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Abstract

In this MSc thesis, mapping class groups of spin surfaces are studied.
A spin surface is a Riemann surface equipped with a spin structure on
the tangent bundle, and the corresponding spin mapping class group is
the group of isotopy classes of automorphisms of these surfaces. The
main new result is Theorem 3.3.5 which states that the spin mapping
class groups, when stabilized with respect to the genus of the underly-
ing surface, have the homology of an infinite loop space. The proof relies
on the methods used by Tillmann to show the same statement for ordi-
nary mapping class groups.

In addition to proving this theorem the notions and properties of higher
categories, n-simplicial objects and loop space machines are reviewed.
Moreover, since the set-up Harer used to show homology stabilisation
for spin mapping class groups does not exactly fit into the framework of
this thesis, a section is devoted to showing that the two approaches are

equivalent.
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Introduction

Especially in the last twenty years, mapping class groups and moduli spaces of sur-
faces have enjoyed a great interest among topologists as well as algebraic geometers.
The diversity of settings in which mapping class groups (or moduli spaces) occur is
remarkable. A large variety of methods are used to tackle problems in connexion with
mapping class groups.

A mapping class is simply an isotopy class of automorphisms of a given Riemann
surface. The mapping classes form a group which is dependent on the genus of the
surface, and if it is not a compact closed surface, then also on the number of boundary
components (which one usually requires to stay fixed pointwise under a diffeomor-
phism) and on the number of punctures. However, it depends neither on the differ-
entiable structure nor on the complex structure, so there are equivalent definitions
of mapping class groups on differentiable, orientable surfaces or just topological, ori-
entable surfaces.

Moreover, at least for closed surfaces, it is easy to define these topological symmetry
groups of surfaces in a purely group-theoretic way without even mentioning surfaces:
they are just outer automorphism groups of free groups (i.e. the full automorphism
group modulo the inner automorphisms). A convenient, finite set of generators for
them is also at hand, with the relations being less than convenient. But this point of
view does not prove to be the most fruitful one for computational purposes. Many
important properties can be derived from the operation of the mapping class group
on the Teichmiiller space of Riemann surfaces, which has as its orbit set the mod-
uli space of surfaces. Since this operation is properly-discontinuous (finite isotropy
groups) and Teichmdiller space contractible, the homology of the groups on the one
hand and the moduli space on the other is very similar (rationally equal). By com-
pactifying Teichmiiller space in such a way that the action of the mapping class group

extends to the boundary (for example, by considering stable curves), one can see that



INTRODUCTION 5

the mapping class group contains a subgroup of finite index which behaves homolog-
ically like a compact manifold, according to the fact that moduli space is an orbifold.
So, mapping class groups are virtually of finite cohomological dimension, virtual du-
ality groups, and so on.

It is striking that mapping class groups share all these and many other properties with
arithmetic groups without being arithmetic (except in the case of genus 1, where the
mapping class group of a torus is just SL;(Z)). Led by this analogy and using simi-
lar techniques, Harer proved what is probably the most important result with respect
to the homology of mapping class groups: namely that it stabilises with increasing
genus. This had been shown before for groups like Spz,(R), On(R) for certain kinds
of ring R by Vogtman, Wagoner and others by considering simplicial complexes of
subspaces of R™, the module on which these groups act. Such systems of subspaces
form a partially ordered set by inclusion, and to a partially ordered set one associates
a simplicial complex X, where the n-simplices are chains Vp < V| < --- < V;, and
the boundary maps are the obvious ones by omitting elements of the chain. The arith-
metic group then acts on X and therefore gives rise to a spectral sequence, built from
the double complex consisting of a resolution of Z over the group ring, tensored with
the chain complex of X. The reason why this helps is that X turns out to be homol-
ogy equivalent to a bouquet of high-dimensional spheres, and therefore the spectral
sequence converges to zero in small dimensions (compared to n).

For mapping class groups, a rich combinatorial theory of simplicial complexes of em-
bedded curves in the surface replaces the systems of subspaces. These are highly con-
nected as well, as Harer shows using the theory of train tracks. In this way, one can
infer that the i-th homology of mapping class groups is independent of the compact
surface as long as its genus is higher than 3i+const (improved by Ivanov to 2i+const).
In particular, it is independent also of the number of boundary components, but not
of the number of punctures, if there are any.

Recently, Ulrike Tillmann succeeded in applying the theory of infinite loop spaces,

commonly referred to as “machinery”, and higher categories, to mapping class groups.
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In [Til], she shows that their homology, if stabilised with respect to the genus, has the
structure of an infinite loop space homology. To prove this, she constructs a 2-category,
consisting of circles, bordisms between them (i.e. surfaces), and their automorphisms,
and exhibits a strictly symmetric monoidal structure on it. Therefore, by infinite loop
space theory, its realisation is an infinite loop space, and Tillmann shows by an appli-
cation of the group completion theorem that its first deloop is homology equivalent to
the stable mapping class group.

The aim of this thesis is twofold: on the one hand to explain in greater detail how
the methods used by Tillmann work, in particular, what higher categories are, how
you make the step from these categories to topology, and into the simplicial world.
This is mostly well-known. On the other hand, to apply these methods to mapping
class groups of surfaces with an additional spin structure. These groups are finite-
index subgroups of the ordinary ones, and play an important role in modern physics,
namely string theory. A spin structure on a complex curve can be defined to be a
chosen square root of the canonical bundle, and the spin mapping class group is then
the subgroup that preserves this bundle; but a more combinatorial description is more
useful for these purposes: we regard a spin structure as a quadratic form on the first
homology group with coefficients in the integers modulo 2. It was also Harer who
showed that the spin mapping class group homology stabilises in the same way as
the unspinned, except for a slightly worse stability range. Unfortunately, he explicitly
only shows this for surfaces with one boundary which is not sufficient for my aim to
transfer Tillmann’s arguments to these groups to get the result that also spin mapping
class groups are homologically infinite loop spaces. But a rather simple study of inclu-
sions of surfaces and their effect on the mapping classes shows that everything carries

over into the context Harer used.



INTRODUCTION 7

I would like to thank my supervisor Ulrike Tillmann for many very helpful discus-
sions and her steady interest in the progress of my work and this thesis.

Finally, I would like to thank Gavin Harper for his careful proof-reading.



CHAPTER 1

Homology of spin mapping class groups

Everywhere in this work, let Fy , be a connected, compact, oriented surface of genus
g with n boundary components. Up to homeomorphism, for every g,n € Ny, there
exists a unique such surface. The mapping class group of F = Fg ,, is defined to be
the isotopy classes of orientation-preserving homeomorphisms of F onto itself, fixing
the boundary pointwise: T'(F) := 'y, := my Homeo™ (F,0F). Of course, orientation-
preserving means in this case that every mapping class acts on H;(F;0F) = Z as the
identity. Alternatively, one can consider differentiable surfaces with self-diffeomor-
phisms, or in the case of a closed surface also homotopy equivalences. All these de-
scriptions yield the same group I'(F) (cf. [Mis94] and the references given there.) The
mapping class groups are generated by a finite set of Dehn-Twists ([Deh38, Lic64],
later simplified in [HT80]), and indeed they are finitely presented. This was shown
by McCool [McC75]; the first explicit and rather small complete set of relations was
given by Wajnryb in [Waj83]. But these presentations known today are quite compli-
cated and do not give much insight into the structure of the groups. It turns out that
the mapping class groups share many properties with arithmetic groups, e.g., they are
virtually duality groups, and their homology stabilises as the genus tends to infinity
[Har85]. Nevertheless, it is known that the mapping class groups are not arithmetic.

It is also possible to consider mapping class groups of surfaces F that carry additional
structure, e.g., a spin structure, which I will study here. By a spin structure we will
here just mean a quadratic form Q on the first homology group of the surface with Z,
coefficients. Why this deserves the name “spin structure” will be explained in section

1.2. We call (F, Q) a spin surface (every orientable surfaces admits spin structures),
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and the spin mapping class group is the subgroup of all mapping classes of F which,
in addition, preserve the form Q.

My aim in the next sections is to give a clear statement and proof of the stabilisation
of the homology of mapping class groups of spin surfaces with several boundary com-
ponents, using Harer’s result [Har90] to show that the attachment of one spin surface
to another of genus at least k yields an isomorphism between homology groups of

spin mapping class groups up to dimension k/4.
1.1. Surfaces and Mapping Class Groups

In this first chapter, we will set up the right category to work in, and show some ele-

mentary but important properties of surfaces and mapping class groups.

We consider maps of the following kind between surfaces:

DEFINITION. Let F,G be surfaces, f: F — G. Call f a weak embedding if the restric-
tion to the interior of F

f| %—)é

e
is an embedding.

e Strange things can happen on the boundary!

DEFINITION. The mapping class group of a surface F is

I'(F) := mo Homeo™ (F; 9F)

= mo{f: F — F | flor = id and f is orientation-preserving}

_ Homeo™ (F; 0F)
~ Homeo{ (F;3F)"

where HomeoaL is the 1-component of Homeo™. If X C F, then put

I'(F; X) := mp Homeo™ (F; X U 9F).
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Remark. Let (F — X)V denote the “closure” of F — X whenever this makes sense:
that is, if X is a neighbourhood retract of some open neighbourhood V O X, then
(F—X)V := F— V. If this is again a surface, then we have: I'(F—X)Y = I'(F; X). We will
need this notion for X an embedded graph.

¢ Note that for disconnected surfaces, this is only one of two natural definitions. Sup-
pose that the surface contains two components without boundary. Then, in this defi-
nition, the homeomorphism that exchanges these two components is a mapping class;
one could also postulate that every mapping class induces the identity on 7. How-
ever, since we are mainly concerned with surfaces with boundaries in every compo-
nent, there is no difference — if the boundary is fixed, then the surface is automatically
fixed componentwise.

e Two homeomorphisms f, g: F — F fall into the same I'-class if and only if there is
an isotopy H: I x F — F satisfying Hy = f, Hy = g, and all H¢ are homeomorphisms.

¢ “Homeomorphism” can be replaced by “diffeomorphism” everywhere above.

In this paragraph, the relationship between mapping class groups of subsurfaces of
a given surface and stabilisers of subsets in the mapping class group will be investi-

gated.
LEMMA 1.1.1. If f : F — G is a weak embedding then f induces a map
fo: T(F) — T(G).

So T becomes a functor from the category of surfaces and weak embeddings into the category of

groups.

Proof: For ¢ € Homeo™ (F; 0F) define:

X; x & im(f)°
(fxd)(x) ==
f(o(f'(x))); x €im(f)°
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T2 ®lim(rye and f,d[(g_im(s))o are injective, extend to a map on the common boundary
0im(f) and coincide there, so f,$ is again a homeomorphism. f, is well-defined on
I'(F): If ¢: I x F — Fis an isotopy between ¢ and ¢1 then f, . is an isotopy between
fedo and f,.b1. O
Not only can we deform ¢ € Homeo™ (F; 9F) without changing the image in I'(G) but
also f: If we have an isotopy of weak embeddings (i.e. a map f:I x F — G where

each f; is a weak embedding) the induced maps f. do not change with t:
LEMMA 1.1.2. Isotopic weak embeddings induce equal maps on the mapping class groups.

