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ABSTRACT. For a compact Lie group G with maximal torus T, Pittie and Smith
showed that the flag variety G/T is always a stably framed boundary. We generalize
this to the category of p-compact groups. We replace the geometric argument by
a homotopy-theoretic one, showing that the framed bordism class represented by
G/T is trivial, even G-equivariantly. As an application and inspired by work by
the second author and Kitchloo, we consider an unstable construction of a G-space
mimicking the adjoint representation sphere of G. Stably and G-equivariantly, this
construction splits off its top cell, which we then shown to be a dualizing spectrum
for G.

1. INTRODUCTION

Let G be a compact, connected Lie group of dimension d and rank r with maximal
torus T. Left translation by elements of G on the tangent space g = TeG induces a
framing of G. The Pontryagin-Thom construction associates to G and this framing
an element [G] in the stable homotopy groups of spheres. Many low-dimensional
homotopy class are representable by Lie groups in this way: for instance, [S1] and
[SU(2)] are the first two Hopf maps. This construction has been extensively studied
for example in [Smi74, Woo76, Kna78, Oss82].

The following classical argument shows that the flag variety G/T, while not
necessarily framed, is still stably framed: since every element in a compact Lie group
is conjugate to an element in the maximal torus, the conjugation map G× T → G,
(g, t) 7→ gtg−1, is surjective, and furthermore, it factors through c : G/T × T → G.
An element s ∈ T is called regular if the centralizer CG(s) ⊇ T equals T, or equiv-
alently, if c|G/T×{s} is an embedding. Lie theory says that the set of irregular
elements has positive codimension in T. Thus there is a regular element s such that
the derivative of c has full rank along G/T × {s}. By the tubular neighborhood
theorem, it induces an embedding of G/T ×U, where U is a contractible neighbor-
hood of s in T. Thus the framing of G can be pulled back to a stable framing of
G/T.

Pittie and Smith showed in [Pit75, PS75] that G/T is always the G-equivariant
boundary of another framed G-manifold M. In terms of homotopy theory, this
implies that the class [G/T] ∈ πs

d−r is trivial.
The first main result of this paper generalizes this fact to Z/p-local, p-finite

groups, which are up-to-homotopy versions of compact Lie groups. This is a slight
generalization of Dwyer and Wilkerson’s notion of a p-compact group [DW94], which
has risen to fame for its power to tackle some long-standing problems in finite loop
space theory, among other things.
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A space X is called p-finite if H∗(X; Fp) is finite and Z/p-local if whenever f : Y →
Z is a mod-p homology equivalence of CW-complexes, then f ∗ : [Z, X] → [Y, X]
is a bijection on homotopy classes. A p-finite, Z/p-local topological group is a
p-compact group if π0(G) is a p-group. (In their original definition, Dwyer and
Wilkerson allowed G to be a loop space instead of a group; however, any loop space
can be rigidified, e.g. by using the geometric realization of Kan’s group model of
the loops on a simplicial set [Kan56], thus their definition is equivalent.)

Every p-compact group has a maximal torus T unique up to conjugacy [DW94];
that is, there is a monomorphism T → G with T ' Lp(S1)r and r is maximal with
this property, where Lp denotes Z/p-localization. By definition, a monomorphism
of Z/p-local, p-finite loop spaces is a group monomorphism H → G such that
G/H is p-finite (cf. [Bau04] for this slightly nonstandard point of view). Since a
maximal torus is always contained in the identity component of a group, this result
for p-compact groups immediately generalizes to Z/p-local, p-finite groups.

We shall work throughout in the category of naive G-spectra, i.e. spectra with
a G-action, where G is a topological group. This category is equipped with a
model structure whose weak equivalence are the so-called hG-equivalences, i. e.
G-equivariant maps which are non-equivariantly weak equivalences. A map f is
a fibration if its underlying nonequivariant map is, and it is a cofibration if it is a
retract of a relative free G-cell complex (cf. [Sch97]. In particular, a G-spectrum is
cofibrant if it is a free G-CW-spectrum.

Denote by S0[X] the suspension spectrum of a space X with a disjoint base point
added.

Definition ([Kle01]). Let G be a topological group. Define SG, the dualizing spectrum
of G, to be the spectrum of homotopy fixed points of the right action of G on its
own suspension spectrum. That is, SG = (S0[G])hGop

as left G-spectra.

In [Bau04], the first author showed that for a connected, d-dimensional p-com-
pact group G, SG is always homotopy equivalent to a Z/p-local sphere of dimension
d. Furthermore, there is a G-equivariant logarithm map S0[G]→ SG, where G acts
on the left by conjugation. He constructs a Pontryagin-Thom-type map

[G/T] : SG → ST ,

which we extend to Z/p-local, p-finite groups in the appendix (A.6). If G is the
Z/p-localization of a connected Lie group, then SG is canonically identified with
the suspension spectrum of the one-point compactification of the Lie algebra of G
and the map [G/T] with the Pontryagin-Thom construction in framed cobordism.

