ELLIPTIC COHOMOLOGY AND PROJECTIVE SPACES
—A COMPUTATION—

TILMAN BAUER

ABSTRACT. In this paper, I compute the tmf-homology and cohomology of
projective spaces as tmf-modules by means of skeletal filtrations. The multi-
plicative structure is not computed.

1. INTRODUCTION

In [HM], Hopkins and Miller define an Ey ring spectrum tmf, which is p-locally
a connective version of the spectrum EO, = E}S| where E; is the Hopkins-Miller
spectrum [Rez98], and G is a maximal finite subgroup of the height 2 Morava
stabilizer group acting on E;. This spectrum has generated much interest because
its homotopy groups are a topological variation of the ring on modular forms, and
indeed tmf can be defined using diagrams of elliptic curves. From a stable homotopy
point of view, it is interesting because it detects a surprisingly large subset of the
ring of stable homotopy groups of spheres. For instance, at the prime p = 2, all
of the nonzero classes usually named nt, v, €, k, K go to nonzero classes in 7, tmf
under the Hurewicz homomorphism.

The aim of this paper is to compute the tmf homology and cohomology of com-
plex projective spaces. There is a famous map CP® — S~! known as the S'-
transfer, and there are some partial results on the image of this map in stable
homotopy, e.g. [Mil82]. We are able to analyze the effect of the S'-transfer in tmf
completely, and surprisingly it turns out that it is almost surjective. There are
probably other applications where this computation might be valuable.

To compute tmf*(CP>), it is useful to note that for any elliptic spectrum E,
E*(CP) can be though of as the abelian group of functions on the completion of
E that vanish at the identity element. Similarly, E*(CP™) are such functions f(z)
modulo z™*+'.

Therefore, by the construction of tmf, there is a spectral sequence converging to
tmf*(CP*) whose E-term is the cohomology of the Hopf algebroid (A[[z]], T'[[z]])
representing the following data:

e The objects are elliptic curves in Weierstrass form together with a function
on the formal completion that vanishes at the identity element;

e The isomorphisms are isomorphisms of elliptic curves that are compatible
with the function data
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The structure of this Hopf algebroid is easy to determine: (A,T') is the elliptic
curve Hopf algebroid
A= Z[a1 ,Qaz2,qa3,qy, 06]
I'=A[r,s,t]
with the usual structure maps, z is primitive, and
X +7r
y+sx+t
In the present paper, we use the filtration of (A[[z]],I'[[z]]) by ideals (z™) and
the resulting spectral sequence to compute the cohomology of this Hopf algebroid,
and derive the differentials in the corresponding Adams spectral sequence from the
differentials of (A,T') = 7, tmf. This approach is equivalent to running the tmf-
based Atiyah-Hirzebruch spectral simultaneously with the Adams spectral sequence
converging to 7, tmf. For computations, we break the spectral sequence up into a

series of long exact sequences.
To ensure nice convergence, we prove along the way:

Proposition 1.1. The tower {tmf*(CP™)}, >0 is Mittag-Leffler. In particular,
tmf* (CP*°) = lim tmf* (CP™).
=

nr(z) =

For p > 5, we know that tmf, ~ Z,)[c4,ce] is the classical ring of modular
forms. Since it is concentrated in even degrees, it is complex orientable and

Lemma 1.2.
tmf () (CPY) = (tmf ) )+ @ Zp) [2],
where z has degree 2.

d
At the primes 2 and 3, much more interesting things happen.

1.1. Some tmf,-modules. Let R denote the ring of classical (integral) modular
forms:

Definition. Let R = Ext®*(A,T') = Z[c4, c6, Al/(c — c2 —1728A) be the filtration
zero line of the Adams-Novikov spectral sequence converging to 7, tmf. By the
boundary map h, R becomes a tmf,.-module.