Proof: Let f: T x F — G be an isotopy of weak equivalences fp and f1: F — G, and let
¢ € Homeo™ (F;dF). Then it is easy to check the continuity of t — fi.¢, so there is a
path in Homeo™(G;0G) from fp. ¢ to f. . O

One method to generate subgroups of I'(F) is to consider stabilisers:

DEFINITION. Let X C F be a subset of a surface F. Define Stabr(f) X to be the compo-

nents of Homeo™ (F; 0F) that intersect Stabyjomeo+ (F:or) X nontrivially. In formulae,

Homeo (F; 9F) - Stab af) X
Stabr(]:] X — 0 ( ) . Homeo™ (F;0F)
Homeoy (F; 0F)

o [tis easy to see that Stabr () X indeed is a subgroup of I'(F): If ¢, P are two represen-
tatives of elements in Stabr () X then one can find, for both maps, a path in Homeo™ (F)
to a homeomorphism that fixes X, say ¢+ to ¢1, 1 toP1. Thent — oy is obviously
a path from ¢g 01y to a homeomorphism fixing X, namely ¢ o 1. Therefore, ¢pg o Yo

is a representative of a map in Stabr () X.

e Warning: Stabr ) X # I'(F; X)! Indeed, T'(F; X) is not even a subset of T'(F). The reason
is that in I' (F; X) we only divide out by homotopies that fix X at any time. But there is a
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surjection
Homeo™ (F; X U oF)
Homeo{ (F; X U 9F)

Homeoj (F; 9F) - Stabpiomeo+ (FoF) X
.
Homeoj (F; dF)

(1.1.3) T(F;X) =

= Stabr(]:)x

Let us introduce the following notation: if we have two surfaces F;, F, and a homeo-
morphism « between a subset of the boundaries of F; and F, then we write F; LixF, for
the result of gluing them together via f. The domain and image of f are called the inner
boundaries of F1 and F,, respectively, and written 9;,F;, the complemental boundaries
are OoytFi.

We will now try to find a link between stabilisers of certain sets and mapping class
groups of weakly embedded surfaces. Our first Lemma covers the case of surjective

weak embeddings:

LEMMA 1.1.4. If f: F — G is a surjective weak embedding, then
fy: T'(F) — Stabp(g) f(0F)

is also surjective.

Proof: We have an isomorphism

Homeo™(G,dG U f(dF)) = Homeo ™t ((G — f(3F))V, 9)

=~ Homeo™((F— 9F)Y,d) = Homeo™ (F).

f surj.

In the same way, we get an isomorphism between the 1-components. So we get

I'(F) =T(G,f(dF)) — Stabr(g)f(oF) (by (1.1.3))
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The following result links the notion of stabilisers with mapping classes of subsurfaces

and shows that we did not treat too special a case in the above lemma:

PROPOSITION 1.1.5. Let Fy,F, be two surfaces, F = Fy Uy Fy for some o, and let
fi = f|}:i: F—F (1 = 1,2)

be the inclusions. Suppose that F is connected. Then F; is isotopic to a surjective weak embed-

ding gi: F; — F, and the following diagram commutes, where A; := g;(0F;) — OF:

incl.

Stabr(]:) Ai E— F(F)

gi*T I

F(F)  — I(F)

Proof: Since F is connected, at least one of Fy and F; has to be connected. Without loss
of generality, let i = 1 and F, be connected. Inductively, we can assume that F; is a

pair of pants or a disc because we can decompose F; in such.

We construct a flow ¢ on F, such that ¢g(x) = x and 0outF2 C $1(0inF2). This flow
induces an isotopy between the inclusion fj: F; < F and a surjective map in the fol-
lowing way:

Let ]_[;‘:] S! x I < F; be a collar around the inner boundary of F;. Extend the flow ¢

on F; to this collar by defining on each component of the collar:

IxS'xI — F
_1(0); ifs+t>1,

(t,(e,s)) . (bs—l—t l( )
(0,s+1t); ifs+t<1.

Extend it by the identity further on the whole of F.
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Case 1. F, = disc = D?. The flow ¢ may be taken to be:

Case 2. F» = pants, glued along one component:

Thick lines in these pictures denote the image of the inner boundary of F; at the end.

Case 3. F» = pants, glued along two components:

The resulting isotopy agrees with fi: F; — Fatt = 0 and with g1: Fy » Fatt = 1.

Therefore f1, = g1, and the commutativity of the diagram is shown. O
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The following set of pictures illustrates the above procedure. They show the surface
F», composed of three tori, and the image of the inner boundary of Fy at each step
(thick lines).

Slide 1

Slide 4

Slide 3

DEFINITION. An arc system on a surface F is a collection of simple arcs {y;} in F such

that:

1. Two arcs intersect at most in their endpoints

2. All endpoints lie in oF

3. In every component of oF, there is at most one intersection point with the whole
arc system

4. No arc is trivial, i.e. homotopic to a point rel endpoints, and no two arcs are

isotopic to each other.

e The reason why we are interested in such special graphs in F is that there is a simpli-

cial complex made up of such arcs. The vertices are simply non-trivial isotopy classes
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of arcs with fixed ends, and the n-simplices are collections of n such mutually non-
isotopic arcs such that the complement is still connected. Arc systems play a central
role in the study of mapping class groups. There exist quite a lot of different variants
of arc complexes, all of which share the property that they are highly connected (see,
eg, [Har85]), but ours agrees with the one Harer [Har90] uses in the case of only one

boundary component to prove homology stability for spin mapping class groups.

SUPPLEMENT. The construction in Proposition 1.1.5 reveals that the set Ay is a connected
graph on F which contains every outer boundary component of F». If ¢ is a homeomorphism
that fixes Ay pointwise then we can find a small neighbourhood Uy of Ay in F such that
¢ can be deformed isotopically into a homeomorphism &' which fixes all of Uy pointwise.
Having done this, we can deform Ay into an arc system {y;} with endpoints in 9F,, and this

deformation can be chosen to be the identity outside Uy. Then we have:

(1) Stabr(F) Al = Stabr(}:)’y)',
(2) Everyy; is a simple arc with endpoints in 0F,
(3) F—{y;} is still connected.

Proof of the supplement: Let A be our graph and T an arbitrary spanning forest with as
many components as 9,,¢F2, and roots p; in these boundary components.

Example: In the case of our above example, the graph and its spanning forest look like:

RN
/—*--\’\'
N -
? ]
1 P

Ay

A =Image of 0F; T = spanning forest of A
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We now construct a flow 1 in F such that ) = idr and P1(x) = p; for every vertex x
in the same component as p;.

Let x1, x2 be two adjacent vertices in our graph such that x; is nearer to the root
than x; (in the sense of the ordering induces by the forest). Choose a neighbour-
hood of the graph as described. Then we can find coordinates a: R — F such that
a([0, I x{0ju{1}x [-1,1]) C A and a(0,0) = x4, a(1,0) = x2, and no more components
of A meet the set R x [—1,1]:

1.3

9 :
X1 2 (20) X

(11'1)

Now let r: R — R be a map which is 1 on | — 00, 1] and 0 on [2, oo[. Furthermore, let

Do) = (x,y); ifx<Oorlyl >1
(1T —71(x) +ylr(x))x; otherwise
This map extends to all of F and deforms the graph such that the edge between x; and
x2 is mapped onto a point but the map is injective on all other points. It is homotopic
to the identity via a linear homotopy on R2. If we nest the maps for all adjacent pairs
x1, X2 in such an order that there is only one vertex afterwards, we get the desired

transformation into an arc system. Since the homotopies can be nested in the same

way, we see that the stabilisers of A and of {y;} have not changed. O
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In our favourite example, the resulting arc system is shown in the next picture:

It is now natural to ask under which conditions an embedding f: F — G induces an

inclusion of the mapping class groups.

Example. Let F be the standard annulus in R?, i.e. F = {x € R? | T < x| <1} and
G the unit disc. Then the inclusion i: F < G certainly cannot induce an inclusion of
mapping class groups since I'(G) = 0 because G is contractible, but I'(F) = Z (the gen-

erator is given by the Dehn-twist along the circle ||x|| = %).

We will see that this is in a certain sense the only counter-example:

PROPOSITION 1.1.6. Let f: F — G be an inclusion such that each component of G — im(f)
contains at least one component of 9G (hence we exclude the above example), and let G be

connected. Then
fo: T(F) — T(G)
is injective.

Proof: Let P := G — im(f)°. Without losing generality, we can suppose that P is con-
nected because otherwise we can repeat the argument with every component of P.
Furthermore, it is even sufficient to show the proposition in the case where P is a pair

of pants that shares one or two boundary components with im(f). This is because P
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can otherwise be assembled from such atoms and we can use induction.

In the first case, when sewing along one component, the statement is trivial:

if g: G — F is the map which identifies one of the two remaining boundary compo-
nents of P to a point, then g o f ~ idf, thus g.f, = idr ), showing that f, is injective.
The second case is slightly more difficult. Let us first assume that we have isotoped f
into a surjective weak embedding, as described in Proposition 1.1.5. Then, by case 3
of our construction, A := f(9F) — 9G is a single arc, indeed we can assume a closed
curve, and we know that I'(F) =T'(G;A).

Now consider the fibration

Homeo™ (G)
Homeot(G;A)’

Homeo ™ (G;A) — Homeo™(G)

Let 3(G) be the space of all embeddings of circles with a fixed endpoint p (we take
p =0A = ANJG). Leta: (S, %) — (G, p) be a basepoint for this space with im(a) = A.

Consider the map
Homeo™(G) — J(G)
b doa

The kernel of this map is the set of all ¢ € Homeo™(G) that fix A pointwise, i.e.
Homeo™(G; A). Therefore, we have an embedding

Homeo™(G)
Homeot(G;A)

— J(G)

This embedding is extremely well-behaved in the sense that if a point of J(G) is in the
image then the whole component is. To see this, take two embeddings in the same
component — without loss of generality a and another one, a’. Then they are linked
by a path in 3(G), i.e. an isotopy of embeddings. Any such isotopy can be extended to
the ambient surface (cf. [Eps66], Theorem 4.1), so the preimage of a’ we are looking
for comes with a path in Homeo™(G) connecting it with idg.

This tells us that m (%) = m(3(G)), and it is known (see, for example,
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[Gra73]) that the latter group is trivial.

Hence the last bit of the exact fibre sequence looks like:

... —m (J(A))—mo(Homeo ™ (G; A))—7o(Homeo ™ (G))—. ..
| | |
1 r'(G;A) ra)
Therefore the map
I'(G;A) — Stabr(g)(A) C T'(G)

is injective. [
1.2. Spin Structures on Surfaces

In this section I will study the mapping class groups of surfaces which carry a spin
structure. Using all the results of the previous section, we obtain a functorial state-

ment of Harer’s theorem on the stability of the homology of these groups.
Generalities on spin structures.

