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Chapter 1

Introduction to Mathematical
Models and their Analysis

The goal of this course is to give useful understanding for solving problems formulated
by stochastic differential equations models in science, engineering, mathematical finance
and machine learning. Typically, these problems require numerical methods to obtain a
solution and therefore the course focuses on basic understanding of stochastic and partial
differential equations to construct reliable and efficient computational methods.

Stochastic and deterministic differential equations are fundamental for the modeling
in Science and Engineering. As the computational power increases, it becomes feasible to
use more accurate differential equation models and solve more demanding problems: for
instance to determine input data from fundamental principles, to optimally reconstruct
input data using measurements or to find the optimal construction of a design. There
are therefore two interesting computational sides of differential equations:

– the forward problem, to accurately determine solutions of differential equations for
given data with minimal computational work and prescribed accuracy, and

– the inverse problem, to determine the input data for differential equations, from
optimal estimates, based either on measurements or on computations with a more
fundamental model.

The model can be stochastic by different reasons:

– if calibration of data implies this, as in financial mathematics, or

– if fundamental microscopic laws generate stochastic behavior when coarse-grained,
as in molecular dynamics for chemistry, material science and biology, or

– if a deterministic problem is more efficiently computed by a stochastic method, as
for stochastic gradient descent in machine learning or Monte Carlo sampling of
high dimensional integrals.
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An understanding of which model and method should be used in a particular situation
requires some knowledge of both the model approximation error and the discretization
error of the method. The optimal method clearly minimizes the computational work for
given accuracy. Therefore it is valuable to know something about computational accuracy
and work for different numerical models and methods, which lead us to error estimates
and convergence results. In particular, our study will take into account the amount of
computational work for alternative mathematical models and numerical methods to solve
a problem with a given accuracy.

1.1 Noisy Evolution of Stock Values

Let us consider a stock value denoted by the time dependent function S(t). To begin our
discussion, assume that S(t) satisfies the differential equation

dS

dt
= a(t)S(t),

which has the solution
S(t) = e

∫ t
0 a(u)duS(0).

Our aim is to introduce some kind of noise in the above simple model of the form
a(t) = r(t)+”noise”, taking into account that we do not know precisely how the evolution
will be. An example of a ”noisy” model we shall consider is the stochastic differential
equation

dS(t) = r(t)S(t)dt+ σS(t)dW (t), (1.1)

where dW (t) will introduce noise in the evolution. To seek a solution for the above, the
starting point will be the discretization

Sn+1 − Sn = rnSn∆tn + σnSn∆Wn, (1.2)

where ∆Wn are independent normally distributed random variables with zero mean and
variance ∆tn, i.e. E[∆Wn] = 0 and V ar[∆Wn] = ∆tn = tn+1−tn. As will be seen later on,
equation (1.1) may have more than one possible interpretation, and the characterization
of a solution will be intrinsically associated with the numerical discretization used to
solve it.

We shall consider, among others, applications to option pricing problems. An
European call option is a contract which gives the right, but not the obligation, to buy a
stock for a fixed price K at a fixed future time T . The celebrated Black-Scholes model
for the value f : (0, T )× (0,∞)→ R of an option is the partial differential equation

∂tf + rs∂sf +
σ2s2

2
∂2
sf = rf, 0 < t < T,

f(s, T ) = max(s−K, 0),

(1.3)
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where the constants r and σ denote the riskless interest rate and the volatility respec-
tively. If the underlying stock value S is modeled by the stochastic differential equation
(1.1) satisfying S(t) = s, the Feynmann-Kač formula gives the alternative probability
representation of the option price

f(s, t) = E[e−r(T−t) max(S(T )−K, 0))|S(t) = s], (1.4)

which connects the solution of a partial differential equation with the expected value of
the solution of a stochastic differential equation. Although explicit exact solutions can
be found in particular cases, our emphasis will be on general problems and numerical
solutions. Those can arise from discretization of (1.3), by finite difference or finite
elements methods, or from Monte Carlo methods based on statistical sampling of (1.4),
with a discretization (1.2). Finite difference and finite element methods lead to a discrete
system of equations substituting derivatives for difference quotients, e.g.

ft ≈
f(tn+1)− f(tn)

∆t
,

while the Monte Carlo method discretizes a probability space by substituting expected
values with averages of finite samples, e.g. {S(T, ωj)}Mj=1 and

f(s, t) ≈
M∑
j=1

e−r(T−t) max(S(T, ωj)−K, 0)

M
.

Which method is best? The solution depends on the problem to solve and we will carefully
study qualitative properties of the numerical methods to understand the answer.

1.2 Molecular Dynamics

An example where the noise can be derived from fundamental principles is molecular
dynamics, modeling e.g. reactions in chemistry and biology. Theoretically molecular
systems can be modeled by the Schrödinger equation

i∂tΨ = HΨ

where the unknown Ψ is a wave function depending on time t and the variables of
coordinates and spins of all, M , nuclei and, N , electrons in the problem; and H is
the Hamiltonian precisely defined by well known fundamental constants of nature and
the Coulomb interaction of all nuclei and electrons. An important issue is its high
computational complexity for problems with more than a few nuclei, due to the high
dimension of Ψ which is roughly in L2(R3(M+N)), see [26]. Already simulation of a single
water molecule requires a partial differential equation in 39 space dimensions, which is a
demanding task to solve also with modern sparse approximation techniques.

A substantial dimensional reduction is obtained with Born-Oppenheimer approxi-
mation treating the nuclei as classical particles with the electrons in the ground state
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corresponding to the current nuclei positions. This approximation, derived from a
WKB approximation for heavy nuclei mass (see Section ??), leads to ab initio molecular
dynamics

ẋt =vt,

mv̇t =− V ′(xt).
(1.5)

To determine the nuclei dynamics and find the electron energy (input to V ) means now
to solve a differential equation in R6M where at each time step the electron ground state
energy needs to be determined for the current nuclei configuration xt, see [26, 19]. To
simulate large systems with many particles requires some simplification of the expensive
force calculation ∂xiV involving the current position xt ∈ R3M of all nuclei.

The Hamiltonian system (1.5) is often further modified. For instance, equation (1.5)
corresponds to simulate a problem with the number of particles, volume and total energy
held constant. Simulation of a system with constant number of particles, volume and
temperature are often done by using (1.5) and regularly rescaling the kinetic energy to
meet the fixed temperature constraint, using so called thermostats. A mathematically
attractive alternative to approximate a system in constant temperature is to solve the
Langevin-Itô stochastic differential equation

dxt = vtdt,

mdvt = −(V ′(xt) + τ−1vt)dt+ (2kBTτ
−1)1/2dWt

(1.6)

where T is the temperature, kB the Boltzmann constant, W is a standard Wiener process
in R3M and τ is a relaxation time parameter (which can be determined from molecular
dynamics simulation). The Langevin model (1.6) can be derived from the Schrödinger
equation under certain assumptions, which is the subject of Sections ?? to ??. If diffusion
is important in the problem under study, one would like to make long simulations on
times of order at least τ−1. A useful observation to efficiently simulate longer time is the
fact that for τ → 0+ the solution xs/τ of the Langevin equation (1.6) converges to the
solution x̄s solving the Smoluchowski equation, also called Brownian dynamics

dx̄s = −V ′(x̄s)ds+ (2kBT )1/2dW̄s, (1.7)

set in the slower diffusion time scale s = τt. Here, for simplicity, the mass is assumed
to be the same for all particles and normalized to m = 1 and W̄ is again a standard
Wiener process in R3M . The Smoluchowski model hence has the advantage to be able
to approximate particle systems over longer time and reducing to half the problem
dimension by eliminating the velocity variables. In Section ?? we analyze the weak
approximation error xs/τ ⇀ x̄s. The next step in the coarse-graining process is to derive
partial differential equations – for the mass, momentum and energy of a continuum fluid
– from Langevin or Smoluchowski molecular dynamics, which determines the otherwise
unspecified pressure, viscosity and heat conductivity; Section ?? shows an example of
such a coarse-graining process in the case of modelling a solid-liquid melt.
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1.3 Optimal Control of Investments

Suppose that we invest in a risky asset, whose value S(t) evolves according to the
stochastic differential equation dS(t) = µS(t)dt+σS(t)dW (t), and in a riskless asset Q(t)
that evolves with dQ(t) = rQ(t)dt, r < µ. Our total wealth is then X(t) = Q(t) + S(t)
and the goal is to determine an optimal instantaneous policy of investment in order to
maximize the expected value of our wealth at a given final time T. Let the proportion
of the total wealth invested on the risky asset at a given time t, α(t), be defined by
α(t)X(t) = S(t), so that (1 − α(t))X(t) = Q(t) with α(t) ∈ [0, 1]. Then our optimal
control problem can be stated as

max
α

E[g(X(T ))|X(t) = x] ≡ u(t, x),

where g is a given function. How can we determine an optimal α? The solution of this
problem can be obtained by means of a Hamilton Jacobi equation, which is in general a
nonlinear partial differential equation of the form

ut +H(u, ux, uxx) = 0,

where H(u, ux, uxx) := maxα
(
(µαx+ r(1− α)x)ux + σ2α2x2uxx/2

)
. Part of our work is

to study the theory of Hamilton Jacobi equations and numerical methods for control
problems to determine the Hamiltonian H and the control α. It turns out that typically
the Hamiltonian needs to slightly modified in order to compute an approximate solution:
Chapter 8 explains why and how. We call such modifications regularizations.

Chapter 8 also includes a study on rare events for stochastic differential equations,
e.g. the important problem of determining reaction rates and reaction path in molecular
dynamics, with small noise term. The analysis of these rare events in Chapter 8 are also
based on Hamilton Jacobi equations.

1.4 Calibration of the Volatility

Another important application of optimal control we will study is to solve inverse problems
for differential equations in order to determine the input data for the differential equation
from observed solution values, such as finding the volatility in the Black-Scholes equation
from observed option prices: the option values can be used to detemine the volatility
function implicitly. The objective in the optimal control formulation is then to find a
volatility function that yields option prices that deviate as little as possible from the
measured option prices. The dynamics is the Black-Scholes equation with the volatility
function to be determined, that is the dynamics is a determinstic partial differential
equation and the volatility is the control function, see Chapter 8.2.1.1. This is a typical
inverse problem: it is called inverse because in the standard view of the Black-Scholes
equation relating the option values and the volaility, the option price is the unknown
and the volatility is the data; while here the formulation is reversed with option prices
as data and volatility as unknown in the same Black-Scholes equation. Inverse problems
are often harder to solve than the forward problem and need to regularized as explained
in Chapter 8.
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1.5 The Coarse-graining and Discretization Analysis

Our analysis of models and discretization methods use only one basic idea, which we
present here for a determinstic problem of two differential equations

Ẋt = a(Xt)

and
˙̄Xt = ā(X̄t).

We may think of the two given fluxes a and ā as either two different differential equation
models or two discretization methods. The goal is to estimate a quantity of interest
g(XT ), e.g. the potential energy of a molecular dynamic system, the lift of an airfoil
or the contract of a contingent claim in financial mathematics. Consider therefore a
given function g : Rd → Rd with a solution X : [0, T ] → Rd, e.g. the coordinates of
atoms in a molecular system or a discretization of mass, momentum and energy of a
fluid. To understand the global error g(XT )− g(X̄T ) we introduce the value function
ū(x, t) := g(X̄T ; X̄t = x), which solves the partial differential equation

∂tū(x, t) + ā(x)∂xū(x, t) = 0 t < T

u(·, T ) = g
(1.8)

This definition and telescoping cancellation imply that the global error has the represen-
tation

g(XT )− g(X̄T ) = ū(XT , T )− ū( X̄0︸︷︷︸
=X0

, 0)

= ū(XT , T )− ū(X0, 0)

=

∫ T

0
dū(Xt, t)

=

∫ T

0
∂tū(Xt, t) + Ẋt∂xū(Xt, t) dt

=

∫ T

0
∂tū(Xt, t) + ā(Xt, t)∂xū(Xt, t) dt

=

∫ T

0

(
− ā(Xt, t) + a(Xt, t)

)
∂xū(Xt, t) dt.

(1.9)

Here we can identify the local error in terms of the residual −ā(Xt, t)+ ā(Xt, t) multiplied
by the weight ∂xū(Xt, t) and summed over all time steps. Note that the difference of
the two solutions in the global error is converted into a weighted average of the residual
−ā(Xt, t) + ā(Xt, t) along only one solution Xt; the representation is therefore the
residual of X-path inserted into the ū-equation. We may view the error representation as
a weak form of Lax Equivalence result, which states that the combination of consistence
and stability imply convergence: consistence means that the flux ā approximates a;
stability means that ∂xū is bounded in some sense; and convergence means that the
global error g(XT )− g(X̄T ) tends to zero. The equivalence, as it is usually known, is
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stated using bounds with appropriate norms and it has been the basis of the theoretical
understanding of numerical methods.

