Additional Structures on *E_n*-Cohomology

Stephanie Ziegenhagen

Universität Hamburg

09.07.2013

Stephanie Ziegenhagen Additional Structures on En-Cohomology

2 E_n -cohomology via the bar complex and as functor cohomology

Reminder: *E_n*-algebras:

- The little *n*-cubes operad C_n is an operad in Top_* and plays an important role in understanding *n*-fold loop spaces.
- *E_n*-operads in dgmod are operads weakly equivalent to the operad formed by chains on little *n*-cubes.
- E_n -algebras are equipped with a multiplication associative up to all higher homotopies, commutative up to homotopies of a certain level.

We fix an E_n -operad from now on.

Cohomology for algebras over an operad

For every $\Sigma_*\text{-cofibrant}$ operad $\mathcal O$ in dgmod :

There is a semi-model structure on *O*-Alg → can define the *O*-cohomology of an *O*-algebra *A* with coefficients in a representation *M* of *A* as

$$H^*_{\mathcal{O}}(A; M) = H^*(\operatorname{Der}_{\mathcal{O}}(Q_A, M))$$

for a cofibrant replacement $Q_A \rightarrow A$.

*E*_n-homology and -cohomology

Certain cases yield well known notions of (co)homology:

Example

- E₁-(co)homology is Hochschild (co)homology.
- E_{∞} -(co)homology is Γ -(co)homology.
- *E_n*-homology of a commutative algebra is higher order Hochschild homology.

The classical bar complex

Recall that for an augmented dga algebra A the reduced bar construction $BA = (T^c(\Sigma \overline{A}), \partial)$ is given by

- \bullet the tensor coalgebra on the suspension of the augmentation ideal \overline{A}
- with differential twisted by utilising the multiplication in A.
- If A is graded commutative, B(A) is a graded commutative dga algebra and we can iterate this construction.

The bar complex for E_n -algebras

Theorem (Fresse 2011)

(i) There is a functor

 $B^n \colon E_n - \mathrm{alg} \to \mathsf{dgmod}$

which coincides with the classical n-fold bar construction if restricted to graded commutative dga algebras.

(ii) For any sufficiently good E_n -algebra A we have

$$H^{E_n}_*(A,k)\cong H_*(\Sigma^{-n}B^nA)$$

for $1 \leq n \leq \infty$.

 E_n -(co)homology with coefficients via the bar complex

This can be extended to include coefficients:

Theorem (Fresse)

For any nice augmented commutative algebra A and A-module M there is a twisting differential

$$\partial \colon B^n(A) \otimes A \to B^n(A) \otimes A$$

such that

$$H^{E_n}_*(A, M) \cong H_*(\Sigma^{-n}B^n(A) \otimes M, \partial')$$

and

$$H^*_{E_n}(A, M) \cong H_*(\operatorname{Hom}_k(\Sigma^{-n}B^n(A), M), \partial'').$$

The iterated bar complex and trees

Typical elements in $B^n(A)$ can be visualised as planar fully grown trees with *n* levels and leaves labeled by elements in \overline{A} :

• Typical elements in B(A) are elements in $(\Sigma \overline{A})^{\otimes k}$:

• Typical elements in $B^2(A)$ are elements in $(\Sigma \overline{B(A)})^{\otimes j}$:

E_n -cohomology of functors

Definition

Let Epi_n^+ be the category with:

- Objects: planar fully grown trees with n levels,
- Morphisms generated by mimicking the differential in $B^n(A)$ and the twist ∂ .

E_n -cohomology of functors

Definition

Let

$$F \colon \operatorname{Epi}_n^{+ \operatorname{op}} \to k \operatorname{-mod}$$

be a functor. The E_n -cohomology of F is defined as

$$H^*_{E_n}(F) = H_*(\operatorname{Tot} C^{*,\dots,*}_{E_n}(F))$$

with $C_{E_n}(F)$ an *n*-fold complex indexed over trees with differentials like in $(\text{Hom}_k(B^n(A), M), \partial')$.