Theorem 1.1. Let G be a Z/p-local, p-finite group with maximal torus T such that
dim(G) > dim(T). Then the Pontryagin-Thom construction [G/T] : SG → ST is null-
homotopic. If S̃G denotes a cofibrant replacement of SG, the induced map S̃G → ST is in
fact G-equivariantly null-homotopic, with G acting trivially on ST .

In the second part of this paper, as an application of Theorem 1.1, we study
the relationship between two notions of adjoint objects of p-compact groups. It is
an interesting question to ask whether the action of G on SG actually comes from
an unstable action of G on Sd. We will not be able to answer this question here.
However, there is an alternative, unstable construction of an adjoint object for a
connected p-compact group G inspired by the following theorem:
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Theorem 1.2 ([CK02, Mit88]). Let G be a semisimple, connected Lie group of rank r.
There exist subgroups GI < G for every I ( {1, . . . , r} and a homeomorphism of G-spaces

AG := Σ hocolim
I({1,...,r}

G/GI → g∪ {∞}

to the one-point compactification of the Lie algebra g of G.

We define a functorial G-space AG for every connected p-compact group G and
show:

Theorem 1.3. There is a G-equivariant map α : S̃G → S0[AG] which is an isomorphism
in the top homology group. This map induces a G-equivariant splitting S0[AG] ' SG ∨ R
for some finite G-spectrum R when

(1) G is the completion of a compact Lie group; or
(2) p does not divide the order of the Weyl group of G.

This result links the two notions of adjoint objects together. Unfortunately, AG is
in general not a sphere (cf. Ex. 4.4), and we do not know if the top cell of AG splits
off equivariantly in the cases not covered by Theorem 1.3.

Acknowledgements. We would like to thank the Institut Mittag-Leffler for its
support, and Nitu Kitchloo for helpful discussions.

2. THE STABLE p-COMPLETE SPLITTING OF COMPLEX PROJECTIVE SPACE

2.1. Stable splittings from homotopy idempotents. Let p be a prime. We denote
by Lp the localization functor on spaces with respect to mod-p homology, which
coincides with p-completion on nilpotent spaces [BK72]. Let S = LpS1 be the
p-complete 1-sphere, and set P = S0[BS]. By a classical result (cf. [Mit85, GR89]),

(2.1) P '
p−2∨
s=0

Ps

for certain (2s− 1)-connected spectra Ps. In this section, we will investigate this
splitting and its compatibility with certain transfer maps.

Let X be a spectrum, e ∈ [X, X], and define

eX = hocolim{X e−→ X e−→ · · · }.
If e is idempotent, this is a homotopy theoretic analog of the image of e. Any
such idempotent e yields a stable splitting X ' eX ∨ (1− e)X. If {e1, . . . , en} are
a complete set of orthogonal idempotents (this means that each ei is idempotent,
eiej ' ∗, and idX ' e1 + · · ·+ en), then they induce a splitting X ' e1X ∨ · · · ∨ enX.

We define a partial order on the set of all idempotents in [X, X] by e ≤ f iff
e f = e. Then {ei} is a complete set of minimal (nonzero) orthogonal idempotents if
and only if the associated wedge decomposition of X is maximal, i. e. if no factor
eiX can be nontrivially split into a further wedge. The splitting (2.1) is indeed
maximal, as can be seen by considering H∗(Ps; Fp) as a module over the Steenrod
algebra.

A complete set of minimal orthogonal idempotents does not need to exists, and
if it does, it is not necessarily unique, but any two such sets are conjugate [Mit85,
Prop. 1.5]. This leads to the following observation:
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Lemma 2.2. Let X be the p-completion of a suspension spectrum of a CW-complex with
noetherian mod-p cohomology and {e1, . . . , en} a complete set of minimal orthogonal
idempotents in [X, X]. Then for any idempotent f ∈ [X, X], there is a homotopy equivalence

f X '
k∨

α=1

ejα X

over X, for uniquely determined indices jα.

Proof. By [Hen91, Thm. V], the decomposition X ' ∨n
i=1 eiX is unique up to ho-

motopy equivalence and order. Since X ' f X ∨ (1− f )X, it follows that f X is
equivalent to the wedge of a uniquely determined subset {ejα} of {eiX}. �

Example 2.3. Let p be a prime and ζ ∈ Z×p a primitive (p− 1)st root of unity. Denote
by µ : P→ P the multiplication by ζ in the Zp-module [P, P] and by ψ : P→ P the
map induced by multiplication with ζ on K(Zp, 2). Define es : P→ P by

es =
1

p− 1

(
p−2

∑
i=0

µ−isψi

)
.

