results and definitions is given in the following
section.
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1. Definitions and main results

Let H = {τ ∈ C | Im(z) > 0} denote the upper half plane. As is usual in the
modular forms literature, we write

e(x) = e2πix for x ∈ C, q = e(τ) for τ ∈ H and ζr = e(rz) for z ∈ C, r ∈ R.

Complex-valued Jacobi forms were first defined and studied in some depth in
[EZ85] as a common generalization of modular forms and elliptic functions such as
theta series. We follow [GW20] in their naming convention for the various versions
of Jacobi forms.

Definition ([EZ85, CD19]). A weakly holomorphic Jacobi form of weight k ∈ Z
and index m ∈ 1

2 · Z is a holomorphic function

φ : H×C → C

satisfying the following transformation properties for
(
a b
c d

)
∈ SL2(Z) and (λ, µ) ∈

Z2:

(1.1) φ
(aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

( mcz2
cτ + d

)
φ(τ, z)

and

(1.2) φ(τ, z + λτ + µ) = e(m(−λ2τ − 2λz + λ+ µ))φ(τ, z)

and such that there exists a Fourier expansion

(1.3) φ(τ, z) =
∑
n≥−N

∑
r∈Z+m

c(n, r)qnζr for some c(n, r) ∈ C.
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A weakly holomorphic Jacobi form is called a weak Jacobi form if c(n, r) = 0
for n < 0, and a (holomorphic) Jacobi form if additionally, the stronger cusp
holomorphicity condition

(1.4) c(n, r) = 0 if r2 > 4mn

holds. We use a nonstandard bigrading that is more suited to our homotopy theo-
retic applications and call n = 2k + 4m the dimension of φ and set |φ| = (n, 2m).

Denote the vector space of weakly holomorphic Jacobi forms of index m and
dimension n by JFC

n,2m and the subspaces of weak and of holomorphic Jacobi forms
by jFC

n,2m and jfCn,2m, respectively.

All versions of Jacobi forms are bigraded C-algebras with respect to the pointwise
addition and multiplication of functions.

In analogy with modular forms, a Z-valued version of weak Jacobi forms can be
defined using the language of moduli stacks. Let Mell be the uncompactified moduli
stack of elliptic curves. Over Mell, the universal elliptic curve p : E → Mell is
defined. This is a stack in its own right, whose fiber over a point f : SpecR→ Mell

is a classical elliptic curve over R, namely the curve classified by f .

Definition. Let ω be the line bundle of invariant differentials on Mell. For n ∈ 2Z
and m ∈ Z, define a line bundle Ln,m on E by

Ln,m = p∗ωn/2 ⊗OE(me),

where OE(me) denotes the sheaf of functions on E that have a pole of order at most
m at the identity element e : Mell → E and ω = e∗Ω1

E/Mell
. If n is odd, we set

Ln,m = 0. We denote by
JFn,m = H0(E , Ln,m)

the abelian group of global sections.

Note that the direct sum L∗,∗ =
⊕

n,m≥0 Ln,m is canonically a bundle of bigraded
commutative rings.

Theorem 1.5 (Theorem 2.13). There is an isomorphism of bigraded rings

JFn,m⊗C → JFC
n,m .

Having identified Jacobi forms as sections of a line bundle, it is natural to con-
sider the higher cohomology groups as well:

Definition. The ring of derived, weakly holomorphic Jacobi forms is a trigraded
ring which in tridegree (n, s,m) is given by

DJFn,s,m = Hs(E , Ln,m).

This definition is in analogy to derived modular forms:

Definition. The ring of derived, weakly holomorphic modular forms is the bigraded
ring which in bidegree (n, s) is given by

DMFn,s = Hs(Mell,OMell
).

Derived Jacobi forms DJF∗∗∗ form a commutative algebra over DMF∗∗. Unlike
in the algebraic case, DJFn,s,0 is not quite isomorphic to DMFn,s since Hs(E ;OE) 6=
Hs(Mell;OMell

) for s > 0 in general.
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Goerss, Hopkins, and Miller [DFHH14] constructed a sheaf Otop of E∞-ring
spectra on the stack Mell, whose global sections are the periodic spectrum of topo-
logical modular forms TMF. Moreover, Lurie constructed in [Lur18] a compatible
sheaf of E∞-ring spectra Otop

E on E .
We can mimick the definition of L0,m = OE(me) in spectral algebraic geometry

to define sheaves Ltop
m on E with the following properties:

Theorem 1.6 (Section 3.1).
(1) For every m ≥ 0, there exists a sheaf Ltop

m of Otop
E -module spectra on E such

that πn(Ltop
m ) ∼= Ln,m.

(2) The sum Ltop
∗ =

⊕
m≥0 L

top
m has the structure of an E2-algebra spectrum,

and the isomorphism π∗(L
top
∗ ) ∼= L∗,∗ above is an isomorphism of bundles

of commutative rings.
(3) There exists a map a : Ltop

m → Ltop
m+1 of Otop

E -modules, which on global
sections induces the map Lm,n → Lm+1,n given by the inclusion OE(me) →
OE((m+ 1)e). The colimit

Ltop
∞ = colim(Ltop

0
a−→ Ltop

1
a−→ · · · )

has the structure of a bundle of E∞-algebra spectra over Otop
E .

We make the following obvious definition:

Definition. The TMF-module spectrum of topological (weakly holomorphic) Jacobi
forms of index m is defined as the global sections

TJFm = ΓE(L
top
m ).

It follows from the above theorem that TJF∗ is a graded E2-spectrum, and that
TJF∞ is an E∞-ring spectrum. Like TMF, these spectra come with descent spectral
sequences

Es,t2 = DJFn,s,m ⇒ πn(TJFm) with n = t− s.

The computational bulk of this paper is concerned with computing DJF∗,∗,∗ and
the coefficients π∗(TJFm). This is simplified by the following, somewhat surprising,
result:

Theorem 1.7. Let Pm = cofib(ΣCPm−1 → S0) be the cofiber of the reduced S1-
transfer map (define P 0 = S0∨S1 by convention). Then there exists an equivalence
of TMF-module spectra

TJFm ' TMF∧Pm.
Under this isomorphism, the map a : Ltop

m → Ltop
m+1 corresponds to the map induced

by the map Pm → Pm+1 coming from the skeletal inclusion CPm−1 → CPm. In
particular,

TJF∞ = colimm TJFm = (a−1 TJF∗)0 ' TMF∧P∞.

Remark 1.8. This theorem gives an obvious candidate for a connective spectrum
tjFm of topological weak Jacobi forms, viz., tmf ∧Pm. However, we have not been
able to show that tjF∗ admits the structure of a (graded) ring spectrum, or even
that tjF∞ is a ring spectrum. Elementary homology considerations easily show
that P∞ on its own does not admit a ring structure.
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In the rest of the section, we present our computational results as proven in
Sections 4 to 6. The first of these concerns the stable case TJF∞. Recall the rings

mf∗ = Z[c4, c6,∆]/(c34 − c26 − 1728∆) and MF∗ = mf∗[∆
−1]

of holomorphic and weakly holomorphic integral modular forms. Moreover, the ring
dmf∗,∗ = H∗(MWeier;ω

⊗∗) of derived modular forms is generated by c4, c6, ∆ in
dmf∗,0 along with the following classes with the given bidegree (cf. [Bau08]):

|η| = (1, 1) |ν| = (3, 1) |δ| = (5, 1)
|ε| = (8, 2) |β| = (10, 2) |κ| = (14, 2)
|κ̄| = (20, 4).

We obtain the ring of derived weakly holomorphic modular forms as
DMF∗∗ ∼= dmf∗∗[∆

−1].

Theorem 1.9. We have
DJF∗,∗,∞ ∼= Z[b2, b3, b4, b8, h1,∆

−1]/(2h1, b3h1, 4b8 + b24 − b2b
2
3)

with ∆ = −b22b8 − 8b34 − 27b43 + 9b2b
2
3b4 in bidegree (24, 0) and

|bi| = (2i, 0); h1 = (1, 1).

where |bi| = 2i. The (DMF∗∗)-module structure is given by
c4 7→ b22 − 24b4 c6 7→ −b32 + 36b2b4 − 216b23 ∆ 7→ ∆
η 7→ h1 ν 7→ 0 δ 7→ b2h1
ε 7→ 0 β 7→ 0 κ 7→ 0
κ̄ 7→ 0.

The descent spectral sequence for TJF∞ collapses at E4 and yields
π∗(TJF∞) ∼= Z[η, x2, x3, x4, x

′
4, x5, x6, x8,∆

−1]/I

with |xi| = 2i, |x′4| = 8, |η| = 1, |∆| = 24,
I = (2η, η3, x2η, x3η, x

′
4η, x5η, x6η,

4x4 − x22, 2x5 − x2x3, 2x6 − x2x
′
4, 2x3x4 − x2x5, 2x4x

′
4 − x2x6,

x5x6 − x3x4x
′
4, 4x8 − (x′4)

2 + x3x5).

and
∆ = −x8x4 + 9x5x3x

′
4 − 27x43 − 8(x′4)

3.

Note that away from p = 2, we have that DJF∗,s,∞[ 12 ] = 0 for s > 0. Thus, the
descent spectral sequence collapses, and the edge homomorphism

π∗ TJF∞[ 12 ] → JF∗,∞[ 12 ]

is an isomorphism.
As mentioned before, derived Jacobi forms of index 0 are not just modular forms:

Thm. 1.7 says that TJF0 ' TMF∨ΣTMF, which was already proved in [GM23].
The ring structure on TJF∗,∗,0 is given as follows:

Proposition 1.10. We have
π∗ TJF0

∼= π∗ TMF[τ ]/(τ2 − τη) (|τ | = 1).

We leverage the computation of Thm. 1.9 and the Atiyah-Hirzebruch spectral
sequence for TMF∗(P

m) to obtain:
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Theorem 1.11. We have
DJF∗∗∗[

1
2 ]

∼= Z[ 12 , a, b2, b3, b4, c4, c6,∆
±1, τ, α, β, γ]/I

with the following tridegrees:
|a| = (0, 0, 1); |bi| = (2i, 0, i);

|c4| = (8, 0, 0); |c6| = (12, 0, 0); |∆| = (24, 0, 0);

|τ | = (1, 1, 0); |α| = (3, 1, 0); |β| = (10, 2, 0); |γ| = (7, 1, 2),

and where the ideal I is
I = (1728∆− c26 + c34, c4α, c4β, c4γ, c6α, c6β, c6γ,

a4c4 − b22 + 24b4, a
6c6 + b32 − 36b2b4 + 216b23,

a12∆− 1
4b

3
2b

2
3 + 27b43 − 9b2b

2
3b4 = 1

4b
2
2b

2
4 + 8b34,

τ2, τa, τb2, τb3 − aγ, τb4, τγ,

α2, 3α, 3β, b2α, b4α, b2β, b4β, 3γ, a
2γ, γ2, a2β − γα, b2γ, b4γ, a

2α).

The (DMF∗∗)(3)-algebra structure is given by the fact that α = ν ∈ DMF3,1 and
β ∈ DMF10,2 and the modular forms c4, c6, ∆ map to the classes of the same name
in DJF.

In particular, away from 6, b4 and ∆ can be expressed as polynomials in the
remaining generators and all torsion classes become zero, so that we have

Corollary 1.12.
DJF∗,∗,∗[

1
6 ]

∼= JF∗,∗[
1
6 , τ ]/(τ

2, τa, τb2, τb3)

with
JF∗,∗[

1
6 ] = Z[ 16 , a, c4, c6, b2, b3,∆

−1]/(a6c6 − 1
2b

3
2 +

3
2a

4c4b2 + 216b23).

In particular, DJF∗,s,m = 0 if s > 0 and m > 0, and the descent spectral sequence
collapses, giving

π∗ TJFm[ 16 ]
∼= DJF∗,0,m (m > 0).

We also compute the descent spectral sequence at p = 3. However, the structure
of π∗(TJF∗)(3) is not elucidated by writing down generators and relations for this
bigraded TMF∗-algebra, but it can be read off of the chart in Figure 5.4.

We leave analogous computations for p = 2 for a separate paper. We moreover
invite the reader to compare our results on non-derived Jacobi forms with those of
[GW20, Theorem 4.1].

2. Jacobi forms and Looijenga line bundles

Apart from recalling and establishing some notation and basic facts about Jacobi
forms, the goal of this section is twofold: We compute the ring of weak Jacobi forms
in Theorem 2.7 and then we use it to identify in Theorem 2.13 Jacobi forms with
algebraic sections of Looijenga line bundles (which are even defined over Z). This
is an important stepping stone for establishing a viable definition of topological
Jacobi forms.

Denote by mf∗ = Z[c4, c6,∆]/(c34− c26− 1728∆) the graded ring of integral mod-
ular forms (with the topologically motivated doubling of degrees, |ci| = 2i). Here
c4 and c6 can be taken to be suitably scaled Eisenstein series. We also define
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MF∗ = mf[∆−1] and call its elements weakly holomorphic modular forms; they
correspond to meromorphic modular forms (of any integer weight) which are holo-
morphic away from the cusp.

