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Abstract

We describe a natural way to associate to any p-compact group an element of the
p-local stable stems, which, applied to the p-completion of a compact Lie group G,
coincides with the element represented by the manifold G with its left-invariant
framing. To this end, we construct a d-dimensional sphere Sg with a stable G-
action for every d-dimensional p-compact group G, which generalizes the one-
point compactification of the Lie algebra of a Lie group. The homotopy class rep-
resented by G is then constructed by means of a transfer map between the Thom
spaces of spherical fibrations over BG associated with Sg.
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Chapter 1

Introduction

Let G be a compact Lie group with (real) Lie algebra g = T.G. Left multiplication
with an element g € G gives an isomorphism g = T,G, and by choosing a basis for
g, we thus obtain a framing L of the manifold G, called the left-invariant framing.
The Pontryagin-Thom construction produces from this data an element in 7t§,(S°),
where d = dim G. Computations of homotopy classes that arise in this way have
been made by Smith [Smi74], Wood [Wo076], Knapp [Kna78], and others. The
most extensive table of homotopy classes represented by Lie groups can be found
in [Oss82].

This construction is intimately related to the transfer map for the universal
bundle over the classifying space of the Lie group G. More generally, for every
subgroup inclusion H < G of Lie groups, there is a transfer map in the stable ho-
motopy category I*°BG?® Y, $®BH", Here, BG? stands for the Thom space of the
bundle associated to the adjoint representation of G on g. This map is a twisted

version of the well-known Umkehr map for the fibration G/H — BH 4 BG ,

BG, — BHY, (1.1)

where v stands for the normal bundle along the fibers of p. Note that the tan-
gent bundle along the fibers of p is g/h and hence v = h — g as virtual vector

bundles. By taking Thom spaces with respect to the bundle g resp. p*g on both
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sides in (1.1), we obtain the desired map.

Lemma 1.2. The homotopy class represented by the d-dimensional compact Lie group G

is given by the following composite of maps:

S4 _, T°BGP 4 T°EG, ~ S°.
Here the left hand map is the inclusion of the bottom cell into BG?®, and 1 is the inclusion

of the trivial subgroup into G.

Note that we can factor this map through any BH?, where H < G. ForH =T
a maximal torus in a semisimple G, this leads to an explicit way of computing the
corresponding element in 7t3.

In this paper, we go one step further and show that the transfer functor (—),
can be extended to the class of all p-compact groups. A p-compact group ([DW94])
G is a H,(—Z/p)-local space BG such that G =4, OBG has totally finite mod-p
homology. Prominent examples are given by HZ/p-localizations of compact Lie
groups. Dwyer and Wilkerson have worked out an extensive Lie theory of p-
compact groups [DW94]. It turns out that the classification of p-compact groups,
at least at odd primes, boils down to the classical classification of complex reflec-
tion groups by Sheppard and Todd [ST54], refined by Clark and Ewing [CE74]
to p-adice reflection groups. These groups occur as “Weyl groups” of p-compact
groups, and the p-compact groups themselves have been constructed on a case-by-
case basis; no general method to construct them from their Weyl groups is known
so far.

The main results of this paper are

Theorem 1.3. 1. For every p-compact group G of F,-homological dimension d, there
is a HZ /p-local d-dimensional sphere S with a stable G-action, which in the case
of the localization of a compact Lie group is equivalent to the localization of the one-

point compactification of the Lie algebra g with the adjoint action.

2. For every monomorphism H < G of p-compact groups, thereisamap Sg — G/AnSH

which is an isomorphism in Haq(—; F,).
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Annoyingly, the morphism in (2) fails to be G-equivariant, but it does so in a
well-behaved manner. In fact, there is an extension to EG, A Sg — G Ay Sy that is

G-equivariant.

Theorem 1.4. There is a contravariant functor t from the category of p-compact groups

and monomorphisms to the stable homotopy category with the following properties:

1. The spectrum
BG?:=t(G) =EG, /g Sg

is Z/p-local and connective, and H*(BG$; Z,) is a free module over H*(BG; Z,,) on

a Thom class in dimension d, the dimension of G.

2. The functor t makes the following diagram commute:

S¢e——= G A\u Sg
BG® BH"

3. The composition to L, defined on the category of compact Lie groups and monomor-

phisms (where L, is HZ/p localization), is equivalent to the functor L, o (—),.

A few explanations are in order. A monomorphism of p-compact groups is, by
definition, a pointed map BH %, BG whose homotopy fiber has finite mod p ho-
mology. Hence, even for Lie groups, we allow additional maps such as unstable
Adams operations L,BU(n) ILk) L,BU(n) (k € Z}}). Of course, in that case the map
is a homotopy equivalence and will not yield an interesting transfer map.

Theorem 1.4 enables us, by means of Lemma 1.2, to associate to any p-compact
group an element in the stable stems, which one might provocatively call “the p-

compact group in its invariant framing”.
Table 1 shows p-compact groups with the homotopy classes they represent.

Notation. The symbol Z, denotes the p-adic integers. All homology and co-
homology theories in this paper are assumed to be reduced, and all spaces to be

compactly generated weak Hausdorff.



Name ‘ dim ‘ rank ‘ ST number ‘ prime ‘ homotopy class
A, nmn+2) n 1 any v, ..
X(m, q,n) * n 2a 1 (m) ?
Im 2m+2 2 2b +1 (m) 0
Um 2m—1 1 3 1 (m) o form=p—1
18 2 4 1(3) 0
34 2 5 1(3) 0
30 2 6 1(12) 0
46 2 7 1(12) 0
38 2 8 1(4) B forp=5
62 2 9 1(8) 0
70 2 10 1(12) 0
94 2 11 1(24) 0
Za, 26 2 12 1,3 (8) of
38 2 13 1(8) 0
58 2 14 1,19(24) | 0
70 2 15 1(24) 0
928 2 16 1(5) 0
158 2 17 1(20) 0
178 2 18 1(15) 0
238 2 19 1 (60) 0
82 2 20 1,4(15) |0
142 2 21 1,49 (60) | O
62 2 22 1,29(20) |0
33 3 23 1,4 (5) 0
DW; 45 3 24 1,2,4(7) | wforp =2?
51 3 25 1(3) 0
69 3 26 1(3) 0
93 3 27 1,4(15) |0
F, 52 4 28 any ?
Za, 84 4 29 1(4) 0
124 4 30 1,4 (5) 0
124 4 31 1(4) B1B, forp =5?
164 4 32 1(3) B2 forp =72
95 5 33 1(3) 0
Agg 258 6 34 1(3) 0
Eq 78 6 35 any B3 forp=32p=2?
E; 133 7 36 any ?
Eg 248 8 37 any ?

*m(nz—nJrZ%) —n

fdoes not vanish for purely dimensional and filtration reasons.

Table 1.1.1: p-compact groups and the homotopy classes they represent.




Chapter 2

HZ /p-local equivariant spectra

2.1 HZ/p-localization and p-completion

In [Bou79], a localization functor X — X is constructed for every spectrum E with
the property that X — Xg is the terminal E,-equivalence out of X. We will need
this for E = HZ/p, the Eilenberg-MacLane spectrum with coefficients in Z/p. If X

is connective, this functor is very well-behaved:

Lemma 2.1 (Bousfield [Bou79]). Let X be a connective spectrum. Then localization
with respect to HZ/p is equivalent to localization with respect to M(Z/p), the Moore
spectrum for Z/p. This localization can be constructed explicitly as the p-completion of X,

ie.
Xmiz/p) = Xp = holim {--- = X AM(Z/p?*) = XAM(Z/p*) - XAM(Z/p)}.