Recall that for n > 2, the group SO(n) is not simply connected, but has a two-sheeted
(universal if n > 3) covering called Spin(n). Note that in the case n = 2 we are con-
cerned with, Spin(2) = SO(2) = S!. If E — M is an orientable n-dimensional vector
bundle with a Riemannian metric on a manifold M then it has SO(n) as its structure
group. If we consider the associated principal SO (n)-bundle of orthonormal n-frames
in E, let us call it P(E), then we can try to find a two-sheeted covering of this bundle.
A spin structure on the bundle E — M is defined to be a principal Spin(n)-bundle
Q — E together with a 2-sheeted covering map Q — P(E) that is the standard
covering map Spin(n) — SO(n) on each fibre. We are only concerned with spin
structures on the tangent bundle.

Remark. The choice of a metric on E is not essential for the definition of spin struc-

tures. If we replace SO(n) by GL*(n) (the T-component of GL(n)) and Spin(n) by the
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universal cover of this, we get isomorphic bundles. But it is often convenient to work
with compact fibres.
Not every orientable vector bundle admits a spin structure. Neither is it normally

unique if it does. But there are cohomological criteria for both: The fibration
SO(n) — P(E) — M
gives us a long exact sequence in Zj-cohomology:
0 — H'(M;Z,) — H'(P(E); Z2) — HY(SO(M); Z,) S HE(M; Z,).
To see this, we look at the lower left hand corner of the Leray-Serre spectral sequence
E>9 = HP(M;99(SO(n); Z2)) = HPT9(P(E)).
The local coefficient system $H9(SO(n);Z;) is simple because
HY(SO(M);Z;) < Z,

so it does not have any nontrivial automorphisms. Therefore the E,-term looks like

(omitting Z»-coefficients):

oo O O

Since the first differential d; already has degree (—1,2), ES! = E%), and

ELY =E}O =ker (da: Ey° — E9?)
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and so we get the exact sequence
0 EQ' =H'M =5 HY(P(E) -5 ELO = H'SO(n) L5 E92

which is exactly the above one.

Now, two-sheeted coverings of a manifold X (in our case, P(E)) are in one-to-one cor-
respondence with elements of H'(X;Z,) (they are classified by maps X — BZ; =
K(Z32,1), so their homotopy classes are just [X; K(Z3, 1)] = H'(X;Z,)). Butnot every el-
ement of H'(P(E); Z,) defines a spin structure: the condition that it is the standard cov-
ering of SO(n) on each fibre means exactly that this class maps to 0 in H'(SO(n); Z>).
Such an element exists if and only if the map (* is surjective, i.e. if d* is 0, i.e. the image
of the generator of H'(SO(n);Z,) (which is the second Stiefel-Whitney class of E) is 0.

In our case of a surface F, the principal SO(2)-bundle can just be taken to be the unit
tangent vector bundle STF, and im(d*) = 0 in H?(M;Z;) because the Stiefel-Whitney
class is just the Euler class reduced modulo 2, and since F is orientable, its Euler char-

acteristic is even. So we get a short exact sequence (coefficients in Z; omitted):
0 — H'(F) =5 H'(STR) -5 2, — 0.

Therefore we can define a spin structure on F to be an element & of H'(STF;Z,), and
we require that £ is nontrivial on the fibres, which means that it does not map to 0

under i*.

Atiyah [Ati71], and later, in a quite different way, Johnson [Joh80] have shown that
the set of all spin structures on a fixed surface correspond bijectively to quadratic forms

on H; (F;Z3), therefore we will use this algebraic description:
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DEFINITION. A spin structure on a (connected) surface F is a quadratic form
Q:Hi(KZ2) — Z;
i.e. it satisfies Q(x +y) = Q(x) + Q(y) + (x,y) where
() Hi(F Z2) ® Hi(F Z2) — Ho(F; Z2)

is the intersection form and Hy(F; Z,) is identified with Z,.

If F and G carry a spin structure then we define a weak embedding of (F, Qr) in (G, Qg)
to be a weak embedding f: F — G, and we require that Qr = f*Qg, i.e. Qf(x) =
Qqc(fx(x)) for all x € Hy(F;Z;). The inclusion map of a surface embedded in a bigger
one allows us to speak about sub-spin surfaces.

The mapping class group of a spin surface (F; Q) is, of course,
G(F, Q) := 1y Aut(F; 9F) = mo{f € Homeo™ (F;dF) | f*Q = Q}.

e We can also define G(F, Q) as the stabilizer of Q in I'(F) because isotopic maps f1, 2
induce the same map f7, f3.

e In our definition, we do not require that F is closed. Indeed, Q can take arbitrary
values on the homology classes of the boundary components, subject only to the nec-
essary condition that Q(97 + --- 4+ 9,) = 0 if {9;} are all r boundary components of F
(since 91 4+ + 0, ~0.)

1.2.1. In the case of a closed surface, there are only two spin structures up to isomor-

phism (isomorphisms defined in the obvious way), classified by their Arf invariant

g
«(F,Q):=> Q(a:)Q(bs)
i=1

where a; and b; are a symplectic basis of H;(F;Z;) with respect to the intersection
form. However, this is no longer true if F has more than one boundary component,
sinceif say r’ < r boundary components have Q- value 1 then obviously this is also the

case for every isomorphic image. But v’ is always an even integer because Q(9F) = 0



1.2. SPIN STRUCTURES ON SURFACES 24

and Q(0; + 9;) = Q(9;) + Q(0;). It is easy to see that indeed, we have a bijection

between the set of equivalence classes of spin structures and the set Z; x {0, ..., | 5]}

For our demands, it is often convenient to require that the spin form evaluates to 0 on
every boundary component. This makes it, for example, possible to glue spin surfaces
together along a single boundary without need to care about the consistency of the
spin structures. In this case, we again get a complete classification of spin structures

on the surface by their Arf invariant. Write Gig)n for G(Fgn, Q) with x(Q) =1 € Z,.

LEMMA 1.2.2. Thereare 29 1(29+1) even and 29~ 1(29 —1) odd spin structures on a surface
of genus g, if we require that Q(9;) = O for every boundary component 0.

Proof: Letn) (i = 0,1) be the number of spin structures on a genus g surface with Arf
invariant i. On a torus Fy , with generators a,b € H;(F; ;9), there is only one odd
spin structure, namely Q(a) = Q(b) =1, the remaining three combinations are even.

Since gluing of two surfaces means addition of the Arf invariants, we have the follow-

ing recursive formulae:

n(g) = 3n8,1 +ng g
n; = ng 1+ ?m]gq
which easily yields ng =29"1(29 + 1) and n; =29"T(29 —1). O

In particular, since I'g , acts transitively on the set of all spin structures of Arf invariant
iand G}, is the stabilizer of any one of them, we see that the index of G, in ', is
finite, namely:

Pom: Gl =2071(2° +1)

Fomn:Ganl =291(20—1).
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In view of this result, one would expect that the spin mapping class groups have sim-
ilar homological properties to the mapping class groups without spin. Indeed, the
transfer map

tr: Hy(G;Q) — Ha (T Q)

is injective with right inverse ﬁ L, Where t: Gig — I'gis the inclusion map. Hence,
g-Mg

we get a splitting of homology groups
Hk(G;;Q) = Hy(I'g; Q) @ something

where it is yet unknown if “something” is actually anything, at least for g big com-

pared to k.

We can now restate Harer’s stabilization theorem in the following way:

THEOREM 1.2.3. If (F, Q) is a connected embedded sub-spin-surface of the connected spin
surface (F', Q") such that every component of F' —F contains at least one boundary component

of ¥/, then the inclusion f: (F,Q) — (F', Q") induces an isomorphism
f: Hi(G(F, Q) — Hy(G(F', Q")) for genus(F) > 4k + 2

Proof: In [Har90, Theorem 3.1], Harer showed that if we have a loop system vy in a
surface F with exactly one boundary component and we add another loop to obtain a

system v’ then the inclusion Stabgr,q)y' < Stabg(r,q) v gives us an isomorphism
i: Hk(StabG(F,Q) ‘YI) i) Hk(StabG(F,Q) ‘Y)

for genus(F —y) > 4k + 2. So, if y' — v contains more than one arc, we can apply this
theorem repeatedly and we get as a sufficient condition for the induced map being an
isomorphism in the k-th homology: genus(F —v') > 4k + 2.

Let F/ have genus g’ and v/ boundary components. Then F’ can be included into the
surface Fy = Fgr4_1,1 of genus g’ + 1/ — 1 and with only one boundary component by

repeated attachment of a pair of pants to a pair of boundary components of F'. F; can
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be given a spin structure such that this inclusion is an embedding of spin surfaces. To
see this, take two boundary components bjF’ and b,F’ of F/ with Q(b;F) = ;. When
attaching a pair of pants, we have to define two new Q-values in a compatible way:
the Q-value « of the new boundary bF; has to be Q(b1F) + Q(b1F) (mod2) because
by is homologous to b+ b;, and the Q-value of the created new longitude 3 that trans-

verses b1F and bF can be chosen arbitrarily.

This inclusion of spin surfaces can be deformed into a surjective weak embedding i’,
according to Proposition 1.1.5.

In the same way, let g be a surjective version of f and i be the composition i’ o g. This
is again a surjective weak embedding of spin surfaces. Then we get two loop systems
v and vy’ which are the images of OF and oF in Fy, respectively. In the last section, we
have seen that i,: I'(F) — Stabr(,) v is surjective (by Lemma 1.1.4) and also injective
(by Proposition 1.1.6), and the same is true for i’ and y’. Of course, this is still true if
we intersect everything with the stabilizer of the quadratic form. By definition, vy’ C vy,

and therefore we have the commutative diagram

G(F)Q] —;) StabG(F17Q1)'Y

Js [

G(F, Q") —— Stabg(r, 011V’
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which yields the stability of the k-th homology for genus(Fy —y) = genus(F) >
4k + 2.

O

COROLLARY 1.2.4. Let (F, Q) be a connected spin surface, P a pair of pants. Then the at-
tachment of P to F, along one or along two boundary components, together with an arbitrary
extension of the spin structure to P induces an isomorphism in the k-th homology groups if
genus(F) > 4k + 2.

This is only a special case of the above theorem.

We still do not know what happens to the homology when we attach a disc to a bound-
ary component (of course, necessarily, the quadratic form must evaluate to 0 on this
boundary) and thereby decrease the number of boundary components by 1. Harer
also showed in his paper [Har90] that the attachment of a disc to a surface with ex-
actly one boundary induces an isomorphism in Hy for g > 4k + 7. This is also true for

surfaces with initially more than one boundary component:

COROLLARY 1.2.5. Let (F, Q) be a connected spin surface, @ any boundary component of F
with Q(0) = 0, and D a 2-disc. Then the attachment of D to F along 9 induces a homo-
morphism of spin mapping classes and an isomorphism in their k-th homology if genus(F) >
4k +7.