It is straightforward to check that {e0, . . . , ep−2} is a complete set of orthogonal
idempotents in [P, P]. They induce the splitting (2.1) by defining Ps = esP, and this
splitting is maximal. This also holds for p = 2, although then the splitting is trivial.

Setting H∗(P) = Zp{xj} with |xj| = 2j, we have that (ei)∗ : H∗(P) → H∗(P) is
given by

(2.4) (ei)∗(xj) =

{
xj; j ≡ i (mod p− 1)
0; otherwise.

2.2. Transfers as splittings. Let 1 → H i−→ G → W → 1 be an extension of
compact Lie groups. Then associated to the fibration W → BH → BG there are two
versions of functorial stable transfer maps:

(1) The Becker-Gottlieb transfer τ : S0[BG]→ S0[BH] [BG75, Section 3]
(2) The stable Umkehr map τ : BGg → BHh of Thom spaces of the adjoint

representation of the Lie groups [BG75, Section 4].

Both versions can be generalized to a setting where the groups involved are not
Lie groups but only Z/p-local and p-finite [Dwy96, Bau04], cf. (A.5). For such a
group G, BGg is defined to be the homotopy orbit spectrum of G acting on the
dualizing spectrum SG; since H∗(SG) = H∗(Sd; Zp) by Lemma A.2, we have a
(possibly twisted) Thom isomorphism Hn(BG;Hd(SG)) ∼= Hn+d(BGg). We use the
notation g for the dualizing spectrum SG to stress the analogy with Lie algebras
and Lie groups.

Note that the Becker-Gottlieb transfer τ factors through the Umkehr map τ in
the following way:

(2.5) S0[BG]
τ′−→ BHν comult.−−−−→ BHν ∧BG S0[BH]

id∧∆−−−→ BHν ∧BG S0[BH] ∧BG S0[BH]
eval∧ id−−−−→ S0[BH]
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where ν = h− i∗g is the virtual normal fibration along the fibers of BH → BG, τ′ is
τ twisted by −g, and the right hand side evaluation map is defined by identifying
BHν with the fiberwise Spanier-Whitehead dual of BH over BG.

Proposition 2.6. Let W = Cl be a finite cyclic group acting freely on S = LpS1, with
l | p− 1. Denote by N = S oW the semidirect product with respect to this action. Then
the Becker-Gottlieb transfer map τ factors as

S0[BN]
τ //

c
��

P

(e0 + el + · · ·+ ep−1−l)P,

77

and the induced map c is p-completion.

Proof. Since p - |W|, the Serre spectral sequence associated to the group extension

S i−→ N →W is concentrated on the vertical axis and shows that

H∗(BN; Zp) ∼= H∗(BS; Zp)
W ∼= Zp[zl ] ↪→ Zp[z] ∼= H∗(BS; Zp).

In this case, the Becker-Gottlieb transfer is nothing but the usual transfer for finite
coverings, therefore i ◦ τ is multiplication by |W| = l ∈ Z×p . Setting I = l−1i : P→
S0[LpBN], we thus get orthogonal idempotents in [P, P]:

f = τ ◦ I and e = idP− f .

Clearly, e ◦ τ ' ∗, thus the map τ factors through f P and induces an equivalence
S0[LpBN] → f P, in particular a mod-p homology isomorphism between S0[BN]
and f P. The computation of the homology of BN together with (2.4) and Lemma 2.2
implies that f P ' (e0 + el + · · ·+ ep−1−l)P over P. �

Proposition 2.7. Let S, N, W be as above. Then the stable Umkehr map

τ : BNn → BSs ' ΣP

factors as

BNn τ //

c
��

ΣP

Σ
(

∑
p−1

l −1
i=0 e(i+1)l−1

)
P,

77

The induced map c is p-completion.

Proof. This follows from a similarly simple homological consideration. The S-
fibration n is not orientable, thus we have a twisted Thom isomorphism

H̃n+1(BNn) ∼= Hn(BN;H1(S; Zp))

where π1(BN) = Z/l acts on H1(S; Zp) ∼= Zp by multiplication by an lth root of
unity. Thus is that right?

Hi(BNn; Zp) =

{
Zp; i ≡ −1 (mod 2l)
0; otherwise.
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The factorization (2.5) of τ through τ

S0[BN]
τ′−→ BSν comult.−−−−→ BSν ∧BN S0[BS]

id∧∆−−−→ BSν ∧BN S0[BS] ∧BN S0[BS] eval∧ id−−−−→ S0[BS]

simplifies considerably since ν is the trivial 0-dimensional fibration over BS, and
the composition of the three right hand side maps is an equivalence.