I will denote the HZ /p-localization functor by L,,.
For a finite spectrum X, smashing with X commutes with homotopy limits, and

therefore

L,X=XAL,S°.

Let S be the full subcategory of HZ /p-local spectra, i.e. of spectra X such that

X — L,X is a weak equivalence. This category has all homotopy limits, homotopy
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colimits, smash products and function spectra if we compose the usual construc-
tion with the functor L,. (In fact, a homotopy limit of E-local spectra is already
E-local.) The smash product is associative up to homotopy, with unit object L, S°.
When working in S, I will omit any mention of L, and also write S° for the unit of

the smash product.

2.2 (G-spectra

To construct the transfer map t, we will need to work in a point-set category of
equivariant spectra. For our purposes, it is enough to work in the category of so-
called naive G-spectra. I will drop the word “naive” since it will make this work
appear so puny. Let GS be the category whose objects are HZ/p-local spectra E,
together with a (left) G-action on every space E, (n € Z), such that the structure
maps E, — QE,,; are G-equivariant homeomorphisms. Morphisms are defined
as usual. This category has again all homotopy limits and colimits, smash prod-
ucts, and function spectra. The unit is given by I_pSo with the trivial G-action. It
may be worth pointing out that the G-action on a smash product is the diagonal
one, whereas the G-action on map(X, Y) is given by conjugation.

There are at least two notions of equivariant equivalences in GS, and it is im-

portant to distinguish between them.

Definition. I will call a G-equivariant map f : X — Y between G-spectra a coarse
G-equivalence if it is a weak equivalence of underlying spectra. It is called a G-
homotopy equivalence if there is an inverse map up to homotopies through G-

equivariant maps.

For a Lie group G, a coarse equivalence f that also induces an equivalence
on H-fixed points for every closed subgroup H is sometimes called a weak G-
equivalence.

By the equivariant Whitehead theorem for spaces with for a Lie group action

of G (cf. [Ada84], [LMSMS86]), a weak G-equivalence between G-CW complexes
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is a G-homotopy equivalence; this need not be true for coarse G-equivalences in
general. For example, the obvious coarse G-equivalence EG — * does not have an

equivariant inverse.

Define a free G-CW spectrum to be a G-spectrum which is built from cells of

the form S™ A G,.

Lemma 2.2. If E is a free G-CW spectrum and X — Y is a coarse G-equivalence of G-

spectra, then it induces weak equivalences

map®(E,X) = map®(E,Y) and EAgX S EAGY.

Proof: Both equivalences are clear if E is a single cell S® A G because in that
case,

map®(E,—) =map(S™,—) and EAgX=S"AX.

It follows for finite spectra by induction and the five-lemma, and in general by a

direct limit argument. O

For a G-spectrum X, define
Xnog = EG{ Ag X = (EG; AX)/G and X"€ =map®(EG,, X)

where map® denotes G-equivariant based maps.

The spectrum Z*EG; is a free G-CW spectrum. Therefore Lemma 2.2 implies
in particular that a coarse G-equivalence f : X — Y induces weak equivalences
fhoH . xhoH y yhoH and fron @ Xnon — Yhon for any subgroup H < G. If H is

normal in G then these maps are coarse G/H-equivalences.

2.3 Duality

For a nonequivariant spectrum X, let DX =g4¢f map(X, S) be its dual. This spectrum

DX will not have good duality properties in general. For instance, there is no
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guarantee that D(DX) ~ X. We call X strongly dualizable if there is a map S
X A DX such that the following diagram commutes up to homotopy:

n

S X A DX (2.3)

; )

map(X,X) <<—DXA X

Here, T is the flip involution,  is adjoint to the identity map X — X, and v is the

map adjoint to

XA DXA X &2idx 5

The existence of such a map n is equivalent to v being a homotopy equivalence. It
implies that D(DX) ~ X. Cf. [May96].

It turns out that the category GS contains very few strongly dualizable ob-
jects, i.e. objects for which in the above diagram, there is an equivariant map n, or
equivalently, v is a G-homotopy equivalence. This is mainly due to the fact that we
are considering naive G-spectra. For example, if M is a compact G-manifold, we
usually construct a duality morphism 1 by embedding M equivariantly into some
G-representation V, use the Thom-Pontryagin-construction to get an equivariant
map SY — MY A M, and desuspend by SV. This last step is impossible in the
category of naive G-spectra unless V is a trivial representation, i. e., unless M has
a trivial G-action.

If G is a Lie group, and we work in the category of non-naive G-spectra, it is
known that a G-CW spectrum is strongly dualizable if and only if it is a wedge
summand of a finite G-CW spectrum. It seems plausible that if one succeeded
to set up the “right” category of non-naive G-equivariant spectra for a p-compact
group G, all the objects in this work that are nonequivariantly dualizable but do
not appear to be strongly dualizable in GS would actually have a strong dual in
that category. From a philosophical point of view, this would be desirable and

make some cumbersome technical problems disappear. However, in my opinion,
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the effort needed for setting up such a category is not warranted by the purposes
of the present work.

Suppose that X is a G-spectrum that, as a nonequivariant spectrum, is strongly
dualizable. Then the map v : DXA X — map(X, X), which is always G-equivariant
by naturality, is a coarse G-equivalence, and 1 exists but is not necessarily G-equi-
variant. As should be expected, X will have about half of all the good properties of

a strongly dualizable object. For instance, there is a weak equivalence
map®(A, B ADX) — map®(A AX,B) (2.4)

given by

AAX — BADXAX 42l g

but in general no such map

map®(A A DX, B) 4 map®(A, XA B).

A spectrum or space X is called p-finite if H, (X; F,) is totally finite.
The following lemma has a rather long history of my advisor suggesting a proof
using the Adams spectral sequence and me rejecting it and finding another (erro-

neous) proof without it. Eventually, I caved in. Here’s his proof. Kudos for Mike.

Lemma 2.5. For every connective, HZ/p-local, p-finite spectrum X, there is a finite spec-

trum X' and p-equivalence X' — X.

Remark. This association is not claimed to be functorial.
Proof: Let k € Z be minimal with Hy(X;F,) # 0. We proceed by induction on
the size of H,(X; F,).

We will first show that there is a nontrivial map
f: 7Tk(X) — Hk(X) — Hk(X, Fp)

This would be a simple application of the Hurewicz theorem relative to a Serre
class if the class of groups that vanish when tensored with F,, were actually a Serre

class, which it is not.
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Since X is connective and HZ/p-local, its HZ /p-nilpotent completion and its
HZ/p-localization agree (Lemma 2.1) and are equal to X, hence the classical HZ /p-
based Adams spectral sequence converges to 7. (X). Since Exty: (H*(X;F,),F,) =0
for t — s < k, the Hurewicz map f : m(X) — Hy(X;F,) has to be nonzero.

Let  : S* — X be a map such that f([B]) # 0. Let F be the HZ /p-localization of
the homotopy fiber of . F is p-finite, HZ/p-local and the size of its Z/p-homology
is smaller than that of X, hence by induction, there is a finite spectrum F' and a
p-equivalence F' — F. Let X' be the cofiber of F* — F — S¥; X’ is a finite spectrum

and comes with a map X’ — X which is a p-equivalence. O

Corollary 2.6. Let X be a connective, HZ /p-local, p-finite spectrum. Then X has a strong
dual in S.

