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Abstract

In this paper, we exhibit an infinite loop space structure on the nerve of certain spin bordism
2-categories and compare it with the classifying space of suitably stabilized spin mapping class
groups. We show that the stable spin mapping class group has the homology of an infinite loop
space. In order to do this, we adapt Harer's homology stabilization results for spin mapping
class groups to a setting compatible with the methods Tillmann used to prove that the classifying
space of (non-spin) mapping class groups has the homology of an infinite loop space.

We also study a variant of the spin mapping class groups, due to Masbaum, and show that its
homology also stabilizes as the genus tends to infinity.

1. Introduction
Let F be a connected, compact, oriented surface of ggmnish n boundary circles. The mapping
class grougd’(F) = T'gn is defined to be the group of isotopy classes of orientation-preserving
self-diffeomorphisms of, fixing the boundary pointwise.

A spin structures on F is by definition a choice of a square root of the tangent complex line
bundle of F. This can be given by either

(@) a homomorphism : 71(SF) — Z/2 which is non-zero on the fibres of the tangent sphere
bundleSF of F, or

(b) a quadratic formQ on Hi(F; Z/2) whose associated bilinear form is the skew symmetric
intersection form of [1,9].

DEFINITION For a spin surface(F, s), the spin mapping class groups(F) < I'(F) is the
subgroup of all mapping classés F — F such thatf *s = s.

In [7], Harer studied the groups,(F) and showed that the inclusion of stabilizers of certain arc
systems on a spin surface into the full group induces a homology isomorphism in degrees which are
less than approximately one-third of the genug-of

The aim of this paper is to carry over the following result of Ulrike Tillmaw][to the world of
spin surfaces and spin mapping class groups.
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THEOREM1 (Tillmann) Let I'n, be the direct limit of the group$’y1 formed by iterated
attachment of a torus with two boundary components. Then BI'{ (and hence also BZ)
is an infinite loop space, where-)™ denotes Quillen’s plus-construction.

In exciting new work 11], Madsen and Weiss are able to identify the homotopy type of this
infinite loop space aQ*°CP?2, the 0-space of the Thom spectrum of the negative of the universal
bundle overCP>.

To prove Theorem 1, Tillmann constructs a 2-category whose objects are compact closed
1-manifolds, whose morphisms are bordisms, and whose 2-morphisms are mapping classes between
diffeomorphic surfaces. She then compares the nerve of this categorf witBI' . .

In section 5, a bordism 2-catega$yof spin surfaces and spin mapping class groups similar to the
ones of 6-18] is constructed and studied. The following theorem allows us to define a stabilized
spin mapping class grouB., by iterated attachment of spin surfaces, and shows that the choice of
spin structure becomes immaterial when passing to the limit.

THEOREM?2 Let(F1, s1) and(F», s2) be two spin surfaces with a common set of boundaries S on
which the two spin structures agree. Let F denote the unipodF;, and lets be a spin structure

on F which restricts t@; on F (such ars always exists but need not be unigu€hen the inclusion

F1 < F induces an isomorphismytGs, (F1)) = Hk(Gs(F)) as long aggenugFy) > 4k + 7.

(This formulation follows from the slightly stronger Theorem 10 and Corollary 11 in section 3.)
Tillmann’s proof of Theorem 1, using the methods of categorical group completida df7],
now carries over to the spin setting.

MAIN THEOREM There is a homology equivalence
Z x 7)2 x BGyo —> QWNS),

whereQ (N'S) is the loops on the nerve of the spin bordism categbrin particular, the homology
localization Ly BG, of BG4 is an infinite loop space.

Theorem 2 is proved in section 3. The proof is built upon Harer's stabilization results for
inclusions of stabilizers of certain arc systems in surfaces; the translation of this setting to the
current context requires some care and is done in section 2.

In [12], Masbaum considers a different but related kind of spin mapping class growjsseti
surfaces. In geometric terms, they can be defined as follows.FLie¢ any spin surface. An
(ordinary) spin diffeomorphism o can then be regarded as an endomorphisra @f a 2+ 1-
bordism category of spin manifolds, namely its mapping cylinder. Composition in the category
corresponds to the group multiplication. It is possible to extend the spin structure to this 3-manifold,
but not uniquely; there are always two choices. A spin mapping class in the sense of Mashaum
is defined to be an element of the ordinary spin mapping class group together with a choice of
extension of the spin structure to the cylinder; these can certainly be composed and therefore yield a
group which is a (non-trivial) extensidB, of G4(F) by Z/2. In this formulation, it is not entirely
clear how this definition could extend to surfaces with boundaries, bu2jn flasbaum gives an
equivalent definition which does generalize.

