Additional Structures on *E_n*-Cohomology

Stephanie Ziegenhagen

Universität Hamburg

09.12.2011

2 E_n -homology via the bar complex and as a derived functor

Operads and algebras over operads

An operad is a tool for encoding operations abstractly. An algebra over an operad is an object making these operations concrete.

Examples

- associative products
- associative commutative products
- Lie algebras /dg Lie algebras
- versions up to homotopy

Little n-cubes and loop spaces

The little *n*-cubes operad C_n is an operad in Top_* and plays an important role in understanding *n*-fold loop spaces:

- Every *n*-fold loop space $\Omega^n X$ is an algebra over C_n for $1 \le n \le \infty$.
- Conversely we get:

Theorem (Boardman-Vogt 1968, May 1972)

Let Y be a nice enough space and suppose $1 \le n \le \infty$. If Y is an algebra over C_n then Y has the homotopy type of an n-fold loop space.

E_n -operads in the algebraic setting

 E_n -operads in dgmod are operads weakly equivalent to the operad formed by chains on little *n*-cubes.

We fix a certain E_n -operad from now on.

Example

- E_1 -operads in dgmod encode A_∞ -algebras, i.e. algebras that are associative up to all higher homotopies
- Algebras over E_{∞} -operads are E_{∞} -algebras, i.e. they are associative and commutative up to all higher homotopies
- For $1 < n < \infty$ algebras over an E_n -operad interpolate between these cases.

E_n -homology and -cohomology

For every sufficiently good operad \mathcal{O} in dgmod one can define \mathcal{O} -(co)homology of \mathcal{O} -algebras with representations of the algebra as coefficients.

In particular we can define

$$H^{E_n}_*(A, M)$$
 and $H^*_{E_n}(A, M)$.

Example

- *E*₁-(co)homology of an associative algebra is Hochschild (co)homology.
- E_{∞} -(co)homology of a commutative algebra coincides with Γ -(co)homology.
- *E_n*-homology of a commutative algebra coincides with higher Hochschild homology up to a degree shift.

The classical bar complex

Recall that for a nonunital dga algebra A the reduced bar construction $BA = (T^c(\Sigma A), \partial)$ is given by

- the tensor coalgebra on the suspension of A
- with differential twisted by utilising the multiplication in A.
- If A is graded commutative, BA is a graded commutative dga algebra and we can iterate.

 $E_n\mbox{-homology via the bar complex and as a derived functor} \\ Additional structures$

The bar complex for E_n -algebras

Theorem (Fresse 2011)

(i) There is a functor

 $B^n \colon E_n$ -alg \rightarrow dgmod

which coincides with the classical n-fold bar construction if restricted to graded commutative dga algebras.

(ii) For any sufficiently good E_n -algebra A we have

$$H^{E_n}_*(A,k)\cong H_*(\Sigma^{-n}B^nA)$$

for $1 \leq n \leq \infty$.

The iterated bar complex and trees

For $1 \le n < \infty$ typical elements in $B^n(A)$ can be visualised as planar fully grown trees with *n* levels and leaves labeled by elements in *A*:

• Typical elements in B(A) are elements in $(\Sigma A)^{\otimes k}$:

• Typical elements in $B^2(A)$ are elements in $B(A)^{\otimes j}$:

a₀ a₁ a₂ a₃ a₄

• ... and so on.

E_n -homology of functors

Definition

- Let Epi_n be the category with objects planar fully grown trees with *n* levels and morphisms generated by mimicking the differentials in $B^n(A)$.
- Let $F : \operatorname{Epi}_n \to k \operatorname{-mod}$ be a functor.

The E_n -homology of F is defined as the homology of the total complex associated to an n-fold complex indexed over trees with differentials like in $B^n(A)$.

E_n -homology of functors

Example

E_n -homology of functors

Remark

Let A be a projective commutative algebra and $\mathcal{L}(A, k)$ the following functor from Epi_n to k-mod:

A tree with r leaves gets mapped to $A^{\otimes r}$, morphisms in Epi_n induce multiplication and permutations according to how they merge and permute the top leaves. Then...