Proof: The proof for one boundary component was done by Harer [Har90]. So let F
have at least two boundary components, F be the surface with a cap attached to one of
the boundary components, and G be a subsurface of F with only one boundary com-

ponent but of the same genus:
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Then the inclusions are compatible:

where 1 is the map induced by attachment of the disc. Theorem 1.2.3 applies to the
other two inclusions, and so, i.: Hx(G(F)) — Hy(G(F)) is an isomorphism for genus
> 4k + 2. This result, although better than that stated above, is of course only true in

the case where F is not closed. ]



CHAPTER 2

Methods

2.1. Higher Categories

In this section I will give an overview of the definitions of (strict) higher categories.
The reader might want to skip this section if he or she feels familiar with the notion of
strict n-categories, monoidal categories, and category operations. For the chapters to
follow, nothing more than a monoidal 2-category is actually needed — nevertheless it

seems to me to be instructive to treat the general case sometimes.

We begin by defining n-categories and n-functors for every n € Ny, which agree with
conventional categories for n = 1. These n-categories are what is sometimes called
“strict”. Basically, there are two ways of defining them: one is recursive, by saying
that an n-category is a category “enriched” over the (n — 1)-categories; the other way
is iterative, by giving a set of n suitably compatible composition operations. The first
definition is more conceptual, whereas the second one is much easier to work with.

We start with the recursive definition.

DEFINITION. A (recursive) O-category is a class, and a 0-functor is a map between
two 0-categories.
Any n-category is called small if the underlying set of objects is small. A small 0-

category is just a set.

Suppose we know what a recursive (n — 1)-category and an (n — 1)-functor are. Then
an n-category C consist of a nonempty class Cy of objects and, for each pair of objects
x,Y, of a small (n — 1)-category C(x,y) or Hom¢(x,y) of morphisms, together with a

29
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composition (n — 1)-functor
o: C(y,z) X C(X)y) S C(X)Z)

which is associative and has, in each C(x, x), a right and left identity element idy.
Note that here, in requiring an equality of different applications of the composition
functor, we use the assumption that the morphism (n — 1)-category is small in order
not to get entangled in set-theoretic problems. If one wants to get rid of this restriction,
one has to replace the equalities by suitable and “coherent” natural transformations
and is quickly led to the notions of “weak categories” that have become popular re-
cently.

In this definition, in writing C(y, z) x C(x,y), we have used the fact that for two (n—1)-
categories (in fact for any set of (n — 1)-categories C;) one can construct the product
category [ [; C; whose objects are the products of the classes of objects of the C;, and
whose morphisms are the products of the morphism categories one dimension below.

Likewise, we can define the coproduct category | [; Ci, using disjoint union.

For any n-category C, n > 1, we define the total morphism category C’ to be

C' = H C(x,y).

x,Y€Co

!

This category is then an (n — 1)-category. As a shortcut, C ) .= (¢ctn=T)y/,
We call the elements of (C*)), the k-morphisms of the n-category C.

An n-functor F between two n-categories C, D consists of a map
Fo: Co — Dy
and an (n — 1)-functor

F':C' — D' where F'(C(x,y)) C D(Fo(x),Fo(y))
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such that for x € Cp, F/(idyx) = idf () and such that it takes compositions to composi-

tions:

Cly,z) x C(x,y) FAX/FD(LJ’,Z’) x D(x',y")

o e}

/

C(x,z) ———=D(x',z')

where the dashed letters are the images under Fy. It is usual to write just F instead of
Fo and F'.

2.1.1. A k-morphism f will be identified with the (k 4+ 1)-morphism ids, the (k + 2)-
morphism idiq,, and so on; whereas it gives also rise to (k — 1)-morphisms source(f)
and target(f). So, the most general morphism is an n-morphism. A “morphism” is

just any one of the above.

As we are used to in 1-categories, we can work with diagrams of objects and mor-
phisms. But since there may also be higher morphisms in addition to objects and

I-morphisms, one is led to draw diagrams like

where the x; and y; are i-morphisms, and, for example, source(xz) = x;. It should be
intuitively clear what it means that diagrams composed of such pieces commute. By

. . . . X,
suppressing some information, the diagram can also be drawn as xy — Yo.

For the iterative definition of higher categories, we need a few preliminary definitions:
DEFINITION. A partial monoid is a set X together with a partial map

O:XxX—X
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and a subset 7 of X, the identities, satisfying:

(i) (xOy)Oz = xO(yOz) whenever this is defined;
2.12) (ii) iO0x = x and yOi =y whenever i € Z and this is defined;
o (iii) for every x € X, there are (automatically unique) i,j € Z such

that i0x and xOj are defined.

A homomorphism between two partial monoids (X,0,7) and (Y,0O, J) is a function
f: X — Y such that:

LfIZ)cT
2. If xOy is defined, then so is f(x)Of(y), and f(xOy) = f(x)Of(y).

o If 7 consists of a single element, we get the usual definition of a monoid back.
e A partial monoid is nothing but the total morphism set of a small 1-category. For the

converse direction (to get from a partial monoid to a category C), one defines

Co:=7 and

C(i,j) ={xeX | joxoiisdefined }

and considers Cy and C’ as disjoint. The composition map is the monoid multiplica-
tion, and the category axioms are easily checked. Therefore, we have seen that partial
monoids and 1-categories are the same concepts. In order to generalize this and to

define iterative higher categories, we need:

DEFINITION. Let X be a set with k different partial monoidal structures Oy, ..., Oy on

it. Let us call this sequence of structures compatible if it satisfies:

1. Whenever (x10yy1)0;(x200y2) is defined, then so is
2.13) (x105%2)04(y105y2), and the latter is equal to the former;
o 2. if x is a left or right identity for O; then it is also a left or right

identity for O; if j > 1.
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DEFINITION. An (iterative) n-category is a set X together with n compatible partial
monoidal structures. An n-functor is a map between two such sets X, Y that is a

homomorphism with respect to every monoidal structure.

PROPOSITION 2.1.4. We can identify iterative and small recursive n-categories. More pre-
cisely, the function ™ that assigns to a small recursive n-category the set of n-morphisms

takes values in n-fold compatible monoids; and it has an inverse B™.
The proof is deferred to the next section.

Examples of higher categories. The prototypical example of an n-category is the cat-
egory (n—1) —CAT of all small (n — 1)-categories, where the morphisms are (n —1)-

functors. To see that this is indeed an n-category, we define:

DEFINITION. When we have two n-functors Fq,F2: C — D of recursive n-categories
C,D, we can define the (n — 1)-category of morphisms (or natural transformations)
between these functors to be the set of all (n — 1)-functors H: C — D’ that satisfy
source H(x) = Fy(x) and target H(x) = F,(x) and make the following diagram com-

mute for all (n — 1)-morphisms x,y and every n-morphism f: x — y:

H(x)

F1(x)

If (n—1)—CAT (C,D’) is an (n— 1)-category, then so is the subcategory of morphisms
from Fy to F,; therefore, inductively, we get that this is true (since this is obviously true

forn=1).
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NOTATION. I shall use the following symbols for categories:
Ens — the 1-category of sets

CAT,n—CAT — the 2-category of small categories, the (n + 1)-category of
small n-categories
Cat,n—Cat  — the 1-category of small n-categories, with morphisms the n-

functors; Cat = 1 —Cat

Another simple example comes from groups. If G is a group (or just a monoid) then
G is a O-category, and we have basically two possibilities of understanding G as a 1-
category: the first one is BG, the 1-category that has one object and one (iso-)morphism
g for every g € G.

The other method is to take G as the object set of the category and have one morphism
g € G from h to hg. In a way, the information here is more redundant. This category
has #G elements and exactly one morphism between each pair of objects. We call it
the translation category of G and write £G.

We can now ask whether G is also a higher category in a natural way. In lack of any
other structure in sight, we could take one object, one 1-morphism, and G as the set
of 2-morphisms, where o; as well as o; is the group multiplication. Since any two

morphisms are composible in both ways, we must ensure that

(go1g')ox(horh')=(gorh)oy (g’ o2 h')
&= gg'hh/ = ghg’h’ forall g,g’,h,h' € G.

So G has to be abelian. In fact, if G is abelian, we could in the same way also construct

a 3-,4-, ... category from G.

2.2. Mixing the two concepts: monoidal categories

In practice, one often has to switch between the monoidal, iterative point of view, and
the recursive definition of categories. Moreover, these two approaches are sometimes

combined; in particular, the notion of a monoidal category is very important especially
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in the theory of loop spaces. Therefore we extend the range of definition for monoids

from sets to recursive n-categories:

DEFINITION. A monoidal structure on a small recursive n-category C is an associative
n-functor 0: C x C — C together with a right and left identity element 0in C. C is then
called monoidal. A partial monoidal structure on C is the obvious generalization of
the definition of partial monoids to n-categories: a “partial” n-functor 0: ¢ x C — C
together with a subset T C Cj satisfying (2.1.2). Here, “partial” means that the functor
is possibly not defined on all objects, but if it is defined on objects (X,Y) and (X', Y’)
then also on every k-morphism (f, g): (X,Y) — (X', Y’), for every k > 1. If we have k

partial monoidal structures of C, they are called compatible if the axioms (2.1.3) hold.
The following proposition is a stronger result than Proposition 2.1.4, and implies it:

PROPOSITION 2.2.1. Let kMonnCat be the 1-category of all small k-fold compatibly par-
tial monoidal n-categories, where the morphisms are functors which are homomorphisms with

respect to the monoidal structures. For k > 1, there are functors

B
kMonnCat__ (k—1)Mon(n + 1)Cat ,

mor

inverse to each other up to natural isomorphism, where mor is taking total morphism sets:
mor(C) = C'. In particular (iterating this), we can identify n-fold compatible partial monoids

with n-categories.

¢ Bis called the classifying-functor for a monoidal category. Some authors use a ‘B’
letter differently to denote the nerve of a category, which I will call .
Proof: First of all, we must observe that mor does indeed take values in k-fold compat-

ibly partial monoidal n-categories. Define

mor: (k—1)Mon(n+1)Cat —  kMonnCat
((C)O))D1>"')Dk—1) — (CI><>1,"')<>k)
(F. X—Y) — F’
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where
O1=0,07 = D{,...,Qk = D{<_1.
and the identities for ¢ are {idx | X € Co}.

We have to check the compatibility conditions (2.1.3). Since ©5, ..., Oy are compatible
by definition, it remains to show:

1. (xO5y)C1(x'O5y’) = (xO1x")O5(yOry’)  forallj > 1;

2. if x is a right or left identity for ©1, then so it is for every ©;,j < k.

The first assertion is clear because Uj is an (n + 1)-functor: it takes compositions to
compositions. The second assertion is not less obvious since the property of being a

left or right identities for composition is preserved under functors.

For the inverse map, define:

B: kMonnCat — (k—1)Mon(n+ 1)Cat
(C)O])"')Ok) — ((D)OLD])---)Dkf])
(F. X—Y) — F

where

Dy :=Z, the identities for <1;
D(I,]) :={X € C | JO1XO11 is defined };
0:=r;
0;:=34+1 (G=1,...,k—1).
The composition function is well-defined because X € D(],K),Y € D(I,]) implies
KOXOJOJOYOI = XOY is defined. It is by definition an associative n-functor, and so,
we get an (n + 1)-category. But we have to show that the remaining Oy, ..., Oy still

form a (k — 1)-fold compatibly partial monoidal structure on D.

