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Chapter 1

Introduction to Mathematical
Models and their Analysis

The goal of this course is to give useful understanding for solving problems formulated by
stochastic differential equations models in science, engineering and mathematical finance.
Typically, these problems require numerical methods to obtain a solution and therefore
the course focuses on basic understanding of stochastic and partial differential equations
to construct reliable and efficient computational methods.

Stochastic and deterministic differential equations are fundamental for the modeling
in Science and Engineering. As the computational power increases, it becomes feasible to
use more accurate differential equation models and solve more demanding problems: for
instance to determine input data from fundamental principles, to optimally reconstruct
input data using measurements or to find the optimal construction of a design. There
are therefore two interesting computational sides of differential equations:

– the forward problem, to accurately determine solutions of differential equations for
given data with minimal computational work and prescribed accuracy, and

– the inverse problem, to determine the input data for differential equations, from
optimal estimates, based either on measurements or on computations with a more
fundamental model.

The model can be stochastic by two reasons:

– if callibration of data implies this, as in financial mathematics, or

– if fundamental microscopic laws generate stochastic behavior when coarse-grained,
as in molecular dynamics for chemistry, material science and biology.

An understanding of which model and method should be used in a particular situation
requires some knowledge of both the model approximation error and the discretization
error of the method. The optimal method clearly minimizes the computational work for
given accuracy. Therefore it is valuable to know something about computational accuracy
and work for different numerical models and methods, which lead us to error estimates
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and convergence results. In particular, our study will take into account the amount of
computational work for alternative mathematical models and numerical methods to solve
a problem with a given accuracy.

1.1 Noisy Evolution of Stock Values

Let us consider a stock value denoted by the time dependent function S(t). To begin our
discussion, assume that S(t) satisfies the differential equation

dS

dt
= a(t)S(t),

which has the solution
S(t) = e

∫ t
0 a(u)duS(0).

Our aim is to introduce some kind of noise in the above simple model of the form
a(t) = r(t)+”noise”, taking into account that we do not know precisely how the evolution
will be. An example of a ”noisy” model we shall consider is the stochastic differential
equation

dS(t) = r(t)S(t)dt+ σS(t)dW (t), (1.1)

where dW (t) will introduce noise in the evolution. To seek a solution for the above, the
starting point will be the discretization

Sn+1 − Sn = rnSn∆tn + σnSn∆Wn, (1.2)

where ∆Wn are independent normally distributed random variables with zero mean and
variance ∆tn, i.e. E[∆Wn] = 0 and V ar[∆Wn] = ∆tn = tn+1−tn. As will be seen later on,
equation (1.1) may have more than one possible interpretation, and the characterization
of a solution will be intrinsically associated with the numerical discretization used to
solve it.

We shall consider, among others, applications to option pricing problems. An
European call option is a contract which gives the right, but not the obligation, to buy a
stock for a fixed price K at a fixed future time T . The celebrated Black-Scholes model
for the value f : (0, T )× (0,∞)→ R of an option is the partial differential equation

∂tf + rs∂sf +
σ2s2

2
∂2
sf = rf, 0 < t < T,

f(s, T ) = max(s−K, 0),

(1.3)

where the constants r and σ denote the riskless interest rate and the volatility respec-
tively. If the underlying stock value S is modeled by the stochastic differential equation
(1.1) satisfying S(t) = s, the Feynmann-Kač formula gives the alternative probability
representation of the option price

f(s, t) = E[e−r(T−t) max(S(T )−K, 0))|S(t) = s], (1.4)
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which connects the solution of a partial differential equation with the expected value of
the solution of a stochastic differential equation. Although explicit exact solutions can
be found in particular cases, our emphasis will be on general problems and numerical
solutions. Those can arise from discretization of (1.3), by finite difference or finite
elements methods, or from Monte Carlo methods based on statistical sampling of (1.4),
with a discretization (1.2). Finite difference and finite element methods lead to a discrete
system of equations substituting derivatives for difference quotients, e.g.

ft ≈
f(tn+1)− f(tn)

∆t
,

while the Monte Carlo method discretizes a probability space by substituting expected
values with averages of finite samples, e.g. {S(T, ωj)}Mj=1 and

f(s, t) ≈
M∑
j=1

e−r(T−t) max(S(T, ωj)−K, 0)

M
.

Which method is best? The solution depends on the problem to solve and we will carefully
study qualitative properties of the numerical methods to understand the answer.

1.2 Molecular Dynamics

An example where the noise can be derived from fundamental principles is molecular
dynamics, modeling e.g. reactions in chemistry and biology. Theoretically molecular
systems can be modeled by the Schrödinger equation

i∂tΨ = HΨ

where the unknown Ψ is a wave function depending on time t and the variables of
coordinates and spins of all, M , nuclei and, N , electrons in the problem; and H is
the Hamiltonian precisely defined by well known fundamental constants of nature and
the Coulomb interaction of all nuclei and electrons. An important issue is its high
computational complexity for problems with more than a few nuclei, due to the high
dimension of Ψ which is roughly in L2(R3(M+N)), see [LB05]. Already simulation of
a single water molecule requires a partial differential equation in 39 space dimensions,
which is a demanding task to solve also with modern sparse approximation techniques.

A substantial dimensional reduction is obtained with Born-Oppenheimer approxi-
mation treating the nuclei as classical particles with the electrons in the ground state
corresponding to the current nuclei positions. This approximation, derived from a
WKB approximation for heavy nuclei mass (see Section 11), leads to ab initio molecular
dynamics

ẋt =vt,

mv̇t =− V ′(xt).
(1.5)

To determine the nuclei dynamics and find the electron energy (input to V ) means now
to solve a differential equation in R6M where at each time step the electron ground state
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energy needs to be determined for the current nuclei configuration xt, see [LB05, Fre02].
To simulate large systems with many particles requires some simplification of the expensive
force calculation ∂xiV involving the current position xt ∈ R3M of all nuclei.

The Hamiltonian system (1.5) is often further modified. For instance, equation (1.5)
corresponds to simulate a problem with the number of particles, volume and total energy
held constant. Simulation of a system with constant number of particles, volume and
temperature are often done by using (1.5) and regularly rescaling the kinetic energy to
meet the fixed temperature constraint, using so called thermostats. A mathematically
attractive alternative to approximate a system in constant temperature is to solve the
Langevin-Itô stochastic differential equation

dxt = vtdt,

mdvt = −(V ′(xt) + τ−1vt)dt+ (2kBTτ
−1)1/2dWt

(1.6)

where T is the temperature, kB the Boltzmann constant, W is a standard Wiener process
in R3M and τ is a relaxation time parameter (which can be determined from molecular
dynamics simulation). The Langevin model (1.6) can be derived from the Schrödinger
equation under certain assumptions, which is the subject of Sections ?? to ??. If diffusion
is important in the problem under study, one would like to make long simulations on
times of order at least τ−1. A useful observation to efficiently simulate longer time is the
fact that for τ → 0+ the solution xs/τ of the Langevin equation (??) converges to the
solution x̄s solving the Smoluchowski equation, also called Brownian dynamics

dx̄s = −V ′(x̄s)ds+ (2kBT )1/2dW̄s, (1.7)

set in the slower diffusion time scale s = τt. Here, for simplicity, the mass is assumed
to be the same for all particles and normalized to m = 1 and W̄ is again a standard
Wiener process in R3M . The Smoluchowski model hence has the advantage to be able
to approximate particle systems over longer time and reducing to half the problem
dimension by eliminating the velocity variables. In Section 11.3 we analyze the weak
approximation error xs/τ ⇀ x̄s. The next step in the coarse-graining process is to derive
partial differential equations – for the mass, momentum and energy of a continuum fluid
– from Langevin or Smoluchowski molecular dynamics, which determines the otherwise
unspecified pressure, viscosity and heat conductivity; Section ?? shows an example of
such a coarse-graining process in the case of modelling a solid-liquid melt.

1.3 Optimal Control of Investments

Suppose that we invest in a risky asset, whose value S(t) evolves according to the
stochastic differential equation dS(t) = µS(t)dt+σS(t)dW (t), and in a riskless asset Q(t)
that evolves with dQ(t) = rQ(t)dt, r < µ. Our total wealth is then X(t) = Q(t) + S(t)
and the goal is to determine an optimal instantaneous policy of investment in order to
maximize the expected value of our wealth at a given final time T. Let the proportion
of the total wealth invested on the risky asset at a given time t, α(t), be defined by
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α(t)X(t) = S(t), so that (1 − α(t))X(t) = Q(t) with α(t) ∈ [0, 1]. Then our optimal
control problem can be stated as

max
α

E[g(X(T ))|X(t) = x] ≡ u(t, x),

where g is a given function. How can we determine an optimal α? The solution of this
problem can be obtained by means of a Hamilton Jacobi equation, which is in general a
nonlinear partial differential equation of the form

ut +H(u, ux, uxx) = 0,

where H(u, ux, uxx) := maxα
(
(µαx+ r(1− α)x)ux + σ2α2x2uxx/2

)
. Part of our work is

to study the theory of Hamilton Jacobi equations and numerical methods for control
problems to determine the Hamiltonian H and the control α. It turns out that typically
the Hamiltonian needs to slightly modified in order to compute an approximate solution:
Section 9 explains why and how. We call such modifications regularizations.

1.4 Calibration of the Volatility

Another important application of optimal control we will study is to solve inverse problems
for differential equations in order to determine the input data for the differential equation
from observed solution values, such as finding the volatility in the Black-Scholes equation
from observed option prices: the option values can be used to detemine the volatility
function implicitly. The objective in the optimal control formulation is then to find a
volatility function that yields option prices that deviate as little as possible from the
measured option prices. The dynamics is the Black-Scholes equation with the volatility
function to be determined, that is the dynamics is a determinstic partial differential
equation and the volatility is the control function, see Section 9.2.1.1. This is a typical
inverse problem: it is called inverse because in the standard view of the Black-Scholes
equation relating the option values and the volaility, the option price is the unknown
and the volatility is the data; while here the formulation is reversed with option prices
as data and volatility as unknown in the same Black-Scholes equation. Inverse problems
are often harder to solve than the forward problem and need to regularized as explained
in Section 9.

1.5 The Coarse-graining and Discretization Analysis

Our analysis of models and discretization methods use only one basic idea, which we
present here for a determinstic problem of two differential equations

Ẋt = a(Xt)

and
˙̄Xt = ā(X̄t).
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We may think of the two given fluxes a and ā as either two different differential equation
models or two discretization methods. The goal is to estimate a quantity of interest
g(XT ), e.g. the potential energy of a molecular dynamic system, the lift of an airfoil
or the contract of a contingent claim in financial mathematics. Consider therefore a
given function g : Rd → Rd with a solution X : [0, T ] → Rd, e.g. the coordinates of
atoms in a molecular system or a discretization of mass, momentum and energy of a
fluid. To understand the global error g(XT )− g(X̄T ) we introduce the value function
ū(x, t) := g(X̄T ; X̄t = x), which solves the partial differential equation

∂tū(x, t) + ā(x)∂xū(x, t) = 0 t < T

u(·, T ) = g
(1.8)

This definition and telescoping cancellation imply that the global error has the represen-
tation

g(XT )− g(X̄T ) = ū(XT , T )− ū( X̄0︸︷︷︸
=X0

, 0)

= ū(XT , T )− ū(X0, 0)

=

∫ T

0
dū(Xt, t)

=

∫ T

0
∂tū(Xt, t) + Ẋt∂xū(Xt, t) dt

=

∫ T

0
∂tū(Xt, t) + ā(Xt, t)∂xū(Xt, t) dt

=

∫ T

0

(
− ā(Xt, t) + a(Xt, t)

)
∂xū(Xt, t) dt.

(1.9)

Here we can identify the local error in terms of the residual −ā(Xt, t)+ ā(Xt, t) multiplied
by the weight ∂xū(Xt, t) and summed over all time steps. Note that the difference of
the two solutions in the global error is converted into a weighted average of the residual
−ā(Xt, t) + ā(Xt, t) along only one solution Xt; the representation is therefore the
residual of X-path inserted into the ū-equation. We may view the error representation as
a weak form of Lax Equivalence result, which states that the combination of consistence
and stability imply convergence: consistence means that the flux ā approximates a;
stability means that ∂xū is bounded in some sense; and convergence means that the
global error g(XT )− g(X̄T ) tends to zero. The equivalence, as it is usually known, is
stated using bounds with appropriate norms and it has been the basis of the theoretical
understanding of numerical methods.

The weak formulation (1.9) is easy to use and it is our basis for understanding both
modelling and discretization errors. The weak form is particularly useful for estimating
the weak approximation error, since it can take cancellation into account by considering
the weaker concept of the value function instead of using absolute values and norms of
differences of solution paths; the standard strong error analysis is obtained by estimating
the norm of the difference of the two paths X and X̄. Another attractive property of
the weak representation (1.9) is that it can be applied both in a priori form to give
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qualitative results, by combining it with analytical estimates of ∂xū, and in a posteriori
form to obtain also quantitative results, by combining it with computer based estimates
of ∂xū.

We first use the representation for understanding the weak approximation of stochastic
differential equations and its time discretization, by extending the chain rule to Ito’s
formula and integrate over all outcomes (i.e. take the expected value). The value function
solves a parabolic diffusion equation in this case, instead of the hyperbolic transport
equation (1.8).

In the case of coarse-graining and modelling error, the representation is used for
approximating

– Schrödinger dynamics by stochastic molecular Langevin dynamics,

– Kinetic Monte Carlo jump dynamics by SDE dynamics,

– Langevin dynamics by Smoluchowski dynamics, and

– Smoluchowski molecular dynamics by continuum phase-field dynamics.

We also use the representation for the important problem to analyse inverse problems,
such as callibrating the volatility for stocks by observed option prices or finding an
optimal portfolio of stocks and bonds. In an optimal control setting the extension is
then to include a control parameter α in the flux so that

Ẋt = a(Xt, αt)

where the objective now is to find the minimum minα g(X
T ; Xt = x) =: u(x, t). Then

the value function u solves a nonlinear Hamilton-Jacobi-Bellman equation and the
representation is extended by including a minimum over α.
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Chapter 2

Stochastic Integrals

This chapter introduces stochastic integrals, which will be the basis for stochastic
differential equations in the next chapter. Here we construct approximations of stochastic
integrals and prove an error estimate. The error estimate is then used to establish
existence and uniqueness of stochastic integrals, which has the interesting ingredient of
intrinsic dependence on the numerical approximation due to infinite variation. Let us
first recall the basic definitions of probability we will use.

2.1 Probability Background

A probability space is a triple (Ω,F , P ), where Ω is the set of outcomes, F is the set of
events and P : F → [0, 1] is a function that assigns probabilities to events satisfying the
following definitions.

Definition 2.1. If Ω is a given non empty set, then a σ-algebra F on Ω is a collection
F of subsets of Ω that satisfy:

(1) Ω ∈ F ;

(2) F ∈ F ⇒ F c ∈ F , where F c = Ω− F is the complement set of F in Ω; and

(3) F1, F2, . . . ∈ F ⇒
⋃+∞
i=1 Fi ∈ F .

Definition 2.2. A probability measure on (Ω,F) is a set function P : F → [0, 1] such
that:

(1) P (∅) = 0, P (Ω) = 1; and

(2) If A1, A2, . . . ∈ F are mutually disjoint sets then

P

(
+∞⋃
i=1

Ai

)
=

+∞∑
i=1

P (Ai).
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Definition 2.3. A random variable X, in the probability space (Ω,F , P ), is a function
X : Ω→ Rd such that the inverse image

X−1(A) ≡ {ω ∈ Ω : X(ω) ∈ A} ∈ F ,

for all open subsets A of Rd.

Definition 2.4 (Independence of random variables). Two sets A,B ∈ F are said to be
independent if

P (A ∩B) = P (A)P (B).

Two independent random variables X,Y in Rd are independent if

X−1(A) and Y −1(B) are independent for all open sets A,B ⊆ Rd.

Definition 2.5. A stochastic process X : [0, T ] × Ω → Rd in the probability space
(Ω,F , P ) is a function such that X(t, ·) is a random variable in (Ω,F , P ) for all t ∈ (0, T ).
We will often write X(t) ≡ X(t, ·).

The t variable will usually be associated with the notion of time.

Definition 2.6. Let X : Ω → R be a random variable and suppose that the density
function

p′(x) =
P (X ∈ dx)

dx

is integrable. The expected value of X is then defined by the integral

E[X] =

∫ ∞
−∞

xp′(x)dx, (2.1)

which also can be written

E[X] =

∫ ∞
−∞

xdp(x). (2.2)

The last integral makes sense also in general when the density function is a measure, e.g.
by successive approximation with random variables possessing integrable densities. A
point mass, i.e. a Dirac delta measure, is an example of a measure.

Exercise 2.7. Show that if X,Y are independent random variables then

E[XY ] = E[X]E[Y ].

2.2 Brownian Motion

As a first example of a stochastic process, let us introduce

Definition 2.8 (The Wiener process). The one-dimensional Wiener process W : [0,∞)×
Ω→ R, also known as the Brownian motion, has the following properties:
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(1) with probability 1, the mapping t 7→W (t) is continuous and W (0) = 0;

(2) if 0 = t0 < t1 < . . . < tN = T, then the increments

W (tN )−W (tN−1), . . . ,W (t1)−W (t0)

are independent ; and

(3) for all t > s the increment W (t)−W (s) has the normal distribution, with E[W (t)−
W (s)] = 0 and E[(W (t)−W (s))2] = t− s, i.e.

P (W (t)−W (s) ∈ Γ) =

∫
Γ

e
−y2

2(t−s)√
2π(t− s)

dy, Γ ⊂ R.

Does there exists a Wiener process and how to construct W if it does? In computations
we will only need to determine W at finitely many time steps {tn : n = 0, . . . , N} of the
form 0 = t0 < t1 < . . . < tN = T . The definition then shows how to generate W (tn)
by a sum of independent normal distributed random variables, see Example 2.20 for
computational methods to generate independent normal distributed random variables.
These independent increments will be used with the notation ∆Wn = W (tn+1)−W (tn).
Observe, by Properties 1 and 3, that for fixed time t the Brownian motion W (t) is itself
a normal distributed random variable. To generate W for all t ∈ R is computationally
infeasible, since it seems to require infinite computational work. Example 2.20 shows
the existence of W by proving uniform convergence of successive continuous piecewise
linear approximations. The approximations are based on an expansion in the orthogonal
L2(0, T ) Haar-wavelet basis.

2.3 Approximation and Definition of Stochastic Integrals

Remark 2.9 (Questions on the definition of a stochastic integral). Let us consider the

problem of finding a reasonable definition for the stochastic integral
∫ T

0 W (t)dW (t),
where W (t) is the Wiener process. As a first step, let us discretize the integral by means
of the forward Euler discretization

N−1∑
n=0

W (tn) (W (tn+1)−W (tn)))︸ ︷︷ ︸
=∆Wn

.

Taking expected values we obtain by Property 2 of Definition 2.8

E[

N−1∑
n=0

W (tn)∆Wn] =

N−1∑
n=0

E[W (tn)∆Wn] =

N−1∑
n=0

E[W (tn)]E[∆Wn]︸ ︷︷ ︸
=0

= 0.

Now let us use instead the backward Euler discretization

N−1∑
n=0

W (tn+1)∆Wn.
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Taking expected values yields a different result:

N−1∑
n=0

E[W (tn+1)∆Wn] =

N−1∑
n=0

E[W (tn)∆Wn] + E[(∆Wn)2] =

N−1∑
n=0

∆t = T 6= 0.

Moreover, if we use the trapezoidal method the result is

N−1∑
n=0

E

[
W (tn+1) +W (tn)

2
∆Wn

]
=

N−1∑
n=0

E[W (tn)∆Wn] + E[(∆Wn)2/2]

=
N−1∑
n=0

∆t

2
= T/2 6= 0.

Remark 2.9 shows that we need more information to define the stochastic integral∫ t
0 W (s)dW (s) than to define a deterministic integral. We must decide if the solution

we seek is the limit of the forward Euler method. In fact, limits of the forward Euler
define the so called Itô integral, while the trapezoidal method yields the so called
Stratonovich integral. It is useful to define the class of stochastic processes which can be
Itô integrated. We shall restrict us to a class that allows computable quantities and gives
convergence rates of numerical approximations. For simplicity, we begin with Lipschitz
continuous functions in R which satisfy (2.3) below. The next theorem shows that once
the discretization method is fixed to be the forward Euler method, the discretizations
converge in L2. Therefore the limit of forward Euler discretizations is well defined, i.e.
the limit does not depend on the sequence of time partitions, and consequently the limit
can be used to define the Itô integral.

Theorem 2.10. Suppose there exist a positive constant C such that f : [0, T ]× R→ R
satisfies

|f(t+ ∆t,W + ∆W )− f(t,W )| ≤ C(∆t+ |∆W |). (2.3)

Consider two different partitions of the time interval [0, T ]

{t̄n}N̄n=0 , t̄0 = 0, t̄N̄ = T,{¯̄tm
} ¯̄N

m=0
, ¯̄t0 = 0, ¯̄t ¯̄N = T,

with the corresponding forward Euler approximations

Ī =
N̄−1∑
n=0

f(t̄n,W (t̄n))(W (t̄n+1)−W (t̄n)), (2.4)

¯̄I =

¯̄N−1∑
m=0

f(¯̄tm,W (¯̄tm))(W (¯̄tm+1)−W (¯̄tm)). (2.5)
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Let the maximum time step ∆tmax be

∆tmax = max

[
max

0≤n≤N̄−1
t̄n+1 − t̄n, max

0≤m≤ ¯̄N−1

¯̄tm+1 − ¯̄tm

]
.

Then
E[(Ī − ¯̄I)2] = O(∆tmax). (2.6)

Proof. It is useful to introduce the finer grid made of the union of the nodes on the two
grids

{tk} ≡ {t̄n} ∪
{¯̄tm

}
.

Then in that grid we can write

Ī − ¯̄I =
∑
k

∆fk∆Wk,

where ∆fk = f(t̄n,W (t̄n))− f(¯̄tm,W (¯̄tm)), ∆Wk = W (tk+1)−W (tk) and the indices
m,n satisfy tk ∈ [¯̄tm, ¯̄tm+1) and tk ∈ [t̄n, t̄n+1), as depicted in Figure 2.1.

{tk}

{¯̄tm}

{t̄n}
0

t0

¯̄t0

t̄0

T

tN

¯̄t ¯̄N

t̄N̄

t1 t2

¯̄t1

t̄1

t3 t4

¯̄t2

t̄2

t5

¯̄t3

t̄3

. . .

. . .

. . .

tN−2 tN−1

¯̄t ¯̄N−1

t̄N̄−1

Figure 2.1: Mesh points used in the proof.

Therefore,

E[(Ī − ¯̄I)2] = E[
∑
k,l

∆fk∆fl∆Wl∆Wk]

= 2
∑
k>l

E[∆fk∆fl∆Wl∆Wk]︸ ︷︷ ︸
=E[∆fk∆fl∆Wl]E[∆Wk]=0

+
∑
k

E[(∆fk)
2(∆Wk)

2]

=
∑
k

E[(∆fk)
2]E[(∆Wk)

2] =
∑
k

E[(∆fk)
2]∆tk. (2.7)

Taking squares in (2.3) we arrive at |∆fk|2 ≤ 2C2((∆′tk)2 + (∆′Wk)2) where ∆′tk =
t̄n − ¯̄tm ≤ ∆tmax and ∆′Wk = W (t̄n) − W (¯̄tm), using also the standard inequality

15



(a+ b)2 ≤ 2(a2 + b2). Substituting this in (2.7) proves the theorem

E[(Ī − ¯̄I)2] ≤
∑
k

2C2

(∆′tk)
2 + E[(∆′Wk)

2]︸ ︷︷ ︸
=∆′tk

∆tk

≤ 2C2 T (∆t2max + ∆tmax). (2.8)

Thus, the sequence of approximations I∆t is a Cauchy sequence in the Hilbert space

of random variables generated by the norm ‖I∆t‖L2 ≡
√
E[I2

∆t] and the scalar product

(X,Y ) ≡ E[XY ]. The limit I of this Cauchy sequence defines the Itô integral

∑
i

fi∆Wi
L2

→ I ≡
∫ T

0
f(s,W (s))dW (s).

Remark 2.11 (Accuracy of strong convergence). If f(t,W (t)) = f̄(t) is independent of

W (t) we have first order convergence

√
E[(Ī − ¯̄I)2] = O(∆tmax), whereas if f(t,W (t))

depends on W (t) we only obtain one half order convergence

√
E[(Ī − ¯̄I)2] = O(

√
∆tmax).

The constant C in (2.3) and (2.9) measures the computational work to approximate the
integral with the Euler method: to obtain an approximation error ε, using uniform steps,
requires by (2.8) the computational work corresponding to N = T/∆t ≥ 4T 2C2/ε2 steps.

Exercise 2.12. Use the forward Euler discretization to show that∫ T

0
s dW (s) = TW (T )−

∫ T

0
W (s)ds

Example 2.13 (Discrete Wiener process). A discrete Wiener process can be simulated
by the following Octave/Matlab code:

% Simulation of Wiener process/Brownian path

N = 1E6; % number of timesteps

randn(’state’,0); % initialize random number generator

T = 1; % final time

dt = T/(N-1); % time step

t = 0:dt:T;

dW = sqrt(dt)*randn(1,N-1); % Wiener increments

W = [0 cumsum(dW)]; % Brownian path

Brownian paths resulting from different seeds is shown in Figure 2.2, and in e.g. Exercise
2.12, the integrals can then be evaluated by
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Figure 2.2: Brownian paths

LHS = sum(t(1:N-1).*dW);

RHS = T*W(N) - sum(W(1:N-1))*dt;

Definition 2.14. A process f : [0, T ] × Ω → R is adapted if f(t, ·) only depends on
events which are generated by W (s), s ≤ t.

Remark 2.15 (Extension to adapted Itô integration). Itô integrals can be extended to
adapted processes. Assume f : [0, T ]× Ω→ R is adapted and that there is a constant C
such that √

E[|f(t+ ∆t, ω)− f(t, ω)|2] ≤ C
√

∆t. (2.9)

Then the proof of Theorem 2.10 shows that (2.4-2.6) still hold.

Theorem 2.16 (Basic properties of Itô integrals).
Suppose that f, g : [0, T ] × Ω → R are Itô integrable, e.g. adapted and satifying (2.9),
and that c1, c2 are constants in R. Then:

(i)
∫ T

0 (c1f(s, ·) + c2g(s, ·))dW (s) = c1

∫ T
0 f(s, ·)dW (s) + c2

∫ T
0 g(s, ·)dW (s),

(ii) E
[∫ T

0 f(s, ·)dW (s)
]

= 0,

(iii) E
[
(
∫ T

0 f(s, ·)dW (s))(
∫ T

0 g(s, ·)dW (s))
]

=
∫ T

0 E [f(s, ·)g(s, ·)] ds.
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Proof. To verify Property (ii), we first use that f is adapted and the independence of
the increments ∆Wn to show that for an Euler discretization

E[
N−1∑
n=0

f(tn, ·)∆Wn] =
N−1∑
n=0

E[f(tn, ·)]E[∆Wn] = 0.

It remains to verify that the limit of Euler discretizations preserves this property:
Cauchy’s inequality and the convergence result (2.6) imply that

|E[

∫ T

0
f(t, ·)dW (t)]| = |E[

∫ T

0
f(t, ·)dW (t)−

N−1∑
n=0

f(tn, ·)∆Wn] +

+ E[
N−1∑
n=0

f(tn, ·)∆Wn]|

≤

√√√√E[

(∫ T

0
f(t, ·)dW (t)−

N−1∑
n=0

f(tn, ·)∆Wn

)2

]→ 0.

Property (i) and (iii) can be verified analogously.

Example 2.17 (The Monte-Carlo method). To verify Property (ii) in Theorem 2.16
numerically for some function f we can do a Monte-Carlo simulation where∫ T

0
f(s, ·)dW (s),

is calculated for several paths, or realizations, and then averaged:
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% Monte-Carlo simulation

N = 1E3; % number of timesteps

randn(’state’,0); % initialize random number generator

T = 1; % final time

dt = T/N; % time step

t = 0:dt:T;

M = 1E6; % number of realisations

MC = zeros(1,M); % vector to hold mean values

for i=1:M

dW = sqrt(dt)*randn(1,N); % Wiener increments

W = [0 cumsum(dW)]; % Brownian paths

f = t.^3.*sqrt(abs(W)); % some function

int = sum(f(1:N).*dW); % integral value

if i==1

MC(i) = int;

else

MC(i) = (MC(i-1)*(i-1)+int)/i; % new mean value

end

end

In the above code the mean value of the integral is calculated for 1, . . . ,M realizations,
and in Figure 2.3 we see that as the number of realizations grows, the mean value
approaches zero as 1/

√
M . Also, from the proof of Theorem 2.16 it can be seen that the

number of time steps does not affect this convergence, so the provided code is inefficient,
but merely serves as an illustration for the general case.

Exercise 2.18. Use the forward Euler discretization to show that

(a)
∫ T

0 W (s)dW (s) = 1
2W (T )2 − T/2.

(b) Property (i) and (iii) in Theorem 2.16 hold.

Exercise 2.19. Consider the Ornstein-Uhlenbeck process defined by

X(t) = X∞ + e−at(X(0)−X∞) + b

∫ t

0
e−a(t−s)dW (s), (2.10)

where X∞, a and b are given real numbers. Use the properties of the Itô integral to
compute E[X(t)], V ar[X(t)], limt→∞E[X(t)] and limt→∞ V ar[X(t)]. Can you give an
intuitive interpretation of the result?
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Figure 2.3: Absolute value of the mean for different number of realizations.

Example 2.20 (Existence of a Wiener process). To construct a Wiener process on the
time interval [0, T ], define the Haar-functions Hi by H0(t) ≡ 1 and for 2n ≤ i < 2n+1

and n = 0, 1, 2 . . ., by

Hi(t) =


T−1/22n/2 if (i− 2n)2−n ≤ t/T < (i+ 0.5− 2n)2−n,

−T−1/22n/2 if (i+ 0.5− 2n)2−n ≤ t/T < (i+ 1− 2n)2−n,

0 otherwise.

(2.11)

Then {Hi} is an orthonormal basis of L2(0, T ), (why?). Define the continuous piecewise
linear function W (m) : [0, T ]→ R by

W (m)(t) =

m∑
i=1

ξiSi(t), (2.12)

where ξi, i = 1, . . . ,m are independent random variables with the normal distribution
N(0, 1) and

Si(t) =

∫ t

0
Hi(s)ds =

∫ T

0
1(0,t)(s)Hi(s)ds,

1(0,t)(s) =

{
1 if s ∈ (0, t),
0 otherwise.

The functions Si are small ”hat”-functions with a maximum value T−1/22−(n+2)/2 and
zero outside an interval of length T2−n. Let us postpone the proof that W (m) converge
uniformly and first assume this. Then the limit W (t) =

∑∞
i=1 ξiSi(t) is continuous. To
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verify that the limit W is a Wiener process, we first observe that W (t) is a sum of normal
distributed variables so that W (t) is also normal distributed. It remains to verify that
the increments ∆Wn and ∆Wm are independent, for n 6= m, and E[(∆Wn)2] = ∆tn.
Parseval’s equality shows the independence and the correct variance

E[∆Wn∆Wm] = E[
∑
i,j

ξiξj(Si(tn+1)− Si(tn))(Sj(tm+1)− Sj(tm))]

=
∑
i,j

E[ξiξj ](Si(tn+1)− Si(tn))(Sj(tm+1)− Sj(tm))

=
∑
i

(Si(tn+1)− Si(tn))(Si(tm+1)− Si(tm))

Parseval
=

∫ T

0
1(tn,tn+1)(s)1(tm,tm+1)(s)ds =

{
0 if m 6= n,
tn+1 − tn if n = m.

To prove uniform convergence, the goal is to establish

P

(
sup
t∈[0,T ]

∞∑
i=1

|ξi|Si(t) <∞

)
= 1.

Fix a n and a t ∈ [0, T ] then there is only one i, satisfying 2n ≤ i < 2n+1, such that
Si(t) 6= 0. Denote this i by i(t, n). Let χn ≡ sup2n≤i<2n+1 |ξi|, then

sup
t∈[0,T ]

∞∑
i=1

|ξi|Si(t) = sup
t∈[0,T ]

∞∑
n=0

|ξi(t,n)|Si(t,n)(t)

≤ sup
t∈[0,T ]

∞∑
n=0

|ξi(t,n)|T−1/22−(n+2)/2

≤
∞∑
n=0

χnT
−1/22−(n+2)/2.

If
∞∑
n=0

χn2−(n+2)/2 =∞ (2.13)

on a set with positive probability, then χn > n for infinitely many n, with positive
probability, and consequently

∞ = E[

∞∑
n=0

1{χn>n}] =

∞∑
n=0

P (χn > n), (2.14)

but
P (χn > n) ≤ P (∪2n+1

i=2n{|ξi| > n}) ≤ 2nP (|ξ0| > n) ≤ C 2ne−n
2/4,

so that
∑∞

n=0 P (χn > n) <∞, which contradicts (2.14) and (2.13). Therefore

P ( sup
t∈[0,T ]

∞∑
i=1

|ξi|Si(t) <∞) = 1,
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which proves the uniform convergence.

Exercise 2.21 (Extension to multidimensional Itô integrals). The multidimensional
Wiener process W in Rl is defined by W (t) ≡ (W 1(t), . . . ,W l(t)), where W i, i = 1, . . . , l
are independent one-dimensional Wiener processes. Show that

I∆t ≡
N−1∑
n=0

l∑
i=1

fi(tn, ·)∆W i
n

form a Cauchy sequence with E[(I∆t1−I∆t2)2] = O(∆tmax), as in Theorem 2.10, provided
f : [0, T ]× Ω→ Rl is adapted and (2.9) holds.

Exercise 2.22. Generalize Theorem 2.16 to multidimensional Itô integrals.

Remark 2.23. A larger class of Itô integrable functions are the functions in the Hilbert
space

V =

{
f : [0, T ]× Ω→ Rl : f is adapted and

∫ T

0
E[|f(t)|2]dt <∞

}
with the inner product

∫ T
0 E[f(t) · g(t)]dt. This follows from the fact that every function

in V can be approximated by adapted functions fh that satisfy (2.9), for some constant

C depending on h, so that
∫ T

0 E[|f(t, ·)− fh(t, ·)|2]dt ≤ h as h→ 0. However, in contrast
to Itô integration of the functions that satisfy (2.9), an approximation of the Itô integrals
of f ∈ V does not in general give a convergence rate, but only convergence.

Exercise 2.24. Read Example 2.20 and show that the Haar-functions can be used
to approximate stochastic integrals

∫ T
0 f(t)dW (t) '

∑m
i=0 ξifi, for given deterministic

functions f with fi =
∫ T

0 f(s)Hi(s)ds. In what sense does dW (s) =
∑∞

i=0 ξiHids hold?

Exercise 2.25. Give an interpretation of the approximation (2.12) in terms of Brownian
bridges, cf. [KS91].
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Chapter 3

Stochastic Differential Equations

This chapter extends the work on stochastic integrals, in the last chapter, and constructs
approximations of stochastic differential equations with an error estimate. Existence and
uniqueness is then provided by the error estimate.

We will denote by C,C ′ positive constants, not necessarily the same at each occurrence.

3.1 Approximation and Definition of SDE

We will prove convergence of Forward Euler approximations of stochastic differential
equations, following the convergence proof for Itô integrals. The proof is divided into four
steps, including Grönwall’s lemma below. The first step extends the Euler approximation
X̄(t) to all t ∈ [0, T ]:

Step 1. Consider a grid in the interval [0, T ] defined by the set of nodes {t̄n}N̄n=0 ,
t̄0 = 0, t̄N̄ = T and define the discrete stochastic process X̄ by the forward Euler method

X̄(t̄n+1)− X̄(t̄n) = a(t̄n, X̄(t̄n))(t̄n+1 − t̄n) + b(t̄n, X̄(t̄n))(W (t̄n+1)−W (t̄n)), (3.1)

for n = 0, . . . , N̄ − 1. Now extend X̄ continuously, for theoretical purposes only, to all
values of t by

X̄(t) = X̄(t̄n) +

∫ t

t̄n

a(t̄n, X̄(t̄n))ds+

∫ t

t̄n

b(t̄n, X̄(t̄n))dW (s), t̄n ≤ t < t̄n+1. (3.2)

In other words, the process X̄ : [0, T ]×Ω→ R satisfies the stochastic differential equation

dX̄(t) = ā(t, X̄)dt+ b̄(t, X̄)dW (t), t̄n ≤ t < t̄n+1, (3.3)

where ā(t, X̄) ≡ a(t̄n, X̄(t̄n)), b̄(t, X̄) ≡ b(t̄n, X̄(t̄n)), for t̄n ≤ t < t̄n+1, and the nodal
values of the process X̄ is defined by the Euler method (3.1).

Theorem 3.1. Let X̄ and ¯̄X be forward Euler approximations of the stochastic process
X : [0, T ]× Ω→ R, satisfying the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 ≤ t < T, (3.4)
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with time steps

{t̄n}N̄n=0 , t̄0 = 0, t̄N̄ = T,{¯̄tm
} ¯̄N

m=0
¯̄t0 = 0, ¯̄t ¯̄N = T,

respectively, and

∆tmax = max

[
max

0≤n≤N̄−1
t̄n+1 − t̄n, max

0≤m≤ ¯̄N−1

¯̄tm+1 − ¯̄tm

]
.

Suppose that there exists a positive constant C such that the initial data and the given
functions a, b : [0, T ]× R→ R satisfy

E[|X̄(0)|2 + | ¯̄X(0)|2] ≤ C, (3.5)

E[
(
X̄(0)− ¯̄X(0)

)2
] ≤ C∆tmax, (3.6)

and

|a(t, x)− a(t, y)| < C|x− y|,
|b(t, x)− b(t, y)| < C|x− y|, (3.7)

|a(t, x)− a(s, x)|+ |b(t, x)− b(s, x)| ≤ C(1 + |x|)
√
|t− s|. (3.8)

Then there is a constant K such that

max
{
E[X̄2(t, ·)], E[ ¯̄X

2
(t, ·)]

}
≤ KT, t < T, (3.9)

and

E

[(
X̄(t, ·)− ¯̄X(t, ·)

)2
]
≤ K∆tmax, t < T. (3.10)

The basic idea for the extension of the convergence for Itô integrals to stochastic
differntial equations is

Lemma 3.2 (Grönwall). Assume that there exist positive constants A and K such that
the function f : R→ R satisfies

f(t) ≤ K
∫ t

0
f(s)ds+A. (3.11)

Then
f(t) ≤ AeKt.

Proof. Let I(t) ≡
∫ t

0 f(s)ds. Then by (3.11)

dI

dt
≤ KI +A,

24



and multiplying by e−Kt we arrive at

d

dt
(Ie−Kt) ≤ Ae−Kt.

After integrating, and using I(0) = 0, we obtain I ≤ A (eKt−1)
K . Substituting the last

result in (3.11) concludes the proof.

Proof of the Theorem. To prove (3.10), assume first that (3.9) holds. The proof is
divided into the following steps:

(1) Representation of X̄ as a process in continuous time: Step 1.

(2) Use the assumptions (3.7) and (3.8).

(3) Use the property (3) from Theorem 2.16.

(4) Apply Grönwall’s lemma.

Step 2. Consider another forward Euler discretization ¯̄X, defined on a grid with

nodes
{¯̄tm

} ¯̄N

m=0
, and subtract the two solutions to arrive at

X̄(s)− ¯̄X(s)
(3.3)
= X̄(0)− ¯̄X(0) +

∫ s

0
(ā− ¯̄a)(t)︸ ︷︷ ︸
≡∆a(t)

dt+

∫ s

0
(b̄− ¯̄b)(t)︸ ︷︷ ︸
≡∆b(t)

dW (t). (3.12)

The definition of the discretized solutions implies that

∆a(t) = (ā− ¯̄a)(t) = a(t̄n, X̄(t̄n))− a(¯̄tm,
¯̄X(¯̄tm)) =

= a(t̄n, X̄(t̄n))− a(t, X̄(t))︸ ︷︷ ︸
=(I)

+ a(t, X̄(t))− a(t, ¯̄X(t))︸ ︷︷ ︸
=(II)

+ a(t, ¯̄X(t))− a(¯̄tm,
¯̄X(¯̄tm))︸ ︷︷ ︸

=(III)

where t ∈ [¯̄tm, ¯̄tm+1)∩ [t̄n, t̄n+1), as shown in Figure 3.1. The assumptions (3.7) and (3.8)
show that

|(I)| ≤ |a(t̄n, X̄(t̄n))− a(t, X̄(t̄n))|+ |a(t, X̄(t̄n))− a(t, X̄(t))|
≤ C|X̄(t̄n)− X̄(t)|+ C(1 + |X̄(t̄n)|)|t− t̄n|1/2. (3.13)

Note that (3.7) and (3.8) imply

|a(t, x)|+ |b(t, x)| ≤ C(1 + |x|). (3.14)
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Figure 3.1: Mesh points used in the proof.

Therefore

|X̄(t̄n)− X̄(t)| (3.3)
= |a(t̄n, X̄(t̄n))(t− t̄n) + b(t̄n, X̄(t̄n))(W (t)−W (t̄n))|

(3.14)

≤ C(1 + |X̄(t̄n)|)((t− t̄n) + |W (t)−W (t̄n)|). (3.15)

The combination of (3.13) and (3.15) shows

|(I)| ≤ C(1 + |X̄(t̄n)|)
(
|W (t)−W (t̄n)|+ |t− t̄n|1/2

)
and in a similar way,

|(III)| ≤ C(1 + | ¯̄X(t)|)
(
|W (t)−W (¯̄tm)|+ |t− ¯̄tm|1/2

)
,

and by the assumptions (3.7)

|(II)|
(3.7)

≤ C|X̄(t)− ¯̄X(t)|.

Therefore, the last three inequalities imply

|∆a(t)|2 ≤ (|(I)|+ |(II)|+ |(III)|)2 ≤ C2

(
|X̄(t)− ¯̄X(t)|2

+(1 + |X̄(t̄n)|2)(|t− t̄n|+ |W (t)−W (t̄n)|2)

+ (1 + | ¯̄X(¯̄tm)|2)(|t− ¯̄tm|+ |W (t)−W (¯̄tm)|2)
)
. (3.16)

Recall that max(t− t̄n, t− ¯̄tm) ≤ ∆tmax, and

E[(W (t)−W (s))2] = t− s, s < t,

so that the expected value of (3.16) and the assumption (3.9) yield
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E[|∆a(t)|2] ≤ C
(
E[|X̄(t)− ¯̄X(t)|2] + (1 + E[|X̄(t̄n)|2] + E[| ¯̄X(¯̄tm)|2])∆tmax

)
(3.9)

≤ C
(
E[|X̄(t)− ¯̄X(t)|2] + ∆tmax

)
. (3.17)

Similarly, we have

E[|∆b(t)|2] ≤ C
(
E[|X̄(t)− ¯̄X(t)|2] + ∆tmax

)
. (3.18)

Step 3. Define a refined grid {th}Nh=0 by the union

{th} ≡ {t̄n} ∪
{¯̄tm

}
.