Definition. Define the following elements in 7, tmf:

e For x = ¢4, cg, AL, let X be such that h(X) = nx for n > 1 minimal.
e Let P be a generator of the torsion in 7o tmf. Thus at p =2, P =k and
at p =3, P = B2, up to units.

Note that c4 = h(cz), 2c6 = h(Cg), 24A = h(A).
We define certain ideals in R for later use:

Definition. Define I, <R to be the ideal generated by (n,ca,ce), and I C I, the
ideal in R generated by (n,2c4,2cg).

We will also need some modules related to tmf,:

Definition. Define
tmf, = tmf, /(24,T4,Cq, 12P, 1AL | i> 1)
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Theorem 1.3. The S'-transfer map CP* — S~ induces a map of tmf,-modules
I tmf* — X tmf, < tmf*(CP*).

The exact evaluation of tmf*(CP>) is given in Theorems 3.5 and 7.1, respec-
tively.

Similarly, we have the following corollary for tmf homology of Theorems 3.6 and
8.2:

Theorem 1.4. The S'-transfer map CP® — S~ induces a map of tmf,-modules
tmf*(CP°) - L' kerh — I~ tmf,

This implies that the S'-transfer is surjective on stable homotopy classes that
are detected by elliptic cohomology.

Notation. In the Adams-Novikov spectral sequence, an element x € Ext**' is
said to have bidegree (s,t —s), and we index spectral sequence charts accordingly
(Adams indexing).

All rings are graded commutative and augmented with augmentation ideal Z(—).
For two such rings R,S, let R x S denote the product in this category, i.e. (R®
S)/(Z(R) ® S+ R®Z(S)). We write R[x] for the free commutative algebra over R
on one generator x in degree |x|; thus, if |x| is odd and 2 # 0, this is an exterior
algebra, and a polynomial algebra otherwise.

In a differential graded ring, we denote n-fold Massey products by (x1,...,%n),
and saying x = (...) implicitly claims that the indeterminacy is zero.

2. A tmf THOM ISOMORPHISM

Recall [AHSO01] that tmf has an MU(6) orientation, refining Witten’s MO(8)
genus. That is, for every 0-dimensional virtual vector bundle E — X whose classi-
fying map X — BU lifts to BU(6), there is an isomorphism tmf* (X ) = tmf* (XE).

In this section, every theorem has a 2-local version, a 3-local version, and an
integral version. Let v = 8, 3, or 24, accordingly.

Lemma 2.1. Let L be the inverse of the tautological line bundle on CP®. (L =
O(1), the generator of the Picard group that has a section.) Then there is a Thom
isomorphism

tmf*(CPY) = tmf* 27 (CP>)L,

Proof: Let R(S") = Z[z,z" "] be the representation ring of S, where z denotes
the standard one-dimensional representation of S'. The subsets of elements V €
R(S'") such that tmf admits a Thom isomorphism for the associated bundle over
BS' = CP* form an ideal I« R(S'). Furthermore, orientability of bundles only
depends on their J-equivalence class, i.e., the equivalence class of their associated
spherical fibration. Let A = J""R(S")/I be the abelian group that is the quotient
of R(S1)/I modulo J-equivalence, i.e., modulo the Adams relations

k®(P*(x) —x) =0 forallk € Z and x € R(S")/1.

This shorthand notation means that for any element x € R(S')/I and integer k,

there is an integer N such that kN (1p*(x) —x) = 0in A. 1* is the Adams operation,

given as a ring homomorphism by V*(z) = z¥.
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The classifying map of the bundle (L —1)™ — CP® lifts to BU(2n). This shows
that (L — 1)3 is tmf-orientable, and hence (x — 1)3 € 1. Therefore, we have a
surjection

B=]"Zlz,z ")/(z* 32 +3z 1) » A.