The weak formulation (1.9) is easy to use and it is our basis for understanding both
modelling and discretization errors. The weak form is particularly useful for estimating
the weak approximation error, since it can take cancellation into account by considering
the weaker concept of the value function instead of using absolute values and norms of
differences of solution paths; the standard strong error analysis is obtained by estimating
the norm of the difference of the two paths X and X̄. Another attractive property of
the weak representation (1.9) is that it can be applied both in a priori form to give
qualitative results, by combining it with analytical estimates of ∂xū, and in a posteriori
form to obtain also quantitative results, by combining it with computer based estimates
of ∂xū.

We first use the representation for understanding the weak approximation of stochastic
differential equations and its time discretization, by extending the chain rule to Ito’s
formula and integrate over all outcomes (i.e. take the expected value). The value function
solves a parabolic diffusion equation in this case, instead of the hyperbolic transport
equation (1.8).

In the case of coarse-graining and modelling error, the representation is used for
approximating

– Schrödinger dynamics by stochastic molecular Langevin dynamics,

– Kinetic Monte Carlo jump dynamics by SDE dynamics,

– Langevin dynamics by Smoluchowski dynamics, and

– Smoluchowski molecular dynamics by continuum phase-field dynamics.

We also use the representation for the important problem to analyse inverse problems,
such as callibrating the volatility for stocks by observed option prices or finding an
optimal portfolio of stocks and bonds. In an optimal control setting the extension is
then to include a control parameter α in the flux so that

Ẋt = a(Xt, αt)

where the objective now is to find the minimum minα g(X
T ; Xt = x) =: u(x, t). Then

the value function u solves a nonlinear Hamilton-Jacobi-Bellman equation and the
representation is extended by including a minimum over α.

1.6 Machine Learning

Here is first a short description of a machine learning problem to determine a neural
network function from given data. For example, we are given data {(xn, yn)}Nn=1,
where (xn, yn) ∈ Rd × R are independent samples drawn from an unknown probability
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density on Rd × R. The objective is to train/learn a neural network function, e.g.
α(x, θ) :=

∑K
k=1 θ

1
kσ(θ2

k · x+ θ3
k), that solves the minimization problem

min
θ∈R(d+2)K

E[f
(
α(x, θ), y

)
]

with the activation function σ(y) := 1/(1 + e−y), the loss function f(α, y) := |α − y|2
and the neural network parameters θ = (θ1

k, θ
2
k, θ

3
k)Kk=1 where θ1

k ∈ R, θ2
k ∈ Rd and θ3

k ∈ R.
The stochastic gradient descent method for the iterations θ[n] ∈ R(d+2)K , n = 0, 1, 2, . . .
satisfying

θ[0] = some random guess in R(d+2)K ,

θ[n+ 1] = θ[n]−∆t∇θf
(
α(xn, θ[n]), yn

)
, n = 0, 1, 2, . . .

(1.10)

is often used to approximately solve this minimization problem, based on a step
size/learning rate ∆t > 0. By writing the stochastic gradient descent method as

θ[0] = some random guess in R(d+2)K ,

θ[n+ 1] = θ[n]−∆t∇θE[f
(
α(xn, θ[n]), yn

)
]

+ ∆t
(
E[∇θf

(
α(xn, θ[n]), yn

)
]−∇θf

(
α(xn, θ[n]), yn

))
, n = 0, 1, 2, . . .

it can be understood as a Euler approximation of a certain stochastic differential equation
with drift ∇θE[f

(
α(xn, θ[n]), yn

)
] and a small noise term. We take advantage of this

correspondence between stochastic differential equations and the stochastic gradient
descent method in the study on machine learning in Chapter 10. The convergence
towards the minimum involves approximation related to time steps, as in (1.2), Monte
Carlo sampling, and time asymptotic convergence towards the equilibrium density and
the rare events using Hamilton Jacobi equations. The theory of numerical approximation
of stochastic differential equations presented here is therefore particularly suited for basic
mathematical understanding for machine learning algorithms, as we shall see in Chapter
10.
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Chapter 2

Stochastic Integrals

This chapter introduces stochastic integrals, which will be the basis for stochastic
differential equations in the next chapter. Here we construct approximations of stochastic
integrals and prove an error estimate. The error estimate is then used to establish
existence and uniqueness of stochastic integrals, which has the interesting ingredient of
intrinsic dependence on the numerical approximation due to infinite variation. Let us
first recall the basic definitions of probability we will use.

2.1 Probability Background

A probability space is a triple (Ω,F , P ), where Ω is the set of outcomes, F is the set of
events and P : F → [0, 1] is a function that assigns probabilities to events satisfying the
following definitions.

Definition 2.1. If Ω is a given non empty set, then a σ-algebra F on Ω is a collection
F of subsets of Ω that satisfy:

(1) Ω ∈ F ;

(2) F ∈ F ⇒ F c ∈ F , where F c = Ω− F is the complement set of F in Ω; and

(3) F1, F2, . . . ∈ F ⇒
⋃+∞
i=1 Fi ∈ F .

Definition 2.2. A probability measure on (Ω,F) is a set function P : F → [0, 1] such
that:

(1) P (∅) = 0, P (Ω) = 1; and

(2) If A1, A2, . . . ∈ F are mutually disjoint sets then

P

(
+∞⋃
i=1

Ai

)
=

+∞∑
i=1

P (Ai).
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Definition 2.3. A random variable X, in the probability space (Ω,F , P ), is a function
X : Ω→ Rd such that the inverse image

X−1(A) ≡ {ω ∈ Ω : X(ω) ∈ A} ∈ F ,

for all open subsets A of Rd.

Definition 2.4 (Independence of random variables). Two sets A,B ∈ F are said to be
independent if

P (A ∩B) = P (A)P (B).

Two independent random variables X,Y in Rd are independent if

X−1(A) and Y −1(B) are independent for all open sets A,B ⊆ Rd.

Definition 2.5. A stochastic process X : [0, T ] × Ω → Rd in the probability space
(Ω,F , P ) is a function such that X(t, ·) is a random variable in (Ω,F , P ) for all t ∈ (0, T ).
We will often write X(t) ≡ X(t, ·).

The t variable will usually be associated with the notion of time.

Definition 2.6. Let X : Ω → R be a random variable and suppose that the density
function

p′(x) =
P (X ∈ dx)

dx

is integrable. The expected value of X is then defined by the integral

E[X] =

∫ ∞
−∞

xp′(x)dx, (2.1)

which also can be written

E[X] =

∫ ∞
−∞

xdp(x). (2.2)

The last integral makes sense also in general when the density function is a measure, e.g.
by successive approximation with random variables possessing integrable densities. A
point mass, i.e. a Dirac delta measure, is an example of a measure.

Exercise 2.7. Show that if X,Y are independent random variables then

E[XY ] = E[X]E[Y ].

2.2 Brownian Motion

As a first example of a stochastic process, let us introduce

Definition 2.8 (The Wiener process). The one-dimensional Wiener process W : [0,∞)×
Ω→ R, also known as the Brownian motion, has the following properties:
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(1) with probability 1, the mapping t 7→W (t) is continuous and W (0) = 0;

(2) if 0 = t0 < t1 < . . . < tN = T, then the increments

W (tN )−W (tN−1), . . . ,W (t1)−W (t0)

are independent ; and

(3) for all t > s the increment W (t)−W (s) has the normal distribution, with E[W (t)−
W (s)] = 0 and E[(W (t)−W (s))2] = t− s, i.e.

P (W (t)−W (s) ∈ Γ) =

∫
Γ

e
−y2

2(t−s)√
2π(t− s)

dy, Γ ⊂ R.

Does there exists a Wiener process and how to construct W if it does? In computations
we will only need to determine W at finitely many time steps {tn : n = 0, . . . , N} of the
form 0 = t0 < t1 < . . . < tN = T . The definition then shows how to generate W (tn)
by a sum of independent normal distributed random variables, see Example 2.20 for
computational methods to generate independent normal distributed random variables.
These independent increments will be used with the notation ∆Wn = W (tn+1)−W (tn).
Observe, by Properties 1 and 3, that for fixed time t the Brownian motion W (t) is itself
a normal distributed random variable. To generate W for all t ∈ R is computationally
infeasible, since it seems to require infinite computational work. Example 2.20 shows
the existence of W by proving uniform convergence of successive continuous piecewise
linear approximations. The approximations are based on an expansion in the orthogonal
L2(0, T ) Haar-wavelet basis.

2.3 Approximation and Definition of Stochastic Integrals

Remark 2.9 (Questions on the definition of a stochastic integral). Let us consider the

problem of finding a reasonable definition for the stochastic integral
∫ T

0 W (t)dW (t),
where W (t) is the Wiener process. As a first step, let us discretize the integral by means
of the forward Euler discretization

N−1∑
n=0

W (tn) (W (tn+1)−W (tn)))︸ ︷︷ ︸
=∆Wn

.

Taking expected values we obtain by Property 2 of Definition 2.8

E[

N−1∑
n=0

W (tn)∆Wn] =

N−1∑
n=0

E[W (tn)∆Wn] =

N−1∑
n=0

E[W (tn)]E[∆Wn]︸ ︷︷ ︸
=0

= 0.

Now let us use instead the backward Euler discretization

N−1∑
n=0

W (tn+1)∆Wn.

14



Taking expected values yields a different result:

N−1∑
n=0

E[W (tn+1)∆Wn] =

N−1∑
n=0

E[W (tn)∆Wn] + E[(∆Wn)2] =

N−1∑
n=0

∆t = T 6= 0.

Moreover, if we use the trapezoidal method the result is

N−1∑
n=0

E

[
W (tn+1) +W (tn)

2
∆Wn

]
=

N−1∑
n=0

E[W (tn)∆Wn] + E[(∆Wn)2/2]

=
N−1∑
n=0

∆t

2
= T/2 6= 0.

Remark 2.9 shows that we need more information to define the stochastic integral∫ t
0 W (s)dW (s) than to define a deterministic integral. We must decide if the solution

we seek is the limit of the forward Euler method. In fact, limits of the forward Euler
define the so called Itô integral, while the trapezoidal method yields the so called
Stratonovich integral. It is useful to define the class of stochastic processes which can be
Itô integrated. We shall restrict us to a class that allows computable quantities and gives
convergence rates of numerical approximations. For simplicity, we begin with Lipschitz
continuous functions in R which satisfy (2.3) below. The next theorem shows that once
the discretization method is fixed to be the forward Euler method, the discretizations
converge in L2. Therefore the limit of forward Euler discretizations is well defined, i.e.
the limit does not depend on the sequence of time partitions, and consequently the limit
can be used to define the Itô integral.

Theorem 2.10. Suppose there exist a positive constant C such that f : [0, T ]× R→ R
satisfies

|f(t+ ∆t,W + ∆W )− f(t,W )| ≤ C(∆t+ |∆W |). (2.3)

Consider two different partitions of the time interval [0, T ]

{t̄n}N̄n=0 , t̄0 = 0, t̄N̄ = T,{¯̄tm
} ¯̄N

m=0
, ¯̄t0 = 0, ¯̄t ¯̄N = T,

with the corresponding forward Euler approximations

Ī =
N̄−1∑
n=0

f(t̄n,W (t̄n))(W (t̄n+1)−W (t̄n)), (2.4)

¯̄I =

¯̄N−1∑
m=0

f(¯̄tm,W (¯̄tm))(W (¯̄tm+1)−W (¯̄tm)). (2.5)
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Let the maximum time step ∆tmax be

∆tmax = max

[
max

0≤n≤N̄−1
t̄n+1 − t̄n, max

0≤m≤ ¯̄N−1

¯̄tm+1 − ¯̄tm

]
.

Then
E[(Ī − ¯̄I)2] = O(∆tmax). (2.6)

Proof. It is useful to introduce the finer grid made of the union of the nodes on the two
grids

{tk} ≡ {t̄n} ∪
{¯̄tm

}
.

Then in that grid we can write

Ī − ¯̄I =
∑
k

∆fk∆Wk,

where ∆fk = f(t̄n,W (t̄n))− f(¯̄tm,W (¯̄tm)), ∆Wk = W (tk+1)−W (tk) and the indices
m,n satisfy tk ∈ [¯̄tm, ¯̄tm+1) and tk ∈ [t̄n, t̄n+1), as depicted in Figure 2.1.

{tk}

{¯̄tm}

{t̄n}
0

t0

¯̄t0

t̄0

T

tN

¯̄t ¯̄N

t̄N̄

t1 t2

¯̄t1

t̄1

t3 t4

¯̄t2

t̄2

t5

¯̄t3

t̄3

. . .

. . .

. . .

tN−2 tN−1

¯̄t ¯̄N−1

t̄N̄−1

Figure 2.1: Mesh points used in the proof.