Proof: By Lemma 2.5, there is a finite spectrum X’ and a p-equivalence X' — X.
Hence there is a p-equivalence of HZ/p-local spectra L, X’ — L,X = X, which
therefore is a weak equivalence. It remains to show that L,,(D(X')) is a strong dual
of L, X' for a finite spectrum X'.

We need to show that
L,(map(X', S)) = L, map(L,X', L,;S).
Indeed,
L, map(L,X',L,S) ~ map(X',L,S) ~ DX' AL,S ~ L,(DX").
Nown : S — XA DX induces a duality map
L,n:L,S — L,(X"ADX') =L, X" AL,DX' =L, X" AD(L,X'),

which shows that L,,(D(X’)) is a strong dual. O
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Chapter 3
p-compact groups

This chapter will provide some background about p-compact groups, a topic that
has become very popular starting in the early nineties, largely due to some beau-
tiful work of Dwyer and Wilkerson [DW94] and Dwyer, Miller, and Wilkerson
[DMW92].

3.1 Definition and examples

Definition ((IDW94]). A p-compact group is a triple (X, BX, e) where BXisa HZ/p-

local space, X is an F,-finite space, and e : X — (OBXis a homotopy equivalence.

As noted in the introduction, the HZ /p-localization L, G of a Lie group G gives
rise to a p-compact group (L, G, Lye, L,BG) for every prime p. Here e : G — QBG
is the canonical equivalence.

To illustrate how to obtain other p-compact groups, it is instructive to recall
the connection between spaces with polynomial cohomology rings and finite loop

spaces. If X is a space such that
H*(X;F,) = F,lo1,02,...,0,] with oy € H%(X;F,), d; even,
then by the Eilenberg-Moore spectral sequence,

"(OXF,) = A1, 12,..., %} with 1 € H(QXF,),
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and T; is the image of o; under the transgression. In particular, H*(QX; F, ) is finite,
and L, X is a p-compact group. The reader should be warned that not all p-compact
groups are polynomial in this sense.

A large class of p-compact groups, called the non-modular groups, can be con-
structed as follows:

First pick a finite group W < GL.(Z,) (a “Weyl” group for the p-compact
group); W acts on Z], and hence also on K(Z], 2) = L,(CP*)". Define a space

BG —def Lp (K(Z;’z))how )

We want to determine what restrictions on W we have to make to ensure that BG
is a space with polynomial cohomology. There is a spectral sequence converging

to H*(BG; F,)) whose E, term is
E})* = H'(BW;H*(K(Z,,2);F,)) = H'(BW;F,[ti, ..., t.])
If p does not divide [W/|then E}* = 0 for r > 0, and
ESS =F,[ty,...,t, ] = H¥(BG;F,)

Theorem 3.1 (Sheppard-Todd, Clark-Ewing [ST54, CE74]).
Let W < GL,(F,) be finite.

IfFplte, ...tV is polynomial then W is a pseudo-reflection group, i.e., it is gen-
erated by a finite set of finite order elements that fix a hyperplane in F,.

The converse is true if (but not only if) p does not divide the order of W. O

Moreover, in the non-modular case, every representation of W over F, can be
lifted to a representation over Z,.

We can thus construct a p-compact group BG for every pseudo-reflection group
defined as a subgroup of GL,(Z,) such that p does not divide the order of W.
All such groups are classified [ST54, CE74], and Table 1 lists some statistics about
them. In that table, all exotic groups of rank bigger than 1 that are given a name

are non-modular.

18



Definition. A morphism BH — BG of p-compact groups is just a pointed map
Bf : BH — BG. It is a monomorphism if its homotopy fiber is F,-finite, and an
epimorphism if its homotopy fiber is a p-compact group.

Two morphisms BH — BG are called conjugate if they are freely homotopic.

For Lie groups H and G, being conjugate in the p-compact sense is indeed the

same as being conjugate as Lie group homomorphisms.

3.2 Maximal tori

In the non-modular case considered in the previous section, BG naturally comes
with a map

BT :=K(Z},2) — L,(K(Z}, 2)now) = BG

given by the inclusion of the fiber of the bundle BG — BW. Call a monomorphism
of p-compact groups BT — BG a maximal torus if BT = K(Z, 2) for some 1, and
it does not factor through a larger torus. One of the main results of [DW94] is that

such tori also exist in the non-modular case:

Theorem 3.2 (Dwyer-Wilkerson [DW94]).

1. For every connected p-compact group BG, there is a maximal torus BT — BG,
unique up to conjugacy.
2. The monoid mapg (BT, BT) of endomorphisms of BT over BG is homotopy equiva-
lent to a finite group W acting as a group of pseudo-reflections on H*(BT; Z,) = Z7.
3. Hg, (BG,) = Hb, (BT )W, and Hg, (BT,) is a free module over Hb, (BG,).
O
Here, Hg | (X) =def H*(X;Z) ®z, Qp. (Note that H*(X; Q,,) would be an unrea-

sonably large group; whereas Hom(Z,,Z,) = Z,,, we have
Hom(zp) Qp) = Hom(pr Qp) = ijz)
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Corollary 3.3. The p-compact flag variety G/T = hofib(BT — BG) has
Hy, (G/T,) = Hy, (BT,) / (Hg, (BT)™).
Proof: There is an Eilenberg-Moore spectral sequence
——s,t

B3* =Tory, sa,)(Ho, (BT4), Qo) = Hg, (G/T),

where Tor® is the sth derived functor of the completed tensor product &. In this
spectral sequence, ES* = 0 for s > 0 because Hg (BT,) is free, hence flat, over

Hap(BGJr), and

E(z)‘t = H*Qp (BT+)®HEJD(BG+)QP = Hap (BTy) / (Hap (BT)W) =

It will become important in calculations to know exactly what the degree of the
map

c:H* (BT Z,) / (H(BG;Z,)) — H (G/TH Z,,)

is in the top dimension.

Lemma3.4. Let p > 2 or G of Lie type or G = DWSj. Then the cohomology ring

H*(G/T;Z,) is concentrated in even dimensions and torsion free.

Proof: This is a result that follows from Schubert calculus in the case where G is

a Lie group. For polynomial p-compact groups, we have
HY(G/TyZ,) = HY (BT Z) / (H'(BG; Zy))

by the same argument as in Corollary 3.3, and the assertion holds. Now the only

non-polynomial p-compact groups for odd p are [KM97, Not99b, Not99a]:
e Type A, with a fundamental group that is a p-group;
e types Fy4, B¢, E7, Eg for p = 3; and

e type Eg forp =5.
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In particular, they are all Lie groups. O

Remark 1. Since the classification of 2-compact groups in not finished at this
time, we cannot claim Lemma 3.4 holds for p = 2. However, the only known non-
Lie 2-compact group is DW3, which is polynomial [DW93]. It is conjectured that it
actually is the only one.

Remark 2. It would be much more satisfying to find a proof that does not rely on
the accidental fact that all non-polynomial p-compact groups are of Lie type. For
example, it would be exciting to produce a Schubert calculus for p-compact flag
varieties.

I am grateful to Nitu Kitchloo for pointing out to me the implication (i) = (iii)

in the following proposition:

Proposition 3.5. Let G, p be as in Lemma 3.4 and G be simply connected. Then the

following are equivalent:
(i) cis an isomorphism in the top dimension;
(ii) c is an isomorphism in all dimensions;
(iii) H*(G/T; Z,) is generated by degree 2 classes;
(iv) H*(BG4;Z,) has no torsion;
(v) H*(BG4;Z,) is a polynomial algebra.