Let z; = [(z—1)}] € B. We will now show that the additive order of z; is 24, which
proves the lemma. This is a classical J-calculation.

e Let k = —1. Since k is invertible, we have 1p~'x —x = 0 for all x € B.
Applying this to x = z1, we get

0=V "z1)—z1=2 ' —2=(22—32+3)—z=125 — 22;.
e Let k =2. We compute
0 =2%(P?(z1) —21) =2®(z2 + 1) = 2®3z1.
e Let k = 3. We have
0=3%3(z1) —21) =3%°(32% — 4z + 1) =3 (322 + 2z1) = 3%8z
O

Definition. For n € N and m € Z, let CP}}, denote the Thom space of mL over
cprl

e This notation conflicts with the more classical definition that CPj is the
truncated projective space with cells in dimension m through n. But we have that
CPI' = CP™, CP} = CP1} ', and CPY, has n cells.

Corollary 2.2. There are Thom isomorphisms
tmf* (CPL) = tmf* 2™ (CP™ )
for alln € N, m,k € Z.

Proof: This is an immediate consequence of the previous lemma. a

Corollary 2.3. If k =1n —2 then
tmf, (CP*) = tmf?* "> *(CP).

Proof: The tangent bundle T(CP™) is isomorphic to (n + 1)L — 1. By Atiyah
duality, D(CP™) = (CP™) T = ZZCPE(nH). Hence,
tmf, (CP*) = tmf *(D(CP¥)) = tmf *(Z*CP*, ,)

TR gmf (£ 2K 2CPX) = tmf <2 (CP)

Corollary 2.4. We have
tmf, (CP™) = tmf™ 2 *(CP™).
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3. COHOMOLOGY AND HOMOLOGY AT THE PRIME 3

In this section, let every ring, module, every space, and every spectrum be 3-
local.
We remind the reader of the structure of 7, (tmf) at p = 3:

Theorem 3.1. Atp =3,

(1)
R® Z[x1, 1]

(3,04,C6)(O€],B])
where |x1] = (1,3) and |B1] = (2,10) map to the classes of the same names
under the Hurewicz homomorphism. Of course, for degree reasons, xi is
an exterior generator, while By is polynomial.

(2) The differentials are generated multiplicatively by

ds(A) = Bia;  and do(A?aq) = B3.

Ext™*(A,T) =

Thus,

Z[cs, e, Al Zlx1,B1,T]
=3 _ o2 _788A) © (B3. B2 2,301,3B1,3
(4C4 Ce 288A) ( ])B1OC11T“1)T[5]1 X1, (51) T)

where By = (x1,001,%1) and T = (x1, B3, x1).

T, (tmf) =

Complex conjugation of a line bundle induces an involution ¢ : CP*® — CP°.

Since 2 is invertible, T = ]% is an idempotent endomorphism of CP*°, and induces
a (stable) splitting
(3.2) CP%) ~PFVPT,

where H*(P+) = Z{x2"} and H*(P~) = Z{x?" 1.

Remark 3.3. The spectral sequences for tmf* (P%) have as E; term the cohomology
of the Hopf algebroid classifying elliptic curves with even (odd) functions on the
formal completion. The splitting can also be seen from the structure of nr of the
Hopf algebroid associated with tmf*(CP™), which at the prime p = 3 becomes
equivalent to (Al[z]], T'[[z]]), where

A =Z3)laz,a4]
I=Ar/( 4+ axr? + asr)

and
X+T
nr(z) =— =z+mw=2z+7(23 + a2’ + (af +a4)z” +...).

3.1. The cohomology of the cone on v. Remember that v is the generator of
7§, represented by the Hopf map S7 — S*. This element is represented in the
E%-term of the tmf spectral sequence by 7.