It is enough to show: For all j, Oj is an associative (n + 1)-functor. For if we remove the
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first member of a compatible sequence, the remaining sequence is still compatible.
The associativity is clear. For the functoriality, observe that &; maps identities to iden-

tities:
idlx]:IXIED'X'DI
and if defined, then

[&5] =1=] by Axiom (ii) of compatibility (2.1.3).
If we have composible morphisms X x X', Y x Y": D' x D' — D' x D’, then

(XoY)O5X 0 Y') = (XOY)O5(X'OY) = (XO;Y)0(X'05Y").
Def 2.1.3()

In the following sections, we will be particularly interested in monoidal structures that

are “commutative”, at least up to a natural isomorphism. More precisely:

DEFINITION. A slightly weaker condition for the monoidal structure than being com-
mutative is being symmetric. This means that there exists a natural transformation
s: 0 — O o Tw, where Tw € End(C x C) is the twist functor X x Y — Y x X, satisfying

the following compatibility conditions with the monoidal structure:

1. s(X,0) =idx = s(0, X);
2. s(X,YOZ) = (idy Ds(X,Z)) o (s(X,Y)DidZ);
3. S(Y,X) o S(X,Y) = idxgy.
If the last condition does not necessarily hold, we speak of a braiding.
Whereas there are hardly any commutative monoidal categories in nature, the symmet-

ric ones occur quite often. For example, any category having strictly monoidal finite

products or coproducts is symmetric monoidal. However, with the completely strict
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definitions given up to now, the category of modules over a commutative ring, with
the tensor product, is not monoidal because we have no right to say that (A ® B) ® C
equals A ® (B ® C).

2.2.1. Category Operations. Now, we want to generalize the notion of an action
of a group (or a monoid) on a set X, or a space, or a similar object, to actions of a whole
small category. If we regard a monoid action of G on X as a functor from BG to the
category Ens where X is just the image of the unique object of BG, it seems natural to

define:

DEFINITION. An operation of a small T-category C on sets (or spaces etc.) is a functor
p: C — Ens (or Top etc.). We say that C operates on the collection {p(X) ‘ X € Cp}, and

we call the subcategory im(p) a C-diagram.

If we have an operation p of C, we can construct the following important object, the

translation category £p of p:
(Ep)o :={(C,x) ‘ CeCyand x € p(C)}
(£0)((C,x), (D,y)) :={f € C(C,D) | p(f)(x) =y}
Examples: If p is the trivial functor which assigns the same set to every object and the
identity morphism to every morphism, we get £p = C. This does not seem to be an
interesting example.
If G is a monoid, then G operates on itself by left multiplication. This operation gives

us a functor p: BG — Ens whose translation category £p is the translation category

£G defined before. So, we use £G as a shortcut.

There is a functor : £p — C given “by projection onto the first factor”:

n(C,x):=C and m(f):=".
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If we take nerves of all categories and functors (as to be defined in the next section),
we will see that the functor £p —— BG for p as defined in the example above becomes

the principal G-bundle on the classifying space BG with contractible total space EG.

2.3. Multi-Simplicial Categories, Nerves, and Geometric Realisation

I assume that the reader is familiar with the notions of simplicial objects in 1-categories,
the basic theory of simplicial sets, and the nerve construction that assigns a simplicial
set to a small category. For background information on simplicial objects, consult
May’s book [May72] or [Jar97]. The nerve functor and its properties were introduced
by Segal [Seg68]

There is a generalisation of simplicial objects, multi-simplicial objects, which are im-
portant whenever one deals with fibrations in the simplicial category, or with category
operations as described above, or higher categories. The natural generalisation of the
nerve functor to n-categories takes values in n-simplicial sets. Let me first define a

few notations I use:

NOTATION. [n] is the ordered set {0, ...,n}; A is the category with objects [n]n € Ny,
and maps the monotonic maps.

I denote the category of simplicial objects in a category C with AC; remember this is
just the category of functors A” — C with morphisms the natural transformations.
N:Cat — AEns is the nerve functor that assigns to a small category C the nerve, re-
garded as a simplicial set.

For a monoid G, BG is defined to be NBG and is the (simplicial) classifying space
of G. Its realisation is homotopy equivalent to the Milnor construction with join-

products.
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DEFINITION. An n-simplicial object in a category C is a simplicial object in the cate-
gory of (n — 1)-simplicial object in C. Equivalently, it is a functor (A”)™ — C from
the nth Cartesian power of the category A™ to C. The n-simplicial objects in C form a

category which I call A™C.

Examples. n-simplicial sets are the objects of the category A™ Ens; based n-simplicial
sets are the objects of the category A™ Ens, of n-simplicial objects in Ens,, pointed sets.
Note that if the category C has products (coproducts), then so has the category A™C:

for two functors F, G: (A” )™ — C, define
(FxG)(=)=F-) xG(-), (FIG)(-):=F-)IG(-).
In particular, for based simplicial sets X, Y, we can form the simplicial sets X x Y, XIIY,

XVY,and XAY.

Any object X in a category C can be interpreted as a “discrete” or “constant” simpli-
cial object const(X) where const(X)([n]) = X for all n and const(X)(f) = idx for all
f: [m] — [n]. Moreover, for every n-simplicial object X, the (n 4 1)-simplicial object

const(X) is defined in the same way.

For the other direction, the diagonal simplicial object of an n-simplicial object X is

the 1-simplicial object diag(X) defined by
diag(X)[k] := X([k],. .., [k]).
If we have a morphism f: [k] — [l] in A, we define
diag(X)(f) == X(f x --- x f).

It will turn out later that the diagonal simplicial set is something very natural to con-

sider.
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It is straightforward that N' commutes with products and coproducts. That is, when-
ever C and D are two small categories, there is a natural isomorphism of bifunctors
N(C x D) — NC x ND, and the same for coproducts.

Now let us assume that our small category is the topmost morphism category €™~ ")
of an n-category C. We would like to define the nerve of C to be the (n — 1)-category
obtained by taking the nerve of C(™~". However, it is not entirely clear how to con-
struct this new category because since we have changed the n-morphisms, we must
redefine the lower composition operations. We adopt the “partially monoidal” point
of view for this: Interpret C as an (n — 1)-fold partially monoidal 1-category. Taking
nerves, our multiplications o;, i = 1,...,n — 1 translate to No;, and the necessary

identities translate as well: e.g.,
(—N 0i —)N 0j (=N oy =) = (=N o —)N o (=N o; —) € AEns((NC)*, NC)
because this is true for 1-simplices, and therefore for all simplices.

So the following definition is justified:

DEFINITION. If C is an n-category, n > 1, we define its 1-nerve N (¢ to be the (n—1)-
category obtained by taking nerves of the categories of n-morphisms. The k-nerve,
k < n, is then defined to be N¥C := NN KTC and NC := NMC is called the total

nerve of C, which is an n-simplicial set.

Looking at the categories in the iterative, monoidal way, one sees immediately that

taking nerves of categories is a functor

N:n—Cat — A"Ens.

LEMMA 2.3.1. If (C,0) is a monoidal n-category, then N'V) is a monoidal (n. — 1)-category

with monoidal structure N'O.

Proof: This is clear since a monoidal n-category is the same as a (n + 1)-category with

one object; here we can take A'(1) to get an n-category with one object, which is in turn
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the same as a monoidal (n — 1)-category. O

2.3.1. Geometric Realisation. Now we proceed from the category of n-simplicial
sets to the topological category Top of compactly generated Hausdorff spaces. There is
an elegant way of defining the geometric realisation of an n-simplicial set X by using
the simplex category A™ | X which is simply the category A™ over X.

For d € N, let Aq be the simplicial standard prism, represented by the functor
Homan (—, [d4] X - -+ x [dn]). For any n-simplicial set X, define the category A™ | X to
have as objects the n-simplicial maps from Aq to X, for any d € N}, and as morphisms

the commuting triangles

Adl
of n-simplicial maps. Any n-simplicial set X can be reconstructed from the simplex

category as a limit over the simplex category:

X= liﬂAd

Agx

DEFINITION. The geometric realisation of the standard prism Ag = Aq, ... 4,) 1S
|Agl = |Ag, | X - -+ X |Ag, |
where for simplices A,

Ayl = {xem“ | in:1}

is the standard topological n-simplex.
Now consider, for any n-simplicial set X, the simplex category A™ | X and the functor

F from there to topological spaces defined by F(Aq = X) := [s|. Define the realisation
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of any X to be the colimit of this functor:

X= lim Aql.
Ag—X

e In other words, regarding the simplex category A™ | X as a big diagram, the realisa-
tion functor [A™ | X| gives us a big diagram of prisms which are to be glued according
to the diagram.

The realisation functor preserves finite products if we work in a suitably nice cate-
gory of topological spaces (compactly generated Hausdorff spaces will do, with the
compactly generated product (Kelley-product)). Milnor [Mil57] proved that the pro-
jections X7 x X, — Xj induce a homeomorphism [X; x X;| = [X1| x [Xa/.

The realisation functor has a well-known adjoint, the functor that assigns to each space

X the n-simplicial set of all singular d-prisms:
Sa(X) :={f:1A4q] — X continuous }

where the structural maps S4(X) — Sq/(X) are given by the inclusion of faces and de-

generacy maps Sq/(X) — Sq(X).

LEMMA 2.3.2. The following realisations are homeomorphic:

(i) the ordinary realisation |X| as defined above;
(i) [diag(X)[;
(iii) the realisation of the k-simplicial space obtained by the realisation of X, regarded as a

k-simplicial (n — k)-simplicial object.

The idea of the proof is to observe that all above realisations preserve all colimits, and

since X = h_nr)l A4, it is enough to show the Lemma for the models Ag, all d. But here
Ad—)X
it follows easily from Milnor’s observation that realisation preserves products. For

details, see for example Quillen’s famous article [Qui73].
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2.3.2. Closed Model Categories. The fact that n-simplicial sets form a good cat-
egory to do homotopy theory in can be expressed by saying that it is a closed model

category.

DEFINITION. Let C be a category together with subclasses eqC, fC, and coC of so-
called equivalences, fibrations and cofibrations in C’. As a shortcut, arrows of the
form »—, -, and — mean cofibration, fibration, and equivalence,respectively. C is

called a (closed) model category if the following five axioms hold:
(CM1) C is closed under all finite direct and inverse limits;

(CM2) if in a diagram

X —Y

AN

Z

two morphisms are weak equivalences, then so is the third;
(CM3) a retract of an equivalence, fibration, or cofibration is again one;
(CM4) if in a diagram

><

L

either of the vertical arrows is an equivalence, then the dashed arrow exists;

-<

(CM5) Any map f can be factored in two ways:

A

N
N

Elements of eqC N coC and eqC N fC are called trivial (co-)fibrations.
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Properties of closed model categories can be found in [Qui67], [Jar97] and many other

sources. I will only state the fact that A Ens is a closed model category if one defines a

map f: X — Y to be:

e an equivalence if [f[: [X| — [Y|is a weak equivalence of spaces,

e a cofibration if it is a monomorphism of simplicial sets,

e a fibration if liftings always exist in diagrams of the form

X
.f

7
Ve
/
/

A
|
A

=Y

where AKX = Uz 6;1 An_1 is the k-th “horn”.