Observe that both the functions ∆a(t) and ∆b(t) are adapted and piecewise constant on
the refined grid. The error representation (3.12) and (3) of Theorem 2.16 imply

E[|X̄(s)− ¯̄X(s)|2] ≤ E

[(
X̄(0)− ¯̄X(0) +

∫ s

0
∆a(t)dt+

∫ s

0
∆b(t)dW (t)

)2
]

≤ 3E[|X̄(0)− ¯̄X(0)|2]

+ 3E

[(∫ s

0
∆a(t)dt

)2]
+ 3E

[(∫ s

0
∆b(t)dW (t)

)2]
(3.6)

≤ 3(C∆tmax + s

∫ s

0
E[(∆a(t))2]dt+

∫ s

0
E[(∆b(t))2]dt).

(3.19)

Inequalities (3.17-3.19) combine to

E[|X̄(s)− ¯̄X(s)|2]
(3.17−3.19)

≤ C(

∫ s

0
E[|X̄(t)− ¯̄X(t)|2]dt+ ∆tmax). (3.20)

Step 4. Finally, Grönwall’s Lemma 3.2 applied to (3.20) implies

E[|X̄(t)− ¯̄X(t)|2] ≤ ∆tmaxCe
Ct,

which finishes the proof.

Exercise 3.3. Prove (3.9). Hint: Follow Steps 1-4 and use (3.5) .

Corollary 3.4. The previous theorem yields a convergence result also in the L2 norm
‖X‖2 =

∫ T
0 E[X(t)2]dt. The order of this convergence is 1/2, i.e. ‖X̄− ¯̄X‖ = O(

√
∆tmax).

Remark 3.5 (Strong and weak convergence). Depending on the application, our interest
will be focused either on strong convergence

‖X(T )− X̄(T )‖L2[Ω] =
√
E[(X(T )− X̄(T ))2] = O(

√
∆t),
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or on weak convergence E[g(X(T ))] − E[g(X̄(T ))], for given functions g. The next
chapters will show first order convergence of expected values for the Euler method,

E[g(X(T ))− g(X̄(T ))] = O(∆t),

and introduce Monte Carlo methods to approximate expected values E[g(X̄(T ))]. We
will distinguish between strong and weak convergence by Xn → X, denoting the strong
convergence E[|Xn −X|2] → 0 for random variables and

∫ T
0 E[|Xn(t)−X(t)|2]dt → 0

for stochastic processes, and by Xn ⇀ X, denoting the weak convergence E[g(Xn)]→
E[g(X)] for all bounded continuous functions g.

Exercise 3.6. Show that strong convergence, Xn → X, implies weak convergence
Xn ⇀ X. Show also by an example that weak convergence, Xn ⇀ X, does not imply
strong convergence, Xn → X. Hint: Let {Xn} be a sequence of independent identically
distributed random variables.

Corollary 3.4 shows that successive refinements of the forward Euler approximation
forms a Cauchy sequence in the Hilbert space V, defined by Definition 2.23. The limit
X ∈ V , of this Cauchy sequence, satisfies the stochastic equation

X(s) = X(0) +

∫ s

0
a(t,X(t))dt+

∫ s

0
b(t,X(t))dW (t), 0 < s ≤ T, (3.21)

and it is unique, (why?). Hence, we have constructed existence and uniqueness of
solutions of (3.21) by forward Euler approximations. Let X be the solution of (3.21).
From now on we use indistinctly also the notation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 < t ≤ T
X(0) = X0. (3.22)

These notes focus on the Euler method to approximate stochastic differential equations
(3.22). The following result motivates that there is no method with higher order
convergence rate than the Euler method to control the strong error

∫ 1
0 E[(X(t)−X̄(t))2]dt,

since even for the simplest equation dX = dW any linear approximation Ŵ of W , based
on N function evaluations, satisfies

Theorem 3.7. Let Ŵ (t) = f(t,W (t1), . . . ,W (tN )) be any approximation of W (t),
which for fixed t is based on any linear function f(t, ·) : RN → R, and a partition
0 = t0 < . . . < tN = 1 of [0, 1], then the strong approximation error is bounded from
below by (∫ 1

0
E[(W (t)− Ŵ (t))2]dt

)1/2

≥ 1√
6N

, (3.23)

which is the same error as for the Euler method based on constant time steps and linear
interpolation between the time steps.
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Figure 3.2: Optimal choice for weight functions αi.

Proof. The linearity of f(t, ·) implies that

Ŵ (t) ≡
N∑
i=1

αi(t)∆Wi

where αi : [0, 1]→ R, i = 1, . . . , N are any functions. The idea is to choose the functions
αi : [0, 1]→ R, i = 1, . . . , N in an optimal way, and see that the minimum error satisfies
(3.23). We have∫ 1

0
E[(W (t)− Ŵ (t))2]dt

=

∫ 1

0

(
E[W 2(t)]− 2

N∑
i=1

αi(t)E[W (t)∆Wi] +
N∑

i,j=1

αi(t)αj(t)E[∆Wi∆Wj ]
)
dt

=

∫ 1

0
tdt− 2

∫ 1

0

N∑
i=1

E[W (t)∆Wi]αidt+

∫ 1

0

N∑
i=1

α2
i (t)∆tidt

and in addition

E[W (t)∆Wi] =


∆ti, ti+1 < t

(t− ti), ti < t < ti+1

0, t < ti.

(3.24)

Perturbing the functions αi, to αi+εδi, ε << 1, around the minimal value of
∫ 1

0 E[
(
W (t)− Ŵ (t)

)2
]dt

gives the following conditions for the optimum choice of αi, cf. Figure 3.2:

−2E[W (t)∆Wi] + 2α∗i (t)∆ti = 0, i = 1, . . . , N.

and hence
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min

∫ 1

0
E[W (t)− Ŵ (t)]2dt =

∫ 1

0
tdt−

∫ 1

0

N∑
i=1

E[W (t)∆Wi]
2

∆ti
dt

=︸︷︷︸
(3.24)

N∑
n=1

(tn + ∆tn/2)∆tn −
N∑
n=1

(
tn∆tn +

∫ tn+1

tn

(t− tn)2

∆tn
dt

)

=
N∑
n=1

(∆tn)2/6 ≥ 1

6N
.

where Exercise 3.8 is used in the last inequality and proves the lower bound of the
approximation error in the theorem. Finally, we note that by (3.24) the optimal

α∗i (t) = E[W (t)∆Wi]
∆ti

is infact linear interpolation of the Euler method.

Exercise 3.8. To verify the last inequality in the previous proof, compute

min
∆t

N∑
n=1

(∆tn)2

subject to

N∑
n=1

(∆tn) = 1.

3.2 Itô’s Formula

Recall that using a forward Euler discretization we found the relation∫ T

0
W (s)dW (s) = W 2(T )/2− T/2, or

W (s)dW (s) = d(W 2(s)/2)− ds/2, (3.25)

whereas in the deterministic case we have y(s)dy(s) = d(y2(s)/2). The following useful
theorem with Itô ’s formula generalizes (3.25) to general functions of solutions to the
stochastic differential equations.

Theorem 3.9. Suppose that the assumptions in Theorem 2.10 hold and that X satisfies
the stochastic differential equation

dX(s) = a(s,X(s))ds+ b(s,X(s))dW (s), s > 0

X(0) = X0,

and let g : (0,+∞) × R → R be a given bounded function in C2((0,∞) × R). Then
y(t) ≡ g(t,X(t)) satisfies the stochastic differential equation

dy(t) =

(
∂tg(t,X(t)) + a(t,X(t))∂xg(t,X(t)) +

b2(t,X(t))

2
∂xxg(t,X(t))

)
dt

+ b(t,X(t))∂xg(t,X(t))dW (t), (3.26)
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Proof. We want to prove the Itô formula in the integral sense

g(τ,X(τ))− g(0, X(0))

=

∫ τ

0

(
∂tg(t,X(t)) + a(s,X(s))∂xg(t,X(t)) +

b2(t,X(t))

2
∂xxg(t,X(t))

)
dt

+

∫ τ

0
b(t,X(t))∂xg(t,X(t))dW (t).

Let X̄ be a forward Euler approximation (3.1) and (3.2) of X, so that

∆X̄ ≡ X̄(tn + ∆tn)− X̄(tn) = a(tn, X̄(tn))∆tn + b(tn, X̄(tn))∆Wn. (3.27)

Taylor expansion of g up to second order gives

g(tn + ∆tn, X̄(tn + ∆tn))− g(tn, X̄(tn))

= ∂tg(tn, X̄(tn))∆tn + ∂xg(tn, X̄(tn))∆X̄(tn)

+
1

2
∂ttg(tn, X̄(tn))∆t2n + ∂txg(tn, X̄(tn))∆tn∆X̄(tn)

+
1

2
∂xxg(tn, X̄(tn))(∆X̄(tn))2 + o(∆t2n + |∆X̄n|2). (3.28)

The combination of (3.27) and (3.28) shows

g(tm, X̄(tm))− g(0, X̄(0)) =
m−1∑
n=0

(
g(tn + ∆tn, X̄(tn + ∆tn))− g(tn, X̄(tn))

)
=

m−1∑
n=0

∂tg∆tn +
m−1∑
n=0

(ā∂xg∆tn + b̄∂xg∆Wn) +
1

2

m−1∑
n=0

(b̄)2∂xxg(∆Wn)2

+
m−1∑
n=0

(
(b̄∂txg + āb̄∂xxg)∆tn∆Wn + (

1

2
∂ttg + ā∂txg +

1

2
ā2∂xxg)∆t2n

)
+
m−1∑
n=0

o(∆t2n + |∆X̄(tn)|2). (3.29)

Let us first show that

m−1∑
n=0

b̄2∂xxg(X̄)(∆Wn)2 →
∫ t

0
b2∂xxg(X)ds,

as ∆tmax → 0. It is sufficient to establish

Y ≡ 1

2

m−1∑
n=0

(b̄)2∂xxg((∆Wn)2 −∆tn)→ 0, (3.30)

since (3.10) implies
∑m−1

n=0 (b̄)2∂xxg∆tn →
∫ t

0 b
2∂xxgds. Use the notation

αi = ((b̄)2∂xxg)(ti, X̄(ti)) and independence to obtain
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E[Y 2] =
∑
i,j

E[αiαj((∆Wi)
2 −∆ti)((∆Wj)

2 −∆tj)]

= 2
∑
i>j

E[αiαj((∆Wj)
2 −∆tj)((∆Wi)

2 −∆ti)] +
∑
i

E[α2
i ((∆Wi)

2 −∆ti)
2]

= 2
∑
i>j

E[αiαj((∆Wj)
2 −∆tj)]E[((∆Wi)

2 −∆ti)]︸ ︷︷ ︸
=0

+
∑
i

E[α2
i ]E[((∆Wi)

2 −∆ti)
2]︸ ︷︷ ︸

=2∆t2i

→ 0,

when ∆tmax → 0, therefore (3.30) holds. Similar analysis with the other terms in (3.29)
concludes the proof.

Remark 3.10. The preceding result can be remembered intuitively by a Taylor expansion
of g up to second order

dg = ∂tg dt+ ∂xg dX +
1

2
∂xxg (dX)2

and the relations: dtdt = dtdW = dWdt = 0 and dWdW = dt.

Example 3.11. Let X(t) = W (t) and g(x) = x2

2 . Then

d

(
W 2(s)

2

)
= W (s)dW (s) + 1/2(dW (s))2 = W (s)dW (s) + ds/2.

Exercise 3.12. Let X(t) = W (t) and g(x) = x4. Verify that

d(W 4(s)) = 6W 2(s)ds+ 4W 3(s)dW (s)

and
d

ds
(E[g(W (s))]) =

d

ds
(E[(W (s))4]) = 6s.

Apply the last result to compute E[W 4(t)] and E[(W 2(t)− t)2].

Exercise 3.13. Generalize the previous exercise to deteremine E[W 2n(t)].

Example 3.14. We want to compute
∫ T

0 tdW (t). Take g(t, x) = tx, and again X(t) =
W (t), so that

tW (t) =

∫ t

0
sdW (s) +

∫ t

0
W (s)ds

and finally
∫ t

0 sdW (s) = tW (t)−
∫ t

0 W (s)ds.
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Exercise 3.15. Consider the stochastic differential equation

dX(t) = −a(X(t)−X∞)dt+ bdW (t),

with initial data X(0) = X0 ∈ R and given a, b ∈ R.

(i) Using that

X(t)−X(0) = −a
∫ t

0
(X(s)−X∞)dt+ bW (t),

take the expected value and find an ordinary differential equation for the function
m(t) ≡ E[X(t)].

(ii) Use Itô ’s formula to find the differential of (X(t))2 and apply similar ideas as in
(i) to compute V ar[X(t)].

(iii) Use an integrating factor to derive the exact solution (2.10) in Example 2.19.
Compare your results from (i) and (ii) with this exact solution.

Example 3.16. Consider the stochastic differential equation

dS(t) = rS(t)dt+ σS(t)dW (t),

used to model the evolution of stock values. The values of r (interest rate) and σ
(volatility) are assumed to be constant. Our objective is to find a closed expression for
the solution, often called geometric Brownian motion. Let g(x) = ln(x). Then a direct
application of Itô formula shows

d ln(S(t)) = dS(t)/S(t)− 1/2

(
σ2S2(t)

S2(t)

)
dt = rdt− σ2

2
dt+ σdW (t),

so that

ln

(
S(T )

S(0)

)
= rT − Tσ2

2
+ σW (T )

and consequently

S(T ) = e(r−σ
2

2
)T+σW (T )S(0). (3.31)

Example 3.17 (Verification of strong and weak convergence). From the explicit formula
(3.31) we can numerically verify the results on strong and weak convergence, given in
Remark 3.5 for the Euler method. In the following code we calculate the strong and
weak error by comparing the Euler simulation and the explicit value (3.31) at final time
for several realizations. This is then tested for different time steps and the result in
Figure 3.3 confirms a strong convergence of order 1/2 and a weak convergence of order 1.

33



% Stong and weak convergence for the Euler method

steps = [1:6];

for i=steps

N = 2^i % number of timesteps

randn(’state’,0);

T = 1; dt = T/N; t = 0:dt:T;

r = 0.1; sigma = 0.5; S0 = 100;

M = 1E6; % number of realisations

S = S0*ones(M,1); % S(0) for all realizations

W = zeros(M,1); % W(0) for all realizations

for j=1:N

dW = sqrt(dt)*randn(M,1); % Wiener increments

S = S + S.*(r*dt+sigma*dW); % processes at next time step

W = W + dW; % Brownian paths at next step

end

ST = S0*exp( (r-sigma^2/2)*T + sigma*W ); % exact final value

wError(i) = mean(S-ST)); % weak error

sError(i) = sqrt(mean((S-ST).^2)); % strong error

end

dt = T./2^steps;

loglog(dt,abs(wError),’o--’,dt,dt,’--’,dt,abs(sError),’o-’,dt,sqrt(dt))

Exercise 3.18. Suppose that we want to simulate S(t), defined in the previous example
by means of the forward Euler method, i.e.

Sn+1 = (1 + r∆tn + σ∆Wn)Sn, n = 0, . . . , N

As with the exact solution S(t), we would like to have Sn positive. Then we could choose
the time step ∆tn to reduce the probability of hitting zero

P (Sn+1 < 0|Sn = s) < ε� 1. (3.32)

Motivate a choice for ε and find then the largest ∆tn satisfying (3.32).

Remark 3.19. The Wiener process has unbounded variation i.e.

E

[∫ T

0
|dW (s)|

]
= +∞.

This is the reason why the forward and backward Euler methods give different results.
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Figure 3.3: Strong and weak convergence.

We have for a uniform mesh ∆t = T/N

E[
N−1∑
i=0

|∆Wi|] =
N−1∑
i=0

E[|∆Wi|] =
N−1∑
i=0

√
2∆ti
π

=

√
2T

π

N−1∑
i=0

√
1/N =

√
2NT

π
→∞, as N →∞.

3.3 Stratonovich Integrals

Recall from Chapter 2 that Itô integrals are constructed via forward Euler discretizations
and Stratonovich integrals via the trapezoidal method, see Exercise 3.20. Our goal here
is to express a Stratonovich integral∫ T

0
g(t,X(t)) ◦ dW (t)

in terms of an Itô integral. Assume then that X(t) satisfies the Itô differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t).
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Then the relation reads∫ T

0
g(t,X(t)) ◦ dW (t) =

∫ T

0
g(t,X(t))dW (t)

+
1

2

∫ T

0
∂xg(t,X(t))b(t,X(t))dt. (3.33)

Therefore, Stratonovich integrals satisfy

dg(t,X(t)) = ∂tg(t,X(t))dt+ ∂xg(t,X(t)) ◦ dX(t), (3.34)

just like in the usual calculus.

Exercise 3.20. Use that Stratonovich integrals g(t,X(t)) ◦ dW (t) are defined by limits
of the trapezoidal method to verify (3.33), cf. Remark 2.9.

Exercise 3.21. Verify the relation (3.34), and use this to show that dS(t) = rS(t)dt+
σS(t) ◦ dW (t) implies S(t) = ert+σW (t)S(0).

Remark 3.22 (Stratonovich as limit of piecewise linear interpolations). Let RN (t) ≡
W (tn)+ W (tn+1)−W (tn)

tn+1−tn (t−tn), t ∈ (tn, tn+1) be a piecewise linear interpolation of W on a

given grid, and define XN by dXN (t) = a(XN (t))dt+ b(XN (t))dRN (t). Then XN → X
in L2, where X is the solution of the Stratonovich stochastic differential equation

dX(t) = a(X(t))dt+ b(X(t)) ◦ dW (t).

In the special case when a(x) = rx and b(x) = σx this follows from

d(ln(XN (t))) = rdt+ σdRN ,

so that
XN (t) = ert+σR

N (t)X(0).

The limit N →∞ implies XN (t)→ X(t) = ert+σW (t)X(0), as in Exercise 3.21.

3.4 Systems of SDE

Let W1,W2, . . . ,Wl be scalar independent Wiener processes. Consider the l-dimensional
Wiener process W = (W1,W2, . . . ,Wl) and X : [0, T ]× Ω→ Rd satisfying for given drift
a : [0, T ]× Rd → Rd and diffusion b : [0, T ]× Rd → Rd×l the Itô stochastic differential
equation

dXi(t) = ai(t,X(t))dt+ bij(t,X(t))dWj(t), for i = 1 . . . d. (3.35)

Here and below we use of the summation convention

αjβj ≡
∑
j

αjβj ,

i.e., if the same summation index appears twice in a term, the term denotes the sum over
the range of this index. Theorem 3.9 can be directly generalized to the system (3.35).
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Theorem 3.23 (Itô ’s formula for systems). Let

dXi(t) = ai(t,X(t))dt+ bij(t,X(t))dWj(t), for i = 1 . . . d,

and consider a smooth and bounded function g : R+ × Rd → R. Then

dg(t,X(t)) =

{
∂tg(t,X(t)) + ∂xig(t,X(t))ai(t,X(t))

+
1

2
bik(t,X(t))∂xixjg(t,X(t))bjk(t,X(t))

}
dt

+∂xig(t,X(t))bij(t,X(t))dWj(t),

or in matrix vector notation

dg(t,X(t)) =

{
∂tg(t,X(t)) +∇xg(t,X(t)) a(t,X(t))

+
1

2
trace

(
b(t,X(t))bT(t,X(t))∇2

xg(t,X(t))
)}

dt

+∇xg(t,X(t)) b(t,X(t))dW (t).

Remark 3.24. The formal rules to remember Theorem 3.23 are Taylor expansion to
second order and

dWjdt = dtdt = 0

dWidWj = δijdt =

{
dt if i = j,
0 otherwise.

(3.36)

Exercise 3.25. Verify Remark 3.24.
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Chapter 4

The Feynman-Kǎc Formula and
the Black-Scholes Equation

4.1 The Feynman-Kǎc Formula

Theorem 4.1. Suppose that a, b and g are smooth and bounded functions. Let X be the
solution of the stochastic differential equation,

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t),

and let u(x, t) = E[g(X(T ))|X(t) = x]. Then u is the solution of the Kolmogorov
backward equation

L∗u ≡ ut + aux +
1

2
b2uxx = 0, t < T (4.1)

u(x, T ) = g(x).

Proof. Define û to be the solution of (4.1), i.e. L∗û = 0, û(·, T ) = g(·). We want to
verify that û is the expected value E[g(X(T ))| X(t) = x]. The Itô formula applied to
û(X(t), t) shows

dû(X(t), t) =

(
ût + aûx +

1

2
b2ûxx

)
dt + bûxdW

= L∗ûdt + bûxdW.

Integrate this from t to T and use L∗û = 0 to obtain

û(X(T ), T ) − û(X(t), t) = g(X(T )) − û(X(t), t)

=

∫ T

t
bûxdW (s).

Take the expectation and use that the expected value of the Itô integral is zero,

E[g(X(T ))|X(t) = x]− û(x, t) = E[

∫ T

t
b(s,X(s))ûx(X(s), s)dW (s)|X(t) = x]

= 0.
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Therefore
û(x, t) = E[g(X(T ))|X(t) = x],

which proves the theorem since the solution of Equation (4.1) is unique.

Exercise 4.2 (Maximum Principle). Let the function u satisfy

ut + aux +
1

2
b2uxx = 0, t < T

u(x, T ) = g(x).

Prove that u satisfies the maximum principle

max
0<t<T, x∈R

u(t, x) ≤ max
x∈R

g(x).

4.2 Black-Scholes Equation

Example 4.3. Let f(t, S(t)) be the price of a European put option where S(t) is the
price of a stock satisfying the stochastic differential equation dS = µSdt+ σSdW , where
the volatility σ and the drift µ are constants. Assume also the existence of a risk free
paper, B, which follows dB = rBdt, where r, the risk free rent is a constant. Find the
partial differential equation of the price, f(t, S(t)), of an option.

Solution. Consider the portfolio I = −f + α S + βB for α(t), β(t) ∈ R. Then the Itô
formula and self financing, i.e. dI = −df + αdS + βdB, imply

dI = −df + αdS + βdB

= −(ft + µSfS +
1

2
σ2S2fSS)dt − fSσSdW + α(µSdt+ σSdW ) + βrBdt

=

(
−(ft + µSfS +

1

2
σ2S2fSS) + (αµS + βrB)

)
dt + (−fS + α)σSdW.

Now choose α such that the portfolio I becomes riskless, i.e. α = fS , so that

dI =

(
−(ft + µSfS +

1

2
σ2S2fSS) + (fSµS + βrB)

)
dt

=

(
−(ft +

1

2
σ2S2fSS) + βrB

)
dt. (4.2)

Assume also that the existence of an arbitrage opportunity is precluded, i.e. dI = rIdt,
where r is the interest rate for riskless investments, to obtain

dI = r(−f + αS + βB)dt

= r(−f + fSS + βB)dt. (4.3)
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Equation (4.2) and (4.3) show that

ft + rsfs +
1

2
σ2s2fss = rf, t < T, (4.4)

and finally at the maturity time T the contract value is given by definition, e.g. a
standard European put option satisfies for a given exercise price K

f(T, s) = max(K − s, 0).

The deterministic partial differential equation (4.4) is called the Black-Scholes equation.
The existence of adapted β is shown in the exercise below.

Exercise 4.4 (Replicating portfolio). It is said that the self financing portfolio, αS+βB,
replicates the option f . Show that there exists an adapted stochastic process β(t),
satisfying self financing, d(αS + βB) = αdS + βdB, with α = fS .

Exercise 4.5. Verify that the corresponding equation (4.4) holds if µ, σ and r are given
functions of time and stock price.
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Exercise 4.6 (Simulation of a replicating portfolio). Assume that the previously de-
scribed Black-Scholes model holds and consider the case of a bank that has written (sold)
a call option on the stock S with the parameters

S(0) = S0 = 760, r = 0.06, σ = 0.65, K = S0.

with an exercise date, T = 1/4 years. The goal of this exercise is to simulate the
replication procedure described in Exercise 4.4, using the exact solution of the Black
Scholes call price, computed by the Octave/Matlab code

% Black-Scholes call option computation

function y = bsch(S,T,K,r,sigma);

normal = inline(’(1+erf(x/sqrt(2)))/2’,’x’);

d1 = (log(S/K)+(r+.5*sigma^2)*T)/sigma/sqrt(T);

d2 = (log(S/K)+(r-.5*sigma^2)*T)/sigma/sqrt(T);

y = S*normal(d1)-K*exp(-r*T)*normal(d2);

To this end, choose a number of hedging dates, N , and time steps ∆t ≡ T/N . Assume
that β(0) = −fS(0, S0) and then

• Write a code that computes the ∆ ≡ ∂f(0, S0)/∂S0 of a call option.

• Generate a realization for S(n∆t, ω), n = 0, . . . , N .

• Generate the corresponding time discrete realizations for the processes αn and βn
and the portfolio value, αnSn + βnBn.

• Generate the value after settling the contract at time T ,

αNSN + βNBN −max(SN −K, 0).

Compute with only one realization, and several values of N , say N = 10, 20, 40, 80. What
do you observe? How would you proceed if you don’t have the exact solution of the
Black-Scholes equation?

Theorem 4.7 (Feynman-Kǎc). Suppose that a, b, g, h and V are bounded smooth func-
tions. Let X be the solution of the stochastic differential equation dX(t) = a(t,X(t))dt+
b(t,X(t))dW (t) and let

u(x, t) = E[g(X(T ))e
∫ T
t V (s,X(s))ds|X(t) = x]

+ E[−
∫ T

t
h(s,X(s))e

∫ s
t V (τ,X(τ))dτds|X(t) = x].
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Then u is the solution of the partial differential equation

L∗V u ≡ ut + aux +
1

2
b2uxx + V u = h, t < T (4.5)

u(x, T ) = g(x).

Proof. Define û to be the solution of the equation (4.5), i.e. L∗V û = h and let

G(s) ≡ e
∫ s
t V (τ,X(τ))dτ . We want to verify that û is the claimed expected value.

We have by Itô ’s formula, with L∗û = ût + aûx + 1
2b

2ûxx,

d(û(s,X(s))e
∫ s
t V (τ,X(τ))dτ ) = d(û(s,X(s))G)

= Gdû + ûdG

= G(L∗ûdt + bûxdW ) + ûV Gdt,

Integrate both sides from t to T , take the expected value and use L∗û = L∗V û− V û =
h− V û to obtain

E[g(X(t))G(T ) | X(t) = x]− û(x, t)

= E[

∫ T

t
GL∗û ds] + E[

∫ T

t
bGûx dW ] + E[

∫ T

t
ûV G ds]

= E[

∫ T

t
hG ds] − E[

∫ T

t
ûV G ds] + E[

∫ T

t
ûV G ds]

= E[

∫ T

t
hG ds|X(t) = x].

Therefore

û(x, t) = E[g(X(T ))G(T )|X(t) = x] − E[

∫ T

t
hG ds|X(t) = x].

Remark 4.8. Compare Black-Scholes equation (4.4) with Equation (4.5): then u
corresponds to f , X to S̃, a(t, x) = rx, b(t, x) = σx, V = −r and h = 0. Using the
Feynman-Kac formula, we obtain
f(t, S̃(t)) = E[e−r(T−t) max(K − S̃(T ), 0)], with dS̃ = rS̃dt+ σS̃dW , which establishes
the important relation between approximation based on the Monte Carlo method and
partial differential equations discussed in Chapter 1.

Corollary 4.9. Let u(x, t) = E[g(X(T ))|X(t) = x] =
∫
R g(y)P (y, T ;x, t) dy. Then

the density, P as a function of the first two variables, solves the Kolmogorov forward
equation, also called the Fokker-Planck equation,

−∂sP (y, s;x, t)− ∂y
(
a(y, s)P (y, s;x, t)

)
+

1

2
∂2
y

(
b2(y, s)P (y, s;x, t)

)
︸ ︷︷ ︸

=:LP

= 0, s > t

P (y, t;x, t) = δ(x− y),

where δ is the Dirac-delta measure concentrated at zero.
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Proof. Assume LP̂ = 0, P̂ (y, t;x, t) = δ(x − y). The Feynman-Kǎc formula implies
L∗u = 0, so that integration by part shows

0 =

∫ T

t

∫
R
L∗y,su(y, s)P̂ (y, s;x, t) dyds

=

[∫
R
u(y, s)P̂ (y, s;x, t) dy

]s=T
s=t

+

∫ T

t

∫
R
u(y, s)Ly,sP̂ (y, s;x, t) dyds

=

[∫
R
u(y, s)P̂ (y, s;x, t) dy

]s=T
s=t

.

Consequently,

u(x, t) =

∫
R
g(y)P̂ (y, T ;x, t) dy

= E[g(X(T ))|X(t) = x],

for all functions g. Therefore P̂ is the density function P . Hence P solves LP = 0.

Exercise 4.10 (Limit probability distribution). Consider the Ornstein-Uhlenbeck process
defined by

dX(s) = (m−X(s))ds+
√

2dW (s),

X(0) = x0.

Verify by means of the Fokker-Plank equation that there exist a limit distribution for
X(s), when s→∞.

Exercise 4.11. Assume that S(t) is the price of a single stock. Derive a Monte-Carlo
and a PDE method to determine the price of a contingent claim with the contract∫ T

0 h(t, S(t)) dt, for a given function h, replacing the usual contract max(S(T )−K, 0)
for European call options.

Exercise 4.12. Derive the Black-Scholes equation for a general system of stocks S(t) ∈
Rd solving

dSi = ai(t, S(t))dt+
d∑
j=1

bij(t, S(t))dWj(t)

and a rainbow option with the contract f(T, S(T )) = g(S(T )) for a given function
g : Rd → R, for example

g(S) = max

(
1

d

d∑
i=1

Si −K, 0

)
.
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Chapter 5

The Monte-Carlo Method

This chapter gives the basic understanding of simulation of expected values E[g(X(T ))] for
a solution, X, of a given stochastic differential equation with a given function g. In general
the approximation error has the two parts of statistical error and time discretization
error, which are analyzed in the next sections. The estimation of statistical error is
based on the Central Limit Theorem. The error estimate for the time discretization error
of the Euler method is directly related to the proof of Feyman-Kǎc’s theorem with an
additional residual term measuring the accuracy of the approximation, which turns out
to be first order in contrast to the half order accuracy for strong approximation.

5.1 Statistical Error

Consider the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t)

on t0 ≤ t ≤ T, how can one compute the value E[g(X(T ))]? The Monte-Carlo method is
based on the approximation

E[g(X(T ))] '
N∑
j=1

g(X(T ;ωj))

N
,

where X is an approximation of X, e.g. the Euler method. The error in the Monte-Carlo
method is

E[g(X(T ))]−
N∑
j=1

g(X(T ;ωj))

N

= E[g(X(T ))− g(X(T ))]−
N∑
j=1

g(X(T ;ωj))− E[g(X(T ))]

N
. (5.1)

In the right hand side of the error representation (5.1), the first part is the time
discretization error, which we will consider in the next subsection, and the second part
is the statistical error, which we study here.
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Example 5.1. Compute the integral I =
∫

[0,1]d f(x)dx by the Monte Carlo method,

where we assume f(x) : [0, 1]d → R.

Solution. We have

I =

∫
[0,1]d

f(x) dx

=

∫
[0,1]d

f(x)p(x) dx ( where p is the uniform density function)

= E[f(x)] ( where x is uniformly distributed in [0, 1]d)

'
N∑
n=1

f(x(ωn))

N

≡ IN ,

where {x(ωn)} is sampled uniformly in the cube [0, 1]d, by sampling the components
xi(ωn) independent and uniformly on the interval [0, 1].

The Central Limit Theorem is the fundamental result to understand the statistical
error of Monte Carlo methods.

Theorem 5.2 (The Central Limit Theorem). Assume ξn, n = 1, 2, 3, . . . are independent,
identically distributed (i.i.d) and E[ξn] = 0, E[ξ2

n] = 1. Then

N∑
n=1

ξn√
N
⇀ ν, (5.2)

where ν is N(0, 1) and ⇀ denotes convergence of the distributions, also called weak
convergence, i.e. the convergence (5.2) means E[g(

∑N
n=1 ξn/

√
N)] → E[g(ν)] for all

bounded and continuous functions g.

Proof. Let f(t) = E[eitξn ]. Then

f (m)(t) = E[imξmn e
itξn ], (5.3)

and

E[eit
∑N
n=1 ξn/

√
N ] = f

(
t√
N

)N
=

(
f(0) +

t√
N
f ′(0) +

1

2

t2

N
f ′′(0) + o

(
t2

N

))N
.

The representation (5.3) implies

f(0) = E[1] = 1,

f ′(0) = iE[ξn] = 0,

f ′′(0) = −E[ξ2
n] = −1.
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Therefore

E[eit
∑N
n=1 ξn/

√
N ] =

(
1− t2

2N
+ o

(
t2

N

))N
→ e−t

2/2, as N →∞

=

∫
R

eitxe−x
2/2

√
2π

dx, (5.4)

and we conclude that the Fourier transform (i.e. the characteristic function) of
∑N

n=1 ξn/
√
N

converges to the right limit of Fourier transform of the standard normal distribution. It
is a fact, cf. [D], that convergence of the Fourier transform together with continuity of
the limit Fourier transform at 0 implies weak convergence, so that

∑N
n=1 ξn/

√
N ⇀ ν,

where ν is N(0, 1). The exercise below verifies this last conclusion, without reference to
other results.

Exercise 5.3. Show that (5.4) implies

E[g(
N∑
n=1

ξn/
√
N)]→ E[g(ν)] (5.5)

for all bounded continuous functions g. Hint: study first smooth and quickly decaying
functions gs, satisying gs(x) =

∫∞
−∞ e

−itxĝs(t)dt/(2π) with the Fourier transform ĝs of gs
satisfying ĝs ∈ L1(R); show that (5.4) implies

E[gs(
N∑
n=1

ξn/
√
N)]→ E[gs(ν)];

then use Chebychevs inequality to verify that no mass of
∑N

n=1 ξn/
√
N escapes to infinity;

finally, let χ(x) be a smooth cut-off function which is one for |x| ≤ N and zero for |x| > 2N
and split the general bounded continuous function g into g = gs + g(1− χ) + (gχ− gs),
where gs is an arbitrary close approximation to gχ; use the conclusions above to prove
(5.5).

Example 5.4. What is the error of IN − I in Example 5.1?

Solution. Let the error εN be defined by

εN =
N∑
n=1

f(xn)

N
−
∫

[0,1]d
f(x)dx

=
N∑
n=1

f(xn)− E[f(x)]

N
.
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By the Central Limit Theorem,
√
NεN ⇀ σν, where ν is N(0, 1) and

σ2 =

∫
[0,1]d

f2(x)dx−

(∫
[0,1]d

f(x)dx

)2

=

∫
[0,1]d

(
f(x)−

∫
[0,1]d

f(x)dx

)2

dx.

In practice, σ2 is approximated by

σ̂2 =
1

N − 1

N∑
n=1

(
f(xn)−

N∑
m=1

f(xm)

N

)2

.

One can generate approximate random numbers, so called pseudo random numbers,
by for example the method

ξi+1 ≡ aξi + b mod n

where a and n are relative prime and the initial ξ0 is called the seed, which determines
all other ξi. For example the combinations n = 231, a = 216 + 3 and b = 0, or
n = 231 − 1, a = 75 and b = 0 are used in practise. In Monte Carlo computations, we
use the pseudo random numbers {xi}Ni=1, where xi = ξi

n ∈ [0, 1], which for N � 231

behave approximately as independent uniformly distributed variables.

Theorem 5.5. The following Box-Müller method generates two independent normal ran-
dom variables x1 and x2 from two independent uniformly distributed variables y1 and y2

x1 =
√
−2 log(y2) cos(2πy1)

x2 =
√
−2 log(y2) sin(2πy1).

Sketch of the Idea. The variables x and y are independent standard normal variables
if and only if their joint density function is e−(x2+y2)/2/2π. We have

e−(x2+y2)/2dxdy = re−r
2/2drdθ = d(e−r

2/2)dθ

using x = rcosθ, y = rsinθ and 0 ≤ θ < 2π, 0 ≤ r <∞. The random variables θ and r
can be sampled by taking θ to be uniformly distributed in the interval [0, 2π) and e−r

2/2

to be uniformly distributed in (0, 1], i.e. θ = 2πy1, and r =
√
−2log(y2).

Example 5.6. Consider the stochastic differential equation dS = rSdt+ σSdW , in the
risk neutral formulation where r is the riskless rate of return and σ is the volatility. Then

ST = S0 e
rT−σ

2

2
T+σ

√
Tν

where ν is N(0, 1). The values of a call option, fc, and put option, fp, are by Remark 4.8

fc = e−rTE[max(S(T )−K, 0)]

and
fp = e−rTE[max(K − S(T ), 0)].

47



Example 5.7. Consider the system of stochastic differential equations,

dSi = rSidt+
M∑
j=1

σijSidWj , i = 1, ...,M.

Then

Si(T ) = Si(0) e
rT−

∑M
j=1

(
σij
√
Tνj−

σ2
ij
2
T

)

where νj are independent and N(0, 1). A rainbow call option, based on Sav = 1
M

∑M
i=1 Si,

can then be simulated by the Monte Carlo method and

fc = e−rTE[max(Sav(T )−K, 0)].

5.2 Time Discretization Error

Consider the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 ≤ t ≤ T,

and let X be the forward Euler discretization of X. Then

X(tn+1)−X(tn) = a(tn, X(tn))∆tn + b(tn, X(tn))∆Wn, (5.6)

where ∆tn = tn+1 − tn and ∆Wn = W (tn+1)−W (tn) for a given discretization 0 = t0 <
t1 < ... < tN = T. Equation (5.6) can be extended, for theoretical use, to all t by

X(t)−X(tn) =

∫ t

tn

ā(s,X)ds+

∫ t

tn

b̄(s,X)dW (s), tn ≤ t < tn+1,

where, for tn ≤ s < tn+1,

ā(s,X) = a(tn, X(tn)), (5.7)

b̄(s,X) = b(tn, X(tn)).

Theorem 5.8. Assume that a, b and g are smooth and decay sufficiently fast as |x| → ∞.
Then there holds

E[g(X(T ))− g(X(T ))] = O(max ∆t).

Proof. Let u satisfy the equation

L∗u ≡ ut + aux +
b2

2
uxx = 0, t < T (5.8)

u(x, T ) = g(x). (5.9)

The Feynman-Kǎc formula shows

u(x, t) = E[g(X(T ))|X(t) = x]
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and in particular

u(0, X(0)) = E[g(X(T ))]. (5.10)

Then by the Itô formula,

du(t,X(t)) =

(
ut + āux +

b̄2

2
uxx

)
(t,X(t))dt+ b̄ux(t,X(t))dW

(5.8)
=

(
−aux −

b2

2
uxx + āux +

b̄2

2
uxx

)
(t,X(t))dt+ b̄ux(t,X(t))dW

=

{
(ā− a)ux(t,X(t)) +

(
b̄2

2
− b2

2

)
uxx(t,X(t))

}
dt

+ b̄(t,X)ux(t,X(t))dW.

Evaluate the integral from 0 to T,

u(T,X(T ))− u(0, X(0)) =

∫ T

0
(ā− a)ux(t,X(t))dt+

∫ T

0

b̄2 − b2

2
uxx(t,X(t))dt

+

∫ T

0
b̄(t,X(t))uxdW.

Take the expected value and use (5.10) to obtain

E[g(X(T )) − g(X(T ))]

=

∫ T

0
E[(ā− a)ux] +

1

2
E[(b̄2 − b2)uxx]dt+ E

[∫ T

0
b̄uxdW

]
=

∫ T

0
E[(ā− a)ux] +

1

2
E[(b̄2 − b2)uxx]dt.

The following Lemma 5.9 proves the Theorem.

Lemma 5.9. There holds for tn ≤ t < tn+1

f1(t) ≡ E[(ā(t,X)− a(t,X(t)))ux(t,X(t))] = O(∆tn),

f2(t) ≡ E[(b̄2(t,X)− b2(t,X(t)))uxx(t,X(t))] = O(∆tn).

Proof. Since ā(t,X) = a(tn, X(tn)),

f1(tn) = E[(ā(tn, X)− a(tn, X(tn)))ux(tn, X(tn))] = 0. (5.11)

Provided |f ′1(t)| ≤ C, the initial condition (5.11) implies that f1(t) = O(∆tn), for
tn ≤ t < tn+1. Therefore, it remains to show that |f ′1(t)| ≤ C. Let α(t, x) = −(a(t, x)−
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a(tn, X(tn)))ux(t, x), so that f(t) = E[α(t,X(t))]. Then by Itô ’s formula

df

dt
=

d

dt
E
[
α(t,X(t))

]
= E

[
dα(t,X(t))

]
/dt

= E

[(
αt + āαx +

b̄2

2
αxx

)
dt+ αxb̄dW

]
/dt

= E

[
αt + āαx +

b̄2

2
αxx

]
= O(1).

Therefore there exists a constant C such that |f ′(t)| ≤ C, for tn < t < tn+1, and
consequently

f1(t) ≡ E[
(
ā(t,X)− a(t,X(t))

)
ux(t,Xt)] = O(∆tn), for tn ≤ t < tn+1.

Similarly, we can also prove

f2(t) ≡ E[
(
b̄2(t,X)− b2(t,X(t))

)
uxx(t,Xt)] = O(∆tn), for tn ≤ t < tn+1.

Example 5.10. Consider the stochastic volatility model,

dS = ωSdt+ σSdZ (5.12)

dσ = ασdt+ vσdW

where Z and W are Brownian motions with correlation coefficient ρ, i.e. E[dZdW ] = ρdt.
We can then construct Z and W from the independent W1 and W2 by

W = W1, Z = ρW1 +
√

1− ρ2 W2.
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Exercise 5.11. In the risk neutral formulation a stock price solves the stochastic
differential equation

dS = rSdt+ σSdW (t),

with constant interest rate r and volatility σ.

(i) Show that

S(T ) = S(0)erT−
σ2

2
T+σW (T ). (5.13)

(ii) Use equation (5.13) to simulate the price

f(0, S(0)) = e−rTE[ max (S(T )−K, 0) ]

of an European call option by a Monte-Carlo method.

(iii) Compute also the corresponding ∆ = ∂f(0, S)/∂S by approximating with a differ-
ence quotient and determine a good choice of your approximation of ′′∂S′′.

(iv) Estimate the accuracy of your results. Suggest a better method to solve this
problem.

Exercise 5.12. Assume that a system of stocks solves

dSi
Si(t)

= rdt+

d∑
j=1

σijdWj(t) i = 1, ..., d

where Wj are independent Brownian motions.

(i) Show that

Si(T ) = S(0)erT+
∑d
j=1(σijWj(T )− 1

2
σ2
ijT ).

(ii) Let Sav ≡
∑d

i=1 Si/d and simulate the price of the option above with S(T ) replaced
by Sav(T ). Estimate the accuracy of your results. Can you find a better method
to solve this problem?

Exercise 5.13 (An example of variance reduction). Consider the computation of a call
option on an index Z,

πt = e−r(T−t)E[max(Z(T )−K, 0)], (5.14)

where Z is the average of d stocks,

Z(t) ≡ 1

d

d∑
i=1

Si(t)

and
dSi(t) = rSi(t)dt+ σiSi(t)dWi(t), i = 1, . . . , d
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with volatilities
σi ≡ 0.2 ∗ (2 + sin(i)) i = 1, . . . , d.

The correlation between Wiener processes is given by

E[dWi(t)dWi′(t)] = exp(−2 |i− i′|/d))dt 1 ≤ i, i′ ≤ d.

The goal of this exercise is to experiment with two different variance reduction techniques,
namely the antithetic variates and the control variates.

From now on we take d = 10, r = 0.04 and T = 0.5 in the example above.

(i) Implement a Monte Carlo approximation with for the value in (5.14). Estimate
the statistical error. Choose a number of realizations such that the estimate for
the statistical error is less than 1% of the value we want to approximate.

(ii) Same as (i) but using antithetic variates. The so called antithetic variates technique
reduces the variance in a sample estimator A(M ;Y ) by using another estimator
A(M ;Y ′) with the same expectation as the first one, but which is negatively
correlated with the first. Then, the improved estimator is A(M ; 1

2(Y + Y ′)). Here,
the choice of Y and Y ′ relates to the Wiener process W and its reflection along
the time axis, −W , which is also a Wiener process , i.e.