Note that by the splitting (3.2), 3-locally, CP3® ~ S*V £2C(v), and we have
a spectral sequence converging to tmf* C(v) whose Ez-term is the Hopf algebroid
classifying elliptic curves together with an odd function at the origin, modulo degree
5. Let e; denote the generator corresponding to the 2i-cell of CP* in E0>—2%,

In the chart in Figure 3.1, and all others, a box symbol stands for a generator
of a rank 1 free module over R (cf. Section 1.1). More precisely, if the module
displayed in the chart with OO0 read as a copy of Z is M, then the chart shows
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FIGURE 3.1. The 3-local long exact sequence for £2C(v)
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FIGURE 3.2. The 3-local Ext term for Z?C(v).

(M ®R)/(Ext="*(c4,c¢)). The indexing is reversed on the horizontal axis, i.e. the
coordinates are (s,s —t).

Because of the Massey products in Theorem 3.1, we have multiplicative exten-
sions which result in a chart as given in Figure 3.1.

A symbol denotes a generator for a copy of the module I, with the same
conventions as for O in Figure 3.1.

Inspection of the differentials, which follow from the differentials for tmf, imply

Lemma 3.4.
tmf*(C(v)) = L °R® L 21 I tmf,,
tmf, (C(v)) =R@ Z*1® L7 tmf

3.2. The E; term for C(2v,v). We will now compute the E;-term for the space
C(2v,v) obtained by lifting the map 2v : 82 — S~ to Z2C(v)t and taking its
homotopy fiber. This is a three-cell complex with cells in dimensions —2, 2, and 6.

The Ext term resulting from the long exact sequence in Figure 3.2 has no ele-
ments in positive filtration, and

tmf* (C(2v,v)) = 22 1@ X 21 @ L °R.

3.3. The E; term for P*. We can now compute the E>-term for P~ from this by
running a spectral sequence coming from filtering P~ by 12n — 6-skeleta. Note that
the filtration quotients are

1+c
2

(p—)12n—6l y(p—)l12(n-T)—6] ~ (Cpg(n_”)
end hence their tmf-cohomology is always isomorphic to
Zu(“*”JrZC(ZV,V).
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FIGURE 3.3. The long exact sequence associated to S™2 —
C(2vv) — Z2C(v)

Therefore the spectral sequence collapses at the Ey term and yields

mf*P )= @ " R|e| P = *?|eItm
n=1(3) n=0,2(3)

Similarly, we can filter Pt by 12n-skeleta. Since (P*)[12] ~ Z6C(2v,v), the
spectral sequence collapses again and yields

mf* (P =| @ rRlo| @ I
n=0(3) n=1,2(3)

3.4. The 3-local tmf-cohomology of CP®. Putting the results of the previous
section together, we readily obtain:

Theorem 3.5. At p =3, we have

tmf*(CP®) = @ I ™R|a| @ I "I|®Itmf,
n=0(3) n=1,2(3)

where n > 1.

3.5. The 3-local tmf-homology of CP. Since both C(v) and C(2v,v) are
Spanier-Whitehead self-dual, we get

Theorem 3.6. At p = 3, we have

tmf, (CP™®) = @ "R | @ @ 21| @ £7 tmf,
n=2(3) n=0,1(3)

where n > 1.

4. THE PRIME 2: tmf*(CP2)

The starting point is the Ex-term of the Adams-Novikov spectral sequence associ-
ated to the elliptic curve Hopf algebroid (A,T') converging to 7, tmf as displayed in
Figure 4, where, without indeterminacies, the following Massey product identities
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FIGURE 4.1. The Ext term of tmf at the prime 2.

hold:
e = (2ha,hy, hy) = (2,h3, hy) = (ha, hy, ho);
5 = <4,]’L2,]’L]>;
Kk =(2,hy,hy, €)

et w0, (2 )05 2.5

The first equality is a consequence of a very useful equality proved by Toda in
[Tod62, 3.10]:

Theorem 4.1. For every « € i of odd degree,
{o, By} N {20, o, B} # 0

By the convergence of Massey products to Toda brackets, this implies that the
same relations hold for Massey products of representing cycles in the Ext term.

Note that in tmf, the classes ¥,e € m§ both map to the class represented by
what we call €; since pi7(tmf) = 0, there is no indeterminacy.