In section 4, we show that the homology of Masbaum’s groups also stabilizes when the genus
tends to infinity.
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THEOREM3 With the same notation as in Theore®) the inclusion F < F induces an
isomorphism R(Gs, (F1)) = Hk(Gs(F)) for genugF;) > 2k? 4 6k — 2 in the case where F
has a boundary component that is not involved in gluing, andgiemugFy) > 2k? + 6k + 3
otherwise.

An immediate corollary of this stabilization result is the analogue of the main theorem in
Masbaum’s setting (Corollary 15).

It would be most interesting to identify the occurring infinite loop spaces with zero-spaces
of some Thom spectra, analogous to the unspun identificatidh »f B['Z, with Q*°C P"‘i in
[11]. In fact, there is a map of infinite loop spages: Z x Z/2 x LyBGsx —> Q*°(CP>)~ L2
where L is the tautological line bundle ov&ZP>°, and L? denotes the tensor square lof In
the somewhat speculative section 6, we define this map and give some evidence that it might be a
homotopy equivalence.

This paper was part of my Oxford M.Sc. thesty and my Bonn Diplomarbeitd. | hesitated for
a fewyears to make this more publicly available, but in light of recent results of Madsen and Weiss
and the question posed above it may now be of more interest.

2. Surfaces and mapping class groups

Harer's approach to studying the stabilization of the homology of spin mapping class groups is not
to consider gluing operations but inclusions of arc systems and their stabilizers. The goal of this
slightly technical section is to prove that these two notions are in a certain sense equivalent.

DEFINITION [7] A simple arcin a surfaceF is an immersed interval with endpoints which is an
embedding away from the endpoints. Arc systenon a surface- is a finite collection of such
simple arcqy; } in F such that

(1) two arcs intersect at most in their endpoints;
(2) all endpoints lie irbF;
(3) in every component dfF, there is at most one intersection point with the whole arc system;

(4) no arc is trivial, that is, homotopic to a point by a homotopy fixing the endpoints, and no two
arcs are isotopic to each other.

ProPGCsITION 4 Let F, F» be two surfaces with a common set of boundaries S, and let F denote
the union k Ug F,. Assume that every component efdentains a component of~. Then there
exists an arc systerfyj} € F and a commutative diagram

I'(Fp) = Stalyr){yj}

~

I'(F)

where the diagonal arrows are the obvious inclusions.
Moreover, if R = F11 Us, F1p is a further decomposition as above, af#gl} is the arc system
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associated to f; — F, then{y;} can be chosen to be a sub-arc systerfspf, making

I'(F11) —— Staly(r) {8}
' (F1) —— Stalyr){yj}
commute.

This means that on the level of mapping class groups, the inclusion of a surface into a bigger one
can always be realized by the inclusion of the stabilizer of a suitable arc system into the full group.

Consider maps of the following kind between surfaces.

DEFINITION Let F, F’ be surfacesf: F — F’. Call f aweak embeddini the restriction to
the interior ofF is an embedding. Aisotopyof weak embeddingsisamdp I x F — F’where
eachf; is a weak embedding.

For any subsetX C F, therelative mapping class group I' (F; X) = mo Diff "(F; X U 3F).

REMARK WhenX is a neighbourhood retract of some open neighbourhoaa X, let (F — X)
denote the ‘closureF — V. If this is again a surface then we ha¥&F — X) = T'(F; X).

LEMMA 5 Aweak embedding f F — F’ induces a map
f.: T(F) — I'(F)

makingI' a functor from the category of surfaces and isotopy classes of weak embeddings into the
category of groups.

The proof is straightforward.