Recall from Section 1 the definition of the complex groups jfC∗∗, jFC
∗∗, and JFC

∗∗ of
holomorphic, weak, and weakly holomorphic Jacobi forms, respectively. Our weak
Jacobi forms agree with those given in [EZ85, p. 104].

The transformation properties (1.1) and (1.2) can be phrased as an invariance
property under the action of the holomorph Γ = Z2 n SL2(Z).

More concretely, given k ∈ Z and m ∈ 1
2 ·Z, define for a function φ : H×C → C,

a matrix M =
(
a b
c d

)
∈ SL2(Z) < Γ, and (λ, µ) ∈ Z2 < Γ:

(2.1) (φ|k,mM)(τ, z) = (cτ + d)−ke
(−cmz2
cτ + d

)
φ
(aτ + b

cτ + d
,

z

cτ + d

)
and

(2.2) (φ|k,m(λ, µ))(τ, z) = e
(
m(λ2τ + 2λz + λ+ µ)

)
φ(τ, z + λτ + µ).

Then the transformation properties are equivalent with

φ|k,mγ = φ for all γ ∈ Γ.

We make a number of immediate observations:
(1) Weakly holomorphic Jacobi forms are 1-periodic in τ . They are also 1-

periodic in z up to a sign, which is +1 precisely if the index m is an integer.
Thus a weakly holomorphic Jacobi form is expressible as a function in q

and ζ
1
2 even without the Laurent polynomial condition (1.3).

(2) When m = 0, condition (1.2) implies that φ is also τ -periodic in z, and
thus constant. Thus jfCn,0 = jFC

n,0
∼= mfn⊗C and JFC

n,0
∼= MFn⊗C for all

n ∈ Z.
(3) The groups jfC∗∗, jFC

∗∗ and JFC
∗∗ all carry the structure of bigraded C-

algebras under addition and multiplication of functions. This is straight-
forward for jFC and JFC; the corresponding fact for holomorphic Jacobi
forms jfC is [EZ85, Theorem 1.5]. In particular, by the previous point, all
three versions of Jacobi forms are algebras over mf∗, and JFC

∗∗ is even an
algebra over MF∗.

Using the mf∗-module structure, we have:

Lemma 2.3. The inclusion jFC
∗∗ ⊂ JFC

∗∗ induces an isomorphism

JFC
∗∗

∼= jFC
∗∗[∆

−1].

Proof. Since ∆ ∈ JFC
24,0 is invertible in JFC

∗∗, we obtain an inclusion jFC
∗∗[∆

−1] →
JFC

∗∗. To show surjectivity, let φ ∈ JFm,n be a weakly holomorphic Jacobi form,
and write

φ(τ, z) =
∑
n≥−N

∑
r

c(n, r)qnζr.

Since ∆ is a cusp form, its q-expansion vanishes at 0, i.e. ∆(τ) ∈ qZJqK, and hence
∆Nφ ∈ jFC

∗∗. �
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Similarly to modular forms, basic examples of Jacobi forms are given by Eisen-
stein series of weight k and index m:

(2.4) Ek,m(τ, z) =
∑

γ∈U\Γ

1|k,mγ ∈ JFC
2k+4m,2m

where U ∼= Z×Z is the subgroup generated by elements of the form (0, µ)n± ( 1 b0 1 )
(which satisfy 1|k,mγ = 1).

The invariance of these series holds by definition, and they converge absolutely
for k ≥ 4. The proof that Ek,m satisfies the holomorphicity conditions can be found
in [EZ85, §I.2]; we will not make use of this.

We recall some classical special functions. The Jacobi theta function is defined
by

ϑ(τ, z) =
∑
n∈Z

q
1
2n

2

ζn

and has a variant

ϑ1(τ, z) = −ϑ11(τ, z) = −iq 1
8 ζ

1
2ϑ(τ, z +

1

2
τ +

1

2
) =

∑
n∈Z+ 1

2

i2n+2q
1
2n

2

ζn.

Here and elsewhere, when writing qa or ζa for a rational number a, we always mean
the branch given by e(aτ) and e(az), respectively.

The Dedekind eta function is defined by

η(τ) = q
1
24

∏
n≥1

(1− qn)

and satisfies η24 = ∆.1

Lemma 2.5. The function

a(τ, z) =
ϑ1(τ, z)

η(τ)3
∈ jFC

0,1

is a weak Jacobi form of weight −1 and index 1
2 with a simple zero at z = 0 and no

other zeroes in C/(Z+ τZ).

Proof. Since the only zero of η within the open unit disk is at q = 0, the function
a satisfies the holomorphicity condition of a weak Jacobi form. We verify the
transformation properties of a. Since ϑ1(τ, z + 1) = −ϑ1(τ, z) and

ϑ1(τ, z + τ) = −q 1
2 ζ−1ϑ1(τ, z),

the function ϑ1, and hence also a, transforms according to (1.2) for m = 1
2 .

For the modular transformation, observe that ϑ1(τ + 1, z) = e( 18 )ϑ1(τ, z + 1
2 )

and η(τ + 1) = e( 1
24 )η(τ), so that a(τ + 1, z) = a(τ). For the transformation

(τ, z) 7→ (− 1
τ ,

z
τ ), we use the Jacobi identity (cf. [Mum07, §I.9])

ϑ1(− 1
τ ,

z
τ ) = e(− 3

8 ) τ
1
2 e( z

2

2τ )ϑ1(τ, z)

and
η(− 1

τ ) = e(− 1
8 )τ

1
2 η(τ)

to obtain
a(− 1

τ ,
z
τ ) = τ−1e( 12z

2τ−1) a(τ, z),

1In the complex-analytic literature, the discriminant is often scaled by a factor of (2π)12.



TOPOLOGICAL JACOBI FORMS 9

showing that a is a Jacobi form of weight −1 and index 1
2 . Here τ

1
2 denotes the root

in the upper half plane. Since a is of weight −1, the same is true for the modular
form a(−, 0), which therefore must vanish. The zero at z = 0 must be simple and
a has no other zeros since a Jacobi form of index m has exactly 2m zeros, counting
multiplicities, by [EZ85, Theorem 1.2] (applied to a2 to ensure integral index). �

Remark 2.6. The form a is a square root of the (weight −2, index 1) weak Ja-
cobi form φ̃−2,1 = 1

144∆ (E6,0E4,1 − E4,0E6,1) classically considered (e.g. [EZ85,
Thm. 9.3]). Indeed, [DMZ12, (4.29)] shows that φ̃−2,1 =

ϑ2
1

η6 .

Theorem 2.7.
jFC

∗∗
∼= C⊗mf∗[a, b, c]/(432c

2 − (b3 − 3c4a
4b+ 2c6a

6))

with |a| = (0, 1), |b| = (4, 2), and |c| = (6, 3).

Proof. The generators a, b, c are given as follows:
• The element a is the weak Jacobi form of the same name constructed in

Lemma 2.5.
• The element b is the weak Jacobi form denoted by φ̃0,1 =

φ12,1

∆ in [EZ85,
Thm. 9.3], where φ12,1 = 1

144 (E
2
4E4,1 − E6E6,1).

• The element c is given by c(τ, z) = ϑ1(τ,2z)
ϑ1(τ,z)

. By [DMZ12, (4.31)], this Jacobi
form satisfies ac = φ̃−1,2 for the class

φ̃−1,2 =
φ11,2
∆

=
1

288πi∆
(E′

4,1E6,1 − E4,1E
′
6,1)

defined in [EZ85, Ch. 9]. (The derivatives are with respect to the z variable.)
In [EZ85, Thm. 9.4], Eichler and Zagier determine the structure of jFC

∗,2∗, the
integer index weak Jacobi forms, as
(2.8) jFC

n,2m = mf∗[a
2, b, ac]/(432(ac)2 − a2(b3 − 3c4a

4b+ 2c6a
6)).

Since multiplication by a on jFC
∗∗ is injective, we observe that

h : mf∗[a, b, c]/(432c
2 − (b3 − 3c4a

4b+ 2c6a
6)) → jF∗,∗

is indeed injective. Now let f ∈ jF∗,∗ be of half-integer index. Then af ∈ jF∗,∗ is
a polynomial in a2, b and ac by (2.8). To see that f is in the image of h, we must
show that a polynomial in a2, b and ac is not divisible by a (as a Jacobi form) if
there is a monomial of the form bn. But indeed, b has a Taylor expansion of the
form 12 +O(z) by Formula (19) in Chapter 3 of [EZ85]). Since a is zero at z = 0,
we see that bn is indeed not divisible by a. Thus, h is surjective as well. �

Multiplication by a gives an injection
a : jFC

n,m → jFC
n,m+1 .

Denote by jFC
∞,n the (singly-graded) colimit

jfCn,∞ = colim(jfCn,0
a−→ jFC

n,1
a−→ · · · )

We immediately get that
jFC

∗,∞
∼= mf∗[b, c]/(432c

2 − b3 − 3c4b+ 2c6)

with |b| = 4, |c| = 6.
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In particular, jFC
n,m is finite-dimensional for each (n,m) (and hence jfC as well,

cf. [EZ85, Theorem 1.1]). However, while many partial results on jfCn,m are known,
no explicit formula for the ring structure such as Thm. 2.7 is. In general, even the
dimension of jfCn,m is hard to compute (cf. [EZ85, Section 10], [Sko07]).

The Looijenga line bundle. The Looijenga line bundle LC
m,n is a complex line

bundle on E ⊗C, the universal complex elliptic curve living over the complexified
moduli stack of elliptic curves Mell ⊗ C. We will show that the sections of LC

m,n

are precisely weakly holomorphic Jacobi forms of index m and dimension n.
While the general theory of Looijenga line bundles [Loo77, Rez20] associated to

quadratic forms on lattices is much richer, we will only look at the one-dimensional
case, in which every quadratic form Q : Z → Z is uniquely determined by Q(1) =
2m, where m corresponds to the index of the Jacobi form. Here, unlike in Looi-
jenga’s definition, m is allowed to be a half integer.

To define the complex Looijenga line bundle, consider the following commutative
diagram of stacks:

H×C E ⊗C

H Mell ⊗C

πE

p1 p

πMell

where the horizontal maps πE and πMell
are stack covers with respect to the group

actions of Γ = Z2 n SL2(Z) and SL2(Z), respectively, given by(
a b
c d

)
.(τ, z) =

(
aτ + b

cτ + d
,

z

cτ + d

)
for

(
a b
c d

)
∈ SL2(Z) < Γ

(λ, µ).(τ, z) = (τ, z + λτ + µ) for (λ, µ) ∈ Z2 < Γ.

Definition. For m ∈ 1
2Z and n ∈ 2Z, the complex Looijenga line bundle LC

n,2m on
E ⊗C is uniquely defined (by descent) by the properties

(1) π∗
E(L

C
n,2m) ∼= (H×C)×C is a trivial line bundle, and

(2) The monodromy action of Γ on π∗
E(L

C
n,2m) is given by

γ.(v, τ, z) =
(
(φ|k,mγ)v, γ.(τ, z)

)
with γ ∈ Γ, k = n−4m

2 and φ|k,m as in Equations (2.1) and (2.2).

Lemma 2.9. There is an isomorphism LC
n+2,m

∼= LC
n,m ⊗ p∗(ω).

Proof. Recall that the line bundle π∗
Mell

(ωC) ∼= C×H is trivial with SL2(Z)-action
given by (

a b
c d

)
.(v, τ) =

(
(cτ + d)−1v,

aτ + b

cτ + d

)
.

Since
φ|k+1,mγ

φ|k,mγ
=

{
(cτ + d)−1; γ =

(
a b
c d

)
1; γ = (λ, µ) ∈ Z2,

the claim follows. �

By construction, LC
m,n is a holomorphic line bundle on E ⊗C. We now construct

an isomorphism to an algebraic line bundle, which is even defined over Z.

Proposition 2.10. There is an isomorphism LC
2n,m

∼= p∗ωn ⊗OE(me)⊗C.
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Proof. By Lemma 2.5, a has a simple zero at z = 0 and no other zeros in C/(Z+τZ).
Therefore, it induces a trivialization of

LC
0,1 ⊗O(−e)

and thus, using Lemma 2.9, an isomorphism of line bundles

LC
2n,m

∼= O(me)⊗ p∗ωn ⊗C. �

By construction, the diagram

OE(me)⊗ ωn OE((m+ 1)e)⊗ ωn

LC
2n,m LC

2n,m+1

am am+1

a

commutes. Note that the vertical maps are isomorphisms by the proof of the
preceding proposition.

An algebraic theory of Jacobi forms. In this section, we will prove an analogue
of the classic theorem that the space of weakly holomorphic modular forms of weight
k is isomorphic to that of sections of ωk on Mell ⊗ C (see [DR73, Section VII.4]
and [MO20, Section A.2.3]).

Lemma 2.11. Let s be an (algebraic) section of OE(me)⊗ωk ⊗C over Mell ⊗C.
Under the isomorphism from Proposition 2.10, this corresponds to a section of
LC
m,2k and thus to a holomorphic function f on H×C satisfying the transformation

law of Jacobi forms. This f is a weak Jacobi form, i.e. its Fourier expansion is of
the form

∑
n≥−M,r∈Z c(n, r)q

nζr.