Also, the category of n-simplicial sets is a closed model category. However, there exist

different closed model structures. On the one hand, one can define properties “diag-

onally”, meaning that the bisimplicial map f is a fibration, cofibration, or equivalence

if diag(f) is, as a mono-simplicial map. On the other hand, there are also “pointwise”

notions: f is a fibration, cofibration, or equivalence if for every n € Ny, f(n,

—) is,

again as a mono-simplicial map. However, not all combinations really yield model

structures. The following are known: (“llp” means left lifting property)

equivalences cofibrations fibrations
Bousfield- pointwise equiva- llp for pointwise pointwise fibra-
Kan struc- | lence trivial fibrations tion
ture
Moerdijk diagonal equiva- llp for diagonal diagonal fibration
structure lence trivial fibrations
Reedy struc- | pointwise equiva- monomorphism more complicated

ture

lence

In section 2.4.1, we will need the Moerdijk structure.
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2.4. Infinite Loop Space Machines and their application to categories

Several types of “loop space machines” have been developed in the seventies. The
general point is that, given a topological space X, to decide whether or not this space
is homotopy equivalent to the loop space on another space Y, or the n-fold loop space
of another space Z, or even the latter for every n € Ny, in which case we speak of
an infinite loop space (this will be the only case of interest here). On the other hand,
a method to approximate certain spaces X by infinite loop spaces is desired. Using
this machinery, it is well known and not hard to see that the nerve of a symmetric
monoidal category is an infinite loop space. I will briefly say how May’s operad ap-
proach [May72] works, which has proved to be very fruitful, and, assuming his main
results, I will outline how one derives that symmetric monoidal categories give rise
to infinite loop spaces. This is all done in the context of simplicial sets; it would also
work in suitable topological categories. “Space” in this section always means “simpli-

cial set”.

DEFINITION. An E-operad o is a sequence of contractible free right Gy-spaces ox
(k € Np), i.e. contractible simplicial sets equipped with a free simplicial right action p
of the symmetric group, together with the additional structure specified below. o is

supposed to the one-point simplicial set. We use the following notation: write

oy = |_| (05, X +++ X 05,).

j1+tin=k

The additional structure consists of:

1. composition maps

Y: o X o]f — 0p where k,leN,.
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Define the shuffle map to be

sh: Ny x N} — N}
(j]) k1 Yy k’j]

)2, k'j1+] a--')kj1+jz

j])"')jt>k])"')k2j'_)

-y . Yooy

jt kj1+"'+jt71+1 Yoo ’kZ])

where Nj means the set of sequences in Ny with almost all elements 0. Using

this map to permute the indices, we can immediately extended y to a map

. (y X ++-xy)oshuffle*

j k j
0} X Of oy,

and we require the following associativity condition to be satisfied:

. yxid

. ) k N k
0j X 03 X Of O X Of
id xy Y

| )- v )
05 X 01 = U1

Also, we require that the action is G-equivariant: If k; € Ny for 1 < i < j,
k = Y ki, bl: 85 — &y is the “block permutation” homomorphism with re-
spect to the partition k; of k, and 1: &; x oi — 0{.( is the permutation operation

on the j factors, then:

. pxid .
) ) j . j
05 X &5 x [[i_; ok, 05 X [[i_ oxs

Y
Aﬂ” \

. . )
05 X 6; X 0y 70k

~. ., 7

Ok X jS—r*ok X Gk
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and
j j yxid j
Oj X Hi:] Oki X Hi:] Gki =0k X H~:1 Gk{
shuffle
; .
0j X [ iy (0x; X Gx;) o X 6k
) P
id xpJ
g Y s
. j N
0 x [[1_ ok, Ok
commute.

2. an identity vertex 1 € 01(0) such that

v(1;d) =d foralld € oj
and

v(c;1,...,1) =c forallc € oy.

(here I have identified 1 with its degeneracies in 01(j), j > 0)

The endomorphism operad of a simplicial set X consists of the simplicial function
spaces Endy (X) = map*(Xk, X) (powers meaning iterated smash products), with the
obvious Gy-action and composition morphisms. It is not an E-operad (i.e. End;(X)
is not supposed to be connected, nor Gy-free). An Eq-operad o action on a simplicial
set X is a morphism of operads (in the obvious sense) o — End(X), and makes X into

an E-space.

The spaces o, of an operad should be regarded as a parameter space for operations

X" — X. If an E-operad o operates on X via p, X automatically has much structure:
1. For every vertex x € 02(0), p(x) is an H-space structure for X, and since o; is
connected, all these structures are homotopic to each other;

2. X is homotopy associative because o3 is connected;
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3. X is homotopy commutative because the action of G, on o3 is homotopic to the
identity (again because o3 is connected);

4. there also exist higher coherence maps.

E-Operads act on infinite loop spaces. To see this, one constructs the little cubes-operad
[May72, Ada78]. On the other hand, a space on which an E-operad acts is “nearly”
a loop space: a loop space is always a group-like H-space, but an E-space need not

have homotopy inverses. However, the connection is as simple as it could possibly be:

THEOREM 2.4.1. Let X be an E-space. If X is group-like (which is equivalent to 1y being a
group), then it is homotopy equivalent to an infinite loop space.

In general, there exists an infinite loop space QBX, called the “group completion” of X, and
a simplicial map of Ex-spaces X — QBX. This map is a homotopy equivalence if X is

connected.

Remark: By abuse of language, I will often say that X is an infinite loop space and mean
that it has the homotopy (or even weak homotopy) type of one.

How can we interpret the group completion of an E,-space? For, say, abelian simpli-
cial monoids, this question has a very simple answer: QBX does indeed agree with
the loop space on the classifying space of X defined before with the same notation,
mo(X) is an abelian monoid, and we have &(mpX) = 7o(QBX), where & denotes the
Grothendieck group or group completion. Furthermore, 71pX is a multiplicative subset

of the Pontryagin ring H,(X), and we have:
H,(QBX) ~ (moX) "H,.(X), the localization at moX.

This result is known as the group-completion theorem. In the topological category,
it was proven by McDuff and Segal using homology fibrations [MS76] (although it
seems to have been known for a length of time before, e.g. [Seg74]), and in the simpli-

cial category a proof can be found in [Jar89].
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Remark. The assumption that X be abelian is far too strong — there also exist notions of
localization in noncommutative rings. It is enough to have 75X in the center of H,(X),
or even only constructible by “right fractions”.

Now we apply this machinery to a symmetric monoidal category. Recall that a weak
initial (or final) object in a category is an object that has (not necessarily unique) ar-

rows into (resp. out of) every object.

PROPOSITION 2.4.2. Let C be a symmetric monoidal category. Then its nerve N'C supports
an operation of an Ey-operad, and therefore its group completion is an infinite loop space. If C

has a weak initial or final object, then N'C itself is an infinite loop space.

Proof: Define spaces on := N(£Gy) (cf. section 2.2.1). These are contractible spaces
with free G, -actions: &,, operates simplicially on a nerve by object-wise multiplica-
tion from the right, and o, is contractible and connected because every element is

initial and final in £&,. o is then an E-operad operating on N'C:
Ndj: 05 x (NC) — NC
This action comes from the functor
$;: EG x O — C
defined on objects, for o € &;,Xy,...,X; € Co, by
$;5(€0, X1y, X5) =X (0. . OX g5

and on morphisms, for A € £6;(0, ) (unique), f1,...,f; € C’, by

&;(N f1,.. fj) i=ceao (for(yB... Of g1 (5)),
where c) (A = 107 1) is the symmetry map

e X1O... OX; =, XamB ... BXyg)-
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It is straightforward to check that this indeed defines an operad action. Theorem 2.4.1
therefore implies that QB(NC) is an infinite loop space.
The second part of the theorem follows from the observation that N'C is connected

and therefore group-like if C has weak initial or final objects. O

2.4.1. Group completion in the simplicial context. In the simplicial setting, the
group completion theorem was proven by Jardine [Jar89] and has a very nice gen-
eralization for category actions on simplicial sets (see section 2.2.1) due to Moerdijk
[Moe89] and Tillmann [Til]. To state it, let C be a simplicial category acting simplicially
on simplicial sets. A simplicial category is simply a category enriched over AEns, i.e.,
the morphisms C(X,Y) form a simplicial set such that composition is a simplicial map.
(This is the special case of a category object in A Ens for which the morphism set is dis-
crete. The latter would just mean that morphisms and objects are simplicial sets with
all structural maps (composition, source and target) being simplicial). The projection

functor 7t of the operation p gives us a map on the nerves:
N NEP — NC

Now we want to compare the homotopy fibre of N7t with the actual fibre (N 1) (x) of
a point. In general, there is certainly no direct relation between them because the ac-
tual fibres can be quite different from each other. However, if we take any generalized
homology theory h, or even homotopy, and we assume that the action of our category
induces h,-isomorphisms between the fibres, then the generalized group completion
theorem tells us that these fibres are also h,-equivalent to the homotopy fibre of N7
The properties needed for the functor h, are that h,-isomorphisms are preserved un-
der pushouts, and that for bisimplicial sets, the property of the diagonal simplicial set
being an h,-isomorphism can be checked pointwise. To begin with, I will show that

this is indeed true for generalised homology theories and for 7,:
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LEMMA 2.4.3. We work in the category A™ Ens of n-simplicial sets with the Moerdijk struc-

ture (if n > 2). Let h, be a generalised homology theory or T, A; X a cofibration,
and f: B — A be any map that induces an isomorphism f,: h,(B) = hy(A). Let Y be the
pushout:

B Y
-
/ ‘i' )

A =X

Then g induces an isomorphism g,: h.(Y) =, h.(X).

Proof: Extend the diagram:

B ;Y = cofib(j)

ok

X =Y = cofib(i)

Apply the functor diag to this cofibre sequence; then the long exact sequence together

with the Five Lemma yields the isomorphism g,: h,(Y) = h(X). O

LEMMA 2.4.4. Let f: X — Y be a map of bisimplicial sets with the property that for each
n, f(n): X(n) — Y(n) induces an h,-isomorphism of mono-simplicial sets. Then so does
diag(f): diag(X) — diag(Y).