πt ≈
1

M

M∑
j=1

{max(Z(W (T, ωj))−K, 0) + max(Z(−W (T, ωj))−K, 0)}
2

.

(iii) Same as (i) but using control variates to reduce the variance. The control variates
technique is based on the knowledge of an estimator Y ′′, positively correlated with
Y , whose expected value E[Y ′′] is known and relatively close to the desired E[Y ],
yielding Y − Y ′′ + E[Y ′′] as an improved estimator.

For the application of control variates to (5.14) use the geometric average

Ẑ(t) ≡ {
d∏
i=1

Si(t)}
1
d ,

compute
π̂t = e−r(T−t)E[max(Ẑ(T )−K, 0)]

exactly (hint: find a way to apply Black-Scholes formula). Then approximate

πt ≈ π̂t +
e−r(T−t)

M

M∑
j=1

{
max(Z(W (T, ωj))−K, 0)−max(Ẑ(W (T, ωj))−K, 0)

}
.

(iv) Discuss the results from (i)-(iii). Does it pay to use variance reduction?
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Chapter 6

Finite Difference Methods

This section introduces finite difference methods for approximation of partial differential
equations. We first apply the finite difference method to a partial differential equation
for a financial option problem, which is more efficiently computed by partial differential
methods than Monte Carlo techniques. Then we discuss the fundamental Lax Equivalence
Theorem, which gives the basic understanding of accuracy and stability for approximation
of differential equations.

6.1 American Options

Assume that the stock value, S(t), evolves in the risk neutral formulation by the Itô geo-
metric Brownian motion

dS = rSdt+ σSdW.

An American put option is a contract that gives the possibility to sell a stock for a fixed
price K up to time T . Therefore the derivation of option values in Chapter 4 shows that
European and American options have the formulations:

(i) The price of an European put option is

f(t, s) ≡ E[ e−r(T−t) max
(
K − S(T ), 0

)
| S(t) = s ].

(ii) The price of an American option is obtained by maximizing over all sell time τ
strategies, which depend on the stock price up to the sell time,

fA(t, s) ≡ max
t≤τ≤T

E[ e−r(τ−t) max
(
K − S(τ), 0

)
| S(t) = s ]. (6.1)

How to find the optimal selling strategy for an American option? Assume that selling is
only allowed at the discrete time levels 0,∆t, 2∆t, . . . , T . Consider the small time step
(T −∆t, T ). By assumption the option is not sold in the step. Therefore the European
value f(t, s) holds, where f(T, s) = max(K − s, 0) and for T −∆t < t < T

ft + rSfS +
1

2
σ2S2fSS = rf. (6.2)
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If, for a fixed stock price s = S(T − ∆t), there holds f(T − ∆t, s) < max(K − s, 0)
then keeping the option gives the expected value f(T −∆t, s) which is clearly less than
the value max(K − s, 0) obtained by selling at time T −∆t. Therefore it is optimal to
sell if f(T − ∆t, s) < max(K − s, 0) ≡ fF . Modify the initial data at t = T − ∆t to
max(f(T −∆t, s), fF ) and repeat the step (6.2) for (T − 2∆t, T −∆t) and so on. The
price of the American option is obtained as the limit of this solution as ∆t→ 0.

Example 6.1. A corresponding Monte Carlo method based on (6.1) requires simulation
of expected values E[e−rτ max(K − S(τ), 0)] for many different possible selling time
strategies τ until an approximation of the maximum values is found. Since the τ need to
depend on ω, with M time steps and N realizations there are MN different strategies.

Note that the optimal selling strategy

τ = τ∗ = inf
v
{v : t ≤ v ≤ T, fA

(
v, S(v)

)
= max

(
K − S(v), 0

)
}

for the American option, which is a function of fA, seems expensive to evaluate by Monte
Carlo technique, but is obtained directly in the partial differential formulation above and
below. This technique is a special case of the so called dynamic programming method,
which we shall study systematically for general optimization problems in a later Chapter,
cf. also the last example in Chapter 1.

Here and in Exercise 6.2 is a numerical method to determine the value of an American
option:

(1) Discretize the computational domain [0, T ]× [s0, s1] and let

fA(n∆t, i∆S) ' f̄n,i, f̄N,i = max
(
K − i∆S, 0

)
.

(2) Use the Euler and central difference methods for the equation (6.2)

∂tfA ' f̄n,i−f̂n−1,i

∆t ∂SfA ' f̄n,i+1−f̄n,i−1

2∆S

∂SSfA ' f̄n,i+1−2f̄n,i+f̄n,i−1

(∆S)2 fA ' f̄n,i.

(3) Make a Black-Scholes prediction for each time step

f̂n−1,i = f̄n,i(1− r∆t− σ2i2∆t) + f̄n,i+1(
1

2
ri∆t+

1

2
σ2i2∆t)

+ f̄n,i−1(−1

2
ri∆t+

1

2
σ2i2∆t).

(4) Compare the prediction with selling by letting

f̄n−1,i = max
(
f̂n−1,i,max(K − i∆S, 0)

)
,

and go to the next time Step 3 by decreasing n by 1.
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Exercise 6.2. The method above needs in addition boundary conditions at S = s0

and S = s1 for t < T . How can s0, s1 and these conditions be choosen to yield a good
approximation?

Exercise 6.3. Give a trinomial tree interpretation of the finite difference scheme

f̄n+1,i = f̄n,i(1 + r∆t+ σ2i2∆t) + f̄n,i+1(−1

2
ri∆t− 1

2
σ2i2∆t)

+ f̄n,i−1(
1

2
ri∆t− 1

2
σ2i2∆t),

for Black-Scholes equation of an European option. Binomial and trinomial tree approxi-
mations are frequent in the finance economy literature, cf. [J. Hull].

Let us now study general finite difference methods for partial differential equations.
The motivation to introduce general finite difference methods in contrast to study only
the binomial and trinomial tree methods is that higher order methods, such as the
Crank-Nicolson method below, are more efficient to solve e.g. (6.2).

The error for the binomial and the trinomial tree method applied to the partial
differential equation (6.2) for a European option is ε = O(∆t+ (∆s)2), which is clearly
the same for the related forward and backward Euler methods. The work is then
A = O((∆t∆s)−1), so that A = O(ε−3/2). For the Crank-Nicolsen method the accuracy
is ε = O((∆t)2 + (∆s)2) and the work is still A = O((∆t∆s)−1), which implies the
improved bound A = O(ε−1). For a general implicit method with a smooth exact solution
in [0, T ]× Rd the accuracy is ε = O((∆t)q + (∆s)p) with the miminal work ( using e.g.

the multigrid method ) A = O( q
2

∆t(
p2

∆s)
d), which gives A = O( q2

ε1/q
( p2

ε1/p
)d). In the next

section we derive these error estimates for some model problems.

6.2 Lax Equivalence Theorem

Lax equivalence theorem defines the basic concepts for approximation of linear well posed
differential equations. Here, well posed means that the equation is solvable for data in a
suitable function space and that the solution operator is bounded. We will first formally
state the result without being mathematically precise with function spaces and norms.
Then we present two examples with proofs based on norms and functions spaces.

The ingredients of Lax Equivalence Theorem 6.4 are:

(0) an exact solution u, satisfying the linear well posed equation Lu = f , and an
approximation uh, obtained from Lhuh = fh;

(1) stability, the approximate solution operators ‖L−1
h ‖ are uniformly bounded in h

and the exact solution operator ‖L−1‖ is bounded;

(2) consistency, fh → f and Lhu→ Lu as the mesh size h→ 0; and

(3) convergence, uh → u as the mesh size h→ 0.
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Theorem 6.4. The combination of stability and consistency is equivalent to convergence.

The idea of the proof. To verify convergence, consider the identity

u− uh = L−1
h [ Lhu− Lhuh ]

Step(0)
= L−1

h [ (Lhu− Lu) + (f − fh) ].

Stability implies that L−1
h is bounded and consistency implies that

Lhu− Lu→ 0 and f − fh → 0,

and consequently the convergence holds

lim
h→0

(u− uh) = lim
h→0

L−1
h [ (Lhu− Lu) + (f − fh) ]

= 0.

Clearly, consistency is necessary for convergence. Example 6.7, below, indicates that also
stability is necessary.

Let us now more precisely consider the requirements and norms to verify stability
and consistency for two concrete examples of ordinary and partial differential equations.

Example 6.5. Consider the forward Euler method for the ordinary differential equation

u′(t) = Au(t) 0 < t < 1,
u(0) = u0.

(6.3)

Verify the conditions of stability and consistency in Lax Equivalence Theorem.

Solution. For a given partition, 0 = t0 < t1 < ... < tN = 1, with ∆t = tn+1 − tn, let

un+1 ≡ (I + ∆tA)un

= Gnu0 where G = (I + ∆tA).

Then:

(1) Stability means |Gn|+ |Hn| ≤ eKn∆t for some K, where | · | denotes the matrix

norm |F | ≡ sup{v∈Rn:|v|≤1} |Fv| with the Euclidean norm |w| ≡
√∑

iw
2
i in Rn.

(2) Consistency means |(G−H)v| ≤ C(∆t)p+1, where H = e∆tA and p is the order of
accuracy. In other words, the consistency error (G−H)v is the local approximation
error after one time step with the same initial data v.

This stability and consistency imply the convergence

| un − u(n∆t) | = | (Gn −Hn)u0 |
= | (Gn−1 +Gn−2H + ...+GHn−2 +Hn−1)(G−H)u0 |
≤ | Gn−1 +Gn−2H + ...+GHn−2 +Hn−1||(G−H)u0 |
≤ C(∆t)p+1n| u0 |eKn∆t

≤ C ′(∆t)p,

with the convergence rate O(∆tp). For example, p = 1 in case of the Euler method and
p = 2 in case of the trapezoidal method.
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Example 6.6. Consider the heat equation

ut = uxx t > 0, (6.4)

u(0) = u0.

Verify the stability and consistency conditions in Lax Equivalence Theorem.

Solution. Apply the Fourier transform to equation (6.4),

ût = −ω2û

so that
û(t, ω) = e−tω

2
û0(ω).

Therefore Ĥ = e−∆tω2
is the exact solution operator for one time step, i.e. û(t+ ∆t) =

Ĥû(t). Consider the difference approximation of (6.4)

un+1,i − un,i
∆t

=
un,i+1 − 2un,i + un,i−1

∆x2
,

which shows

un+1,i = un,i

(
1− 2∆t

∆x2

)
+

∆t

∆x2
(un,i+1 + un,i−1) ,

where un,i ' u(n∆t, i∆x). Apply the Fourier transform to obtain

ûn+1 =

[(
1− 2∆t

∆x2

)
+

∆t

∆x2

(
ej∆xω + e−j∆xω

)]
ûn

=

[
1− 2

∆t

∆x2
+ 2

∆t

∆x2
cos(∆xω)

]
ûn

= Ĝûn ( Let Ĝ ≡ 1− 2
∆t

∆x2
+ 2

∆t

∆x2
cos(∆xω))

= Ĝn+1û0.

(i) We have

2π‖un‖2L2 = ‖ûn‖2L2 (by Parseval’s formula)

= ‖Ĝnû0‖2L2

≤ sup
ω
|Ĝn|2 ‖û0‖2L2 .

Therefore the condition

‖Ĝn‖L∞ ≤ eKn∆t (6.5)

implies L2-stability.
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(ii) We have
2π‖u1 − u(∆t)‖2L2 = ‖Ĝû0 − Ĥû0‖2L2 ,

where u1 is the approximate solution after one time step. Let λ ≡ ∆t
∆x2 , then we

obtain

|(Ĝ− Ĥ)û0| = |
(

1− 2λ+ 2λ cos ∆xω − e−∆tω2
)
û0|

= O(∆t2)ω4|û0|,

since for 0 ≤ ∆tω2 ≡ x ≤ 1

|1− 2λ + 2λ cos
√
x/λ− e−x|

=
(

1− 2λ+ 2λ
(

1− x

2λ
+O(x2)

)
−
(
1− x+O(x2)

))
≤ Cx2 = C(∆t)2ω4,

and for 1 < ∆tω2 = x

|1− 2λ+ 2λ cos
√
x/λ− e−x| ≤ C = C

(∆t)2ω4

x2
≤ C(∆t)2ω4.

Therefore the consistency condition reduces to

‖ (Ĝ− Ĥ)û0 ‖ ≤ ‖K∆t2ω4û0‖ (6.6)

≤ K∆t2‖∂xxxxu0‖L2 .

(iii) The stability (6.5) holds if

‖Ĝ‖L∞ ≡ sup
ω
|Ĝ(ω)| = max

ω
|1− 2λ+ 2λ cos ∆xω| ≤ 1, (6.7)

which requires

λ =
∆t

∆x2
≤ 1

2
. (6.8)

The L2-stability condition (6.7) is called the von Neuman stability condition.

(iv) Convergence follows by the estimates (6.6), (6.7) and ‖Ĥ‖L∞ ≤ 1

2π‖ un − u(n∆t) ‖2L2 = ‖ (Ĝn − Ĥn)û0 ‖2L2

= ‖ (Ĝn−1 + Ĝn−2Ĥ + ...+ Ĥn−1)(Ĝ− Ĥ)û0 ‖2L2

≤ ‖ Ĝn−1 + Ĝn−2Ĥ + ...+ Ĥn−1‖2L∞‖(Ĝ− Ĥ)û0 ‖2L2

≤ (Kn(∆t)2)2 ≤ (KT∆t)2,

and consequently the convergence rate is O(∆t).
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Let us study the relations between the operators G and H for the simple model
problem

u′ + λu = 0

u(0) = 1

with an approximate solution un+1 = r(x)un (where x = λ∆t):

(1) the exact solution satisfies

r(x) = e−λ∆t = e−x,

(2) the forward Euler method

un+1 − un
∆t

+ λun = 0 ⇒ r(x) = 1− x,

(3) the backward Euler method

un+1 − un
∆t

+ λun+1 = 0 ⇒ r(x) = (1 + x)−1,

(4) the trapezoidal method

un+1 − un
∆t

+
λ

2
(un + un+1) = 0 ⇒ r(x) =

(
1 +

x

2

)−1 (
1− x

2

)
,

and

(5) the Lax-Wendroff method

un+1 = un −∆tλun +
1

2
∆t2λ2un ⇒ r(x) = 1− x+

1

2
x2.

The consistence |e−λ∆t − r(λ∆t)| = O(∆tp+1) holds with p = 1 in case 2 and 3, and
p = 2 in case 4 and 5. The following stability relations hold:

(1) |r(x)| ≤ 1 for x ≥ 0 in case 1, 3 and 4.

(2) r(x)→ 0 as x→∞ in case 1 and 3.

(3) r(x)→ 1 as x→∞ in case 4.

Property (1) shows that for λ > 0 case 3 and 4 are unconditionally stable. However
Property (2) and (3) refine this statement and imply that only case 3 has the same
damping behavior for large λ as the exact solution. Although the damping Property (2) is
not necessary to prove convergence it is advantegous to have for proplems with many time
scales, e.g. for a system of equations (6.3) where A has eigenvalues λi ≤ 1, i = 1, . . . , N
and some λj � −1, ( why?).

The unconditionally stable methods, e.g. case 3 and 4, are in general more efficient
to solve parabolic problems, such as the Black-Scholes equation (6.2), since they require
for the same accuracy fewer time steps than the explicit methods, e.g. case 2 and 5.
Although the work in each time step for the unconditionally stable methods may be
larger than for the explicit methods.
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Exercise 6.7. Show by an example that ‖un‖2L2 →∞ if for some ω there holds |Ĝ(ω)| >
1, in Example 6.6, i.e. the von Neumann stability condition does not hold.
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Chapter 7

The Finite Element Method and
Lax-Milgram’s Theorem

This section presents the finite element method, including adaptive approximation and
error estimates, together with the basic theory for elliptic partial differential equations.
The motivation to introduce finite element methods is the computational simplicity and
efficiency for construction of stable higher order discretizations for elliptic and parabolic
differential equations, such as the Black and Scholes equation, including general boundary
conditions and domains. Finite element methods require somewhat more work per degree
of freedom as compared to finite difference methods on a uniform mesh. On the other
hand, construction of higher order finite difference approximations including general
boundary conditions or general domains is troublesome.

In one space dimension such an elliptic problem can, for given functions a, f, r :
(0, 1)→ R, take the form of the following equation for u : [0, 1]→ R,

(−au′)′ + ru = f on (0, 1)
u(x) = 0 for x = 0, x = 1,

(7.1)

where a > 0 and r ≥ 0. The basic existence and uniqueness result for general elliptic
differential equations is based on Lax-Milgram’s Theorem, which we will describe in
section 7.3. We shall see that its stability properties, based on so called energy estimates,
is automatically satisfied for finite element methods in contrast to finite difference
methods.

Our goal, for a given tolerence TOL, is to find an approximation uh of (7.1) satisfying

‖u− uh‖ ≤ TOL,

using few degrees of freedom by adaptive finite element approximation. Adaptive methods
are based on:

(1) an automatic mesh generator,

(2) a numerical method ( e.g. the finite element method),
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(3) a refinement criteria (e.g. a posteriori error estimation), and

(4) a solution algorithm ( e.g. the multigrid method).

7.1 The Finite Element Method

A derivation of the finite element method can be divided into:

(1) variational formulation in an infinite dimensional space V ,

(2) variational formulation in a finite dimensional subspace, Vh ⊂ V ,

(3) choice of a basis for Vh, and

(4) solution of the discrete system of equations.

Step 1. Variational formulation in an infinite dimensional space, V .

Consider the following Hilbert space,

V =

{
v : (0, 1)→ R :

∫ 1

0

(
v2(x) + (v′(x))2

)
dx <∞, v(0) = v(1) = 0

}
.

Multiply equation (7.1) by v ∈ V and integrate by parts to get∫ 1

0
fv dx =

∫ 1

0
((−au′)′ + ru)v dx

=
[
−au′v

]1
0

+

∫ 1

0
(au′v′ + ruv) dx (7.2)

=

∫ 1

0
(au′v′ + ruv) dx.

Therefore the variational formulation of (7.1) is to find u ∈ V such that

A(u, v) = L(v) ∀v ∈ V, (7.3)

where

A(u, v) =

∫ 1

0
(au′v′ + ruv) dx,

L(v) =

∫ 1

0
fv dx.

Remark 7.1. The integration by parts in (7.2) shows that a smooth solution of equa-
tion (7.1) satisfies the variational formulation (7.3). For a solution of the variational
formulation (7.3) to also be a solution of the equation (7.1), we need additional conditions
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on the regularity of the functions a, r and f so that u′′ is continuous. Then the following
integration by parts yields, as in (7.2),

0 =

∫ 1

0
(au′v′ + ruv − fv) dx =

∫ 1

0
(−(au′)′ + ru− f)v dx.

Since this holds for all v ∈ V , it implies that

−(au′)′ + ru− f = 0,

provided −(au′)′ + ru− f is continuous.

Step 2. Variational formulation in the finite dimensional subspace, Vh.

First divide the interval (0, 1) into 0 = x0 < x2 < ... < xN+1 = 1, i.e. generate the mesh.
Then define the space of continuous piecewise linear functions on the mesh with zero
boundary conditions

Vh = {v ∈ V : v(x) |(xi,xi+1)= cix+ di, i.e. v is linear on (xi, xi+1), i = 0, · · · , N
and v is continuous on (0, 1)}.

The variational formulation in the finite dimensional subspace is to find uh ∈ Vh such
that

A(uh, v) = L(v) ∀v ∈ Vh. (7.4)

The function uh is a finite element solution of the equation (7.1). Other finite element
solutions are obtained from alternative finite dimensional subspaces, e.g. based on
piecewise quadratic approximation.

Step 3. Choose a basis for Vh.

Let us introduce the basis functions φi ∈ Vh, for i = 1, ..., N , defined by

φi(xj) =

{
1 if i = j
0 if i 6= j.

(7.5)

A function v ∈ Vh has the representation

v(x) =
N∑
i=1

viφi(x),

where vi = v(xi), i.e. each v ∈ Vh can be written in a unique way as a linear combination
of the basis functions φi.

Step 4. Solve the discrete problem (7.4).

Using the basis functions φi, for i = 1, ..., N from Step 3, we have

uh(x) =

N∑
i=1

ξiφi(x),
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where ξ = (ξ1, ..., ξN )T ∈ RN , and choosing v = φj in (7.4), we obtain

L(φj) = A(uh, φj)

= A(
∑
i

φiξi, φj) =
∑
i

ξiA(φi, φj),

so that ξ ∈ RN solves the linear system

Ãξ = L̃, (7.6)

where

Ãji = A(φi, φj),

L̃j = L(φj).

The N ×N matrix Ã is called the stiffness matrix and the vector L̃ ∈ RN is called the
load vector.

Example 7.2. Consider the following two dimensional problem,

−div(k∇u) + ru = f in Ω ⊂ R2 (7.7)

u = g1 on Γ1

∂u

∂n
= g2 on Γ2,

where ∂Ω = Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. The variational formulation has the following
form.

(i) Variational formulation in the infinite dimensional space.

Let

Vg =

{
v(x) :

∫
Ω

(v2(x) + |∇v(x)|2) dx <∞, v|Γ1 = g

}
.

Take a function v ∈ V0, i.e. v = 0 on Γ1, then by (7.7)∫
Ω
fv dx = −

∫
Ω
div(k∇u)v dx+

∫
Ω
ruv dx

=

∫
Ω
k∇u · ∇v dx−

∫
Γ1

k
∂u

∂n
v ds−

∫
Γ2

k
∂u

∂n
v ds+

∫
Ω
ruv dx

=

∫
Ω
k∇u · ∇v dx−

∫
Γ2

kg2v ds+

∫
Ω
ruv dx.

The variational formulation for the model problem (7.7) is to find u ∈ Vg1 such
that

A(u, v) = L(v) ∀v ∈ V0, (7.8)
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where

A(u, v) =

∫
Ω

(k∇u · ∇v + ruv) dx,

L(v) =

∫
Ω
fv dx+

∫
Γ2

kg2vds.

(ii) Variational formulation in the finite dimensional space.

Assume for simplicity that Ω is a polygonal domain which can be divided into a
triangular mesh Th = {K1, ...KN} of non overlapping triangles Ki and let
h = maxi(length of longest side of Ki). Assume also that the boundary function
g1 is continuous and that its restriction to each edge Ki ∩ Γ1 is a linear function.
Define

V h
0 = {v ∈ V0 : v|Ki is linear ∀Ki ∈ Th, v is continuous on Ω},

V h
g1

= {v ∈ Vg1 : v|Ki is linear ∀Ki ∈ Th, v is continuous on Ω},

and the finite element method is to find uh ∈ V h
g1

such that

A(uh, v) = L(v), ∀v ∈ V h
0 . (7.9)

(iii) Choose a basis for V h
0 .

As in the one dimensional problem, choose the basis φj ∈ V h
0 such that

φj(xi) =

{
1 i = j
0 i 6= j j = 1, 2, ..., N,

where xi, i = 1, . . . , N , are the vertices of the triangulation.

(iv) Solve the discrete system.

Let

uh(x) =
N∑
i=1

ξiφi(x), and ξi = uh(xi).

Then (7.9) can be written in matrix form,

Ãξ = L̃, where Ãji = A(φi, φj) and L̃j = L(φj).
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7.2 Error Estimates and Adaptivity

We shall now study a priori and a posteriori error estimates for finite element methods,
where

‖u− uh‖ ≤ E1(h, u, f) is an a priori error estimate,

‖u− uh‖ ≤ E2(h, uh, f) is an a posteriori error estimate.

Before we start, let us study the following theorem, which we will prove later,

Theorem 7.3 (Lax-Milgram). Let V be a Hilbert space with norm ‖ · ‖V and scalar
product (·, ·)V and assume that A is a bilinear functional and L is a linear functional
that satisfy:

(1) A is symmetric, i.e. A(v, w) = A(w, v) ∀v, w ∈ V ;

(2) A is V-elliptic, i.e. ∃ α > 0 such that A(v, v) ≥ α‖v‖2V ∀v ∈ V ;

(3) A is continuous, i.e. ∃ C ∈ R such that |A(v, w)| ≤ C‖v‖V ‖w‖V ; and

(4) L is continuous, i.e. ∃ Λ ∈ R such that |L(v)| ≤ Λ‖v‖V ∀v ∈ V.

Then there is a unique function u ∈ V such that A(u, v) = L(v) ∀v ∈ V, and the
stability estimate ‖u‖V ≤ Λ/α holds.

7.2.1 An A Priori Error Estimate

The approximation property of the space Vh can be characterized by

Lemma 7.4. Suppose Vh is the piecewise linear finite element space (7.4), which dis-
cretizes the functions in V , defined on (0, 1), with the interpolant π : V → Vh defined
by

πv(x) =
N∑
i=1

v(xi)φi(x), (7.10)

where {φi} is the basis (7.5) of Vh. Then

‖(v − πv)′‖L2(0,1) ≤

√∫ 1

0
h2v′′(x)2 dx ≤ Ch, (7.11)

‖v − πv‖L2(0,1) ≤

√∫ 1

0
h4v′′(x)2 dx ≤ Ch2,

where h = maxi (xi+1 − xi).
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Proof. Take v ∈ V and consider first (7.11) on an interval (xi, xi+1). By the mean value
theorem, there is for each x ∈ (xi, xi+1) a ξ ∈ (xi, xi+1) such that v′(ξ) = (πv)′(x).
Therefore

v′(x)− (πv)′(x) = v′(x)− v′(ξ) =

∫ x

ξ
v′′(s)ds,

so that ∫ xi+1

xi

|v′(x)− (πv)′(x)|2dx =

∫ xi+1

xi

(

∫ x

ξ
v′′(s)ds)2dx

≤
∫ xi+1

xi

|x− ξ|
∫ x

ξ
(v′′(s))2dsdx

≤ h2

∫ xi+1

xi

(v′′(s))2ds, (7.12)

which after summation of the intervals proves (7.11).
Next, we have

v(x)− πv(x) =

∫ x

xi

(v − πv)′(s)ds,

so by (7.12)∫ xi+1

xi

|v(x)− πv(x)|2dx =

∫ xi+1

xi

(

∫ x

xi

(v − πv)′(s)ds)2dx

≤
∫ xi+1

xi

|x− xi|
∫ x

xi

((v − πv)′)2(s)dsdx

≤ h4

∫ xi+1

xi

(v′′(s))2ds,

which after summation of the intervals proves the lemma.

Our derivation of the a priori error estimate

‖u− uh‖V ≤ Ch,

where u and uh satisfy (7.3) and (7.4), respectivly, uses Lemma 7.4 and a combination
of the following four steps:

(1) error representation based on the ellipticity

α

∫
Ω

(v2(x) + (v′(x))2) dx ≤ A(v, v) =

∫
Ω

(a(v′)2 + rv2) dx,

where α = infx∈(0,1)(a(x), r(x)) > 0,

(2) the orthogonality
A(u− uh, v) = 0 ∀v ∈ Vh,

obtained by Vh ⊂ V and subtraction of the two equations

A(u, v) = L(v) ∀v ∈ V by (7.3),

A(uh, v) = L(v) ∀v ∈ Vh by (7.4),
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(3) the continuity
|A(v, w)| ≤ C‖v‖V ‖w‖V ∀v, w ∈ V,

where C ≤ supx∈(0,1)(a(x), r(x)), and

(4) the interpolation estimates

‖(v − πv)′‖L2 ≤ Ch, (7.13)

‖v − πv‖L2 ≤ Ch2,

where h = max (xi+1 − xi).

To start the proof of an a priori estimate let e ≡ u− uh. Then by Cauchy’s inequality

A(e, e) = A(e, u− πu+ πu− uh)

= A(e, u− πu) +A(e, πu− uh)
Step2

= A(e, u− πu)

≤
√
A(e, e)

√
A(u− πu, u− πu),

so that by division of
√
A(e, e),√

A(e, e) ≤
√
A(u− πu, u− πu)

Step3
= C‖u− πu‖V

≡ C
√
‖u− πu‖2

L2 + ‖(u− πu)′‖2
L2

Step4
≤ Ch.

Therefore, by Step 1
α‖e‖2V ≤ A(e, e) ≤ Ch2,

which implies the a priori estimate

‖e‖V ≤ Ch,

where C = K(u).

7.2.2 An A Posteriori Error Estimate

Example 7.5. Consider the model problem (7.1), namely,{
−(au′)′ + ru = f in (0, 1),
u(0) = u(1) = 0.

Then √
A(u− uh, u− uh) ≤ C ‖a−

1
2 (f − ruh + a′u′h)h‖L2

≡ E(h, uh, f). (7.14)
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Proof. Let e = u− uh and let πe ∈ Vh be the nodal interpolant of e. We have

A(e, e) = A(e, e− πe) (by orthogonality)

= A(u, e− πe)−A(uh, e− πe).

Using the notation (f, v) ≡
∫ 1

0 fv dx, we obtain by integration by parts

A(e, e) = (f, e− πe)−
N∑
i=1

∫ xi+1

xi

(au′h(e− πe)′ + ruh(e− πe)) dx

= (f − ruh, e− πe)−
N∑
i=1

{
[au′h(e− πe)]xi+1

xi −
∫ xi+1

xi

(au′h)′(e− πe) dx
}

= (f − ruh + a′u′h, e− πe) ( since u′′h|(xi,xi+1) = 0, (e− πe)(xi) = 0)

≤ ‖a−
1
2h(f − ruh + a′u′h)‖L2‖a

1
2h−1(e− πe)‖L2 .

Lemma 7.6 implies √
A(e, e) ≤ C‖a−

1
2h(f − ruh + a′u′h)‖L2 ,

which also shows that
‖e‖V ≤ Ch,

where C = K ′(uh).

Lemma 7.6. There is a constant C, independent of u and uh, such that,

‖a
1
2h−1(e− πe)‖L2 ≤ C

√∫ 1

0
ae′e′ dx ≤ C

√
A(e, e)

Exercise 7.7. Use the interpolation estimates in Lemma 7.4 to prove Lemma 7.6.

7.2.3 An Adaptive Algorithm

We formulate an adaptive algorithm based on the a posteriori error estimate (7.14) as
follows:

(1) Choose an initial coarse mesh Th0 with mesh size h0.

(2) Compute the corresponding FEM solution uhi in Vhi .

(3) Given a computed solution uhi in Vhi , with the mesh size hi,

stop if E(hi, uhi , f) ≤ TOL
go to step 4 if E(hi, uhi , f) > TOL.
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(4) Determine a new mesh Thi+1
with mesh size hi+1 such that

E(hi+1, uhi , f) ∼= TOL,

by letting the error contribution for all elements be approximately constant, i.e.

‖a−
1
2h(f − ruh − a′u′h)‖L2(xi,xi+1)

∼= C, i = 1, . . . , N,

then go to Step 2.

7.3 Lax-Milgram’s Theorem

Theorem 7.8. Suppose A is symmetric, i.e. A(u, v) = A(v, u) ∀u, v ∈ V, then (Varia-
tional problem) ⇐⇒ (Minimization problem) with

(Var) Find u ∈ V such that A(u, v) = L(v) ∀v ∈ V,
(Min) Find u ∈ V such that F (u) ≤ F (v) ∀v ∈ V,

where

F (w) ≡ 1

2
A(w,w)− L(w) ∀w ∈ V.

Proof. Take ε ∈ R. Then

(⇒) F (u + εw) =
1

2
A(u+ εw, u+ εw)− L(u+ εw)

=

(
1

2
A(u, u)− L(u)

)
+ εA(u,w)− εL(w) +

1

2
ε2A(w,w)

≥
(

1

2
A(u, u)− L(u)

) (
since

1

2
ε2A(w,w) ≥ 0 and A(u,w) = L(w)

)
= F (u).

(⇐) Let g(ε) = F (u+ εw), where g : R→ R. Then

0 = g′(0) = 0 ·A(w,w) +A(u,w)− L(w) = A(u,w)− L(w).

Therefore
A(u,w) = L(w) ∀w ∈ V.

Theorem 7.9 (Lax-Milgram). Let V be a Hilbert space with norm ‖ · ‖V and scalar
product (·, ·)V and assume that A is a bilinear functional and L is a linear functional
that satisfy:

(1) A is symmetric, i.e. A(v, w) = A(w, v) ∀v, w ∈ V ;

(2) A is V-elliptic, i.e. ∃ α > 0 such that A(v, v) ≥ α‖v‖2V ∀v ∈ V ;
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(3) A is continuous, i.e. ∃ C ∈ R such that |A(v, w)| ≤ C‖v‖V ‖w‖V ; and

(4) L is continuous, i.e. ∃ Λ ∈ R such that |L(v)| ≤ Λ‖v‖V ∀v ∈ V.

Then there is a unique function u ∈ V such that A(u, v) = L(v) ∀v ∈ V, and the
stability estimate ‖u‖V ≤ Λ/α holds.

Proof. The goal is to construct u ∈ V solving the minimization problem F (u) ≤ F (v) for
all v ∈ V , which by the previous theorem is equivalent to the variational problem. The
energy norm, ‖v‖2 ≡ A(v, v), is equivalent to the norm of V, since by Condition 2 and 3,

α‖v‖2V ≤ A(v, v) = ‖v‖2 ≤ C‖v‖2V .

Let

β = infv∈V F (v). (7.15)

Then β ∈ R, since

F (v) =
1

2
‖v‖2 − L(v) ≥ 1

2
‖v‖2 − Λ‖v‖ ≥ −Λ2

2
.

We want to find a solution to the minimization problem minv∈V F (v). It is therefore
natural to study a minimizing sequence vi, such that

F (vi)→ β = inf
v∈V

F (v). (7.16)

The next step is to conclude that the vi infact converge to a limit:∥∥∥∥vi − vj2

∥∥∥∥2

=
1

2
‖vi‖2 +

1

2
‖vj‖2 −

∥∥∥∥vi + vj
2

∥∥∥∥2

( by the parallelogram law )

=
1

2
‖vi‖2 − L(vi) +

1

2
‖vj‖2 − L(vj)

−

(∥∥∥∥vi + vj
2

∥∥∥∥2

− 2L(
vi + vj

2
)

)

= F (vi) + F (vj)− 2F

(
vi + vj

2

)
≤ F (vi) + F (vj)− 2β ( by (7.15) )

→ 0, ( by (7.16) ).

Hence {vi} is a Cauchy sequence in V and since V is a Hilbert space ( in particular V is
a complete space) we have vi → u ∈ V.
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Finally F (u) = β, since

|F (vi)− F (u)| = |1
2

(‖vi‖2 − ‖u‖2)− L(vi − u)|

= |1
2
A(vi − u, vi + u)− L(vi − u)|

≤ (
C

2
‖vi + u‖V + Λ)‖vi − u‖V

→ 0.

Therefore there exists a unique (why?) function u ∈ V such that F (u) ≤ F (v) ∀v ∈ V.
To verify the stability estimate, take v = u in (Var) and use the ellipticity (1) and
continuity (3) to obtain

α‖u‖2V ≤ A(u, u) = L(u) ≤ Λ‖u‖V

so that

‖u‖V ≤
Λ

α
.

The uniqueness of u can also be verified from the stability estimate. If u1, u2 are two
solutions of the variational problem we have A(u1 − u2, v) = 0 for all v ∈ V . Therefore
the stability estimate implies ‖u1 − u2‖V = 0, i.e. u1 = u2 and consequently the solution
is unique.

Example 7.10. Determine conditions for the functions k, r and f : Ω→ R such that the
assumptions in the Lax-Milgram theorem are satisfied for the following elliptic partial
differential equation in Ω ⊂ R2

−div(k∇u) + ru = f in Ω

u = 0 on ∂Ω.

Solution. This problem satisfies (Var) with

V = {v :

∫
Ω

(v2(x) + |∇v(x)|2) dx <∞, and v|∂Ω = 0},

A(u, v) =

∫
Ω

(k∇u∇v + ruv) dx,

L(v) =

∫
Ω
fv dx,

‖v‖2V =

∫
Ω

(v2(x) + |∇v|2) dx.

Consequently V is a Hilbert space and A is symmetric and continuous provided k and r
are uniformly bounded.
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The ellipticity follows by

A(v, v) =

∫
Ω

(k|∇v|2 + rv2) dx

≥ α

∫
Ω

(v2(x) + |∇v|2) dx

= α‖v‖2H1 ,

provided α = infx∈Ω(k(x), r(x)) > 0.
The continuity of A is a consequence of

A(v, w) ≤ max(‖k‖L∞ , ‖r‖L∞)

∫
Ω

(|∇v||∇w|+ |v||w|)dx

≤ max(‖k‖L∞ , ‖r‖L∞)‖v‖H1‖w‖H1 ,

provided max(‖k‖L∞ , ‖r‖L∞) = C <∞.
Finally, the functional L is continuous, since

|L(v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖V ,

which means that we may take Λ = ‖f‖L2 provided we assume that f ∈ L2(Ω). Therefore
the problem satisfies the Lax-Milgram theorem.

Example 7.11. Verify that the assumption of the Lax-Milgram theorem are satisfied
for the following problem,

−∆u = f in Ω,

u = 0 on ∂Ω.

Solution. This problem satisfies (Var) with

V = H1
0 = {v ∈ H1 : v|∂Ω = 0},

H1 = {v :

∫
Ω

(v2(x) + |∇v(x)|2) dx <∞},

A(u, v) =

∫
Ω
∇u∇v dx,

L(v) =

∫
Ω
fv dx.

To verify the V-ellipticity, we use the Poincaré inequality, i.e. there is a constant C such
that

v ∈ H1
0 ⇒

∫
Ω
v2 dx ≤ C

∫
Ω
|∇u|2 dx. (7.17)
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In one dimension and Ω = (0, 1), the inequality (7.17) takes the form∫ 1

0
v2(x) dx ≤

∫ 1

0
(v′(x))2 dx, (7.18)

provided v(0) = 0. Since

v(x) = v(0) +

∫ x

0
v′(s) ds =

∫ x

0
v′(s) ds,

and by Cauchy’s inequality

v2(x) =

(∫ x

0
v′(s) ds

)2

≤ x

∫ x

0
v′(s)2 ds

≤
∫ 1

0
v′(s)2 ds since x ∈ (0, 1).

The V-ellipticity of A follows by (7.18) and

A(v, v) =

∫ 1

0
v′(x)2 dx =

1

2

∫ 1

0

(
(v′(x))2 dx+

1

2
(v′(x))2

)
dx

≥ 1

2

∫ 1

0
(v′(x)2 + v(x)2) dx

=
1

2
‖v‖2H1

0
∀v ∈ H1

0 .

The other conditions can be proved similarly as in the previous example. Therefore this
problem satisfies the Lax-Milgram theorem.
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Chapter 8

Markov Chains, Duality and
Dynamic Programming, by
Jonathan Goodman

8.1 Introduction

There are two main ideas in the arbitrage theory of pricing. One is that in complete
markets, everyone should agree on a common price – any other price leads to an arbitrage
opportunity. The other is that this price is the expected value of the cash flow with
respect to some probability model – risk neutral pricing. In the simplest case, this
probability model is a discrete Markov chain. This lecture describes how to compute
probabilities and expected values for discrete Markov chain models. This is the main
computational step in ”risk neutral“ option pricing.

The methods here compute the expected values by a time marching process that
uses the transition matrix. Another evolution process allows us to compute probabilities.
These evolution processes are related but not the same. The relation between the forward
evolution for probabilities and the backward evolution for expected values is called duality.
It is similar to the relation between a matrix and its transpose. The transpose of a
matrix is sometimes called its dual.

The method of risk neutral arbitrage pricing extends to other more technical situations,
but the main ideas are clear in the simple context of Markov chains. If the Markov chain
model is replaced by a stochastic differential equation model, then the transition matrix
is replaced by a partial differential operator – the ”generator“, and the matrix transpose
is replaced by the “dual” of this generator. This is the subject of future lectures.

Many financial instruments allow the holder to make decisions along the way that
effect the ultimate value of the instrument. American style options, loans that be repaid
early, and convertible bonds are examples. To compute the value of such an instrument,
we also seek the optimal decision strategy. Dynamic programming is a computational
method that computes the value and decision strategy at the same time. It reduces
the difficult “multiperiod decision problem” to a sequence of hopefully easier “single
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period” problems. It works backwards in time much as the expectation method does.
The tree method commonly used to value American style stock options is an example of
the general dynamic programming method.

8.2 Markov Chains

(This section assumes familiarity with basic probability theory using mathematicians’
terminology. References on this include the probability books by G. C. Rota, W. Feller,
Hoel and Stone, and B. V. Gnedenko.)

Many discrete time discrete state space stochastic models are stationary discrete
Markov chains. Such a Markov chain is characterized by its state space, S, and its
transition matrix, P . We use the following notations:

• x, y, . . .: possible states of the system, elements of S.

• The possible times are t = 0, 1, 2, . . ..

• X(t): the (unknown) state of the system at time t. It is some element of S.

• u(x, t) = Pr(X(t) = x). These probabilities satisfy an evolution equation moving
forward in time. We use similar notation for conditional probabilities, for example,
u(x, t|X(0) = x0) = Pr(X(t) = x|X(0) = x0).

• p(x, y) = Pr(x→ y) = Pr(X(t+1) = y|X(t) = x). These “transition probabilities”
are the elements of the transition matrix, P .

The transition probabilities have the properties:

0 ≤ p(x, y) ≤ 1 for all x ∈ S and y ∈ S. (8.1)

and ∑
y∈S

p(x, y) = 1 for all x ∈ S. (8.2)

The first is because the p(x, y) are probabilities, the second because the state x must go
somewhere, possibly back to x. It is not true that

(NOT ALWAYS TRUE)
∑
x∈S

p(x, y) = 1 . (NOT ALWAYS TRUE)

The Markov property is that knowledge of the state at time t is all the information
about the present and past relevant to predicting the future. That is:

Pr(X(t+ 1) = y|X(t) = x0, X(t− 1) = x1, . . .)

= Pr(X(t+ 1) = y|X(t) = x0) (8.3)

no matter what extra history information (X(t − 1) = x1, . . .) we have. This may be
thought of as a lack of long term memory. It may also be thought of as a completeness
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property of the model: the state space is rich enough to characterize the state of the
system at time t completely.

To illustrate this point, consider the model

Z(t+ 1) = aZ(t) + bZ(t− 1) + ξ(t) , (8.4)

where the ξ(t) are independent random variables. Models like this are used in “time
series analysis”. Here Z is a continuous variable instead a discrete variable to make the
example simpler. If we say that the state at time t is Z(t) then (8.4) is not a Markov
chain. Clearly we do better at predicting Z(t+ 1) if we know both Z(t) and Z(t− 1)
than if we know just Z(t). If we say that the state at time t is the two dimensional vector

X(t) =

(
Z(t)
Z(t− 1)

)
,

then (
Z(t)
Z(t− 1)

)
=

(
a b
1 0

)(
Z(t− 1)
Z(t− 2)

)
+

(
ξ(t)

0

)
may be rewriten

X(t+ 1) = AX(t) +

(
ξ(t)

0

)
.

Thus, X(t) is a Markov chain. This trick of expressing lag models with multidimensional
states is common in time series analysis.