Therefore,

E[(Ī − ¯̄I)2] = E[
∑
k,l

∆fk∆fl∆Wl∆Wk]

= 2
∑
k>l

E[∆fk∆fl∆Wl∆Wk]︸ ︷︷ ︸
=E[∆fk∆fl∆Wl]E[∆Wk]=0

+
∑
k

E[(∆fk)
2(∆Wk)

2]

=
∑
k

E[(∆fk)
2]E[(∆Wk)

2] =
∑
k

E[(∆fk)
2]∆tk. (2.7)

Taking squares in (2.3) we arrive at |∆fk|2 ≤ 2C2((∆′tk)2 + (∆′Wk)2) where ∆′tk =
t̄n − ¯̄tm ≤ ∆tmax and ∆′Wk = W (t̄n) − W (¯̄tm), using also the standard inequality
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(a+ b)2 ≤ 2(a2 + b2). Substituting this in (2.7) proves the theorem

E[(Ī − ¯̄I)2] ≤
∑
k

2C2

(∆′tk)
2 + E[(∆′Wk)

2]︸ ︷︷ ︸
=∆′tk

∆tk

≤ 2C2 T (∆t2max + ∆tmax). (2.8)

Thus, the sequence of approximations I∆t is a Cauchy sequence in the Hilbert space

of random variables generated by the norm ‖I∆t‖L2 ≡
√
E[I2

∆t] and the scalar product

(X,Y ) ≡ E[XY ]. The limit I of this Cauchy sequence defines the Itô integral

∑
i

fi∆Wi
L2

→ I ≡
∫ T

0
f(s,W (s))dW (s).

Remark 2.11 (Accuracy of strong convergence). If f(t,W (t)) = f̄(t) is independent of

W (t) we have first order convergence

√
E[(Ī − ¯̄I)2] = O(∆tmax), whereas if f(t,W (t))

depends on W (t) we only obtain one half order convergence

√
E[(Ī − ¯̄I)2] = O(

√
∆tmax).

The constant C in (2.3) and (2.9) measures the computational work to approximate the
integral with the Euler method: to obtain an approximation error ε, using uniform steps,
requires by (2.8) the computational work corresponding to N = T/∆t ≥ 4T 2C2/ε2 steps.

Exercise 2.12. Use the forward Euler discretization to show that∫ T

0
s dW (s) = TW (T )−

∫ T

0
W (s)ds

Example 2.13 (Discrete Wiener process). A discrete Wiener process can be simulated
by the following Octave/Matlab code:

% Simulation of Wiener process/Brownian path

N = 1E6; % number of timesteps

randn(’state’,0); % initialize random number generator

T = 1; % final time

dt = T/(N-1); % time step

t = 0:dt:T;

dW = sqrt(dt)*randn(1,N-1); % Wiener increments

W = [0 cumsum(dW)]; % Brownian path

Brownian paths resulting from different seeds is shown in Figure 2.2, and in e.g. Exercise
2.12, the integrals can then be evaluated by
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Figure 2.2: Brownian paths

LHS = sum(t(1:N-1).*dW);

RHS = T*W(N) - sum(W(1:N-1))*dt;

Definition 2.14. A process f : [0, T ] × Ω → R is adapted if f(t, ·) only depends on
events which are generated by W (s), s ≤ t.

Remark 2.15 (Extension to adapted Itô integration). Itô integrals can be extended to
adapted processes. Assume f : [0, T ]× Ω→ R is adapted and that there is a constant C
such that √

E[|f(t+ ∆t, ω)− f(t, ω)|2] ≤ C
√

∆t. (2.9)

Then the proof of Theorem 2.10 shows that (2.4-2.6) still hold.

Theorem 2.16 (Basic properties of Itô integrals).
Suppose that f, g : [0, T ] × Ω → R are Itô integrable, e.g. adapted and satifying (2.9),
and that c1, c2 are constants in R. Then:

(i)
∫ T

0 (c1f(s, ·) + c2g(s, ·))dW (s) = c1

∫ T
0 f(s, ·)dW (s) + c2

∫ T
0 g(s, ·)dW (s),

(ii) E
[∫ T

0 f(s, ·)dW (s)
]

= 0,

(iii) E
[
(
∫ T

0 f(s, ·)dW (s))(
∫ T

0 g(s, ·)dW (s))
]

=
∫ T

0 E [f(s, ·)g(s, ·)] ds.
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Proof. To verify Property (ii), we first use that f is adapted and the independence of
the increments ∆Wn to show that for an Euler discretization

E[
N−1∑
n=0

f(tn, ·)∆Wn] =
N−1∑
n=0

E[f(tn, ·)]E[∆Wn] = 0.

It remains to verify that the limit of Euler discretizations preserves this property:
Cauchy’s inequality and the convergence result (2.6) imply that

|E[

∫ T

0
f(t, ·)dW (t)]| = |E[

∫ T

0
f(t, ·)dW (t)−

N−1∑
n=0

f(tn, ·)∆Wn] +

+ E[
N−1∑
n=0

f(tn, ·)∆Wn]|

≤

√√√√E[

(∫ T

0
f(t, ·)dW (t)−

N−1∑
n=0

f(tn, ·)∆Wn

)2

]→ 0.

Property (i) and (iii) can be verified analogously.

Example 2.17 (The Monte-Carlo method). To verify Property (ii) in Theorem 2.16
numerically for some function f we can do a Monte-Carlo simulation where∫ T

0
f(s, ·)dW (s),

is calculated for several paths, or realizations, and then averaged:
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% Monte-Carlo simulation

N = 1E3; % number of timesteps

randn(’state’,0); % initialize random number generator

T = 1; % final time

dt = T/N; % time step

t = 0:dt:T;

M = 1E6; % number of realisations

MC = zeros(1,M); % vector to hold mean values

for i=1:M

dW = sqrt(dt)*randn(1,N); % Wiener increments

W = [0 cumsum(dW)]; % Brownian paths

f = t.^3.*sqrt(abs(W)); % some function

int = sum(f(1:N).*dW); % integral value

if i==1

MC(i) = int;

else

MC(i) = (MC(i-1)*(i-1)+int)/i; % new mean value

end

end

In the above code the mean value of the integral is calculated for 1, . . . ,M realizations,
and in Figure 2.3 we see that as the number of realizations grows, the mean value
approaches zero as 1/

√
M . Also, from the proof of Theorem 2.16 it can be seen that the

number of time steps does not affect this convergence, so the provided code is inefficient,
but merely serves as an illustration for the general case.

Exercise 2.18. Use the forward Euler discretization to show that

(a)
∫ T

0 W (s)dW (s) = 1
2W (T )2 − T/2.

(b) Property (i) and (iii) in Theorem 2.16 hold.

Exercise 2.19. Consider the Ornstein-Uhlenbeck process defined by

X(t) = X∞ + e−at(X(0)−X∞) + b

∫ t

0
e−a(t−s)dW (s), (2.10)

where X∞, a and b are given real numbers. Use the properties of the Itô integral to
compute E[X(t)], V ar[X(t)], limt→∞E[X(t)] and limt→∞ V ar[X(t)]. Can you give an
intuitive interpretation of the result?
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Figure 2.3: Absolute value of the mean for different number of realizations.

Example 2.20 (Existence of a Wiener process). To construct a Wiener process on the
time interval [0, T ], define the Haar-functions Hi by H0(t) ≡ 1 and for 2n ≤ i < 2n+1

and n = 0, 1, 2 . . ., by

Hi(t) =


T−1/22n/2 if (i− 2n)2−n ≤ t/T < (i+ 0.5− 2n)2−n,

−T−1/22n/2 if (i+ 0.5− 2n)2−n ≤ t/T < (i+ 1− 2n)2−n,

0 otherwise.

(2.11)

Then {Hi} is an orthonormal basis of L2(0, T ), (why?). Define the continuous piecewise
linear function W (m) : [0, T ]→ R by

W (m)(t) =

m∑
i=1

ξiSi(t), (2.12)

where ξi, i = 1, . . . ,m are independent random variables with the normal distribution
N(0, 1) and

Si(t) =

∫ t

0
Hi(s)ds =

∫ T

0
1(0,t)(s)Hi(s)ds,

1(0,t)(s) =

{
1 if s ∈ (0, t),
0 otherwise.

The functions Si are small ”hat”-functions with a maximum value T−1/22−(n+2)/2 and
zero outside an interval of length T2−n. Let us postpone the proof that W (m) converge
uniformly and first assume this. Then the limit W (t) =

∑∞
i=1 ξiSi(t) is continuous. To
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verify that the limit W is a Wiener process, we first observe that W (t) is a sum of normal
distributed variables so that W (t) is also normal distributed. It remains to verify that
the increments ∆Wn and ∆Wm are independent, for n 6= m, and E[(∆Wn)2] = ∆tn.
Parseval’s equality shows the independence and the correct variance

E[∆Wn∆Wm] = E[
∑
i,j

ξiξj(Si(tn+1)− Si(tn))(Sj(tm+1)− Sj(tm))]

=
∑
i,j

E[ξiξj ](Si(tn+1)− Si(tn))(Sj(tm+1)− Sj(tm))

=
∑
i

(Si(tn+1)− Si(tn))(Si(tm+1)− Si(tm))

Parseval
=

∫ T

0
1(tn,tn+1)(s)1(tm,tm+1)(s)ds =

{
0 if m 6= n,
tn+1 − tn if n = m.

To prove uniform convergence, the goal is to establish

P

(
sup
t∈[0,T ]

∞∑
i=1

|ξi|Si(t) <∞

)
= 1.

Fix a n and a t ∈ [0, T ] then there is only one i, satisfying 2n ≤ i < 2n+1, such that
Si(t) 6= 0. Denote this i by i(t, n). Let χn ≡ sup2n≤i<2n+1 |ξi|, then

sup
t∈[0,T ]

∞∑
i=1

|ξi|Si(t) = sup
t∈[0,T ]

∞∑
n=0

|ξi(t,n)|Si(t,n)(t)

≤ sup
t∈[0,T ]

∞∑
n=0

|ξi(t,n)|T−1/22−(n+2)/2

≤
∞∑
n=0

χnT
−1/22−(n+2)/2.

If
∞∑
n=0

χn2−(n+2)/2 =∞ (2.13)

on a set with positive probability, then χn > n for infinitely many n, with positive
probability, and consequently

∞ = E[

∞∑
n=0

1{χn>n}] =

∞∑
n=0

P (χn > n), (2.14)

but
P (χn > n) ≤ P (∪2n+1

i=2n{|ξi| > n}) ≤ 2nP (|ξ0| > n) ≤ C 2ne−n
2/4,

so that
∑∞

n=0 P (χn > n) <∞, which contradicts (2.14) and (2.13). Therefore

P ( sup
t∈[0,T ]

∞∑
i=1

|ξi|Si(t) <∞) = 1,
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which proves the uniform convergence.

Exercise 2.21 (Extension to multidimensional Itô integrals). The multidimensional
Wiener process W in Rl is defined by W (t) ≡ (W 1(t), . . . ,W l(t)), where W i, i = 1, . . . , l
are independent one-dimensional Wiener processes. Show that

I∆t ≡
N−1∑
n=0

l∑
i=1

fi(tn, ·)∆W i
n

form a Cauchy sequence with E[(I∆t1−I∆t2)2] = O(∆tmax), as in Theorem 2.10, provided
f : [0, T ]× Ω→ Rl is adapted and (2.9) holds.

Exercise 2.22. Generalize Theorem 2.16 to multidimensional Itô integrals.

Remark 2.23. A larger class of Itô integrable functions are the functions in the Hilbert
space

V =

{
f : [0, T ]× Ω→ Rl : f is adapted and

∫ T

0
E[|f(t)|2]dt <∞

}
with the inner product

∫ T
0 E[f(t) · g(t)]dt. This follows from the fact that every function

in V can be approximated by adapted functions fh that satisfy (2.9), for some constant

C depending on h, so that
∫ T

0 E[|f(t, ·)− fh(t, ·)|2]dt ≤ h as h→ 0. However, in contrast
to Itô integration of the functions that satisfy (2.9), an approximation of the Itô integrals
of f ∈ V does not in general give a convergence rate, but only convergence.

Exercise 2.24. Read Example 2.20 and show that the Haar-functions can be used
to approximate stochastic integrals

∫ T
0 f(t)dW (t) '

∑m
i=0 ξifi, for given deterministic

functions f with fi =
∫ T

0 f(s)Hi(s)ds. In what sense does dW (s) =
∑∞

i=0 ξiHids hold?

Exercise 2.25. Give an interpretation of the approximation (2.12) in terms of Brownian
bridges, cf. [24].
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Chapter 3

Stochastic Differential Equations

This chapter extends the work on stochastic integrals, in the last chapter, and constructs
approximations of stochastic differential equations with an error estimate. Existence and
uniqueness is then provided by the error estimate.

We will denote by C,C ′ positive constants, not necessarily the same at each occurrence.