We also record the following identities:

(42) (h‘] ) 2) h] ) = th
(4.3) (ha,ha,hy) ={h3,h3 + 8 hy}
(4.4)

<]‘L2, e,hz) Thm: i1 (2]12,}12, €) = <<h1 ,2,]11 ),]’Lz, €) = h1 (2,]11 y hz, (-Z) =K h1
We also have:
Lemma 4.5. k = (hy,2h;,hy,2h;)

Proof: We will show that this equality holds after multiplication with h;. Since
the latter is a bijective map from (14,2) to (15, 3), this implies the claimed inequal-
ity. Indeed,

]’L] <h2,2h2,h2,2h2) = <<h1 ,hz,th),hz,th) = (G,hz,th).
Now we use (4.2):
(€,h2,2h;) = (€,h2, (h1,2,M1)) = (€, h2, 1, 2)hy = khq. O

CP? is the second suspension of the cone on 1. The long exact sequence associ-
ated with the cofibre sequence

S3 582 5 cp?
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St

10 12 14 16 18 20 22 24 26

FIGURE 4.2. The long exact sequence for CP?

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

FIGURE 4.3. The Ext term for CP2

gives the connecting homomorphisms displayed in Figure 4.
Various multiplicative extensions happen at this point, as displayed in Figure 4.
All of them come from basic identities for Massey products, namely:

(4.6) (x1 x2,%3,%a) € (=1)*2/(x7,%2 x3,%4)
(4.7) (x1,%2,X3)xg = (—1)¥1 I FX2IFGE I () x5 x4)

whenever both sides are defined.
We have:

4(z*,hy, hy) = z%(hq1, ha,4) = 225,
noting that (z%,hq,hy) has a Z/2 indeterminacy (z?8) killed by 2. Also,
2(z?, hq, h3) = 2% (hy, h3,2) = 22 (hy, hy, 2hy) = 2%¢;
2(z%, k hy, ) = z%(k hy, hy, 2) & z22((ha, €, hy), hy,2) = z%hy(e, hy, hy,2) = 2%k hy

hi(z?, hy, ha) = z*(hq, hy, hy) = 2°h3;
h] (ZZK)h])h‘Z) = Z‘ZK<h‘] )h'Z)h]) ZZK h‘%

The secondary operator u is defined on classes x such that xhy =0 as
r(x) = (x,h1, ha).

Similarly to the 3-local calculation, we use the following abbreviations in the
charts: O stands for a copy of R, [n] for a copy of I, and [n]for a copy of 1),
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-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

FIGURE 5.1. The long exact sequence associated to CP? —
CP* — CPZ ~ 1*CP?

-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

FIGURE 5.2. The Ext term for CP*

5. tmf*(CP%) AT p =2
We now run the long exact sequence for the cofibration sequence
CP? — CP* - CP3,

noting that (CP3)(2) ~ (Z*CP?)(3).

All differentials can be derived from the Steenrod module structure of CP# except
for the differential

d:Z/8 (1,1) = Z/4 (0,2),

which could be 0 or 2 and still be compatible with the algebra structure. It is
indeed 0, which follows from the fact that the generator u/(z*) in bidegree (1,1)
can be described as a Massey product only assuming the known differentials, and
therefore has to be a cycle. Indeed, u'(x) can be expressed as a matric Massey
product:

n'(x) ={x,(ha hi), (2]}112) ,h2) for any x such that (x,hz,hq)+(x,h1,2h;) = 0.

We compute phi :

n(x)hi = (x, (ha h‘)’<(<2};32’,}r?2’,}5%))>> = (x, (hs h1),(}%))—(x,h1,h§)7é0.

The resulting Ext term is shown in Figure 5 where
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FIGURE 5.3. The Ext term for CP2

v'(x) = (x,hz,2h,) for any x such that xh, =0,
A(x) = (x,h1,khy) for any x such that xh; =0.