In Prop. 2.6 it was shown that I ◦ τ = idS0[LpBN], thus the same holds after
twisting with n:

idBNn : LpBNn τ−→ BSs → BSi∗n In−→ LpBNn.

If we denote the composition BSs → BSi∗n In−→ LpBNn by I, overriding its previous
meaning, then Σ−1τ ◦ I becomes an idempotent on P. The argument now proceeds
as in Prop. 2.6. Using the computation of H∗(BNn; Zp), we find that LpΣ−1BNn '
(τ ◦ I)P, and

(τ ◦ I)∗ =

p−1
l

∑
i=0

(e(i+1)l−1)∗

�

3. FRAMING p-COMPACT FLAG VARIETIES

Before proving Theorem 1.1, we need an alternative description of the Pontrya-
gin-Thom construction (A.6) on G/T.

Lemma 3.1. The map [G/T] is G-equivariantly homotopic to the map

S̃G
incl−−→ BGg τ−→ BTt ' ΣrS0[BT] Σrε−−→ Sr,

where BGg, BTt, and τ are as in Section 2.2, ε : S0[BT]→ S0 and all spectra except SG
have a trivial G-action.

Proof. Applying homotopy G-orbits to (A.6), we get a G-equivariant diagram

S̃G
τ̃ //

incl
��

G+ ∧T S0[T] ∼ // S0[G/T] ∧ ST //

��

ST

BGg τ // BTt ∼ // S0[BT] ∧ ST // ST

which is commutative by the definition of τ. �

In the proof of Theorem 1.1, certain special subgroups will play an important
role. In order to define them we need to recall certain facts about the Weyl group of
a p-compact group.

Dwyer and Wilkerson showed in their ground-breaking paper [DW94] that given
any connected p-compact group G with maximal torus T, there is an associated
Weyl group W(G), which is defined as the group of components of the homotopy
discrete space of automorphisms of the fibration BT → BG. This generalizes the
notion of Weyl groups of compact Lie groups; they are canonically subgroups of
GL(H1(T; Z)) = GLr(Zp), and they are so-called finite complex reflection groups.
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This means that they are generated by elements (called reflections or, more classi-
cally, pseudo-reflections) that fix hyperplanes in Zr

p. The complete classification of
complex reflection groups over C is classical and due to Shephard and Todd [ST54],
the refinement to the p-adic rationals is due to Clark and Ewing [CE74] and the
lifting to Zp is due to Notbohm [Not96, Not99] and Andersen-Grodal [AGMV08].

Call a reflection s ∈W primitive if there is no reflection s′ ∈W of strictly larger
order such that s = (s′)k for some k.

Denote by s ∈ W a primitive reflection of minimal order l > 1. Let Ts < T be
the fixed point subtorus under s. Since s is primitive,

〈s〉 = {w ∈W | w|Ts = idTs}.

Definition. Given a connected p-compact group G and a primitive reflection s ∈
W(G) of minimal order l > 1, define Cs to be the centralizer of Ts in G.

Since G is connected, so is the subgroup Cs [DW95, Lemma 7.8]. Furthermore, Cs
has maximal rank because T < Cs by definition, and the inclusion Cs < G induces
the inclusion of Weyl groups 〈s〉 < W [DW95, Thm. 7.6]. Since the Weyl group of
Cs is Z/l, the quotient of Cs by its p-compact center, Cs/Z(Cs), can have rank at
most 1. By the (almost trivial) classification of rank-1 p-compact groups, we find
that its rank is equal to 1 and

(3.2) Cs ∼=
(

Lp(S1)r−1 × LpS2l−1
)

/Γ,

where LpS2l−1 is simply Lp SU(2) for l = 2, and the Sullivan group given by

LpS2l−1 = ΩLp

(
Lp(BS1)hZ/l

)
for p odd, and Γ is a finite central subgroup.

Proof of Thm. 1.1. By Lemma 3.1, showing equivariant null-homotopy is equivalent
to showing that the map

h(G/T) : BGg τ−→ BTt Σrε−−→ Sr

is null. Note that for any given subgroup H < G of maximal rank, there is a
factorization of τ through BHh. In particular, we may assume that G is connected.
By the dimension hypothesis of the theorem, W(G) is nontrivial. If H = Cs is the
subgroup associated to a primitive reflection s ∈W(G) of minimal order l > 1, then
the map h(Cs/T) is the (r− 1)-fold suspension of h(LpS2l−1/S) by (3.2). Therefore,
it is enough to prove the theorem for those p-compact groups Cs.

We distinguish two cases.
First suppose that l = 2. By the classification of complex reflection groups [ST54],

and with the terminology of that paper, this is always the case except when W is a
product of any number of groups from the list

{G4, G5, G16, G18, G20, G25, G32}.