Proof: If G is simply connected it follows from the Serre spectral sequence asso-

ciated to G/T — BT — BG that
H2(BT;Z,) — HX(G/TZ,).

This shows (iii) & (ii) = (i). For (iv) = (ii), assume c fails to be an isomorphism in
dimension k. Then in the above Serre spectral sequence, a class x in H*(G/T; Z,,)
has to support a nontrivial differential d'. Since rationally, Hg (G/T4) is always

generated by degree 2 classes, d*(x) has to be a torsion class in
H{(BG.; H¥ ' H(G/T4 Z,)).
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By Lemma 3.4, the latter group is isomorphic to H(BG,; Z,)®H*"" (G /T,; Z,).
Since by the same lemma, H*(G/T;Z,) is torsion free, there must be a torsion
class in H(BG;Z,,).

For (i) = (iv), assume y € H (BG,;Z,) is torsion with j minimal. By the multi-

plicativity and Lemma 3.4, this implies that
y=d(x) forsome xe€H '(G/TyZ,).
Pick a generator g € H*P(G/T;Z,). Now
0=d(gx) =d(g)x+ gd(x).

Since d’(x)g = yg # 0, d'(g) cannot be trivial, hence g is not a permanent cycle,
and c is not an isomorphism in the top dimension.

For (iv) & (v), note that if H*(BG.; Z,,) has no torsion, it has to be concentrated
in even degrees since it injects into Hb, (BG4). Hence H*(G4;Z,) is a degreewise
free Hopf algebra on odd-dimensional generators, which implies that it is an exte-
rior algebra. Hence, by the Serre spectral sequence for the path-loop-fibration on

BG, H*(BG4;Z,) is a polynomial algebra. O

3.3 A comment on rigidity

In the definition of a p-compact group (X, BX, e), the data X and e are redundant
and probably only classically included to provide some justification for speaking
of “a p-compact group X” and not the more accurate “BX". On the other hand, it
is always possible to choose a model for the loop space X := QBX such that X is
actually a topological group and not just an H-space. A possible construction is the
geometric realization of Kan’s loop group functor G as described in [Kan56].

Let S denote the category of simplicial sets and S, the full subcategory of re-
duced simplicial sets, i.e., simplicial sets X such that X, = pt. Equip Sp with the

projective model structure, i.e. weak equivalences and cofibrations are shared with
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S. It turns out ([G]99]) that a map X — Y between fibrant reduced simplicial sets is
a fibration if and only if it induces a surjection on fundamental groups.

Let s Gr denote the category of simplicial groups, carrying the injective model
structure (sharing weak equivalences and fibrations with the underlying simplicial

sets).

Proposition 3.6 (Kan). There is a Quillen equivalence
W:sGreSo: G

Furthermore, there is a Quillen equivalence between the category S, and the
category of connected, pointed simplicial sets, S., where the functor F: S — Sy is
given by

F(X)n ={x € Xy | i*(x) = * for every i: [0] — [n]}.

Passing to topological spaces, we also have Quillen equivalences
S, & {pointedconnectedtopologicalspaces}

and

s Gr & {topologicalgroups}

This suggests the following alternative definition of a p-compact group:

Definition (alternative). The category of p-compact groups is the full subcate-
gory of all HZ /p-local topological groups (compactly generated, weak Hausdorff)

whose objects are fibrant, cofibrant, F,-finite, and such that m(G) is a finite p-
group.

The condition on the group of components is necessary to ensure that BG is
still HZ /p-local. By the above Quillen equivalences, every map BH — BG is, up to
homotopy, induced by a group homomorphism H — G if H and G are p-compact
groups in this sense.

Moreover, a monomorphism BH — BG in the sense of the original definition is

always, up to homotopy, induced by an injective group homomorphism H — G.
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In fact, we can functorially replace BH — BG by a cofibration, and Kan’s functor
G preserves cofibrations. Cofibrations of simplicial groups are injective.

We will therefore work in the category of p-compact groups according to the
above alternative definition, and define monomorphisms as actual subgroup in-

clusions.
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Chapter 4

Adjoint representations

Although much of Lie theory carries over to the more general setting of p-compact
groups, the representation theory, and in particular the adjoint representation,
does not seem to have a direct analogue for p-compact groups. We do not know
how to construct a vector bundle on a p-compact group BG that plays that role, but

we can manufacture something that, in the Lie cases, looks like its Thom spectrum.

Definition. For any connected p-compact group G, define

SG — (ZOOG+)hOGOP.

Note that G acts on Z*G, by both left and right multiplication. We agree to use
the right action for the formation of this homotopy fixed point spectrum, leaving
us a left G-action on Sg.

The adjoint Thom spectrum of G is the spectrum
BG? =gef (Sg)noc = EG+ A\ S

Klein [Kle01] has shown that this construction for G a (non-localized) connected
compact Lie group indeed gives rise to the Thom spectrum of the adjoint bundle. It
is therefore reasonable to mimick this construction for a p-compact group G. The
main point of this chapter is to show that Sg, defined as above for a connected

p-compact group G, is homotopy equivalent to a sphere.

25



We will need two classical lemmas on finite-dimensional Hopf algebras. All

cohomology and homology groups are with coefficients in F,,.

Lemma 4.1. If G is a topological group such that H,(G) is totally finite, then H*(X*G.)

is a free H,.(G)-module on a generator in dimension dim G.

Proof: Note that A = H,.(G) is a Hopf algebra, and
H*(Z*°Gy) = A"

by universal coefficients. The dual algebra A* is a Hopf algebra with antipode c
coming from inversion in the group G, and A is a right Hopf module over A*: the

module structure is given by
A®A* = A, theadjoint map of the coproductp: A - AQA,
and the comodule structure by
A —= A®A* the adjoint map of the product on A.
Let P(A) denote the F,-vector space of primitives of A as an A*-comodule, i.e.
P(A) = {a €A | ax = ae(x) forall x € A} ,

where e is the augmentation H,(G,) — H.(S°).

Then (cf [Par71]), we have a splitting
ASPA)®A*

as right A*-Hopf modules, given by

A2-ApA T A A @ AME T g AT g Ar ML A g A 4.2)
T spA)@ A

Since A is finite dimensional, it follows that dim P(A) = 1. The assertion of

Lemma 4.1 follows. 0]
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We will show later (Proposition 5.8) that for G a p-compact group, this map is

realizable as a map of spectra.

An algebra like H, (G; F,), which, as a module, is isomorphic to a suspension of

its dual, is called a Frobenius algebra.

Lemma 4.3 (Moore-Peterson [MP73)). If A is a finite-dimensional Frobenius algebra
over a field, then the class of its projective modules coincides with the class of its injective

modules. O

Proposition 4.4. S¢ is homotopy equivalent to a HZ /p-local sphere of dimension d.

Proof: It is enough to know that Sg has the mod p homology of a sphere because
the proof of Lemma 2.5 produces a p-equivalence S — Sg in that case.
To see that Sg has the correct homology, we will use a spectral sequence asso-

ciated to the cosimplicial spectrum

(ZOOG+)hOGOP = mapG(EG+, I%°Gy),

where EG = map(—, G) = A'®G is the usual simplicial space with G™"! in dimen-

sion n. The E2-term is given by
E? , = Hp(map®(G*Y £°G);F,),
and by the Lemma below, this spectral sequence collapses at the E?-term with

EPd _ 0, p#Oorg#d
D =
F,; otherwise.

and converges strongly. Therefore and H,(Sg) = H.(S?). O

This proves the first part of Theorem 1.3.