We note the following relation, identifying here and in the following an element
of Ext(A,) with the operator given by left multiplication with it:

(5.1) (v')? = k.
Proof:
v'(v'(x)) = {{x,hz2,2h3), h2, 2h,) = x(h2,2hy, hy, 2hy) =xk. O
For CP2, the spectral sequence looks very similar, but the differential
d:Z(-10,0) = Z/8 (—11,1)
becomes zero. This generates an extension
(28, hy,4)hy = 28(hy, hy,4) = 286.
and makes the analogue of the previous argument that
d:Z/8 (—7,1) = 7Z/4(-8,2)

is zero, invalid. In fact, this differential does not vanish. The result is shown in
Figure 5.

6. tmf*(CP?)

In the long exact sequence associated to CP* — CP8 — CPg, the fundamental
differentials are

6.1. Extensions on CP8. We will now determine all hy, h; and h, extensions on
the Ext term for CP3, systematically ordered by dimension.
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6.1.1. Multiplication by hy on the class in bidegree (0,2).

Lemma 6.1. The class in bidegree (0,2) is given, without indeterminacy, by the
Massey product

@@ ). (45 ))

Using this expression, we compute:
8 €
(z% ha, (Zha  €), <h2))h1 =

— (3, (2 €, (}f;;)) _
= (z% h2,2h,, e hy).
On the other hand, the class A(z8) in bidegree (1,3) is given by
Az8) = (28 khy, hy) = (28, (ha, 2hy, €), hy).
The claim now follows from the following general lemma about Massey products:

Lemma 6.2. Let a € M, b, ¢, d, e € A for a differential graded module M over
a differential graded algebra A. Suppose ab =bc =cd =0 and (a,b,c) =0. Then

{a,{b,c,d),e)N{a,b,c,de) #£0.

Proof: We adopt the following notation: for a boundary x, we denote by x a
chosen chain such that d(x) = x, keeping in mind that it is not unique. Consider
the following defining system for {a,b,c,de):

a b c de
ab be cde

(a,b,c) (b,c,de)

Note that this is not the most general defining system because we insist that the
class bounding c d e actually is a class cd bounding c d, multiplied with e.
On the other hand, a defining system for (a, (b, c,d), e) is given by

a bed + bed e

{(a,b,c)d
+abc

(b,c,de).

o

If we compute the representatives of the Massey product for both defining sys-
tems, we get in both cases:

a(b,c,de) +{a,b,c)de+abcde.
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6.1.2. Multiplication by hy on the class in bidegree (0,2). A similar juggling lemma
as in the previous section is needed to show that there is a nontrivial h, multipli-
cation on the class in bidegree (0,2):

Lemma 6.3. Let a € M, b, ¢, d, e € A for a differential graded module M over
a differential graded algebra A. Suppose ab =bc =cd =0 and {a,b,c) =0. Then

{a,b,{c,d,e))N{a,bc,d,e) # 0.

Proof: Pick a defining system cd, de for {(c,d, e. Then two defining systems can
be chosen as follows:

{a,b,{c,d,e)) (a,bc,d,e)
a b cde+cde | a be d e
ab (be,d,e) abc bed de
abed (be,dye)

where (bc, d, e) is defined on the right hand side. Now with these choices, both
Massey product evaluate to

abcde+abcde+a(be,d,e).
O

Lemma 6.4. Let a € M, b, c, d, x € A for a differential graded module M over
a differential graded algebra A. Suppose ab =bc =cd =0 and {(a,b,c) =0. Then

(a,bx,c,d)N{a,b,c,xd) # 0.

Proof: Denote by [cx] the commutator cx —xc € A. Then we can choose two
defining systems as follows:

(Cl,bX,C‘d,) <a’b,0,xd)
a bx c al a b c d
bcex xcd
a,b,c)x
<+ab[c>)<] (bx,c,d) (a,b,c) (b,c,xd).