The simpler of the evolutions, and the one less used in practice, is the forward
evolution for the probabilities u(x, t). Once we know the numbers u(x, t) for all x ∈ S
and a particular t, we can compute them for t+ 1. Proceding in this way, starting from
the numbers u(x, 0) for all x ∈ S, we can compute up to whatever T is desired. The
evolution equation for the probabilities u(x, t) is found using conditional probability:

u(x, t+ 1) = Pr(X(t+ 1) = x)

=
∑
y∈S

Pr(X(t+ 1) = x|X(t) = y) ·Pr(X(t) = y)

u(x, t+ 1) =
∑
y∈S

p(y, x)u(y, t) . (8.5)

To express this in matrix form, we suppose that the state space, S, is finite, and that
the states have been numbered x1, . . ., xn. The transition matrix, P , is n× n and has
(i, j) entry pij = p(xi, xj). We sometimes conflate i with xi and write pxy = p(x, y); until
you start programming the computer, there is no need to order the states. With this
convention, (8.5) can be interpreted as vector–matrix multiplication if we define a row
vector u(t) with components (u1(t), . . . , un(t)), where we have written ui(t) for u(xi, t).
As long as ordering is unimportant, we could also write ux(t) = u(x, t). Now, (8.5) can
be rewritten

u(t+ 1) = u(t)P . (8.6)
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Since u is a row vector, the expression Pu does not make sense because the dimensions
of the matrices are incompatible for matrix multiplication. The convention of using a
row vector for the probabilities and therefore putting the vector in the left of the matrix
is common in applied probability. The relation (8.6) can be used repeatedly1

u(1) = u(0)P and u(2) = u(1)P
→

u(2) = (u(0)P )P = u(0) (PP ) = u(0)P 2

to yield
u(t) = u(0)P t , (8.7)

where P t means P to the power t, not the transpose of P .
Actually, the Markov property is a bit stronger than (8.3). It applies not only to

events determined by time t+ 1, but to any events determined in the future of t. For
example, if A is the event X(t+ 3) = x or y and X(t+ 1) 6= X(t+ 4), then

Pr(A | X(t) = z and X(t− 1) = w) = Pr(A | X(t) = z) .

8.3 Expected Values

The more general and useful evolution equation is the backward evolution for expected
values. In the simplest situation, suppose that X(t) is a Markov chain, that the probability
distribution u(x, 0) = Pr(X(0) = x) is known, and that we want to evaluate E(V (X(T )).
We will call time t = 0 the present, time t = T the payout time, and times t = 1, · · · , T−1
intermediate times.

The backward evolution computed the desired expected value in terms of a collection
of other conditional expected values, f(x, t), where x ∈ S and t is an intermediate time.
We start with the final time values f(x, T ) = V (x) for all x ∈ S. We then compute the
numbers f(x, T − 1) using the f(x, t) and P . We continue in this way back to time t = 0.

The f(x, t) are expected values of the payout, given knowledge of the state at a future
intermediate time:

f(x, t) = E [V (X(T ))|X(t) = x] . (8.8)

Recall our convention that time 0 is the present time, time t > 0 is in the future, but
not as far in the future as the time, T , at which the payout is made. We may think of
the f(x, t) as possible expected values at the future intermediate time t. At time t we
would know the value of X(t). If that value were x, then the expected value of V (X(T ))
would be f(x, t).

Instead of computing f(x, t) directly from the definition (8.8), we can compute it in
terms of the f(x, t+ 1) using the transition matrix. If the system is in state x at time t,

1The most important fact in linear algebra is that matrix multiplication is associative: (AB)C = A(BC)
for any three matrices of any size, including row or column vectors, as long as the multiplication is
compatible.
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then the probability for it to be at state y at the next time is p(x→ y) = p(x, y). For
expectation values, this implies

f(x, t) = E [fT (X(T ))|X(t) = x]

=
∑
y∈S

E [fT (X(T ))|X(t+ 1) = y] ·Pr (X(t+ 1) = y | X(t) = x)

f(x, t) =
∑
y∈S

f(y, t+ 1)p(x, y) . (8.9)

It is clear from (8.8) that f(x, T ) = V (x); if we know the state at time T then we know
the payout exactly. From these, we compute all the numbers f(x, T − 1) using (8.9) with
t = T − 1. Continuing like this, we eventually get to t = 0. We may know X(0), the
state of the system at the current time. For example, if X(t) is the price of a stock at
time t, then X(0) = x0 is the current spot price. Then the desired expected value would
be f(x0, 0). Otherwise we can use

E [V (X(T ))] =
∑
x∈S

E [V (X(T ))|X(0) = x] ·Pr (X(0) = x)

=
∑
x∈S

f(x, 0)u(x, 0) .

All the values on the bottom line should be known.
Another remark on the interpretation of (8.9) will be helpful. Suppose we are at

state x at time t and wish to know the expected value of V (X(T )). In one time step,
starting from state x, we could go to state y at time t+ 1 with probability2 p(x, y). The
right side of (8.9) is the average over the possible y values, using probability p(x, y).
The quantities being averaged, f(y, t+ 1) are themselves expected values of V (X(T )).
Thus, we can read (8.9) as saying that the expected value is the expected value of the
expected values at the next time. A simple model for this situation is that we toss a
coin. With probability p we get payout U and with probability 1− p we get payout V .
Let us suppose that both U and V are random with expected values fU = E(U) and
fV = E(V ). The overall expected payout is p · fu + (1 − p) · fV . The Markov chain
situation is like this. We are at a state x at time t. We first choose state y ∈ S with
probability p(x, y). For each y at time t + 1 there is a payout probability, Uy, whose
probability distribution depends on y, t + 1, V , and the Markov chain. The overall
expected payout is the average of the expected values of the Uy, which is what (8.9) says.

As with the probability evolution equation (8.5), the equation for the evolution of
the expectation values (8.9) can be written in matrix form. The difference from the
probability evolution equation is that here we arrange the numbers fj = f(xj , t) into a
column vector, f(t). The evolution equation for the expectation values is then written in
matrix form as

f(t) = Pf(t+ 1) . (8.10)

2Here we should think of y as the variable and x as a parameter.
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This time, the vector goes on the right. If apply (8.10) repeatedly, we get, in place of
(8.7),

f(t) = P T−tf(T ) . (8.11)

There are several useful variations on this theme. For example, suppose that we have
a running payout rather than a final time payout. Call this payout g(x, t). If X(t) = x
then g(x, t) is added to the total payout that accumulates over time from t = 0 to t = T .
We want to compute

E

[
T∑
t=0

g(X(t), t)

]
.

As before, we find this by computing more specific expected values:

f(x, t) = E

[
T∑
t′=t

g(X(t′), t′)|X(t) = x

]
.

These numbers are related through a generalization of (8.9) that takes into account the
known contribution to the sum from the state at time t:

f(x, t) =
∑
y∈S

f(y, t+ 1)p(x, y) + g(x, t) .

The “initial condition”, given at the final time, is

f(x, T ) = g(x, T ) .

This includes the previous case, we take g(x, T ) = fT (x) and g(x, t) = 0 for t < T .
As a final example, consider a path dependent discounting. Suppose for a state x at

time t there is a discount factor r(x, t) in the range 0 ≤ r(x, t) ≤ 1. A cash flow worth
f at time t + 1 will be worth r(x, t)f at time t if X(t) = x. We want the discounted
value at time t = 0 at state X(0) = x of a final time payout worth fT (X(T )) at time T .
Define f(x, t) to be the value at time t of this payout, given that X(t) = x. If X(t) = x
then the time t+ 1 expected discounted (to time t+ 1) value is∑

y∈S
f(y, t+ 1)p(x, y) .

This must be discounted to get the time t value, the result being

f(x, t) = r(x, t)
∑
y∈S

f(y, t+ 1)p(x, y) .

8.4 Duality and Qualitative Properties

The forward evolution equation (8.5) and the backward equation (8.9) are connected
through a duality relation. For any time t, we compute (8.8) as

E [V (X(T ))] =
∑
x∈S

E [V (X(T ))|X(t) = x] ·Pr(X(t) = x)

=
∑
x∈S

f(x, t)u(x, t) . (8.12)
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For now, the main point is that the sum on the bottom line does not depend on t.
Given the constancy of this sum and the u evolution equation (8.5), we can give another
derivation of the f evolution equation (8.9). Start with∑

x∈S
f(x, t+ 1)u(x, t+ 1) =

∑
y∈S

f(y, t)u(y, t) .

Then use (8.5) on the left side and rearrange the sum:

∑
y∈S

(∑
x∈S

f(x, t+ 1)p(y, x)

)
u(y, t) =

∑
y∈S

f(y, t)u(y, t) .

Now, if this is going to be true for any u(y, t), the coefficients of u(y, t) on the left and
right sides must be equal for each y. This gives (8.9). Similarly, it is possible to derive
(8.5) from (8.9) and the constancy of the expected value.

The evolution equations (8.5) and (8.9) have some qualitative properties in common.
The main one being that they preserve positivity. If u(x, t) ≥ 0 for all x ∈ S, then
u(x, t+ 1) ≥ 0 for all x ∈ S also. Likewise, if f(x, t+ 1) ≥ 0 for all x, then f(x, t) ≥ 0 for
all x. These properties are simple consequences of (8.5) and (8.9) and the positivity of
the p(x, y). Positivity preservation does not work in reverse. It is possible, for example,
that f(x, t+ 1) < 0 for some x even though f(x, t) ≥ 0 for all x.

The probability evolution equation (8.5) has a conservation law not shared by (8.9).
It is ∑

x∈S
u(x, t) = const . (8.13)

independent of t. This is natural if u is a probability distribution, so that the constant is
1. The expected value evolution equation (8.9) has a maximum principle

max
x∈S

f(x, t) ≤ max
x∈S

f(x, t+ 1) . (8.14)

This is a natural consequence of the interpretation of f as an expectation value. The
probabilities, u(x, t) need not satisfy a maximum principle either forward of backward in
time.

This duality relation has is particularly transparent in matrix terms. The formula
(8.8) is expressed explicitly in terms of the probabilities at time t as∑

x∈S
f(x, T )u(x, T ) ,

which has the matrix form
u(T )f(T ) .

Written in this order, the matrix multiplication is compatible; the other order, f(T )u(T ),
would represent an n× n matrix instead of a single number. In view of (8.7), we may
rewrite this as

u(0)P T f(T ) .
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Because matrix multiplication is associative, this may be rewritten[
u(0)P t

]
·
[
P T−tf(T )

]
(8.15)

for any t. This is the same as saying that u(t)f(t) is independent of t, as we already saw.
In linear algebra and functional analysis, “adjoint” or “dual” is a fancy generalization

of the transpose operation of matrices. People who don’t like to think of putting the
vector to the left of the matrix think of uP as multiplication of (the transpose of) u, on
the right, by the transpose (or adjoint or dual) of P . In other words, we can do enough
evolution to compute an expected value either using P its dual (or adjoint or transpose).
This is the origin of the term “duality” in this context.

Exercise 8.1 (European options as a Markov chain). Consider the case with interest
rate r = 0. Then the finite differerence method in Example 6.1 for a European option
takes the form

f̄n−1,i = f̄n,i(1− σ2i2∆t) +
1

2
σ2i2f̄n,i+1∆t

+
1

2
σ2i2f̄n,i−1∆t,

which is a Markov chain model called the trinomial tree method. Identify the transition
probabilities.

8.5 Dynamic Programming

Dynamic programming is a method for valuing American style options and other financial
instruments that allow the holder to make decisions that effect the ultimate payout. The
idea is to define the appropriate value function, f(x, t), that satisfies a nonlinear version
of the backwards evolution equation (8.9). In the real world, dynamic programming is
used to determine “optimal” trading strategies for traders trying to take or unload a
big position without moving the market, to find cost efficient hedging strategies when
trading costs or other market frictions are significant, and for many other purposes. Its
main drawback stems from the necessity of computing the cost to go function (see below)
for every state x ∈ S. For complex models, the state space may be too large for this to
be practical. That’s when things really get interesting.

I will explain the idea in a simple but somewhat abstract situation. As in the previous
section, it is possible to use these ideas to treat other related problems. We have a Markov
chain as before, but now the transition probabilities depend on a “control parameter”, ξ.
That is

p(x, y, ξ) = Pr (X(t+ 1) = y|X(t) = x, ξ) .

In the “stochastic control problem”, we are allowed to choose the control parameter at
time t, ξ(t), knowing the value of X(t) but not any more about the future than the
transition probabilities. Because the system is a Markov chain, knowledge of earlier
values, X(t− 1), . . ., will not help predict or control the future. Choosing ξ as a function
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of X(t) and t is called “feedback control” or a “decision strategy”. The point here is
that the optimal control policy is a feedback control. That is, instead of trying to choose
a whole control trajectory, ξ(t) for t = 0, 1, . . . , T , we instead try to choose the feedback
functions ξ(X(t), t). We will write ξ(X, t) for such a decision strategy.

Any given strategy has an expected payout, which we write

Eξ [V (X(T ))] .

Our object is to compute the value of the financial instrument under the optimal decision
strategy:

max
ξ

Eξ [V (X(T ))] , (8.16)

and the optimal strategy that achieves this.
The appropriate collection of values for this is the “cost to go” function

f(x, t) = max
ξ

Eξ [V (X(T ))|X(t) = x]

= max
ξt

max
ξt+1,ξt+2,...,ξT

Eξ [V (X(T ))|X(t+ 1) = y]P (x, y, ξt)

= max
ξ(t)

∑
y∈S

f(y, t+ 1)p(x, y, ξ(t)) .

(8.17)

As before, we have “initial data” f(x, T ) = V (x). We need to compute the values f(x, t)
in terms of already computed values f(x, t+ 1). For this, we suppose that the optimal
decision strategy at time t is not yet known but those at later times are already computed.
If we use control variable ξ(t) at time t, and the optimal control thereafter, we get payout
depending on the state at time t+ 1:

E [f(X(t+ 1), t+ 1)|X(t) = x, ξ(t)] =
∑
y∈S

f(y, t+ 1)p(x, y, ξ(t)) .

Maximizing this expected payout over ξ(t) gives the optimal expected payout at time t:

f(x, t) = max
ξ(t)

∑
y∈S

f(y, t+ 1)p(x, y, ξ(t)) . (8.18)

This is the principle of dynamic programming. We replace the “multiperiod optimization
problem” (8.17) with a sequence of hopefully simpler “single period” optimization
problems (8.18) for the cost to go function.

Exercise 8.2 (American options as a controlled Markov chain). Consider the case with
interest rate r = 0. Then the finite differerence method in Example 6.1 for an American
option takes the form

f̄n−1,i = max
(
f̄n,i(1− σ2i2∆t) +

1

2
σ2i2f̄n,i+1∆t+

1

2
σ2i2f̄n,i−1∆t,

max(K − i∆S, 0)
)

which is a dynamic programming Markov chain model. Identify the transition probabilities
and the control function.
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8.6 Examples and Exercises

1. A stationary Markov chain has three states, called A, B, and C. The probability of
going from A to B in one step is .6. The probability of staying at A is .4. The
probability of going from B to A is .3. The probability of staying at B is .2, and
the probability of going to C is .5. From state C, the probability of going to B is
.8 and the probability of going to A is zero. The payout for state A is 1, for state
B is 4, and for state C is 9.

a. Compute the probabilities that the system will be in state A, B, or C after
two steps, starting from state A. Use these three numbers to compute the
expected payout after two steps starting from state A.

b. Compute the expected payouts in one step starting from state A and from state
B. These are f(A, 1) and f(B, 1) respectively.

c. See that the appropriate average of f(A, 1) and f(B, 1) agrees with the answer
from part a.

2. Suppose a stock price is a stationary Markov chain with the following transition
probabilities. In one step, the stock goes from S to uS with probability p and from
S to dS with probability q = 1− p. We generally suppose that u (the uptick) is
slightly bigger than one while d (the downtick) as a bit smaller. Show that the
method for computing the expected payout is exactly the binomial tree method for
valuing European style options.

3. Formulate the American style option valuation problem as an optimal decision problem.
Choosing the early exercise time is the same as deciding on each day whether to
exercise or not. Show that the dynamic probramming algorithm discussed above is
the binomial tree method for Amercian style options. The optimization problem
(8.18) reduces to taking the max between the computed f and the intrinsic value.

4. This is the simplest example of the “linear quadratic gaussian” (LQG) paradigm in
optimal control that has become the backbone of traditional control engineering.
Here X(t) is a real number. The transitions are given by

X(t+ 1) = aX(t) + σG(t) + ξ(t) , (8.19)

where G(t) is a standard normal random variable and the G(t) for different t values
are independent. We want to minimize the quantity

C =
T∑
t=1

X(t)2 + µ
T−1∑
t=0

ξ(t)2 (8.20)

We want to find a chioce of the control, ξ, that minimizes E(C). Note that the
dynamics (8.19) are linear, the noise is gaussian, and the cost function (8.20) is
quadratic. Define the cost to go function f(x, t) to be the cost incurred starting at
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x at time t ignoring the costs that are incurred at earlier times. Start by computing
f(x, T −1) explicitly by minimizing over the single variable ξ(T −1). Note that the
optimal ξ(T − 1) is a linear function of X(T − 1). Using this information, compute
f(x, T − 2) by optimizing over ξ(T − 2), and so on. The LQG model in control
engineering justifies linear feedback control in much the same way the gaussian
error model and maximum likelihood justifies least squares estimation in statistics.
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Chapter 9

Optimal Control and Inverse
Problems

The purpose of Optimal Control is to influence the behavior of a dynamical system
in order to achieve a desired goal. Optimal control has a large variety of applications
where the dynamics can be controlled optimally, such as aerospace, aeronautics, chemical
plants, mechanical systems, finance and economics, but also to solve inverse problems
where the goal is to determine input data in an equation from its solution values. An
important application we will study in several settings is to determine the ”data” in
differential equations models using optimally controlled reconstructions of measured
”solution” values.

Inverse problems are typically harder to solve numerically than forward problems
since they are often ill-posed (in contrast to forward problems), where ill-posed is the
opposite of well-posed and a problem is defined to be well-posed if the following three
properties holds

(1) there is a solution,

(2) the solution is unique, and

(3) the solution depends continuously on the data.

It is clear that a solution that does not depend continuously on its data is difficult to
approximate accurately, since a tiny perturbation of the data (either as measurement
error and/or as numerical approximation error) may give a large change in the solution.
Therefore, the ill-posedness of inverse and optimal control problems means that they need
to be somewhat modified to be solved: we call this to regularize the problem. Optimal
control theory is suited to handle many inverse problems for differential equations, since
we may formulate the objective – for instance to optimally reconstruct measured data or
to find an optimal design – with the differential equation as a constraint. This chapter
explains:

• the reason to regularize inverse problems in an optimal control setting,

87



• a method how to regularize the control problem, and

• in what sense the regularized problem approximates the original problem.

To give some intuition on optimal control and to introduce some basic concepts let us
consider a hydro-power generator in a river. Suppose that we are the owners of such
a generator, and that our goal is to maximise our profit by selling electricity in some
local electricity market. This market will offer us buying prices at different hours, so one
decision we have to make is when and how much electricity to generate. To make this
decision may not be a trivial task, since besides economic considerations, we also have to
meet technical constraints. For instance, the power generated is related to the amount
of water in the reservoir, the turbined flow and other variables. Moreover, if we want a
plan for a period longer than just a few days the water inflow to the lake may not be
precisely known, making the problem stochastic.

We can state our problem in optimal control terms as the maximization of an objective
function, the expected profit from selling electricity power during a given period, with
respect to control functions, like the hourly turbined flow. Observe that the turbined
flow is positive and smaller than a given maximum value, so it is natural to have a set of
feasible controls, namely the set of those controls we can use in practice. In addition, our
dynamical system evolves according to a given law, also called the dynamics, which here
comes from a mass balance in the dam’s lake. This law tells us how the state variable,
the amount of water in the lake, evolves with time according to the control we give. Since
the volume in the lake cannot be negative, there exist additional constraints, known as
state constraints, that have to be fulfilled in the optimal control problem.

After introducing the formulation of an optimal control problem the next step is to
find its solution. As we shall see, the optimal control is closely related with the solution of
a nonlinear partial differential equation, known as the Hamilton-Jacobi-Bellman equation.
To derive the Hamilton-Jacobi-Bellman equation we shall use the dynamic programming
principle, which relates the solution of a given optimal control problem with solutions to
simpler problems.

9.1 The Determinstic Optimal Control Setting

A mathematical setting for optimally controlling the solution to a deterministic ordinary
differential equation

Ẋs = f(Xs, αs) t < s < T

Xt = x
(9.1)

is to minimize

inf
α∈A

(∫ T

t
h(Xs, αs) ds+ g(XT )

)
(9.2)

for given cost functions h : Rd × [t, T ] → R and g : Rd → R and a given set of control
functions A = {α : [t, T ] → A} and flux f : Rd × A → Rd. Here A is a given compact
subset of some Rm.
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9.1.1 Examples of Optimal Control

Example 9.1 (Optimal control of spacecraft). To steer a spacecraft with minimal fuel
consumption to an astronomical body may use the gravitational force from other bodies.
The dynamics is determined by the classical Newton’s laws with forces depending on the
gravity on the spacecraft and its rocket forces, which is the control cf. [?].

Example 9.2 (Inverse problem: Parameter reconstruction). The option values
can be used to detemine the volatility function implicitly. The objective in the optimal
control formulation is then to find a volatility function that yields option prices that
deviate as little as possible from the measured option prices. The dynamics is the Black-
Scholes equation with the volatility function to be determined, that is the dynamics
is a determinstic partial differential equation and the volatility is the control function,
see Section 9.2.1.1. This is a typical inverse problem: it is called inverse because in the
standard view of the Black-Scholes equation relating the option values and the volaility,
the option price is the unknown and the volatility is the data; while here the formulation
is reversed with option prices as data and volatility as unknown in the same Black-Scholes
equation.

Example 9.3 (Inverse problem: Weather prediction). The incompressible Navier-Stokes
equations are used to forecast weather. The standard mathematical setting of this
equation is an initial value problem with unknown velocity and pressure to be determined
from the initial data: in weather prediction one can use measured velocity and pressure
not only at a single initial instance but data given over a whole time history. An optimal
control formulation of the weather prediction is to find the first initial data (the control)
matching the time history of measured velocity and pressure with the Navier-Stokes
dynamics as constraint. Such an optimal control setting improves the accuracy and makes
longer forecast possible as compared to the classical initial value problem, see [Pir84],
[?]. This is an inverse problem since the velocity and pressure are used to determine the
”initial data”.

Example 9.4 (Merton’s stochastic portfolio problem). A basic problem in finance is to
choose how much to invest in stocks and in bonds to maximize a final utility function.
The dynamics of the portfolio value is then stochastic and the objective is to maximize
an expected value of a certain (utility) function of the portfolio value, see section 9.3.1.

Example 9.5 (Euler-Lagrange equation). The shape of a soap bubble between a wire
frame can be deterimined as the surface that minimizes the bubble area. For a surface
in R3 described by

{(
x, u(x)

)
: x ∈ Ω ⊂ R2

}
the area is given by∫

Ω

√
1 + |∇u|2dx.

Here the whole surface is the control function, and given a wire
{(
x, g(x)

)
: x ∈ ∂Ω

}
,

the minimal surface solves the Euler-Lagrange equation,

div

(
∇u√

1 + |∇u|2

)
= 0, in Ω,

u = g, on ∂Ω.
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Example 9.6 (Inverse problem: Optimal design). An example of optimal design is to
construct an electrical conductor to minimize the power loss by placing a given amount
of conductor in a given domain, see Section 9.2.1.2. This is an inverse problem since the
conductivity is determined from the electric potential in an equation where the standard
setting is to determine the electric potential from the given conductivity.

9.1.2 Approximation of Optimal Control

Optimal control problems can be solved by the Lagrange principle or dynamic program-
ming. The dynamic programming approach uses the value function, defined by

u(x, t) := inf
α∈A

(∫ T

t
h(Xs, αs) ds+ g(XT )

)
, (9.3)

for the ordinary differential equation (9.1) with Xt ∈ Rd, and leads to solution of a non
linear Hamilton-Jacobi-Bellman partial differential equation

∂tu(x, t) + min
α∈A

(
f(x, α) · ∂xu(x, t) + h(x, α)

)
︸ ︷︷ ︸

H(∂xu(x,t),x)

= 0, t < T,

u(·, T ) = g,

(9.4)

in (x, t) ∈ Rd × R+. The Lagrange principle (which seeks a minimum of the cost with
the dynamics as a constraint) leads to the solution of a Hamiltonian system of ordinary
differential equations, which are the characteristics of the Hamilton-Jacobi-Bellman
equation

X ′t = f(Xt, αt), X0 given,

−λ′ti = ∂xif(Xt, αt) · λt + ∂xih(Xt, αt), λT = g′(XT ),

αt ∈ argmina∈A

(
λt · f(Xt, a) + h(Xt, a)

)
,

(9.5)

based on the Pontryagin Principle. The next sections explain these two methods.
The non linear Hamilton-Jacobi partial differential approach has the theoretical

advantage of well established theory and that a global minimum is found; its fundamental
drawback is that it cannot be used computationally in high dimension d � 1, since
the computational work increases exponentially with the dimension d. The Lagrange
principle has the computational advantage that high dimensional problems, d � 1,
can often be solved and its drawback is that in practice only local minima can be
found computationally, often with some additional error introduced by a regularization
method. Another drawback with the Lagrange principle is that it (so far) has no efficient
implementation in the natural stochastic setting with adapted Markov controls, while
the Hamilton-Jacobi PDE approach directly extends to such stochastic controls, see
Section 9.3; as a consequence computations of stochastic controls is basically limited to
low dimensional problems.
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9.1.3 Motivation of the Lagrange formulation

Let us first review the Lagrange multiplier method to minimize a function subject to a
constraint minx∈A, y=g(x) F (x, y). Assume F : Rd × Rn → R is a differentiable function.
The goal is to find the minimum minx∈A F (x, g(x)) for a given differentiable function
g : Rd → Rn and a compact set A ⊂ Rd. This problem leads to the usual necessary
condition for an interior minimum

d

dx
F
(
x, g(x)

)
= ∂xF

(
x, g(x)

)
+ ∂yF

(
x, g(x)

)
∂xg(x) = 0. (9.6)

An alternative method to find the solution is to introduce the Lagrangian function
L(λ, y, x) := F (x, y) + λ ·

(
y − g(x)

)
with the Lagrange multiplier λ ∈ Rn and choose λ

appropriately to write the necessary condition for an interior minimum

0 = ∂λL(λ, y, x) = y − g(x),

0 = ∂yL(λ, y, x) = ∂yF (x, y) + λ,

0 = ∂xL(λ, y, x) = ∂xF (x, y)− λ · ∂xg(x).

Note that the first equation is precisely the constraint. The second equation determines
the multiplier to be λ = −∂yF (x, y). The third equation yields for this multiplier
∂xL(−∂yF (x, y), y, x) = d

dxF
(
x, g(x)

)
, that is the multiplier is chosen precisely so that

the partial derivative with respect to x of the Lagrangian is the total derivative of
the objective function F

(
x, g(x)

)
to be minimized. This Lagrange principle is often

practical to use when the constraint is given implicitly, e.g. as g(x, y) = 0 with a
differentiable g : Rd × Rn → Rn; then the condition det ∂yg(x, y) 6= 0 in the implicit
function theorem implies that the function y(x) is well defined and satisfies g

(
x, y(x)

)
= 0

and ∂xy = −∂yg(x, y)−1∂xg(x, y), so that the Lagrange multiplier method works.
The Lagrange principle for the optimal control problem (9.1) -(9.2), to minimize the

cost with the dynamics as a constraint, leads to the Lagrangian

L(λ,X, α) := g(XT ) +

∫ T

0
h(Xs, αs) ds+

∫ T

0
λs ·

(
f(Xs, αs)− Ẋ

)
ds (9.7)

with a Lagrange multiplier function λ : [0, T ]→ Rd. Differentiability of the Lagrangian
leads to the necessary conditions for a constrained interior minimum

∂λL(X,λ, α) = 0,

∂XL(X,λ, α) = 0,

∂αL(X,λ, α) = 0.

(9.8)

Our next step is to verify that the two first equations above are the same as the two first
in (9.5) and that the last equation is implied by the stronger Pontryagin principle in the
last equation in (9.5). We will later use the Hamilton-Jacobi equation in the dynamic
programming approach to verify the Pontryagin principle.
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The first equation. Choose a real valued continuous function v : [0, T ] → Rd and
define the function L : R → R by L(ε) := L(X,λ + εv, α). Then the first of the three
equations means precisely that L′(0) = d

dεL(X,λ+ εv, α)|ε=0 = 0, which implies that

0 =

∫ T

0
vs ·

(
f(Xs, αs)− Ẋs

)
ds

for any continuous function v. If we assume that f(Xs, αs)− Ẋs is continuous we obtain
f(Xs, αs)− Ẋs = 0: since if β(s) := f(Xs, αs)− Ẋs 6= 0 for some s there is an interval
where β is either positive or negative; by choosing v to be zero outside this interval we
conclude that β is zero everywhere and we have derived the first equation in (9.5).

The second equation. The next equation d
dεL(X + εv, λ, α)|ε=0 = 0 needs v0 = 0 by

the initial condition on X0 and leads by integration by parts to

0 =

∫ T

0
λs ·

(
∂Xif(Xs, αs)vsi − v̇s

)
+ ∂Xih(Xs, αs)vsi ds+ ∂Xig(XT )vTi

=

∫ T

0
λs · ∂Xif(Xs, αs)vsi + λ̇ · vs + ∂Xih(Xs, αs)vsi ds

+ λ0 · v0︸︷︷︸
=0

−
(
λT − ∂Xg(XT )

)
· vT

=

∫ T

0

(
∂Xf

∗(Xs, αs)λs + λ̇s + ∂Xh(Xs, αs)
)
· vs ds

−
(
λT − ∂Xg(XT )

)
· vT ,

using the summation convention aibi :=
∑

i aibi. Choose now the function v to be zero
outside an interior interval where possibly ∂Xf

∗(Xs, αs)λs+ λ̇s+∂Xh(Xs, αs) is non zero,
so that in particular vT = 0. We see then that in fact ∂Xf

∗(Xs, αs)λs+ λ̇s+∂Xh(Xs, αs)
must be zero (as for the first equation) and we obtain the second equation in (9.5). Since
the integral in the right hand side vanishes, varying vT shows that the final condition for
the Lagrange multiplier λT − ∂Xg(XT ) = 0 also holds.

The third equation. The third equation in (9.8) implies as above that for any function
v(t) compactly supported in A

0 =

∫ T

0
λs · ∂αf(Xs, αs)v + ∂αh(Xs, αs)v ds

which yields
λs · ∂αf(Xs, αs) + ∂αh(Xs, αs) = 0 (9.9)

in the interior α ∈ A − ∂A minimum point (X,λ, α). The last equation in (9.5) is a
stronger condition: it says that α is a minimizer of λs · f(Xs, a) + h(Xs, a) = 0 with
respect to a ∈ A, which clearly implies (9.9) for interior points α ∈ A−∂A. To derive the
Pontryagin principle we will use dynamic programming and the Hamilton-Jacobi-Bellman
equation which is the subject of the next section.
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9.1.4 Dynamic Programming and the Hamilton-Jacobi-Bellman Equa-
tion

The dynamic programming view to solve optimal control problems is based on the idea
to track the optimal solution backwards: at the final time the value function is given
u(x, T ) = g(x) and then, recursively for small time step backwards, find the optimal
control to go from each point (x, t) on the time level t to the time level t+ ∆t with the
value function u(·, t+ ∆t) , see Figure 9.1. Assume for simplicity first that h ≡ 0 then
any path X : [t, t+ ∆t]→ Rd starting in Xt = x will satisfy

u(x, t) = inf
α:[t,t+∆t]→A

u(Xt+∆t, t+ ∆t),

so that if u is differentiable

du(Xt, t) =
(
∂tu(Xt, t) + ∂xu(Xt, t) · f(Xt, αt)

)
dt ≥ 0, (9.10)

since a path from (x, t) with value u(x, t) can lead only to values u(Xt+∆t, t+ ∆t) which
are not smaller than u(x, t). If also the infimum is attained, then an optimal path Xt

∗
exists, with control αt∗, and satisfies

du(Xt
∗, t) =

(
∂tu(Xt

∗, t) + ∂xu(Xt
∗, t) · f(Xt

∗, α
t
∗)
)

dt = 0. (9.11)

The combination of (9.10) and (9.11) implies that

∂tu(x, t) + min
α∈A

(
∂xu(x, t) · f(x, α)

)
= 0 t < T

u(·, T ) = g,

which is the Hamilton-Jacobi-Bellman equation in the special case h ≡ 0.

t

x

t

t + ∆t

t + 2∆t

Figure 9.1: Illustration of dynamics programming.

The case with h non zero follows similarly by noting that now

0 = inf
α:[t,t+∆t]→A

(∫ t+∆t

t
h(Xs, αs) ds+ u(Xt+∆t, t+ ∆t)− u(x, t)

)
, (9.12)
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which for differentiable u implies the Hamilton-Jacobi-Bellman equation (9.4)

0 = inf
α∈A

(
h(x, α) + ∂tu(x, t) + ∂xu(x, t) · f(x, α)

)
= ∂tu(x, t) + min

α∈A

(
∂xu(x, t) · f(x, α) + h(x, α)

)
︸ ︷︷ ︸

=:H
(
∂xu(x,t),x

) t < T,

g = u(·, T ).

Note that this derivation did not assume that an optimal path is attained, but that u is
differentiable which in general is not true. There is fortunately a complete theory for
non differentiable solutions to Hamilton-Jacobi equations, with its basics presented in
Section 9.1.6. First we shall relate the Lagrange multiplier method with the Pontryagin
principle to the Hamilton-Jacobi-Bellman equation using charateristics.

9.1.5 Characteristics and the Pontryagin Principle

The following theorem shows that the characteristics of the Hamilton-Jacobi equation is
a Hamiltonian system.

Theorem 9.7. Assume u ∈ C2, H ∈ C1 and

Ẋt = ∂λH
(
λt, Xt

)
with λt := ∂xu(Xt, t). Then the characteristics (Xt, λt) satisfy the Hamiltonian system

Ẋt = ∂λH(λt, Xt)

λ̇t = −∂XH(λt, Xt).
(9.13)

Proof. The goal is to verify that the construction of Xt implies that λ has the dynamics
(9.13). The definition Ẋt = ∂λH(λt, Xt) implies by x-differentiation of the Hamilton-
Jacobi equation along the path (Xt, t)

0 = ∂xk∂tu(Xt, t) +
∑
j

∂λjH
(
∂xu(Xt, t), Xt

)
∂xk∂xju(Xt, t)︸ ︷︷ ︸

=∂xj ∂xku

+∂xkH
(
∂xu(Xt, t), Xt

)

=
d

dt
∂xku(Xt, t) + ∂xkH

(
∂xu(Xt, t), Xt

)
which by the definition λt := ∂xu(Xt, t) is precisely λ̇t + ∂xH(λt, Xt) = 0.

The next step is to relate the characteristics Xt, λt to the solution of the Lagrange
principle (9.5). But note first that the Hamiltonian H in general is not differentiable,
even if f and h are very regular: for instance Ẋ = f(Xt) and h(x, α) = xα implies
for A = [−1, 1] that the Hamiltonian becomes H(λ, x) = λf(x) − |x| which is only
Lipschitz continuous, that is |H(λ, x)−H(λ, y)| ≤ K|x− y| with the Lipschitz constant
K = 1 +‖λ ·∂xf(·)‖∞ in this case. In fact if f and h are bounded differentiable functions
the Hamiltonian will always be Lipschitz continuous satisfying |H(λ, x) − H(ν, y)| ≤
K(|λ− ν|+ |x− y|) for some constant K, see Exercise ??.
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Theorem 9.8. Assume that f, h are x-differentiable in (x, α∗) and a control α∗ is
optimal for a point (x, λ), i.e.

λ · f(x, α∗) + h(x, α∗) = H(λ, x),

and suppose also that H is differentiable in the point or that α∗ is unique. Then

f(x, α∗) = ∂λH(λ, x),

λ · ∂xif(x, α∗) + ∂xih(x, α∗) = ∂xiH(λ, x).
(9.14)

Proof. We have for any w, v ∈ Rd

H(λ+ w, x+ v)−H(λ, x) ≤ (λ+ w) · f(x+ v, α∗) + h(x+ v, α∗)

− λ · f(x, α∗)− h(x, α∗)

= w · f(x, α∗) +
d∑
i=1

(λ · ∂xif + ∂xih)vi + o(|v|+ |w|)

which implies (9.14) by choosing w and v in all directions.

This Theorem shows that the Hamiltonian system (9.13) is the same as the system
(9.5), given by the Lagrange principle using the optimal control α∗ with the Pontryagin
principle

λ · f(x, α∗) + h(x, α∗) = inf
α∈A

(
λ · f(x, α) + h(x, α)

)
=: H(λ, x).

If α∗ is not unique (i.e not a single point) the proof shows that (9.14) still holds for the
optimal controls, so that ∂λH and ∂xH become set valued. We conclude that non unique
local controls α∗ is the phenomenon that makes the Hamiltonian non differentiable in
certain points. In particular a differentiable Hamiltonian gives unique optimal control
fluxes ∂λH and ∂xH, even if α∗ is not a single point. If the Hamiltonian can be explicitly
formulated, it is therefore often practical to use the Hamiltonain system formulation
with the variables X and λ, avoiding the control variable.

Clearly, the Hamiltonian needs to be differentiable for the Hamiltonian system
to make sense; in fact its flux (∂λH,−∂xH) must be Lipschitz continuous to give well
posedness. On the other hand we shall see that the Hamilton-Jacobi-Bellman formulation,
based on dynamic programming, leads to non differentiable value functions u, so that
classical solutions lack well posedness. The mathematical setting for optimal control
therefore seemed somewhat troublesome both on the Hamilton-Jacobi PDE level and
on the Hamilton ODE level. In the 1980’s the situation changed: Crandall-Lions-Evans
[CEL84] formulated a complete well posedness theory for generalized so called viscosity
solutions to Hamilton-Jacobi partial differential equations, allowing Lipschitz continuous
Hamiltonians. The theory of viscosity solutions for Hamilton-Jacobi-Bellman partial
differential equations provides good theoretical foundation also for non smooth controls.
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In particular this mathematical theory removes one of Pontryagin’s two reasons1, but
not the other, to favor the ODE approach (9.5) and (9.13): the mathematical theory of
viscosity solutions handles elegantly the inherent non smoothness in control problems;
analogous theoretical convergence results for an ODE approach was developed later based
on the so called minmax solutions, see [Sub95]; we will use an alternative ODE method
to solve optimal control problems numerically based on regularized Hamiltonians, where
we approximate the Hamiltonian with a two times differentiable Hamiltonian, see Section
9.2.

Before we formulate the generalized solutions, we show that classical solutions only
exist for short time in general.

Example 9.9. The Hamilton-Jacobi equation

∂tu−
1

2
(∂xu)2 = 0

has the characteristics
Ẋt = −λt

λ̇t = 0,

which implies Ẋt = constant. If the initial data u(·, T ) is a concave function (e.g. a
smooth version of −|x|) characteristics X will collide, see Figure 9.2. We can understand
this precisely by studying blow-up of the derivative w of ∂xu =: v; since v satisfies

∂tv −
1

2
∂x(v2)︸ ︷︷ ︸
v∂xv

= 0

we have by x−differentiation

∂tw − v∂xw︸ ︷︷ ︸
d
dt
w(Xt,t)

−w2 = 0,

which reduces to the ordinary differential equation for zt := w(Xt, t)

d

dt
z(t) = z2(t).

Its separation of variables solution dz/z2 = dt yields −1/zt = t + C. The constant
becomes C = −T − 1/zT , so that zt = 1/(t − T − 1/zT ) blows up to infinity at time
T − t = 1/zT . For instance if zT = −10, the time to blow-up time is 1/10.

1 citation from chapter one in [PBGM64] “This equation of Bellman’s yields an approach to the
solution of the optimal control problem which is closely connected with, but different from, the approach
described in this book (see Chapter 9). It is worth mentioning that the assumption regarding the
continuous differentiability of the functional (9.8) [(9.3) here] is not fulfilled in even the simplest cases,
so that Bellman’s arguments yield a good heuristic method rather than a mathematical solution of the
problem. The maximum principle, apart from its sound mathematical basis, also has the advantage that
it leads to a system of ordinary differential equations, whereas Bellman’s approach requires the solution
of a partial differential equation.”
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9.1.6 Generalized Viscosity Solutions of Hamilton-Jacobi-Bellman Equa-
tions

Example 9.9 shows that Hamilton-Jacobi equations do in general not have global classical
solutions – after finite time the derivative can become infinitely large even with smooth
initial data and a smooth Hamiltonian. Therefore a more general solution concept
is needed. We shall describe the so called viscosity solutions introduced by Crandall
and Lions in [?], which can be characterised by the limit of viscous approximations uε

satisfying for ε > 0

∂tu
ε(x, t) +H

(
∂xu

ε(x, t), x
)

+ ε∂xxu
ε(x, t) = 0 t < T

uε(·, T ) = g.

The function uε is also a value function, now for the stochastic optimal control problem

dXt = f(Xt, αt)dt+
√

2ε dW t t > 0

with the objective to minimize

min
α

E
[
g(XT ) +

∫ T

0
h(Xt, αt)dt

∣∣∣ X0given
]
,

over adapted controls α : [0, T ]→ A, where W : [0,∞)→ Rd is the d-dimensional Wiener
process with independent components. Here adapted controls means that αt does not
use values of W s for s > t. Section 9.3 shows that the value function for this optimal
control problem solves the second order Hamilton-Jacobi equation, that is

uε(x, t) = min
α

E
[
g(XT ) +

∫ T

0
h(Xt, αt) dt

∣∣∣ Xt = x
]
.

Theorem 9.10 (Crandall-Lions). Assume f, h and g are Lipschitz continuous and
bounded, then the limit limε→0+ u

ε exists. This limit is called the viscosity solution of the
Hamilton-Jacobi equation

∂tu(x, t) +H
(
∂xu(x, t), x

)
= 0 t < T

u(·, T ) = g.
(9.15)

x

t

Figure 9.2: Characteristic curves colliding.
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There are several equivalent ways to describe the viscosity solution directly without
using viscous or stochastic approximations. We shall use the one based on sub and
super differentials presented first in [CEL84]. To simplify the notation introduce first the
space-time coordinate y = (x, t), the space-time gradient p = (px, pt) ∈ Rd+1 (related to
(∂xu(y), ∂tu(y))) and write the Hamilton-Jacobi operator F (p, y) := pt +H(px, x). For a
bounded uniformly continuous function v : Rd × [0, T ]→ R define for each space-time
point y its sub differential set

D−v(y) = {p ∈ Rd+1 : lim inf
z→0

|z|−1
(
v(y + z)− v(y)− p · z

)
≥ 0}

and its super differential set

D+v(y) = {p ∈ Rd+1 : lim sup
z→0

|z|−1
(
v(y + z)− v(y)− p · z

)
≤ 0}.

These two sets always exist (one may be empty), see Example 9.11; they degenerate to a
single point, the space-time gradient of v, precisely if v is differentiable, that is when

D−v(y) = D+v(y) = {p} ⇐⇒ v(y + z)− v(y)− p · z = o(z).

Example 9.11. Let u(x) = −|x|, then

D+u(x) = D−u(x) = {−sgn(x)} x 6= 0

D−u(0) = ∅ x = 0

D+u(0) = [−1, 1] x = 0

see Figure 9.3.

x

D+

x

D−

Figure 9.3: Illustration of the super and subdifferential sets for −|x|.

Definition 9.12 (Viscosity solution). A bounded uniformly continuous function u is a
viscosity solution to (9.15) if u(·, T ) = g and for each point y = (x, t)

F (p, y) ≥ 0 for all p ∈ D+u(y)

and
F (p, y) ≤ 0 for all p ∈ D−u(y).
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Theorem 9.13. The first variation of the value function is in the superdifferential.