Lemma 4.5. Let k € Ng U {00}, and let EGf) be the G-equivariant k-skeleton of the
simplicial space EG.. Then
F,; n=d<k

Ho(map®(EG, 17°G,)) =
0;, m<kandn #d
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No statement is made about the homology groups beyond degree k. By G-
equivariant k-skeleton we mean the truncation of the simplicial space EG, at the
kth stage.

From now on, until the end of this chapter, all homology groups are taken with
coefficients in F,,.

Proof: Since EG,, = G™"!, we have that
(mapS®(EG,, Z°G))™ = map® (G, £°G,).
The evaluation map
map® (G, %G, ) AGH! — I°G,
induces a natural map
Hn(map® (G}, £°G,) — Hom}}, (g, ,(H. (G )™ H,(Z°G,)),

where Hom™ stands for module homomorphisms that raise degree by n. This map

is an isomorphism because the following diagram commutes:

Hn(mapG(G1+],Z“G+)) — HomT]}{*(G+)(H*(G+)®(n+”a H,(Z%G,))

] |

H,(map(GT}, Z*°G,)) Hom™(H, (G)®™ H,(Z*°G,))
Ho((DG)N A I°G,) — (H,(DG1)®™ @ H, (Z%°G4)),, -

The coboundary operators are induced by the simplicial operators on H,(G,)®*
from the bar construction on H, (G, ). Hence H,,(map®(EG Ef), I*°G,)) is the group
of homomorphisms from a truncated projective resolution of k over H,(G) to H,(G).

Associated to the tower

map®(EGY, £°G,) — - -- - map®(EG)) £*G,) —

e mapG(EGf],ZwG+) =X*G,,
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we therefore obtain a spectral sequence with E2-term

Ext};9¢ (Fp,H(G4)); g<k
Ei,q — H (G P — Hp+q(mapG(EG£f),Z°°G+).

0; qg>k

Because of Lemmas 4.1 and 4.3, H,(G. ) is injective as a module over itself, and

hence E2 , = 0 for q > 0 and g # k. On the other hand,

B2, =EX, = Hom{ ¢ (Fp, Hi(G1)) = P(H.(G,))

(G+)

with the notation of Lemma 4.1, and hence

F,; n=d
Ho(map®(EGYY, £°G ) ={ "
0; m<kandn#d
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Chapter 5

Self-duality for p-compact groups

5.1 Two Lemmas on restricted homotopy fixed points

Lemma 5.1. For a sub-p-compact group H < G, there is a coarse G-equivalence
G An S — (Z°G, )M,
Proof: First note that as (G x H°P)-spectra,
PGy ~ GAl ITH,,

where on the right hand side, H acts on the right factor from the right and G acts
on the left factor from the left.

We therefore have a map

G An Su = G Apmap™” (EH,, Z°H,)
- mapHoP (EH+) G /\H ZOOH+) et (ZOOG_i—)hOHOP‘

This map is clearly G-equivariant, and it is a weak equivalence because G and

H are nonequivariantly dualizable. O

IfX € (GxG?)Sand Y € HPS, we have G-equivariant homotopy equivalences

(given by shearing maps)

GAu X~ G/H, AX
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and
map™” (Y A G, X) ~ map(Y Ay G, X)

In particular, if Y € (G x G°P)S, we have

map™” (YA G4, X) =~ map(Y A G/Hy, X). (5.2)

Lemma 5.3. Let H < G be as above. Then there is a coarse G-equivalence

(DG,)™™ — D(G/H,),
natural on subgroups of G.

Proof: The map is the following composite of coarse G-equivalences, all of
which are natural:
(DG )H? = mapH(EH,,DG,)
~ map"(EG,,DGy)
— map™(EG; A G4, S%)
— map(EG; A G/H,,S°)
-5 D(G/H.).
For the first homotopy equivalence, we use that EG is a valid model for EH. fis a
G-equivariant homotopy equivalence by (5.2). Since EG; has the usual right action
and a trivial left action, the map S® — EG, is a left G-homotopy equivalence, and

hence so is g. O

5.2 Absolute Poincaré duality

Denote by G, the suspension spectrum of G with G acting by conjugation. For G a
Lie group, Sg can be identified with the one-point compactification of a neighbor-
hood of the identity in G; this identification is G-equivariant if we equip G with
the conjugation action. The following lemma shows that such a “logarithm” also

exists for p-compact groups, at least up to a coarse G-equivalence.
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Lemma 5.4. For every p-compact group G, there is a G-spectrum E(G), a natural coarse

G-equivalence E(G) — (G.)+, and a G-equivariant retraction E(G) — Sg.

Remark: An equivariant retraction X — Y means two equivariant maps
Y=X=Y

such that the composite is a coarse G-equivalence.

Proof: The auxiliary spectrum E(G) is defined as
E(G) = map®” (EG,, Z°G, ADG,).

Consider Z*°G as a (G x G°P)-spectrum by left and right multiplication. Then

the diagonal map
ZOOG+ — ZOOG+ /\ ZOOG+

is (G x G°P)-equivariant and has an equivariant adjoint

I®GL ADGy = Z™Gy. (5.5)

Similarly, the (G x G°P)-equivariant projection map to the first factor

I®GL NAI®Gy — I™Gy
has an equivariant adjoint

Gy = DG AZ™Gy.
The composite

I®Gy = G ADGy — I%Gy 5.6)

is a weak equivalence.
Taking homotopy fixed points with respect to G =1 x G C G x G° on the
left hand side of (5.5) yields

E(G) = mapS” (EG,, I®G, ADG,) @ mapS” (EG, A G, I%G,)

map(EG, X*°Gy) (5.7)

=,
— map(S° I®G,) ~ I°G,
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As in Lemma 5.3, the map induced by S° — EG, is indeed a G-homotopy
equivalence because the left G-action on EG, is trivial. In fact, all maps but the
tirst one are G-homotopy equivalences.

We have to check that the G-action on E(G) corresponds to the conjugate action
on X*°G,.

The action of G on M = map®” (EG; A G4, £*G,) is given by
(9.f)(xAy) =gf(xAgy) (9€G, feM, x€EGy, yeGy).
The induced action of G on map(EG, X*G, ) is
(g.f)(x) =gf(xg)g' (gegG, fe map(EG, X*G,), x € EGy)

since
map®” (EGy A G, £°G,) — map(EG,, Z*G,)

f = x— f(x, 1)

g.f — x = gf(x,g") = gf(xg,1)g".

The restricted G-action on map(S°, £*°G_ ) becomes
(9.9)(x) = gf(x)g "

since S° has the trivial G-action, and the G-action on Z*G; is indeed by conjuga-
tion.

Applying (—)" €™ to (5.6) yields the desired retraction E(G) — Sg. O

Proposition 5.8. Regard the G-spectrum Sg as a (G x G°P)-spectrum with trivial G°P-

action. Then there is a coarse G x G°P-equivalences
ScADG,; — I®G,
On G°P-homotopy fixed points, these maps make the following diagram commute:

Sg = (£°G)"6" <=~ (Sg ADG,)P6” <=— 56 A (DG, ) 6"

\ ~ lLemma 5.3

S AS°
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Proof: We will have to deal with spectra with three G-actions, and for ease of
notation, for a (G x G°)-spectrum X, I will denote by ®X? the spectrum X with
the left action a and the two right actions b and c, where a, b, c, are one of the

following:
e ‘o’ denotes a trivial action

e ‘" denotes the action from the left — if this symbol appears on the right then

G acts by inverses from the left

e ‘" denotes the action from the right — if this symbol appears on the left then

G acts by inverses from the right
The main ingredient is a shearing map
HZ®GL)TANDG); 5 HI®G6L); A°(DGL L (5.9)
which is adjoint to
HE®GLAS(Z®G,)E — YI®G,) AYI®G,)!
g/\h — g A hg.