Proof. As for the analogous result for modular forms, we utilize the Tate curve.
Let Conv ⊂ C((q)) be the subring of those Laurent series defining a holomorphic
function on the punctured open unit disk D◦ and let evq : Conv → C be the eval-
uation at q ∈ D◦. The Tate curve Tate is an elliptic curve over Conv such that
(evq)∗Tate ∼= C×/qZ. It can be written in Weierstrass form [Sil94, Theorem V.1.1]

(2.12) y2 + xy = x3 + a4(q)x+ a6(q) (a4, a6 ∈ Conv)

and thus its bundle of invariant differentials on Conv is trivial (see [MO20, Appen-
dix A.3]).

We can pull back s along the classifying map Conv → Mell⊗C of Tate to obtain
a section s of OTate(me)⊗ ωk ∼= OTate(me). As on every Weierstrass elliptic curve,
the coordinate functions x and y from (2.12) generate

⊕
m Γ(OTate(me)) as a Conv-

algebra. Since for every q, the pushforward (evq)∗Tate is a quotient of C×, we can
view x and y as meromorphic functions in q ∈ D and ζ ∈ C×. As in the proof of
[Sil94, Theorem V.3.1(c)] (second and third formula on p.426 loc.cit.), these can
be written in the form

∑
n≥0,r d(n, r)q

nζr. Thus, s can be written in the form∑
n≥−M,r c(n, r)q

nζr.
We obtain the corresponding section of LC

n,m by multiplying by a⊗m. Since a
is a weak Jacobi form, the result can be written in the same form (with different
c(n, r)) when viewed as a function on D◦ ×C×. (Here, we use implicitly that LC

n,m

is by construction trivial on D◦ ×C×.) The result follows. �
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Theorem 2.13 (Theorem 1.5). For all m, k, we have

JFC
2k,m

∼= ΓE⊗C(OE(me)⊗ ωk ⊗C).

These isomorphisms define an isomorphism of bigraded rings.

Proof. By definition, holomorphic sections of LC
2k,m correspond to holomorphic Γ-

invariant functions on E ⊗ C, i.e. functions satisfying the transformation law for
Jacobi forms. It remains to show that a section of LC

2k,m
∼= OE(me) ⊗ ωk ⊗ C is

algebraic if and only if the Fourier expansion of the corresponding function is a
Laurent series of the form ∑

n≥−M,r

c(n, r)qnζr;

we will call such sections Laurent. For ease of notation, we will omit the ⊗C in the
rest of the proof.

By the preceding lemma, every algebraic section is Laurent; thus, multiplica-
tion with am defines a natural homomorphism ΓE(OE(me) ⊗ ωk) → JF2k,m. By
Thm. 2.7, we have a short exact sequence

0 → JF2k,m
·a−→ JF2k,m+1 →

{
0; m = 0

MF2k−2m−2; m > 0

}
→ 0

For m > 0, a section s : MF2k−2m−2 → JF2k,m+1 of this sequence is given by

s(φ) =

{
b

m+1
2 φ; m odd

cb
m−2

2 φ; m ≥ 2 even

By [Del75, Section 1], we also have a short exact sequence

0 → p∗OE(me)⊗ ωk → p∗OE((m+ 1)e)⊗ ωk →

{
0; m = 0

ωk−m−1; m > 0

}
→ 0

and the (algebraic) sections of the quotient are MF2k−2m−2. Concretely, we obtain
this modular form from a section p∗OE((m + 1)e) ⊗ ωn by Taylor expanding and
taking the lowest coefficient (of z−m−1).

By [EZ85, Formula (19), p.40], b = φ12,1

∆ = 12 +O(z2). Similarly, c = ϑ1(q,2z)
ϑ1(q,z)

=

2+O(z), so the lowest term in the z-Taylor expansion of cibj is constant in τ . Using
[EZ85, Formula (19), p.40] again and the identity a2 =

φ10,1

∆ from Remark 2.6, we
also obtain a = αz + O(z2) for a nonzero constant α. Thus, the map JF2k,m+1 →
MF2k−2m−2 is, up to a constant only dependent on the index, the constant term of
z-Taylor expansion. Thus we obtain in total a commutative diagram (for m > 0)

0 ΓE(OE(me)⊗ ωk) ΓE(OE((m+ 1)e)⊗ ωk) MF2k−2m−2 0

0 JF2k,m JF2k,m+1 MF2k−2m−2, 0

am am+1 ∼=

a

where the rightmost vertical map is multiplication by a suitable constant. This
shows that the vertical arrow am+1 is an isomorphism if am is an isomorphism (for
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m > 0). To ground the induction, observe that in the diagram

ΓE(OE ⊗ ωk) ΓE(OE(e)⊗ ωk)

JF2k,0 JF2k,1
a

the horizontal arrows are isomorphisms (using Riemann–Roch in the top row and
Theorem 2.7 in the bottom row) and the left vertical arrow is also an isomorphism
(as both source and target are just modular forms of weight 2k). Thus, the right
vertical arrow is an isomorphism and induction yields our result. �

This theorem allows us to set up an integral version of Jacobi forms.

Definition. We set
L2n,m = p∗ωn ⊗OE(me)

and
JF2n,m = ΓE(L2n,m).

By the preceding theorem, we have indeed Ln,m ⊗C ∼= LC
n,m and JFn,m⊗C ∼=

JFC
n,m.

Remark 2.14. In [Kra95], Kramer sets up an integral version of Jacobi forms as well,
actually also for higher-dimensional variants. Restricted to our one-dimensional
case, the theory is based on the pullback of the Poincaré line bundle on E × E∨

along the graph E → E ×E∨ of an autoduality E
∼=−→ E∨. One can show that this

pullback is (with suitable choices) indeed isomorphic to OE(2e) ⊗ ω2, giving the
equivalence of the two approaches in the integer index case.

3. Identifying TJFm via equivariant topological modular forms

In this section, we identify topological Jacobi forms TJFm in terms of stunted
projective spaces by interpreting TJFm in terms of T -equivariant TMF, where
T ∼= S1 is the circle group. We start by recalling its basic properties.

3.1. Equivariant topological modular forms. For an even-periodic complex
oriented cohomology theory E, the ring E0(BT ) defines a formal group law over
E0. Viewed differently, E0(BT ) is the Borel T -equivariant cohomology of a point.
One may wish to decomplete this by replacing Borel cohomology by a genuine co-
homology theory. For instance, the formal group associated to complex K-theory
is the multiplicative formal group, while KU0

T ({∗}) = Rep(T ) ∼= Z[t±1] corepre-
sents the actual multiplicative group. The same idea has been used by Grojnowski
[Gro07] for elliptic cohomology theories: while the formal group law is the comple-
tion of the elliptic curve, T -equivariant elliptic cohomology allows one to recover
the elliptic curve itself, essentially as the T -equivariant cohomology of a point.

Topological modular forms are, of course, not complex oriented, but they are
built out of (complex oriented) elliptic cohomology theories. Classically, TMF was
constructed by building a sheaf of E∞-ring spectra Otop on Mell with the property
that π2kOtop ∼= ωk and whose fibers were elliptic cohomology theories. Periodic
TMF was then defined as the global sections of this sheaf, an E∞-ring spectrum in
its own right.
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To obtain a T -equivariant version of TMF, this definition needed to be reinter-
preted. In [Lur09, Lur18], Lurie gave an alternative construction of TMF entirely in
terms of spectral algebraic geometry. We no longer define a sheaf of E∞-ring spec-
tra on an object with an algebraic universal property, but the category of stacks is
replaced with the ∞-category of (nonconnective) spectral Deligne-Mumford stacks.
Lurie constructs a spectral stack Mor

ell of oriented spectral elliptic curves, together
with a universal oriented curve Eor → Mor

ell. The underlying ordinary stack of
Mor

ell is the classical Deligne-Mumford stack Mell, and Otop can be identified with
the structure sheaf OMor

ell
. But Eor is a spectral Deligne-Mumford stack with its

own structure sheaf OEor as well, which can be accessed using the above ideas of
T -equivariant cohomology. Based on this work of Lurie and older insights of Gro-
jnowski, Gepner and the second author construct in [GM23] a T -equivariant version
of TMF-cohomology with the following properties:

Theorem 3.1 (Gepner-Meier). There exists a colimit-preserving functor of ∞-
categories

T MFT : {pointed T -complexes} → {quasicoherent OEor-module sheaves}op

with the following properties:
(1) T MFT(S

0) ' OEor ;
(2) T MFT(T+) ' e∗OMor

ell
, for e : Mor

ell → Eor the unit section;
(3) T MFT is symmetric monoidal on finite complexes; in particular, for finite

pointed T -complexes X and Y , there is a natural “Künneth” isomorphism

T MFT(X)⊗OEor T MFT(Y )
'−→ T MFT(X ∧ Y );

(4) T MFT factors via Σ∞ through a functor
{genuine T -spectra} → {quasicoherent OEor-module sheaves}op,

which is symmetric monoidal on finite T -spectra and which we also denote
by T MFT;

(5) TMFT =def Γ T MFT : {pointed T -complexes} → {Spectra}op is a T -equi-
variant cohomology theory and is thus represented by a genuine T -spectrum,
which we denote by the same symbol TMFT . Its underlying nonequivariant
spectrum is TMF.

Proof. For every oriented spectral elliptic curve E, [GM23] constructs a functor
ẼllT from finite pointed T -complex to {quasicoherent OEor -module sheaves}op. The
functor T MFT is obtained by specializing E to be the universal oriented spectral
elliptic curve Eor and extending T MFT = ẼllT by filtered colimits to be defined on
all pointed T -complexes. The first two properties hold by the construction, and the
other three are Theorem 8.1, Proposition 9.2 and Construction 9.3 in [GM23]. �

For a T -representation V , denote by SV its one-point compactification. We
denote by Sn the sphere with the trivial action and by T the one-sphere with its
tautological T -action. Consider the cofiber sequence of pointed T -complexes

T+ → S0 → Sρ,

where ρ is the tautological 1-dimensional complex representation of T . Since T MFT

is colimit-preserving, this gives rise to a cofiber sequence
(3.2) T MFT(S

ρ) → OEor → e∗(OMor
ell
).
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We define OEor(−e) = T MFT(S
ρ) and, more generally,

OEor(−me) = T MFT(S
ρ)⊗OEorm ∼= T MFT((S

ρ)∧m) ∼= T MFT(S
mρ)

for m ≥ 0. As a special case of [GM23, Lemma 8.1], OEor(−e) is invertible. Thus,
we can define OEor(me) = HomOEor (OEor(−me),OEor).

Theorem 3.3. The graded quasicoherent OEor-module

OEor(∗) =
⊕
m∈Z

OEor(me)

has an E2-algebra structure, i.e. there is a an E2-monoidal functor Z → QCoh(Eor)
sending m to OEor(me).

We have furthermore
π2kOEor(me) ∼= p∗ωk ⊗OE(me),

where p : E → Mell denotes the structure map.

Proof. For the first part, we follow an argument in [Lur15]: Let U be a complete
T -universe, and let

⊕
N ρ

∼= Uρ ⊂ U be the ρ-typical subspace. The space BU(U)
has a model as the complex Grassmannian of U . Thus, we have an inclusion

CP (Uρ) ⊂ BU(U)
of 1-dimensional subrepresentations isomorphic to ρ. The T -action on CP (Uρ) is
trivial and thus Ω2CP (Uρ) is the discrete T -space Z with trivial action. On the
other hand, T -equivariant Bott periodicity identifies Ω2BU(U) with R(T )×BU(U).
Postcomposing with the T -equivariant J-homomorphism, yields an E2-monoidal
functor

Z → R(T )×BU(U) → SpT
to genuine T -spectra, sending 1 to Σ∞Sρ and hence m to Σ∞Smρ. Dualizing and
then applying T MFT thus sends m to OE(me), as demanded.

Applying homotopy groups to the cofiber sequence (3.2) yields short exact se-
quences of OE -module sheaves

0 → π2kOE(−e) → π2kOE → π2ke∗(OMor
ell
) → 0.

We have that
π2kOEor ∼= OE ⊗ p∗ωk and π2ke∗(OMor

ell
) ∼= e∗ω

k ∼= (e∗OMell
)⊗OE p

∗ωk.

Under these identifications, π2kOE → π2ke∗(OMor
ell
) is induced by the canonical

map e∗ : OE → e∗OMell
. Since ker(e∗) = OE(−e), the result follows for m = −1.

For other m, we first use the symmetric monoidality of T MFT from Part (3) of
Theorem 3.1 to get that OEor(me) ' OEor(−e)⊗−m. We further use that on quasi-
coherent OE -modules with flat homotopy groups, the functor

π∗ : QCoh(E) → quasi-coherent π∗OE -modules
is symmetric monoidal (by a degenerating Künneth spectral sequence). This implies
in particular to invertible sheaves. Thus,

π∗OEor(me) ∼= π∗OEor(−e)⊗π∗OEor (−m) �.

Proposition 3.4. For a finite genuine T -spectra X, there is a natural equivalence
(TMFT ∧DX)T ' ΣDTMF(TMFT ∧X)T ,

where D denotes the Spanier–Whitehead dual.
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Proof. Let p : Eor → Mor
ell be the projection. For F ∈ QCoh(Eor), [GKMP, Theo-

rem 6.5] gives a natural equivalence

(3.5) HomOMor
ell
(p∗F ,OMor

ell
) ' Σ−1HomOEor (F ,OEor).