Sketch of proof: For h, = m,, this can be proved inductively on suitable filtration, using
gluing lemmata. See [Jar89] or [Jar97]. For homology, consider the bisimplicial abelian
group ZX(p, q) of linear combinations of (p, q)-bisimplices. This gives rise to a double
complex C(ZX(p, q)) where the differentials are alternating sums of the images of all
the structural maps (p,q) — (p+1,q) and (p,q) — (p, g+ 1), respectively. We then
have a spectral sequence converging to the homology of the total complex h,(Tot(X))
with
ED.q = CZX(p,q)
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Moreover, there is a natural homotopy equivalence between Tot(X) and diag(X) (cf.
[Wei94, Theorems 8.5.1 and 8.3.8]). Since a map f: X — Y between bisimplicial sets
which induces an h,-isomorphism vertically is an isomorphism of E'-terms, a spec-
tral sequence comparison argument shows that diag(f): diag(X) — diag(Y) has to be

a h,-equivalence. O

THEOREM 2.4.5. Let p be an action of a simplicial category C on A Ens with associated pro-

jection . Suppose that for every 0-simplex « in every morphism set C(x,y), the map
p(x): p(source(a)) — p(target(cx))
induces an h-isomorphism on nerves. Then the diagram of bisimplicial sets

const(p(x)) ——=NE&p

L

*—=xE(NC)o

is a he-pullback diagram, i.e. p(x) is hy-equivalent to the homotopy fibre of N'm.

Proof (due to Moerdijk [Moe89]): The proof uses techniques from homotopical algebra
and the fact that A Ens and A? Ens are model categories. The homotopy fibre of a map
p: E — B of bisimplicial sets is constructed as follows: take any (0, 0)-simplex x of B.
The inclusion {*}CL—B factors, as any map, into a trivial cofibration and a fibration:

{*}:\—i\»P(B) 2B where the notation P(B) suggests that this space is something

like the path space of B. The homotopy fibre of p is then the middle pullback of the

diagram:

p1(+) ——hofib(p) = P(B) x5 E — E

P
() P(B) B

X
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Note that P(B) is well-defined, this follows from the model category axioms: Suppose

P’(B) is another space with the above properties. Then in

the diagonal arrows exist by (CM4), and are weak equivalences by (CM2).
In our case (E = N€p,B = NC, p = N'it, I will retain these abbreviations), we want to

show that h.,j is an isomorphism.

LEMMA 2.4.6 (Moerdijk [Moe89]). Every trivial cofibration c: X — Y in A% Ens is a direct

limit of a sequence of cofibrations

Uo u
X:XOHX] — e — Y
where each map w; is defined by a pushout diagram
]_[i /\T]i — ]_[i A(n,n)

.
Xi ———Xoa

Here, the bisimplicial set AX := U (95 % aj)”A(n_],n_]) is the “k-th horn”.

We apply this lemma to the trivial cofibration j: * »» P(B):
j = lim{ui: X — Xy}
i

Now, pullbacks commute with direct limits, therefore:
x*(p) = lim (uf (Xi41 — B)*p)
So we need to show that every 1i; induces an h,-isomorphism. However, our h, is

chosen such that it takes pushouts of isomorphisms to isomorphisms; therefore it is
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enough to show that in the diagram

[

u*o*E -0o'E -k
u*c*p L o*p ‘/ P
A ——A(nn) —B,
1t induces an h,-isomorphism. Explicitly, we can write the map 0: A, ;) — B asa
chain
By 2% B, 25 ... ™9 B,

where each B; € B(n).

Then, o*E is the bisimplicial set

(*E)(p,a) = (Amm) xB E)(p,q) =

{(2,B,e) | ] % In), [a] & ], € € p(Bago))(@)} -

Literally, e should be a p-chain of composible arrows

but since in our case morphisms in E are exactly the morphisms in B, this chain is

well-defined if we only specify a point e € p(«(0))(q). Similarly,

o ol [l B 0
(o E)(p,q) = {(oc, ey | P o lal B it } .

where i,j £k, e € p(By(o))(a)

We now compare these two bisimplicial sets to the simpler ones:

(6*E)(p,q) == (A(mn) x const(p(Bo))) (p, )

= {(e,B,e) | B ), [a] & ], e € p(Bo)(a)}
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and

(WoE)(p, a) i= (A% x const(p(Bo)) ) (p, q)

={(a,B,e) | p] % 2ifnl, [a]  3j[n), e € p(Bo)(a)} -

There exist maps u: (0*E) — o*E and u| : (u*o*E) — u*0™E, given by:

(u*o*E)
(x,B,e) — [3*0:;(0]71 ...0705e € p(Byo).
We want to show that p is an h,-isomorphism, or more precisely, that diag(u) is an

h,-isomorphism. By Lemma 2.4.4, it is enough to show that u,(q) = w(p,q) is an

isomorphism for every p. In dimension p,

(@E)p) = [ AnxpBo) and (E)p)= [] Anx o(Bago)
p1 S m) P15 m

and py, is a coproduct

].lp = H ld XG:C(O)*] e G>1k0.8
(P15l
which is, by hypothesis, an h,-isomorphism, and the same is true for the restriction of
up to u*o*E. Therefore, the diagram

uxid
u*o*E———o*E

i i
u*o*E -0*E
becomes a diagram of h,-isomorphisms if we apply the functor d, and the proof is

complete. O

EXAMPLE 2.4.7. If C is any simplicial category and Z € Cy, then C acts from the right

on its morphism sets C(—, Z): let

07(X):=C(X,Z) and pz(X 5 Y):=C(Y,2) =% (X, 2).
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In this case,

NEpz =N{(X,f) | X€Co, : X — Z}=N(C | Z),
But the category C | Z of objects over Z has the initial element (Z,idz) and its nerve
is therefore contractible (recall that a category with an initial or final object is equiva-
lent to the final category with one object, and that nerves of equivalent categories are

homotopy equivalent).



CHAPTER 3
Spin mapping class groups, revisited

I will transfer U. Tillmann’s arguments [Til] that show that the group completion of
the classifying space of mapping class groups is an infinite loop space to the case
where the surfaces under consideration carry spin structures. This is made possi-
ble by Harer’s stabilization results on spin mapping class group homology [Har90]
in the formulation of Chapter 1. In constructing a quite simple monoidal spin sur-
face 2-category, we obtain an input for the machinery developed by May [May72],
Segal [Seg74], Boardman, Vogt, and Adams [Ada78] that turns certain categories into
infinite loop spaces, and by using a generalized group completion theorem due to Mo-
erdijk [Moe89] and Tillmann [Til], we see that this output is homology equivalent to

a suitable notion of G, a stable spin mapping class group.

In this section, a suitable symmetric monoidal category is constructed in order to ap-
ply the infinite loop space machinery to it and to prove that the group completion of
the classifying space of the stable spin mapping class group is an infinite loop space.
However, some care is necessary while constructing this category. I will first explain

what the most naive approach would be and why it does not work.

3.1. Introduction to surface categories

Let us leave the realm of mapping class groups for a moment. One of the classical
examples for the application of infinite loop space machines is the symmetric group.
Let C be the category of finite sets and isomorphisms between them. Disjoint union

58
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makes this category into a symmetric monoidal category. Since C is not small (the
finite sets do not form a set), there is no notion of “nerve” of C. However, it is per-
fectly sensible and well-defined up to homotopy equivalence just to say that NC is
the nerve of any small skeleton of C (any small full subcategory containing one rep-
resentative of each isomorphism class). For any two skeleta are equivalent as cate-
gories and therefore, their nerves are homotopy equivalent. The nerve of C is then just
[L;en, BS;, a simplicial monoid with the operation induced by the obvious homomor-

phism &; x &y — &;1x. The group completion of this monoid is:

0B | [ B6; | =z xB&L,.
jeNo

where B&}, denotes the Quillen plus construction with respect to the perfect (com-
mutator) subgroup A.
Therefore, since C is symmetric monoidal, B&} is an infinite loop space.
Let us attempt to transfer this construction to our mapping class groups. As shown
by Harer [Har90], and with the generalization of his result to surfaces with many
boundaries given in chapter 1, the homology of spin mapping class groups in a fixed
dimension does not depend on the number of boundary components as long as the
genus is high enough, the stabilization range depending linearly on the dimension.
So we can hope to get information about the stable spin mapping class group by look-
ing at suitable categories. Let C be the following category (this is the category Miller
[Mil86] used to find a double loop space structure on the classifying space of the stable
mapping class group):

e for objects, take a representing surface Fg 1 for every g € Ny of genus g with one

boundary component;
e morphisms do not exist between different surfaces; but the endomorphisms of

Fg,1 are just all automorphisms of this surface, say homeomorphisms.

This category is monoidal if we define the multiplication to be the “pair of pants”-

multiplication O: attach a surface of type Fy 3 to the two surfaces Fy, F, which are to be
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multiplied to get a new surface G with one boundary. Then define F;OF; to be unique
surface in C homeomorphic to F, via a homeomorphism ¢ = ¢r, r,. On objects, this is
just addition of natural numbers, i.e. the genus. Let f;, f, be mapping classes on Fy,
F. These give a mapping class on G, and via ¢ on F. We can choose the ¢r, r, in such
a way that O indeed becomes associative.

Since on objects, F{OF, = F,0F;, it is tempting to believe that this category is com-
mutatively monoidal, but this is not true — if we have two homeomorphisms f; of
F;, there is no way to identify f;0f; and f,0f;. C is not even symmetric monoidal, as
shown by Fiedorowicz and Song [FS97].

Therefore, Tillmann’s construction of a symmetric monoidal 2-category that can be
used to produce an infinite loop space (in [Til]) came as a surprise. Applied to the
spin world, it looks as follows. The trick is to consider disconnected surfaces as well,
and surfaces with many boundaries, and to take disjoint union as the monoidal struc-

ture.

3.2. The spin surface category

We start with the (1 + 1)-dimensional bordism category that has closed compact 1-
manifolds as objects and compact spin surfaces with two sets of boundary (incom-
ing and outgoing) components as morphisms, and then to enrich this category with
2-morphisms between the morphisms, which shall be the spin diffeomorphisms be-
tween surfaces in our case. Moreover, we define a monoidal structure by simply tak-
ing disjoint unions of bordisms. However, some care is necessary because it is crucial
that compositions are strictly associative, and we need a symmetry for our monoidal
structure and not only a braiding, which would only yield a double loop structure on
the nerve of the category and not give us an advantage over the construction in section
3.1.

It is not necessary to make the category so big that it comprises all possible spin sur-

faces in order to show the main result, Theorem 3.3.5. For example, all constructible
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spin surfaces will have Arf invariant 0.

Let C be following category: as objects, pick representatives of every closed compact
I-manifold, so they are in 1-1 correspondence with the nonnegative integers. Throw
in the following morphisms, most of which are spin surfaces with two sets of labels

{1,...,n},{1,..., m} for the incoming and outgoing boundary components:

1. amorphism 0 — 1, realized by a disk, numbered as it must:

@

0 — 1

Of course, since Hy = 0, we have no choice concerning the spin structure.

2. morphisms n — n with numbering (1,...,n) on the left and any numbering
on the right. These morphisms act as permutations of the numbering of the
boundaries and do not have representing surfaces; the morphism n — n with

the identity numbering acts as a strict identity for composition.