DEFINITION Let X € F be a subset of a surfade. Define Stapr) X < T'(F) to be the
components of Diff (F; F) that intersect Sta + r.5F) X non-trivially:

Diff  (F; 9F) - Stalpitr+(r.aF) X
Diff § (F; 9F)

Statm:) X =

Here, Diffg is the component of the identity in Diff
The groups Stahr) X andI'(F; X) are in general distinct, but there is a canonical surjection
'F; X) —» Stab(p) X. (6)

We will now establish a link between stabilizers of certain sets and mapping class groups of
weakly embedded surfaces. Let us first restrigugectiveweak embeddings.

LEMMA 7 If f: F — F’is a surjective weak embedding then
f.: D(F) —> Staly ) f(3F)

is also surjective.
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Proof. We have an isomorphism

Diff t(F’, aF’ U f(3F)) = Diff t(F' — f(3F)) , 9)
~ Difft((F —dF) ", d) = Diff T (F).

f surj

In the same way, we get an isomorphism between the 1-components. So we get
[(F) =T(F', f(3F)) — Staly) f(9F) (by (6))

It is now natural to ask under which conditions an embedding < F’ induces an inclusion
of the mapping class groups.

The inclusion of an annulus into a disc certainly cannot induce an inclusion of mapping class
groups since the mapping class group of the latter is trivial whereas the one of the former is not.
This is in a certain sense the only counterexample.

PrROPCSITION 8 Let F, F» be two surfaces, F= F; U, F> for some diffeomorphism
a: dinF1 —> dinF2, where@ # dinF C dF is a subset of boundary components. bgkF =
dF — oinFi. Denote by ifthe inclusion of Finto F. Assume furthermore that

(a) F isconnected, and

(b) each component of Fcontains at least one componentagf;F> (hence we exclude the above
example.

Then f,: I'(F1) — T'(F) is injective.

Proof. By induction on the components and a decompositioRxpfve can assume thédt, is a pair
of pants such thai, F2> has either one or two components.

In the first case, when sewing along one component, the statement is trivigl:Fi— F;
is the map which identifies one of the two remaining boundary componerRstofa point, then
go f1 >~ idg,, showing thatfy, is injective.

The second case is slightly more difficult. Proposition 9 below shows that we can ifgatdp a
surjective weak embeddirgy such thatA := g1(dF1) — dF is a single arc, indeed we can assume
aclosed curve, and we know thBtF1) = I'(F; A).

Now consider the fibration

. . Diff +(F)
+/E. + 0 ")
Diff " (F; A) — Diff 7 (F) DI F(F: A)’

Let J(F) be the space of all embeddings of circles with a fixed endpoimie takep = AN JF’).
Leta: (St, %) — (F, p) be a basepoint for this space with@@ = A. Consider the map

Diff *(F) — J(F)
¢ — ¢oa.
The kernel of this map is Diff(F; A). Therefore, we have an embedding

Diff +(F)

D E A )
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This embedding is extremely well behaved in the sense that if a politFofis in the image then

the whole component is. To see this, take two embeddings in the same component—without loss
of generalitya and another one’. Then they are linked by a path T(F), that is, an isotopy of
embeddings. Any such isotopy can be extended to the ambient surfadsg; {¢feprem 4.1]), so the
preimage of’ we are looking for comes with a path in DiffF) connecting it with igk.

iff +
This tells us tham( Diff ™ (F)

Diff +(F; A)
latter group is trivial.
Hence the last bit of the exact fibre sequence looks like

) = m1(J(F)), and it is known (for example f]) that the

- —> m1(J(F)) — mo(Diff * (F; A)) — mo(Diff * (F)) —— -

1 I'(F, A I'(F).

Therefore the map
I'(F1) = T'(F; A) — Staly)(A) € T'(F)

is injective.

The following result links the notion of stabilizers with mapping classes of subsurfaces and shows
that we did not treat too special a case in Lemma 7.

PROPGCSITION 9 Assume a situation as in Propositi@n Then f{ is isotopic to asurjectiveweak
embedding g F1 - F, and the following diagram commutes, wherg-Ag;(dF1) — 9F.

I ( F]_) 1

Stalyry A1

. %

I'(F)

Moreover, if i = F11 Us, Fi12 is decomposed in the same fashion, angddenotes the inclusion
F11 — F, then the associated surjective weak embeddingsgg can be chosen such that
A1 € A11 = g11(0F11) — 9F and

I'(F11) — Stalyrr) Ar

| |

k) —— Stal:m:) Aq
commutes.