3.1 Approximation and Definition of SDE

We will prove convergence of Forward Euler approximations of stochastic differential
equations, following the convergence proof for Itô integrals. The proof is divided into four
steps, including Grönwall’s lemma below. The first step extends the Euler approximation
X̄(t) to all t ∈ [0, T ]:

Step 1. Consider a grid in the interval [0, T ] defined by the set of nodes {t̄n}N̄n=0 ,
t̄0 = 0, t̄N̄ = T and define the discrete stochastic process X̄ by the forward Euler method

X̄(t̄n+1)− X̄(t̄n) = a(t̄n, X̄(t̄n))(t̄n+1 − t̄n) + b(t̄n, X̄(t̄n))(W (t̄n+1)−W (t̄n)), (3.1)

for n = 0, . . . , N̄ − 1. Now extend X̄ continuously, for theoretical purposes only, to all
values of t by

X̄(t) = X̄(t̄n) +

∫ t

t̄n

a(t̄n, X̄(t̄n))ds+

∫ t

t̄n

b(t̄n, X̄(t̄n))dW (s), t̄n ≤ t < t̄n+1. (3.2)

In other words, the process X̄ : [0, T ]×Ω→ R satisfies the stochastic differential equation

dX̄(t) = ā(t, X̄)dt+ b̄(t, X̄)dW (t), t̄n ≤ t < t̄n+1, (3.3)

where ā(t, X̄) ≡ a(t̄n, X̄(t̄n)), b̄(t, X̄) ≡ b(t̄n, X̄(t̄n)), for t̄n ≤ t < t̄n+1, and the nodal
values of the process X̄ is defined by the Euler method (3.1).

Theorem 3.1. Let X̄ and ¯̄X be forward Euler approximations of the stochastic process
X : [0, T ]× Ω→ R, satisfying the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 ≤ t < T, (3.4)
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with time steps

{t̄n}N̄n=0 , t̄0 = 0, t̄N̄ = T,{¯̄tm
} ¯̄N

m=0
¯̄t0 = 0, ¯̄t ¯̄N = T,

respectively, and

∆tmax = max

[
max

0≤n≤N̄−1
t̄n+1 − t̄n, max

0≤m≤ ¯̄N−1

¯̄tm+1 − ¯̄tm

]
.

Suppose that there exists a positive constant C such that the initial data and the given
functions a, b : [0, T ]× R→ R satisfy

E[|X̄(0)|2 + | ¯̄X(0)|2] ≤ C, (3.5)

E[
(
X̄(0)− ¯̄X(0)

)2
] ≤ C∆tmax, (3.6)

and

|a(t, x)− a(t, y)| < C|x− y|,
|b(t, x)− b(t, y)| < C|x− y|, (3.7)

|a(t, x)− a(s, x)|+ |b(t, x)− b(s, x)| ≤ C(1 + |x|)
√
|t− s|. (3.8)

Then there is a constant K such that

max
{
E[X̄2(t, ·)], E[ ¯̄X

2
(t, ·)]

}
≤ K(T + 1), t < T, (3.9)

and

E

[(
X̄(t, ·)− ¯̄X(t, ·)

)2
]
≤ K∆tmax, t < T. (3.10)

The basic idea for the extension of the convergence for Itô integrals to stochastic
differntial equations is

Lemma 3.2 (Grönwall). Assume that there exist positive constants A and K such that
the function f : R→ R satisfies

f(t) ≤ K
∫ t

0
f(s)ds+A. (3.11)

Then
f(t) ≤ AeKt.

Proof. Let I(t) ≡
∫ t

0 f(s)ds. Then by (3.11)

dI

dt
≤ KI +A,
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and multiplying by e−Kt we arrive at

d

dt
(Ie−Kt) ≤ Ae−Kt.

After integrating, and using I(0) = 0, we obtain I ≤ A (eKt−1)
K . Substituting the last

result in (3.11) concludes the proof.

Proof of the Theorem. To prove (3.10), assume first that (3.9) holds. The proof is
divided into the following steps:

(1) Representation of X̄ as a process in continuous time: Step 1.

(2) Use the assumptions (3.7) and (3.8).

(3) Use the property (3) from Theorem 2.16.

(4) Apply Grönwall’s lemma.

Step 2. Consider another forward Euler discretization ¯̄X, defined on a grid with

nodes
{¯̄tm

} ¯̄N

m=0
, and subtract the two solutions to arrive at

X̄(s)− ¯̄X(s)
(3.3)
= X̄(0)− ¯̄X(0) +

∫ s

0
(ā− ¯̄a)(t)︸ ︷︷ ︸
≡∆a(t)

dt+

∫ s

0
(b̄− ¯̄b)(t)︸ ︷︷ ︸
≡∆b(t)

dW (t). (3.12)

The definition of the discretized solutions implies that

∆a(t) = (ā− ¯̄a)(t) = a(t̄n, X̄(t̄n))− a(¯̄tm,
¯̄X(¯̄tm)) =

= a(t̄n, X̄(t̄n))− a(t, X̄(t))︸ ︷︷ ︸
=(I)

+ a(t, X̄(t))− a(t, ¯̄X(t))︸ ︷︷ ︸
=(II)

+ a(t, ¯̄X(t))− a(¯̄tm,
¯̄X(¯̄tm))︸ ︷︷ ︸

=(III)

where t ∈ [¯̄tm, ¯̄tm+1)∩ [t̄n, t̄n+1), as shown in Figure 3.1. The assumptions (3.7) and (3.8)
show that

|(I)| ≤ |a(t̄n, X̄(t̄n))− a(t, X̄(t̄n))|+ |a(t, X̄(t̄n))− a(t, X̄(t))|
≤ C|X̄(t̄n)− X̄(t)|+ C(1 + |X̄(t̄n)|)|t− t̄n|1/2. (3.13)

Note that (3.7) and (3.8) imply

|a(t, x)|+ |b(t, x)| ≤ C(1 + |x|). (3.14)

26



{tk}

{¯̄tm}

{t̄n}
0

t0

¯̄t0

t̄0

T

tN

¯̄t ¯̄N

t̄N̄

t1 t2

¯̄t1

t̄1

t3 t4

¯̄t2

t̄2

t5

¯̄t3

t̄3

. . .

. . .

. . .

tN−2 tN−1

¯̄t ¯̄N−1

t̄N̄−1

Figure 3.1: Mesh points used in the proof.

Therefore

|X̄(t̄n)− X̄(t)| (3.3)
= |a(t̄n, X̄(t̄n))(t− t̄n) + b(t̄n, X̄(t̄n))(W (t)−W (t̄n))|

(3.14)

≤ C(1 + |X̄(t̄n)|)((t− t̄n) + |W (t)−W (t̄n)|). (3.15)

The combination of (3.13) and (3.15) shows

|(I)| ≤ C(1 + |X̄(t̄n)|)
(
|W (t)−W (t̄n)|+ |t− t̄n|1/2

)
and in a similar way,

|(III)| ≤ C(1 + | ¯̄X(t)|)
(
|W (t)−W (¯̄tm)|+ |t− ¯̄tm|1/2

)
,

and by the assumptions (3.7)

|(II)|
(3.7)

≤ C|X̄(t)− ¯̄X(t)|.

Therefore, the last three inequalities imply

|∆a(t)|2 ≤ (|(I)|+ |(II)|+ |(III)|)2 ≤ C2

(
|X̄(t)− ¯̄X(t)|2

+(1 + |X̄(t̄n)|2)(|t− t̄n|+ |W (t)−W (t̄n)|2)

+ (1 + | ¯̄X(¯̄tm)|2)(|t− ¯̄tm|+ |W (t)−W (¯̄tm)|2)
)
. (3.16)

Recall that max(t− t̄n, t− ¯̄tm) ≤ ∆tmax, and

E[(W (t)−W (s))2] = t− s, s < t,

so that the expected value of (3.16) and the assumption (3.9) yield
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E[|∆a(t)|2] ≤ C
(
E[|X̄(t)− ¯̄X(t)|2] + (1 + E[|X̄(t̄n)|2] + E[| ¯̄X(¯̄tm)|2])∆tmax

)
(3.9)

≤ C
(
E[|X̄(t)− ¯̄X(t)|2] + ∆tmax

)
. (3.17)

Similarly, we have

E[|∆b(t)|2] ≤ C
(
E[|X̄(t)− ¯̄X(t)|2] + ∆tmax

)
. (3.18)

Step 3. Define a refined grid {th}Nh=0 by the union

{th} ≡ {t̄n} ∪
{¯̄tm

}
.

Observe that both the functions ∆a(t) and ∆b(t) are adapted and piecewise constant on
the refined grid. The error representation (3.12) and (3) of Theorem 2.16 imply

E[|X̄(s)− ¯̄X(s)|2] ≤ E

[(
X̄(0)− ¯̄X(0) +

∫ s

0
∆a(t)dt+

∫ s

0
∆b(t)dW (t)

)2
]

≤ 3E[|X̄(0)− ¯̄X(0)|2]

+ 3E

[(∫ s

0
∆a(t)dt

)2]
+ 3E

[(∫ s

0
∆b(t)dW (t)

)2]
(3.6)

≤ 3(C∆tmax + s

∫ s

0
E[(∆a(t))2]dt+

∫ s

0
E[(∆b(t))2]dt).

(3.19)

Inequalities (3.17-3.19) combine to

E[|X̄(s)− ¯̄X(s)|2]
(3.17−3.19)

≤ C(

∫ s

0
E[|X̄(t)− ¯̄X(t)|2]dt+ ∆tmax). (3.20)

Step 4. Finally, Grönwall’s Lemma 3.2 applied to (3.20) implies

E[|X̄(t)− ¯̄X(t)|2] ≤ ∆tmaxCe
Ct,

which finishes the proof.

Exercise 3.3. Prove (3.9). Hint: Follow Steps 1-4 and use (3.5) .

Corollary 3.4. The previous theorem yields a convergence result also in the L2 norm
‖X‖2 =

∫ T
0 E[X(t)2]dt. The order of this convergence is 1/2, i.e. ‖X̄− ¯̄X‖ = O(

√
∆tmax).

Remark 3.5 (Strong and weak convergence). Depending on the application, our interest
will be focused either on strong convergence

‖X(T )− X̄(T )‖L2[Ω] =
√
E[(X(T )− X̄(T ))2] = O(

√
∆t),
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or on weak convergence E[g(X(T ))] − E[g(X̄(T ))], for given functions g. The next
chapters will show first order convergence of expected values for the Euler method,

E[g(X(T ))− g(X̄(T ))] = O(∆t),

and introduce Monte Carlo methods to approximate expected values E[g(X̄(T ))]. We
will distinguish between strong and weak convergence by Xn → X, denoting the strong
convergence E[|Xn −X|2] → 0 for random variables and

∫ T
0 E[|Xn(t)−X(t)|2]dt → 0

for stochastic processes, and by Xn ⇀ X, denoting the weak convergence E[g(Xn)]→
E[g(X)] for all bounded continuous functions g.

Exercise 3.6. Show that strong convergence, Xn → X, implies weak convergence
Xn ⇀ X. Show also by an example that weak convergence, Xn ⇀ X, does not imply
strong convergence, Xn → X. Hint: Let {Xn} be a sequence of independent identically
distributed random variables.

Corollary 3.4 shows that successive refinements of the forward Euler approximation
forms a Cauchy sequence in the Hilbert space V, defined by Definition 2.23. The limit
X ∈ V , of this Cauchy sequence, satisfies the stochastic equation

X(s) = X(0) +

∫ s

0
a(t,X(t))dt+

∫ s

0
b(t,X(t))dW (t), 0 < s ≤ T, (3.21)

and it is unique, (why?). Hence, we have constructed existence and uniqueness of
solutions of (3.21) by forward Euler approximations. Let X be the solution of (3.21).
From now on we use indistinctly also the notation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 < t ≤ T
X(0) = X0. (3.22)

These notes focus on the Euler method to approximate stochastic differential equations
(3.22). The following result motivates that there is no method with higher order
convergence rate than the Euler method to control the strong error

∫ 1
0 E[(X(t)−X̄(t))2]dt,

since even for the simplest equation dX = dW any linear approximation Ŵ of W , based
on N function evaluations, satisfies

Theorem 3.7. Let Ŵ (t) = f(t,W (t1), . . . ,W (tN )) be any approximation of W (t),
which for fixed t is based on any linear function f(t, ·) : RN → R, and a partition
0 = t0 < . . . < tN = 1 of [0, 1], then the strong approximation error is bounded from
below by (∫ 1

0
E[(W (t)− Ŵ (t))2]dt

)1/2

≥ 1√
6N

, (3.23)

which is the same error as for the Euler method based on constant time steps and linear
interpolation between the time steps.
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Figure 3.2: Optimal choice for weight functions αi.

Proof. The linearity of f(t, ·) implies that

Ŵ (t) ≡
N∑
i=1

αi(t)∆Wi

where αi : [0, 1]→ R, i = 1, . . . , N are any functions. The idea is to choose the functions
αi : [0, 1]→ R, i = 1, . . . , N in an optimal way, and see that the minimum error satisfies
(3.23). We have∫ 1

0
E[(W (t)− Ŵ (t))2]dt

=

∫ 1

0

(
E[W 2(t)]− 2

N∑
i=1

αi(t)E[W (t)∆Wi] +
N∑

i,j=1

αi(t)αj(t)E[∆Wi∆Wj ]
)
dt

=

∫ 1

0
tdt− 2

∫ 1

0

N∑
i=1

E[W (t)∆Wi]αidt+

∫ 1

0

N∑
i=1

α2
i (t)∆tidt

and in addition

E[W (t)∆Wi] =


∆ti, ti+1 < t

(t− ti), ti < t < ti+1

0, t < ti.