In this case, the map h(Lp SU(2)/S) is null by Pittie [Pit75, PS75] since the spaces
involved are Lie groups, thus h(G/T) ' ∗.

Now suppose that l > 2. This forces p > 2 as well, and since 〈s〉 acts faithfully
on some line in H1(T; Zp) while fixing the complementary hyperplane, we must
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have that it acts by an lth root of unity, and thus l | p− 1. The proof is finished if
we can show that

h(LpS2l−1/S) = 0

where S is the 1-dimensional maximal torus in the Sullivan group G′ := LpS2l−1.
To see this, note that the inclusion S → G′ factors through the maximal torus
normalizer NG′(S) ∼= S o Z/l, and thus

h(G′/S) : BG′g
′ τ1−→ BNn τ2−→ ΣS0[BS]→ S1.

If P ' ∨p−2
i=0 eiP is any stable splitting of the p-completed complex projective space

P = S0[BS] induced by idempotents ei as in the previous section, then the rightmost
projection map clearly factors through e0P, which is the part containing the bottom
cell. Since p > 2, Proposition 2.7 shows that there is an idempotent f ∈ [P, P] such
that τ ' f ◦ τ and τ ◦ e0 = e0 ◦ τ = 0, proving the theorem. �

4. THE ADJOINT REPRESENTATION

Let G be a d-dimensional connected p-compact group with maximal torus T of
rank r. Choose a set {s1, . . . , sr′} of generating reflections of W = W(G) with r′

minimal. The classification of pseudo-reflection groups [ST54, CE74] implies that
for G simple, most of the time r′ = r (the “well-generated” case), but there are cases
where r′ = r + 1.

Example 4.1 (The group no. 7). Let p ≡ 1 (mod 12). Let G7 be the finite group
generated by the reflection s of order 2 and the two reflections t, u of order 3, where
s, t, u ∈ GL2(Zp) are given by

s =
(
−1 0
0 1

)
, t =

1√
2

(
ζ −ζ7

ζ ζ7

)
, u =

1√
2

(
ζ7 ζ7

−ζ ζ

)
.

Here ζ is a primitive 24th root of unity. Note that although possibly ζ 6∈ Zp,
1√
2

ζ ∈ Zp. In Shephard and Todd’s classification, this is the restriction to Zp of the
complex pseudo-reflection group no. 7. They show that even over the complex
numbers, G7 cannot be generated by two reflections. The associated p-compact
group is given by

ΩLp((BT2)hG7).

If G is not semisimple (i. e. it contains a nontrivial normal torus subgroup), then
r′ may be smaller than r. Set κ = r + 1− r′ ≥ 0.

Let Ir′ be the poset of proper subsets of {1, . . . , r′}, and for I ⊆ {1, . . . , r′}, let TI
be the fixed point subtorus T〈si |i∈I〉 and CI = CG(TI) be the centralizer in G, which
is connected by [DW95, Lemma 7.8].

Definition. Let G be a connected p-compact group. Define the adjoint space AG by
the homotopy colimit

AG = Σκ hocolim
I∈Ir

G/CI

with the induced left G-action, and the trivial G-action on the suspension coordi-
nates.
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Theorem 1.2 shows that if G is the p-completion of a connected, semisimple
Lie group (in this case r = r′ and κ = 1), then AG is a d-dimensional sphere G-
equivariantly homotopy equivalent to g∪ {∞}. This holds more generally: if G is a
connected, compact Lie group with maximal normal torus Tk then

AG ∼= Σk AG/Tk = (t∪ {∞}) ∧ (g/t∪ {∞}) = g∪ {∞}.

Lemma 4.2. Let R be a ring and C the category of either R-finite CW-complexes or R-
finite CW-spectra. For X ∈ C, denote by dim(X) = dimR(X) the greatest n such that
Hn(X; R) 6= 0. Let Ik be the poset of proper subsets of {1, . . . , k}.

(1) If a functor F : Ik → C has the property that dim F(∅) > dim F(I) for every
I 6= ∅, then

dim hocolim F = dim F(∅) + k− 1.

(2) If f : F → G is a natural transformation of two functors as in (1) such that

f∗(∅) : Hdim F(∅)(F(∅))
∼=−→ Hdim G(∅)(G(∅)),

then f induces an isomorphism

hocolim f∗ : Hdim hocolim F(hocolim F)→ Hdim hocolim G(hocolim G).

(3) Let F : Ik → Top be a functor with F(∅) ' Sn, F(I) ' ∗ for I 6= ∅. Then
hocolimIk F ' Sn+k−1.