Since Γ: QCoh(Mor
ell) → ModTMF is a symmetric monoidal equivalence by [MM15],

the left-hand term can be computed as Hom(Γ(p∗F),TMF) = DTMFΓ(F).
We now specialize to F = T MFT(X) for a finite genuine T -spectrum X. Using

that T MFT is symmetric monoidal and thus preserves duals, we compute

(TMFT ∧DX)T ' Γ T MFT(X)

' ΓHomOEor (T MFT(DX),OEor)

= HomOEor (T MFT(DX),OEor)

(3.5)
' ΣDTMFΓ(T MFT(DX))

' ΣDTMF(TMFT ∧X)T . �

3.2. The identification of TJFm. Let us recall and refine the definition of TJFm
from Section 1.

Definition. We define the spectrum TJFm of topological Jacobi forms as

TMFT (S
−mρ) = ΓOE(me).

We define TJF∞ as colimm TJFm.

Remark 3.6. We have picked our grading convention as it is convenient for our
present paper. It would be at least equally justified to define the spectrum TJFm
as Σ−2mΓOEor(me). This would better match the classical grading conventions for
Jacobi forms (since C⊗π2kΣ−2mΓOEor(me) are Jacobi forms of weight k and index
m
2 ) and might also be helpful to show an E∞-version of Theorem 3.3.

Let Pm = cofib(ΣCPm−1 → S0) be the cofiber of the reduced T -transfer map,
i.e. the suspension of the restriction of the map (A.9) to ΣCPm−1; we define P 0

as S0 ∨ S1 by convention. By Proposition A.11, one can view Pm as the spectrum
“Σ2CPm−1

−1 without the 2-cell” for m > 0. We are now ready to prove Theorem 1.7.

Theorem 3.7. There exists an equivalence of TMF-module spectra

TJFm ' TMF∧Pm.

Under this equivalence, the map a : Ltop
m → Ltop

m+1 corresponds to the map induced
by the map Pm → Pm+1 coming from the skeletal inclusion CPm−1 → CPm. In
particular,

TJF∞ = colimm TJFm = (a−1 TJF∗)0 ' TMF∧P∞.

Proof. Recall from [GM23, Theorem 10.1] that the map

(3.8) (i, tr) : TMF⊕ΣTMF → TMFT = (TMFT )
T

is an equivalence, where
• i is the unit map TMF → TMFT (induced by the projection p : Eor → Mor

ell);
• tr : ΣTMF → TMFT is the degree-shifting transfer (cf. Appendix A).
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Denoting by res the restriction TMFT → TMF (induced by the zero section
e : Mor

ell → Eor), note that res ◦ i is the identity.
On the other hand, res ◦ tr is the TMF-Hurewicz image of the map

S1 '
(
Σ∞

+ T
)T → (S0)T → S0,

where we use the Adams isomorphism Proposition A.5 in the first equivalence. For
a general Lie group G instead of T , this map always represents the homotopy class
associated with the framed bordism class of G in its invariant framing (cf. [Bau04]),
thus we obtain

(3.9) res ◦ tr ∼ η

where η ∈ π1 TMF is the Hurewicz image of the Hopf map. While not strictly
necessary for this proof, we need this identification later.

Thus, we have a cofiber sequence

ΣTMF
tr−→ TMFT

res−(0,η)−−−−−−→ TMF,

where (0, η) : TMFT ' TMF∨ΣTMF → TMF is zero on the first component and
η on the second.

Consider the unit sphere S(mρ) in the representation mρ ∼= Cm. This is a free
T -space, and hence the Adams isomorphism in the form of Proposition A.5 gives
an equivalence

TMF∧ΣCPm−1
+ ' TMF∧ΣS(mρ)+/T ' (TMFT ∧S(mρ)+)T

By naturality of the Adams isomorphism, the inclusions S(mρ) ↪→ S((m + 1)ρ)
correspond to the skeletal inclusions CPm−1 ↪→ CPm.

The cofiber sequence S(mρ)+ → S0 → Smρ gives rise to a cofiber sequence

TMF∧ΣCPm−1
+ ' (TMFT ∧S(mρ)+)T → (TMFT )

T

→ (TMFT ∧Smρ)T = TJFm .

This extends to a bigger diagram

TMF∧ΣCP 0
+ ' (TMFT ∧S(ρ)+)T ΣTMF

TMF∧ΣCPm−1
+ ' (TMFT ∧S(mρ)+)T (TMFT )

T TJFm

TMF∧ΣCPm−1 TMF TJFm,

'

tr

trm

res−(0,η) =

t

where we obtained the last row by taking cofibers of the vertical morphisms. Here,
we have used that S(ρ)+ = T+ and the description of the degree-shifting trans-
fer from Lemma A.8 for the commutativity of the upper square. Since the map
ΣCPm−1

+ → ΣCPm−1 is split, we can compute t as the composite

TMF∧ΣCPm−1 → TMF∧ΣCPm−1
+

trm−−→ (TMFT )
T res−(0,η)−−−−−−→ TMF .

We claim that the composite

TMF∧ΣCPm−1 → TMF∧ΣCPm−1
+

trm−−→ (TMFT )
T ' TMF∨ΣTMF

pr2−−→ ΣTMF
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is trivial. Accepting this claim for the moment, we deduce from Lemma A.12 that
t is TMF smashed with the reduced transfer ΣCPm−1 → ΣCPm−1

+ → S0 (since
(0, η) factors over pr2) and thus its cofiber agrees with TMF∧Pm.

To show the claim, we apply Proposition 3.4 to the map S(mρ)+ → S0 and
obtain that the dual of trm is equivalent to Σ−1 of

(TMFT )
T ' TMF∨ΣTMF →

(
TMF

S(mρ)+
T

)T
' TMFCPm−1

+ .

This is a map of TMF-algebras. Thus, on the first summand the map is the unit
map TMF → TMFCPm−1

+ induced by the map q : CPm−1
+ → S0 collapsing CPm−1

to a point. Dualizing back, TMF∧CPm−1
+

trm−−→ (TMFT )
T pr2−−→ ΣTMF must be

±TMF∧q.2 Thus, the restriction of pr2 trm to TMF∧CPm−1 is indeed trivial. �

We will be making use of a slightly more general version of the transfer, along
with stabilization and restriction maps, as follows.

The cofiber sequence of T -spaces
S(ρ)+ → S0 → Sρ

considered before can be smashed with Smρ to yield a cofiber sequence
S(ρ)+ ∧ Smρ → Smρ → S(m+1)ρ.

Since the left-hand term is still a free T -space, smashing with TMFT , taking T -fixed
points, and applying the Adams isomorphism gives a cofiber sequence

(3.10) ΣTMF∧S2m tr−→ TJFm
a−→ TJFm+1

res−−→ Σ2m+2 TMF,

where the map on the right is identified with the restriction map
(TMFT ∧S(m+1)ρ)T → TMFT ∧S(m+1)ρ.

Assembling these triangles gives a sequence of distinguished triangles, infinite in
both directions,

(3.11)
· · · TJF−1 TJF0 TJF1 · · ·

Σ−2 TMF TMF Σ2 TMF

a a

res

a

res

a

res/
tr

/
tr

A struck-through arrows denote a map of degree −1. Truncating at m ≥ 0 yields a
similar sequence of distinguished triangles:

(3.12)
TJF0 TJF1 TJF2 · · ·

TMF∨ΣTMF Σ2 TMF Σ4 TMF

a

j0

'

a

j1=res

a

j2=res
/

tr
/

tr

By definition of the truncation, we have TJF0 in the lower left corner. We will
identify this with TMF∨ΣTMF via a map j0 so that the map res : TJF0 → TMF

2The sign comes from the fact that we did not specify the effect of the natural equivalence
from Proposition 3.4 in the case of X = S0, which takes the form

TMF[1]⊕ TMF ' ΣDTMF(TMF⊕TMF[1]) ' TMF⊕TMF[1].

Using that π−1 TMF = 0 and that the units in π0 TMF = Z[j] are ±1, the corresponding matrix

must be of the form
(

? ±1
±1 0

)
, which suffices for our purposes.
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becomes pr1 under this identification. Concretely, let 1 ∈ π0 TJF0 be the multiplica-
tive unit, z ∈ π2Σ

2 TMF the double suspension of the unit and τ = tr(z) ∈ π1 TJF0

its image under the transfer map tr : ΣTMF → TJF0. By (3.8), 1 and τ generate
π∗ TJF freely as a TMF-module; denoting the standard basis of TMF∨ΣTMF also
by 1 and τ , we set j0(1) = 1 and j0(τ) = η + τ . The relation res(tr(z)) = η shows
that indeed pr1j0 = res.

Since
∨
m TJFm is a filtered graded ring spectrum (with j0 inducing the mul-

tiplication on TMF∨ΣTMF), both (3.11) and (3.12) give rise to multiplicative
exact couples. In particular, the following relations hold for x ∈ π∗Σ

2m TMF,
y ∈ π∗ TJFn:
(3.13) tr(x res(y)) = tr(x)y ∈ π∗ TJFm+n .

We can now identify the ring π∗ TJF0 as π∗ TMF[τ ]/(τ2 − τη):

Proof of Prop. 1.10. For m = 0, the restriction map res in (3.10) is trivial and a is
split by the unit TMF → TJF0, as shown in [GM23, Theorem 10.1]. Then (3.13)
and (3.9) imply

τ2 = tr(1)τ = tr(1 res(τ)) = tr(res(τ)) = ητ. �

In homotopy, diagram (3.11) gives rise to a spectral sequence with
E1

∗∗ = π∗ TMF[z±1]

and convering to the homotopy of the spectrum TMFCP∞
∞ considered in [AFG08].

We are more interested in the other spectral sequence, converging to the homotopy
of TJF∞:

Proposition 3.14. The E1-term of the homotopy spectral sequence arising from
(3.12) is given by

E1
∗∗ = π∗ TMF[z, τ ]/(τ2 − τη, zτ − zη)

Proof. Let us temporarily denote by τ̄ the element
j0(τ) = (η, 1) ∈ π1 TMF∨ΣTMF .

Since j0 is by definition multiplicative, the equation τ̄2 = τ̄ η holds. We want to
show zτ̄ = zη ∈ π3Σ

2 TMF.
Since j1 : TJF1 ' TMF → Σ2 TMF is null-homotopic by the splitting, the map

tr : ΣTMF → TJF0 is injective in homotopy and it suffices to show tr(zτ̄) = tr(zη).
But

tr(zτ̄) = tr(zj0(τ)) = tr(z)τ = τ2 = ητ = tr(zη).

Thus zτ̄ = zη. The claim follows by abusing notation and writing τ for τ̄ . �

Using the unit map i : TMF → TJF0, we can define a modified ring spectrum of
topological Jacobi forms whose m-th graded piece is

TJFm = TMF×TJF0 TJFm .

This is an additive (but not multiplicative) factor of the graded ring spectrum TJF.
The corresponding modified sequence of distinguished triangles has the form

(3.15)
TJF0 TJF1 TJF2 · · ·

TMF 0 Σ4 TMF

a
'

j0

'

a a

j2=res
/

tr
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Since the standard inclusion (3.15) ↪→ (3.12) is multiplicative, the associated spec-
tral sequence (converging to TMF∞ as well) has

E1
∗∗ = π∗ TMF[x, y]/(x3 − y2),

where x maps to z2 and y to z3. Identifying TJFm with TMF∧Pm and noting
that the map a is induced by the inclusion Pm → Pm+1 we can also see that the
filtration (3.15) exactly corresponds to the skeletal filtration of P∞ and the spectral
sequence above is isomorphic to the Atiyah-Hirzebruch spectral sequence. This will
allow us to easily derive differentials.

4. Computations of derived Jacobi forms

In this purely algebraic section, we will compute the cohomology of the (stacky,
but not spectral) universal elliptic curve E over Mell with coefficients in the Looi-
jenga line bundle L2n,m = p∗ωn⊗O(me) for all m and n, including the case m = ∞,
which we agree to mean L2n,∞ = p∗ωn ⊗ colimmO(me). In fact, we will instead
consider the larger stack MWeier of curves with a Weierstrass parametrization;
the stack Mell is the substack of MWeier where the discriminant ∆ is invertible:
Mell

∼= ∆−1MWeier. Similarly, the universal elliptic curve E is replaced with the
universal Weierstrass curve W → MWeier, which is singular over the complement
MWeier − Mell. While W is a stack, it is also a relative projective scheme in the
sense that for any affine E : SpecR → MWeier, the basechange WE = E∗W is
projective. We will also consider the relative affine scheme W0 = W−{e} obtained
by removing the zero section (the point at infinity). Note that sections of L2n,∞
over f : U → W are precisely sections of p∗ωn over f−1(W0).

The Looijenga line bundle Ln,m extends to W because ω extends to MWeier

(it has a coordinate given by ω = dx
2y+a1x+a3

for a curve in Weierstrass form), and
O(me) still makes sense on W. Neither MWeier nor W are Deligne-Mumford stacks,
but they are Artin stacks. They have indeed flat affine covers by affine schemes,
and thus the cohomology H∗(W, Ln,m) can be computed as the cohomology of Hopf
algebroids. We briefly recall this approach.