Proof. Consider an optimal path X∗, starting in ȳ = (x̄, t̄), with control α∗. We define
the first variation, (λt̄, ν t̄) ∈ Rd × R, of the value function along this path, with respect
to perturbations in the initial point ȳ: let Xy be a path starting from a point y = (x, t),
close to ȳ, using the control α∗, the differentiability of the flux f and the cost h implies
that the first variation satisfies

λt̄i = lim
z→0

z−1
( ∫ T

t̄
h(Xt

x̄+zei , α
t
∗)− h(Xt

x̄, α
t
∗) dt+ g(XT

x̄+zei)− g(XT
x̄ )
)

(9.16)

and
−λ̇t = ∂Xf(Xt

∗, α
t
∗)λ

t + ∂Xh(Xt
∗, α

t
∗) t̄ < t < T,

λT = g′(XT
∗ ),

where ei is the ith unit basis vector in Rd. The definition of the value function shows
that

−h(Xt
∗, α

t
∗) =

du

dt
(Xt
∗, t) = λt · f(Xt

∗, α
t
∗) + νt

so that
νt = −λt · f(Xt

∗, α
t
∗)− h(Xt

∗, α
t
∗).

Since the value function is the minimum possible cost, we have by (9.16)

lim sup
s→0+

s−1
(
u
(
ȳ + s(y − ȳ)

)
− u(ȳ)

)
≤ lim sup

s→0+
s−1
(∫ T

t̄
h(Xt

ȳ+s(y−ȳ), α
t
∗) dt+ g(XT

ȳ+s(y−ȳ))

−
∫ T

t̄
h(Xt

ȳ, α
t
∗) dt+ g(XT

ȳ )
)

=
(
λt,−

(
λt · f(Xt

∗, α
t
∗) + h(Xt

∗, α
t
∗)
))
· (y − ȳ),

which means precisely that the first variation is in the superdifferential.

Theorem 9.14. The value function is semi-concave, that is for any point (x, t) either
the value function is differentiable or the sub differential is empty (i.e. D−u(x, t) = ∅
and D+u(x, t) is non empty).

Proof. Assume that the subdifferential D−u(y) has at least two elements p− and p+ (we
will show that this leads to a contradiction). Then u is larger or equal to the wedge like
function

u(y) ≥ u(ȳ) + max
(
p− · (y − ȳ), p+ · (y − ȳ)

)
, (9.17)

see Figure 9.4. The definition of the value function shows that the right derivative
satisfies

lim sup
s→0+

s−1
(
u
(
ȳ + s(y − ȳ)

)
− u(ȳ)

)
≤ (λ, ν) · (y − ȳ) (9.18)
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where (λ, ν) is the first variation (in x and t) of u around the optimal path starting in ȳ.
The wedge bound (9.17) implies

lim sup
s→0+

s−1
(
u
(
ȳ + s(y − ȳ)

)
− u(ȳ)

)
≥ max

(
p− · (y − ȳ), p+ · (y − ȳ)

)
,

but the value function cannot be both below a (λ, ν)-half plane (9.18) and above such
wedge function, see Figure 9.5. Therefore the subdifferential can contain at most one point:
either the subdifferential is empty or there is precisely one point p in the subdifferential
and in this case we see that the the first variation coincides with this point (λ, ν) = p,
that is the value function is differentiable

u,max
(
p− · (y − ȳ), p+ · (y − ȳ)

)

y

u

ȳ

Figure 9.4: Characteristic curves colliding.

u,max
(
p− · (y − ȳ), p+ · (y − ȳ)

)
, (λ, ν)

y
ȳ

u

(λ, ν)

Figure 9.5: Characteristic curves colliding.

Theorem 9.15. The value function is a viscosity solution.
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Proof. We have seen in Section 9.1.4 that for the points where the value function is
differentiable it satisfies the Hamilton-Jacobi-Bellman equation. Theorem 9.14 shows
that the value function u is semi-concave. Therefore, by Definition 9.12, it is enough to
verify that p ∈ D+u(x, t) implies pt +H(px, x) ≥ 0. Assume for simplicity that h ≡ 0.

There is a p ∈ D+u(x, t), which is the first variation of u along an optimal path
(X∗, α∗), such that

pt +H(px, x) = p ·
(
f(x, α), 1

)
≥ lim sup

∆t→0+

u(Xt+∆t, t+ ∆t)− u(Xt, t)

∆t
= 0,

using the definition of the superdifferential and dynamic programming. This means that
any optimal control yields a super differential point p satisfying pt +H(px, x) ≥ 0. To
finish the proof we note that any point in the super differential set can for some s ∈ [0, 1]
be written as a convex combination sp1 + (1− s)p2 of two points p1 and p2 in the super
differential that correspond to (different) optimal controls. Since H is concave in p (see
Exercise 9.19) there holds

sp1
t + (1− s)p2

t +H
(
sp1
x + (1− s)p2

x, x
)

≥ s
(
p1
t +H(p1

x, x)
)

+ (1− s)
(
p2
t +H(p2

x, x)
)

≥ 0

which shows that u is a viscosity solution. The general case with non zero h is similar as
in (9.12).

Theorem 9.16. Bounded uniformly continuous viscosity solutions are unique.

The standard uniqueness proof uses a special somewhat complex doubling of variables
technique, see [Eva98] inspired by Kruzkov. The maximum norm stability of semi-concave
viscosity solutions in Section 9.1.7 also implies uniqueness.

Example 9.17. Consider the function u(x, t) = −|x|. We have from Example 9.11

D+u(x, t) =

{
(−sgn(x), 0) x 6= 0
([−1, 1], 0) x = 0

and

D−u(x, t) =

{
(−sgn(x), 0) x 6= 0

∅ x = 0.

Consequently for H(λ, x) := (1− |λ|2)/2 we obtain

pt +H(px, x) ≥ 0 q ∈ D+u(x, t)

pt +H(px, x) = 0 q ∈ D−u(x, t)

so that −|x| is a viscosity solution to ∂tu + H(∂xu, x) = 0. Similarly the function
u(x, t) = |x| satisfies

D−u(x, t) =

{
(sgn(x), 0) x 6= 0
([−1, 1], 0) x = 0
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and therefore

pt +H(px, 0) > 0 for q ∈ (−1, 1) ⊂ D−u(0, t)

so that |x| is not a viscosity solution to ∂tu+H(∂xu, x) = 0.

9.1.6.1 The Pontryagin Principle for Generalized Solutions

Assume that X∗ and α∗ is an optimal control solution. Let

−λ̇t∗ = ∂Xf(Xt
∗, α

t
∗)λ

t
∗ + ∂Xh(Xt

∗, α
t
∗) t < T,

λT∗ = g′(XT
∗ ).

The proof of Theorem 9.13 shows first that
(
λt∗,−

(
λt∗ · f(Xt

∗, α
t
∗) + h(Xt

∗, α
t
∗)
))

is the

first variation in x and t of the value function at the point (Xt, t) and concludes then
that the first variation is in the superdifferential, that is(

λt∗,−
(
λt∗ · f(Xt

∗, α
t
∗) + h(Xt

∗, α
t
∗)
))
∈ D+u(Xt

∗, t).

Since the value function is a viscosity solution we conclude that

−
(
λt∗ · f(Xt

∗, α
t
∗) + h(Xt

∗, α
t
∗)
)

+ H(λt∗, x)︸ ︷︷ ︸
minα∈A

(
λt∗·f(Xt

∗,α
t
∗)+h(Xt

∗,α
t
∗)
) ≥ 0

which means that α∗ satisfies the Pontryagin principle also in the case of non differentiable
solutions to Hamilton-Jacobi equations.

9.1.6.2 Semiconcave Value Functions

There is an alternative and maybe more illustrative proof of the last theorem in a special
setting: namely when the set of backward optimal paths {(X̄t, t) : t < T}, solving
(9.29) and (9.47), may collide into a codimension one surface Γ in space-time Rd × [0, T ].
Assume the value function is attained by precisely one path for (x, t) ∈ Rd× [0, T ]−Γ and
that the minimum is attained by precisely two paths at (x, t) ∈ Γ. Colliding backward
paths (or characteristics) X in general lead to a discontinuity in the gradient of the value
function, λ = ux, on the surface of collision, which means that the surface is a shock
wave for the multidimensional system of conservation laws

∂tλ
i(x, t) +

d

dxi
H
(
λ(x, t), x

)
= 0 (x, t) ∈ Rd × [0, T ], i = 1, . . . , d.

Denote the jump, for fixed t, of a function w at Γ by [w]. To have two colliding paths
at a point on Γ requires that λ has a jump [λ] 6= 0 there, since [λ] = 0 yields only one
path. The implicit function theorem shows that for fixed t any compact subset of the set
Γ(t) ≡ Γ∩ (Rd×{t}) is a C1 surface: the surface Γ(t) is defined by the value functions, u1
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and u2 for the two paths colliding on Γ, being equal on Γ and there are directions n̂ ∈ Rd
so that the Jacobian determinant n̂ · ∇(u1− u2) = n̂ · [λ] 6= 0. Therefore compact subsets
of the surface Γ(t) has a well defined unit normal n. We assume that Γ(t) has a normal
everywhere and we will prove that [λ] · n ≤ 0, which implies that u is semi-concave.

Two optimal backwards paths that collide on (x, t) ∈ Γ must depart in opposite
direction away from Γ, that is n ·Hλ(λ+, x) ≥ 0 and n ·Hλ(λ−, x) ≤ 0, see Figure 9.6,
so that

0 ≤ n · [Hλ(λ, x)] = n ·
∫ 1

0
Hλλ(λ− + s[λ]) ds︸ ︷︷ ︸

=:H̄λλ≤ 0

[λ]. (9.19)

We know that u is continuous also around Γ, therefore the jump of the gradient, [ux],
has to be parallel to the normal, n, of the surface Γ. Lemma 9.28 shows that [ux] = [λ]
and we conclude that this jump [λ] is parallel to n so that [λ] = [λ · n]n, which combined
with (9.19) shows that

0 ≤ [λ · n]H̄λλ n · n.

The λ-concavity of the Hamiltonian, see Exercise 9.19, implies that the matrix Hλλ is
negative semidefinite and consequently

H̄λλ n · n ≤ 0, (9.20)

which proves the claim [λ] · n ≤ 0, if we can exclude equality in (9.20). Equality in (9.20)
means that H̄λλ n = 0 and implies Hλ(λ+(t), x) = Hλ(λ−(t), x) which is not compatible
with two outgoing backward paths. Hence equality in (9.20) is ruled out. This derivation
can be extended to several paths colliding into one point, see Exercise 9.18.

x

t Γ

Figure 9.6: Optimal paths departing away from Γ.

Exercise 9.18.
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Exercise 9.19. Show that the Hamiltonian

H(λ, x) := min
α∈A

(
λ · f(x, α) + h(x, α)

)
is concave in the λ-variable, that is show that for each λ1 and λ2 in Rd and for all
s ∈ [0, 1] there holds

H
(
sλ1 + (1− s)λ2, x

)
≥ sH(λ1, x) + (1− s)H(λ2, x).

9.1.7 Maximum Norm Stability of Viscosity Solutions

An important aspect of the viscosity solution of the Hamilton-Jacobi-Bellman equation
is its maximum norm stability with respect to maximum norm perturbations of the data,
in this case the Hamiltonian and the initial data; that is the value function is stable with
respect to perturbations of the flux f and cost functions h and g.

Assume first for simplicity that the optimal control is attained and that the value
function is differentiable for two different optimal control problems with data f, h, g and
the Hamiltonian H, respectively f̄ , h̄, ḡ and Hamiltonian H̄. The general case with only
superdifferentiable value functions is studied afterwards. We have for the special case
with the same initial data X̄0 = X0 and ḡ = g∫ T

0
h̄(X̄t, ᾱt) dt+ ḡ(X̄T )︸ ︷︷ ︸

ū(X̄0,0)

−
∫ T

0
h(Xt, αt) dt+ g(XT )︸ ︷︷ ︸

u(X0,0)

=

∫ T

0
h̄(X̄t, ᾱt) dt+ u(X̄T , T )− u(X0, 0)︸ ︷︷ ︸

u(X̄0,0)

=

∫ T

0
h̄(X̄t, ᾱt) dt+

∫ T

0
du(X̄t, t)

=

∫ T

0
∂tu(X̄t, t)︸ ︷︷ ︸

=−H
(
∂xu(X̄t,t),X̄t

)+ ∂xu(X̄t, t) · f̄(X̄t, ᾱt) + h̄(X̄t, ᾱt)︸ ︷︷ ︸
≥H̄
(
∂xu(X̄t,t),X̄t

) dt

≥
∫ T

0
(H̄ −H)

(
∂xu(X̄t, t), X̄t

)
dt.

(9.21)

The more general case with ḡ 6= g yields the additional error term

(g − ḡ)(X̄T )

to the right hand side in (9.21).
To find an upper bound, repeat the derivation above, replacing u along X̄t with ū
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along Xt, to obtain∫ T

0
h(Xt, αt) dt+ g(XT )︸ ︷︷ ︸

u(X0,0)

−
∫ T

0
h̄(X̄t, ᾱt) dt+ ḡ(X̄T )︸ ︷︷ ︸

ū(X̄0.0)

=

∫ T

0
h(Xt, αt) dt+ ū(XT , T )− ū(X̄0, 0)︸ ︷︷ ︸

ū(X0,0)

=

∫ T

0
h(Xt, αt) dt+

∫ T

0
dū(Xt, t)

=

∫ T

0
∂tū(Xt, t)︸ ︷︷ ︸

=−H̄
(
∂xū(Xt,t),Xt

)+ ∂xū(Xt, t) · f(Xt, αt) + h(Xt, αt)︸ ︷︷ ︸
≥H
(
∂xū(Xt,t),Xt

) dt

≥
∫ T

0
(H − H̄)

(
∂xū(Xt, t), Xt

)
dt.

The two estimates above yields both an upper and a lower bound∫ T

0
(H − H̄)

(
∂xū(Xt, t), Xt

)
dt ≤ u(X0, 0)− ū(X0, 0)

≤
∫ T

0
(H − H̄)

(
∂xu(X̄t, t), X̄t

)
dt.

(9.22)

Remark 9.20 (No minimizers). If there are no minimizers (α,X) and (ᾱ, X̄), then for
every ε > 0, we can choose controls α, ᾱ with corresponding states X, X̄ such that

Elhs − ε ≤ u(X0, 0)− ū(X0, 0) ≤ Erhs + ε

with Elhs, Erhs being the left and right hand sides of (9.22).

Solutions to Hamilton-Jacobi equations are in general not differentiable as we have
seen in Example 9.9. Let us extend the derivation of (9.22) to a case when u is not
differentiable. If u is a non differentiable semiconcave solution to a Hamilton-Jacobi
equation, Definition 9.12 of the viscosity solution reduces to

pt +H(px, x) = 0 for all (pt, px) ∈ Du(x, t) and all t < T, x ∈ Rd,
pt +H(px, x) ≥ 0 for all (pt, px) ∈ D+u(x, t) and all t < T, x ∈ Rd,
u(·, T ) = g.

Consider now a point (x, t) where the value function is not differentiable. This means
that in (9.21) we can for each t choose a point (pt, px) ∈ D+u(Xt, t) so that∫ T

0
du(X̄t, t) +

∫ T

0
h̄(X̄t, ᾱt) dt =

∫ T

0

(
pt + px · f̄(X̄t, ᾱt) + h̄(X̄t, ᾱt)

)
dt

≥
∫ T

0

(
pt + H̄(px, X̄

t)
)
dt ≥

∫ T

0

(
−H + H̄

)
(px, X̄

t) dt .
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Note that the only difference compared to the differentiable case is the inequality
instead of equality in the last step, which uses that optimal control problems have
semi-concave viscosity solutions. The analogous formulation holds for ū. Consequently
(9.22) holds for some (pt, px) ∈ D+u(X̄t, t) replacing (∂tu(X̄t, t), ∂xu(X̄t, t)) and some
(p̄t, p̄x) ∈ D+ū(Xt, t) replacing

(
∂tū(Xt, t), ∂xū(Xt, t)

)
.

The present analysis is in principle valid even when we replace Rd to be an infinite
dimensional Hilbert space for optimal control of partial differential equations, although
existence and semiconcavity of solutions is not derived in full generality, see [San08]

9.2 Numerical Approximation of ODE Constrained Mini-
mization

We consider numerical approximations with the time steps

tn =
n

N
T, n = 0, 1, 2, . . . , N.

The most basic approximation is based on the minimization

min
ᾱ∈BN

(
g(X̄N ) +

N−1∑
n=0

h(X̄n, ᾱn)∆t
)
, (9.23)

where ∆t = tn+1 − tn, X̄0 = X0 and X̄n ≡ X̄(tn), for 1 ≤ n ≤ N , satisfy the forward
Euler constraint

X̄n+1 = X̄n + ∆t f(X̄n, ᾱn). (9.24)

The existence of at least one minimum of (9.23) is clear since it is a minimization of a
continuous function in the compact set BN . The Lagrange principle can be used to solve
such a constrained minimization problem. We will focus on a variant of this method
based on the discrete Pontryagin principle where the control is eliminated

X̄n+1 = X̄n + ∆tHλ

(
λ̄n+1, X̄n

)
, X̄0 = X0,

λ̄n = λ̄n+1 + ∆tHx

(
λ̄n+1, X̄n

)
, λ̄N = gx(X̄N ),

(9.25)

called the symplectic Euler method for the Hamiltonian system (9.13), cf. [HLW02].
A natural question is in what sense the discrete problem (9.25) is an approximation

to the continuous optimal control problem (9.13). In this section we show that the
value function of the discrete problem approximates the continuous value function, using
the theory of viscosity solutions to Hamilton-Jacobi equations to construct and analyse
regularized Hamiltonians.

Our analysis is a kind of backward error analysis. The standard backward error
analysis for Hamiltonian systems uses an analytic Hamiltonian and shows that symplectic
one step schemes generate approximate paths that solve a modified Hamiltonian system,
with the perturbed Hamiltonian given by a series expansion cf. [HLW02]. Our backward
error analysis is different and more related to the standard finite element analysis. We
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first extend the approximate Euler solution to a continuous piecewise linear function
in time and define a discrete value function, ū : Rd × [0, T ] → R. This value function
satisfies a perturbed Hamilton-Jacobi partial differential equation, with a small residual
error. A special case of our analysis shows that if the optimal α in (9.5) is a differentiable
function of x and λ and if the optimal backward paths, X̄(s) for s < T , do not collide,
more about this later, the discrete value functions, ū, for the Pontryagin method (9.25)
satisfies a Hamilton-Jacobi equation:

ūt +H(ūx, ·) = O(∆t), as ∆t→ 0+, (9.26)

where

ū(x, tm) ≡ min
ᾱ∈BN

(
g(X̄N ) +

N−1∑
n=m

h(X̄n, ᾱn)∆t

)
(9.27)

for solutions X̄ to with X̄(tm) ≡ X̄m = x. The minimum in (9.27) is taken over the
solutions to the discrete Pontryagin principle (9.25). The maximum norm stability of
Hamilton–Jacobi PDE solutions and a comparison between the two equations (9.4) and
(9.26) show that

O‖u− ū‖C = O(∆t). (9.28)

However, in general the optimal controls ᾱ and α in (9.24) and (9.1) are discontinuous
functions of x, and λ̄ or ux, respectively, and the backward paths do collide. There are
two different reasons for discontinuous controls:

• The Hamiltonian is in general only Lipschitz continuous, even if f and h are
smooth.

• The optimal backward paths may collide.

The standard error analysis for ordinary differential equations is directly applicable to
control problems when the time derivative of the control function is integrable. But
general control problems with discontinuous controls require alternative analysis, which
will be in two steps. The first step in our error analysis is to construct regularizations of
the functions f and h, based on (9.14) applied to a C2(Rd×Rd) approximate Hamiltonian
Hδ which is λ-concave and satisfies

‖Hδ −H‖C = O(δ), as δ → 0+,

and to introduce the regularized paths

X̄n+1 = X̄n + ∆tHδ
λ

(
λ̄n+1, X̄n

)
, X̄0 = X0,

λ̄n = λ̄n+1 + ∆tHδ
x

(
λ̄n+1, X̄n

)
, λ̄N = gx(X̄N ).

(9.29)

We will sometimes use the notation f δ ≡ Hδ
λ and hδ ≡ Hδ − λHδ

λ.
The second step is to estimate the residual of the discrete value function in the

Hamilton-Jacobi-Bellman equation (9.4). The maximum norm stability of viscosity
solutions and the residual estimate imply then an estimate for the error in the value
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function. An approximation of the form (9.29) may be viewed as a general symplectic
one step method for the Hamiltonian system (9.13), see Section 9.2.7.

There is a second reason to use Hamiltonians with smooth flux: in practice the
nonlinear boundary value problem (9.29) has to be solved by iterations. If the flux is
not continuous it seems difficult to construct a convergent iterative method, in any case
iterations perform better with smoother solutions. When the Hamiltonian can be formed
explicitly, the Pontryagin based method has the advantage that the Newton method can
be applied to solve the discrete nonlinear Hamiltonian system with a sparse Jacobian.

If the optimal discrete backward paths X̄(t) in (9.29) collide on a codimension one
surface Γ in Rd × [0, T ], the dual variable λ̄ = ūx may have a discontinuity at Γ, as a
function of x. Theorems 9.27 and ?? prove, for ū based on the Pontryagin method, that
in the viscosity solution sense

ūt +H(ūx, ·) = O(∆t+ δ +
(∆t)2

δ
), (9.30)

where the discrete value function, ū, in (9.27) has been modified to

ū(x, tm) = min
X̄m=x

(
g(X̄N ) +

N−1∑
n=m

hδ(X̄n, λ̄n+1)∆t
)
. (9.31)

The regularizations make the right hand side in (9.30) a Lipschitz continuous function of(
λ̄(t), X̄(t), t

)
, bounded by C(∆t + δ + (∆t)2

δ ) where C depends only on the Lipschitz
constants of f , h and λ̄. Therefore the maximum norm stability can be used to prove
‖u − ū‖C = O(∆t), for δ = ∆t. Without the regularization, the corresponding error
term to in (9.30) is not well defined, even if ūx is smooth. A similar proof applies to
the minimization method for smooth Hamiltonians, see [San08]. It is important to note
that for non smooth control the solution paths X̄ may not converge although the value
function converges as ∆t and δ tend to zero. Therefore our backward error analysis
uses consistency with the Hamilton-Jacobi partial differential equation and not with
the Hamiltonian system. Convergence of the approximate path (X̄, λ̄) typically requires
Lipschitz continuous flux (Hλ, Hx), which we do not assume in this work.

9.2.1 Optimization Examples

We give some examples when the Hamiltonian, H, is not a differentiable function, and
difficulties associated with this.

Example 9.21. Let B = {−1, 1}, f = α, h = x2/2 and g = 0. Here the continuous
minimization problem (9.3) has no minimizer among the measurable functions. A
solution in discrete time using a nonregularized Pontryagin method or discrete dynamic
programming will behave as in Figure 9.7. First the solution approaches the time axis,
and then it oscillates back and forth. As ∆t becomes smaller these oscillations do so
as well. The infimum for the continuous problem corresponds to a solution X(t) that
approaches the time-axis, and then remains on it. However, this corresponds to α = 0,
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x

t
T

Figure 9.7: Example 9.21 where the continuous problem has no minimizer among the
measurable functions.

which is not in B, and hence the infimum is not attained. A cure to always have an
attained minimizing path for the continuous problem is to use controls which are Young
measures, see [You69] and [Ped99]. We note that the Hamiltonian, H(λ, x) = −|λ|+x2/2,
in this example is not differentiable.

Example 9.22. Let B = [−1, 1], f = α, h = x2/2 and g = 0, which is similar to the
previous example but now the set of admissible controls, B, has been changed slightly.
Since 0 ∈ B, the infimum in (9.3) is now obtained. However, the Hamiltonian remains
unchanged compared to the previous example, and a solution to the discrete Pontryagin
principle would still be oscillating as in Figure 9.7.

Example 9.23. Let B = [−1, 1], f = α, h = 0 and g = x2. The Hamiltonian is
nondifferentiable: H = −|λ|. If T = 1 there are infinitely many solutions to the
continuous minimization, the discrete minimization and the unregularized discrete
Pontryagin principle, when X0 ∈ (−1, 1), as depicted in Figure 9.8.

The problems occurring in the previous examples are all cured by regularizing the
Hamiltonian and using the scheme (9.29). That is, the solution to (9.29) in the first two
examples is a smooth curve that obtains a increasingly sharp kink near the time-axis
as the regularizing parameter, δ, decreases, see Figure 9.9. In the last of the previous
examples we, in contrast to the other methods, obtain a unique solution to (9.29).

Another problem that has not to do with nondifferentiability of the Hamiltonian is
shown in the following example:

Example 9.24. Let B = [−1, 1], f = α, h = 0 and g = −|x|. Although H is
discontinuous here, this is not what causes problem. The problem is that optimal paths
collide backwards, see Figure 9.10. When X0 = 0 there are two solutions, one going to
the left, and one to the right. The left solution has λ = 1 and the right solution has
λ = −1, so on the time-axis λ is discontinuous. For these values of λ, the Hamiltonian is
differentiable, therefore the nonsmoothness of the Hamiltonian is not the issue here. It is
rather the global properties of the problem that play a role. This problem is difficult to
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Figure 9.8: Example 9.23 with g(x) = x2 gives infinitely many minimizing paths through
the same starting point.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

Figure 9.9: Solution of the discrete optimization problem (9.29) in Example 9.21 and 9.22
for δ = ∆t = 1/N , X0 = 0.8 and Hδ

λ(λ, x) = − tanh(λ/δ), using the Newton method. To
the left, N = 100, and to the right, N = 1000. The dashed lines shows the solution after
each Newton iteration.
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x

Figure 9.10: Solution of the optimization problem in Example 9.24, where g(x) = −|x|,
f = α, h = 0 and B = [−1, 1], for four different starting points.

regularize, and it will not be done here. However, we still can show convergence of the
scheme (9.29). This is done in Section ??.

When using (9.29) to solve the minimization problem (9.3) it is assumed that the
Hamiltonian is exactly known. Is this an unrealistic assumption in practice? In the
following two examples we indicate that there exist interesting examples where we know
the Hamiltonian. The first has to do with volatility estimation in finance, and the latter
with optimization of an electric contact.

9.2.1.1 Implied Volatility

Black-Scholes equation for pricing general options uses the volatility of the underlying
asset. This parameter, however, is difficult to estimate. One way of estimation is to
use measured market values of options on the considered asset for standard European
contracts. This way of implicitly determining the volatility is called implied volatility. In
the simplest setting, the formula2 for the option price based on constant interest rate
and volatility is used. Then the result typically gives different values of the volatility for
different stock price – instead of obtaining a constant volatility, the implied volatility
becomes a strictly convex function of the stock price called the volatility smile. Below
we shall fit a model allowing the volatility to be a general function to observed option
prices. That requires solution of a partial differential equation, since an explicit formula
is not available. Another ingredient in our reconstruction is to use the so called Dupire
equation for standard European put and call option prices as a function of the strike
price and strike time. Using an equation of the option value as a function of the strike
price and strike time, for given stock price, is computational more efficient, since the
option data is for different strike price and strike times, with fixed stock price. To use
the standard Black-Scholes equation for the option value as a function of the stock price

2the option price formula is C(s, t;K,T ) = sΦ(d1) −Ke−r(T−t)Φ(d2), where d1 :=
(

ln(s/K) + (r +

σ2/2)(T − t)
)
/
(
σ(T − t)1/2

)
, d2 := d1−σ(T − t)1/2 and Φ is the standard normal cumulative distribution

function.
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would require to solve different equations for each data point, which is also possible but
more computationally expensive.

We assume that the financial asset obeys the following Ito stochastic differential
equation,

dS(t) = µS(t)dt+ σ
(
t, S(t)

)
S(t)dW (t), (9.32)

where S(t) is the price of the asset at time t, µ is a drift term, σ is the volatility and
W : R+ → R is the Wiener process. If the volatility is a sufficiently regular function
of S, t, the strike level K and the maturity date T , the Dupire equation holds for the
option price C(T,K) as a function of T and K, with the present time t = 0 and stock
price S(0) = S fixed,

CT − σ̃CKK = 0, T ∈ (0,∞),K > 0,

C(0,K) = max{S −K, 0} K > 0,
(9.33)

where

σ̃(T,K) ≡ σ2(T,K)K2

2
.

Here the contract is an european call option with payoff function max{S(T )−K, 0}. We
have for simplicity assumed the bank rate to be zero. A derivation of Dupire’s equation
(9.33) is presented in Example 9.25 in the special setting r = 0; the general case is studied
in [Dup94].

The optimization problem now consists of finding σ(T,K) such that∫ T̂

0

∫
R+

(C − Ĉ)2(T,K)w(T,K)dKdT (9.34)

is minimized, where Ĉ are the measured market values on option prices for different
strike prices and strike times and w is a non negative weight function. In practice, Ĉ is
not known everywhere, but for the sake of simplicity, we assume it is and set w ≡ 1, that
is there exists a future time T̂ such that Ĉ is defined in R+ × [0, T̂ ]. If the geometric
Brownian motion would be a perfect model for the evolution of the price of the asset,
the function σ(T,K) would be constant, but as this is not the case, the σ that minimizes
(9.34) (if a minimizer exists) varies with T and K.

It is possible to use (9.13) and (9.25) to perform the minimization of (9.34) over the
solutions to a finite difference discretization of (9.33)

min
σ̃

∫ T̂

0
∆K

∑
i

(C − Ĉ)2
i dT

subject to
∂Ci(T )

∂T
= σ̃D2Ci(T ),

Ci(0) = max(S − i∆K, 0),

(9.35)

where we now let Ci(T ) ≈ C(T, i∆K) denote the discretized prize function, for strike
time T and strike price i∆K, and D2 is the standard three point difference approximation
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of the second order partial derivative in K, that is (D2C)i = (Ci+1 − 2Ci + Ci−1)/∆K2.
In order to have a finite dimensional problem we restrict to a compact interval (0,M∆K)
in K with the boundary conditions

C0 = S, CM = 0.

This formulation will be exactly the same as in (9.13) if ∆K = 1, and otherwise it
requires to use a new scalar product (x, y) := ∆K

∑
i xiyi and let the partial derivative

∂λ be replaced by the following Gateaux derivative, Hλ,

lim
ε→0

ε−1
(
H(λ+ εv, C)−H(λ,C)

)
=:
(
Hλ(λ,C), v

)
,

and similarly for ∂C ; so that the partial derivative is a factor of ∆K smaller than the
Gateaux derivative. This complication with using ∆K 6= 1 is introduced in order to have
a consistent formulation with the infinite dimensional case, where a partial derivative of
a functional becomes zero but the Gateaux derivative is nonzero and meaningful, see the
next example. The reader may avoid this be considering ∆K = 1.

The Hamiltonian for this problem is

H(λ,C) = ∆K min
σ̃

M−1∑
i=1

(
λiσ̃i(D

2C)i + (C − Ĉ)2
i

)
= ∆K

M−1∑
i=1

(
min
σ̃i

λiσ̃i(D
2C)i + (C − Ĉ)2

i

)
where λ is the adjoint associated to the constraint (9.35). We have used that the
components of the flux, f , in this problem is σ̃i(D

2C)i, that the running cost, h, is
∆K

∑
i(C − Ĉ)2

i , and further that each σ̃i minimizes λiσ̃i(D
2C)i separately, so that the

minimum can be moved inside the sum. If we make the simplifying assumption that
0 ≤ σ− ≤ σ̃ ≤ σ+ <∞ we may introduce a function s : R→ R as

s(y) ≡ min
σ̃
y σ̃ =

{
yσ−, y > 0

yσ+, y < 0.

Using s, it is possible to write the Hamiltonian as

H(λ,C) = ∆K

M−1∑
i=1

(
s
(
λi(D

2C)i
)

+
(
C − Ĉ

)2
i

)
.

Since s is nondifferentiable, so is H. However, s may easily be regularized, and it is
possible to obtain the regularization in closed form, e.g. as in Example 1. Using a
regularized version sδ of s, the regularized Hamiltonian becomes

Hδ(λ,C) = ∆K

M−1∑
i=1

(
sδ
(
λi(D

2C)i
)

+
(
C − Ĉ

)2
i

)
,
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which using Gateaux derivatives gives the Hamiltonian system

∂Ci(T )

∂T
= s′δ

(
λi(D

2C)i
)
D2Ci(T ), C0 = S CM = 0,

−∂λi(T )

∂T
= D2

(
s′δ
(
λi(D

2C)i
)
λ
)

+ 2(C − Ĉ)i,

λ0 = λM = 0,

(9.36)

with data
Ci(0) = max(S − i∆K, 0), λ(T̂ ) = 0.

The corresponding Hamilton-Jacobi equation for the value function

u(C, τ) =

∫ T̂

τ

M−1∑
i=1

(C − Ĉ)2
i∆KdT

is
uT +H(uC , C) = 0, T < T̂ ,

u(T̂ , ·) = 0,

where uC is the Gateaux derivative with respect to C in the scalar product (x, y) ≡
∆K

∑
i xi, yi. With this scalar product the Hamiltonian system (9.36) takes the form

(CT , v) = (Hδ
λ, v), ∀v ∈ RM−1

(λT , v) = −(Hδ
C , v), ∀v ∈ RM−1

where Hδ
λ and Hδ

C are the Gateaux derivatives.
A choice of the regularization parameter δ, depending also on data error, can be

obtained e.g. by the discrepancy principle, cf. [Vog02], [EHN96]. The Newton method
described in Section 3 works well to solve the discrete equations for d = 10. The results
of one trial volatility estimation is given in Figure 9.11.

Example 9.25 (Derivation of Dupire’s equation). The Black-Scholes equation for a
general volatility function and interest r = 0 is

∂tf +
σ2(s, t)s2

2
∂ssf = 0 t < T

f(s, T ) = max(K − s, 0)

which defines the option value f(s, t;K,T ). The goal is now to find the equation for
f as a function of K and T . We know from the Kolmogorov backward equation that
f(s, t;K,T ) = E[max(K − ST , 0) | St = s], where dSt = σ(St, t)StdWt. The Kolmogorov
forward equation shows that f(s, t;K,T ) =

∫
R max(K − y, 0)p(y, T ; s, t)dy where

∂T p− ∂yy
(σ2(y, T )y2

2
p
)

= 0 T > t

p(y, t; s, t) = δ(y − s).

114



0

2

4

00.51

0.9

0.95

1

1.05

1.1

1.15

TK

!

0

2

4

0
0.5

1

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

TK
s’

10−10 10−5 100
10−5

10−4

10−3

10−2

"

L2 error of computed C minus measured C

Figure 9.11: Results of a computer experiment where the volatility σ in the picture to
the left is used to obtain the “measured” Ĉ. Uniform noise of amplitude 10−4 is also
added to Ĉ. The error ‖C − Ĉ‖L2 is plotted versus δ in the picture to the right. In the
middle picture the approximate volatility, s′δ is shown for the value of δ (= 3 · 10−6) that
minimizes ‖s′δ − σ‖L2 . In this experiment, M = 9 and N = 100.

We observe that ∂KKf(s, t;K,T ) =
∫
R δ(K − y)p(y, T ; s, t)dy = p(K,T ; s, t) and conse-

quently

∂T∂KKf(s, t;K,T )− ∂KK
(σ2(K,T )K2

2
∂KKf(s, t;K,T )

)
= 0 T > t,

can be integrated to obtain

∂T f(s, t;K,T )−
(σ2(K,T )K2

2
∂KKf(s, t;K,T )

)
= C1 + C2K T > t.

The boundary condition ∂KKf → 0 as K →∞ and ∂T f → 0 as T →∞ concludes that
C1 = C2 = 0.

9.2.1.2 Topology Optimization of Electric Conduction

The problem is to place a given amount of conducting material in a given domain Ω ⊂ Rd
in order to minimize the power loss for a given surface current q, satisfying

∫
∂Ω qds = 0:

let η ∈ R be a given constant, associated to the given amount of material, and find an
optimal conduction distribution σ : Ω→ {σ−, σ+}, where σ± > 0, such that

div
(
σ∇ϕ(x)

)
= 0, x ∈ Ω, σ

∂ϕ

∂n

∣∣∣
∂Ω

= q

min
σ

(

∫
∂Ω
qϕds+ η

∫
Ω
σ dx),

(9.37)

where ∂/∂n denotes the normal derivative and ds is the surface measure on ∂Ω. Note
that (9.37) implies that the power loss satisfies∫

∂Ω
qϕds = −

∫
Ω

div(σ∇ϕ)ϕdx+

∫
∂Ω
σ
∂ϕ

∂n
ϕds

=

∫
Ω
σ∇ϕ · ∇ϕdx.
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The Lagrangian takes the form∫
∂Ω
q(ϕ+ λ) ds+

∫
Ω
σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸

v

dx

and the Hamiltonian becomes

H(λ, ϕ) = min
σ

∫
Ω
σv dx+

∫
∂Ω
q(ϕ+ λ) ds =

∫
Ω

min
σ
σv︸ ︷︷ ︸

s(v)

dx+

∫
∂Ω
q(ϕ+ λ) ds

with the regularization

Hδ(λ, ϕ) =

∫
Ω
sδ(η −∇ϕ · ∇λ) dx+

∫
∂Ω
q(ϕ+ λ) ds,

depending on the concave regularization sδ ∈ C2(R) as in Section 9.2.1.1. The value
function

u(ϕ, τ) =

∫ T

τ
(

∫
∂Ω
qϕds+ η

∫
Ω
σ dx) dt

for the parabolic variant of (9.37), that is

ϕt = div
(
σ∇ϕ(x)

)
,

yields the infinite dimensional Hamilton-Jacobi equation

∂tu+H(∂ϕu, ϕ) = 0 t < T, u(·, T ) = 0,

using the Gateaux derivative ∂ϕu = λ of the functional u(ϕ, t) in L2(Ω). The regularized
Hamiltonian generates the following parabolic Hamiltonian system for ϕ and λ∫

Ω

(
∂tϕw + s′(η −∇ϕ · ∇λ)∇ϕ · ∇w

)
dx =

∫
∂Ω
qw ds∫

Ω

(
− ∂tλv + s′(η −∇ϕ · ∇λ)∇λ · ∇v

)
dx =

∫
∂Ω
qv ds

for all test functions v, w ∈ V ≡ {v ∈ H1(Ω)
∣∣ ∫

Ω vdx = 0}. Time independent solutions
satisfy λ = ϕ by symmetry. Therefore the electric potential satisfies the nonlinear elliptic
partial differential equation

div
(
s′δ(η − |∇ϕ|2)∇ϕ(x)

)
= 0 x ∈ Ω, s′δ

∂ϕ

∂n
|∂Ω = q, (9.38)

which can be formulated as the convex minimization problem: ϕ ∈ V is the unique
minimizer (up to a constant) of

−
(∫

Ω
sδ(η − |∇ϕ(x)|2) dx+ 2

∫
∂Ω
qϕds

)
. (9.39)
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Figure 9.12: Contour plot of s′δ as an approximation of the conductivity σ. As seen,
Ω is in this example a square with two circles cut out. Electrical current enters Ω at
two positions on the top of the square and leaves at one position on the bottom. The
contours represent the levels 0.2, 0.4, 0.6 and 0.8. A piecewise linear FEM was used with
31440 elements, maximum element diameter 0.01, σ− = 0.001, σ+ = 1, η = 0.15 and
δ = 10−5.

In [CSS08] we study convergence of

lim
T→∞

u(ϕ, t)− ū(ϕ, t)

T
,

where ū is the value function associated to finite element approximations of the mini-
mization (9.39).

The Newton method in Section 3 works well to solve the finite element version
of (9.38) by successively decreasing δ, also for large d, see [CSS08], where also the
corresponding inverse problem to use measured approximations of ϕ to determine the
domain where σ = σ− and σ = σ+ is studied. A numerical solution to (9.38) can be seen
in Figure 9.12.

In this paper we use the standard Euclidean norm in Rd to measure X and λ. Optimal
control of partial differential equations with X and λ belonging to infinite dimensional
function spaces requires a choise of an appropriate norm. In [San08] the analysis here is
extended to optimal control of some parabolic partial differential equations, by replacing
the Euclidean Rd norm with the H1

0 Sobolev norm, using also that the theory of viscosity
solutions remains valid with this replacement.

9.2.2 Solution of the Discrete Problem

We assume in the theorems that the Pontryagin minimization (9.29) has been solved
exactly. In practice (9.29) can only be solved approximately by iterations. The simplest
iteration method to solve the boundary value problem (9.29) is the shooting method:
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start with an initial guess of λ̄[0] and compute, for all time steps n, the iterates

X̄n+1 = X̄n + ∆tHδ
λ

(
λ̄n+1[i], X̄n

)
, n = 0, . . . , N − 1, X̄0 = X0

λ̄n[i+ 1] = λ̄n+1[i] + ∆tHδ
x

(
λ̄n+1[i], X̄n

)
, n = N − 1, . . . , 0, λ̄N = gx(X̄N ).

(9.40)

An alternative method, better suited for many boundary value problems, is to use Newton
iterations for the nonlinear system F (X̄, λ̄) = 0 where F : RNd × RNd → R2Nd and

F (X̄, λ̄)2n = X̄n+1 − X̄n −∆tHδ
λ

(
λ̄n+1, X̄n

)
,

F (X̄, λ̄)2n+1 = λ̄n − λ̄n+1 −∆tHδ
x

(
λ̄n+1, X̄n

)
.

(9.41)

An advantage with the Pontryagin based method (9.41) is that the Jacobian of F can
be calculated explicitly and it is sparse. The Newton method can be used to solve the
volatility and topology optimization examples in Section 2, where the parameter δ is
successively decreasing as the nonlinear equation (9.41) is solved more accurately.

Let us use dynamic programming to show that the system (9.29) has a solution in the
case that λ̄ is a Lipschitz continuous function of (x, t), with Lipschitz norm independent
of ∆t, and δ > C∆t. One step

x = y + ∆tHδ
λ

(
λ(x), y

)
(9.42)

for fixed y ∈ Rd has a solution x(y) since the iterations

x[i+ 1] = y + ∆tHδ
λ

(
λ(x[i]), y

)
yield a contraction for the error e[i] = x[i+m]− x[i]

e[i+ 1] = ∆t
(
Hδ
λ

(
λ(x[i+m]), y

)
−Hδ

λ

(
λ(x[i]), y

))
= ∆tHδ

λλλxe[i].

Conversely, for all x ∈ Rd equation (9.42) has a solution y(x) for each step since the
iterations

y[i+ 1] = x−∆tHδ
λ

(
λ(x), y[i]

)
generate a contraction for the error. The dynamic programming principle then shows
that there are unique paths through all points X̄n+1 leading to all X̄n for all n.

Example 9.26. In Example 9.21 and 9.22 the problem was to minimize

min
α∈B

∫ T

0

X(t)2

2
dt,

given the dynamics
X ′(t) = α, X(0) = X0,

and an admissible set of controls B = {−1, 1} (for Example 9.21), or B = [−1, 1] (for
Example 9.22). The Hamiltonian for this problem is H(λ, x) = −|λ|+ x2/2, and for a
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smooth approximation of the λ-derivative, e.g. Hδ
λ(λ, x) = − tanh(λ/δ), the non-linear

system (9.41) becomes

0 = X̄n+1 − X̄n + ∆t tanh
(
λ̄n+1/δ

)
,

0 = λ̄n − λ̄n+1 −∆tX̄n.

Newton’s method starts with an initial guess
(
X̄0
n+1, λ̄

0
n

)
, for all times n = 0, . . . , N − 1,

and updates the solution, for some damping factor γ ∈ (0, 1], according to

X̄i+1
n+1 = X̄i

n+1 − γ∆X̄i
n+1,

λ̄i+1
n = λ̄in − γ∆λ̄in,

where the updates comes from solving the sparse Newton system (N = 3 for illustration)

1 −1
di1∆t 1

1 −∆t −1
−1 di2∆t 1

1 −∆t
−1 1





∆λ̄i0
∆λ̄i1
∆X̄i

1

∆λ̄i2
∆X̄i

2

∆X̄i
3

 =



λ̄i0 − λ̄i1 −∆tX̄i
0

X̄i
1 − X̄i

0 + ∆t tanh
(
λ̄i1/δ

)
λ̄i1 − λ̄i2 −∆tX̄i

1

X̄i
2 − X̄i

1 + ∆t tanh
(
λ̄i2/δ

)
λ̄i2 − λ̄i3 −∆tX̄i

2

X̄i
3 − X̄i

2 + ∆t tanh
(
λ̄i3/δ

)

 ,

and dij := ∂λ tanh
(
λ̄ij/δ

)
= δ−1 cosh−2

(
λ̄ij/δ

)
. A Matlab implementation for the above

Newton method is shown below, and in Figure 9.9 the solution is shown for different
values of N .