Proof. As in Proposition 8, we can assume tiratis a pair of pants because we can decompgese
in such.

We construct a flom¢r)ogt<1 on Fa such thatpo(x) = x anddgutF2 S ¢1(3inF2). This flow
induces an isotopy between the inclusifin F; < F and a surjective map in the following way.
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(a) glued along one component (b) glued along two components

Fig. 1 The flow¢ on a pair of pants

Let ]_['j‘:l S x I — F; be a collar aroundi,F1. Extend the flowp on F» to this collar by
defining on each component of the collar:

IxS$Tx1I — F

t, 0,8) bsit_1(0) ifs+t>1,
o (0.s+1) ifs+t<1

Extend it by the identity further on the whole Bf

The flow on a pair of pants is shown in Fig. 1, where thick lines in these pictures denote the image
of the inner boundary off; at the end.

The resulting isotopy agrees with: F; — F att = 0and withg;: F1 — F att = 1. Therefore
f1. = g1. and the commutativity of the first diagram is shown. For the second diagram, note that
since doutF2 € g1(dinF1), this procedure guarantees th&t C Aj1, and the commutativity is
immediate.

The set of pictures in Fig. 2 illustrates the above procedure. They show the sksfacenposed
of three pairs of pants, and the image of the inner boundaPRy aft each step (thick lines).

SUPPLEMENT The construction in Propositiofi reveals that the set Ais a connected graph on
F which contains every outer boundary component of F ¢ is a diffeomorphism that fixes;A
pointwise then we can find a small neighbourhooddd A; in F such that¢ can be deformed
isotopically into a diffeomorphism’ which fixes all of Y pointwise. Having done this, we can
deform A into an arc systenfiy; } with endpoints ir F», and this deformation can be chosen to be
the identity outside Y Then we have

(1) Stalyr) AL = Stalrr){yi},
(2) everyyij is a simple arc with endpoints i&F,
(3) F —{y;} is still connected.

This deformation may be constructed as follows. Choose a spanning Fofesthe graphA;
with rootsr in doytF2. SinceF is homotopy equivalent to the discrete §gt}, we may choose a
homotopyF x I — F from the identity to the projection to the roots. If we choose this homotopy
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(a) Step 1 (b) Step 2
r .
SR
(c) Step 3 (d) Step 4

Fig. 2 Four steps in the construction of the flgw

such that it is a diffeomorphism for everg,t), t < 1, we can extend it to a homotopy &
that leavesF — U; fixed for any chosen open neighbourhodd of A; at all times, and is a
diffeomorphism fort < 1.

Lemma 7, Proposition 8 and Proposition 9 together imply Proposition 4.

3. Homology stabilization for spin mapping class groups

Let F be an oriented surface (with boundary or without). As noted in the Introduction, Atijah [
and Johnsond] showed that spin structureson F correspond bijectively to quadratic forngson
Hi(F; Z/2) satisfying

QX +Yy) = Q) + Q(y) + (X, ),
where(-, -) is the intersection form ohl1(F; Z/2).

REMARK Wedo not require thaF is closed. Indeed) can take arbitrary values on the homology
classes of the boundary components, subject only to the necessary conditiQuahat - - +0,) =
0if {9} are allr boundary components &f (sinced; + --- + o ~ 0).

We can now reformulate Harer’s stabilization theorem in the following way.

THEOREM 10 If (F1, s1) is a connected embedded sub-spin-surface of the connected spin surface

(F, s) such that every component of -+ Ifl contains at least one boundary component of F, then
the inclusion f£: (F1, s1) — (F, s) induces an isomorphism

f.: He(Gs,(F1)) — Hk(Gs(F)) for genugFy) > 4k + 2.

Proof. In [7, Theorem 3.1], Harer showed that if we have an arc systeim a surfaceF with
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=a,ta,

3 3,7%

Fig. 3 Attaching a spin pair of pants

exactly one boundary component and we add another loop to obtain a systeen the inclusion
Stalg, (r) ¥’ — Stali, (r) ¥ gives an isomorphism

i He(Stals, ) y) — Hk(Staks,r) y)

for genugF — y) > 4k + 2. So, ify’ — y contains more than one arc, we can apply this theorem
repeatedly and we get as a sufficient condition for the induced map being an isomorphisiktin the
homology: genud= — y’) > 4k + 2.