This map is clearly a weak equivalence, and it is straightforward to check that it is
(G x G° x G°P)-equivariant as claimed.
By passing to homotopy orbits with respect to the °[J; action of G°P in (5.9), we

obtain a (G x G°P)-equivariant homotopy equivalence

ho G°P ho Gor

(l(zooGJr):/\l(DGHZ) - (l(zooGJr):/\o(DGjL)l) =:E'(G)
H(S6)° AHDGL)T HI®GL)

The underlying spectrum of E'(G) is the spectrum E(G) of Lemma 5.4. It is easy
to see that with the remaining operations, the map E'(G) — I*G,, described in
(5.7), is (G x G°P)-equivariant.

For the assertion about G°P-homotopy orbits, observe that by changing the or-

der of taking G°P-homotopy orbits, we have a large commutative diagram
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1Sg = LGhoG&” 1Sc A°(DG)

lsG

~ ~

ho°O, ~
_—

(Gz A°(DG)Y)™ ™ —— (G A°(DG)GE”) 'S¢

= |sh ~ |sh
(162 AYDG))™ ™ —=— (16, A DGR EF) ™ T =215
(I(SG)O/\I(DG)T‘)I’IOODO ~ LSG/\L(DG)hOGop ~ ISG

For space reasons, the disjoint basepoint for X*°G and DG have been omitted
as well as the suspension functor > for G.

The important, if trivial, observation is that the shear map becomes homotopic
to the identity when passing to °0J:-homotopy orbits on the DG, factor. The dia-
gram claimed to be commutative in the proposition is the “boundary” of the dia-

gram above. O

5.3 Relative Poincaré duality

Corollary 5.10. For any sub-p-compact group H of G, there is a zigzag of coarse G-

equivalences

G An Sn<">D(G/H;) ASg

This zigzag is natural in the following sense: for any chain of p-compact groups K < H <

G, the following diagram commutes:

(Z°G4)hoH” <=— G Ay Sy <> D(G/H;) ASg
l res l D(proj)Aid

(£°°G, )hOK? <= G Ay Sk <%~ D(G/K.) A Sg
Proof: From Proposition 5.8, we have a coarse (G x H°P)-equivalence
DG4 ASg — Z®G,.
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Applying H°P-homotopy orbits turns coarse (G x HP)-equivalences into coarse

G-equivalences, and since the right actions on Sg and Sy are trivial, we obtain

~

(DG, A Sg)"H"<=-DGhH” ASc—=>~D(G/H;) A Sg

~

(zooGJr)hoHOP(Lem_%G An Sk

For naturality, consider the following diagram:

D(G/H;) ASg=—DGYR™M A Sg—— (DG, A Sg )" ——(Z°G  )hoH”

|

D(G/K;) ASg=—DGK? A Sc——>(DG, A Sg)hoK? ——(£°G, )hoK™

The left hand square commutes by Lemma 5.3, the other two for trivial reasons. [

5.4 Definition of the transfer

Proof of Theorem 1.3: S was constructed in Chapter 4. We obtain a (nonequivariant)
map

t:86 = (10G4)M0" — (£%G,)"™" —= G A S

coming from restricting from G- to H-homotopy fixed points. Here, f is the non-
equivariant homotopy inverse of the coarse G-equivalence given by Lemma 5.1.

By Lemma 2.2, there is also a G-equivariant map
t:EGL ASg — GAn Sn
such that the composite
S¢ =2 EGL ASg — GAx Sy

is homotopic to t,and tis unique up to homotopy with this property.

To finish the proof of Theorem 1.3, we need to show that

t. 1 Ha(Sg; Fp) — Ha(G Ay Sy Fy)
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is an isomorphism for d = dim G. This now follows easily from Corollary 5.10:

The map t is by construction the composite
SG — D(G/H+) /\SG -G /\H SH.
Since the first map is an isomorphism in Hq(—; F,, ), so is the composite. O

The first part of Theorem 1.4 claims that H*(BG®; F,) is a Thom module over

H*(BG4; F,). This follows from the spectral sequence

E» = H'(BG.; H'(Sg; Z,)) = H'(EG, Ag S F,) = H'(BGS Z,).

Definition. For a monomorphism H < G of p-compact groups, the transfer map

tg n is given by applying G-homotopy orbits to the G-equivariant map t.

The domain of t is EG; Ag (EG4 A Sg), which by Lemma 2.2 is homotopy
equivalent to BG®. For the functoriality, it is sufficient to notice that the following

diagram of G-equivariant maps commutes:

Sg——(Z®G )hoH” G An SH

(ZOOG+)hOKOP G /\H (Z°°H+)h°K0p

T

G Ak Sk
That is a less than remarkable statement since no two maps are composable.
But all of the maps going left or up or both are coarse G-equivalences, and the
diagram stays (non-equivariantly) homotopy commutative if we invert them.

By its definition, the commutativity of

SG —QG /\H SG
BG® BH"

38



as claimed in Theorem 1.4 is immediate.

The next chapter will be devoted to identifying the transfer map on the category

of HZ /p-localizations of compact Lie groups and monomorphisms.
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Chapter 6

Identification of the transfer map

Using the construction of t for {1} < G, we have a commutative diagram coming

from the natural transformation id — (—)pog:

Sg— I®G, (6.1)

|

BG® —— B{1};

SO

We will now identify t with the transfer map from the introduction in the case
where G is of Lie type.

First note that in (6.1), the composite map S¢ — S° is indeed the same as the
Thom-Pontryagin construction on G if G is a Lie group: The Thom-Pontryagin

construction on G is given by the composition of maps
S° 5 DG, ~SYAG, 5S¢

where the first map is a desuspension of the map from the embedding sphere to the
Thom space of the normal bundle of G, which is DG; by Proposition 5.8 or since
the tangent bundle of G is trivial, this is equivalent to a desuspension of Z*G.;
and the second map is the projection of G to S°, the map classifying the (trivial)

stable normal bundle of G.
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Using the G-equivariant isomorphism from Proposition 5.8, we have

SG ZOOG+ (7)hoG So

SG /\DG+

The bottom composition is the Thom-Pontryagin construction, the upper one the

map from (6.1).

6.1 An alternative construction of the transfer map

To show that t agrees with the Umkehr map not only on the bottom cell, we
will compare its definition to another, equally general construction, reminiscent
of Dwyer’s construction of the Becker-Gottlieb transfer in [Dwy96]. This will be
equivalent to the classical construction of the Umkehr map in the Lie case.

Let H < G be p-compact groups. The quotient X*°G/H, is dualizable, and
the projection D(G/H,) — S° onto the top cell is equivariant and has a section «;
however, « is not G-equivariant unless H = G. But we do get an equivariant map if
we “free up” the G-action on S°: consider the following diagram of G-equivariant

maps:

I®EG; ——= 8§ ——=map(X®G/H,, Z*G/H,)

e

D(G/H); AZ®G/H, 2%~ D(G/H), A S°.