Proof. Parts (1) and (2) follow from the Mayer-Vietoris spectral sequence [BK72,
Chapter XII.5],

E1
p,q =

⊕
I∈Ik , |I|=k−1−p

Hq(F(I); R) =⇒ Hp+q(hocolim F; R),

along with the observation that under the dimension assumptions of (1), E1
p,q = 0

for q ≥ dim F(∅) except for E1
k−1,dim F(∅) = Hdim F(∅)(F(∅)). In particular, this

group cannot support a nonzero differential and thus

Hi(F(∅); R) ∼= Hi+k−1(hocolim F; R) for i ≥ dim F(∅).

Part (3) is a consequence of the Mayer-Vietoris spectral sequence for R = Z. �

Corollary 4.3. For any connected p-compact group G, dimZ/p(AG) = dimZ/p(G).

Proof. This follows from Lemma 4.2. Indeed, since any CI (I 6= ∅) is connected
and has the nontrivial Weyl group WI , its dimension is greater than dim T. So the
condition

dim F(∅) = dim G/T > dim F(I)

is satisfied, and
dim hocolim F = d− r + r′ − 1 = d− κ. �

As mentioned at the end of the introduction, for p-compact groups G, AG is not
usually a sphere, as the following example illustrates.
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Example 4.4. Let p ≥ 5 be a prime, and let G = S2p−3 be the Sullivan sphere,
whose group structure is given by BG = Lp

(
BShCp−1

)
, where Cp−1 ⊆ Z×p acts on

BS = K(Zp, 2) by multiplication on Zp. Clearly, G has rank 1, and I1 consists only
of a point, thus AG = ΣG/T ' LpΣCPp−2. Since p ≥ 5, this is not a sphere.

For the proof of Theorem 1.3 we need a preparatory result. By Lemma A.3, there
is a G-equivariant weak equivalence

G+ ∧H SH → S0[G]hHop
.

Using the restriction of homotopy fixed points, we thus obtain

S̃G → SG = S0[G]hGop → S0[G]hHop ∼←− G+ ∧H SH
∼←− G+ ∧H S̃H ,

where S̃G and S̃H denote cofibrant replacements of SG and SH , respectively. Thus
we obtain a G-equivariant lift

τ̃G,H : S̃G → G+ ∧H S̃H ,

which we can further compose to G+ ∧H SH ; we will call this composition τ̃G,H as
well.

Proposition 4.5. Let G be a p-compact group, P < G a maximal rank p-compact subgroup,
and T < P a common maximal torus with dim P > dim T. Then the following composition
is G-equivariantly null-homotopic:

fG,P : S̃G ∧ DST → S0[G/T]→ S0[G/P].

The second map is the canonical projection, whereas the first map is adjoint to

S̃G
τ̃G,T−−→ G+ ∧T S̃T ' S0[G/T] ∧ S̃T → S0[G/T] ∧ ST .

Proof. Consider the following commutative diagram:

S̃G
τ̃G,T

//

τ̃G,P
��

G+ ∧T ST

∼
��

∼ // S0[G/T] ∧ ST

∼
��

proj
// S0[G/P] ∧ ST

∼
��

G+ ∧P S̃P
id∧P τ̃P,T

// G+ ∧P (P+ ∧T ST)
∼ // G+ ∧P (S0[P/T] ∧ ST)

P/T→∗
// G+ ∧P (S0 ∧ ST).

The upper row is the adjoint of the map fG,P in question. The lower row is the map

S̃P → P+ ∧T ST → ST

induced up to G. But this map is exactly the homotopy class represented by [P/T]
(A.6), thus the assertion follows from Theorem 1.1. �

Proof of Thm. 1.3. Let G be a connected p-compact group whose Weyl group is
generated by a minimal set of r′ reflections. We want to construct a G-equivariant
map α : S̃G → S0[AG] which is an isomorphism on the top homology group.

Let A : Ir′ → Top be the functor given by A(I) = G/CI , such that Σκ hocolim A =
AG. Note that, since G is connected, CG(T) = T [DW94, Proposition 9.1] and
A(∅) = G/T.

Let F̄ : Ir′ → ho SpG be the functor to the homotopy category of G-spectra
given by F̄(∅) = SG ∧ DST and F̄(I) = ∗ for I 6= ∅. Then there is a natural
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transformation Φ̄ of functors into the homotopy category of G-spectra from F̄ to
S0[A] given by

Φ̄(∅) = fG,T : F(∅) = S̃G ∧ DST → S0[G/T]

as the map given in Prop. 4.5. Extending this natural transformation by the trivial
map for I 6= ∅ gives a commutative diagram in ho SpG by virtue of Prop. 4.5.