Let F have genug andr boundary components. Then can be included into the surface
F = Fgir—1,1 of genusg+r — 1 and with only one boundary component by repeated attachment of
apair of pants to a pair of boundary component$ofWe can giveF aspin structure such that this
inclusion is an embedding of spin surfaces. To see this, repredgra quadratic fornQ and take
two boundary components F andb,F of F with Q(bj F) = a. When attaching a pair of pants,
we have to define two ne®-values in a compatible way: th@-valuea of the new boundarpF
has to bea; + az (mod 2) becausb; is homologous td + by, and theQ-value of the created new
longitudep that transverses; F andbo F can be chosen arbitrarily (Fig. 3).

By Proposition 4, there are arc systems € y1 such thatI'(Fy) = Stal. F 71 and
I'(F) — Stak. g, y. Of course, these isomorphisms still hold if we intersect everythmg with the
stabilizer of the quadrauc form. Thus we have a commutative diagram

G, (F1) — Stab,;g(f) Y1

-

Go(F) ——> Sta['bg(f) y

which yields the stability of th&th homology for genu§ — y) = genugFi) > 4k + 2.

Harer also showed in7] that the attachment of a disc to a surface with exactly one boundary
induces an isomorphism ify for g > 4k + 7. This is also true for surfaces with initially more than
one boundary component.

COROLLARY 11 Let (F, s) be a connected spin surface with associated quadratic form &ny
boundary component of F with@) = 0, and D a2-disc. Then the attachment of D to F alofg
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Fig. 4 Attaching a disc to a spin surface

induces a homomorphism of spin mapping class groups and an isomorphism in their kth homology
if genugF) > 4k + 7.

Proof. The proof for one boundary component was don&]n$o letF have at least two boundary
componentsF be the surface with a cap attached to one of the boundary components, bad
subsurface of with only one boundary component but of the same genus (Fig. 4).

Then the inclusions are compatible:

Fr——F

N

F

wherei is the map induced by attachment of the disc. Theorem 10 applies to the other two
inclusions, and soi.: Hk(G(F)) — Hk(G(F)) is an isomorphism for genus 4k + 2. This
result, although better than that stated above, is of course only true in the caseRvisenmt
closed.

4. Mashaum’s extended spin mapping class groups

Recall Masbaum’s constructio®d] of his extended spin mapping class groups. A spin structure on
an oriented surface can be represented by a homomorphism

o:m1(SF) — 7Z/2

which does not vanish on the fibres of the tangent sphere b@#dbf F. Let I'}(F) be the group
of all mapping classes df that keep a chosen tangent directigm, vo) fixed. If F has a boundary
or genus at least 2, then DiftF) is homotopy discreted], hence there is a short exact sequence

1 —> 71(SF) -5 I'Y(F) —> I'(F) —> 1,

where the mapl can be described geometrically as follows (8}) [
Given a differentiable simple closed cureen SF with Tc(0) = Tc(1l) = (po, vo), Which
represents a homotopy class € 71(SF). Let c¢t, ¢~ be boundary curves of a cylindrical
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neighbourhood ot in F, wherec* is ‘on the right’ of ¢, defined by means of the orientation
of F. ThenW («) is defined to be Tw oTW(;l, the product of the Dehn twists. Any homotopy
class in1(SF) can be represented as a product of scand soW is defined by multiplicativity.
It is not hard to see that this map is well defined and fits into the sequence above.

Now considerK, =gef ¥(kero) < I't. AlthoughK, <imW¥ <« T'l, K, is not normal inl';
instead the following holds.

LEMMA 12 [12] Lety e I't ando be a spin structure as above. Then
y_lKgy = K.
Hence NK,), the normalizer insidé'!, equals
G}, =def {f el"l‘ f*o:o}.

DEFINITION Masbaum’s spin mapping class group ¢F,s), where s is defined by a
homomorphisno : 71(SF) — Z/2, is

Gs(F) = GL/K,.
Note that one does not ne€&dto be closed, but iF is closed then its genus must be at least 2.