Let M be an algebraic stack with a flat affine cover SpecA
p−→ M. Then

SpecA ×M SpecA = Spec Γ is affine as well, and (A,Γ) is a Hopf algebroid (it
represents an affine groupoid scheme). Moreover, if F is a quasicoherent OM-
module sheaf on M then p∗F is the sheaf associated to an A-module M , which
more strongly is a (left, say) (A,Γ)-comodule: there is a coaction M

ψ−→ Γ ⊗AM .
Flatness ensures that there are isomorphisms

H∗(M,F) ∼= Ext∗(A,Γ)(A,M) =: H∗(A,Γ;M),

where the Ext group is in the abelian category of (A,Γ)-comodules. If, moreover,
F is a quasicoherent commutative OM-algebra sheaf, then the comodule M is a
comodule algebra, i.e. it has a unit u : A→M and a product M ⊗AM →M which
are maps of comodules, where M ⊗AM becomes a comodule by

M⊗AM
ψ⊗ψ−−−→ Γ⊗AM⊗AΓ⊗AM → Γ⊗AΓ⊗AM⊗AM

µ⊗id⊗ id−−−−−−→ Γ⊗AM⊗AM,

and the cohomology isomorphism above is multiplicative. In fact, in this case, we
can construct another Hopf algebroid

HM = (M,Γ⊗AM)
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with the left and right units given by ηR⊗ id and ψ, respectively, the augmentation
Γ⊗AM →M by ε⊗ id, and the comultiplication by

Γ⊗AM
∆⊗id−−−→ Γ⊗A Γ⊗AM ∼= (Γ⊗AM)⊗M (Γ⊗AM).

This Hopf algebroid agrees with the simple base-change Hopf algebroid (B,Γ⊗AB)
for aB-algebraA in the case whereB =M is a trivial comodule, i.e. ψ = ηL⊗id. We
have the following very special case of the change-of-rings isomorphism of [Rav04,
A1.3.12]:

Lemma 4.1. Let H = (A,Γ) be a Hopf algebroid and M a commutative H-comodule
algebra such that M is flat as an A-module. Let HM denote the Hopf algebroid
(M,Γ⊗AM) constructed above. Then for any HM -comodule C, there is a natural
isomorphism

Ext∗H(A,C) ∼= Ext∗HM
(M,C). �

Convention 4.2. In the following, all our Hopf algebroids are understood to be
graded. A graded Hopf algebroid (A,Γ) induces the structure of an ungraded Hopf
algebroid on the pair (A,Γ[u±1]), where the powers of u track the grading. By
definition, the stack associated to a graded Hopf algebroid is the stack associated
to the associated ungraded Hopf algebroid. See [MO20, Section 4] for details.

Here is a short summary of the various stack cohomologies and Hopf algebroids
used in this section.

• The bigraded ring of derived modular forms

dmf2t−s,s = Hs(MWeier, ω
t)

as originally computed by Hopkins and Mahowald (cf. [Bau08]). The sub-
ring dmf2t,0 is the ring mf2t of classical modular forms of weight t over
Z. The ring dmf∗∗ forms the E2-term of the descent spectral sequence
Es,t2 = dmf2t−s,s ⇒ π2t−s tmf. The stack MWeier has a presentation by the
Hopf algebroid H = (A,Γ) with A = Z[a1, a2, a3, a4, a6] and Γ = A[r, s, t].
The cover SpecA → MWeier classifies the Weierstrass curve given by the
affine equation

(4.3) E(a1, a2, a3, a4, a6, x, y) = y2 + a1xy + a3 − (x3 + a2x
2 + a4x+ a6) = 0.

• The bigraded filtered dmf∗∗-algebra of derived, stable, connective Jacobi
forms

djF2t−s,s,∞ = Hs(W0, p
∗(ωt)).

As a stack, W0 has a presentation by the Hopf algebroid

HW,∞ = (AW , AW ⊗A Γ) = (AW , AW [r, s, t])

with
AW = A[x, y]/E(a1, . . . , a6, x, y).

The structure maps of HW,∞ restrict to the structure maps of H under the
inclusion A→ AW , and

ηL(x) = x; ηL(y) = y; ηR(x) = x− r; ηR(y) = y − sx+ sr − t.

Note that ηR describes the inverse transformation of (x, y) 7→ (x + r, y +
sx+ t).
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The category of quasicoherent OW0
-module sheaves is trivially equivalent

to the category of quasicoherent OW(∞e)-module sheaves, which means
that as dmf-algebras,

djFt−s,s,∞
∼= Hs(W, Lt,∞)

Since Lt,∞ = colimm Lt,m by definition, the canonical maps
im : Hs(W, Lt,m) → djFt−s,s,∞

induce an exhaustive, increasing filtration Fm djFt−s,s,∞ = im(im) by dmf-
submodules. Moreover, this filtration is multiplicative in the sense that
(Fm djF∗,∗,∞)(Fm′ djF∗,∗,∞) ⊆ Fm+m′ djF∗,∗,∞. In terms of the Hopf alge-
broid HW,∞, this filtration is realized as a filtration

F∗HW,∞ = (F∗AW , F∗AW ⊗A Γ)

where x ∈ F2AW − F1AW , y ∈ F3AW − F2AW and ai ∈ F0AW for all
i because the coordinate function x has a double pole at ∞, while the
coordinate function y has a triple pole.

• The trigraded dmf∗∗-algebra of (unstable) derived, connective Jacobi forms
djFt−s,s,m = Hs(W, Lt,m),

where Lt,m is the Looijenga line bundle, which over Mell is realized as
the homotopy of the sheaf OEor(me) of Thm. 3.3. Thus djF is indeed an
algebra. For the projection p : W → MWeier we have that Rip∗OW(me) = 0
for i > 0 and m > 0, and hence

djFt−s,s,m
∼=


Hs(MWeier, p∗Lm,t); m > 0(
H∗(MWeier, ω

t
2 )[τ ]/(τ2 − τh1)

)
s,t

; m = 0,

the m = 0 case being part of Prop. 5.5 proved below.
We define the following dmf∗∗-subalgebra of djF∗∗∗:

djFt−s,s,m = Hs(MWeier, p∗Lm,t),

which differs from djF only in index m = 0. As an (A,Γ)-comodule algebra,
p∗L∗,∗ is given by

AW,∗ = A[a, x, y]/E′(a, a1, . . . , a6, x, y),

where
(4.4) E′(a, a1, . . . , a6, x, y) = y2 + a1axy + a3a

3y − (x3 + a2a
2x2 + a4a

4x+ a6a
6)

and the bidegrees of the generators are |ai| = (2i, 0), |a| = (0, 1), |x| =
(4, 2), |y| = (6, 3). The powers of a are forced by the fact that E′ has
to reduce to E (4.3) when setting a = 1 and homogeneity. Multiplication
by a represents the canonical inclusion Lm,n → Lm+1,n. The coaction
AW,∗ → Γ ⊗A AW,∗ = AW,∗[r, s, t] is given by ψ(ai) = ηR(ai), ψ(a) =
1 ⊗ a, ψ(x) = x − a2r, and ψ(y) = y − asx + a2(sr − t). By Lemma 4.1,
djF∗,∗,∗ is thus isomorphic to the cohomology of the Hopf algebroid HW,∗ =
(AW,∗,Γ⊗A AW,∗).

The map AW,∗ → AW , sending a to 1, induces an isomorphism of Hopf
algebroids (

a−1HW,∗
)
m,0

→ (HW,∞)m,
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which allows us to compare the cohomology of HW,∗ to the “stable” coho-
mology, i.e. that of HW , which is significantly easier to compute:

(a−1 djF∗,∗,∗)n,s,0
∼= (a−1djF∗,∗,∗)n,s,0

∼= djFn,s,∞ .

The first isomorphism holds because τa = 0.
Are there tmf-algebra spectra tjF∞ and tjF∗ whose homotopy is the abutment of

descent spectral sequences with E2-terms djF∗,∗,∞ and djF∗,∗,∗, respectively? This
remains conjectural for the time being. We do know two things:

(1) The answers are yes if one relaxes the requirement to tmf-module spectra.
In that case, tjFm = tmf ∧Pm for 0 ≤ m ≤ ∞.

(2) The answers are also positive when restricting to Mell ⊆ MWeier and E ⊆
W by the construction of TJFm in Section 3.2.

In this paper, we will compute the following:
(1) (djF∗,∗,∞)(p) and (djF∗,∗,∗)(p) for p ≥ 3;
(2) (djF∗,∗,∞)(2), including its filtration.
(3) π∗(tjF∞)(p) for all p and π∗(tjF∗)(p) for p ≥ 3 with the definition tjFm =

tmf ∧Pm as above. One obtains the corresponding results for TJFm by
inverting ∆.

The complete results are summarized in the following theorems. These are some-
what stronger than Thms. 1.9 and 1.11 in that our computations here deal with
weak derived Jacobi forms rather than weakly holomorphic ones.

The first computation is the connective version of Thm. 1.9 away from 2:

Theorem 4.5.

(djF∗,s,∞)[ 12 ]
∼=

{
Z[ 12 , b2, b3, b4]; s = 0

0; s > 0

with |bi| = 2i. The algebra structure over (dmf∗) factors through

(mf∗)[
1
2 ] = Z[ 12 , c4, c6,∆]/(c34 − c26 − 1728∆)

and is given by

c4 7→ b22 − 24b4

c6 7→ −b32 + 36b2b4 − 216b23

∆ 7→ 1

4
b32b

2
3 − 27b43 + 9b2b

2
3b4 +

1

4
b22b

2
4 − 8b34.

The associated graded of the filtration is given by

gr∗ djF∗,∗,∞[ 12 ] = mf∗[
1
2 , b2, b3, b4]/I,

where

I = (b22 − 24b4,−b32 + 36b2b4 − 216b23,
1

4
b32b

2
3 − 27b43 + 9b2b

2
3b4 +

1

4
b22b

2
4 − 8b34)

with bi in the m = 2ith filtration quotient.
Moreover, π∗(tjF∞)[ 12 ]

∼= (djF∗,0,∞)[ 12 ].

Next we verify Thm. 1.11 in the connective setting:
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Theorem 4.6.

(djF∗,∗,∗)[
1
2 ]

∼= Z[ 12 , a, b2, b3, b4, c4, c6,∆, τ, α, β, γ]/I,

with the following tridegrees:

|a| = (0, 0, 1); |bi| = (2i, 0, i);

|c4| = (8, 0, 0); |c6| = (12, 0, 0); |∆| = (24, 0, 0);

|τ = (1, 1, 0); |α| = (3, 1, 0); |β| = (10, 2, 0); |γ| = (7, 1, 2),

and where the ideal I is

I = (1728∆− c26 + c34, c4α, c4β, c4γ, c6α, c6β, c6γ,

a4c4 − b22 + 24b4, a
6c6 + b32 − 36b2b4 + 216b23,

a12∆− 1

4
b32b

2
3 + 27b43 − 9b2b

2
3b4 −

1

4
b22b

2
4 + 8b34,

τ2, τa, τb2, τb3 − 2aγ, τb4, τγ

α2, 3α, 3β, b2α, b4α, b2β, b4β, 3γ, a
2γ, γ2, a2β − γα, b2γ, b4γ, a

2α).

The (dmf∗∗)[
1
2 ]-algebra structure is given by the fact that α ∈ dmf3,1 and β ∈

dmf10,2 and the modular forms c4, c6, ∆ map to the classes of the same name in
djF.

Finally, we complete the proof of Thm. 1.9 with the statement localized at p = 2:

Theorem 4.7.

(djF∗,∗,∞)(2) ∼= Z(2)[b2, b3, b4, b8, h1]/(2h1, b3h1, 4b8 + b24 − b2b
2
3)

with
|bi| = (2i, 0); h1 = (1, 1).

The (dmf∗∗)-module structure is given by c4 7→ b22−24b4, c6 7→ −b32+36b2b4−216b23,
∆ 7→ −b2b8 − 8b34 − 27b43 + 9b2b

2
3b4, h1 7→ h1, δ 7→ b2h1, and h2, ε, κ, κ̄ 7→ 0.

5. Computations at odd primes

When localized at a prime p, the stack MWeier has a simpler presentation (cf.
[Bau08]), and correspondingly, so does W. In terms of Hopf algebroids, if (A,Γ) →
(A′,Γ′) is an equivalence of Hopf algebroids then so is (B,B ⊗A Γ) → (A′ ⊗A
B,A′ ⊗A Γ′).

Localizing away from 2, we can replace y in the affine equation (4.3) by 1
2 (y −

a1x− a3) to transform it into the form

y2 = 4x3 + b2x
2 + 2b4x+ b6.