The strategy of the proof is to lift F̄ to a functor F : Ir′ → SpG and Φ̄ to a natural
transformation Φ into SpG. From this we get a G-equivariant map

S̃G ' Sκ ∧ Σr′−1S̃G ∧ DST ' Sκ ∧ hocolim
Ir′

F → Σκ hocolim
Ir′

S0[G/CI ] ' S0[AG],

which will give us the desired map α.
We will proceed by induction on the number of generating reflections r′. If r′ = 1

then AG = Sκ ∧ G/T and Φ(∅) = fG,T .
For r′ > 1, we can construct the functor F and the natural transformation Φ step

by step. Fix a subset I of cardinality k, and assume that F and Φ have been defined
for all vertices in the diagram corresponding to I′ with |I′| < k.

Let P(I) be the poset of all proper subsets of I. Since F and Φ are defined over
P(I) by induction hypothesis, we have an induced map of homotopy colimits

α′ : hocolim
P(I)

F ' Σk−1S̃G ∧ DST → hocolim
P(I)

A→ S0[G/CI ].

It is enough to show that α′ is G-equivariantly null-homotopic. If this is the case,
we define F(I) = C(hocolimP(I) F) to be the cone on hocolimP(I) F and extend α′

to F(I), using a chosen null-homotopy.
Note that fG,T : S̃G ∧ DST → S0[G/T] factors through G+ ∧CI S̃CI ∧ DST . By

induction, we know there is a map

Σk−1SCI ∧ DST → S0[hocolim
J∈Ik

CI/CJ ],

which splits the top cell. We get a factorization

(4.6) Σk−1SG ∧ DST → Σk−1G+ ∧CI SCI ∧ DST →
G+ ∧CI S0[hocolim

J∈Ik
CI/CJ ]→ G+ ∧CI S0.

It thus suffices to show that in the Ik-diagram

SCI ∧ DST

��

////// {∗}J∈Ik−{∅}
hocolim //

��

Σk−1SCI ∧ DST

��

S0[CI/T]

��

////// {S0[CI/CJ ]}J∈Ik−{∅}

��

hocolim// S0[hocolimJ∈Ik CI/CJ ]

��

S0 ////// {S0}I∈Ik−{∅}
hocolim // S0

the right hand side composition Σk−1SCI ∧ DST → S0 is CI-equivariantly null-
homotopic. In the latter diagram, it makes no difference whether the centralizers
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are taken in CI or in G. But by Theorem 1.1, the left hand column is already null-
homotopic, thus, as a colimit of null-homotopic maps over a contractible diagram,
so is the right hand column. �

Conclusion and questions. In this paper, we have compared two imperfect no-
tions of adjoint representations of a p-compact group G. One (SG) is a sphere,
but has a G-action only stably; the other (AG) is an unstable G-space, but fails to
be a sphere. The question remains whether there is an unstable G-sphere whose
suspension spectrum is SG. It might even be true that AG splits off its top cell after
only one suspension, yielding a solution to this problem in the cases where the
Weyl group of the rank-r group G is generated by r reflections.

There are also a number of interesting open questions about the flag variety G/T
of a p-compact groups:

• By the classification of p-compact groups [AGMV08, AG08], H∗(G/T; Zp)
is torsion free and generated in degree 2. Can this be seen directly?
• Is there a manifold M such that Lp M ' G/T, analogous to smoothings of

G [BKNP04, BP06]? Is it a boundary of a manifold?
• If such a manifold M exists, can it be given a complex structure?

APPENDIX A. STABLY DUALIZABLE GROUPS

The aim of this appendix is to generalize various needed results from [Bau04]
to the class of Z/p-local, p-finite groups. In that paper, the first author restricted
attention to p-compact groups, which have the additional property that its group of
components is a p-group. This assumption is never really needed, but we want to
give short proofs of the relevant results for the sake of completeness nevertheless.

Lemma A.1. Let H < G be an inclusion of Z/p-local, p-finite groups, and let X be a
non-equivariant spectrum. Then the Hop-action on the mapping spectrum map(G+, X)
gives a weak equivalence, natural in H and G:

map(G+, X)hHop ' map(G/H+, X).

Proof.

map(G, X)hHop 'mapHop
(EH+, map(G, X)) ' mapHop

((EH × G)+, X)

'map((EH × G)+/H, X) ' map(G/H+, X).

�

Lemma A.2. Let G be a Z/p-local, p-finite group of dimension d. Then the dualizing
spectrum SG is equivalent to a Z/p-local sphere of the same dimension d, and the inclusion
of the identity component G0 ↪→ G induces a G0-equivariant equivalence SG0 → SG.