REMARK In this definition ofG4(F), the group seems to depend on the particular choice of a
base point. Change of base points along a patértainly induces an isomorphism, but moreover,
this isomorphism is independent of take a closed curve € w1 (SF, (po, vo)); without loss of
generality we may assume it is embedded. The map induced by changing the basepoiatislong
conjugation withw(c). But this map becomes trivial iGs(F). This is clear ifo(c) = 0 since
thenw(c) € K,. Butif o(c) = 1then[K : K,] = 2 implies thatG(l7 also conjugates the other
componenK’ = K — K, into itself. Hencel (c)y ¥ (c) 1yl e K'yK'y 1 = (K2 = K,.

The definition of the (ordinary) spin mapping class groups can be extendedgpithmapping
class groupoigdwhose objects are all oriented compact spin surfaces with a parametrization of the
boundary, and whose morphisis, s) — (F’, s) are the isotopy classes of diffeomorphisms that
pull the parametrization af F’ back to the parametrization 6, ands’ to s. We will denote this
set byG, o (F, F’). It has a free and transitive riglit;(F) and leftG4 (F’) action.

For Masbaum'’s groups, this generalization is not quite as immediate. Assunfe,tRagare two
oriented surfaces with fixed tangent directiqpg, vo) and(pg, vg). The set'}(F, F’) of isotopy
classes of diffeomorphisms that mam, vo) to (py, vg) has similar actions of 1(F) andI'L(F).

If the genus ofF is at least 2, oF has a boundary, then there is a short exact sequence

1— m(SF) -% rY(F, F') — I'(F, F') — 1
in the sense that the group (SF’) acts freely on the middle term with quotieintF, F’).

DEFINITION Let (F, s), (F’, s") be spin surfaces as above. Define
Gso(F, F)={f ell| t*¢' = o}/(kera"),

where kew’ acts byW. It is dear that this defines a groupd@lof extended spin mapping classes.
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To prove Theorem 3, lef1, F» be surfaces with a common set of boundaBe§ = F1 Us F»,
and lets be a spin structure oR which restricts tas; on Fj. Let o, o1 ando» be the representing
homomorphisms. Suppo$F has a base point which actually lies in the interiorS#;. The
inclusionF; — F induces a map of short exact sequences.

1——m1(SF) —TYF) —=T(F) —1

L]

1—— 71(SF) ——T'(F) '(F) 1

Since the spin structure dn restricts to the one oR1,

Koy — GI, (F1) — Gg, (F1)

]

Ke —— GL(F) —— G4(F)

commutes, and we have a morphism of short exact sequences:

1—>Z/2—>é§1(F1)—>G51(F1)—>1 (13)
| )
1 72 Gs(F) — Gs(F) ——1.

Proof of Theoren3. Letg be the genus df,. Naturality of the Hochschild—Serre spectral sequence
for (13) gives us a morphism, of spectral sequences

E2, = Hu(Gs, (F1); Hi(Z/2)) = H. (G5, (FD)
and )
E2, = Hu(Gs(F); Hi(Z/2) = H,(Gs(F)).

Letl = 2if F, has a boundary component which stays boundaFy,iandl = 7 otherwise. Then
y is an isomorphism fog > 4s + | by Theorems 10 and 2. We will now show by induction that

e it is anisomorphismfog > 4s+2r(r — 1) +1 — 4.
The choice of guarantees the validity far= 2. Consider the following diagram.

0 —— ker(di,) S d . im@) c Eeirtria —0
Yar l Yt l yst+r,tr+1l
0 — ker(d's,) E's: 9 im@) c E'Sirtrp1—>0

The vertical arrows are isomorphisms if

ro.per " r L er "
Yst: Est — Es¢ and Yotrrt—r+1° Estrt—rt1 — Espriors1
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are isomorphisms. Now' *1 fits into the sequence

r+1
St

R

0 —— ker(d') —im(d'gyp(_rp)) —> EGH —0.