The Hopf algebroid HW,∞[ 12 ] becomes equivalent with the Hopf algebroid H̃∞ =

(Ã∞, Γ̃∞) with Ã∞ = Z[ 12 , b2, b4, b6, x, y]/(y
2−4x3−b2x2−2b4x−b6) and Γ̃∞ = Ã[r]

(cf. [Bau08, Lemma 4.1]). Similarly, the replacement of y by 1
2 (y − a1ax − a3a

3)
transforms (4.4) into

y2 = 4x3 + b2a
2x2 + 2b4a

4x+ b6a
6

and HW,∗ becomes equivalent with H̃∗ = (Ã∗, Γ̃∗) with

Ã∗ = Z[ 12 , a, b2, b4, b6, x, y]/(y
2 − 4x3 − b2a

2x2 − 2b4a
4x− b6a

6) and Γ̃∗ = Ã∗[r].
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In each case, the right units of the Hopf algebroids are given by (set a = 1 for the
case A∞):

ηR(b2) = b2 + 12r

ηR(b4) = b4 + b2r + 6r2

ηR(b6) = b6 + 2b4r + b2r
2 + 4r3

ηR(a) = a

ηR(x) = x− a2r

ηR(y) = y.

We make repeated use of the following change-of-cover theorem by Hopkins
[HS99, Hov02]:

Theorem 5.1. Let (A,Γ) be a Hopf algebroid, A → A′ a morphism of rings, and
Γ′ = A′ ⊗A Γ ⊗A A′ be the base change of Γ to a Hopf algebroid over A′. If there
exists a ring R and a morphism A′ ⊗A Γ → R such that the composite

A
1⊗ηR−−−→ A′ ⊗A Γ → R

is faithfully flat, then it induces an equivalence of comodule categories, and in
particular an isomorphism

H∗(A,Γ)
∼=−→ H∗(A′,Γ′) �

In the stable case, we find an easy application of this theorem by dividing out x.

Lemma 5.2. The map Ã→ A′ = Ã/(x) induces an isomorphism

djF∗,s,∞[ 12 ])
∼=

{
Z[ 12 , b2, b4, y]; s = 0

0; s > 0,

Proof. Let us first show that Thm. 5.1 is applicable for

R = A′ ⊗Ã Γ,

i.e. that
g = (1⊗ ηR) : Ã→ A′ ⊗Ã Ã[r] = A′[r]

is faithfully flat (and actually an isomorphism). This follows from the fact that
ηR(x) = x− r and thus g(x) = −r is monic up to a unit.

Now by definition,

A′ = Z[ 12 , b2, b4, b6, y]/(y
2 − b6)

and
Γ′ = ÃW [r]/(ηL(x), ηR(x)) = ÃW [r]/(x, r) = A′. �

Proof of Thm. 4.5. Setting b3 = y, the lemma above shows everything except for
the claim about the filtration. The formulas for c4, c6 and ∆ are the standard
expressions computed, e.g., in [Sil09, Chapter III.1]. Unfortunately, our way of
manipulating the Hopf algebroid HW,∞ was incompatible with the filtration, so
we postpone the claim about the associated graded of the filtration as Cor. 5.8, a
consequence of Thm. 4.6. �
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The computation required for Thm. 4.6 is a bit more complicated. The above
computation does not immediately generalize because dividing out by x no longer
produces an equivalent Hopf algebroid.

We will first construct variants of the algebraic Atiyah-Hirzebruch spectral se-
quence for H∗(W,OW(me)). These are algebraic versions of (3.11), (3.12), and
(3.15).

Consider the multiplicative filtration of OW -module sheaves

(5.3) · · · a
↪−→ OW(−e) a

↪−→ OW
a
↪−→ OW(e)

a
↪−→ · · · ↪→ OW(∞e).

Note that for each m ∈ Z, we have short exact sequences of sheaves of OW -modules
0 → OW((m− 1)e)

a−→ OW(me) → e∗(ω
−m) → 0

which, when restricted to E ⊂ W and m = −1, coincides with the homotopy sheaves
of (3.2).

We can tensor with the vector bundle p∗(ωt) to obtain a short exact sequence

0 → L2t,m−1
a−→ L2t,m → e∗(ω

−m)⊗ p∗(ωt) → 0.

By the projection formula,
e∗(ω

−m)⊗ p∗(ωt) ∼= e∗(ω
−m ⊗ e∗p∗ωt) = e∗(ω

t−m).

Since e is a closed embedding, e∗ is exact and
Hs(W, e∗(ω

t−m)) ∼= Hs(MWeier, ω
t−m) ∼= dmf2(t−m)−s,s .

Upon applying H∗(W,−) and setting n = 2t− s, we thus obtain an unrolled exact
couple
(5.4)

· · · djFn,s,−1 djFn,s,0 djFn,s,1 · · ·

dmfn−2,s dmfn,s dmfn+2,s dmfn+4,s

a a

res

a

res

a

res
/

tr
/

tr
/

tr

with connecting homomorphism tr : dmfn−2m,s → djFn−1,s+1,m−1 and thus a spec-
tral sequence with

E1
∗∗∗ = dmf∗∗[z

±1]

where the grading is such that E1
s,2t,0 = dmf2t−s,s and the tridegree of z is (s, t, u) =

(0, 0, 2).
The spectral sequence converges to a T -Tate variant of djF∗∗∞.
Upon inverting ∆, both the E1 and D1-terms of (5.4) are themselves E2-terms

of descent spectral sequences converging to π∗Σ2m TMF and π∗ TJFm, respectively.
Morally, (5.4) can be thought of as an exact couple of spectral sequences, but this
is not straightforward since spectral sequences do not form an abelian category. We
will leave it at that but note that the maps a, res, and tr in (5.4) converge to the
maps of the same names between TJFm−1, TJFm, and Σ2m TMF.

We can truncate the filtration (5.3), considering only the terms m ≥ 0; here we
replace dmf2t−s,s by djF2t−s,s,0 as E1

s,2t,0 and posit that the map

dmf∗,∗ ⊕dmf∗−1,∗,−1
∼= D1

∗,∗,0
res−−→ E1

∗,∗,0
∼= dmf∗,∗ ⊕dmf∗−1,∗,−1

sends 1 to 1 and τ to τ + h1 analogously to what we did in (3.12). We obtain a
spectral sequence converging to djF∗∗∞, which we will proceed to compute.

We have the following integral result:
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Proposition 5.5. There is a multiplicative spectral sequence, called the algebraic
Atiyah-Hirzebruch spectral sequence (AAHSS), convering to djF∗∗∞ with

E1
∗∗∗ = dmf∗∗[z, τ ]/(τ

2 − h1τ, zτ − h1τ),

where τ = tr(1) ∈ E1
1,2,0. Moreover, d1(τ) = 0 and d1(z) = τ + h1.

Proof. By the multiplicativity of the exact couple, we know that

τ2 = tr(1)2 = tr(1) res(τ).

Whatever res(τ) is, it will detect η by the compatibility with the descent spectral
spectral sequences and (3.12), and so it must be nontrivial. However, there is only
one nontrivial element in dmf1,1, and that is h1.

The differential follows directly from the exact couple. �

Finally, also the modified exact couple (3.15) has an algebraic version converging
to djF∗∗∞ = dmf∗∗ ×djF∗∗0 djF∗∗∞, and its spectral sequence has the signature

E1
∗∗∗ = dmf∗∗[x, y]/(x

3 − y2) =⇒ djF∗∗∞ .

Its D1-terms are djF∗∗m and therefore themselves the E2-terms of descent spectral
sequences converging to tmf∗(P

m); moreover, any differential dn in it converge to
differentials in the Atiyah-Hirzebruch spectral sequence for tmf∗(P

∞).
Since our aim is to compute djF∗∗,m for all m, and not just djF∗∗∞, we need

to modify the spectral sequences above by truncating the filtration (5.3) at m (for
all m) and introducing an additional grading (yes, a fourth one!). This is very
reminiscent of the mechanics behind synthetic spectra. We will concentrate on the
case at hand, although the method would work for any multiplicative unrolled exact
couple.

Theorem 5.6. There exists a multiplicative spectral sequence, called the unstable
algebraic Atiyah-Hirzebruch spectral sequence (UAAHSS)

E1,m
s,t,u = dmf∗∗[τ, z, a]/(τ

2 − τh1, zτ − zh1) =⇒ djF2t−s,s,m

It satisfies the following properties:
(1) There is a map of spectral sequences s from the UAAHSS to the AAHSS

of Prop. 5.5 collapsing the m-grading. This map is surjective on E1 with
kernel (a− 1).

(2) If x ∈ E1 of the UAAHSS is such that s(x) is a (k−1)-cycle and dk(s(x)) = y
then x is a (k − 1)-cycle in the UAAHSS and dk(x) = aky.

In particular, the d1 differential is completely determined by d1(z) = a(τ + h1).

Proof. Let D1
t = djFn,s,t and E1

∗∗∗ as in the AAHSS. Then (D1
∗, E

1
∗) is the asso-

ciated multiplicative exact couple. Denote by (D1,m, E1,m) the truncated exact
couple with

D1,m
s,t,u = D1

s,t,min(m,u) and E1,m
s,t,u =

{
E1
s,t,u; u ≤ m

0; u > m.

Clearly, the associated spectral sequence converges strongly toD1,m
s,t,∞ = djF2t−s,s,m,

but it is no longer multiplicative. However, the multiplicative structure of (D1, E1)
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induces a multiplicative structure on(⊕
m

D1,m
∗∗∗ ,

⊕
m

E1,m
∗∗∗

)
with D1,m

s,t,u⊗D
1,m′

s′,t′,u′ → D1,m+m′

s+s′,t+t′,u+u′ and similarly for E. The associated spectral
sequence is the UAAHSS and converges to

⊕
m djF∗∗,m.

The element τ ∈ E1
1,2,0 lifts to an element in E1,0

1,2,0, and the element z ∈ E1
0,2,1

lifts to an element in E1,1
0,2,1. We also have the element a ∈ E1,1

0,0,0 which maps to
1 under the isomorphism E1,1

0,0,0
∼= dmf0,0. For m > 0, the term E1,m is freely

generated over dmf∗∗ by the monomials of degree m in a and z, while for m = 0,
E1,0 is just djF∗,∗,0. The description of the E1-term of the UAAHSS follows.

Consider the map s : D1,∗
s,t,u =

⊕
m≥0D

1
s,t,min(m,u) → D1

s,t,u given on every sum-
mand by multiplication by au−min(m,u). This yields a map of exact couples from
the UAAHSS to the AAHSS

(D1,∗
s,t,u, E

1,∗
s,t,u) → (D1

s,t,u, E
1
s,t,u),

surjective on E1 and mapping a to 1. Thus it induces an isomorphism on the
quotient by (a − 1) and hence an isomorphism of exact couples, and the resulting
spectral sequences are isomorphic.

The claim about differentials follows from this and quadegree considerations. �

Note that E1,m
s,t,u = 0 for u > m, and the only generator that has u 6= m is the

stabilization class a with m = 1, u = 0. The degrees u and m of a class in the E1-
term of the UAAHSS should be interpreted as follows: every class x not divisible
by a has u = m, which is the index (topologically, the cell) where it first appears
(“is born”). Denote again by s the map UAAHSS → AAHSS. If s(x) is a nontrivial
permanent cycle then all multiples akx are nontrivial permanent cycles. If, on the
other hand, s(x) is a nontrivial (k−1)-cycle and the target of a dk-differential then
x, . . . , ak−1x are still nontrivial infinite cycles representing derived Jacobi forms,
but akx dies. Thus the difference m − u of any class y denotes the “age” of that
class.

We will now invert 2, which simplifies the spectral sequence significantly. We
remind the reader (cf. [Bau08]) that

dmf∗∗[
1
2 ]

∼= Z[α, β, c4, c6,∆]/(α2, c4α, c4β, c6α, c6β, 1728∆− c26 + c34)

as displayed in Figure 5.1. In this chart, a box represents a copy of Z[ 12 ] and a dot
a copy of Z/3Z. A line of slope 1

3 denotes multiplication by α.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

� �� �
�� �

α
β

c4 c6 c24 c4c6 ∆ c34

Figure 5.1. The bigraded ring dmf∗∗[
1
2 ]
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Lemma 5.7. The E2-term of the UAAHSS of Thm. 5.6 after localization away
from 2 is given by

E2,∗
∗∗∗ = dmf∗∗[

1
2 , τ, x, y, a]/(τ

2, xτ, yτ, y2 − x3, aτ)

with τ , a as before and x, y mapping to z2 and z3, respectively, in the E1-term.
The class y is an infinite cycle, and there is a hidden extension yτ = 2axα.

Proof. The E2-term follows from the differential d1(z) = aτ . (Recall that h1 = 0
since 2h1 = 0.) It is displayed in Figure 5.2. We display it modulo the ideal
(c4, c6,∆) since it consists of permanent cycles.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

� � � � � ��

τ α
x y

Figure 5.2. The E2-term of the UAAHSS for djF∗∗∗[
1
2 ]

In that chart, the horizontal axis is the total dimension n = t − s, the vertical
axis is the cohomological degree s, and RMA color code modulo 9 is used for the
indices u and m (black = 0, brown = 1, red = 2, orange = 3, yellow = 4, green
= 5, blue = 6, purple = 7, gray = 8). More precisely, a symbol with color code i
represents

� = Z[ 12 , a]

� = Z[ 12 ]
• = Z/3Z[a]
◦ = Z/3Z,

with the generator 1 placed at bidegree (u,m) = (i, i). A line of slope 1 represents
a multiplication by τ , and a line of slope 1/3 one by α.