The map 7 is the projection £°G/H; = I®G/HV S® — S° and n is a coarse

G-equivalence. Therefore, by Lemma 2.2, there exists an equivariant lifting

I¥EGL — D(G/Hy) (6.2)
which is nonequivariantly homotopic to the map

I®°EG, — S° 5 D(G/H,).
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In the case where H and G are (localizations of) Lie groups, the homotopy orbit
space of D(G/H.) under this G-action is the (localization of the) Thom space of v,
the normal bundle along the fibers of BH — BG. This follows from the observa-
tion that BH = EG xg G/H, and that stably, the normal bundle along the fiber is
the fiberwise Spanier-Whitehead dual, i.e. v = EG xg D(G/H). Hence its Thom
spectrum is EG; Ag D(G/H4), as claimed.

By passage to G-homotopy orbits in (6.2), we therefore obtain a map

I®BG, ~ EG, Ag Z¥EG, — BH %Y,

where BH #% denotes the Thom spectrum of the virtual inverse of the adjoint bun-
dle of G, pulled back to BH, modulo the adjoint bundle of H. This is the Lie theo-
retic model of the normal bundle along the fibers.

Returning to the case of a general p-compact group, we now introduce a “twist-

ing” by smashing source and target of the map with Sg:

EG; ASq — map(Z®G/H,,$%) A Sg —=~D(G/H,) A Sa == G Ay S

= >
or. 5.10

By Lemma 2.2 and since EG; A Sg is a free G-spectrum, we obtain a G-map

(unique up to homotopy)
t":EGL ASg = G Ay Sw,
and passing to G-homotopy orbits, we obtain:
t': BG®* = EG, Ag Sg — EH, Ay Sy = BHY.
Lemma 6.3. Let H < G be p-compact groups. Then
t~t: EGLASc — GALSH
Proof: We have to show that the following G-equivariant diagram commutes:

EG, ASc 2~ D(G/H,) A S

I

'
G /\H SH <> (DG+ A SG)hoHOP
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Since EG4 A S¢ is a free G-spectrum, there is by Lemma 2.2 a G-equivariant

map going diagonally
EG, ASg — (DG, A Sg)H”

and making the upper right triangle of the diagram commute. The commutativity

of the lower left triangle then follows from the observation that in the commutative

diagram
S¢ = (DG4 ASg)CE" — (DG4 ASg)oH™,
SG (ZOOG+)hO G (zooG+)hoH°P
the left hand map is the identity by Proposition 5.8. O

Conclusion of the proof of Theorem 1.4: The previous lemma implies the third part
of the theorem (namely, that toL, ~ L,o(—), on compact Lie groups and monomor-
phisms). Indeed, by applying G-homotopy orbits to the diagram in Lemma 6.3, the
map induced by t’ is homotopic to t, and the preceding discussion shows that the

former map is the classical Umkehr map in the Lie case. O
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Chapter 7

Computational methods

In this chapter, I will describe a general method for computing the homotopy
class represented by a p-compact group by constructing a representing cycle in the
Adams spectral sequence for a complex oriented cohomology theory E. Let G be
a simply connected d-dimensional p-compact group of rank r with maximal torus
T. We want to identify the maps the following diagram induces in the E,-term for
the E-cohomology ASS:

S*— BG® — BT'— S°

7.1 The S'-transfer

The right-hand map is a suspension of the r-fold smash product of the S'-transfer
map

T:CP® — S

It is well-known that the homotopy fiber of this transfer map is the spectrum CP9,

the Thom spectrum of the inverse of the universal line bundle on CP®, the fiber

inclusion CP* — CP<° being the obvious projection map onto the 0-coskeleton.
For a complex oriented cohomology theory E and a finite spectrum X, there is

an Adams-Novikov spectral sequence

E, = Ext(E*(X)) = [X, LgS],
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where, for an (E,, E,E)-comodule A, Ext(A) is a shorthand for Extg g (E,, A).
We will now first restrict to the case of finite dimensional projective spaces and

study the map CPT* — S~' as a map of E,-terms of this ANSS

Ext(E*(S ")) == m,(LeS")

| |

Ext(E*(CP™)) == [CP™, LS].

By a change of rings isomorphism, this spectral sequence is isomorphic to the one

associated to the Hopf algebroid
(Am, 'm) = (E(CPY), (EAE)*(CPT)).

Note that A, represents the following functor:

,

E* SR,

f is a function modulo degree m + n + 1 on the formal group

~~

R— < (a,f) | lawonR given by the image of the universal formal group law

under MU* — E* — R such that f vanishes to the nth order at

L the identity. )

Similarly, Iy, represents isomorphisms of such data. Hence, for E = MU,
(Am, I'm) classifies formal groups with an m 4+ n + I-truncated function on it that
vanishes to the nth order at the identity. This interpretation makes it easy to com-

pute the structure maps of (A, I'm).

First assume that n = 0. Pick coordinates z such that
E*(CP§') =E* [z/(z™") and (EA E)*(CPy°) = (EA E)*[zl/(z™).

Since there is a map of Hopf algebroids (E., E.E) — (A, I'm), we only need to
determine m; (z) and ng(z). We can make n (z) = z by choice of coordinates; then,

Nr(z) will be the image of the universal isomorphism

m—1
) bzt e (MUAMUW*(CPGY)
i=0

in .
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As usual, MU, = Z[m;] and MU, MU = MU, [b;].

If n # 0, E*(CP™) is still a free E*-module, generated by {z",z"1, ... z"™),
and the above formula for ng is correct when interpreted as ng(z') = ngr(z)*

For our purposes, it would be easier to use BP-theory instead of MU since we
are working in a p-local setting anyway. However, it only affects the complexity of

the computations, not the method.

Assembling all spectral sequences for varying m > 0, we obtain towers

EXtrm+1 (ATTL—H ) ATTL—H ) — [CPTT{I_H ) LES]

EXtFm(Am) Ap) =—— [CPTTIL> LeS]

The inverse limit of the left tower is not quite the Ext term associated to the

Hopf algebroid (A,T') = (E*(CP*), (EA E)*(CP*)). This is due to the fact that
(EAEAE)* (CP®) &ET QAT

(the left hand side is a completion of the right hand side).

Similarly, the inverse limit of the tower on the right hand side is not quite
[CP22, LeS]. It does not include the phantom maps.

Coming back to the problem of determining the induced map of the S'-transfer

on E,-terms, we look at the cobar construction functor
B"(M) =M ®¢, (E,E)®="

for an (E,, E,E)-comodule M.
Since E,, E,E, and H*(CP®) are concentrated in even dimensions, and since B is
an exact functor on flat E,-modules, we have a short exact sequence of B(E,, E,E)-

modules

0 B(E*Z'S™)) « B(E*(CP%)) « B(E*(CPS)) « 0.
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Ext(Z 'S ) Ext(CP%) Ext(CP)
Z*(F*2'87) < Z*(E*CP%) < Z*(E*CPZ) ~—— 0

dq dq dq

0~ B '(E'L'S"') =—— B (E"CP%) —— B* ' (E*CPg®) —— 0

Z*—l (E*Zf1 Sfl ) Z*f1 (E*CPS%) Z*—1 (E*CPSO) O

0 0 0

Figure 7.7-1: This diagram admits a snake map.

If we denote by Z*(X) C B*(X) the cycles under the cosimplicial differential d;,
we have a diagram as shown in Figure 7.7-1. It follows from the snake lemma that

the kernel of the top right map is the image under the snake map
Z* 1 (E*S™?) — Ext(CPg),

which is, by following through the diagram, the image of di[g«(,—1).