0 —_— ker(dg’t) —_— im(d£+r’t_r+1) E—— E I O

So, by induction, it is isomorphic if
1.g>4s+4( —-1)+1—4,and
2.9246+nN+2 -+ —-4=4s+20 +Dr +1 —4.
These inequalities are satisfied by hypothesis.
Since these spectral sequences are concentrated in the first quadrant, \EgﬁhavEgj”z and

¥$S = v S0,v2, ... vS Tt are all isomorphic iy > 45+ 2(s+t + 1)(s+1) +1 — 4, and
the latter is smaller than@+t)% + 6(s +t) + | — 4.

5. A category of 2-spin bordisms

In this section, we will construct a strictly symmetric monoidal 2-categdmyhose objects are
representatives of closed, compact 1-manifolds, in other widgds/hose morphisms are compact
spin surfaces that bound the source and target 1-manifolds, and whose 2-morphisms are spin
mapping classes of these surfaces. This category is closely related to the one Tillmann considers
in [18].

Rather informally, construct a categaff® as follows. For details, consult§] or [16] or [3].
Take the following surfaces:

(1) adiscD = Q with its unique spin structure as a morphism01,
0

0,

(2) a pair of pantsP = ) with the spin structure whose associated quadratic f@rm

0

ewvaluates to 0 on all boundaries as a morphism 2L,

(3) atorusT = ° ’ ° asa morphism > 1, such tha evaluates to 0 everywhere

exceptona+ b, and
(4) the same torus, but such thaQ(a) = Q(b) = 1.

Then, adjoin to this every spin surface that can be obtained by either disjoint union or gluing (=
composition). Moreover, add labels to the boundary components of the surfaces and formally add to
the morphisms an operation ‘relabelling’ of the symmetric group. A&8h fhis gives a symmetric
monoidal categons™ (with the operation.).
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REMARK Because of the particular choice of spin structures on the tori (5), (5), every possible spin
surface has a representative in the categ®®. The reason for this is that the isomorphism type

of genusg spin surfacegF, Q) with n boundary components on each of whi@revaluates to O is
given by the Arf invariant

Arf(Q) = Z Q@) Q(b) € Z/2,

where(a;, by) is a symplectic basis dfl1(F, aF). Torus (5) has Arf invariant zero, torus (5) one.
The Arf invariant of any spin surface with boundary can be flipped by attaching an Arf one torus.

We now extend the above bordism category to a strictly symmetric monoidal 2-category by adding
2-morphisms between two isomorphic spin surfaée&’. We construct the ordinary spin bordism
categonyS by setting Horg ((F, 5), (F/, ")) = G ¢ (F, F’), the extended spin bordism categéty
by Homs(F, F) = GE’EI(F, F’). Note thatS™® does not contain closed surfaces as 1-morphisms.

It is therefore not a problem that Masbaur@groups are undefined for closed surfaces of genus at
most 1.

Now let S1 be the 1-nerve oF, that is, it is the category enriched over simplicial sets that has
the same objects a$, but the morphisms between andn € ob(S;) = Ny are the nerve of the
categoryS(m, n). Now S contains many morphisnta — n, according to different genera, spin
structures, number of components and also different constructions of isomorphic surfaces. Since
there are relatively few 2-morphisms, the morphism sg&gen, n) splits into many components.
However, one does not change the homotopy typ8;0fn, n) if one replaces it by the classifying
space of a skeleton @& (m, n). The spaceS1(m, 1) is rather simple because a bordism from
circles to 1 circle is automatically connected:

Sum )~ ][ BGse (Fgmi),
geNp,e€Z/2

wheres(¢) is any chosen spin structure of Arf invarianbn Fg m1.

&1 inherits the symmetric monoidal structure®f So, if we apply the nerve functor once again,
we get a bisimplicial setvS which is anE,, space. Since there is a morphism from 0 to any
(taken disjoint discs) V'S is connected. Of course, all of this appliest@s well, and the results
from [13, 15] imply the following.

COROLLARY 14 NS and NS are infinite loop spaces.