The differentials di have degree (s, t,m, u) = (1, 0, 0,−i). Thus there are no
possible targets for di(y) for any i ≥ 2. Thus there exists a lift ỹ ∈ djF6,0,3 of y
such that res(ỹ) = y.

To see the exotic extension, note that tr(z) is a lift of τ to djF1,1,0. Thus
ỹ tr(z) = tr(z res(ỹ)) = tr(z · z3) = tr(z4). We now use the interpretation of
the topological spectral sequence of Prop. 3.14, or rather its TMF-variant, as the
Atiyah-Hirzebruch spectral sequence for Pm. In particular, the topological transfer
map tr : Σ7 TMF → TJF3 is induced by the attaching map S7 → P 3 of the 8-
cell of P 4, which is the same as the attaching map of the 6-cell to the 2-cell of
CP 3, which is 2ν with ν ∈ π3(S

0) the Hopf map [Mos68]. (That it is nontrivial
in mod-3 cohomology also follows from the unstable Steenrod algebra structure of
H∗(CP 3,F3).)

We conclude that tr(z4) has to be a class detecting 2xν. Considering quadegrees
and the fact that xν is uniquely detected by xα, we conclude that tr(z4) = 2axα.

�
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We proceed to compute the higher differentials in the UAAHSS. Since this spec-
tral sequence arises from the filtration by powers of a of the Hopf algebroid HW,∗
of (4.4) and in that Hopf algebroid,

η(x) = x− a2r,

and since furthermore α is represented by [r] in the bar complex, we have
d2(x) = a2α.

By the Leibniz rule, we find that d2(xiyj) = ±a2xi−1yjα for 3 - i. The class
xα survives to a class γ of dimension 7 and index 1, supporting a multiplicative
extension γα = a2β coming from the Massey product shuffle

γα = 〈a2, α, α〉α = a2〈α, α, α〉 = a2β.

Since a2α is a boundary, its γ-multiple γa2α = a4β cannot survive either, and
the only eligible differential to achieve this is

d4({x2α}) = ±a4β.
(A d3 differential is impossible since all differentials preserve the m-grading, i.e. the
color.)

Chart 5.3 shows the resulting E5-term. The same conventions as in Chart 5.2
apply, with the addition that k nested circles represent a copy of Z/3Z[a]/(ak).
The classes b2, b3, and b4 are chosen such that their restrictions are 3x, y, and 3x2,
respectively.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

� � � � � � � � � � � � ��

τ α
b2 b3 b4

γ
β

Figure 5.3. The E∞ term of the unstable algebraic Atiyah-
Hirzebruch spectral sequence for H∗(W, L∗,∗)[

1
2 ]

The class b3 is a permanent cycle, and no more differentials are possible for
degree reasons.

Proof of Thm. 4.6. We read off from this chart that (djF∗∗∗)[
1
2 ] is generated by the

classes α, β, c4, c6,∆ that generate (dmf∗∗)[
1
2 ] as well as the classes b2, b3, b4 in

tridegrees |bi| = (2i, 0, i), the class a in tridegree (0, 0, 1), τ in tridegree (1, 1, 0) as
well as γ in tridegree (7, 1, 2).

We can choose the scaling of the classes bi so that they stabilize to the classes
of the same name in (djF∗,0,∞)[ 12 ], cf. Thm. 4.5, so that the relations

a4c4 = b22 − 24b4, a6c6 = −b32 + 36b2b4 − 216b23

and
a12∆ =

1

4
b32b

2
3 − 27b43 + 9b2b

2
3b4 +

1

4
b22b

2
4 − 8b34

continue to hold. (The powers of a are determined by the level of the equations,
viz. m = 2, m = 3, and m = 6, respectively.)
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The following relations hold:
• The relations involving c4, c6, and ∆: 1728∆ = c26 − c34, c4α = c4β = c4γ =
c6α = c6β = c6γ = 0, and the relations for a4c4, a6c6, and a12∆ above;

• The relations present in dmf∗∗: α2 = 0, 3α = 3β = 0;
• The relations coming from the kernel of the differentials on the (s = 0)-line:
b2α = b4α = b2β = b4β = 0;

• The relations involving the new class γ: 3γ = a2γ = γ2 = b2γ = b4γ = 0
and γα = a2β;

• The a-order of classes in positive degree, all implied by a2α = 0;
• the relations involving τ : τ2 = τaτb2 = τb4 = 0, τb3 = 2aα.

The claimed results follow. �

Corollary 5.8. The associated graded of the filtration of djF∗,∗,∞ is given by

gr djF∗,∗,∞[ 12 ] = mf∗[
1
2 , b2, b3, b4]/I

I = (b22 − 24b4,−b32 + 36b2b4 − 216b23,
1

4
b32b

2
3 − 27b43 + 9b2b

2
3b4 +

1

4
b22b

2
4 − 8b34)

Proof. The associated graded is given by djF∗,∗,∗/(a) and thus follows directly from
Thm. 4.6. �

Moving on to the descent spectral sequence, we will determine all differentials
from the tmf-module structure of tjF∞ alone, not using any conjectural ring spec-
trum structure. We note that all differentials respect the index m – i.e., the colors
– and thus the only possible differentials are those induced by the fundamental dif-
ferentials d5(∆) = β2α and d9(∆

2α) = 2β5 implied by the tmf-module structure.
This is displayed in Figure 5.4. Here, the black square in bidegree (24, 0) and its
b3-multiples indicate that the class ∆ (black) died, but both 3∆ and a2∆ survive,
thus it represents (a2, 3)Z[ 12 , a]. Similarly, the black square in bidegree (48, 0) is
(a4, 3)[ 12 , a]. The classes c4, c6 are infinite cycles and not shown.

6. Computations at p = 2

We employ the same ideas to compute djF∗,∗,∞ localized at the prime 2 as at
the prime 3.

By completing the cube in x in the polynomial E(a, x, y) (cf. [Bau08, Section 7]),
the Hopf algebroid H(2) = (A(2),Γ(2)) is equivalent to H̃ = (Ã, Γ̃) with

Ã = Z(2)[a1, a3, a4, a6], Γ̃ = Ã[s, t],

where r = 1
3 (s

2 + a1s), and thus HW,∞ ' H̃W,∞ = (ÃW , ÃW [s, t]) with

ÃW = (Ã[x, y]/(E(a1, 0, a3, a4, a6, x, y)).

Proof of Thm. 4.7. We apply Theorem 5.1 for A′
W = ÃW/(y). We have that

g : ÃW → A′
W ⊗ÃW

ÃW [s, t] = A′
W [s, t]

has g(y) = −sx+ sr − t = −sx+ 1
3 (s

3 + a1s
2)− t. We can lift g to a map

g̃ : Ã[x, y] → Ã[x, y, s, t]/(y)
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Figure 5.4. The descent spectral sequence converging to π∗ tjF∗[
1
2 ]

which shows that the target is a free module over the source on the basis {si}, thus
is faithfully flat. Hence so is the quotient by the (invariant) ideal generated by
E(a1, 0, a3, a4, a6, x, y). Thus H̃W,∞ is equivalent to (A′

W ,Γ′
W) with

A′
W = Z(2)[a1, a3, a4, a6, x]/(x

3 + a4x+ a6) ∼= Z(2)[a1, a3, a4, x]

and
Γ′
W = A′

W [s, t]/(sx− 1

3
s2(s+ a1) + t) ∼= A′

W [s].

In (A′
W ,Γ′

W), we have that

ηR(a1) = a1 + 2s

ηR(a3) = a3 + a1r + 2t = a3 + a1r + 2sr − 2sx = a3 +
1

3
(a1 + 2s)(s2 + a1s)− 2sx

ηR(a4) = a4 − a3s− a1(t+ rs)− 2st+ 3r2 = a4 − a3s+ (a1 + 2s)sx− 3r2

= a4 − a3s+ (a1 + 2s)sx− 1

3
(s2 + a1s)

2

ηR(x) = x− r = x− 1

3
(s2 + a1s).

This shows that a further application of Thm. 5.1 for A′′
W = A′

W/(x) is possible
since A′′

W ⊗A′
W

Γ′
W is free of rank 2 over B′ with basis {1, s}. We thus obtain the

equivalent Hopf algebroid (A′′
W ,Γ′′

W) with

A′′
W = Z(2)[a1, a3, a4]; Γ′′

W = A′′
W [s]/(s2 + a1s)
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and
ηR(a1) = a1 + 2s

ηR(a3) = a3

ηR(a4) = a4 − a3s.

To compute the cohomology of this Hopf algebroid, we first divide out by the
invariant ideal I = (2, a1). The resulting Hopf algebroid (B1,Γ1) is given by

B1 = F2[a3, a4]; Γ1 = B1[s]/(s
2).

We have
Ext(B1,Γ1)(B1, B1) = F2[h1, a3, a

2
4]/(a3h1),

where h1 is in filtration 1 and total degree 1, represented in the bar construction
by [s].

Running the algebraic Bockstein spectral sequence to get the 2-local cohomology,
the fundamental differential is given by d1(a1) = 2s, yielding

H∗(A′′
W ,Γ′′

W) = Z(2)[h1, a
2
1, a3, a3a1 + 2a4, a

2
4 + a4a3a1]/(2h1, a3h1)

or, in terms not referring to a surrounding chain complex,
Z(2)[h1, b2, b3, b4, b8]/(2h1, b3h1, b4h1, b

2
4 − b2b

2
3 − 4b8).

with c4 = b22−24b4, c6 = −b32−216b23+36b2b4, ∆ = −b8b22+9b2b
2
3b4−27b43−8b34. �

In the descent spectral sequence for TJF, the differential d3(b2) = h31 is forced by
the relation η4 = 0 in the sphere. This argument is valid in the (nonmultiplicative,
but connective) version

tjF ' tmf ∧P∞,

because b2 is the only class that could support a differential, and thus it holds in
TJF after inverting ∆. By multiplicativity in TJF, this implies d3(b2n+1

2 ) = b2n2 h31
for all n. For dimensional reasons, b3, b4, and b8 are infinite cycles and thus
d3(b

k
8b

2n+1
2 ) = bk8b

2n
2 h31 and we obtain

E4
∼= Z(2)[h1, 2b2, b3, b

2
2, b4, b2b3, b2b4, b8,∆

−1]/I

with
I = (2h1, h

3
1, b3h1, b4h1, 4b8 − b2b

2
3 + b24).

For degree reasons, E4
∼= E∞ and no multiplicative extensions are possible, and we

conclude:

Corollary 6.1.
π∗(TJF∞)(2) ∼= Z(2)[η, x2, x3, x4, x

′
4, x5, x6, x8,∆

−1]/I

with
I = (2η, η3, x2η, x3η, x

′
4η, x5η, x6η,

4x4 − x22, 2x5 − x2x3, 2x6 − x2x
′
4, 2x3x4 − x2x5, 2x4x

′
4 − x2x6,

x5x6 − x3x4x
′
4, 4x8 − (x′4)

2 + x3x5).

and
∆ = −x8x4 + 9x5x3x

′
4 − 27x43 − 8(x′4)

3.
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This looks complicated; however, additively,

π∗(tjF∞) ∼=
⊕
n≥0

Σ16n

(
ko∗ ⊕

∞⊕
i=1

Σ6iku∗

)
,

and this can be expressed even more concisely by saying that
π∗(tjF∞) ∼= ko∗(X)

where
X =

∨
n≥0

Σ16n
(
S0 ∨ Σ6C(η) ∨ Σ12C(η)

)
.

The 16-periodic summands are given generated by xn8 , the inner ko∗-summands
by the subring generated by x2 and x′3, and the ku-factors by the subrings generated
by xi3, xi−1

3 x4, x
i−1
3 x5, x

i−1
3 x6.

We will not determine the full tmf∗-algebra structure, but note that on the 0-
line, the topological modular forms are mapped as c4 = b22 − 24b4 7→ x4 − 24x′4 and
2c6 = −2b32 − 432b23 + 72b2b4 7→ x2x4 − 432x23 + 36x2x

′
4.

Appendix A. Equivariant homotopy theory and the transfer

In this appendix, we recall some equivariant homotopy theory and describe, in
particular, different ways to obtain the transfer. To ensure consistency, we will
take as only input equivariant Atiyah duality and construct all other maps and
equivalences from there. All material here is known; only the viewpoint might be
somewhat new.

Let G be a compact Lie group. When speaking about G-spectra, we mean the
∞-category SpG of genuine G-spectra with respect to a full universe. We view
pointed G-spaces implicitly as G-spectra via Σ∞. As a matter of convention, all
our actions will be left actions in this appendix; if we speak of right actions, we act
indeed by the inverse from the right.

The functor Σ∞ factors through the (naive) stabilization of G-spaces, called
naive G-spectra. The corresponding right adjoint from genuine G-spectra X to
naive G-spectra records the G-spaces X(V ) for trivial G-representations V (and
the structure maps between them). The forgetful functor from genuine G-spectra
to spectra with G-action factors in this way through naive G-spectra.

Let G be a compact Lie group. Then G+ is a G × G-space, where the first G-
factor acts by multiplication on the left and the second factor by multiplication with
inverses on the right. We also denote by G+ the corresponding G×G-equivariant
suspension spectrum Σ∞

+G. The Spanier-Whitehead dual DG+ = F (G+, S) is also
a G×G-equivariant spectrum.