Proof. Let π = π0G be the finite group of components. Then G0-equivariantly,
G ' map(π, G0) and since the suspension functor S0[−] sends coproducts to
wedges,

S0[G]hG0 = mapG0
((EG0)+, S0[G]) ' map(π, S0[G0]

hG0) = map(π, SG0),

which is a finite wedge of Z/p-local spheres by [Bau04, Cor. 23]. Then

S0[G]hG =
(

S0[G]hG0
)hπ
' map(π, SG0)

hπ ' SG0
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by Lemma A.1. Moreover, the inclusion of the unit component G0 → G induces the
inclusion of the identity wedge factor SG0 ↪→ S0[G]hG0 and hence an equivalence
with SG. �

Lemma A.3. Let H < G be an inclusion of Z/p-local, p-finite groups. Then there is an
hG-equivalence, natural in G:

G+ ∧H SH → S0[G]hHop
.

Proof. In the case of connected H and G, this is [Bau04, Lemma 19]. In general, the
natural map

G+ ∧H map(EH+, S0[H])→ map(EH+, G+ ∧H S0[H]) ' map(EH+, S0[G])

induces a G-equivariant map φ : G+ ∧H SH → S0[G]hHop
by passing to Hop-homotopy

fixed points. Non-equivariantly, G+ ∧H SH splits as map(π0G/π0H, G0 ∧H0 SH0)
and

S0[G]hHop '
(

map(π0G, S0[G0])
hHop

0

)π0 Hop

'map(π0G, S0[G0]
hHop

0 )π0 Hop ' map(π0G/π0H, S0[G0]
hHop

0 )

by Lemma A.1, and φ respects this splitting. By [Bau04, Lemma 19], φ is a weak
equivalence on every wedge summand, hence a weak equivalence. �

Lemma A.4. Let H < G be a monomorphism of Z/p-local, p-finite groups. Then there is
zigzag of hG-equivalences

G+ ∧H SH ' DS0[G/H] ∧ SG.

Moreover, for inclusions K < H < G of Z/p-local, p-finite groups, the following diagram
commutes:

S0[G]hHop

res
��

G+ ∧H SH oo
∼ //∼oo DS0[G/H] ∧ SG

D(proj)∧id
��

S0[G]hKop
G+ ∧K SK oo

∼ //∼oo DS0[G/K] ∧ SG

Proof. In [Bau04, Prop. 22], the first author constructed a weak equivalence

SG ∧ DS0[G]→ S0[G]

for connected p-compact groups G, which is equivariant with respect to two dif-
ferent G-actions. The first is multiplication on DS0[G] and S0[G] and the standard
(conjugation) action on SG, and the second one is right multiplication on DS0[G]
and S0[G] and the trivial action on SG. Rognes [Rog08, Thm. 3.1.4] extended
this proof to stably dualizable groups, in particular to Fp-local, p-finite groups.
Taking H-homotopy fixed points with respect to that second action, we obtain
hG-equivalences

DS0[G/H] ∧ SG
∼←− DS0[G]hH ∧ SG

∼−→ (DS0[G] ∧ SG)
hHop ∼−→ S0[G]hHop

,

where the left hand map is the equivalence from Lemma A.1. Composing with the
natural equivalence of Lemma A.3 gives the result.
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For the naturality statement, consider the following diagram:

DS0[G/H] ∧ SG

��

DS0[G]hHop ∧ SGoo

��

//(DS0[G] ∧ SG)
hHop

��

//S0[G]hHop

��

DS0[G/K] ∧ SG DS0[G]hKop ∧ SGoo //(DS0[G] ∧ SG)
hKop

//S0[G]hKop

The left hand square commutes by Lemma A.1, the other two for trivial reasons. �

Lemma A.4 does not provide a G-equivariant map in either direction, but if
X is a cofibrant G-spectrum (i. e. a free G-CW spectrum) then any map X →
DS0[G/H] ∧ SG lifts uniquely up to homotopy to a G-map X → G+ ∧H SH . In
particular, we get a G-map

τ̃ : S̃G
id∧Dε−−−→ S̃G ∧ DS0[G/H] '

Lemma A.4
G+ ∧H SH ,

where ε : S0[X] → S0 is given by applying the functor S0[−] to X → ∗. By
passage to G-homotopy orbits, we obtain a transfer map

(A.5) τ : BGg = (SG)hG → (G+ ∧H SH)hG ' (SH)hH = BHh,

which coincides with the stable Umkehr map for fiber bundles when H, G are Lie
groups [Bau04, Thm. 4].

If T < G is a sub-torus in a Z/p-local, p-finite group then we can use τ̃ to define
a G-equivariant map

(A.6) [G/T] : S̃G
τ̃−→ G+ ∧T ST ' S0[G/T] ∧ ST

ε−→ ST

where the homotopy equivalence holds because ST has a homotopy trivial T-action
as T is homotopy abelian. This map generalizes the Pontryagin-Thom construction
[Bau04, Section 5].
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