We need to retrieve information on the original groups and G, out of these spaces. Let
Fo ¢ F1 ¢ F2 C --- be a sequence of spin surfaces with one boundary component such that
Fi is obtained fromF; _; by attaching a torus of type (5). Define the stable spin mapping class
groupsGey = I|_>m 9Gs(Fg) and Guo = Il_)m gés(Fg). Although the choice of torus (5) seems
non-canonical, it becomes immaterial in the homology of the direct limit. Indee&glet F; - - -

be another system of spin surfaces, whigfés obtained fromF/_; by attachment of a torus with
arbitrary spin structure. For evefy, choose an attachment of a toiys Fg —> Fg.1 such that

there is an isomorphisnp: ng — Fé+1; similarly, for everyF/, choose an attachment of a
torusi: Fy — Fg, such that there is an isomorphisin Fy,; —> Fg.1. These assemble to a
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diagram
Fg Fg+l
Doig \I/oié
/ /
Fy Fgi1

which does not necessarily commute; howewer, i, , o ® o ig is the inclusionFg — Fg2,
followed by a spin automorphism d¥,,,. Thus after applying the functdé to the diagram, it
becomes commutative up to inner automorphisms, and thus the diagonal maps induce a homology
isomorphism in the direct limit.

The proof of the main theorem is now the same as Tillmanti’s $ection 3] for the case of
no spin structures, with only one exception: whereas the ordinary mapping class grarps
perfect, the spin mapping class groups are not. Thus Quillen’s plus construction (which is defined
for a perfect subgroup) must be replaced by the more general Bousfield localization with respect to
integral homology. It is also worth noting that the group of componenf/dtS is nowZ x Z/2,
corresponding to genus and Arf invariant.

Thus the proof of the main theorem is finished, as is the following version for Masbaum’s groups.

COROLLARY 15 There is a homology equivalence
Zx7)2 x BGoy = QNS).

Therefore, the homology localization of3B, is an infinite loop space.

6. An oo Map
Let L denote the universal complex line bundle ovEP*°, and for any virtual vec-
tor bundle V, let (CP*)V denote its Thom spectrum. In this section, a map

0ot Z %X 7)2 x BGyy —> QX (CP>®)~L®L js constructed. We do not know whether this map
is a homology equivalence (similar to the map of the same nanid]) put we give some positive
indication. The constructed map makes the following diagram of infinite loop spaces commute.

ZxZ]2x LHBGy —— QOO(CPOO)—LZ

|

Z x LyBrI Q>(CP>)-L

HereLy denotes homology localization. The bottom map is definedn 1] as follows. Since
for all smooth oriented surfacds of genus at least 2B Diff (F) ~ BI'(F), there is a universal
fibration with fibreF

F - E — BI'(F),
where, explicitly,E >~ E Diff *(F) xpjt+(r) F.

The tangent bundle along the fibres is classified by atmdp — CP°°. The stable Umkehr map
¥X°BI'(F);+ — EV to the Thom spectrum of the stable normal bundle along the fibres composes
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with the Thomification oft to give a map of spectrar : E®°BI'(F)y — (CP*)"L. These
assemble to give a map &f,-spaces

[[Br(F) - @*@P>)"*,
F

where F runs through representatives of the isomorphism classes of certain surfaces. Since the
target is an infinite loop space, this map lifts to the group completion of the source,

Qoo 1 Z x Bl — Q®(CP>®)7t,

and is a homotopy equivalence i].
If (F,s) is a spin surface and we replaCéF) by G4 (F), the spin structure specifies a lift of the

mapt to the source of the magP> 2 cpe classifying the square of the universal line bundle.
Thusear lifts to the Thom space of the inverse of that bundt[éPoo)—Lz, and so doef .

By counting spin structures of Arf invariant 0 and boundary value 0 on a sufface:
Fg,n, One can easily see th&@:;(F) < T'(F) is an index 8-1(29 + 1) subgroup. Since for
ewery prime p there are infinitely manyg such thatp t 29 + 1, the transfer implies that
i+: He(Goo; Z[%]) — Hy(Too; Z[%]) is a split injection. It is not clear whether or niqtis an
equivalence away from 2; however, the Mgy (CP®)~L* — Q®(CP>)~L is.

As further evidence supporting that, might be an equivalence, an Adams spectral sequence
shows thatrg(Q®(CP®)~L%) = Z @ 7/2 and 71(Q®°(CP®)"L*) = 7Z/4; and of course,
n2(§2°°(<CP°°)—'-2; Q) = Q. This agrees with the homotopy @ x Z/2 x LyBG [8]; in
fact, this is all the concrete knowledge about the homology @f, (or homotopy of its homology
localization) at the time of this writing.
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