Note that we can choose the representatives of the bottom right corner classes to
be the same:
(bx,c,d) = (b,c,xd).
The reason is that both classes are supposed to bound

bxcd + becxd+ blex]d.

The Massey products on both sides now evaluate to:

a(bx,c,d) +abxcd + ablex]d + {(a, b, c)x d.
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We are now ready to show that there is an h, extension on the class in bidegree
(0,2). Remember that that class is given by the Massey product

(z%,ha, (20 €), ({2)).

If we multiply this with h,, the matric Massey product becomes an ordinary
one, namely

(2%, hy, €, h3)
since eh; = 0. On the other hand, the class in bidegree (3,3) is given by
w(z8)k = (zs,h1,h)2)|< = (zs,hz, khi)
=(z8hy, (ha,e,h)) . = (28,h3, e, hy)

Lemma 6.3
8 2
= z° ha, €, h3).
Lemma 6.4 < ! » 2>

This shows the nontriviality of the extension.

6.1.3. Multiplication by hi on the class in bidegree (6,2). The class in bidegree
(6,2) is given by the product

<Zg,h2,2h2,K>.

On the other hand, the class in bidegree (7, 3) that has an hi-multiplication is given
by

h
@ (ha ) (o) k) = (2 ek )

= <Z‘8vh‘2) <2h‘2)h‘21 €),h2> = (Z‘s)thZhZ) <h‘2) €,h,2)>
= <Zs,h2,2h2, K]’L1) = <Z8,hz,2hz, K)]’L1 .

6.1.4. Multiplication by € on the class in bidegree (1,1). The lift of the class u'(z*)
to Ext(CP3) can be described as a matric Massey product as follows:

h, hy h,
n"(z%) = (z% hy, (Zh2 i), ( 0 hz) , <2h2> Jha)
On the other hand, the lift of the class A(z*) € Ext(CP?) can be expressed as

h
(6.5) (28, h2, (2ha h4), (h;> Jkhy).
We compute
h, h hi,ha, €
l‘L”(Zg)e = (Zg)h'Zv (2h2 h]) ) ( 02 h;) ) <<<2'|,:2 'I,fz €)>>)
h, h 0
= (2%, hy, (2hz h1),(02 h;) ’(K}u))

h
— <z,8’h2, (th h]) , (]’L;) ,Kh]).
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6.1.5. Multiplication by hi on the class in bidegree (9,3). We want to show that
there is a nontrivial hy multiplication on the class given in (6.5). The other hand,
the surviving class in bidegree (10,4) is

(6.6) <Z8, hz, hy ,2?).
But
8 h] 8 <h1)Kh1)h1)
<Z )hZ)(ZhZ h]) ) (hz )Kh'1>h'] == <Z )hZ)(ZhZ h]) ) <h.2,Kh.‘|,h]) )

= (2%, ha, hi, (ha, khy, hy)).

We are finished if we can show that 2k = (h;, k hy, h1). But 2k = (k hq, hq, hy),
and it is straightforward from the defining systems that these two Massey products
agree.

Note that the extensions in 6.1.4 and 6.1.5 together imply a nontrivial h, exten-
sion in bidegree (7,3) because of h3 = € h.

6.1.6. The Es term for CP® and hqy multiplication on the class in bidegree (3,3). To
compute the hy extension on the class u”(z8) h, we make an indirect argument.
From the module structure of E,(CP8) over E,(S°), we know that in E5(CP3),
4h; = h3. We will show that this extension is nonzero on p”(z8)h;. Indeed, we
have in E5(CP3):

h, h h
2 = e, (2 0), (5 1) (g ) o

h
= (28, hy,4hy, (ha hy), (2}112) ,ha)

and hence

(20" (x))(2%) = (.2, 4h2, (2 ), (<<2]11112’ s 22}1*122)>)>

= {x,h2,4h2, hy,(2ha, hy, h)) = (x, h2,4ho, ho, 2hy, ho)hy
= X<X,]‘L2,4h2,h2,2h2,hz,h]).
But in E>, that last Massey product is k. Hence we have a 4-extension of p'(z8)
to the class z8k in bidegree (4,4). This means that necessarily, hy on the class in
bidegree (3,3) must also be z8!. For filtration reasons, this extension must already

have happened in the E; term.
This concludes the computation of all 2, hy, and h; extensions in Es(CP8).