Let πi : G × G → G be the projection maps and ιi : G → G × G the inclusion
maps (i = 1, 2). Denote by Gi < G × G the direct factor subgroups ιi(G). Any
pointed G-space or G-spectrum X can be turned into a G×G-spectrum Xi in two
ways, namely as π∗

iX. We consider the space G as a G × G-space with the left
and right multiplication actions, and its G × G-equivariant suspension spectrum
G+ = Σ∞

+G.
We record the following straightforward coinduction result:

Lemma A.1. Let E be a G×G-spectrum. There is a natural equivalence of naive
G-spectra

F (G+, E)Gi ' ∆∗E (i = 1, 2),
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where ∆: G→ G×G is the diagonal.

Proof. Let us first consider the case where E is a G×G-space. Then the evaluation
map

F (G+, E)G1 → ∆∗E, φ 7→ φ(1),

is a G-equivalence: for the G2-action φ 7→ φ.γ of γ on F (G+, E)G1 , we have

(φ.γ)(−) = (1, γ).φ(− · γ) 7→ (γ, γ).φ(1).

In the spectrum case, we have for a trivial G-representation V :

F (G+, E)G1(V ) = F (G+, E(V ))G1 = ∆∗(E(V )) = (∆∗E)(V ). �

Let SAdG = (π1)
∗SadG, where SadG is the G-spectrum which is the suspension

spectrum of the one-point compactification of the adjoint representation of G.
The pivotal construction for both the Adams isomorphism and the transfer is

the following special case of equivariant Atiyah duality:

Lemma A.2. For any compact Lie group G, there is an equivalence of genuine
G×G-spectra

G+ ' SAdG ∧DG+.

As a corollary, by taking fixed points with respect to the subgroup G2 and using
Lemma A.1, we obtain an equivalence of G-spectra

(G+)
G2 ' (SAdG ∧DG+)

G2 ∼= F (G+,S
AdGG)G2 ∼= SadG.

Proof. By the Mostow-Palais (equivariant Whitney embedding) theorem, G can be
G × G-equivariantly embedded into a G × G-representation V . By the equivari-
ant tubular neighborhood theorem [Bre72], there exists a G×G-invariant tubular
neighborhood U of G in V together with a G × G-diffeomorphism νG↪→V → U ,
where νG↪→V denotes the normal bundle of G in V . The (G × G-equivariant)
Pontryagin-Thom collapse maps

SV → U ∪ {∞} ∼= GνG↪→V

assemble to a map of G-spectra

dG : S → G−TG.

Composing with the Thom diagonal G−TG → G−TG ∧G+ and taking duals yields
a G×G-map

(A.3) tG : DG+ → G−TG,

which is an equivalence by [May96, Ch. XVI.8]. Note that the bundle TG on G
is trivial as a left or right G-bundle by the (left or right) invariant framing. More
precisely, the map

G× TeG→ TG, (g, x) 7→ (g, xg)

is a trivialization of TG, where xg ∈ TgG denotes the tangent vector obtained as
the image of x ∈ TeG by the action of the derivative of right multiplication with
g. Considering TG as a G × G-space by left and right multiplication, we see that
the induced right G-action on TeG is trivial, while the left G-action is the adjoint
representation (i.e. conjugation) on TeG. Thus we have, G×G-equivariantly, that
G−TG ∼= G+ ∧ S−AdG. Combining with the equivalence (A.3) and smashing both
sides with SAdG yields the claim. �
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From the previous lemma, we obtain for every G-spectrum E a chain of equiva-
lences

(E1 ∧G+)
G1 ' (E ∧ SAdG ∧DG+)

G1 ' F (G+, E ∧ SAdG)G1

' E ∧ SadG ' (E1 ∧ SAdG ∧G+)hG1

(A.4)

of G-spectra.
The Adams isomorphism is a generalizing this from G to arbitrary complexes X

with free G-action. Below, we need the compatibility of equivariant Atiyah duality
with the Adams isomorphism. For this reason (and to be more self-contained),
we give a quick derivation of a special case of the Adams isomorphism ([LMSM86,
SII.7]) from Lemma A.2.

Proposition A.5 (Adams isomorphism). If X is a G-CW complex with a free
G-action, then

(A.6) (E ∧X+)
G ' (E ∧ SAd(G) ∧X+)hG

for every (genuine) G-spectrum E. This equivalence is functorial in X and E. In
the case of X = G, the equivalence is homotopic to (A.4).

Note that if E carries a trivial underlying G-action, the right-hand side simplifies
to resGe E ∧ (SadG ∧X+)/G.

Proof. We will consider G×G-equivariant spectra with the conventions discussed
above Lemma A.1. For any pointed G-CW-complex X, the shear map

sh: G×X → G×X, (g, x) 7→ (g, g−1x)

induces a G×G-isomorphism s : G+ ∧X1 ∼= G+ ∧X2 (where G×G acts on both
factors).

Now consider the G×G-spectrum
Z = E2 ∧G+ ∧X1

+.

Note that this is a free G1-spectrum, with G1-homotopy orbits

ZhG1

idE ∧s−−−−→ (E2 ∧G+ ∧X2
+)hG1

∼= E ∧X+.

Taking G-fixed points on this gives one side of the Adams isomorphism, (E ∧
X+)

G. On the other hand, taking G2-fixed points of the same spectrum and using
Lemmas A.2 and A.1
ZG2 ∼= (E2∧(SAdG ∧DG+)∧X1

+)
G2 ∼= F (G+, E

2∧SAdG ∧X1
+)
G2 ∼ E∧SadG∧X+,

where the last equivalence is of naive G-spectra. Taking G-homotopy orbits of this
yields the right hand side

(E ∧ SadG ∧X+)hG.

The desired map (A.6) is the exchange map (ZG2)hG → (ZhG1)
G for homotopy

orbits and fixed points. Fixed points commute with all homotopy colimits (see e.g.
[MSZ23, Section 2.1]) and in particular with homotopy orbits. Thus, the exchange
map is an equivalence.

The compatibility of the Adams isomorphism with Equation (A.4) is a somewhat
lengthy but straightforward check.3 �

3For readers wanting to avoid this check: The space of functorial equivalences (E ∧ G+)G '
E ∧ SAd(G) is equivalent to that of self-equivalences of SAd(G). In particular, (A.4) and (A.6)
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Remark A.7. There is an alternative proof of the Adams isomorphism in the form
of Proposition A.5 using some ∞-categorical technology: The ∞-category of G-
CW complexes with free G-action is by Elmendorf’s theorem equivalent to the
∞-category of functors from the full subcategory {G} of the orbit category OrbG
on G to spaces. This is free generated under colimits from {G}. Thus, two colimit
preserving functors of free G-spaces are equivalent if they are so on {G}. Thus, the
equivalence (A.6) is induced by (A.4) since both sides preserve colimits in Y .

We use the following definition of the transfer, where we denote the underlying
spectrum of a G-spectrum E by Ee.

Definition. Given a G-spectrum E, we define the transfer map Ee ∧SadG → EG

as the composition

Ee ∧ SadG ' F (G+ ∧ S− adG, E)G ' F (DG+, E)G → F (DS0, E)G ' EG.

Here, we applied Lemma A.2 in the second step, and the third map is induced by
the dual of the map G+ → S0.

Lemma A.8. For a G-spectrum E, the transfer map coincides with the composite

Ee ∧ SadG ' (E ∧G+)
G → EG,

where the first equivalence is the Adams isomorphism, and the last map is induced
by the map G+ → S0.

Proof. This follows from the compatibility in the last sentence of Proposition A.5.
�

The only relevant case for us is G = T , where adG is the trivial 1-dimensional
representation and the transfer above takes the form ΣEe → ET .

We also give two definitions of a transfer map CPm+ → S−1. To that purpose,
recall that ρ denotes the tautological T -representation on C.

(1) There is a cofiber sequence

T+ → S0 → Sρ → ΣT+.

Desuspending by ρ gives a map γ : S0 → Σ1−ρT+ ' Σ−1T+. Taking T -
homotopy orbits yields the map CP∞

+ ' S0
hT → (Σ−1T+)hT ' S−1. We

obtain the map CPm+ → S−1 by precomposing with CPm+ → CP∞
+ .

(2) Using the Adams isomorphism, we obtain the map

(A.9) CPm+ ' Σ−1(S((m+ 1)ρ)+)
T → Σ−1(S0)T → Σ−1S0 = S−1.

Here, the last map is restriction or, equivalently, the desuspension of the
composite

ι : (S0)T ' (DS0)T → (DT+)
T ' S0.

Remark A.10. The map Sρ → ΣT+ in the first item agrees with the Pontryagin
collapse map for the standard embedding T ↪→ Sρ. Thus, its ρ-th desuspension
γ : S0 → Σ−1T+ agrees with the map S0 = DS0 → DT+ ' Σ−1T+. Indeed,
the Atiyah duality equivalence from Lemma A.2 is induced from the Pontryagin
collapse map.

can differ at most by a sign. Moreover, in Remark A.7, we give an alternative proof where the
equivalence of (A.4) and (A.6) is already built in.
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Proposition A.11. These two definitions agree (up to sign). The fiber of this
transfer agrees with the stunted projective space CPm−1, i.e. the Thom spectrum of
the negative of the tautological line bundle on CPm+1.

Proof. Given the first definition of the transfer, the fiber of CP∞
+ → S−1 is S−ρ

hT ,
which agrees with the stunted projective space CP∞

−1. The fiber of CPm+ → S−1 is
thus the fiber product CP∞

−1 ×CP∞
+

CPm+ , which agrees with CPm−1.
It remains to show the equality of transfers. Since the map S(mρ)+ → S0 factors

as S(mρ)+ → S(∞ρ)+ → S0 and the Adams isomorphism is functorial, the transfer
CPm+ → S−1 in the second sense arises as the composition CPm+ → CP∞

+ → S−1,
with the second map again the transfer in the second sense. Thus, it suffices to
prove the equality of transfers for m = ∞.

Consider the diagram

CP∞
+ ' S(∞ρ)+/T ' S0

hT Σ−1T+ ∧ S(∞ρ)+/T Σ−1T+/T ' S−1

Σ−1S(∞ρ)T+ Σ−2(T+ ∧ S(∞ρ)+)
T Σ−2(T )T ,

' ' '

where the first horizontal map is induced by the map γ : S0 → Σ−1T+ discussed
above, the second by the collapsing map S(∞ρ)+ → S0, and all vertical arrows
are Adams isomorphisms. The composite in the top row is equivalent to the first
definition of the transfer. In the second, we may alternatively first collapse S(∞ρ)
and then apply γ. Thus, to identify the composite in the second row with the
second description of the transfer, it remains to show that the map

ι : (S0)T ' (DS0)T → (DT+)
T ' S0

above agrees with the composite

(S0)T
γ−→ (Σ−1T+)

T ' S0.

Here, the last equivalence is the Adams isomorphisms or, equivalently, (A.4) for
E = S0. Thus, the agreement of the two maps follows from Remark A.10. �

As a last point, we want to prove a compatibility result about the transfer in the
setting of global spectra. Roughly speaking, a global spectrum consists of a family of
genuine G-spectra for all compact Lie groups G; see [LNP25] for a definition of the
∞-category Spgl of global spectra in this spirit and [Sch18, Boh14] for (equivalent)
other approaches. The important example for us is TMF, for which the structure
of a global spectrum was constructed in [GLP24]. For a global spectrum X, we
denote by XG the corresponding G-spectrum and by XG its fixed points.

Lemma A.12. Let X be a global spectrum. Then
Xe ∧CPm ' Σ−1(XT ∧ S((m+ 1)ρ)+)

T → Σ−1XT res−−→ Σ−1Xe

is equivalent to Xe ∧ trm, where trm is the transfer as in (A.9). (Here, the first
equivalence uses the Adams isomorphism.) Moreover, this equivalence is natural in
m and X.

Proof. There is a unique colimit-preserving functor L : Sp → Spglo sending the
sphere to the sphere; this is left-adjoint to the restriction functor Z 7→ Ze. This is
spelled out in model-categorical terms in [Sch18, Theorem 4.5.1], in whose proof it
is also shown that the adjunction unit Z 7→ (LZ)e is an equivalence.



TOPOLOGICAL JACOBI FORMS 39

The counit L(Xe) → X induces a diagram

Xe ∧CPm Σ−1Xe ∧ (S((m+ 1)ρ)+)
T Σ−1Xe ∧ (S0)T Σ−1Xe

(LXe)e ∧CPm Σ−1((LXe)T ∧ S((m+ 1)ρ)+)
T Σ−1(LXe)

T Σ−1(LXe)e

Xe ∧CPm Σ−1(XT ∧ S((m+ 1)ρ)+)
T Σ−1XT Σ−1Xe.

' ' ' '

'

'

res

'

' res

The upper vertical arrows are special cases of the (natural) natural transforma-
tion X ∧ F (−) → F (X ∧ −) existing for every exact functor F on T -spectra and
every spectrum X, coming from the colimit-interchange map. In fact, these are
equivalences in this case since T -fixed points commute with homotopy colimits. �
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