5B1459

Combinatorial Group Theory

Seminarierkurs IV

Tatiana Smirnova-Nagnibeda

First lecture: January 15, 2002, 15.15; room 3733.

Schedule: The course consisted of 16 lectures during weeks 3-7 and 9-11 (January 15 - February 15 and February 25 - March 15, 2002).
                     There were two lectures per week:
                     Tuesdays, 15.15-17.00, room 3733
                     Thursdays, 10.15-12.00, room 3721

  
  
Exam: The exam consists in solving problems from the following UPDATED (02.03.14, 16.30!) problem list

Deadline:    02.05.01    if you want it checked before the summer break   
  

Topics discussed in the course:
  
  
             Chapter I. FREE PRODUCTS OF GROUPS
  
                         1. Free products of groups.
                         2. Definition of the fundamental group of a topological space. Its topological invariance.
  
             Chapter II. FREE GROUPS AND PRESENTATIONS OF GROUPS
  
                         3. Free groups. Universal property of free products and of free groups.
                         4. Presentations of groups. Von Dyck's Theorem. Tietze transformations. M. Dehn's algorithmic problems.
                         5. Particular cases of Seifert - van Kampen Theorem. The fundamental group of a bouquet of circles is free.
  
             Chapter III. FREE GROUPS, TREES, AND GRAPHS
  
                         6. Graphs and trees. The fundamental group of a connected graph is free.
                         7. Cayley graphs. Actions of a group on a graph.
                         8. A group which acts freely on a tree is free. Nielsen-Schreier Theorem: a subgroup of a free group is free.
                         9. Subgroups and coverings. Howson's property for free groups
                             (following J. Stalling's notes on Geometric Group Theory.)
                        10. Subgroups of free groups. Schreier graphs. Schreier's formula.
  
             Chapter IV. FREE PRODUCTS WITH AMALGAMATION AND HNN-EXTENSIONS
  
                         11. Free products with amalgamation. Topological motivation. Surface groups.
                         12. Higman-Neumann-Neumann Embedding Theorem. HNN-extensions.
                              Higman's example of a finitely generated but not finitely presentable group.
                         13. Britton's Lemma. Finitely presented amalgamated products.
                              Uncountably many groups with two generators.
                         14. Residually finite groups. Hopfian and non-hopfian groups. Amalgamated products and trees.
  
             Chapter V. GROUPS AND GEOMETRY
  
                         15. Poincaré's Theorem. Hyperbolic tesselations.
                         16. A short introduction into Coxeter groups. Length functions, word metrics, and growth of groups.

Recommended Literature:
  
                         W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory
                         R. Lyndon, P. Schupp, Combinatorial Group Theory, Chapters I-IV
                         G. de Rham, Lectures on Introduction to Algebraic Topology
                         W. Massey, Algebraic Topology: an Introduction, Chapters 2-6
                         J. Rotman, An Introduction to the Theory of Groups, Chapters 1-2, 11-12
                         D. L. Johnson, Presentations of Groups
                         G. Baumslag, Topics in Combinatorial Group Theory, Chapters I, III, VI
                         J. Stillwell, Classical Topology and Combinatorial Group Theory, Chapters 0.5, 2, 3, 4, 5, 7
                         D. Cohen, Combinatorial Group Theory: a topological approach, Chapters 1-2, 5, 9
                         J.-P. Serre, Trees, Chapters I.1-I.4
                         P. de la Harpe, Topics in Geometric Group Theory, Chapters II-V
                         B. Chandler, W. Magnus, The history of combinatorial group theory. A case study in the history of ideas.
                         W. Magnus, Noneucledian tesselations and their groups
                         J. Humphreys, Reflection Groups and Coxeter Groups