7. THE E3 AND E5 TERM FOR CP®

At this point, things become much easier. We now run a Bockstein spectral
sequence for CP* with E; term

Ey = € Ext(CP§, ;1) = Ext(CP?¥)[q_1]
n>0

All d, differentials for this spectral sequence follow from the Steenrod algebra
structure of CP*°, cf. Figure 7. The Bockstein spectral sequence collapses at this



(codD),Jury 105 uoryeIndwiod oy, "[°L 4UNDI]

2]

-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4

The spectral sequence associated to the filtration of CP* by 8k-skeleta.
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4

2 | | |
o‘@‘@"@@

-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10

-2 0 2 4

End result: the Es term of the spectral sequence converging to tmf* (CP*>)
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FiGURE 8.1. The long exact sequence induced by CP* — CP® — CP2

point and yields the beautiful Es picture of mn tmf*(CP™) on the right of Figure
7.

Proof of Prop. 1.1: The chart in Figure 7 immediately shows that im (tmf*(CP8™+1)) —
tmf*(CP3®M")) is constant for i > 8. O

By inspection, we have:

Theorem 7.1. Forp =2,

tmf*(CP®)=| @ = L|e| P ™ |le| @ £

n=1(8) n=3(4) n=5(8)
ol @ u|e| P rs|e| P L
n=2(8) n=6(8) n=4(8)

D @ Zfznﬁ @2721’2‘
n=0(8)
where > 2, and
0— X(Z/2[h]/(h3) = R—=R =0
and N
0 X3tmf, =1, =51/ =0

are the unique nontrivial extensions of tmf,-modules, with 1) < 1} the submodule
generated by (4,2c4,2¢6,8A).

8. THE tmf-HOMOLOGY OF CP®®

We will calculate the tmf-homology of CP* using the spectral sequence associ-
ated to the following skeletal filtration:

(8.1) % CP® < CP™ ., CPOH8k oy |

By Corollary 2.3, tmf,(CP®) = tmf'* *(CP®). The cofiber sequence CP* —
CP® — CPZ ~ £3CP? induces the long exact sequence of Ext terms displayed
in Figure 8, and the homology is shown in Figure 8. The extensions are direct
consequences of extensions in the cohomological charts; a detailed check is left to
the diligent reader.

Running the spectral sequence associated to (8.1) yields the differentials and
extensions in Figure 8.
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—12 -10 -8 -6 -4 - 0

N

FIGURE 8.2. The Ext term for CP®

Definition. Let A = (R/im(h))/(Ig/im(h)), and let J be the unique nontrivial
extension of tmf,-modules

0-X"A—=J— (hdexKkk) =0

Theorem 8.2.

tmf,(CP®)=| @ Lo | P || H
=7(8 =1(4 =3(8

® QB gle| P u|e| P L
2(8

(8) n=6(8) n=4(8)

o P "R| oI
n=0(8)
where > 2, and
0— X(Z/2[]/(h3) =R =R =0
and
05235 R 5 R50

are the unique nontrivial extensions of tmf,-modules.



(codD) *Jurs Jo uoryendwod oy, "¢'8 HUNDIA

SO N b~ O

6
4
2
0

N [4]

2] 4 [8] 4] {4
4 6

The homological spectral sequence associated to the filtration of CP* by 6 + 8k-skeleta

./'/7

@@@@
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

End result: the Es term of the spectral sequence converging to tmf, (CP®).
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