Now if T is a p-compact torus, the transfer map in cohomotopy is simply the

1-fold smash product of the map represented at the E;-level by dlg«,—1;.

7.2 The map S¢ — BG% — I"BT

We will first study the effect of this map on rational cohomology. By Theorem 3.2,
Hp, (BG) = Hg_ (BT)W(Sis always a polynomial algebra.

Proposition 7.1. For a p-compact groups G with maximal torus T, the following diagram
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commutes:

Ha, (BT:) "~ Hy (BT.) / (Hy, (BG)) — Hy (G/T4)

Hp, (£ "BG?) Hp, (BG){T) Hp, (597,

T

where T is the Thom class of BGY, and v is the generator in H*(S¢™).
This allows us to compute the effect of the map
S¢ 5 BG? — X"BTfiber

in cohomology (this is the bottom composition of maps in the diagram) by simply

evaluating at the image in Hg, (BT,) / (H*Qp (BG)) of the fundamental class of G/T.

Proof of the proposition:

By the construction of the transfer map, we have a commutative diagram

G /\T ST e ZTBT_|_ y
Sd BG®

and by Theorem 1.3(2), the left hand map S¢ — £"G/T, is an isomorphism in the
top homology group. Desuspending r times and applying H, = yields the commu-
tativity of the diagram of the proposition. O

Now let E be a HZ /p-local complex oriented torsion free cohomology theory.
Denote by Eq, the cohomology theory X — E*(X) ®z, Q,.

We have E*(CP*®) = E*[z] — ES, (CP%), and the same is true for E /A E. Hence
for computing a cobar representative, we can work with rational coefficients and
always hope that in the end of our computations, everythings turns out integral.

To compute this, we can use the Chern characters
exp : Eg, (X) = Hg, (X)QF*

and

exp : (EAE)G, (X) = Hy, (X)&m. (EAE)
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which, for X = CP%, is the exponential map for the formal group law associated
with E and an isomorphism, and for X = BT, a tensor power thereof. The smash
product is formed in the HZ /p-local category, as always.

This induces an isomorphism of (Eq, , (E A E)g, )-modules
B(exp) : B(Eg, BT,) — B(E*)&Hp, (BTS).
We have a commutative diagram

B(Ey,BT.) — B(E*BT,)

.

B(E*)

/

(Ep,) ® H*(BT,) —B(E*) ® H*(BT,)

e ”
\

So, to evaluate the class in B(E*(BT)) computed in the first part, we apply
B(exp) to it and obtain a class in B(E*) ® H*QP(BT), which we then evaluate at
the image of the fundamental class [G/H] in (Hg,)a+(G/Hy) — (Hg,)a—+(BT4).

This class then must actually be integral.
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Chapter 8

The family no. 3 of groups um

The p-compact group ppy, for p = 1 (m), has rank 1 and Weyl group W < Z7 a
cyclic subgroup of order m of the p-adic units. It is a nonmodular group and can

therefore be constructed as
B = Ly (K(Zp, 2) xw EW).

Therefore, H*(Bun; Z,) = Z,[z]", where a W acts on z by multiplication. This
shows that
H*(Bum; Z,) = Z,[z™] — Z,[z].

The fundamental class

[um/T] € Hg, (BT)/(Hg, (Bum)) = Qplzl/(2™)

is z™ !, and we conclude that p,, has dimension 1+ 2(m —1). It is straightforward
to see that for m < p — 1, u, cannot represent a nontrivial homotopy class in the
p-stems because (71;,) () = 0 for 0 <n < 2p — 3. But (73, 3)(p) = Z/p{ou}, and we
will see that p,_; represents this class.

In the p-completed BP-spectral sequence for m*(CP%),
nr(z) =z+ 1127 + O(zP*"), hencenr(z ') =z " — 1272+ O(zP ).

Applying the Chern character to this power series does not change it up to
O(zP 1), and hence [1p—1] is the coefficient of zP—2 of this series, which is t;. Lying

in filtration 1, t; represents the homotopy class «;.
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Chapter 9

Some exceptional cases

9.1 The 5-compact group no. 8

The pseudo-reflection group G which is no. 8 in Shephard and Todd’s list has

order 96 and is generated, as a complex reflection group, by the two reflections

i 0 T4 14
and {2 2 % ?|. The ring of invariants Zs[x,x,]€ is polynomial
o 1) -y 1oy
because 5 does not divide the order of G; a straightforward calculation shows that

it is generated by the polynomials

w=x3+ 14x3x5 +x8
and
v =x1% —33x3x5 — 33x7x8 +x)°.

Hence H*(BG; Zs) = Zs[u,v], and by Proposition 3.5 the cohomology of G/T is
given by
H*(G/T4;Zs) = H* (BT Zs) / (H*(BG; Zs)).

A Grobner basis calculation shows that the top class in H3¢(G/T; Zs) is

1 1
7 11 1.7 3,15 _ 15,3
X|Xy = —X; X5 = —ﬁxpcz = —X7%3. 9.1)
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We will use the 5-primary BP-spectral sequence for 7*(CP>) to determine the

homotopy class G represents. In this spectral sequence,

nr(z) =z — 1t z° + (5t12 +t \)1) z’ + (—351:13 — ]2’(12\)1 —t V]z) z"3
+ (28541 + 137 t° vy + 21 2 vi? + ty v %) 27
+0(z*")

and hence

diz)=—(t12) + (@Bt2+tw) 2+ (=26t° — 1042 v — t;vy?) 2"
+(204t* + 106t vy + 18t % w2 + 1y vy%) 2"
+0(z").

Applying the Chern character to this class yields

8t 78,2 78t v,2
flz) =t 2° + <4t12+¥v1> z/ + (—26t13— Vi /ouw ) aY

5 5 25
81613 v 1224 t2vi2 816t v¢°
4 1 1 1 1 1V 15
+ (204t1 + + 75 + 125 ) z
+0(z").

We need to evaluate the class f(z) ® f(z) at the classes given in (9.1) and add
them up. This yields:

[G] = —204t; ® t] — 808t ® t3 — 1208t3 ® t7 — 604t] ® t;
—160vit1 ® t? — 480\)1’(% ® t% — 320\)1’0‘]5 ® t

—48vit; @ t2 — 48vit? @ ty.
By adding a suitable boundary, namely

d; (413 + 45vit] + 34033 + 10v3ts +vity),
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we see that this class is homologous to
HOH+HHOL 2T +1et),

which is the representative of 3; in the ANSS.

9.2 The 3-compact group Za, (no. 12)

The Weyl group W of the modular group Za, constructed by Zabrodsky [Zab84]

is generated by the two matrices

1 i 1 i 1 i
_ 1 a1 LA LA
V2 2 and 2 2 2 2
i 1 _l+1 1_i
V2 V2 272 272

Although 3 | #W, the ring of invariants Z3[x;, x,]"V is polynomial, generated by

the polynomials

w=x$+ 14x3x5 + x5
and

vV = X’?Xz — X]Xi.
We find that the top class in H**(G/T,; Z3) is

X5 = —=X1° = —=X)". 9.2)

In the 3-primary BP-ANSS, logarithm, exponential, and universal isomorphism
are all odd power series; hence, evaluation at the class above yields 0 without
further computations.

This means that [Za,] is of filtration at least 3; however, the only 38-dimensional

class in the Adams-Novikov E,-term is 33/, in filtration 2.
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