(3.24)

Perturbing the functions αi, to αi+εδi, ε << 1, around the minimal value of
∫ 1

0 E[
(
W (t)− Ŵ (t)

)2
]dt

gives the following conditions for the optimum choice of αi, cf. Figure 3.2:

−2E[W (t)∆Wi] + 2α∗i (t)∆ti = 0, i = 1, . . . , N.

and hence
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min

∫ 1

0
E[W (t)− Ŵ (t)]2dt =

∫ 1

0
tdt−

∫ 1

0

N∑
i=1

E[W (t)∆Wi]
2

∆ti
dt

=︸︷︷︸
(3.24)

N∑
n=1

(tn + ∆tn/2)∆tn −
N∑
n=1

(
tn∆tn +

∫ tn+1

tn

(t− tn)2

∆tn
dt

)

=
N∑
n=1

(∆tn)2/6 ≥ 1

6N
.

where Exercise 3.8 is used in the last inequality and proves the lower bound of the
approximation error in the theorem. Finally, we note that by (3.24) the optimal

α∗i (t) = E[W (t)∆Wi]
∆ti

is infact linear interpolation of the Euler method.

Exercise 3.8. To verify the last inequality in the previous proof, compute

min
∆t

N∑
n=1

(∆tn)2

subject to

N∑
n=1

(∆tn) = 1.

3.2 Itô’s Formula

Recall that using a forward Euler discretization we found the relation∫ T

0
W (s)dW (s) = W 2(T )/2− T/2, or

W (s)dW (s) = d(W 2(s)/2)− ds/2, (3.25)

whereas in the deterministic case we have y(s)dy(s) = d(y2(s)/2). The following useful
theorem with Itô ’s formula generalizes (3.25) to general functions of solutions to the
stochastic differential equations.

Theorem 3.9. Suppose that the assumptions in Theorem 3.1 hold and that X satisfies
the stochastic differential equation

dX(s) = a(s,X(s))ds+ b(s,X(s))dW (s), s > 0

X(0) = X0,

and let g : (0,+∞) × R → R be a given bounded function in C2((0,∞) × R). Then
y(t) ≡ g(t,X(t)) satisfies the stochastic differential equation

dy(t) =

(
∂tg(t,X(t)) + a(t,X(t))∂xg(t,X(t)) +

b2(t,X(t))

2
∂xxg(t,X(t))

)
dt

+ b(t,X(t))∂xg(t,X(t))dW (t), (3.26)
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Proof. We want to prove the Itô formula in the integral sense

g(τ,X(τ))− g(0, X(0))

=

∫ τ

0

(
∂tg(t,X(t)) + a(s,X(s))∂xg(t,X(t)) +

b2(t,X(t))

2
∂xxg(t,X(t))

)
dt

+

∫ τ

0
b(t,X(t))∂xg(t,X(t))dW (t).

Let X̄ be a forward Euler approximation (3.1) and (3.2) of X, so that

∆X̄ ≡ X̄(tn + ∆tn)− X̄(tn) = a(tn, X̄(tn))∆tn + b(tn, X̄(tn))∆Wn. (3.27)

Taylor expansion of g up to second order gives

g(tn + ∆tn, X̄(tn + ∆tn))− g(tn, X̄(tn))

= ∂tg(tn, X̄(tn))∆tn + ∂xg(tn, X̄(tn))∆X̄(tn)

+
1

2
∂ttg(tn, X̄(tn))∆t2n + ∂txg(tn, X̄(tn))∆tn∆X̄(tn)

+
1

2
∂xxg(tn, X̄(tn))(∆X̄(tn))2 + o(∆t2n + |∆X̄n|2). (3.28)

The combination of (3.27) and (3.28) shows

g(tm, X̄(tm))− g(0, X̄(0)) =
m−1∑
n=0

(
g(tn + ∆tn, X̄(tn + ∆tn))− g(tn, X̄(tn))

)
=

m−1∑
n=0

∂tg∆tn +
m−1∑
n=0

(ā∂xg∆tn + b̄∂xg∆Wn) +
1

2

m−1∑
n=0

(b̄)2∂xxg(∆Wn)2

+
m−1∑
n=0

(
(b̄∂txg + āb̄∂xxg)∆tn∆Wn + (

1

2
∂ttg + ā∂txg +

1

2
ā2∂xxg)∆t2n

)
+
m−1∑
n=0

o(∆t2n + |∆X̄(tn)|2). (3.29)

Let us first show that

m−1∑
n=0

b̄2∂xxg(X̄)(∆Wn)2 →
∫ t

0
b2∂xxg(X)ds,

as ∆tmax → 0. It is sufficient to establish

Y ≡ 1

2

m−1∑
n=0

(b̄)2∂xxg((∆Wn)2 −∆tn)→ 0, (3.30)

since (3.10) implies
∑m−1

n=0 (b̄)2∂xxg∆tn →
∫ t

0 b
2∂xxgds. Use the notation

αi = ((b̄)2∂xxg)(ti, X̄(ti)) and independence to obtain
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E[Y 2] =
∑
i,j

E[αiαj((∆Wi)
2 −∆ti)((∆Wj)

2 −∆tj)]

= 2
∑
i>j

E[αiαj((∆Wj)
2 −∆tj)((∆Wi)

2 −∆ti)] +
∑
i

E[α2
i ((∆Wi)

2 −∆ti)
2]

= 2
∑
i>j

E[αiαj((∆Wj)
2 −∆tj)]E[((∆Wi)

2 −∆ti)]︸ ︷︷ ︸
=0

+
∑
i

E[α2
i ]E[((∆Wi)

2 −∆ti)
2]︸ ︷︷ ︸

=2∆t2i

→ 0,

when ∆tmax → 0, therefore (3.30) holds. Similar analysis with the other terms in (3.29)
concludes the proof.

Remark 3.10. The preceding result can be remembered intuitively by a Taylor expansion
of g up to second order

dg = ∂tg dt+ ∂xg dX +
1

2
∂xxg (dX)2

and the relations: dtdt = dtdW = dWdt = 0 and dWdW = dt.

Example 3.11. Let X(t) = W (t) and g(x) = x2

2 . Then

d

(
W 2(s)

2

)
= W (s)dW (s) + 1/2(dW (s))2 = W (s)dW (s) + ds/2.

Exercise 3.12. Let X(t) = W (t) and g(x) = x4. Verify that

d(W 4(s)) = 6W 2(s)ds+ 4W 3(s)dW (s)

and
d

ds
(E[g(W (s))]) =

d

ds
(E[(W (s))4]) = 6s.

Apply the last result to compute E[W 4(t)] and E[(W 2(t)− t)2].

Exercise 3.13. Generalize the previous exercise to deteremine E[W 2n(t)].

Example 3.14. We want to compute
∫ T

0 tdW (t). Take g(t, x) = tx, and again X(t) =
W (t), so that

tW (t) =

∫ t

0
sdW (s) +

∫ t

0
W (s)ds

and finally
∫ t

0 sdW (s) = tW (t)−
∫ t

0 W (s)ds.
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Exercise 3.15. Consider the stochastic differential equation

dX(t) = −a(X(t)−X∞)dt+ bdW (t),

with initial data X(0) = X0 ∈ R and given a, b ∈ R.

(i) Using that

X(t)−X(0) = −a
∫ t

0
(X(s)−X∞)dt+ bW (t),

take the expected value and find an ordinary differential equation for the function
m(t) ≡ E[X(t)].

(ii) Use Itô ’s formula to find the differential of (X(t))2 and apply similar ideas as in
(i) to compute V ar[X(t)].

(iii) Use an integrating factor to derive the exact solution (2.10) in Example 2.19.
Compare your results from (i) and (ii) with this exact solution.

Example 3.16. Consider the stochastic differential equation

dS(t) = rS(t)dt+ σS(t)dW (t),

used to model the evolution of stock values. The values of r (interest rate) and σ
(volatility) are assumed to be constant. Our objective is to find a closed expression for
the solution, often called geometric Brownian motion. Let g(x) = ln(x). Then a direct
application of Itô formula shows

d ln(S(t)) = dS(t)/S(t)− 1/2

(
σ2S2(t)

S2(t)

)
dt = rdt− σ2

2
dt+ σdW (t),

so that

ln

(
S(T )

S(0)

)
= rT − Tσ2

2
+ σW (T )

and consequently

S(T ) = e(r−σ
2

2
)T+σW (T )S(0). (3.31)

Example 3.17 (Verification of strong and weak convergence). From the explicit formula
(3.31) we can numerically verify the results on strong and weak convergence, given in
Remark 3.5 for the Euler method. In the following code we calculate the strong and
weak error by comparing the Euler simulation and the explicit value (3.31) at final time
for several realizations. This is then tested for different time steps and the result in
Figure 3.3 confirms a strong convergence of order 1/2 and a weak convergence of order 1.

34



% Stong and weak convergence for the Euler method

steps = [1:6];

for i=steps

N = 2^i % number of timesteps

randn(’state’,0);

T = 1; dt = T/N; t = 0:dt:T;

r = 0.1; sigma = 0.5; S0 = 100;

M = 1E6; % number of realisations

S = S0*ones(M,1); % S(0) for all realizations

W = zeros(M,1); % W(0) for all realizations

for j=1:N

dW = sqrt(dt)*randn(M,1); % Wiener increments

S = S + S.*(r*dt+sigma*dW); % processes at next time step

W = W + dW; % Brownian paths at next step

end

ST = S0*exp( (r-sigma^2/2)*T + sigma*W ); % exact final value

wError(i) = mean(S-ST)); % weak error

sError(i) = sqrt(mean((S-ST).^2)); % strong error

end

dt = T./2^steps;

loglog(dt,abs(wError),’o--’,dt,dt,’--’,dt,abs(sError),’o-’,dt,sqrt(dt))

Exercise 3.18. Suppose that we want to simulate S(t), defined in the previous example
by means of the forward Euler method, i.e.

Sn+1 = (1 + r∆tn + σ∆Wn)Sn, n = 0, . . . , N

As with the exact solution S(t), we would like to have Sn positive. Then we could choose
the time step ∆tn to reduce the probability of hitting zero

P (Sn+1 < 0|Sn = s) < ε� 1. (3.32)

Motivate a choice for ε and find then the largest ∆tn satisfying (3.32).

Remark 3.19. The Wiener process has unbounded variation i.e.

E

[∫ T

0
|dW (s)|

]
= +∞.

This is the reason why the forward and backward Euler methods give different results.
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Figure 3.3: Strong and weak convergence.

We have for a uniform mesh ∆t = T/N

E[
N−1∑
i=0

|∆Wi|] =
N−1∑
i=0

E[|∆Wi|] =
N−1∑
i=0

√
2∆ti
π

=

√
2T

π

N−1∑
i=0

√
1/N =

√
2NT

π
→∞, as N →∞.

3.3 Stratonovich Integrals

Recall from Chapter 2 that Itô integrals are constructed via forward Euler discretizations
and Stratonovich integrals via the trapezoidal method, see Exercise 3.20. Our goal here
is to express a Stratonovich integral∫ T

0
g(t,X(t)) ◦ dW (t)

in terms of an Itô integral. Assume then that X(t) satisfies the Itô differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t).
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Then the relation reads∫ T

0
g(t,X(t)) ◦ dW (t) =

∫ T

0
g(t,X(t))dW (t)

+
1

2

∫ T

0
∂xg(t,X(t))b(t,X(t))dt. (3.33)

Therefore, Stratonovich integrals satisfy

dg(t,X(t)) = ∂tg(t,X(t))dt+ ∂xg(t,X(t)) ◦ dX(t), (3.34)

just like in the usual calculus.

Exercise 3.20. Use that Stratonovich integrals g(t,X(t)) ◦ dW (t) are defined by limits
of the trapezoidal method to verify (3.33), cf. Remark 2.9.

Exercise 3.21. Verify the relation (3.34), and use this to show that dS(t) = rS(t)dt+
σS(t) ◦ dW (t) implies S(t) = ert+σW (t)S(0).

Remark 3.22 (Stratonovich as limit of piecewise linear interpolations). Let RN (t) ≡
W (tn)+ W (tn+1)−W (tn)

tn+1−tn (t−tn), t ∈ (tn, tn+1) be a piecewise linear interpolation of W on a

given grid, and define XN by dXN (t) = a(XN (t))dt+ b(XN (t))dRN (t). Then XN → X
in L2, where X is the solution of the Stratonovich stochastic differential equation

dX(t) = a(X(t))dt+ b(X(t)) ◦ dW (t).

In the special case when a(x) = rx and b(x) = σx this follows from

d(ln(XN (t))) = rdt+ σdRN ,

so that
XN (t) = ert+σR

N (t)X(0).

The limit N →∞ implies XN (t)→ X(t) = ert+σW (t)X(0), as in Exercise 3.21.