% Solving Hamiltonian system with Newton’s method

% for T=1, delta=dt and gamma=1

N=1000; dt=1/N;

J=sparse(2*N,2*N); rhs=sparse(2*N,1);

X=sparse(N+1,1); L=sparse(N+1,1);

X(1)= 0.8; % initial data

tol=1;

while tol>1e-6

% Assemble Newton system row-wise

for n=1:N

rhs(2*n-1)=L(n)-L(n+1)-dt*X(n);

rhs(2*n)=X(n+1)-X(n)+dt*tanh(L(n+1)/dt);

end

J(1,1:2)=[1 -1]; J(2*N,2*N-1:2*N)=[-1 1];

for n=1:N-1

J(2*n,2*n-1:2*n+1)=[-1 1/cosh(L(n+1)/dt)^2 1];

J(2*n+1,2*n:2*n+2)=[1 -dt -1];

end
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J(2,1)=0; J(2*N-1,2*N)=0;

% Solve and update

dXL=J\rhs;

L(1)=L(1)-dXL(1); X(N+1)=X(N+1)-dXL(2*N);

for n=2:N

X(n)=X(n)-dXL(2*n-1); L(n)=L(n)-dXL(2*n-2);

end

tol = norm(rhs) % Error

end

9.2.3 Convergence of Euler Pontryagin Approximations

Theorem 9.27. Assume that the Hamiltonian H, defined in (9.4), is Lipschitz continu-
ous on Rd×Rd and that (9.29) has a solution (X̄, λ̄), where λ̄n+1 has uniformly bounded
first variation with respect to X̄n for all n and all ∆t, that is there is a constant K such
that

|∂X̄n λ̄n+1| ≤ K. (9.43)

Then the optimal solution, (X̄, λ̄), of the Pontryagin method (9.29) satisfies the error
estimate∣∣∣ inf

α∈A

(
g
(
X(T )

)
+

∫ T

0
h
(
X(s), α(s)

)
ds
)
−
(
g(X̄N ) + ∆t

N−1∑
n=0

hδ(X̄n, λ̄n+1)
)∣∣∣

= O(∆t+ δ +
(∆t)2

δ
)

= O(∆t), for δ = ∆t.

(9.44)

The bound O(∆t) in (9.44) depends on the dimension d through the Lipschitz norms
of the Hamiltonian H and the constant K in (9.43).

The work [SS06] presents a convergence result for the case when backward paths
X̄(t) collide on a C1 codimension one surface in Rd × [0, T ]. The next subsections give a
construction of a regularization Hδ and the proof of Theorem 9.27.

9.2.3.1 Construction of a Regularization

A possible regularization of H is to let Hδ be a standard convolution mollification of H

Hδ(λ, x) =

∫
Rd

∫
Rd
H(z, y)ωδ(z − λ)ωδ(y − x) dz dy, (9.45)

with ωδ : Rd → R+ a C2 function compactly supported in the ball {y ∈ Rd : |y| ≤ δ}
and with integral one

∫
Rd ω

δ(y)dy = 1. This regularization remains concave in λ. Our
analysis is not dependent of this specific regularization, but uses that

‖H −Hδ‖C + δ‖Hδ‖C1 + δ2‖Hδ‖C2 = O(δ),

and that Hδ remains a concave function of λ.
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9.2.3.2 Convergence without Shocks and Colliding Paths

The proof of the theorem is based on four lemmas. In all of those we suppose that the
assumptions of Theorem 9.27 are valid.

Lemma 9.28. The discrete dual function is the gradient of the value function, that is

ūx(X̄n, t̄n) = λ̄n. (9.46)

Proof. The relation (9.46) holds for tn = T . Use the induction assumption that (9.46)
holds true for
tN ≡ T , tN−1, . . . , tn+1. Then the definitions of f δ and hδ imply

∂ū

∂X̄n
(X̄n, tn) = ∂X̄n

(
ū(X̄n+1, tn+1) + ∆thδ(λ̄n+1, X̄n)

)
= ∂X̄nX̄n+1

∂ū

∂X̄n+1
(X̄n+1, tn+1) + ∆t∂X̄nh

δ(λ̄n+1, X̄n)

=
(
I + ∆t∂X̄nH

δ
λ(λ̄n+1, X̄n)

)
λ̄n+1 + ∆t∂X̄nh

δ(λ̄n+1, X̄n)

= λ̄n+1 + ∆t∂X̄n(Hδ
λλ+ hδ)(λ̄n+1, X̄n)

−∆tHδ
λ(λ̄n+1, X̄n)∂X̄n λ̄n+1

= λ̄n+1 + ∆tHδ
x(λ̄n+1, X̄n)

= λ̄n.

Section 9.2.7 shows that (9.46) holds precisely for symplectic methods.
We now extend ū to be a function defined for all t. First extend the solution X̄ to

all time as a continuous piecewise linear function

X̄(t) =
tn+1 − t

∆t
X̄n +

t− tn
∆t

X̄n+1, for tn ≤ t < tn+1, (9.47)

so that

X̄ ′(t) = Hδ
λ(λ̄n+1, X̄n). (9.48)

The following lemma shows that two different solutions can not collide for suitable small
∆t.

Lemma 9.29. There is a positive constant c such that if ∆t ≤ cδ two different solutions
(X̄1, λ̄1) and (X̄2, λ̄2) of (9.29) do not intersect.

Proof. Assume there exist two optimal paths (X̄1, λ̄1) and (X̄2, λ̄2) that intersect at
time t, where t̄n < t ≤ t̄n+1, then

X̄1
n + (t− t̄n)Hδ

λ(λ̄1
n+1, X̄

1
n) = X̄2

n + (t− t̄n)Hδ
λ(λ̄2

n+1, X̄
2
n)

which can be written

X̄1
n − X̄2

n = (t− tn)
(
Hδ
λ(λ̄2

n+1, X̄
2
n)−Hδ

λ(λ̄1
n+1, X̄

1
n)
)
. (9.49)
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To obtain an estimate of the size of the right hand side in (9.49) integrate along the line

X̄(s) = X̄1
n + s(X̄2

n − X̄1
n),

with λ̄in+1 a function of X̄i
n. The difference in the right hand side of (9.49) is

Hδ
λ(λ̄2

n+1, X̄
2
n)−Hδ

λ(λ̄1
n+1, X̄

1
n) =

∫ 1

0

dHδ
λ

ds
ds

=

∫ 1

0

(
Hδ
λx +Hδ

λλ∂X̄n λ̄n+1

)
ds(X̄2

n − X̄1
n).

By assumption it holds that ‖Hδ
λx+Hδ

λλ∂X̄n λ̄n+1‖C = O
(
Cλ(1 +K)/δ

)
. Hence the norm

of the right hand side in (9.49) is O(δ−1∆t)O
∥∥X̄1

n − X̄2
n

∥∥. Therefore there is a positive
constant c such that if ∆t < cδ, the equation (9.49) has only the solution X̄1

n = X̄2
n.

Since the optimal paths X̄ do not collide, for suitable small ∆t, the value function ū
is uniquely defined along the optimal paths, by (9.31) and

ū
(
X̄(t), t

)
= ū(X̄n+1, tn+1) + (tn+1 − t)hδ(X̄n, λ̄n+1), tn < t < tn+1 (9.50)

and we are ready for the main lemma

Lemma 9.30. The value function for the Pontryagin method satisfies a Hamilton-Jacobi
equation close to (9.4), more precisely there holds

ūt +H(ūx, ·) = O(δ + ∆t+
(∆t)2

δ
) in Rd × (0, T ),

ū = g on Rd.
(9.51)

The error term O(δ+ ∆t+ (∆t)2

δ ) in (9.51) is a Lipschitz continuous function of ūx(x, t),
x and t satisfying

|O(δ + ∆t+
(∆t)2

δ
)| ≤ CCλ

(
δ + Cx∆t+ CxCλ(1 +K)

(∆t)2

δ

)
,

where Cx and Cλ are the Lipschitz constants of H in the x and λ variable, respectively,
and C ∼ 1 does not depend on the data.

Proof. The proof starts with the observation

0 =
d

dt
ū(X̄(t), t) + hδ(λ̄n+1, X̄n)

= ūt(X̄(t), t) + ūx(X̄(t), t) · f δ(λ̄n+1, X̄n) + hδ(λ̄n+1, X̄n).
(9.52)

The idea is now to use that the dual function λ̄ is the gradient of ū at the time levels tn,
by Lemma 9.28, (and a good approximation at times in between) and that the modified
discrete Pontryagin method shows that the right hand side in (9.52) is consistent with
the correct Hamiltonian H.
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We will first derive an estimate of |ūx(X̄(t), t) − λ̄n+1| for tn < t < tn+1. We have
that

ū(X̄(t), t) = ū(X̄n+1, t̄n+1) + (t̄n+1 − t)hδ(λ̄n+1, X̄n)

Therefore ūx(X̄(t), t) can be written as

ūx(X̄(t), t) =
∂X̄n

∂X̄t

(∂X̄n+1

∂X̄n
ūx(X̄n+1, tn+1) + (tn+1 − t)∂X̄nh

δ(λ̄n+1, X̄n)
)

=
∂X̄n

∂X̄t

(∂X̄n+1

∂X̄n
λ̄n+1 + (tn+1 − t)∂X̄nh

δ(λ̄n+1, X̄n)
)
.

Introduce the notation

A ≡ ∂X̄nH
δ
λ(λ̄n+1, X̄n) = Hδ

λx(λ̄n+1, X̄n) +Hδ
λλ(λ̄n+1, X̄n)∂X̄n λ̄n+1

= O
(
Cλ(1 +K)/δ

)
.

(9.53)

We have

∂X̄n+1

∂X̄n
= I + ∆tA = I + (t− tn)A+ (tn+1 − t)A

∂X̄n

∂X̄t
=
(
I + (t− tn)A

)−1

therefore as in Lemma 9.28

ūx(X̄(t), t)

= λ̄n+1 + (tn+1 − t)
(
I + (t− tn)A

)−1(
Aλ̄n+1 + ∂X̄nh

δ(λ̄n+1, X̄n)
)

= λ̄n+1 + (tn+1 − t)
(
I + (t− tn)A

)−1
Hδ
x(λ̄n+1, X̄n)

= λ̄n+1 +O
(
Cx∆t+ CxCλ(K + 1)(∆t)2/δ

)
.

(9.54)

Introduce the notation λ̃ ≡ ūx(X̄(t), t) and split the Hamiltonian term in (9.52) into
three error parts:

r(λ̃, X̄(t), t) ≡ λ̃f δ(λ̄n+1, X̄n) + hδ(λ̄n+1, X̄n)−H
(
λ̃, X̄(t)

)
= λ̃f δ(λ̄n+1, X̄n) + hδ(λ̄n+1, X̄n)−Hδ(λ̃, X̄n)

+Hδ(λ̃, X̄n)−Hδ
(
λ̃, X̄(t)

)
+Hδ

(
λ̃, X̄(t)

)
−H

(
λ̃, X̄(t)

)
≡ I + II + III.

(9.55)

Taylor expansion of Hδ to second order and (9.54) show

|I| = |Hδ(λ̄n+1, X̄n) + (λ̃− λ̄n+1)Hδ
λ(λ̄n+1, X̄n)−Hδ(λ̃, X̄n)|

≤ min
(
2Cλ|λ̃− λ̄n+1|, |(λ̃− λ̄n+1)Hδ

λλ(ξ, X̄n)(λ̃− λ̄n+1)|/2
)

≤ CCλ
(
Cx∆t+ CxCλ(K + 1)(∆t)2/δ

)
;
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the Lipschitz continuity of Hδ implies

|II| ≤ |Hδ
x||X̄(t)− X̄n| ≤ |Hδ

x||Hδ
λ|∆t;

and the approximation Hδ satisfies

|III| ≤ CCλδ.

The combination of these three estimates proves (9.51).
To finish the proof of the lemma we show that the error function r can be extended

to a Lipschitz function in Rd × Rd × [0, T ]. We note that by (9.43), (9.47) and (9.54) λ̃
is a Lipschitz function of Xt and t, and r(λ̃(Xt, t), Xt, t) is Lipschitz in Xt and t. By

r(λ,X, t) ≡ r(λ̃(X, t), X, t)

we obtain a Lipschitz function r in Rd × Rd × [0, T ].

The results in these lemmas finishes the proof of Theorem 9.27: the combination of
the residual estimates in Lemma 9.30 and the C-stability estimate of viscosity solutions
in Lemma 9.31 proves the theorem.

The approximation result can be extended to the case when the set of backward
optimal paths {(X̄(t), t) : t < T}, solving (9.29) and (9.47) , may collide into a
codimension one surface Γ in space-time Rd × [0, T ], see [SS06].

9.2.3.3 Maximum Norm Stability for Hamilton-Jacobi Equations

The seminal construction of viscosity solutions by Crandall and Lions [?] also includes
C stability results formulated in a general setting. We restate a variant adapted to the
convergence results in this paper.

Lemma 9.31. Suppose H : Rd×Rd → R is a Lipschitz continuous Hamiltonian satisfying
for a constant C and for all x, x̂, λ, λ̂ ∈ Rd

|H(λ, x)−H(λ, x̂)| ≤ Cx|x− x̂|(1 + |λ|),
|H(λ, x)−H(λ̂, x)| ≤ Cλ|λ− λ̂|.

Suppose also that e : Rd × [0, T ] → R and g : Rd → R are Lipschitz continuous. Then,
the bounded uniformly continuous viscosity solutions u and û of the Hamilton-Jacobi
equations

ut +H(ux, ·) = 0 in Rd × (0, T ), u|Rd×{T} = g, (9.56)

ût +H(ûx, ·) = e in Rd × (0, T ), û|Rd×{T} = g, (9.57)

satisfy the C-stability estimate

O‖u− û‖C(Rd×[0,T ]) ≤ TO‖e‖C(Rd×[0,T ]) . (9.58)

This follows from the maximum norm stability (9.22), but other proofs based on the
maximum principle or the comparison principle are also possible, see [SS06].
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9.2.4 How to obtain the Controls

The optimal control for the exact problem (9.4) is determined by the value function
through the Pontryagin principle

α(x, t) ∈ argmin
a∈B

(
ux(x, t) · f(x, a) + h(x, a)

)
.

Assume we have solved a discrete approximating optimal control problem and obtained
the approximations X̄, λ̄ and ū. Can they be used to determine an approximation of
the control α? Even in the case that the optimal control S(λ, x) ≡ argmina

(
λ · f(x, a) +

h(x, a)
)

is a function, it is in general not continuous as function of x and λ but only
piecewise Lipschitz continuous. Therefore the approximate control S(λ̄(t), x) cannot be
accurate in maximum norm. However, weaker measures of the control can converge; for
instance the value function is accurately approximated in Theorems 9.27 and ??. At
the points where S is Lipschitz continuous the error in the control is proportional to
the error |λ̄(x, t) − ux(x, t)|, for fixed x. If we assume that the error ū(·, t) − u(·, t) is
bounded by ε in a

√
ε-neighborhood of x and that ūxx and uxx also are bounded there,

we obtain, for difference quotients ∆u/∆x and |∆x| =
√
ε, the error estimate

λ̄− ux = λ̄− ∆ū

∆x
+

∆ū

∆x
− ∆u

∆x
+

∆u

∆x
− ux = O(∆x+ ε/∆x) = O(

√
ε).

Convergence of the approximate path (X̄, λ̄) typically requires Lipschitz continuous flux
(Hλ, Hx), which we do not assume in this work.

9.2.5 Inverse Problems and Tikhonov Regularization

One way to introduce regularization of ill-posed inverse problems is to study a simple
example such as u′ = f : the forward problem to determine u from f in this case becomes
a well-posed integral u(x) = u(0)+

∫ x
0 f(s)ds and the inverse problem is then to determine

f from u by the derivative f = u′. Note that a small error in the data can be amplified
when differentiated; for instance a small perturbation maximum-norm ε sin(ωx) in u
leads to the f -perturbation εω cos(ωx) which is large (in maximum-norm) if ωε� 1 even
if ε� 1, while a small maximum-norm perturbation of f leads to a small perturbation
of u (in maximum norm). This is the reason that, to determine u from f is well posed
(in maximum norm), while the inverse problem to determine f from u is ill posed.

The simplest method to regularize the problem f = u′ is to replace the derivative
with a difference quotient with suitable step size h. If we assume that our measured
values u∗ of u ∈ C2 are polluted with an error η of size ε in maximum norm so that
u∗ = u+ η, we have

f = (u∗ − η)′.
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To avoid differentiating η we use the difference quotient

f(x) = u′(x)

=
u(x+ h)− u(x)

h
+O(h)

=
u∗(x+ h)− u∗(x)

h
+O(εh−1 + h).

The error term is minimal if we choose h2 ' ε, that is the optimal step size, h '
√
ε,

yields the error O(ε1/2) to compute f by the difference quotient. This difference quotient
converges to u′ as ε tends to zero. If we take too small step size (e.g. h = ε), the
estimation error does not tend to zero as the measurement error tends to zero.

We can write the inverse problem u′ = f as the optimal control problem

Ẋt = αt,

min
α:(0,1)→[−M,M ]

2−1

∫ 1

0
|Xt −Xt

∗|2 dt,

where we changed notation to t := x, X = u, X∗ = u∗, α := f and put the constraint to
seek α in the bounded set [−M,M ] for some positive M . The Hamiltonian becomes

H(λ, x, t) = min
α∈[−M,M ]

(
λ · α+ 2−1|x−Xt

∗|2
)

= −M |λ|+ 2−1|x−Xt
∗|2

which is not differentiable and leads to the system

Ẋt = −Msgn(λ)

λ̇t = −(Xt −Xt
∗).

A regularization of this is to replace sgnλ by tanhλ/δ in the flux, which yields the
regularized Hamiltonian

Hδ(λ, x, t) = −Mδ log(cosh
λ

δ
) + 2−1|x−Xt

∗|2. (9.59)

A standard alternative and related regularization is to add a penalty function de-
pending on the control to the Lagrangian

Lδ(λ, x, α) :=

∫ 1

0
λt(αt − Ẋt) + 2−1|Xt −Xt

∗|2 + δα2 dt

for some δ > 0, which generates the Hamiltonian system

Ẋt = −Msgnδ(λ)

λ̇t = −(Xt −Xt
∗),

where sgnδ is the piecewise linear approximation to sgn with slope −1/(2δ), see Figure
9.13. The corresponding Hamiltonian is C1 and has the following parabolic approximation
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of −M |λ| 
−λM + δM2 if λ > 2δM

−λ2

4δ if − 2δM ≤ λ ≤ 2δM
λM + δM2 if λ ≤ 2δM,

which in some sense is the simplest regularization giving a differentiable Hamiltonian.
Such a regularization obtained by adding a penalty function, depending on the control,
to the Lagranian is called a Tikhonov regularization. Any smooth modification of the
Hamiltonian can be interpreted as adding such a Tikhonov penalty function, see Section
9.2.5. The fundamental property we desire of a regularization is that the Hamiltonian
becomes differentiable. It is somewhat difficult to directly see how to choose a penalty
yielding differentiable Hamiltonian, therefore we propose instead to directly regularize
the Hamiltonian, e.g. by a mollification as in (9.45) (instead of finding appropriate
penalty functions):

• choose a suitable set of controls and its range,

• determine the Hamiltonian,

• mollify the Hamiltonian with a parameter δ > 0 as in (9.45).

Another example of a forward problem is to determine the solution u, representing
e.g. temperature, in the boundary value problem(

a(x)u′(x)
)′

= f(x) 0 < x < 1

u(0) = u′(1) = 0
(9.60)

for a given source function f : (0, 1)→ (c,∞) and a given conductivity a : (0, 1)→ (c,∞)
with c > 0. This is a well posed problem with the solution

u(x) =

∫ x

0

F (s)− F (1)

a(s)
ds,

λ

−M |λ|

λ

−Msgnδ,−Msgn

M

−2δM

2δM

Figure 9.13: Graph of the functions −M |λ|, −sgnδ and −sgn.
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where F (s) =
∫ s

0 f(t) dt is a primitive function of f . The inverse problem to find the
conductivity a from given temperature u and source f leads to

a(x) =
F (x)− F (1)

u′(x)
, (9.61)

which depends on the derivative u′, as in the previous example, so that it is ill posed (in
maximum norm) by the same reason.

Example 9.32 (Numerical regularization). Instead of the exact inversion formula (9.61)
we can formulate the optimal control problem

min
a:[0,1]→R

1

2

∫ 1

0
(u− u∗)2 + δa2dx,

where a and x satisfies (9.60), δ > 0, and u∗ denotes given data corresponding to a
diffusion coefficient a∗. From the Lagrangian

L(u, λ, a) :=
1

2

∫ 1

0
(u− u∗)2 + δa2 + (au′)′λ− fλdx =

=
1

2

∫ 1

0
(u− u∗)2 + δa2 − au′λ′ − fλdx,

the Lagrange principle gives that a necessary condition for an optimum is that u, λ and
a satisfies Equation (9.60), the dual equation

(a(x)λ′)′ = u∗ − u, 0 < x < 1, λ(0) = λ′(1) = 0, (9.62)

and
u′λ′ + δa = 0, 0 < x < 1. (9.63)

In this case the Lagrange principle gives the same result as the Pontryagin principle since
the Lagrangian is convex in a, and since it is smooth in a no regularization is needed.
For δ = 0, the Pontryagin principle does not give an explicit Hamiltonian unless we
impose some bounds on a, while the Lagrange principle still is useful numerically, as we
shall see.

The simplest way to solve system (9.60), (9.62) and (9.63) is to use the gradient
method: given a starting guess ai, solve (9.60) to get u, and (9.62) to get λ, and finally
update a by taking a step of length θ in the negative gradient direction, i.e.

ai+1 = ai − θ
dL
(
u(ai), λ(ai), ai

)
dai

= ai − θ
(∂L
∂u

du

dai
+
∂L
∂λ

dλ

dai
+
∂L
∂ai

)
=

=
{∂L
∂u

=
∂L
∂λ

= 0
}

= ai − θ(u′λ′ + δai), 0 < x < 1.

Consider the test problem where the measurement u∗ is generated by solving (9.60)
with the finite element method for a reference coefficient a∗(x) := 1 + 0.5 sin(2πx) and a
source term f = 1. To the measurements we add some noise, see Figure 9.14.
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Figure 9.14: Measurements with added noise.

We will now compare different types of regularization: Tikhonov regularization and
regularization by discretization or by iteration. In Figure 9.15 the exact inversion (9.61)
is shown. A zero misfit error u − u∗ here gives an highly oscillating inversion and is
thus infeasible for practical use. The only way to use this method is to introduce a
numerical regularization from choosing a sufficiently large discretization. In the right
part of Figure 9.15 a 100 times coarser mesh is used for the inversion. It is here possible
to see something that vaguely resembles the sought coefficient a∗.
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Figure 9.15: Reconstructed coefficient from exact inversion using different meshes.

From the gradient method, for which we choose θ = 10, we can in Figure 9.16 see
the result for the case with no noise and δ = 0. Although the absence of noise will
theoretically give an exact fit to data, the method will take a long time to converge,
and even for a fast method like Newton’s method, a small misfit error may still imply a
substantial error in the coefficient.

To test the gradient method for the case with measurement noise we start by letting
δ = 0. In Figure 9.17 we can see that the gradient method initially finds a smooth
function that fits σ∗ quite good, but eventually the noise will give a randomly oscillating
coefficient as the misfit error decreases. To interrupt the iteration process prematurely
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Figure 9.16: Reconstructed coefficient from the gradient method with no noise in
measurements and δ = 0.

is here a sort of regularization called Landweber iteration [Vog02]. In Figure 9.18 the
error in data and coefficients is shown; it is evident that the optimal stopping criterion
occurs when the ‖σ − σ∗‖ reaches its minimum. Unfortunately, since σ∗ is unknown this
criterion cannot be fulfilled in practice.
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Figure 9.17: Reconstructed coefficient from the gradient method with noisy measurements
and δ = 0. Left: 100 iterations. Right: 1000 iterations.

In Figure 9.19 the result for the gradient method with a small regularization δ = 5·10−4

is shown. Although the error in the coefficient is higher than for the case with δ = 0,
in Figure 9.18, this error is bounded and we can thus continue the iterations until the
desired tolerance of the gradient norm is met.
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Figure 9.18: Iteration errors from the gradient method. The solid lines depict ‖σ − σ∗‖2
and the dashed lines show ‖u− u∗‖2. Left: No noise in data. Right: Noisy data. Note
that after a certain number of iterations, ‖σ − σ∗‖2 will get larger as ‖u − u∗‖2 gets
smaller.

Exercise 9.33. Consider the the following inverse problems:

(i) Estimate a given the solution u to(
a(x)u′(x)

)′
= 1 0 < x < 1

u(0) = u(1) = 0.

(ii) Estimate a given the boundary solution u(1) to(
a(x)u′(x)

)′
= 0 0 < x < 1

u(0) = 0,

u′(1) = 1.

What can we say about the estimation of a for each problem?

Example 9.34. Condition number, matrices, tomography

9.2.6 Smoothed Hamiltonian as a Tikhonov Regularization

The C2 regularization of the Hamiltonian can also be viewed as a special Tikhonov
regularization, using the Legendre transformation: a preliminary idea is to find the
Tikhonov penalty function T (x, α) : Rd ×A→ R such that

min
α∈A

(
λ · f(x, α) + T (x, α)

)
= Hδ(λ, x).

In general this can only hold if the set A is dense enough, e.g. if A would consist of only
two elements the function Hδ would not be smooth. Therefore we replace A seeking the
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Figure 9.19: Left:Reconstructed coefficient from the gradient method with noisy mea-
surements and δ = 5 · 10−4. Right: Errors as in Figure 9.18 but also including the value
function ‖u− u∗‖2 + δ‖σ − σ∗‖2 (dash-dotted line).

minimum in the convex closure

f̂(x,A) := {sf1 + (1− s)f2 | s ∈ [0, 1], and f1, f2 ∈ f(x,A)}

and we instead want to find Tx(f) : Rd × f̂(x,A)→ R such that

min
φ∈f̂(x,A)

(
λ · φ+ Tx(φ)

)
= Hδ(λ, x) for all λ ∈ Rd. (9.64)

To find the Tikhonov penalty, the first step is to observe that by Theorem ?? there is
for each λ, where ∂λH(·, x) is defined, an α such that ∂λH(λ, x) = f(x, α); therefore the

regularization Hδ(λ, x) =
∫
Rd H(λ−y)η(y)dy, as in (??), satisfies ∂λHδ(Rd, x) ⊂ f̂(x,A),

since H is Lipschitz continuous and hence differentiable almost everywhere.
Define the Legendre transformation

T̃x(φ) := sup
λ∈Rd

(
− λ · φ+Hδ(λ, x)

)
for all φ ∈ Rd. (9.65)

Figure 9.20 illustrates the value of the Legendre transform

T (φ) = sup
λ∈R

(
− λ · φ+H(λ)

)
of a concave differentiable function H : R→ R, i.e. find the tangent to the curve{(

λ,H(λ)
)
| λ ∈ R

}
with the slope φ, then its intersection with the y-axis is T (φ); in multi dimension, d ≥ 1,
find the tangent plane of the graph of H with normal (φ,−1), then the point (0, T (φ)) is
in the plane. If the range of ∂λH(·, x) is only a subset S of Rd, we see that T (φ) = +∞
for φ ∈ Rd − S.
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Theorem 9.35. By defining Tx(φ) := T̃x(φ), the relation (9.64) holds.

Proof. Fix a point x ∈ Rd. The definition (9.65) of the Legendre transform implies that
for any φ and all λ ∈ Rd we have

λ · φ+ T̃x(φ) ≥ Hδ(λ, x). (9.66)

It remains to show that for any λ we can have equality here by choosing φ precisely.
Since the HamiltonianHδ(·, x) is concave and differentiable, with ∂λH

δ(·, x) ∈ f̂(x,A),
the maximum in the Legendre transform is, for φ in the interior of f̂(x,A), attained at a
point λ∗ (depending on φ) satisfying

T̃x(φ) = sup
λ∈Rd

(
− λ · φ+Hδ(λ, x)

)
= −λ∗ · φ+Hδ(λ∗, x)

and φ = ∂λH
δ(λ∗, x), so that the choise φ = ∂λH

δ(λ, x) gives equality in (9.66). The
fact that T̃x is lower semicontinuous shows that

inf
φ∈ interiorf̂(x,A)

(
λ · φ+ T̃x(φ)

)
= min

φ∈f̂(x,A)

(
λ · φ+ T̃x(φ)

)
.

Exercise 9.36. Show that Tikhonov penalty for the regularized Hamiltonian (9.59) in
the u′ = f problem is

δM2

2

(
(1 +

α

M
) log((1 +

α

M
) + (1− α

M
) log(1− α

M
)
)

+
1

2
|x−Xt

∗|2.

9.2.7 General Approximations

The essential property of the symplectic Euler method we have used is that ūx(X̄n, tn) =
λ̄n. This relation holds precisely for symplectic approximations (cf. Remark 9.38):

Theorem 9.37. Consider a general one step method

X̄n+1 = A(λ̄n+1, X̄n)

λ̄n = C(λ̄n+1, X̄n)
(9.67)

with

ū(X̄n, tn) = g(X̄N ) +
N−1∑
m=n

B(λ̄n+1, X̄n)∆t.

Then ūx(X̄n, tn) = λ̄n, for all n, implies that the mapping φ : (X̄n, λ̄n) 7→ (X̄n+1, λ̄n+1) is
symplectic. If φ is symplectic it is possible to choose the function B so that ūx(X̄n, tn) =
λ̄n, for all n.
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Proof. As in Lemma 9.28 we have

ūx(X̄n, tn) =
dA
(
X̄n, λ̄n+1(X̄n)

)
dX̄n

ūx(X̄n+1, tn+1) +
dB
(
X̄n, λ̄n+1(X̄n)

)
dX̄n

.

Therefore the relation
ūx(X̄n, tn) = λ̄n

holds if and only if λAλ + Bλ = 0 and λAx + Bx = C. Let S ≡ λA + B. Then
λAλ + Bλ = 0 is equivalent to Sλ = A, but Sλ = A implies B = S − λSλ so that
λAx + Bx = Sx. Therefore λAλ + Bλ = 0 and λAx + Bx = C is equivalent to A = Sλ
and C = Sx.

Let S ≡ λ̄n+1 ·X̄n+∆tH̃(λ̄n+1, X̄n). Then (9.67), with A = Sλ and C = Sx, becomes

X̄n+1 = X̄n + ∆tH̃λ(X̄n, λ̄n+1)

λ̄n = λ̄n+1 + ∆tH̃x(X̄n, λ̄n+1),
(9.68)

which by Remark 9.38 is equivalent to symplecticity of the mapping (X̄n, λ̄n) 7→
(X̄n+1, λ̄n+1).

Remark 9.38. A one step method (9.67), interpreted as

(X̄n, λ̄n) 7→ (X̄n+1, λ̄n+1),

is called symplectic if there exists a function H̃(λ̄n+1, X̄n) such that (9.68) holds, see
Theorem 5.1, Lemma 5.2 and (5.5) in Chapter VI of [HLW02], where a thorough study
on symplectic methods can be found.

To generalize the error estimate of Theorems 9.27 and ?? to general symplectic one
step approximations (9.68), e.g. the second order symplectic Runge-Kutta method

H̃ =
1

2

(
H(λ̄n+1, X̄n) +H

(
λ̄n+1 + ∆tHx(λ̄n+1, X̄n), X̄n + ∆tHλ(λ̄n+1, X̄n)

))
requires first an extension of X̄n and ū to all time, by approximations (f̄ , h̄) of (f δ, hδ)
with

dX̄

dt
= f̄ and

dū

dt
= −h̄,

and then an estimate of the residual error r as in (9.55). In practice we need more
regularity of Hδ to take advantage of higher order methods. Since we only have Lip-
schitz bounds of H the estimate of r is not smaller than the error hδ − h̄, which is
O(‖Hδ‖Cp)(∆t)p = O((∆t)p/δp−1) for a pth order accurate method. Consequently the
residual error is not smaller than O(δ + (∆t)p/δp−1) = O(∆t) for δ ' ∆t, so that our
error estimate does not improve for higher order schemes, without additional assumptions.
On the other hand by extending X̄ as a piecewise linear function, as before, the only
change of the analysis in Sections 9.2.3.2 and ?? to other symplectic methods (9.68) is
to replace Hδ(λ̄n+1, X̄n) by H̃(λ̄n+1, X̄n) and since

‖Hδ − H̃‖C + δ‖Hδ − H̃‖C1 + δ2‖Hδ − H̃‖C2 = O(∆t)
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the estimate (9.51) holds for all symplectic methods which are at least first order accurate.
Similarly, by considering (X̄n+1, λ̄n), instead of (X̄n, λ̄n+1), as independent variables

the scheme
X̄n = A(X̄n+1, λ̄n)

λ̄n+1 = C(X̄n+1, λ̄n),

is symplectic if and only if

X̄n = X̄n+1 −∆tĤλ(X̄n+1, λ̄n)

λ̄n+1 = λ̄n −∆tĤx(X̄n+1, λ̄n),
(9.69)

and the error analysis of the methods (9.68) applies with

H̃(X̄n, λ̄n+1) = (X̄n+1 − X̄n) · (λ̄n+1 − λ̄n) + Ĥ(X̄n+1, λ̄n).

An example of a method (9.69) is the Euler method Ĥ = H, which is backward Euler for
X̄ forwards in time and backward Euler for λ̄ backwards in time, in contrast to (9.29)
which is forward Euler for X̄ forwards in time and forward Euler for λ̄ backwards in
time.

9.3 Optimal Control of Stochastic Differential Equations

In this section we study optimal control of the solution X(t) to the stochastic differential
equation{

dXi = ai(X(s), α(s,X(s)))dt+ bij(X(s), α(s,X(s)))dWj , t < s < T
X(t) = x

(9.70)

where T is a fixed terminal time and x ∈ Rn is a given initial point. Assume that
ai, bij : Rn ×A→ R are smooth bounded functions, where A is a given compact subset
of Rm. The function α : [0, T ]× Rn → A is a control and let A be the set of admissible
Markov control functions t→ α(t,X(t)). The Markov control functions use the current
value X(s) to affect the dynamics of X by adjusting the drift and the diffusion coefficients.
Let us for these admissible controls α ∈ A define the cost

Ct,x(α) = E[

∫ T

t
h(X(s), α(s))ds+ g(X(T ))]

where X solves the stochastic differential equation (9.70) with control α and

h : Rn ×A→ R, g : Rn → R

are given smooth bounded functions. We call h the running cost and g the terminal cost.
Our goal is to find an optimal control α∗ which minimizes the expected cost, Ct,x(α).

Let us define the value function

u(t, x) ≡ inf
α∈A

Ct,x(α). (9.71)
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The plan is to show that u solves a certain Hamilton-Jacobi equation and that the
optimal control can be reconstructed from u. We first assume for simplicity that the
optimal control is attained, i.e

u(t, x) = min
α∈A

Ct,x(α) = Ct,x(α∗).

The generalization of the proofs without this assumption is discussed in Exercise 9.45.

9.3.1 An Optimal Portfolio

Example 9.39. Assume that the value of a portfolio, X(t), consists of risky stocks,
S(t) = α(t)X(t), and risk less bonds, B(t) = (1− α(t))X(t), where α(t) ∈ [0, 1] and

dS = aSdt+ cSdW, (9.72)

dB = bBdt, (9.73)

with 0 ≤ b < a. Define for a given function g the cost function

Ct,x(α) = E[g(X(T ))|X(t) = x].

Then our goal is to determine the Markov control function α(t,X(t)), with α : [0, T ]×R→
[0, 1] that maximizes the cost function. The solution will be based on the function

u(t, x) ≡ max
α

Ct,x(α),

and we will show that u(t, x) satisfies the following Hamilton-Jacobi equation,

ut + max
α∈[0,1]

{
(aα+ b(1− α))xux +

c2α2

2
x2uxx

}
= 0, (9.74)

u(T, x) = g(x),

that is
ut +H(x, ux, uxx) = 0

for

H(x, p, w) ≡ max
v∈[0,1]

(av + b(1− v)xp+
c2v2

2
x2w).

Example 9.40. Assume that uxx < 0 in the equation (9.74). Determine the optimal
control function α∗.

Solution. By differentiating f(α) = (aα + b(1 − α))xux + c2α2

2 x2uxx in (9.74) with
respect to α and using df/dα = 0, we obtain

α̂ = −(a− b)ux
c2xuxx

.
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Then the optimal control α∗ is given by

α∗ =


0, if α̂ < 0
α̂, if α̂ ∈ [0, 1]
1 if 1 < α̂

The optimal value yields in (9.74) the Hamilton-Jacobi equation

ut +H(x, ux, uxx) = 0,

where

H(x, ux, uxx) =



bxux, if α̂ < 0

bxux −
(a− b)2u2

x

2c2uxx
, if α̂ ∈ [0, 1]

axux +
c2x2uxx

2
if 1 < α̂

(9.75)

Example 9.41. What is the optimal control function α = α∗ for g(x) = xr, 0 < r < 1 ?

Solution. We have dX = d(αX + (1 − α)X) = dS + dB = (aS + bB)dt + cSdW =
(aαX + b(1− α)X)dt+ cαXdW , so that the Itô formula yields

dg(X) = dXr = rXr−1dX +
r(r − 1)

2
Xr−2(dX)2

= rXr(aα+ b(1− α))dt+ rXrαcdW +
1

2
α2c2r(r − 1)Xrdt.

Taking the expectation value in the above,

E[Xr(T )] = Xr(0) + E

[∫ T

0
rXr

(
aα+ b(1− α) +

1

2
α2c2(r − 1)

)
dt

]
.

Finally, perturb the above equation with respect to ε ∈ R+ provided α = α∗ + εv for
some feasible function v, that is α∗+ εv ∈ [0, 1] for sufficiently small ε. Then the optimal
control, α∗, should satisfy E[Xr

α∗+εv(T )]−E[Xr
α∗(T )] ≤ 0 ∀v. If we make the assumption

α∗ ∈ (0, 1), then we obtain

E[

∫ T

0
rXrv(a− b+ α∗c2(r − 1))dt] = 0, ∀v

which implies

α∗ =
a− b

c2(1− r)
.

Exercise 9.42. What is the optimal control in (9.74) for g(x) = log x ?
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9.3.2 Dynamic Programming and Hamilton-Jacobi Equations

Lemma 9.43. Assume that the assumptions in section 9.3.1 hold. Then, the function u
satisfies, for all δ > 0, the dynamic programming relation

u(t, x) = min
α:[t,t+δ]→A

E[

∫ t+δ

t
h(X(s), α(s,X(s)))ds+ u(t+ δ,X(t+ δ))]. (9.76)

Proof. The proof has two steps: to use the optimal control to verify

u(t, x) ≥ min
α∈A

E[

∫ t+δ

t
h(X(s), α(s))ds+ u(t+ δ,X(t+ δ))],

and then to show that an arbitrary control yields

u(t, x) ≤ min
α∈A

E[

∫ t+δ

t
h(X(s), α(s))ds+ u(t+ δ,X(t+ δ))],

which together imply Lemma 9.43.
Step 1: Choose the optimal control α∗, from t to T , to obtain

u(t, x) = min
α∈A

E

[∫ T

t
h(X(s), α(s,X(s)))ds+ g(X(T ))

]
= E[

∫ t+δ

t
h(X(s), α∗(s))ds] + E[

∫ T

t+δ
h(X(s), α∗(s))ds+ g(X(T ))]

= E[

∫ t+δ

t
h(X(s), α∗(s))ds]

+E

[
E[

∫ T

t+δ
h(X(s), α∗(s))ds+ g(X(T ))| X(t+ δ)]

]
≥ E[

∫ t+δ

t
h(X(s), α∗(s))ds] + E[u(X(t+ δ), t+ δ)]

≥ min
α∈A

E

[∫ t+δ

t
h(X(s), α(s,X(s))ds+ u(X(t+ δ), t+ δ)

]
.

Step 2: Choose the control α+ to be arbitrary from t to t+ δ and then, given the value
X(t+ δ), choose the optimal α∗ from t+ δ to T . Denote this control by α′ = (α+, α∗).
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Definition (9.71) shows

u(t, x) ≤ Ct,x(α′)

= E[

∫ T

t
h(X(s), α′(s))ds+ g(X(T ))]

= E[

∫ t+δ

t
h(X(s), α+(s))ds] + E[

∫ T

t+δ
h(X(s), α∗(s))ds+ g(X(T ))]

= E[

∫ t+δ

t
h(X(s), α+(s))ds]

+E

[
E[

∫ T

t+δ
h(X(s), α∗(s))ds+ g(X(T ))| X(t+ δ)]

]
= E[

∫ t+δ

t
h(X(s), α+(s))ds] + E[u(X(t+ δ), t+ δ)].

Taking the minimum over all controls α+ yields

u(t, x) ≤ min
α+∈A

E

[∫ t+δ

t
h(X(s), α+(s))ds+ u(X(t+ δ), t+ δ)

]
.

Theorem 9.44. Assume that X solves (9.70) with a Markov control function α and
that the function u defined by (9.71) is bounded and smooth. Then u satisfies the
Hamilton-Jacobi equation

ut +H(t, x,Du,D2u) = 0,

u(T, x) = g(x),

with the Hamiltonian function

H(t, x,Du,D2u) ≡ min
α∈A

[
ai(x, α)∂xiu(t, x) +

bik(x, α)bjk(x, α)

2
∂xixju(t, x) + h(x, α)

]
Proof. The proof has two steps: to show that the optimal control α = α∗ yields

ut + a∗i ∂xiu+
b∗ikb

∗
jk

2
∂xixju+ h∗ = 0, (9.77)

where a∗(x) = a(x, α∗(t, x)), b∗(x) = b(x, α∗(t, x)) and h∗(t, x) = h(t, x, α∗(t, x)), and
then that an arbitrary control α+ implies

ut + a+
i ∂xiu+

b+ikb
+
jk

2
∂xixju+ h+ ≥ 0, (9.78)

where a+(x) = a(x, α+(t, x)), b+(x) = b(x, α+(t, x)) and h+(t, x) = h(t, x, α+(t, x)). The
two equations (9.77) and (9.78) together imply Theorem 9.44.

139



Step 1 : Choose α = α∗ to be the optimal control in (9.70). Then by the dynamic
programming principle of Lemma 9.71

u(X(t), t) = E[

∫ t+δ

t
h(X(s), α∗(s,X(s)))ds+ u(X(t+ δ), t+ δ)],

so that Itô ’s formula implies

−h(t, x, α∗(t, x))dt = E[du(X(t), t)| X(t) = x] (9.79)

= (ut + a∗i ∂xiu+
b∗ikb

∗
jk

2
∂xixju)(t, x)dt.

Definition (9.71) shows
u(T, x) = g(x),

which together with (9.79) prove (9.77).
Step 2 : Choose the control function in (9.70) to be arbitrary from time t to t+ δ

and denote this choice by α = α+. The function u then satisfies by Lemma 9.71

u(t, x) ≤ E[

∫ t+δ

t
h(X(s), α+(s))ds] + E[u(X(t+ δ), t+ δ)].