 $E_n\mbox{-}{\rm cohomology} \ \mbox{via the bar complex and as functor cohomology} \\ Additional structures$

E_n -cohomology of functors

Example

E_n -cohomology of functors

Remark

Let A be a commutative algebra and M an A-module. Let

$$\mathcal{L}(A, M) \colon \operatorname{Epi}_n^{+ \operatorname{op}} \to k \operatorname{-mod}$$

be the following functor:

- $t \mapsto \operatorname{Hom}_k(A^{\otimes r}, M)$ for t a tree with r leaves,
- morphisms in Epi⁺_n induce multiplication, permutations and the action of A on M according to how they operate on the top leaves.

Then

$$H^*_{E_n}(\mathcal{L}(A;M))=H^*_{E_n}(A;M)$$

E_n -cohomology as functor cohomology

Theorem (Livernet-Richter 2011, Z)

Let k be a field. There exists a functor $b \colon \operatorname{Epi}_n^{+ op} \to k \operatorname{-mod} such$ that for all $F \colon \operatorname{Epi}_n^{+ op} \to k \operatorname{-mod} we$ have

$$H^*_{E_n}(F) \cong \operatorname{Ext}^{\operatorname{Epi}^+_n}_*(b,F).$$

Cohomology operations

- Recall: cohomology operations in singular cohomology can be defined by using that singular cohomology is representable.
- In the derived setting one has the Yoneda product: For projective/injective resolutions P_b, I_F

$$\begin{split} \mathrm{Ext}_{\mathrm{Epi}_n^+}^i(b,b)\otimes\mathrm{Ext}_{\mathrm{Epi}_n^+}^j(b,F) \\ & \\ \\ H_{i+j}(\mathrm{Mor}_{\mathrm{Epi}_n^+}(P_b,b)\otimes\mathrm{Mor}_{\mathrm{Epi}_n^+}(b,I_F)) \\ & \\ \\ \\ \\ \\ H_{i+j}(\mathrm{Mor}_{\mathrm{Epi}_n^+}(P_b,I_F)) = \mathrm{Ext}_{\mathrm{Epi}_n^+}^{i+j}(b,F) \end{split}$$

A negative result

Unfortunately no operations arise this way:

Theorem (Z)

We have

$$H^*_{E_n}(b)=egin{cases} k,&*=0,\ 0,&*>0 \end{cases}$$

for all $1 \le n < \infty$.

Gerstenhaber structures

The Hochschild cohomology $HH^*(A, A)$ of an associative algebra A has the structure of a Gerstenhaber algebra, consisting of

• an associative graded commutative product

 \cup : $HH^*(A, A) \otimes HH^*(A, A) \rightarrow HH^*(A, A)$.

a graded Lie bracket

$$HH^*(A, A) \otimes HH^*(A, A) \rightarrow HH^{*-1}(A, A)$$

constructed from the homotopy \cup_1 for the homotopy commutativity of \cup

• satisfying a Poisson relation.

Gerstenhaber structures

- The operad $H_*(E_2)$ encodes Gerstenhaber algebras.
- Deligne's conjecture: The Gerstenhaber structure on HH*(A, A) stems from an action of E₂ on C*(A, A).
- Higher Deligne conjecture: There is an E_{n+1} -action on suitable cochains calculating $H^*_{E_n}(A; A)$ (Hu-Kriz-Voronov, Lurie, Francis, Ginot-Tradler-Zeinalian,...).

Higher cup products

Goal

- Use the definition of H^{*}_{En}(A, A) by a multicomplex indexed over trees to define ∪, ∪₁, ..., ∪_n.
- Define a graded Lie bracket on H^{*}_{E_n}(A, A) as the graded commutator of ∪_n.

Partial result

- The product ∪ "obviously" exists (coalgebra structure on Bⁿ(A)).
- There exists an \cup_1 on $C^{*,\dots,*}_{E_n}(A; A)$.

Thanks

Thank you for your attention!

E_n-cohomology E_n-cohomology via the bar complex and as functor cohomology Additional structures

Main references:

- Benoit Fresse, Iterated bar complexes of E-infinity algebras and homology theories, Alg. Geom. Topol. 11 (2011), 747–838.
- ► Muriel Livernet, Birgit Richter, An interpretation of E_n-homology as functor homology,, Math. Z. 269 (1) (2011), 193–219.