3.4 Systems of SDE

Let W1,W2, . . . ,Wl be scalar independent Wiener processes. Consider the l-dimensional
Wiener process W = (W1,W2, . . . ,Wl) and X : [0, T ]× Ω→ Rd satisfying for given drift
a : [0, T ]× Rd → Rd and diffusion b : [0, T ]× Rd → Rd×l the Itô stochastic differential
equation

dXi(t) = ai(t,X(t))dt+ bij(t,X(t))dWj(t), for i = 1 . . . d. (3.35)

Here and below we use of the summation convention

αjβj ≡
∑
j

αjβj ,

i.e., if the same summation index appears twice in a term, the term denotes the sum over
the range of this index. Theorem 3.9 can be directly generalized to the system (3.35).
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Theorem 3.23 (Itô ’s formula for systems). Let

dXi(t) = ai(t,X(t))dt+ bij(t,X(t))dWj(t), for i = 1 . . . d,

and consider a smooth and bounded function g : R+ × Rd → R. Then

dg(t,X(t)) =

{
∂tg(t,X(t)) + ∂xig(t,X(t))ai(t,X(t))

+
1

2
bik(t,X(t))∂xixjg(t,X(t))bjk(t,X(t))

}
dt

+∂xig(t,X(t))bij(t,X(t))dWj(t),

or in matrix vector notation

dg(t,X(t)) =

{
∂tg(t,X(t)) +∇xg(t,X(t)) a(t,X(t))

+
1

2
trace

(
b(t,X(t))bT(t,X(t))∇2

xg(t,X(t))
)}

dt

+∇xg(t,X(t)) b(t,X(t))dW (t).

Remark 3.24. The formal rules to remember Theorem 3.23 are Taylor expansion to
second order and

dWjdt = dtdt = 0

dWidWj = δijdt =

{
dt if i = j,
0 otherwise.

(3.36)

Exercise 3.25. Verify Remark 3.24.
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Chapter 4

The Feynman-Kǎc Formula and
the Black-Scholes Equation

4.1 The Feynman-Kǎc Formula

Theorem 4.1. Suppose that a, b and g are differentiable to any order and these derivatives
are bounded. Let X be the solution of the stochastic differential equation,

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t),

and let u(x, t) = E[g(X(T ))|X(t) = x]. Then u is the solution of the Kolmogorov
backward equation

L∗u ≡ ut + aux +
1

2
b2uxx = 0, t < T (4.1)

u(x, T ) = g(x).

Proof. Define û to be the solution of (4.1), i.e. L∗û = 0, û(·, T ) = g(·). We want to
verify that û is the expected value E[g(X(T ))| X(t) = x]. The Itô formula applied to
û(X(t), t) shows

dû(X(t), t) =

(
ût + aûx +

1

2
b2ûxx

)
dt + bûxdW

= L∗ûdt + bûxdW.

Integrate this from t to T and use L∗û = 0 to obtain

û(X(T ), T ) − û(X(t), t) = g(X(T )) − û(X(t), t)

=

∫ T

t
bûxdW (s).

Take the expectation and use that the expected value of the Itô integral is zero,

E[g(X(T ))|X(t) = x]− û(x, t) = E[

∫ T

t
b(s,X(s))ûx(X(s), s)dW (s)|X(t) = x]

= 0.
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Therefore
û(x, t) = E[g(X(T ))|X(t) = x],

which proves the theorem since the solution of Equation (4.1) is unique.

Exercise 4.2 (Maximum Principle). Let the function u satisfy

ut + aux +
1

2
b2uxx = 0, t < T

u(x, T ) = g(x).

Prove that u satisfies the maximum principle

max
0<t<T, x∈R

u(t, x) ≤ max
x∈R

g(x).

4.2 Black-Scholes Equation

Example 4.3. Let f(t, S(t)) be the price of a European put option where S(t) is the
price of a stock satisfying the stochastic differential equation dS = µSdt+ σSdW , where
the volatility σ and the drift µ are constants. Assume also the existence of a risk free
paper, B, which follows dB = rBdt, where r, the risk free rent is a constant. Find the
partial differential equation of the price, f(t, S(t)), of an option.

Solution. Consider the portfolio I = −f + α S + βB for α(t), β(t) ∈ R. Then the Itô
formula and self financing, i.e. dI = −df + αdS + βdB, imply

dI = −df + αdS + βdB

= −(ft + µSfS +
1

2
σ2S2fSS)dt − fSσSdW + α(µSdt+ σSdW ) + βrBdt

=

(
−(ft + µSfS +

1

2
σ2S2fSS) + (αµS + βrB)

)
dt + (−fS + α)σSdW.

Now choose α such that the portfolio I becomes riskless, i.e. α = fS , so that

dI =

(
−(ft + µSfS +

1

2
σ2S2fSS) + (fSµS + βrB)

)
dt

=

(
−(ft +

1

2
σ2S2fSS) + βrB

)
dt. (4.2)

Assume also that the existence of an arbitrage opportunity is precluded, i.e. dI = rIdt,
where r is the interest rate for riskless investments, to obtain

dI = r(−f + αS + βB)dt

= r(−f + fSS + βB)dt. (4.3)
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Equation (4.2) and (4.3) show that

ft + rsfs +
1

2
σ2s2fss = rf, t < T, (4.4)

and finally at the maturity time T the contract value is given by definition, e.g. a
standard European put option satisfies for a given exercise price K

f(T, s) = max(K − s, 0).

The deterministic partial differential equation (4.4) is called the Black-Scholes equation.
The existence of adapted β is shown in the exercise below.

Exercise 4.4 (Replicating portfolio). It is said that the self financing portfolio, αS+βB,
replicates the option f . Show that there exists an adapted stochastic process β(t),
satisfying self financing, d(αS + βB) = αdS + βdB, with α = fS .

Exercise 4.5. Verify that the corresponding equation (4.4) holds if µ, σ and r are given
functions of time and stock price.
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Exercise 4.6 (Simulation of a replicating portfolio). Assume that the previously de-
scribed Black-Scholes model holds and consider the case of a bank that has written (sold)
a call option on the stock S with the parameters

S(0) = S0 = 760, r = 0.06, σ = 0.65, K = S0.

with an exercise date, T = 1/4 years. The goal of this exercise is to simulate the
replication procedure described in Exercise 4.4, using the exact solution of the Black
Scholes call price, computed by the Octave/Matlab code

% Black-Scholes call option computation

function y = bsch(S,T,K,r,sigma);

normal = inline(’(1+erf(x/sqrt(2)))/2’,’x’);

d1 = (log(S/K)+(r+.5*sigma^2)*T)/sigma/sqrt(T);

d2 = (log(S/K)+(r-.5*sigma^2)*T)/sigma/sqrt(T);

y = S*normal(d1)-K*exp(-r*T)*normal(d2);

To this end, choose a number of hedging dates, N , and time steps ∆t ≡ T/N . Assume
that β(0) = −fS(0, S0) and then

• Write a code that computes the ∆ ≡ ∂f(0, S0)/∂S0 of a call option.

• Generate a realization for S(n∆t, ω), n = 0, . . . , N .

• Generate the corresponding time discrete realizations for the processes αn and βn
and the portfolio value, αnSn + βnBn.

• Generate the value after settling the contract at time T ,

αNSN + βNBN −max(SN −K, 0).

Compute with only one realization, and several values of N , say N = 10, 20, 40, 80. What
do you observe? How would you proceed if you don’t have the exact solution of the
Black-Scholes equation?

Theorem 4.7 (Feynman-Kǎc). Suppose that a, b, g, h and V are bounded smooth func-
tions. Let X be the solution of the stochastic differential equation dX(t) = a(t,X(t))dt+
b(t,X(t))dW (t) and let

u(x, t) = E[g(X(T ))e
∫ T
t V (s,X(s))ds|X(t) = x]

+ E[−
∫ T

t
h(s,X(s))e

∫ s
t V (τ,X(τ))dτds|X(t) = x].
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Then u is the solution of the partial differential equation

L∗V u ≡ ut + aux +
1

2
b2uxx + V u = h, t < T (4.5)

u(x, T ) = g(x).

Proof. Define û to be the solution of the equation (4.5), i.e. L∗V û = h and let

G(s) ≡ e
∫ s
t V (τ,X(τ))dτ . We want to verify that û is the claimed expected value.

We have by Itô ’s formula, with L∗û = ût + aûx + 1
2b

2ûxx,

d(û(s,X(s))e
∫ s
t V (τ,X(τ))dτ ) = d(û(s,X(s))G)

= Gdû + ûdG

= G(L∗ûdt + bûxdW ) + ûV Gdt,

Integrate both sides from t to T , take the expected value and use L∗û = L∗V û− V û =
h− V û to obtain

E[g(X(t))G(T ) | X(t) = x]− û(x, t)

= E[

∫ T

t
GL∗û ds] + E[

∫ T

t
bGûx dW ] + E[

∫ T

t
ûV G ds]

= E[

∫ T

t
hG ds] − E[

∫ T

t
ûV G ds] + E[

∫ T

t
ûV G ds]

= E[

∫ T

t
hG ds|X(t) = x].

Therefore

û(x, t) = E[g(X(T ))G(T )|X(t) = x] − E[

∫ T

t
hG ds|X(t) = x].

Remark 4.8. Compare Black-Scholes equation (4.4) with Equation (4.5): then u
corresponds to f , X to S̃, a(t, x) = rx, b(t, x) = σx, V = −r and h = 0. Using the
Feynman-Kac formula, we obtain
f(t, S̃(t)) = E[e−r(T−t) max(K − S̃(T ), 0)], with dS̃ = rS̃dt+ σS̃dW , which establishes
the important relation between approximation based on the Monte Carlo method and
partial differential equations discussed in Chapter 1.

Corollary 4.9. Let u(x, t) = E[g(X(T ))|X(t) = x] =
∫
R g(y)P (y, T ;x, t) dy. Then

the density, P as a function of the first two variables, solves the Kolmogorov forward
equation, also called the Fokker-Planck equation,

−∂sP (y, s;x, t)− ∂y
(
a(y, s)P (y, s;x, t)

)
+

1

2
∂2
y

(
b2(y, s)P (y, s;x, t)

)
︸ ︷︷ ︸

=:LP

= 0, s > t

P (y, t;x, t) = δ(x− y),

where δ is the Dirac-delta measure concentrated at zero.
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Proof. Assume LP̂ = 0, P̂ (y, t;x, t) = δ(x − y). The Feynman-Kǎc formula implies
L∗u = 0, so that integration by part shows

0 =

∫ T

t

∫
R
L∗y,su(y, s)P̂ (y, s;x, t) dyds

=

[∫
R
u(y, s)P̂ (y, s;x, t) dy

]s=T
s=t

+

∫ T

t

∫
R
u(y, s)Ly,sP̂ (y, s;x, t) dyds

=

[∫
R
u(y, s)P̂ (y, s;x, t) dy

]s=T
s=t

.

Consequently,

u(x, t) =

∫
R
g(y)P̂ (y, T ;x, t) dy

= E[g(X(T ))|X(t) = x],

for all functions g. Therefore P̂ is the density function P . Hence P solves LP = 0.

Exercise 4.10 (Limit probability distribution). Consider the Ornstein-Uhlenbeck process
defined by

dX(s) = (m−X(s))ds+
√

2dW (s),

X(0) = x0.

Verify by means of the Fokker-Plank equation that there exist a limit distribution for
X(s), when s→∞.

Exercise 4.11. Assume that S(t) is the price of a single stock. Derive a Monte-Carlo
and a PDE method to determine the price of a contingent claim with the contract∫ T

0 h(t, S(t)) dt, for a given function h, replacing the usual contract max(S(T )−K, 0)
for European call options.

Exercise 4.12. Derive the Black-Scholes equation for a general system of stocks S(t) ∈
Rd solving

dSi = ai(t, S(t))dt+
d∑
j=1

bij(t, S(t))dWj(t)

and a rainbow option with the contract f(T, S(T )) = g(S(T )) for a given function
g : Rd → R, for example

g(S) = max

(
1

d

d∑
i=1

Si −K, 0

)
.
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Chapter 5

The Monte-Carlo Method

This chapter gives the basic understanding of simulation of expected values E[g(X(T ))] for
a solution, X, of a given stochastic differential equation with a given function g. In general
the approximation error has the two parts of statistical error and time discretization
error, which are analyzed in the next sections. The estimation of statistical error is
based on the Central Limit Theorem. The error estimate for the time discretization error
of the Euler method is directly related to the proof of Feyman-Kǎc’s theorem with an
additional residual term measuring the accuracy of the approximation, which turns out
to be first order in contrast to the half order accuracy for strong approximation.

5.1 Statistical Error

Consider the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t)

on t0 ≤ t ≤ T, how can one compute the value E[g(X(T ))]? The Monte-Carlo method is
based on the approximation

E[g(X(T ))] '
N∑
j=1

g(X(T ;ωj))

N
,

where X is an approximation of X, e.g. the Euler method. The error in the Monte-Carlo
method is

E[g(X(T ))]−
N∑
j=1

g(X(T ;ωj))

N

= E[g(X(T ))− g(X(T ))]−
N∑
j=1

g(X(T ;ωj))− E[g(X(T ))]

N
. (5.1)

In the right hand side of the error representation (5.1), the first part is the time
discretization error, which we will consider in the next subsection, and the second part
is the statistical error, which we study here.
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Example 5.1. Compute the integral I =
∫

[0,1]d f(x)dx by the Monte Carlo method,

where we assume f(x) : [0, 1]d → R.