Hence E[du] ≥ −h(x, α+)dt. We know that for any given α+, by Itô ’s formula,

E[du(t,X(t))] = E

[
ut + a+

i ∂xiu+
b+ikb

+
jk

2
∂xixju

]
dt.

Therefore, for any control α+,

ut + a+
i ∂xiu+

b+ikb
+
jk

2
∂xixju+ h(x, α+) ≥ 0,

which proves (9.78)

Exercise 9.45. Use a minimizing sequence αi of controls, satisfying

u(t, x) = lim
i→∞

Ct,x(αi),

to prove Lemma 9.71 and Theorem 9.44 without the assumption that the minimum
control is attained.

Exercise 9.46. Let A+ be the set of all adapted controls {α : [0, T ] × C[0, T ] → A}
where α(s,X) may depend on {X(τ) : τ ≤ s}. Show that the minimum over all adapted
controls in A+ is in fact the same as the minimum over all Markov controls, that is

inf
α∈A+

Ct,x(α) = inf
α∈A

Ct,x(α),

e.g. by proving the dynamic programming relation (9.76) for adapted controls and
motivate why this is sufficient.
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9.3.3 Relation of Hamilton-Jacobi Equations and Conservation Laws

In this section we will analyze qualitative behavior of Hamilton-Jacobi equations, in
particular we will study the limit corresponding to vanishing noise in control of stochastic
differential equations. The study uses the relation between the Hamilton-Jacobi equation
for V : [0, T ]× R→ R

Vt +H(Vx) = 0, V (0, x) = V0(x), (H − J)

and the conservation law for U : [0, T ]× R→ R

Ut +H(U)x = 0, U(0, x) = U0(x). (C − L)

Observe that the substitution V (t, x) =
∫ x
−∞ U(t, y)dy, so that U = Vx, and integration

in x from −∞ to x in (C-L) shows

Vt +H(Vx) = H(U(t,−∞)). (9.80)

Combined with the assumptions U(t, x)→ 0 as |x| → ∞ and H(0) = 0 we conclude that
V solves (H-J), if U solves (C-L).

The next step is to understand the nature of the solutions of (C-L). Consider the
special Burger’s conservation law

0 = Ut + U Ux = Ut + (
U2

2
)x, U(0, x) = U0(x). (9.81)

Let us define a characteristic path X : [0, T ]× R→ R by

dX

dt
(t) = U(t,X(t)), X(0) = x0. (9.82)

Thus, if ψ(t) ≡ U(t,X(t)) then dψ
dt (t) = 0 by virtue of (9.81). This means that the value

of U is constant along a characteristic path. If the characteristics do not collide into
each other we may expect to find a solution using the initial data U0(x) and the set
of characteristics. Unfortunately, this is not what happens in general, and collisions
between characteristics do exist and give birth to discontinuities known as shocks. For
example, this is the case when U0(x) = − arctan(x) and t ≥ 1.

Exercise 9.47. Show that w(t) = Ux(X(t), t) satisfies w(t) = w(0)/(1 + w(0)t), t < 1,
for Burger’s equation (9.81) with initial data U(x, 0) = − arctan(x). Hence, w(1) =∞,
for X(0) = 0.

Since the method of characteristics does not work globally we have to find an
alternative way to explain what happens with the solution U(t, x) near a shock. It is not
enough with the concept of strong or classical solution, since the solution U(t, x) is not
differentiable in general. For this purpose, we define the notion of weak solution. Let V
be the set of test functions {ϕ : (0,+∞)× R→ R} which are differentiable and take the

141



value zero outside some compact set. Then an integrable function U is a weak solution
of (9.81) if it satisfies∫ +∞

0

∫ +∞

−∞

(
U(t, x)ϕt(t, x) +

U2(t, x)

2
ϕx(t, x)

)
dx dt = 0, ∀ϕ ∈ V (9.83)

and ∫ +∞

−∞
|U(t, x)− U0(x)|dx→ 0, as t→ 0 (9.84)

Example 9.48. The shock wave

U(t, x) =

{
1 x < t

2 ,

0 otherwise.

is a weak solution satisfying (9.83) and (9.84). Observe that for s ≡ 1/2

∂t

∫ b

a
U dx =

U2(t, a)− U2(t, b)

2
= −

[
U2

2

]
,

and

∂t

∫ b

a
U dx = ∂t

(
(s t− a)U−] + (b− s t)U+

)
= −s(U+ − U−),

where
[w(x0)] ≡ w+(x0)− w−(x0) ≡ lim

y→0+
w(x0 + y)− w(x0 − y)

is the jump at the point x0. Consequently, the speed s of a shock can be determined by
the so called Rankine Hugoniot condition

s[U ] =

[
U2

2

]
. (9.85)

Exercise 9.49. Verify that the shock wave solution

UI(t, x) =

{
0 x > − t

2 ,

−1 otherwise

and the rarefaction wave solution

UII(t, x) =


0 x ≥ 0,
x
t −t < x < 0,

−1 otherwise

are both weak solutions of Ut + U Ux = 0 with the same initial condition.

142



λ

H

T (φ)

Figure 9.20: Illustration of the Legendre transform. If H decreases sufficiently fast as
|λ| → ∞, then ∂λH can attain all values in R and the range of T is [0,∞), since T (0) = 0
here. If, on the other hand, the slope of H is in an interval I, then T (I) = [0, T+) for
some upper bound T+, and T (R− I) = {+∞}.

Figure 9.21: Left: Initial condition. Right: Colliding characteristics and a shock.

Figure 9.22: Shock velocity and Rankine Hugoniot condition

Figure 9.23: UI(t, x)

Figure 9.24: UII(t, x)
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The last exercise shows that we pay a price to work with weak solutions: the lack of
uniqueness. Therefore, we need some additional physical information to determine a
unique weak solution. This leads us to the concept of viscosity limit or viscosity solution:
briefly, it says that the weak solution U we seek is the limit U = limε→0+ U

ε of the
solution of the regularized equation

U εt + U ε U εx = εU εxx, ε > 0. (9.86)

This regularized equation has continuous and smooth solutions for ε > 0. With reference
to the previous example, the weak solution UII satisfies UII = limε→0+ U ε, but UI 6=
limε→0+ U

ε. Since a solution of the conservation law can be seen as the derivative of the
solution of a Hamilton-Jacobi equation, the same technique of viscosity solutions can be
applied to

V ε
t +

(V ε
x )2

2
= εV ε

xx, ε > 0. (9.87)

The functions VI(x, t) = −
∫∞
x UI(y, t)dy, and VII(x, t) = −

∫∞
x UII(y, t)dy have the

same initial data and they are both candidates of solutions to the Hamilton-Jacobi
equation

Vt +
(Vx)2

2
= 0.

The shock waves for conservation laws corresponds to solutions with discontinuities in
the derivative for Hamilton-Jacobi solutions. Only the function VII satisfies

VII = lim
ε→0+

V ε, (9.88)

but VI 6= limε→0+ V
ε. It can be shown that the condition (9.88) implies uniqueness for

Hamilton-Jacobi equations. Note that (9.88) corresponds to the limit of vanishing noise
in control of stochastic differential equations.

9.3.4 Numerical Approximations of Conservation Laws and Hamilton-
Jacobi Equations

We have seen that the viscous problem

∂tu
ε + ∂xH(uε) = εuεxx for (x, t) ∈ R× (0,+∞), (9.89)

uε(x, 0) = u0(x) for x ∈ R,

can be used to construct unique solutions to the conservation law

∂tu+ ∂xH(u) = 0 for (x, t) ∈ R× (0,+∞), (9.90)

u(x, 0) = u0(x) for x ∈ R.

In this section we will develop numerical approximations to the conservation law (9.90)
and the related Hamilton-Jacobi equation

∂tv +H(∂xv) = 0,
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based on viscous approximations. We will also see that too little viscosity may give
unstable approximations.

To show the difficulties to solve numerically a problem like (9.90) and (9.89) we
consider a related steady-state problem (i.e. a problem that has no dependence on t)

∂xw(x)− ε ∂2
xw(x) = 0 for x < 0, (9.91)

lim
x→−∞

w(x) = 1, w(0) = 0,

where ε ≥ 0 is fixed. It is easy to verify that the exact solution is w(x) = 1 − exp(xε ),
for x ≤ 0. Now, we construct a uniform partition of (−∞, 0] with nodes xj = j∆x for
j = 0,−1,−2, . . ., where ∆x > 0 is a given mesh size. Denoting by Wj the approximation
of w(xj), the use of a second order accurate finite element method or finite difference
scheme method leads to the scheme

Wj+1 −Wj−1

2∆x
− ε Wj+1 − 2Wj +Wj−1

(∆x)2
= 0, j = −N + 1, . . . ,−1,

W0 = 0, (9.92)

W−N = 1.

Assume that N is odd. If ε� ∆x, the solution of (9.92) is approximated by

Wj+1 −Wj−1

2∆x
= 0,

which yields the oscillatory solution W2i = 0 and W2i+1 = 1 that does not approximate w,
instead ‖w−W‖L2 = O(1). One way to overcome this difficulty is to replace, in (9.92), the
physical diffusion ε by the artificial diffusion ε̂ = max{ε, ∆x

2 }. For the general problem
β · ∇u− ε∆u = f take ε̂ = max{ε, |β|∆x2 }. Now, when ε� ∆x, we have ε̂ = ∆x

2 and the
method (9.92), with ε replaced by ε̂, yields Wj = Wj−1 for j = −N + 1, . . . ,−1, that is
Wj = 1 for j = −N, . . . ,−1, which is an acceptable solution with ‖w−W‖L2 = O(

√
∆x).

Another way to cure the problem is to resolve by choosing ∆x small enough, so that
ε̂ = ε.

The Lax-Friedrich method for the problem (9.90), is given by

Un+1
j = Unj −∆t

[
H(Unj+1)−H(Unj−1)

2∆x
− (∆x)2

2∆t
D+D−U

n
j

]
, (9.93)

with

D+Vj =
Vj+1 − Vj

∆x
, D−Vj =

Vj − Vj−1

∆x
and D+D−Vj =

Vj+1 − 2Vj + Vj−1

(∆x)2
·

The stability condition for the method (9.93) is

λ ≡ ∆x

∆t
> max

u
|H ′(u)|· (9.94)
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We want to approximate the viscosity solution of the one-dimensional Hamilton-Jacobi
equation

∂tv +H(∂xv) = 0, (9.95)

where v = limε→0+ vε and

∂tv
ε +H(∂xv

ε) = ε ∂2
xv
ε. (9.96)

Setting u = ∂xv and taking derivatives in (9.95), we obtain a conservation law for u, that
is

∂tu+ ∂xH(u) = 0. (9.97)

To solve (9.95) numerically, a basic idea is to apply (9.93) on (9.97) with Uni = (V n
i+1 −

V n
i−1)/(2∆x) and then use summation over i to approximate the integration in (9.80).

We get

V n+1
j+1 − V

n+1
j−1

2∆x
=
V n
j+1 − V n

j−1

2∆x

−∆t

[
H
(
V nj+2−V nj

2∆x

)
−H

(
V nj −V nj−2

2∆x

)
2∆x

− (∆x)2

2∆t
D+D−

V n
j+1 − V n

j−1

2∆x

]
·

Summing over j and using that V m
−∞ = 0 and H(0) = 0, it follows that

V n+1
j = V n

j −∆t

[
H
(V n

j+1 − V n
j−1

2∆x

)
− (∆x)2

2∆t
D+D−V

n
j

]
, (9.98)

which is the Lax-Friedrich method for (9.95). Note that (9.98) is a second order accurate
central difference approximation of the equation

∂tv +H(∂xv) =
(∆x)2

2∆t

(
1− (

∆t

∆x
H ′)2

)
∂2
xv,

which is (9.96) with artificial diffusion ∆x(λ2 − (H ′)2))/(2λ).
In the two-dimensional case a first order Hamilton-Jacobi equation has the form

∂tv +H(∂x1v, ∂x2v) = 0. (9.99)

The analogous scheme to (9.98) for that equation is

V n+1
j,k = V n

j,k −∆t

[
H
(V n

j+1,k − V n
j−1,k

2∆x1
,
V n
j,k+1 − V n

j,k−1

2∆x2

)
−(∆x1)2

4∆t

V n
j+1,k − 2V n

j,k + V n
j−1,k

(∆x1)2

−(∆x2)2

4∆t

V n
j,k+1 − 2V n

j,k + V n
j,k−1

(∆x2)2

]
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which for ∆x1 = ∆x2 = h and λ = h/∆t corresponds to a second order approximation
of the equation

∂tv
h +H(∂x1v

h, ∂x2v
h) =

∆x2

4∆t

∑
i

∂xixiv −
∑
i,j

∆t

2
∂xiH∂xjH∂xixjv.
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Chapter 10

Rare Events and Reactions in
SDE

Transition between stable equilibrium solutions are used to model for instance reaction
paths and reaction rates in chemistry and nucleation phenomena in phase transitions
exited by thermal fluctuations. An example of such nucleation in an under cooled liquid
is the formation of the initial crystal that starts to grow to a whole solid, taking place
every year in the first cold calm winter night in Swedish lakes. Deterministic differential
equations cannot model such transitions between equilibrium states, since a deterministic
solution never escapes from a stable equilibrium. This section shows how stochastic
differential equations are used to model reaction paths and its rates, using large deviation
theory from an optimal control perspective.

Let us start with a determinstic model

Ẋt = −V ′(Xt) t > 0,

where the potential V : R→ R is a scalar double well function, see Figure 10.2, with two
stable equilibrium points x+ and x−, and one unstable equilbrium point x0 in between.
We see from the phase portrait Figure ?? that

lim
t→∞

Xt =


x− if X0 < x0

x+ if X0 > x0

x0 if X0 = x0,
(10.1)

which means that a path from one stable equilibrium point to another stable equilibrium
point is not possible in this deterministic setting.

The stochastic setting

dXt = −V ′(Xt)dt+
√

2εdW t (10.2)

can model transitions between x− and x+. In this section we focus on the case when
the positive parameter ε (which measures the temperature in the chemistry model) is
small, that is we study a small stochastic perturbation of the deterministic case. By
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Figure 10.1: Illustration of a double well with two local minima points at x− and x+ and
one local maximum point atx0.
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Figure 10.2: Four paths Xt from a double well potential with two local minima points at
x− and x+ and one local maximum point at x0.
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introducing noise in the model, we may ask what is the probability to jump from one
well to the other; since ε is small these transitions will be rare events. More precisely we
shall for the model (10.2) determine:

• the invariant probability distribution and convergence towards it as time tends to
infinity,

• the asymptotic behaviour of jumps from one well to another, i.e. reaction rates
and reaction paths.

10.1 Invariant Measures and Ergodicity

Consider now a stochastic differential equation

dXt = −V ′(Xt)dt+
√

2εdW t (10.3)

with a potential V : Rd → R that is smooth and satisfies
∫
Rd e

−V (x)/εdx < ∞, which
implies that V (x) → ∞ as |x| → ∞. We also assume a global Lipschitz bound on
V ′ to have a well defined solution X, but the global Lipschitz bound can be relaxed.
The probability density for an SDE solves the Fokker-Planck equation 4.9. Sometimes
this has a time independent solution - the corresponding probability measure is called
an invariant measure. It is called invariant because if we start with this probability
measure as initial probability distribution, the probability distribution obtained from the
Fokker-Plank equation for later time remains unchanged, i.e. this probability distribution
is time invariant. In the case of an SDE with additive noise and a drift that is the
gradient of a potential function, as in (10.3), the invariant measure can be explicitly
computed:

Theorem 10.1. The SDE-model (10.3) has the invariant measure

( ∫
Rd
e−V (x)/εdx

)−1
e−V (x)/εdx.

Proof. The Fokker-Planck equation corresponding to the dynamics (10.3) takes the form

∂tp− ∂x
(
V ′(x)p(x)

)
− ε∂xxp = 0. (10.4)

The condition to have an invariant solution means that it is time independent, i.e.
∂tp = 0, and the Fokker-Planck equation can be solved explicitly

εp′ + V ′p = c,

for a contant c. The density p should be integrable, and consequently p(x) and p′(x)
must tend to zero as |x| tends to infinity. Therefore we have c = 0, which implies∫

dp

p
= −

∫
V ′

ε
dx,
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with the solution

log p(x) = C ′ − V (x)

ε
for a constant C ′,

so that for another constant C

p(x) = Ce−V (x)/ε.

The requirement that
∫
Rd p(x)dx = 1 determines the constant to be C =

( ∫
Rd e

−V (x)/εdx
)−1

.

�
A Monte-Carlo method to compute expected values

∫
Rd g(y)p0(y)dy in an equilibrium

environment (with invariant density p0) is typically based on approximations of the

integral T−1
∫ T

0 g(Xt)dt for large T ; therefore it is important to understand some basic
conditions and properties of such approximations, which is the purpose if the next two
theorems.

Theorem 10.2. If one starts with any initial probability densitity and the density
converges time asymptotically to the invariant density p0, i.e. for any τ > 0 the pointwise
limit

lim
t→∞

τ−1

∫ t+τ

t
psds = p0

is satisfied, then for any continuous bounded function g : Rd → R there holds in the weak
sense

lim
T→∞

T−1

∫ T

0
g(Xt)dt =

∫
Rd
g(y)p0(y)dy. (10.5)

We say that the stochastic process X is ergodic and that the invariant measure, p0,
is ergodic if (10.5) holds for all bounded continuous g.

Proof. The proof has two steps - to verify that the expected value converges and then
estimate the deviation from this limit.

Step 1. By the assumption of the converging density we have

lim
T→∞

E[T−1

∫ T

0
g(Xt)dt] = lim

T→∞
E
[
T−1

( ∫ T 1/2

0
g(Xt)dt+

∫ T

T 1/2

g(Xt)dt
)]

= lim
T→∞

E
[
T−1

∫ T 1/2

0
g(Xt)dt+ T−1

T−1∑
n=T 1/2

∫ n+1

n
g(Xt)dt

]
=

∫
Rd
g(y)p0(y)dy︸ ︷︷ ︸

=:E0[g]

,

where the first integral tends to zero, since g is bounded and T 1/2/T → 0, and the
T − T 1/2 integrals in the sum converge by the assumption, as explained in Example 10.4.
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Step 2. Let T = Mτ for some large τ,M and write the integral as a sum over M
terms

T−1

∫ T

0
g(Xt)dt = M−1

M∑
n=1

τ−1

∫ (n+1)τ

nτ
g(Xt)dt.

If these terms were independent, the law of large numbers would show that the sum
converges almost surely, as M tends to infinity. Since the terms are only asymptotically
independent as τ →∞, we need some other method: we shall use Chebyshevs inequality

to prove convergence in probability. Let ξn := τ−1
∫ (n+1)τ
nτ

(
g(Xt)− E0[g]

)
dt, we want to

verify that for any γ > 0

lim
M,τ→∞

P
( |∑M

n=1 ξn|
M

> γ
)

= 0. (10.6)

Chebeshevs inequality implies

P (|
M∑
n=1

ξn/M | > γ)

≤ γ−2E[
∑
n

∑
m

ξnξm/M
2]

= γ−2M−2
∑
n

∑
m

τ−2E
[ ∫

n

(
g(Xt)− E0[g]

)
dt

∫
m

(
g(Xs)− E0[g]

)
ds
]

= 2γ−2M−2
∑
n>m

τ−2

∫
n

∫
m
E
[
E
[(
g(Xt)− E0[g]

)(
g(Xs)− E0[g]

)
| Xs

]]
dtds

+ γ−2M−2
∑
n

(
τ−1

∫
n
E
[
g(Xt)− E0[g]

]
dt
)2

=: I

and since the density pt converges we can for each δ > 0 chose τ sufficiently large so that

I = 2γ−2M−2
∑
n>m

τ−2

∫
n

∫
m
E
[ ∫

Rd
g(y)

(
pt(y)− p0(y)

)
dy
(
g(Xs)− E0[g]

)]
dtds

+ γ−2M−2
∑
n

(
τ−1

∫
n
E[g(Xt)− E0[g]]dt

)2

≤ γ−2δ + Cγ−2M−1

which proves (10.6).

�

Theorem 10.3. The process X generated by (10.3) is ergodic for positive ε.
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Proof. Theorem 10.2 tells us that it remains to verify that the probability density
converges time asymptotically to the invariant density. Let p0 be the invariant solution
and define the entropy

Et :=

∫
Rd
p log

p

p0
dx.

We know from Corollary 4.9 that p is non negative. The proof has three steps: to show
that the entropy decays, that the entropy is non negative, and that the decaying entropy
implies convergence of the density to the invariant density.

Step 1. Show that Ėt = −ε−1
∫
|εp′ + V ′p|2p−1dx. Differentiation, the Fokker-Planck

equation (10.4), and integration by parts1 imply

Ėt =

∫
Rd
∂tp log

p

p0
+ ∂tp

p

p
dx

=

∫
Rd

∂tp︸︷︷︸
=(V ′p)′+εp′′

(log
p

p0
+ 1)dx

=

∫
Rd

(
(V ′p)′ + εp′′

)
(log

p

p0
+ 1)dx

= −
∫
Rd

(
V ′p+ εp′

)
· (p
′

p
− p′0

p0︸︷︷︸
−V ′/ε

)dx

= −ε−1

∫
Rd
|V ′p+ εp′|2p−1dx.

Step 2. Show that Et ≥ 0 using that p and p0 have the same mass and that log x is
concave. We have

Et =

∫
Rd
p log

p

p0
dx =

∫
Rd
p(− log

p0

p
+
p0

p
− 1)dx

and the concavity of the logarithm implies log x ≤ x− 1, which establishes Et ≥ 0.
Step 3. Time integration of Step 1 gives

ET + ε−1

∫ T

0

∫
Rd
|εp′ + V ′p|2p−1dxdt = E0, (10.7)

and since ET is non negative and E0 is assumed to be bounded, we see that the integral∫ T
0

∫
|εp′+V ′p|2p−1dxdt also is bounded uniformly in T . Therefore we have, for any τ > 0,

that τ−1
∫ t+τ
t εp′s + V ′psds→ 0 in L2(Rd) as t→∞, which gives τ−1

∫ t+τ
t psds→ p0 as

follows: integration of
εp′t + V ′pt =: f t

shows that

p(x, t) = e−V (x)/ε
(
C +

∫ x

0
f(y, t)eV (y)/εdy

)
1A better way, in the sense of requiring less assumptions, is to directly study the Fokker-Planck

equation in its weak form; then the integration by parts is not needed and (10.7) is obtained directly.

153



so that τ−1
∫ t+τ
t psds→ p0 as t→∞, since τ−1

∫ t+τ
t fsds→ 0 in L2(Rd).

�

Example 10.4 (No mass escapes to infinity). The aim here is to verify that the pointwise
limit limτ→∞

∫ τ+1
τ ptdt = p0 implies the weak limit

lim
τ→∞

∫ τ+1

τ

∫
Rd
gptdxdt =

∫
Rd
gp0dx, (10.8)

for any bounded continuous function g.
Let p̄τ :=

∫ τ+1
τ ptdt and define φ : (0,∞)→ R by φ(x) = x log x/p0. The function φ

is convex and Jensen’s inequality implies together with (10.7)

E0 ≥
∫
Rd

∫ τ+1

τ
pt log

pt

p0
dtdx

=

∫
Rd

∫ τ+1

τ
φ(pt)dtdx

≥
∫
Rd
φ
(∫ τ+1

τ
ptdt

)
dx

=

∫
Rd
φ(p̄τ )dx.

Therefore we have for any positive number n∫
Rd
p̄τ1{p̄τ>np0}dx ≤

E0

log n
. (10.9)

We can split our integral into two∫
Rd

∫ τ+1

τ
gptdtdx =

∫
Rd
gp̄τdx =

∫
Rd
gp̄τ1{p̄τ>np0}dx+

∫
Rd
gp̄τ1{p̄τ≤np0}dx,

where dominated convergence yields

lim
τ→∞

∫
Rd
gp̄τ1{p̄τ≤np0}dx =

∫
Rd
gp0dx

and (10.9) shows that the other integral is negligible small∫
Rd
gp̄τ1{p̄τ>np0}dx ≤ C/ log n

as n→∞, which proves the limit (10.8).

Exercise 10.5 (Invariant measure for Ornstein-Uhlenbeck). Show that the invariant
measure for the Ornstein-Uhlenbeck process is a normal distribution.
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Exercise 10.6 (Vanishing noise density is not the deterministic density). Prove that
for a smooth function V on a bounded set A

lim
ε→0+

ε log

∫
A
e−V (y)/εdy = − inf

y∈A
V (y).

Such a limit was first studied by Laplace.

Exercise 10.7. Show that for a smooth function V on a bounded set A with a unique

global minimum point y+, the probabilty density e−V (y)/ε∫
A e
−V (y)/εdy

has the limit expected

value

lim
ε→0+

∫
A e
−V (y)/εφ(y)dy∫
A e
−V (y)/εdy

= φ(y+),

Compare this limit with the time-asymptotic ”probability” density for the determinstic
ε = 0 case (10.1) and show they are different. What can be concluded about the limits
t→∞ and ε→ 0+ of the probability density?

Example 10.8 (Simulated Annealing). The stochastic differential equation (10.3) can
also be used to find minima of functions V : Rd → Rd: we know that its invariant measure

has the density
∫
A e
−V (y)/εφ(y)dy∫
A e
−V (y)/εdy

, which by Exercise 10.7 concentrates at x ∈ argmin V .

Therefore, by simulating the stochastic differential equation for very long time with
decreasing ε one expect to have the path X most of the time in the global minimum;
more precisely choose ε = ε1 for t ∈ [0, T1], . . . , ε = εn for t ∈ [Tn−1, Tn], with εn ↘ 0+
and Tn ↗∞ as n→∞. This method is called simulated annealing and it can be proven
to work for a precise choice of εn and Tn, see [?]. The advantage with the method is that
a global minimum is found and the main question is to find a good combination of εn
and Tn suitable for the particular V studied.

10.2 Reaction Rates

The invariant ergodic measure for X shows that there is a finite probability to reach
all states from any point when ε > 0, in contrast to the determinstic case ε = 0; the
invariant measure also shows that these probabilites are exponentially small, proportional
to e−V/ε. It is practical to relate reaction rates to exit times from domains: define for X
solving (10.3) and a given domain A ∈ Rd the exit time

τ(X) = inf{t : Xt /∈ A}.

We want to understand the exit probability

P (τ < T ) = E[1τ<T ] =: qτ as ε→ 0+.

The Kolmogorov-backward equation shows that

∂tqτ − V ′ · ∂xqτ + ε∂xxqτ = 0 in A× (0, T )

qτ (x, ·) = 1 on ∂A× (0, T )

qτ (·, T ) = 0 on A× {T}.
(10.10)
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Remark 10.9 (A useless solution). A naive try could be to remove the diffusion part
ε∂xxqτ in (10.4); that leads to the hyperbolic equation

∂tqτ − V ′ · ∂xqτ = 0 in A× (0, T )

qτ = 1 on ∂A× (0, T )

qτ (·, T ) = 0 on A× {T}
(10.11)

which can be solved by the characteristics ẏt = −V ′(yt):

d

dt
qτ (yt, t) = ∂tqτ +

dyt

dt
· ∂xqτ = ∂tqτ − V ′ · ∂xqτ = 0.

Since the equilibrium points are stable, it turns out that all characteristics leave the
domain on the upper part t = T see Figure 10.3, where qτ = 0, so that the solution of
(10.11) becomes qτ = 0, and that is a useless solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
!3

!2

!1

0

1

2

3

time

X(
t)

Figure 10.3: Four paths Xt starting with X0 < x0 in the domain of the global attractor
x−

The limit in Remark 10.9 needs to be refined to give something useful. The invariant
measure with probabilities proportional to e−V/ε suggests a change of variables qτ (x, t) =
ewε(x,t)/ε. The right way to study qτ as ε→ 0+ is to use the limit

lim
ε→0+

ε log qτ = lim
ε→0+

wε =: w

which we believe has a bounded non positive limit, using the invariant measure. Since qτ
is a probability we know that wε ≤ 0 and (10.10) implies that wε solves the second order
Hamilton-Jacobi equation

∂twε − V ′ · ∂xwε + ∂xwε · ∂xwε + ε∂xxwε = 0 in A× (0, T )

wε(x, ·) = 0 on ∂A× (0, T )

wε(·, T ) = −∞ on A× {T}.
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A good way to understand this Hamilton-Jacobi equation is to view it as an optimal
control problem. In the limit as ε tends to zero, the optimal control problem becomes
determinstic, see Theorem 9.10; assume that limε→0+wε =: w to obtain the first order
Hamilton-Jacobi equation

∂tw−V ′ · ∂xw + ∂xw · ∂xw︸ ︷︷ ︸
=:H
(
w(x),x

) = 0 in A× (0, T )

w(x, ·) = 0 on ∂A× (0, T )

w(·, T ) = −∞ on A× {T}.

Following Section 9.1.4, a useful optimal control formulation for this Hamilton-Jacobi
equation is

Ẏ t = −V ′(Y t) + 2αt

max
α:(0,T )→Rd

−
∫ τ

0
|αt|2dt+ g(Y τ , τ)

which has the right Hamiltonian

sup
α∈Rd

(
λ ·
(
− V ′(y) + 2α

)
− |α|2

)
= H(λ, y) = −V ′(y) · λ+ |λ|2.

Here the final cost is zero, if the exit is on the boundary ∂A× (0, T ), and minus infinity
if the exit is on A× {T} (i.e. the path did not exit from A):

g(x, t) =

{
0 on ∂A× (0, T )
−∞ on A× {T}.

Theorem 9.10 shows that the limit limε→0+ ε log qτ = limε→0+wε = w satisfies

w(x, t) = sup
α:(t,τ)→Rd

−
∫ τ

t
|α|2dt+ g(Y τ , τ)

= sup
α
−1

4

∫ τ

t
|Ẏ t + V ′(Y t)|2dt+ g(Y τ , τ).

When T tends to infinity and X0 is an equilibrium point, this limit w has a simple
explicit solution showing that reaction rates are determined from local minima and saddle
points of V , cf. Figure 10.4:

Theorem 10.10. Assume that y+ is a global attractive equilibrium in A. Let X0 = y+,
then

lim
T→∞

lim
ε→0+

ε log qτ = V (y+)− inf
y∈∂A

V (y). (10.12)

157



Proof. It is clear the optimal control paths starting in y+ need to exit through ∂A, so
g(Y τ ) = 0. The integral cost can be rewritten as

sup
α
−1

4

∫ τ

0
|Ẏ t + V ′(Y t)|2dt

= sup
α

(
− 1

4

∫ τ

0
|Ẏ t − V ′(Y t)|2︸ ︷︷ ︸

≥0

dt−
∫ τ

0
Ẏ t · V ′(Y t)dt︸ ︷︷ ︸
V (Y τ )−V (y+)

)
. (10.13)

Here the last integral is minimal if Y τ exits through a point on ∂A where V is minimal,
which is a saddle point if we have chose A to be the largest domain where y+ is a global
attractor. It remains to show that such an exit is compatible with having the first integral
equal to zero; the first integral equals zero means that Ẏ t = V ′(Y t), which implies that
Y moves orthogonal to the level lines of the V -potential. Such a path is possible by
taking α = V ′(Y t) and requires T to be sufficiently large so that the time to reach the
boundary on the optimal path Ẏ t = V (Y t) is shorter, when X0 tends to y+ this time
tends to infinity.

�
We see that the probability to exit from an equilibrium is exponentially tiny, pro-

portional to e−(infy∈∂A V (y)−V (y+))/ε as ε tends to zero, and therefore such exits are rare
events. In the next section we show that the most probable path, the so called reaction
paths, that gives such rare events are those where the stochastic paths X closely follow
the optimal control paths Y . Since ε is small and the control α is not, the Brownian
motion must some time be large of order ε−1/2. Therefore the rare events of exits depend
on the rare events of such large deviation in the Brownian motion.

The Theorem relates to the basis of reaction theory in chemistry and statistical
physics, where the probability to go from one state with energy V1 to another with energy
V2 > V1 is proportional to Boltzmanns rate e−(V2−V1)/(kBT ); here kB is Boltzmanns
constant and T is the temperature. We see that, with ε = kBT and V the energy, the
simple model (10.3) can describe reactions and physical transition phenomena. A simple
way to see that the reaction rate is qτ is to take N independent particles starting in y+.
After very long time Nqτ of them have exited from the domain and the reaction rate
becomes the quotient Nqτ/N = qτ .

Exercise 10.11. Show that the mean exit time uε(x, t) := E[τ − t | Xt = x] satisfies

lim
ε→0+

ε log uε(y+, t) = inf
y∈∂A

V (y)− V (y+).

Exercise 10.12. Does

lim
ε→0+

ε log qτ = V (X0)− inf
y∈∂A

V (y)

hold when X0 starts from a different point than the global attractor in A? Answer:
sometimes but not in general depending on X0 - how?
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Exercise 10.11 shows that the product of the limits of the mean exit time and the
probability to exit is equal to one, that is the mean exit time is exponentially large,
roughly e(infy∈∂A V (y)−V (y+))/ε.

10.3 Reaction Paths

This section motivates why the most probable exit paths X closely follow the optimal
control paths Y . We saw in Theorem 10.10 that in the case T tending to infinity and
Y 0 = y+, the optimal path Y is orthogonal to the level sets of the potential V and
the path starts from the minimum point y+ (where V (y+) = miny∈A V (y)) and moves
towards the minimum on the boundary argminy∈∂AV (y), see Figure 10.4. For bounded
T the situation may change and the time to reach the boundary with the control α = V ′

may be larger than T , so that the first integral in (10.13) does not vanish and the
optimal control becomes different; therefore also the exit probability is different and
(10.12) is invalid; clearly such early time exit probabilities are also interesting when a
rare event is unwanted, e.g. for hard-disc and power-plant failures. These most probable
paths following the optimal control paths are called the reaction paths. Since the exit
probability is small and the most probable exit path makes a large deviation from the
equilibrium on a time span of order one, which is small compared to the expected exit
time of order eC/ε (for some positive C), the exit process can on long time spans be
considered as a Poisson process with the rate 1/E[τ − t] ' qτ .

To verify that the most probable exit paths follow the optimal control paths, we want
to in some sense relate the stochastic increments

√
2ε dW t with the control increments

αtdt. Our first step in this direction is to find a probability measure on whole paths
X, and then to see how probable the X-paths close to the optimal control paths Y∗ are
compared to the X-paths away from Y∗. It is clear that the probability to find X = Y∗
is zero, so we need to modify this argument somewhat. An informal way to understand
the probability of whole paths is to consider Euler discretizations of (10.3)

(∆X

∆t
+ V ′(Xi)

)
∆t =

√
2ε∆W

with the probability density

P (∆W = yi) = e−
|yi|

2

2∆t
dyi

(2π∆t)d/2

= e−|
∆X
∆t

+V ′(Xi)|2∆t/(4ε) dyi

(2π∆t)d/2
.

Therefore the probability measure for a whole path is

Πn
i=1e

− |yi|
2

2∆t
dyi

(2π∆t)d/2
= Πn

i=1e
−|∆X

∆t
+V ′(Xi)|2∆t/(4ε) dyi

(2π∆t)d/2

= e−
∑n
i=1 |

∆X
∆t

+V ′(Xi)|2∆t/(4ε) dy1

(2π∆t)d/2
. . .

dyn

(2π∆t)d/2
.
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The most probable path is the one that maximises the probability density

e−
∑n
i=1 |

∆X
∆t

+V ′(Xi)|2∆t/(4ε) ,

this is called the maximum likelihood method . In the previous section we saw that the
optimal control problem does precisely this maximisation. Therefore the optimal control
paths generate the most probable stochastic paths. If the density in the maximum
likelihood method is almost uniform, the result is doubtful. Here the situation is the
opposite - when ε tends to zero, the density concentrates on the most probable event,
see Exercise 10.13.

If we consider W or α as perturbations, we see that the solution we have obtained is
the solution of the least-squares problems

min
W

∫ τ

0
|Ẋt + V ′(Xt)|2dt = min

α

∫ τ

0
|Ẏ t + V ′(Y t)|2dt,

where Ẋt + V ′(Xt) and Ẏ t + V ′(Y t) are the residuals, that is the error in the equation.

Exercise 10.13. In the limit as ε tends to zero, we saw in Exercise 10.6 that if
∫
A e
−V (y)dy

is bounded, then

lim
ε→0+

ε log

∫
A
e−V (y)/εdy = − inf

y∈A
V (y).

Show that for a smooth function f on a bounded set A with a unique maximum point

y+, the probabilty density ef(y)/ε∫
A e

f(y)/εdy
has the limit expected value

lim
ε→0+

∫
A e

f(y)/εφ(y)dy∫
A e

f(y)/εdy
= φ(y+),

which means that in the limit the most probable event almost surely happens and nothing
else.
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Figure 10.4: The optimal reaction path starting in the attractor y+ moving to the
sadlepoint y0 = argminy∈∂A(V (y), inside the domain A to the left of the dashed line.
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Chapter 11

Molecular dynamics

The starting point for modelling molecular systems is the eigenvalue problem of the
time-independent Schödinger equation

HΨ = EΨ

where the unknown eigenvector Ψ is a complex valued wave function, depending on the
variables of coordinates and spins of all, M , nuclei and, N , electrons in the problem, the
real number E is the unknown eigenvalue, and H is the given Hamiltonian Hermitian op-
erator precisely defined by well known fundamental constants of nature and the Coulomb
interaction of all nuclei and electrons. An important issue is its high computational
complexity for problems with more than a few nuclei, due to the high dimension of Ψ
which is roughly in L2(R3(M+N)), see [CL]. Already simulation of a single water molecule
requires a partial differential equation in 39 space dimensions, which is a demanding task
to solve. Therefore coarse-grained approximations are often necessary. The next sections
describe the following five useful levels of coarse-grained models:

• In quantum classical molecular dynamics, also called Ehrenfest dynamics, the
nuclei dynamics is approximated by classical paths, which introduces time and the
time-dependent Schrödinger equation for the electron dynamics.

• In the Born-Oppenheimer approximation the electron wave function in the Ehrenfest
dynamics is approximated by the electron ground state for the current nuclei
position. This Born-Oppenheimer approximation leads to a molecular system
described by a Hamiltonian system, which simulates an ensemble with constant
number of particles, volume and energy MẌt = −V ′(Xt).

• In a situation where one instead wants to simulate a system with constant number
of particles, volume and temperature T , the Born-Oppenheimer approximation
can be refined, by including a perturbation of the ground state; this leads to
stochastic Langevin dynamics Mdvt = −(V ′(Xt) + vt/τ)dt +

√
T/τdWt. The

Langevin dynamics introduces a friction parameter 1/τ .
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• In the high friction limit, τ → 0+, of Langevin dynamics for long time, the velocity
variable Ẋ = vt can be eliminated and the nuclei positions Xs/τ → X̄s satisfy the

Smoluchowski dynamics dX̄s = −V ′(X̄s) +
√
TdWs.

• The next step in the coarse-graining process is to derive partial differential equations
for the mass, momentum and energy of a continuum fluid from Langevin or
Smoluchowski molecular dynamics, which determines the otherwise unspecified
pressure, viscosity and heat conductivity; we present a a derivation related to the
work by Irvine & Kirkwood (1950) and Hardy (1981).

11.1 Molecular dynamics at constant temperature: Zwanzig’s
model and derivation of Langevin dynamics

This section reviews the Hamiltonian system heat bath model of Zwanzig [Zwa73], with
his derivation of stochastic Langevin dynamics, related to the earlier work [FKM65].
Here the model is heavy particles interacting with many light particles – modelling
heavy particles in a heat bath of light particles. The model is as simple as possible to
have the desired qualitative properties of a system interacting with a heat bath, the
following sections then applies a similar formulation to a more fundamental model for
nuclei electron systems. The goal here is to give some understanding of simulating,
at constant temperature, the coarse-grained molecular dynamics of the heavy particle
without resolving the lighter particles, using Langevin dynamics. It is an example how
stochastics enter into a coarse-grained model through elimination of some degrees of
freedom in a determinstic model, described by a Hamiltonian system. The original model
is time reversible while the coarse-grained model is not.

We study Nh heavy particles and consider particle’s positions X ∈ R3Nh in a heat
bath with several light particles positioned in yn ∈ R3, n = 1, . . . , N , relative to the
individual equilibrium positions corresponding to yn = 0. The harmonic interaction
potential

U(X) +
N∑
n=1

mω2
n

2
|yn −

γn ·X
ω2
n

|2,

yields the Hamiltonian

H := U(X) +
N∑
n=1

mω2
n

2
|yn −

γn ·X
ω2
n

|2 +
M |Ẋ|2

2
+
∑
n

m|ẏn|2

2
(11.1)

and the dynamics

MẌt = −U ′(Xt) +
∑
n

mω2
n

(
yn(t)− γn ·Xt

ω2
n

) γn
ω2
n

, (11.2)

mÿn(t) = −mω2
n

(
yn(t)− γn ·Xt

ω2
n

)
. (11.3)
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Here m and M are the light and heavy particle masses, respectively, the function U is
the potential for external forces on the heavy particle and ωn is the particle frequency of
oscillation of the light particle, n, and γn ∈ R3Nh measures its coupling to heavy particles.
Given the path X, the linear equation (11.3) can be solved explicitly, e.g. with Laplace
transform, with the solution

yn(t)− γn
ω2
n

X(t) =

√
kBT
mω2

n

(
αn sin(ωnt) + βn cos(ωnt)

)
︸ ︷︷ ︸

zn(t)

− 1

ω2
n

∫ t

0
γn · Ẋ(t− s) cos(ωns)ds.

(11.4)
Let both the initial position and velocity for the heavy particle be zero. We assume that
the many initial positions and velocities of the light particles are impossible to measure
and determine precisely. Clearly, to predict the dynamics of the heavy particle some
information of the light particle initial data is necessary: we shall use the equilibrium
probability distribution for the light particles depending only on one parameter – the
temperature. Section 11.2 presents a motivation of the stochastic model where the initial
positions and velocities for the light particles are randomly sampled with the Gibbs
probability measure

Z−1 exp
(
−H(y, ẏ)/(kBT )

)
dy1 . . . dyNdẏ1 . . . dẏN ,

Z :=

∫
R2N

exp
(
−H(y, ẏ)/(kBT )

)
dy1 . . . dyNdẏ1 . . . dẏN ,

H(X, Ẋ, y, ẏ) := U(X) +
N∑
n=1

mω2
n

2
|yn −

γn ·X
ω2
n

|2 +
M |Ẋ|2

2
+
∑
n

m|ẏn|2

2
,

(11.5)

which generates αn ∈ R3 and βn ∈ R3 to be independent stochastic variables with
independent standard normal distributed components with zero mean and variance 1.