3. amorphism 1 — 1, realized by a torus with two boundary components, and a

spin structure which evaluates to zero on every element of Hy except « + f3:

4. a morphism 2 — 1, realized by a pair of pants, i.e. a surface of type Fy 3; the

quadratic form defining the spin structure is 0 everywhere:

(1) (S>)

2 —1
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Then, add all morphisms that can be constructed from others by either

1. taking disjoint unions of two surfaces, thus producing a morphism m;+m; —
ny + ny out of two morphisms m; — n;, and shifting the numbering of the
second surfaces up; or

2. gluing two surfaces k — m, m — n according to the labelling to give a sur-
face k — n; if either of the surfaces is one of the abstract permutations, the sur-
faces itself stays the same, but the labelling changes; if both are permutations,
they are composed. Note that this operation defines a unique spin structure on

the compositum of two surfaces.

An example of a composition of three morphism is:

<\°>O (2) @ &
{'I*——‘)Z} . >

Q ) ((; (=7

Now it is immediate that:

e this gives a strict monoidal category, the composition being gluing and the tensor
product being disjoint union;

e Ignoring the spin structures, every surface with at least one boundary component
in every component can be constructed (up to homeomorphism), but not uniquely.
The spin structure constructed at the same time is unique: whenever there are two
homeomorphic but distinct surfaces Fy, F> € Cp, these surfaces are isomorphic as spin
surfaces (cf. 1.2.1).

Now we construct from this category the category S of spin mapping class groups by
adding 2-morphisms. We choose all possible spin-isomorphisms as 2-morphisms; there

are no 2-morphisms between non-isomorphic spin surfaces. Note that composition is
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well-defined on mapping classes.

e There is a symmetry 1-morphism s, given by s(m,n) € Gnyn C S(mUn, mLn) the
element of the symmetric group which exchanges the first m with the last n circles.

The axioms are easily checked:

0. it is a natural transformation:

s(m,n)
muUn —— nUUm
Cbl—lll)l JII)UCP
s(m’/,n’)

m'un' ——— n'um/
commutes for any morphisms ¢ in S(m, m’), P in S(n,n’);
1. s(n,0) =s(0,n) =id € Gy;
2. s(n,muUk) = (idg,, Us(n,k)) o (s(n,m) Uidg, ); and
3. s(n,m)os(m,n) =ide,, -

So, the important property of this category is:
LEMMA 3.2.1. The category S is a symmetric monoidal 2-category.

Now we want to apply the machinery of infinite loop spaces to the total nerve N'S of

this category.

3.3. Application of the group completion theorem to S

NS is a category which has as objects elements of Ny, representing closed compact
1-manifolds. The morphisms from m to n form a simplicial set, namely the classifying
space of the category of spin isomorphisms between surfaces with m incoming and n
outgoing boundaries. In S, there are many different 1-morphisms from m to n, cor-
responding to varying genus, spin structures, number of components of the surface,
and, importantly, different constructions of homeomorphic surfaces. If we want to

understand the morphism sets N/ (18(m, n), we need not consider all these surfaces.
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As in the example of symmetric groups in section 3.1, it is enough to take a skeleton
I of the category S(m,n) and apply the nerve functor to it since £ and §(m,n), as
equivalent categories, have homotopy equivalent nerves.

Now there is a morphism (and therefore isomorphism) between two morphisms F, G €
S(m,n) if and only if these surfaces are isomorphic as spin surfaces, i.e. if there is a bi-
jection ¢: moF = 1y G such that for every connected component Fy of F, Fy and ¢(Fp)
have the same genus. Therefore, writing from now on Ggn, = Gg?gl for the spin map-
ping class group of a connected surface of Arf invariant 0, genus g, and n boundary
components:

(3.3.1) N(”S(m» nj o~ H H (BGg,mi+n, U+ UBGgmy+ny)

keNo  g1,...,0k€Np
(my,mn;)€lc

where m; and n; run over the k-partitions of m and n:

I = {(mj,nj) eN x| SIS LT = } .
allm; >0, andalln; > 1
In particular,
(3.3.2) NOSm, 1) ~ T BGgmsr.
9€No

Since, by Lemma 3.2.1, § is a symmetric monoidal 2-category, N' (S inherits the
symmetric monoidal structure and becomes a simplicial symmetric monoidal cate-
gory (Lemma 2.3.1). Furthermore, NS = NN(IS is connected because the object
0 € (M1)S8), is weakly initial: for every n, we can find a morphism 0 — n, for exam-
ple, n disjoint caps. (Note that this is not true for any other object: we never find a
morphism to the empty 1-manifold.) Therefore, Proposition 2.4.2 applies to 'S and

we get:
COROLLARY 3.3.3. NS is an infinite loop space.

NS is a bisimplicial set into which all the information of the classifying spaces of spin

mapping class groups of all possible surfaces went, and it is not at all obvious in which
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way it did. Therefore, the rest of this section is devoted to the question of what it is that
we have just computed: has N'S an easier interpretation? For example, is it related to

a suitable notion of “stable spin mapping class group G ?

DEFINITION. The stable spin mapping class group Go, n+1 is defined to be the direct
limit
(334) Goo,n+1 = lﬂ} {GO,n—H i) G],n—H t—1) Gz,n—H i) cee }

where the maps t;are induced by the attachment of a fixed chosen F; » torus with the

same spin structure of Arf invariant 0 as the toriin S.

THEOREM 3.3.5. Let Goo,1 be the stable spin mapping class group with one boundary com-

ponent, as defined above. Then there is a homology equivalence
H,(Q(NS)) = Hy(BGoo,1 X Z).
Therefore, Goo,1 has the homology of an infinite loop space.

Proof: The proof is analogous to Tillmann’s proof in the non-spin case. It is a conse-
quence of the generalized group completion theorem 2.4.5. The application goes as
follows: N (VS is certainly a simplicial category. We define two category actions of

NS on simplicial sets. First, we define the action on objects:

A ~
(3.3.6) p(n) :=NM8§mn, 1) ) ]E_N[ BG,
(33.7) Poo (1) := holim {N(”S(n, 1) —NDSMm, 1) — .. }

where the arrows in the homotopy limit refer to right translation by the morphism
1 — 1 of genus 1 on every connected component of N/ & (n,1). In this simple case,
the holim can just be understood to be the telescope construction of the sequence.

This defines the action on objects; on morphisms, it is simply the map induced by at-

tachment of the surfaces on the left.
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Before proceeding with the category action, let us investigate the homotopy of 3.3.7.
Let I be a skeleton of the category S(n, 1) such that right translation with the mor-
phism T — 1 does not lead out of . That is, take the full subcategory of S(n, 1) with
one chosen object n — 1 and all the objects constructed from this by attaching a finite
number of tori to the right of it. I is isomorphic to [ [y, BGgn+1, and the following
diagram commutes, where the vertical arrows are the simplicial maps induced by the

inclusion £ — &(n, 1); they are homotopy equivalences:

(3.3.8) NS, 1) ——NBS(n, 1) —— —————Po(M)
fo /’ ~ f] T ~
N NOL ®
I BGgnt1 . [IBGgn+1 ... ___j
= gn+ Ht; = gn+ Ht,i lin) gl_I!]OBGg,nH

LEMMA 3.3.9. There is a homeomorphism (= isomorphism of simplicial sets)

geNo

lﬂ{ H BGg,TL-H} =7 X BGoo,n—H-

Proof: Let L := lim {]_[ €N, BGg,n+1} be the direct limit simplicial set. Since the num-
ber of boundary components neither changes nor matters for this lemma, I will sup-

press the index n 4 1 everywhere. We can write explicitly:
L(k) ={(i,9,x) € No x No x BGg(k)}/ ~
where the equivalence relation ~ is generated by

(L,g,x)~(i+1,g+1,t5(x)).
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Here, a point (i, g, x) refers to an element x € BGq in the ith entry of the chain the
direct limit is applied to.

The structural maps are defined by L(f) = [idy,,idn,, BGg(f)] for any morphism
(= monotonic map of set {0,...,n}) f € A’. Letjg: Gg — G be the inclusion map

into the direct limit in (3.3.4)). Then I claim that the map

Y(k): L(k) Z X BG (k)
[i')g)x] — (g _I)B]g(x))

is a homeomorphism.
Well-defined: It is enough to show that the two representatives (i + 1,g + 1,t4(x)) and

(1, g,x) have the same image. But
W(l + 1 v 9 + 1 )tg(X)) = [g - i) ng-H (tg(x)]] - [9 - i') BJ(X)] = W(l) g,X).

Inverse map:

Any x € BGoo (k) is represented by a k-tuple of group elements go 1, ..., goo,k- Every
Joo,i has a preimage g, ; in some G, and, takingy > max{y1, ..., Yk}, we can assume
that the whole k-tuple lies in Gy. Consider ¥ as a function ¥y : BGoo (k) — Np. Since

¥ can be chosen arbitrarily large on every point, we can define a map
Yx: Z X BG(k) — Ny satisfying y(z,x) > max{¥y,(x), z}.
Define, using vy, amap 8(k): Z x BGgo(k) — ngNo BGgy(k) such that
8(z,x) € BGy(x)(k) and Bjy)od=id.
Note that at this stage,  cannot be a simplicial map. Then define

YT1(k): 7 X BGgo (k) L(k)
(z,x) ———tyx(z,x) — z,vx(z,%)dk (2, X)]

It is a simple calculation to prove that this is well-defined, indeed the inverse map of

V¥, and simplicial. O
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Continuation of the proof of 3.3.5: It is not hard to see that the map

¢: lg)l H BGgnt1 p — Pwo(n) indiagram (3.3.8)
g€No

must be a weak homotopy equivalence: it induces isomorphisms on homotopy groups.
For injectivity, take a map y: S™ — po (1) representing an element of 7t,,. Since S™ is
compact, this map must factor through some space N'(1'§(n, 1) in the direct system;
here, the vertical map f; is a weak equivalence, so we getamapy’: S™ — BGg n41 —
BGoon+1. Because of the commutativity of the diagram, ¢,[y'] = [y]. For injectivity,

repeat this argument with a null-homotopy.

By Example 2.4.7, N €p is contractible. But since poo(n) = holimp(n), the same is true
for the translation space N€py ~ holimNEp ~ *. Therefore the homology fibra-
tion N€ps — NS has contractible total space, and its homotopy fibre is homotopy
equivalent to QN'S, the based loops on N'S. In order to show that the group com-
pletion theorem 2.4.5 is applicable, we have to show that every 0-simplex in NS
induces an H,-isomorphism. But a 0-simplex in (N M8)(m,n) is just a surface con-
structed by iterated attachments of tori, pairs of pants, or discs, and some relabelling

operations. By Corollaries 1.2.4 and 1.2.5, the action induces isomorphisms
Ha(poo(n); Z) = Hu(poo (M); Z),

and relabelling certainly too. Therefore, Theorem 2.4.5 applies and gives us that the

inclusion map of the fibre into the homotopy fibre
7 X BGoo,1  Poo(0) — hofib(NEps — NS) >~ QNS

is an H.(—, Z)-equivalence. O
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