Solution. We have

I =

∫
[0,1]d

f(x) dx

=

∫
[0,1]d

f(x)p(x) dx ( where p is the uniform density function)

= E[f(x)] ( where x is uniformly distributed in [0, 1]d)

'
N∑
n=1

f(x(ωn))

N

≡ IN ,

where {x(ωn)} is sampled uniformly in the cube [0, 1]d, by sampling the components
xi(ωn) independent and uniformly on the interval [0, 1].

The Central Limit Theorem is the fundamental result to understand the statistical
error of Monte Carlo methods.

Theorem 5.2 (The Central Limit Theorem). Assume ξn, n = 1, 2, 3, . . . are independent,
identically distributed (i.i.d) and E[ξn] = 0, E[ξ2

n] = 1. Then

N∑
n=1

ξn√
N
⇀ ν, (5.2)

where ν is N(0, 1) and ⇀ denotes convergence of the distributions, also called weak
convergence, i.e. the convergence (5.2) means E[g(

∑N
n=1 ξn/

√
N)] → E[g(ν)] for all

bounded and continuous functions g.

Proof. Let f(t) = E[eitξn ]. Then

f (m)(t) = E[imξmn e
itξn ], (5.3)

and

E[eit
∑N
n=1 ξn/

√
N ] = f

(
t√
N

)N
=

(
f(0) +

t√
N
f ′(0) +

1

2

t2

N
f ′′(0) + o

(
t2

N

))N
.

The representation (5.3) implies

f(0) = E[1] = 1,

f ′(0) = iE[ξn] = 0,

f ′′(0) = −E[ξ2
n] = −1.
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Therefore

E[eit
∑N
n=1 ξn/

√
N ] =

(
1− t2

2N
+ o

(
t2

N

))N
→ e−t

2/2, as N →∞

=

∫
R

eitxe−x
2/2

√
2π

dx, (5.4)

and we conclude that the Fourier transform (i.e. the characteristic function) of
∑N

n=1 ξn/
√
N

converges to the right limit of Fourier transform of the standard normal distribution. It
is a fact, cf. [D], that convergence of the Fourier transform together with continuity of
the limit Fourier transform at 0 implies weak convergence, so that

∑N
n=1 ξn/

√
N ⇀ ν,

where ν is N(0, 1). The exercise below verifies this last conclusion, without reference to
other results.

Exercise 5.3. Show that (5.4) implies

E[g(
N∑
n=1

ξn/
√
N)]→ E[g(ν)] (5.5)

for all bounded continuous functions g. Hint: study first smooth and quickly decaying
functions gs, satisying gs(x) =

∫∞
−∞ e

−itxĝs(t)dt/(2π) with the Fourier transform ĝs of gs
satisfying ĝs ∈ L1(R); show that (5.4) implies

E[gs(
N∑
n=1

ξn/
√
N)]→ E[gs(ν)];

then use Chebychevs inequality to verify that no mass of
∑N

n=1 ξn/
√
N escapes to infinity;

finally, let χ(x) be a smooth cut-off function which is one for |x| ≤ N and zero for |x| > 2N
and split the general bounded continuous function g into g = gs + g(1− χ) + (gχ− gs),
where gs is an arbitrary close approximation to gχ; use the conclusions above to prove
(5.5).

Example 5.4. What is the error of IN − I in Example 5.1?

Solution. Let the error εN be defined by

εN =
N∑
n=1

f(xn)

N
−
∫

[0,1]d
f(x)dx

=
N∑
n=1

f(xn)− E[f(x)]

N
.
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By the Central Limit Theorem,
√
NεN ⇀ σν, where ν is N(0, 1) and

σ2 =

∫
[0,1]d

f2(x)dx−

(∫
[0,1]d

f(x)dx

)2

=

∫
[0,1]d

(
f(x)−

∫
[0,1]d

f(x)dx

)2

dx.

In practice, σ2 is approximated by

σ̂2 =
1

N − 1

N∑
n=1

(
f(xn)−

N∑
m=1

f(xm)

N

)2

.

One can generate approximate random numbers, so called pseudo random numbers,
by for example the method

ξi+1 ≡ aξi + b mod n

where a and n are relative prime and the initial ξ0 is called the seed, which determines
all other ξi. For example the combinations n = 231, a = 216 + 3 and b = 0, or
n = 231 − 1, a = 75 and b = 0 are used in practise. In Monte Carlo computations, we
use the pseudo random numbers {xi}Ni=1, where xi = ξi

n ∈ [0, 1], which for N � 231

behave approximately as independent uniformly distributed variables.

Theorem 5.5. The following Box-Müller method generates two independent normal ran-
dom variables x1 and x2 from two independent uniformly distributed variables y1 and y2

x1 =
√
−2 log(y2) cos(2πy1)

x2 =
√
−2 log(y2) sin(2πy1).

Sketch of the Idea. The variables x and y are independent standard normal variables
if and only if their joint density function is e−(x2+y2)/2/2π. We have

e−(x2+y2)/2dxdy = re−r
2/2drdθ = d(e−r

2/2)dθ

using x = rcosθ, y = rsinθ and 0 ≤ θ < 2π, 0 ≤ r <∞. The random variables θ and r
can be sampled by taking θ to be uniformly distributed in the interval [0, 2π) and e−r

2/2

to be uniformly distributed in (0, 1], i.e. θ = 2πy1, and r =
√
−2log(y2).

Example 5.6. Consider the stochastic differential equation dS = rSdt+ σSdW , in the
risk neutral formulation where r is the riskless rate of return and σ is the volatility. Then

ST = S0 e
rT−σ

2

2
T+σ

√
Tν

where ν is N(0, 1). The values of a call option, fc, and put option, fp, are by Remark 4.8

fc = e−rTE[max(S(T )−K, 0)]

and
fp = e−rTE[max(K − S(T ), 0)].
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Example 5.7. Consider the system of stochastic differential equations,

dSi = rSidt+

M∑
j=1

σijSidWj , i = 1, ...,M.

Then

Si(T ) = Si(0) e
rT−

∑M
j=1

(
σij
√
Tνj−

σ2
ij
2
T

)

where νj are independent and N(0, 1). A rainbow call option, based on Sav = 1
M

∑M
i=1 Si,

can then be simulated by the Monte Carlo method and

fc = e−rTE[max(Sav(T )−K, 0)].

5.2 Time Discretization Error

Consider the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 ≤ t ≤ T,

and let X be the forward Euler discretization of X. Then

X(tn+1)−X(tn) = a(tn, X(tn))∆tn + b(tn, X(tn))∆Wn, (5.6)

where ∆tn = tn+1 − tn and ∆Wn = W (tn+1)−W (tn) for a given discretization 0 = t0 <
t1 < ... < tN = T. Equation (5.6) can be extended, for theoretical use, to all t by

X(t)−X(tn) =

∫ t

tn

ā(s,X)ds+

∫ t

tn

b̄(s,X)dW (s), tn ≤ t < tn+1,

where, for tn ≤ s < tn+1,

ā(s,X) = a(tn, X(tn)), (5.7)

b̄(s,X) = b(tn, X(tn)).

Theorem 5.8. Assume that a, b and g are differentiable to any order and these derivatives
are bounded, then there holds

E[g(X(T ))− g(X(T ))] = O(max ∆t).

Proof. Let u satisfy the equation

L∗u ≡ ut + aux +
b2

2
uxx = 0, t < T (5.8)

u(x, T ) = g(x). (5.9)
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The assumptions can be used to verify that u and its derivatives exists. We do not verify
this here. The Feynman-Kǎc formula shows

u(x, t) = E[g(X(T ))|X(t) = x]

and in particular

u(0, X(0)) = E[g(X(T ))]. (5.10)

Then by the Itô formula,

du(t,X(t)) =

(
ut + āux +

b̄2

2
uxx

)
(t,X(t))dt+ b̄ux(t,X(t))dW

(5.8)
=

(
−aux −

b2

2
uxx + āux +

b̄2

2
uxx

)
(t,X(t))dt+ b̄ux(t,X(t))dW

=

{
(ā− a)ux(t,X(t)) +

(
b̄2

2
− b2

2

)
uxx(t,X(t))

}
dt

+ b̄(t,X)ux(t,X(t))dW.

Evaluate the integral from 0 to T,

u(T,X(T ))− u(0, X(0)) =

∫ T

0
(ā− a)ux(t,X(t))dt+

∫ T

0

b̄2 − b2

2
uxx(t,X(t))dt

+

∫ T

0
b̄(t,X(t))uxdW.

Take the expected value and use (5.10) to obtain

E[g(X(T )) − g(X(T ))]

=

∫ T

0
E[(ā− a)ux] +

1

2
E[(b̄2 − b2)uxx]dt+ E

[∫ T

0
b̄uxdW

]
=

∫ T

0
E[(ā− a)ux] +

1

2
E[(b̄2 − b2)uxx]dt.

The following Lemma 10.5 proves the Theorem.

Lemma 5.9. There holds for tn ≤ t < tn+1

f1(t) ≡ E[(ā(t,X)− a(t,X(t)))ux(t,X(t))] = O(∆tn),

f2(t) ≡ E[(b̄2(t,X)− b2(t,X(t)))uxx(t,X(t))] = O(∆tn).

Proof. Since ā(t,X) = a(tn, X(tn)),

f1(tn) = E[(ā(tn, X)− a(tn, X(tn)))ux(tn, X(tn))] = 0. (5.11)
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Provided |f ′1(t)| ≤ C, the initial condition (10.45) implies that f1(t) = O(∆tn), for
tn ≤ t < tn+1. Therefore, it remains to show that |f ′1(t)| ≤ C. Let α(t, x) = −(a(t, x)−
a(tn, X(tn)))ux(t, x), so that f(t) = E[α(t,X(t))]. Then by Itô ’s formula

df

dt
=

d

dt
E
[
α(t,X(t))

]
= E

[
dα(t,X(t))

]
/dt

= E

[(
αt + āαx +

b̄2

2
αxx

)
dt+ αxb̄dW

]
/dt

= E

[
αt + āαx +

b̄2

2
αxx

]
= O(1).

Therefore there exists a constant C such that |f ′(t)| ≤ C, for tn < t < tn+1, and
consequently

f1(t) ≡ E[
(
ā(t,X)− a(t,X(t))

)
ux(t,Xt)] = O(∆tn), for tn ≤ t < tn+1.

Similarly, we can also prove

f2(t) ≡ E[
(
b̄2(t,X)− b2(t,X(t))

)
uxx(t,Xt)] = O(∆tn), for tn ≤ t < tn+1.

Example 5.10. Consider the stochastic volatility model,

dS = ωSdt+ σSdZ (5.12)

dσ = ασdt+ vσdW

where Z and W are Brownian motions with correlation coefficient ρ, i.e. E[dZdW ] = ρdt.
We can then construct Z and W from the independent W1 and W2 by

W = W1, Z = ρW1 +
√

1− ρ2 W2.
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Exercise 5.11. In the risk neutral formulation a stock price solves the stochastic
differential equation

dS = rSdt+ σSdW (t),

with constant interest rate r and volatility σ.

(i) Show that

S(T ) = S(0)erT−
σ2

2
T+σW (T ). (5.13)

(ii) Use equation (5.13) to simulate the price

f(0, S(0)) = e−rTE[ max (S(T )−K, 0) ]

of an European call option by a Monte-Carlo method.

(iii) Compute also the corresponding ∆ = ∂f(0, S)/∂S by approximating with a differ-
ence quotient and determine a good choice of your approximation of ′′∂S′′.

(iv) Estimate the accuracy of your results. Suggest a better method to solve this
problem.

Exercise 5.12. Assume that a system of stocks solves

dSi
Si(t)

= rdt+

d∑
j=1

σijdWj(t) i = 1, ..., d

where Wj are independent Brownian motions.

(i) Show that

Si(T ) = S(0)erT+
∑d
j=1(σijWj(T )− 1

2
σ2
ijT ).

(ii) Let Sav ≡
∑d

i=1 Si/d and simulate the price of the option above with S(T ) replaced
by Sav(T ). Estimate the accuracy of your results. Can you find a better method
to solve this problem?

Exercise 5.13 (An example of variance reduction). Consider the computation of a call
option on an index Z,

πt = e−r(T−t)E[max(Z(T )−K, 0)], (5.14)

where Z is the average of d stocks,

Z(t) ≡ 1

d

d∑
i=1

Si(t)

and
dSi(t) = rSi(t)dt+ σiSi(t)dWi(t), i = 1, . . . , d

52



with volatilities
σi ≡ 0.2 ∗ (2 + sin(i)) i = 1, . . . , d.

The correlation between Wiener processes is given by

E[dWi(t)dWi′(t)] = exp(−2 |i− i′|/d))dt 1 ≤ i, i′ ≤ d.

The goal of this exercise is to experiment with two different variance reduction techniques,
namely the antithetic variates and the control variates.

From now on we take d = 10, r = 0.04 and T = 0.5 in the example above.

(i) Implement a Monte Carlo approximation with for the value in (5.14). Estimate
the statistical error. Choose a number of realizations such that the estimate for
the statistical error is less than 1% of the value we want to approximate.