- ... the total complex associated to C_{*,...,*}(L(A, k)) coincides with Σ⁻ⁿBⁿ(A)
- E_n -homology of $\mathcal{L}(A, k)$ equals E_n -homology of A.

E_n -homology as a derived functor

Theorem (Livernet-Richter 2011)

There exists a functor $b: Epi_n^{op} \to k$ -mod such that for all $F: Epi_n \to k$ -mod the equality

$$H^{E_n}_*(F) \cong Tor^{Epi_n}_*(b,F)$$

holds.

E_n -(co)homology with coefficients

Goal (1)

Construct

- a suitable category Epi_n^+ ,
- a suitable definition of E_n-homology (cohomology) for functors F: Epi⁺_n → k-mod (functors G: Epi^{+op}_n → k-mod)

• a functor
$$b^+ \colon {\it Epi}_n^{+\, op} o k$$
-mod

such that

$$H^{E_n}_*(F)\cong \mathit{Tor}^{\mathit{Epi}^+_n}_*(b^+,F)$$
 and $H^*_{E_n}(G)\cong \mathit{Ext}^*_{\mathit{Epi}^+_n}(b^+,G)$

generalising E_n -homology of functors as above and E_n -homology/cohomology of projective commutative algebras with coefficients in symmetric bimodules.

Gerstenhaber structures

The Hochschild cohomology $HH^*(A, A)$ of an associative algebra A has the structure of a Gerstenhaber algebra, consisting of

- an associative graded commutative product $HH^*(A, A) \otimes HH^*(A, A) \rightarrow HH^*(A, A)$ given by the cup product
- a graded Lie bracket $HH^*(A, A) \otimes HH^*(A, A) \rightarrow HH^{*-1}(A, A)$
- such that [x, -] is a graded derivation for every $x \in HH^*(A, A)$.

Gerstenhaber structures

The Lie bracket originates from the graded commutator of the homotopy

$$\cup_1 \colon C^*(A,A) \otimes C^*(A,A) \to C^{*-1}(A,A)$$

making the cup product on $HH^*(A, A)$ graded commutative.

Compare with singular cohomology: There we have a full system of homotopys ∪_i.

Gerstenhaber structures

Remark

The operad $H_*(C_2)$ encodes Gerstenhaber algebras. The Deligne conjecture states that the Gerstenhaber structure on $HH^*(A, A)$ stems from an action of C_2 on $C^*(A, A)$ and has been proven to be true.

Higher cup products

Goal (2)

- Use the definition of H^{*}_{En}(A, A) by a multicomplex indexed over trees to define ∪, ∪₁, ..., ∪_n.
- Define a graded Lie bracket on H^{*}_{E_n}(A, A) as the graded commutator of ∪_n.

Cohomology operations

Recall that cohomology operations in singular cohomology can be defined by using that singular cohomology is a representable functor.

In the derived setting one has the Yoneda product

$$\operatorname{Ext}_k^i(M,N) \otimes \operatorname{Ext}_k^j(L,M) \to \operatorname{Ext}_k^{i+j}(L,N),$$

for k-modules L, M and N, defined by splicing extensions.

Cohomology operations

Goal (3)

Given
$$H^*_{E_n}(F) \cong Ext^*_{Epi_n}(b^+, F)$$
 define a map

$$\operatorname{Ext}^{j}_{\operatorname{Epi}_{n}}(b^{+},F)\otimes\operatorname{Ext}^{i}_{\operatorname{Epi}_{n}}(b^{+},b^{+}) o \operatorname{Ext}^{i+j}_{\operatorname{Epi}_{n}}(b^{+},F),$$

making $H_{E_n}^*(F)$ a module over the algebra $H_{E_n}^*(b^+)$.

Thanks

Thank you for your attention!

References

References:

- Benoit Fresse, Iterated bar complexes of E-infinity algebras and homology theories, Alg. Geom. Topol. 11 (2011), 747–838.
- ► Muriel Livernet, Birgit Richter, An interpretation of E_n-homology as functor homology,, Math. Z. 269 (1) (2011), 193–219.