Inserted into the equation (11.2), for the heavy particle, the solution (11.4) implies
that

MẌt = −U ′(Xt)−
∫ t

0

∑
n

mγ2
n

ω2
n

cos(ωns) Ẋ(t− s)ds+
∑
n

mzn(t)γn︸ ︷︷ ︸
ζ(t)

(11.6)

where the covariance of the Gaussian process, ζ : [0,∞)× {probability outcomes} → R3,

E[ζisζ
i
t ] = kBT

N∑
n=1

m(γin)2

ω2
n

cosωn(t− s) =: kBT f(t− s),

E[ζisζ
j
t ] = 0, i 6= j,

also is the integral kernel for the friction term in the generalized Langevin equation
(11.6), forming a version of Einstein’s fluctuation-dissipation result.
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Assume now that the harmonic oscillators are distributed so that the sum over
particles is in fact an integral over frequencies with a Debye distribution, i.e. for any
function h

N−1
N∑
n=1

h(ωn)→
∫ ωd

0
h(ω)

3ω2

ω3
d

dω,

and let γn = γN−1/2 to obtain

M−1f(t) =
3m(γi)2

Mω3
d

sinωdt

t
,

which formally leads to the Langevin equation

dXt = vtdt,

dvt =
(
−M−1U ′(X)− τ−1vt

)
dt+

√
2kBT
τM

dWt,
(11.7)

as ωd →∞ and 3πm(γi)2

2Mω3
d
→ τ−1, where W is the standard Wiener process with indepen-

dent components in R3. This Langevin equation has the unique invariant probability
density (that is the time independent solution of the corresponding Kolmogorov forward
equation)

e−(M |Ẋ|2/2+U(X))/T dXdẊ∫
R6 e−(M |Ẋ|2/2+U(X))/T dXdẊ

,

which is the heavy particle marginal distribution of the Gibbs distribution

e−H(X,Ẋ,y,ẏ)/T dXdẊdydẏ∫
R6(N+1) e−H(X,Ẋ,y,ẏ)/T dXdẊdydẏ

in (11.5). We conclude that sampling the light particles from the light particle marginal
of the Gibbs distribution leads time asymptotically to having the heavy particle in
the heavy particle marginal of the Gibbs distribution: this fundamental stability and
consistency property is unique to the Gibbs distribution, as explained in the next section.

Sections ?? to ?? derive ab initio Langevin dynamics for nuclei from the Schrödinger
equation of interacting nuclei and electrons, in a spirit inspired by Zwanzig’s derivation
above but using consistency of value functions instead of explicit solutions. The idea
of error analysis with value functions is sketched in Section 1.5 and also used for weak
convergence of approximations of stochastic differential equations in Section 5.2 and for
approximation of optimal control problems in Sections 9.1.7 and 9.2.3.

11.2 The Gibbs distribution derived from dynamic stabil-
ity

At the heart of Statistical Mechanics is the Gibbs distribution

e−H(Y,Q)/TdY dQ∫
R6N e−H(Y,Q)/TdY dQ
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for an equilibrium probability distribution of a Hamiltonian dynamical system

Ẏt = ∂QH(Yt, Qt)

Q̇t = −∂YH(Yt, Qt)
(11.8)

in the canonical ensemble of constant number of particles N , volume and temperature T .
Every book on Statistical Mechanics gives a motivation of the Gibbs distribution, often
based on entropy considerations, cf. [Fey98]. Here we motivate the Gibbs distribution
instead from dynamic stability reasons. Consider a Hamiltonian system with light and
heavy particles, with position Y = (X, y), momentum Q = (P, q) and the Hamiltonian
H = H1(X,P ) +H2(X, y, q), as in (11.1). Assume that it is impractical or impossible
to measure and determine the initial data for the light particles. Clearly it is necessary
to give some information on the data to determine the solution at a later time. In
the case of molecular dynamics it is often sufficient to know the distribution of the
particles to determine thermodynamic relevant properties, as e.g. the pressure-law. We
saw in Section 11.1 that if the light particles have an initial probability distribution
corresponding the Gibbs distribution conditioned on the heavy particle, then the invariant
distribution for the heavy particle is unique (in the limit of the Langevin equation) and
given by the Gibbs marginal distribution for the heavy particle

e−H1(X,P )/TdXdP∫
R6Nh e

−H1(X,P )/TdXdP
.

This stability that an equilibrium distribution of light particles leads to the marginal
distribution of the heavy particles holds only for the Gibbs distribution in the sense we
shall verify below. This is a desired stability and consistency result:

(C) we start from an equilibrium density and consider the dynamics of the heavy
particles, with the light particles initially distributed according to the light particle
equilibrium distribution conditioned on the heavy particles, and end up after long
time with the heavy particles distributed according to the heavy particle marginal
of the original equilibrium measure; consequently the behavior after long time
is consistent with the assumption to start the light particles with this particular
equilibrium distribution.

It is in fact this uniqueness of the Gibbs initial probability distribution that makes a
stochastic model of the dynamics useful: if we would have to seek the initial distribution
among a family of many distributions we could not predict the dynamics in a reasonable
way.

To derive this uniqueness of the Gibbs density, we consider first all equilibrium
densities of the the Hamiltonian dynamics and then use the consistency check (C) of an
equilibrium density and its light particle equilibrium distribution leading to the heavy
particle marginal equilibrium distributions to rule out all except the Gibbs density. There
are many equilibrium distributions for a Hamiltonian system: the Liouville equation (i.e.
the Fokker-Planck equation in the case of zero diffusion)

∂tf(H)︸ ︷︷ ︸
=0

+∂Y (∂QHf(H))− ∂Q(∂YHf(H)) = 0
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shows that any positive function f , depending only on the Hamiltonian H and not on
time, is an invariant probability distribution

f(H(Y,Q)dY dQ∫
R6N f(HY,Q))dY dQ

for the Hamiltonian system (11.8). There may be other invariant solutions which are not
functions of the Hamiltonian but these are not considered here. Our basic question is
now – which of these functions f have the fundamental property that their light particle
distribution generates a unique invariant measure given by the heavy particle marginal
distribution? We have seen that the Gibbs distribution is such a solution. Are there
other?

Write H = H1 +H2 and assume that the number of heavy particles Nh dominates
the number of light particles N . Then we have

H2

H1
= O(

N

Nh
)� 1. (11.9)

Let
− log f(H) = g(H)

and consider perturbations of the Gibbs distribution in the sense that the function g
satisfies for a constant C

lim
H→∞

g′′(H)H

g′(H)
≤ C

lim
H→∞

g′(H)H

g(H)
≤ C

(11.10)

for instance, any monomial g satisfies (11.10). Taylor expansion yields for some α ∈ (0, 1)

− log f(H) = g(H1 +H2)

= g(H1) +H2

(
g′(H1) + 2−1g′′(H1 + αH2)H2

)
and (11.9) and (11.10) implies the leading order term

− log f(H) ' g(H1) +H2g
′(H1).

Define the constant T = 1/g′
(
H1(X0, P0)

)
; the light particle distribution is then asymp-

totically given by
e−H2/Tdydq∫
e−H2/Tdydq

.

This initial distribution corresponds to a Gibbs distribution with the temperature
T = 1/g′

(
H1(X0, P0)

)
and the derivation of (11.7) leads to the heavy particle equilibrium

distribution
e−H1/TdXdP∫
e−H1/TdXdP

. (11.11)
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The equilibrium density f has by (11.9) and (11.10) the leading order expansion

− log f(H) = g(H1 +H2)

= g(H1) + g′(H1 + αH2)H2

' g(H1),

which leads to the heavy particle marginal distribution

e−g(H1)dXdP∫
e−g(H1)dXdP

. (11.12)

The consistency requirement to have the heavy particle distribution (11.11) equal to the
heavy particle marginal distribution (11.12) implies that

g(H1) = H1/T.

We conclude that the quotient −H/ log f(H) is constant, where −H/ log f(H) = T is
called the temperature, and we have derived the Gibbs density f(H) = e−H/T .

11.3 Smoluchowski dynamics derived from Langevin dy-
namics

See Section 6 in ”A stochastic phase-field model derived from molecular dynamics” on
http://www.nada.kth.se/~szepessy/papers.html.

11.4 Macroscopic conservation laws for compressible fluids
motivated from molecular dynamics

Molecular dynamics can be used to determine properties of bulk in addition to observables
related to smaller nuclei-electron systems. In this section we study the continuum limit
of molecular dynamics, which gives us the important connection between microscopic
molecular dynamics variables and macroscopic bulk properties as the density, stress,
velocity and their conservation of mass, momentum and energy. In particular we will see
that a complete macroscopic description of a compressible fluid requires a constitutive
relation determining the stress tensor as a function of the density, velocity and energy,
which is based on microscopic quantum mechanics. The derivation1 also gives some
insight to simulating molecular dynamics in the different ensembles of NV T and NPT ,
with constant number of particles, volume and temperature, respectively constant number
of particles, pressure and temperature.

For a given constant mean velocity u, the Langevin equation can (with the change of
variables Xt

j replaced by Xt
j + tu) for the case with a pair potential be written

Ẋt
j = ptj − u

ṗtj = −
∑
i 6=j

Φ′(Xt
j −Xt

i )−Kptj + (2KT )1/2Ẇ t
j ,

(11.13)

1 previous related work by Irving & Kirkwood (1950) and Hardy (1981)
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and its unique invariant measure is the Gibbs measure

e−
(∑

j |pj−u|2/2+
∑
j

∑
i 6=j Φ(Xj−Xi)/2

)
/TdXdp∫

e−
(∑

j |pj−u|2/2+
∑
j

∑
i6=j Φ(Xj−Xi)/2

)
/TdXdp

for any constant positive temperature T . We shall study the limit K → 0+ as the friction
vanishes and then we obtain a Hamiltonian system. To study the continuum limit of
molecular dynamics, we consider subsets B of particles and split the force into∑

i∈B,i 6=j
Φ′(Xj −Xi) +

∑
i∈Bc

Φ′(Xj −Xi),

where the last sum is the external force due to particles outside B interacting with particle
j in B and the notation Bc means the complement set of B. To formulate a Hamiltonian
for the dynamics of particle in such a set B, we introduce the characteristic paths yt by
yt = tu and an additional non interacting particle, whose position X0 measures time t.
We also consider the external potential R : R3 × R+ → R defined by∑

i∈Bc
Φ(Xt

j −Xt
i ) =

∑
i∈Bc

Φ(Xt
j + yt −Xt

i − yt) =: 2R(yt +Xt
j , t)

as a given function of the internal positions Xj for j ∈ B. The local Hamiltonian energy
given by

Ĥ :=
1

2

∑
j∈B
|ptj − u|2 +

1

2

∑
j∈B

∑
i∈B,i 6=j

Φ(Xt
j −Xt

i )︸ ︷︷ ︸
=:V (X)

+
∑
j∈B

2R(yt +Xt
j , t) + pt0

then yields the vanishing friction dynamics of (11.13) for j ∈ B

Ẋt
j = ptj − u

ṗtj = −
∑

i∈B,i 6=j
Φ′(Xt

j −Xt
i )−

∑
i∈Bc

Φ′(Xt
j −Xt

i )︸ ︷︷ ︸
=2R′(yt+Xt

j ,t)

(11.14)

and Ẋ0 = 1, so that X0 ≡ t. Define also the local equilibrium energy function

HB :=
1

2

∑
j∈B
|ptj − u|2 +

1

2

∑
j∈B

∑
i∈B,i 6=j

Φ(Xt
j −Xt

i ) +
1

2

∑
j∈B

∑
i∈Bc,

Φ(Xt
j −Xt

i )

=
1

2

∑
j∈B
|ptj − u|2 +

1

2

∑
j∈B

∑
i∈B,i 6=j

Φ(Xt
j −Xt

i ) +
∑
j∈B

R(yt +Xt
j , t)

= Ĥ − 1

2

∑
j∈B

∑
i∈Bc,

Φ(Xt
j −Xt

i )

= Ĥ −
∑
j∈B

R(yt +Xt
j , t)
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corresponding to the energy terms in the Gibbs measure related to the particles in B
and note that half the external field is the difference between the local energy Ĥ and
the local Gibbs energy HB. If the external field R(·, ·) is given, the Langevin dynamics
(11.13), for j ∈ B, has the unique invariant measure

e−HB(X,p)/TdXdp∫
e−HB(X,p)/TdXdp

,

where the components of X and p are restricted to the set B and X0 = t. Theorem 10.3
shows convergence towards the unique invariant measure for the Smoluchowski molecular
dynamics, corresponding to the high friction limit, when the given potential is such that
the Gibbs measure is bounded. This measure is also one of the invariant measures for
the vanishing friction limit (11.14) but to have convergence towards a unique one we
consider the Hamiltonian dynamics (11.14) with a vanishing friction parameter K. The
challenge to obtain a complete proof of the continuum limit, would require to verify that
convergence to local equilibrium takes place also when the external field R is not a given
function but determined from the almost equilibrium dynamics of the neighboring sets
B.

The convergence towards local equilibrium motivates that also in a case when the
mean velocity u : R3×R+ → R3 and the temperature T : R3×R+ → R+ are differentiable
functions varying on the macroscopic scale, the microscopic set of particles B see almost

constant u and T , so that the dynamics relax to the local equilibrium e−HB(X,p)/T dXdp∫
e−HB(X,p)/T dXdp

on the microscopic time scale (which is short compared to the macroscopic time).
We assume therefore that the molecular dynamics system can, locally in microscopic

sets B, be viewed as a system in local equilibrium influenced by an external potential
due to particle interaction outside the set, with a mean velocity and a temperature that
can vary on a macroscopic space and time scale but are considered to be constant in the
microscopic simulation set B = By, for microscopic time. To be in such local equilibrium
is an approximation of a large system and the accuracy of this assumption depends on
how fast T, u and R vary. The sets, that may overlap, move with the mean flow, following
the macroscopic characteristics now defined by ẏt = u(yt, t). The non interacting particle,
whose position X0 measures time t, makes a well defined Hamiltonian system (11.14)
also with given time dependent functions u = u(yt, t) and R = R(yt +Xt

j , t).
The external field R is the potential due to particles outside the set By interacting

with particles inside the set. The external potential R may depend on macroscopic time
and we consider it as a boundary condition, acting on particles near the boundary, to
get the right stress (and pressure) in a varying volume. The mean velocity implies that
the particle positions Xt

j ∈ R3 in Section ?? are replaced by Xt
j + yt. Therefore, the

external potential R(yt + Xt
j , t) =

∑
i∈Bcy Φ(Xt

j + yt − Xi − yt) has the t dependence

to capture the effect of the Xt
i + yt dynamics. The molecular system (11.14) with an

external force corresponds to simulation at given stress, instead of given volume V̂ in the
standard NV T setting. In an equilibrium ensemble with constant pressure and varying
volume, the quantity HB = Ĥ + P̂ V̂ (called the enthalpy in statistical mechanics and
thermodynamics) replaces Ĥ, where P̂ V̂ := −

∑
j∈B R(yt + Xt

j , t) in a case when the
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stress σmn = P̂ δmn is given by the pressure.
We assume the local system in By is in local equilibrium - that is its probability

density is the local Gibbs measure

G(X, p)dXdp :=
e−HBy (X,p)/T∫

e−HBy (X,p)/TdXdp
dXdp . (11.15)

We shall study the temperature T , velocity u and the density ρ : R3 × R+ → R+ as
functions of the macroscopic space and length scales using molecular dynamics. We hence
assume that electron-nuclei system locally relaxes to its local equilibrium (11.15), with
macroscopic varying T and u. We will now study the effect of not being in macroscopic
equilibrium, i.e. we ask what is the evolution of R, T and u? The answer will be the
partial differential equation for compressible fluids describing the dynamics of the density
ρ, the velocity u and the total energy E : R3 × R+ → R in the system of the three
conservation laws

∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu⊗ u+ σ) = 0

∂tE + ∂x(Eu+ σ · u) = 0

(11.16)

of mass, momentum and energy. To close the system one needs to relate the stress tensor
σ : R3 × R→ R9 with the other variables. The total energy can be written as a sum of
kinetic energy and internal energy E = ρ|u|2/2 + e, which defines the internal energy e.
The stress tensor

σ = σ(e, ρ, u) (11.17)

resulting from the ”external” field R and the density, is a function of the internal energy
e : R3 × R+ → R, the density ρ and the velocity u; the constitutive relation (11.17)
can be determined from molecular dynamics simulations for a given fluid, e.g. using
the microscopic formulation of internal energy and stress below. In the case of an
ideal fluid σnm = cρeδnm, for a constant c. The conservation of momentum can be
written component wise as ∂t(ρui) +

∑3
j=1 ∂xj (ρuiuj + σij) = 0. We use the notation

∂x(ru) :=
∑3

j=1 ∂xj (ruj) in the conservation of mass and energy equations.

Let η : R3 → R+ be a function which varies on the microscopic scale, has total
integral

∫
R3 η(x)dx = 1 and is supported on a tiny domain in the macroscopic scale, see

Figure ??; hence η is an approximate delta-mass centered at the origin. The macroscopic
density ρ : R3 × R+ → R+ of particles is defined by

ρ(x, t) :=

∫ ∑
j

η(x−Xt
j − yt)G(X0, p0)dX0dp0, (11.18)

which we write as
ρ(x, t) = E[

∑
j

η(x− yt −Xt)].

171



Smooth averages have been used in molecular dynamics for fluid dynamics, cf. [?], and
for the vortex blob method and the smoothed particle hydrodynamics approximation of
moving particles in fluid dynamics, cf. [?], [?]. We have

∂tρ(x, t) = E[
∑
j

d

dt
η(x−Xt

j − yt)]

and obtain by differentiation

∂tρ(x, 0) = −
∫ ∑

j

η′(x−Xj − y)(Ẋj + ẏ0)GdXdp

= −
∫ ∑

j

η′(x−Xj − y0)pjGdXdp

= −
∫ ∑

j

η′(x−Xj − y0)u(y0, 0)GdXdp

since ∫
pjGdp = u

∫
Gdp = u (11.19)

and η(x−Xj−y) is independent of p. By assumption the macroscopic function u is almost
constant in the domain where η′ is non zero, and we have obtained the conservation law
of mass

∂tρ(x, 0) = −∂x
( ∫ ∑

j

η(x−Xj − y0)u(x, 0)GdXdp
)

+ ∂x

(∫ ∑
j

η(x−Xj − y0)
(
u(x, 0)− u(y0, 0)

)
GdXdp

)
→ −∂x

(
ρu(x, 0)

)
in the limit as η becomes a point mass in the macroscopic scale.

The next step is to derive the conservation law for momentum by differentiating the
microscopic momentum∫ ∑

j

η(x−Xt
j − yt)ptjG(X0, p0)dX0dp0 = ρu(x, t).

We have similarly as for the density, using the special property of the Gibbs equilibrium
density

T∂XjG = −∂XjHBG = −
(
∂XjĤ︸ ︷︷ ︸
=−ṗj

−R′(y +Xj)
)
G, (11.20)
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that

∂t(ρu)(x, 0) = −
∫ ∑

j

(
η′(x−Xj − y0)pj(Ẋj + ẏ)− η(x−Xj − y0)ṗj

)
GdXdp

= −
∫ ∑

j

(
η′(x−Xj − y0)pj ⊗ pjG− η(x−Xj − y0)ṗj

)
GdXdp

= −
∫ ∑

j

(
η′(x−Xj − y0)pj ⊗ pjG

− η(x−Xj − y0)T∂XjG+ η(x−Xj − y0)∂XjR(y0 +Xj , 0)G
)
dXdp.

The integration by parts, using (11.20), is called a virial property. By writing pj =
(pj − u) + u and using

∫
(pj − u)Gdp = 0 together with∫

(pnj − un)(pmj − um)Gdp =

{
T n = m
0 n 6= m

, (11.21)

we have

∂t(ρu) = −
∫ ∑

j

(
η′(x−Xj − y)(u⊗ u+ T )

+ ∂Xj
(
η(x−Xj − y)T

)
+ η(x−Xj − y)∂XjR(y +Xj , 0)

)
GdXdp

= −∂x
∫ ∑

j

(
η(x−Xj − y)(u⊗ u+ T )− η(x−Xj − y)T

)
GdXdp

−
∫ ∑

j

η(x−Xj − y)∂yR(y +Xj , 0)GdXdp.

(11.22)

We want a spacial derivative with respect to x on the last integral of the external forces
to get the conservative stress field. This can be obtained from the construction

ζ(x− y,Xj , Xi) :=

∫ 1

0
η
(
x− y −Xj + λ(Xj −Xi)

)
dλ,

since we have

η(x− y −Xj)− η(x− y −Xi) = (Xj −Xi)∂xζ(x− y,Xj , Xi)
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and for particles i in Bc
y there holds η(x− y −Xi) = 0, so that∫ ∑

j

η(x−Xj − y)∂yR(y +Xj , 0)GdXdp

=

∫ ∑
j

∑
i∈Bcy

η(x−Xj − y)Φ′(Xj −Xi)GdXdp

=

∫ ∑
j

∑
i∈Bcy

(
η(x− y −Xj)− η(x− y −Xi)︸ ︷︷ ︸

=0

)
Φ′(Xj −Xi)GdXdp

= ∂x

∫ ∑
j

∑
i∈Bcy

(Xj −Xi)ζ(x− y,Xj , Xi)Φ
′(Xj −Xi)GdXdp

=: ∂xσ

(11.23)

defines the stress tensor σ : R3 × R+ → R9. We have obtained the conservation law of
momentum

∂t(ρu) + ∂x(ρu⊗ u+ σ) = 0.

Note that the two pressure like terms ρT and −ρT in (11.22), from the fluctuation of
the kinetic energy respectively from the interaction of particle forces, cancel each other.
We see that the stress tensor is symmetric for a potential depending on the pair distance,
since

Φ′(Xj −Xi) = ∂Xj Φ̃(|Xj −Xi|) = (Xj −Xi)Φ̃
′(|Xj −Xi|)/|Xj −Xi|.

As usual the pressure P is one third of the trace of the stress tensor.
The final step is to derive the conservation of energy by differentiation of the micro-

scopic total energy

E :=

∫ ∑
j∈By

η(x−Xj − y)
( |pj |2

2
+

1

2

∑
i∈By ,i 6=j

Φ(Xj −Xi)
)
G(X, p)dXdp, (11.24)

which has the kinetic energy part∫ ∑
j

η(x−Xj − y)
|pj |2

2
GdXdp =

ρ|u|2

2
+

3ρT

2

and the potential energy part

1

2

∫ (∑
j

η(x−Xj − y)
∑

i∈By ,i 6=j
Φ(Xj −Xi)

)
G(X, p, t)dXdp =: m. (11.25)

The reason we use a pair potential is that it allows for the simple interpretation of the
potential energy related to one particle presented in (11.25); Section 11.4.1 describes a
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generalization from the pair potential 2−1
∑

j

∑
i 6=j Φ(Xj −Xj) to an arbitrary potential

U(X). Let the internal energy be the sum of these kinetic and potential energies

e :=
3ρT

2
+m. (11.26)

We have as above

∂t(
ρ|u|2

2
+ e)

= −
∫ ∑

j

(
η′(x−Xj − y)

( |pj |2
2

+
1

2

∑
i 6=j

Φ(Xj −Xi)
)
pjGdXdp

+

∫ ∑
j

η(x−Xj − y)
(
ṗj · pj +

1

2

∑
i 6=j

Φ′(Xj −Xi)(pj − pi)
)
GdXdp

→ −∂x
(
ρ(
|u|2

2
+

3T

2
)u+mu+ σ · u

)
= −∂x

((
ρ(
|u|2

2
+

3T

2
) +m

)
u+ σ · u

)
using

∫
(pj − pi)Gdp = 0 and p = p− u+ u (to the second and third power) to obtain∫

|p|2pGdp = (|u|2 + 3T + 2T )u. We conclude that the total energy E := ρ|u|2/2 + e
satisfies the conservation law

∂tE + ∂x(Eu+ σ · u) = 0.

The derivation of the macroscopic equations (11.16) of compressible flow also gave us
microscopic definitions of the bulk density (11.18), velocity (11.19), temperature (11.21),
stress (11.23), energy (11.24) and internal energy (11.25-11.26).

11.4.1 A general potential

Consider a case with a general potential U(X) replacing 2−1
∑

j

∑
i 6=j Φ(Xj − Xi) in

(11.14). The derivation of the conservation laws for momentum uses that the stress can
be defined from the interaction with particles outside the set, which is simple for a pair
potential. For a general potential one need also to identify such interactions outside the
set. Therefore we split the potential. The splitting assumes that U can be split into
potential energies related to the individual particles

U(X) =
∑
j

mj(X),

where each term mj corresponds to
∑

i 6=j Φ(Xj −Xi)/2 in the pair potential case. To
split the Gibbs measure into local equilibrium parts, let

UB :=
∑
j∈B

mj(X),
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which defines the external part
U − UB =: R1

and yields
∂XjU = ∂Xj (UB +R1).

Assume we can split the external part into contributions from particles outside B

R1 =
∑
i∈Bc

ri.

The stress is then defined with ∂Xjri(X) replacing Φ′(Xj −Xi) in (11.23) and the local
equilibrium measure

e−(
∑
j∈B |pj |2/2+UB(X))/TdXdp∫

e−(
∑
j∈B |pj |2/2+UB(X))/TdXdp

replaces e−HB/TdXdp/
∫
e−HB/TdXdp in (11.15).

To handle the conservation laws of energy, the derivation with pair potentials uses in
addition in fact only that

d

dt

∫
1

2

∑
i 6=j

Φ(Xt
j −Xt

i )G(X0, p0)dp0 =

∫
1

2

∑
i 6=j

Φ′(X0
j −X0

i ) · (p0
j − p0

i )Gdp
0 = 0

which follows from
∫

(pj − pi)Gdp = 0. Suppose we have a partition U(X) =
∑

jmj(X)
that satisfies ∑

k

∫
u · ∂Xkmj(X)GdX = 0

for every j. Then the derivation above can be applied, with mj(X) replacing
∑

i 6=j Φ(Xj−
Xi).

With a derivation based on a general molecular dynamics potential we can for
instance use the Ehrenfest dynamics with the Hamiltonian |p− u|2/2 + φ · V (X)φ and
the corresponding equilibrium measure

GdXdpdφrdφi = e−(|p−u|2/2+φ·V ′(X)φ)/TdXdpdφrφi.

Using that the Ehrenfest dynamics is a Hamiltonian system in the variables X, p and
φ = φr+ iφi, also the virial term can be handled as above since the φ ·V ′(X)φ = −T∂XG.
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Chapter 12

Appendices

12.1 Tomography Exercise

Tomographic imaging is used in medicine to determine the shape/image of a bone or
interior organ. One procedure for doing this is by projecting X-rays from many different
angles through the body (see figure 1), measure the strength of the X-rays that has gone
through the image, and compute how the image has to be to comply with the X-ray
output. Reconstructing an image this way is called tomographic reconstruction, and it is
the problem we look at in this project.

In our case we first superimpose a grid over the image we wish to perform tomographic
imaging on to an n× n pixel image represented with image values as vector (fi)

n2

i=1. The
image values are assumed to be constant within each cell of the grid. An n = 3 case
with vertical and horizontal projections serves the purpose of further explaining the
problem: In figure 2 we have superimposed a 3 × 3 square grid on the image f(x, y).
The rays are the lines running through the x− y plane (we disregard the width of the
lines here assuming they are all of the same width and very thin). The projections are
given the representation pi, we say that pi is the ray sum measured with the ith ray. The
relationship between the fj ’s and the pi’s may be expressed as the set of linear equations

n2∑
j=1

Aijfj = pi, i = 1, . . . , n. (12.1)

For example, the first equation in the 3 × 3 case only goes through f1, f4 and f7

yielding the equation
A11f1 +A14f4 +A17f7 = p1,

The linear system of equations created by the horizontal and vertical projections in figure
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Figure 12.1: Illustration of tomographic imaging. The image on the unit square represents
our unknown image which we send rays through to determine.

2 written on the form An = p is



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1





f1

f2

f3

f4

f5

f6

f7

f8

f9


=



p1

p2

p3

p4

p5

p6

 (12.2)

In this case, A ∈ R6×9. The problem is underdetermined so the least squares way of
solving this problem:

f = (ATA)−1AT p, (12.3)

fails because ATA is singular. One way to deal with the singular matrix is to instead
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Figure 12.2: Illustration of horizontal and vertical projections on a 3× 3 image.

solve
f = (ATA+ δIn2)−1AT p,

where δ is a small number.

Exercise 1.

Download the image “ImageEx1.jpg” and the matlab program “rayItHorVert.m”. This
image is our unknown image (we only have the solution to compare). Create an image
matrix by the command

image = imread(’ImageEx1.tif’)

Create a projection vector of the image by calling

p=rayItHorVert(f)

Write a matlab program that takes as input a vector p ∈ R6×1, creates the matrix
A ∈ R6×9 given in (12.2) (for n = 3) and finds the tomographically reconstructed image
f by the computation (12.3). Use

f=reshape(f,n,n)
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to reshape the vector f into an n× n matrix and plot by the commands

colormap(gray)

imagesc(f)

Also plot the matrix “image” and compare results. As a reference, the result should look
like figure 3:

Figure 12.3: Illustration of the image “ImageEx1.jpg” (left) and the tomographic recon-
struction (right).

Hint: The matrix A can be created quite easily with the Kronecker product ⊗ which
is defined as follows:

B ⊗ C =


BC11 BC12 . . . BC1n

BC21 BC22 . . . BC1n
...

...
. . .

...
BCm1 BCm2 . . . BCmn

 (12.4)

where C ∈ Rm×n and B is an arbitrary matrix. In matlab the operation B⊗C is written

kron(B,C)

Exercise 2.

Use the hint in exercise 1. to generalize the matlab program to work for any n value.
That is, write a program that takes as input an n-value and a vector p ∈ R2n×1, and
creates a matrix A ∈ R2n×n2

with similar structure as the one in (12.2).

(a)

Download the image “Ball.tif” and solve the problem as in exercise one. One might
improve the reconstructed image quality by filtering the image. Implement a scheme
which removes values below a certain threshold in the matrix f and plot the result.
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Figure 12.4: Illustration of horizontal, vertical and diagonal projections on a 3× 3 image.

(b)

Assume that you have X-rayed a square shaped suitcase containing a circular shaped
bomb. The file “pVector.mat” consists of the projection vector which you read by the
command

load(’pVector.mat’)

What is approximately the position of the bomb? (Assume unit square coordinates).

(c)

Download the image “TwoBalls.tif” and solve the problem as in exercise one. Why does
the reconstructed image differ so strongly from the real one?

The scheme implemented in exercise 3 improves the reconstructed image.

Exercise 3. - Week project exercise

The next step is to add more projections to our tomographic imaging. As illustrateted
in figure 4, we use horizontal, vertical and diagonal projections. For the n = 3 case the
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linear set of equations Af = p is

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1





f1

f2

f3

f4

f5

f6

f7

f8

f9


=



p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16



(12.5)

Write a program that takes as input an n-value and a vector p ∈ R(6n−2)×1, and
creates a matrix A ∈ R(6n−2)×n2

with similar structure to the one in (12.5). Download
the image “TwoBalls.tif” and the program “rayItHorVertDiag.m” which you use to create
the projection vector by the command

p=rayItHorVertDiag(f)

Solve this image problem as in exercise 2 (c). Implement the filtering technique here as
well. Compare this reconstruction to the one in 2 (c).

Exercise 4. - Week project exercise

The reason we are looking at low resolution images above is that for an n× n image the
matrix A ∈ R(6n−2)×n2

. This means that ATA ∈ Rn2×n2
which is so huge, that even for

relatively small n that we can not solve the problem (12.3) in Matlab the way we have
done in the exercises above. The paper “Algebraic reconstruction algorithms” describes
an iterative algorithm solving the tomographic reconstruction problem which works for
higher resolution images (see page 278). Read the first pages of this paper and implement
this algorithm using horizontal, vertical and diagonal projections as in exercise 3. Try
your algorithm on the picture “Pear.tif”

12.2 Molecular Dynamics

Here some discussion about the MD code will appear.

#include <math.h>

#include <stdio.h>
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#include <stdlib.h>

#include <iostream>

#include <iomanip>

#include <fstream>

#include <sstream>

#include <string>

//

// Compile with g++ -O2 -o main main.cpp

//

using namespace std;

// ---------- Definitions ----------

typedef double real;

real sqr(real n){return n*n;}

enum BoundaryCond {periodic, flow};

// ---------- Cell and particle structures ----------

struct Parameters

{

real sigma, epsilon, cutoff, dt, T, temp, size[3];

int cells[3], cellsTot;

BoundaryCond bc;

};

struct Particle

{

real m;

real x[3];

real v[3];

real F[3];

real Fold[3];

int flag;

};

struct ParticleList

{

Particle p;

ParticleList *next;

};

typedef ParticleList* Cell;
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void insertListElement(ParticleList **root, ParticleList *pl)

{

pl->next = *root;

*root = pl;

}

void deleteListElement(ParticleList **pl)

{

*pl = (*pl)->next;

}

int index(int *i, int *cells)

{

return i[0] + cells[0]*(i[1] + cells[1]*i[2]);

}

// ---------- Function definitions ----------

void inputParameters(Parameters&);

void initData(Cell*, Parameters&);

void integrate(real, Cell*, Parameters&);

void compF(Cell*, Parameters&);

void compX(Cell*, Parameters&);

void compV(Cell*, Parameters&);

real compE(Cell*, Parameters&);

void updateX(Particle*, real);

void updateV(Particle*, real);

void forceLJ(Particle*, Particle*, real, real);

void sortParticles(Cell*, Parameters&);

void saveParticles(Cell*, real, Parameters&);

void boltzmann(Particle*, real);

real gaussDeviate();

// ---------- Program and functions ----------

int main(int argc, char **argv)

{

int s = system("rm -rf ./data/*.txt");

Parameters p;

inputParameters(p);

Cell *grid = new Cell[p.cellsTot];

//for (int i=0; i<p.cellsTot; ++i)

// grid[i] = NULL;

initData(grid, p);
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saveParticles(grid, 0, p);

integrate(0, grid, p);

return s;

}

void inputParameters(Parameters &p)

{

// Lennard-Jones parameters

p.sigma = 3.4;

p.epsilon = 120;

// Box size

for (int d=0; d<3; ++d)

p.size[d] = 150*p.sigma;

// Cells

p.cutoff = 2.5*p.sigma;

for (int d=0; d<3; ++d)

p.cells[d] = (int) floor(p.size[d] / p.cutoff);

p.cellsTot = 1;

for (int d=0; d<3; ++d)

p.cellsTot *= p.cells[d];

// Timescale

p.T = 20;

p.dt = 1e-2;

// Boundary condition

p.bc = flow;

// Save to file

FILE *file = fopen("./data/parameters.txt", "w");

fprintf(file, "%f %f %f %f %f ", p.sigma, p.epsilon, p.cutoff, p.T, p.dt);

for (int d=0; d<3; ++d)

fprintf(file, "%f ", p.size[d]);

for (int d=0; d<3; ++d)

fprintf(file, "%d ", p.cells[d]);

fclose(file);

}

void initData(Cell *grid, Parameters &p)

{

// Box 1

real mass = 39.95;

int n1 = 10, n2 = 10, n3 = 10;

grid[0] = NULL;

ParticleList **root = &grid[0];
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for (int i=0; i<=2*n1; ++i)

for (int j=0; j<=2*n2; ++j)

for (int k=0; k<=2*n3; ++k)

{

// Face centered cubic

if ( !((i+j+k)%2) )

{

ParticleList *pl = new ParticleList;

pl->p.m = mass;

pl->p.x[0] = 0.5*p.size[0] + (i-n1)*pow(2, 1.0/6.0)*p.sigma;

pl->p.x[1] = 0.5*p.size[1] + (j-n2)*pow(2, 1.0/6.0)*p.sigma;

pl->p.x[2] = 0.6*p.size[2] + (k-n3)*pow(2, 1.0/6.0)*p.sigma;

pl->p.v[0] = 0;

pl->p.v[1] = 0;

pl->p.v[2] = -20.4;

pl->p.flag = 0;

insertListElement(root, pl);

}

}

// Box 2

n1 = 30, n2 = 30, n3 = 10;

for (int i=0; i<=2*n1; ++i)

for (int j=0; j<=2*n2; ++j)

for (int k=0; k<=2*n3; ++k)

{

// Face centered cubic

if ( !((i+j+k)%2) )

{

ParticleList *pl = new ParticleList;

pl->p.m = mass;

pl->p.x[0] = 0.5*p.size[0] + (i-n1)*pow(2, 1.0/6.0)*p.sigma;

pl->p.x[1] = 0.5*p.size[1] + (j-n2)*pow(2, 1.0/6.0)*p.sigma;

pl->p.x[2] = 0.4*p.size[2] + (k-n3)*pow(2, 1.0/6.0)*p.sigma;

pl->p.v[0] = 0;

pl->p.v[1] = 0;

pl->p.v[2] = 0;

pl->p.flag = 1;

insertListElement(root, pl);

}

}

// Noise

for (ParticleList *pl=grid[0]; pl!=NULL; pl=pl->next)
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boltzmann(&pl->p, 1.0);

sortParticles(grid, p);

}

void boltzmann(Particle *p, real factor)

{

for (int d=0; d<3; ++d)

p->v[d] += factor * gaussDeviate();

}

real gaussDeviate()

{

real a1, a2, s, r, b1;

static int iset = 0;

static real b2;

if (!iset)

{

do {

a1 = 2.0 * rand() / (RAND_MAX + 1.0) - 1.0;

a2 = 2.0 * rand() / (RAND_MAX + 1.0) - 1.0;

r = a1 * a1 + a2 * a2;

} while (r>=1.0);

s = sqrt(-2.0 * log(r) / r);

b1 = a1 * s;

b2 = a2 * s;

iset = 1;

return b1;

}

else

{

iset = 0;

return b2;

}

}

void integrate(real t, Cell *grid, Parameters &p)

{

compF(grid, p);

while (t < p.T-1e-9)

{

t += p.dt;

compX(grid, p);

compF(grid, p);

compV(grid, p);

saveParticles(grid, t, p);
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cout << scientific <<

"t = " << t << " E = " << compE(grid, p) << endl;

}

}

void compF(Cell *grid, Parameters &p)

{

int* cells = p.cells;

int i[3], j[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<cells[0]; i[0]++)

for (i[1]=0; i[1]<cells[1]; i[1]++)

for (i[2]=0; i[2]<cells[2]; i[2]++)

// Loop over particles in each cell

for (ParticleList *pl1=grid[index(i,cells)]; pl1!=NULL; pl1=pl1->next)

{

for (int d=0; d<3; ++d)

pl1->p.F[d] = 0;

// Loop over neighbours in each dimension

for (j[0]=i[0]-1; j[0]<=i[0]+1; j[0]++)

for (j[1]=i[1]-1; j[1]<=i[1]+1; j[1]++)

for (j[2]=i[2]-1; j[2]<=i[2]+1; j[2]++)

{

bool outside = false;

int tmp[3];

if (p.bc==periodic)

{

// Periodic boundary

for (int d=0; d<3; ++d)

tmp[d] = j[d];

for (int d=0; d<3; ++d)

if (j[d]<0)

j[d] = cells[d]-1;

else if (j[d]>=cells[d])

j[d] = 0;

}

else if (p.bc==flow)

{

// Flow boundary

for (int d=0; d<3; ++d)

if (j[d]<0 || j[d]>=cells[d])

outside = true;

}

if (!outside)
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{

// Check distance from particle pl1 to neighbour cell j

real dist = 0;

for (int d=0; d<3; ++d)

dist +=

sqr( min( pl1->p.x[d] - j[d] * 1.0 / cells[d],

pl1->p.x[d] - (j[d] + 1) * 1.0 / cells[d] ) );

// Loop over particles in each neighbour cell

//if (dist<=p.cutoff)

for (ParticleList *pl2=grid[index(j,cells)]; pl2!=NULL; pl2=pl2->next)

if (pl1!=pl2)

{

real r = 0;

for (int d=0; d<3; ++d)

r += sqr(pl2->p.x[d] - pl1->p.x[d]);

if (r<=sqr(p.cutoff))

forceLJ(&pl1->p, &pl2->p, p.sigma, p.epsilon);

}

}

if (p.bc==periodic)

{

// Copy back

for (int d=0; d<3; ++d)

j[d] = tmp[d];

}

}

}

}

void forceLJ(Particle *i, Particle *j, real sigma, real epsilon)

{

real r = 0.0;

for (int d=0; d<3; ++d)

r += sqr(j->x[d] - i->x[d]);

real s = sqr(sigma) / r;

s = sqr(s) * s;

real f = 24 * epsilon * s / r * (1 - 2 * s);

for (int d=0; d<3; ++d)

i->F[d] += f * (j->x[d] - i->x[d]);

}

void compX(Cell *grid, Parameters &p)

{

int i[3];
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// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

// Loop over particles in each cell

for (ParticleList *pl=grid[index(i,p.cells)]; pl!=NULL; pl=pl->next)

updateX(&pl->p, p.dt);

// Update cells according to new positions

sortParticles(grid, p);

}

void updateX(Particle *p, real dt)

{

real a = dt * 0.5 / p->m;

for (int d=0; d<3; ++d)

{

p->x[d] += dt * (p->v[d] + a * p->F[d]);

p->Fold[d] = p->F[d];

}

}

void compV(Cell *grid, Parameters &p)

{

int i[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

// Loop over particles in each cell

for (ParticleList *pl=grid[index(i,p.cells)]; pl!=NULL; pl=pl->next)

updateV(&pl->p, p.dt);

}

void updateV(Particle *p, real dt)

{

real a = dt * 0.5 / p->m;

for (int d=0; d<3; ++d)

{

p->v[d] += a * (p->F[d] + p->Fold[d]);

}

}

void sortParticles(Cell *grid, Parameters &p)
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{

int i[3], j[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

{

// Pointers to particle list in cell i

ParticleList **pl1 = &grid[index(i,p.cells)];

ParticleList *pl2 = *pl1;

// Traverse list in cell i

while (pl2!=NULL)

{

bool outside = false;

// Cell that particle belongs to

for (int d=0; d<3; ++d)

{

j[d] = (int) floor(pl2->p.x[d] * p.cells[d] / p.size[d]);

if (p.bc==periodic)

{

// Periodic boundary

if (j[d]<0)

j[d] = p.cells[d] - j[d] % p.cells[d];

else if (j[d]>=p.cells[d])

j[d] = j[d] % p.cells[d];

}

else if (p.bc==flow)

{

// Outflow boundary

if (j[d]<0 || j[d]>=p.cells[d])

outside = true;

}

}

// If not same cell

if ( (i[0]!=j[0]) || (i[1]!=j[1])

|| (i[2]!=j[2]) )

{

// Delete particle from list

deleteListElement(pl1);

// Add to list in cell j

if (!outside)

insertListElement(&grid[index(j,p.cells)], pl2);

}

else
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pl1 = &pl2->next;

pl2 = *pl1;

}

}

}

real compE(Cell* grid, Parameters &p)

{

real e = 0;

int i[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

// Loop over particles in each cell

for (ParticleList *pl=grid[index(i,p.cells)]; pl!=NULL; pl=pl->next)

{

real v = 0;

for (int d=0; d<3; ++d)

v += sqr(pl->p.v[d]);

e += 0.5 * pl->p.m * v;

}

return e;

}

void saveParticles(Cell* grid, real t, Parameters &p)

{

stringstream ss;

ss.str(""); ss << fixed << setprecision(6) << t/p.T;

string fname("./data/" + ss.str() + ".txt");

FILE *file = fopen(fname.c_str(), "w");

int i[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

{

// Loop over particles in each cell

for (ParticleList *pl=grid[index(i,p.cells)]; pl!=NULL; pl=pl->next)

{

for (int d=0; d<3; ++d)

fprintf(file, "%f ", pl->p.x[d]);

for (int d=0; d<3; ++d)
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fprintf(file, "%f ", pl->p.v[d]);

fprintf(file, "%d \n", pl->p.flag);

}

}

fclose(file);

}
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Chapter 13

Recommended Reading

The following references have been useful for preparing these notes and are recommended
for further studies.

Stochastic Differential Equations

• Online material: [Evab]

• Numerics for SDE: [KP92, Mil95]

• SDE: [Øks98]

• Advanced SDE: [KS91]

Probability

[Dur96]

Mathematical Finance

• Basic stochastics for finance: [Bax96]

• Finance in practice: [Hul97]

• Finance with numerics: [WD95]

Partial Differential Equations

• Advanced PDE: [Eva98]

• Online introduction: [Evaa]

• FEM: [Joh87]

• Advanced FEM: [BS94]

• Introductory DE and PDE: [EEHJ96] and [Str86]
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Variance Reduction for Monte Carlo Methods

[Caf98]

Molecular Dynamics

[LB05], [CDK+03b], [Fre02]
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