(ii) Same as (i) but using antithetic variates. The so called antithetic variates technique
reduces the variance in a sample estimator A(M ;Y ) by using another estimator
A(M ;Y ′) with the same expectation as the first one, but which is negatively
correlated with the first. Then, the improved estimator is A(M ; 1

2(Y + Y ′)). Here,
the choice of Y and Y ′ relates to the Wiener process W and its reflection along
the time axis, −W , which is also a Wiener process , i.e.

πt ≈
1

M

M∑
j=1

{max(Z(W (T, ωj))−K, 0) + max(Z(−W (T, ωj))−K, 0)}
2

.

(iii) Same as (i) but using control variates to reduce the variance. The control variates
technique is based on the knowledge of an estimator Y ′′, positively correlated with
Y , whose expected value E[Y ′′] is known and relatively close to the desired E[Y ],
yielding Y − Y ′′ + E[Y ′′] as an improved estimator.

For the application of control variates to (5.14) use the geometric average

Ẑ(t) ≡ {
d∏
i=1

Si(t)}
1
d ,

compute
π̂t = e−r(T−t)E[max(Ẑ(T )−K, 0)]

exactly (hint: find a way to apply Black-Scholes formula). Then approximate

πt ≈ π̂t +
e−r(T−t)

M

M∑
j=1

{
max(Z(W (T, ωj))−K, 0)−max(Ẑ(W (T, ωj))−K, 0)

}
.

(iv) Discuss the results from (i)-(iii). Does it pay to use variance reduction?
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Chapter 6

Finite Difference Methods

This section introduces finite difference methods for approximation of partial differential
equations. We first apply the finite difference method to a partial differential equation
for a financial option problem, which is more efficiently computed by partial differential
methods than Monte Carlo techniques. Then we discuss the fundamental Lax Equivalence
Theorem, which gives the basic understanding of accuracy and stability for approximation
of differential equations.

6.1 American Options

Assume that the stock value, S(t), evolves in the risk neutral formulation by the Itô geo-
metric Brownian motion

dS = rSdt+ σSdW.

An American put option is a contract that gives the possibility to sell a stock for a fixed
price K up to time T . Therefore the derivation of option values in Chapter 4 shows that
European and American options have the formulations:

(i) The price of an European put option is

f(t, s) ≡ E[ e−r(T−t) max
(
K − S(T ), 0

)
| S(t) = s ].

(ii) The price of an American option is obtained by maximizing over all sell time τ
strategies, which depend on the stock price up to the sell time,

fA(t, s) ≡ max
t≤τ≤T

E[ e−r(τ−t) max
(
K − S(τ), 0

)
| S(t) = s ]. (6.1)

How to find the optimal selling strategy for an American option? Assume that selling is
only allowed at the discrete time levels 0,∆t, 2∆t, . . . , T . Consider the small time step
(T −∆t, T ). By assumption the option is not sold in the step. Therefore the European
value f(t, s) holds, where f(T, s) = max(K − s, 0) and for T −∆t < t < T

ft + rSfS +
1

2
σ2S2fSS = rf. (6.2)
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If, for a fixed stock price s = S(T − ∆t), there holds f(T − ∆t, s) < max(K − s, 0)
then keeping the option gives the expected value f(T −∆t, s) which is clearly less than
the value max(K − s, 0) obtained by selling at time T −∆t. Therefore it is optimal to
sell if f(T − ∆t, s) < max(K − s, 0) ≡ fF . Modify the initial data at t = T − ∆t to
max(f(T −∆t, s), fF ) and repeat the step (6.2) for (T − 2∆t, T −∆t) and so on. The
price of the American option is obtained as the limit of this solution as ∆t→ 0.

Example 6.1. A corresponding Monte Carlo method based on (6.1) requires simulation
of expected values E[e−rτ max(K − S(τ), 0)] for many different possible selling time
strategies τ until an approximation of the maximum values is found. Since the τ need to
depend on ω, with M time steps and N realizations there are MN different strategies.

Note that the optimal selling strategy

τ = τ∗ = inf
v
{v : t ≤ v ≤ T, fA

(
v, S(v)

)
= max

(
K − S(v), 0

)
}

for the American option, which is a function of fA, seems expensive to evaluate by Monte
Carlo technique, but is obtained directly in the partial differential formulation above and
below. This technique is a special case of the so called dynamic programming method,
which we shall study systematically for general optimization problems in a later Chapter,
cf. also the last example in Chapter 1.

Here and in Exercise 6.2 is a numerical method to determine the value of an American
option:

(1) Discretize the computational domain [0, T ]× [s0, s1] and let

fA(n∆t, i∆S) ' f̄n,i, f̄N,i = max
(
K − i∆S, 0

)
.

(2) Use the Euler and central difference methods for the equation (6.2)

∂tfA ' f̄n,i−f̂n−1,i

∆t ∂SfA ' f̄n,i+1−f̄n,i−1

2∆S

∂SSfA ' f̄n,i+1−2f̄n,i+f̄n,i−1

(∆S)2 fA ' f̄n,i.

(3) Make a Black-Scholes prediction for each time step

f̂n−1,i = f̄n,i(1− r∆t− σ2i2∆t) + f̄n,i+1(
1

2
ri∆t+

1

2
σ2i2∆t)

+ f̄n,i−1(−1

2
ri∆t+

1

2
σ2i2∆t).

(4) Compare the prediction with selling by letting

f̄n−1,i = max
(
f̂n−1,i,max(K − i∆S, 0)

)
,

and go to the next time Step 3 by decreasing n by 1.
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Exercise 6.2. The method above needs in addition boundary conditions at S = s0

and S = s1 for t < T . How can s0, s1 and these conditions be choosen to yield a good
approximation?

Exercise 6.3. Give a trinomial tree interpretation of the finite difference scheme

f̄n+1,i = f̄n,i(1 + r∆t+ σ2i2∆t) + f̄n,i+1(−1

2
ri∆t− 1

2
σ2i2∆t)

+ f̄n,i−1(
1

2
ri∆t− 1

2
σ2i2∆t),

for Black-Scholes equation of an European option. Binomial and trinomial tree approxi-
mations are frequent in the finance economy literature, cf. [J. Hull].

Let us now study general finite difference methods for partial differential equations.
The motivation to introduce general finite difference methods in contrast to study only
the binomial and trinomial tree methods is that higher order methods, such as the
Crank-Nicolson method below, are more efficient to solve e.g. (6.2).

The error for the binomial and the trinomial tree method applied to the partial
differential equation (6.2) for a European option is ε = O(∆t+ (∆s)2), which is clearly
the same for the related forward and backward Euler methods. The work is then
A = O((∆t∆s)−1), so that A = O(ε−3/2). For the Crank-Nicolsen method the accuracy
is ε = O((∆t)2 + (∆s)2) and the work is still A = O((∆t∆s)−1), which implies the
improved bound A = O(ε−1). For a general implicit method with a smooth exact solution
in [0, T ]× Rd the accuracy is ε = O((∆t)q + (∆s)p) with the miminal work ( using e.g.

the multigrid method ) A = O( q
2

∆t(
p2

∆s)
d), which gives A = O( q2

ε1/q
( p2

ε1/p
)d). In the next

section we derive these error estimates for some model problems.

6.2 Lax Equivalence Theorem

Lax equivalence theorem defines the basic concepts for approximation of linear well posed
differential equations. Here, well posed means that the equation is solvable for data in a
suitable function space and that the solution operator is bounded. We will first formally
state the result without being mathematically precise with function spaces and norms.
Then we present two examples with proofs based on norms and functions spaces.

The ingredients of Lax Equivalence Theorem 6.4 are:

(0) an exact solution u, satisfying the linear well posed equation Lu = f , and an
approximation uh, obtained from Lhuh = fh;

(1) stability, the approximate solution operators ‖L−1
h ‖ are uniformly bounded in h

and the exact solution operator ‖L−1‖ is bounded;

(2) consistency, fh → f and Lhu→ Lu as the mesh size h→ 0; and

(3) convergence, uh → u as the mesh size h→ 0.
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Theorem 6.4. The combination of stability and consistency is equivalent to convergence.

The idea of the proof. To verify convergence, consider the identity

u− uh = L−1
h [ Lhu− Lhuh ]

Step(0)
= L−1

h [ (Lhu− Lu) + (f − fh) ].

Stability implies that L−1
h is bounded and consistency implies that

Lhu− Lu→ 0 and f − fh → 0,

and consequently the convergence holds

lim
h→0

(u− uh) = lim
h→0

L−1
h [ (Lhu− Lu) + (f − fh) ]

= 0.

Clearly, consistency is necessary for convergence. Example 6.7, below, indicates that also
stability is necessary.

Let us now more precisely consider the requirements and norms to verify stability
and consistency for two concrete examples of ordinary and partial differential equations.

Example 6.5. Consider the forward Euler method for the ordinary differential equation

u′(t) = Au(t) 0 < t < 1,
u(0) = u0.

(6.3)

Verify the conditions of stability and consistency in Lax Equivalence Theorem.

Solution. For a given partition, 0 = t0 < t1 < ... < tN = 1, with ∆t = tn+1 − tn, let

un+1 ≡ (I + ∆tA)un

= Gnu0 where G = (I + ∆tA).

Then:

(1) Stability means |Gn|+ |Hn| ≤ eKn∆t for some K, where | · | denotes the matrix

norm |F | ≡ sup{v∈Rn:|v|≤1} |Fv| with the Euclidean norm |w| ≡
√∑

iw
2
i in Rn.

(2) Consistency means |(G−H)v| ≤ C(∆t)p+1, where H = e∆tA and p is the order of
accuracy. In other words, the consistency error (G−H)v is the local approximation
error after one time step with the same initial data v.

This stability and consistency imply the convergence

| un − u(n∆t) | = | (Gn −Hn)u0 |
= | (Gn−1 +Gn−2H + ...+GHn−2 +Hn−1)(G−H)u0 |
≤ | Gn−1 +Gn−2H + ...+GHn−2 +Hn−1||(G−H)u0 |
≤ C(∆t)p+1n| u0 |eKn∆t

≤ C ′(∆t)p,

with the convergence rate O(∆tp). For example, p = 1 in case of the Euler method and
p = 2 in case of the trapezoidal method.
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Example 6.6. Consider the heat equation

ut = uxx t > 0, (6.4)

u(0) = u0.

Verify the stability and consistency conditions in Lax Equivalence Theorem.

Solution. Apply the Fourier transform to equation (6.4),

ût = −ω2û

so that
û(t, ω) = e−tω

2
û0(ω).

Therefore Ĥ = e−∆tω2
is the exact solution operator for one time step, i.e. û(t+ ∆t) =

Ĥû(t). Consider the difference approximation of (6.4)

un+1,i − un,i
∆t

=
un,i+1 − 2un,i + un,i−1

∆x2
,

which shows

un+1,i = un,i

(
1− 2∆t

∆x2

)
+

∆t

∆x2
(un,i+1 + un,i−1) ,

where un,i ' u(n∆t, i∆x). Apply the Fourier transform to obtain

ûn+1 =

[(
1− 2∆t

∆x2

)
+

∆t

∆x2

(
ej∆xω + e−j∆xω

)]
ûn

=

[
1− 2

∆t

∆x2
+ 2

∆t

∆x2
cos(∆xω)

]
ûn

= Ĝûn ( Let Ĝ ≡ 1− 2
∆t

∆x2
+ 2

∆t

∆x2
cos(∆xω))

= Ĝn+1û0.

(i) We have

2π‖un‖2L2 = ‖ûn‖2L2 (by Parseval’s formula)

= ‖Ĝnû0‖2L2

≤ sup
ω
|Ĝn|2 ‖û0‖2L2 .

Therefore the condition

‖Ĝn‖L∞ ≤ eKn∆t (6.5)

implies L2-stability.
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(ii) We have
2π‖u1 − u(∆t)‖2L2 = ‖Ĝû0 − Ĥû0‖2L2 ,

where u1 is the approximate solution after one time step. Let λ ≡ ∆t
∆x2 , then we

obtain

|(Ĝ− Ĥ)û0| = |
(

1− 2λ+ 2λ cos ∆xω − e−∆tω2
)
û0|

= O(∆t2)ω4|û0|,

since for 0 ≤ ∆tω2 ≡ x ≤ 1

|1− 2λ + 2λ cos
√
x/λ− e−x|

=
(

1− 2λ+ 2λ
(

1− x

2λ
+O(x2)

)
−
(
1− x+O(x2)

))
≤ Cx2 = C(∆t)2ω4,

and for 1 < ∆tω2 = x

|1− 2λ+ 2λ cos
√
x/λ− e−x| ≤ C = C

(∆t)2ω4

x2
≤ C(∆t)2ω4.

Therefore the consistency condition reduces to

‖ (Ĝ− Ĥ)û0 ‖ ≤ ‖K∆t2ω4û0‖ (6.6)

≤ K∆t2‖∂xxxxu0‖L2 .

(iii) The stability (6.5) holds if

‖Ĝ‖L∞ ≡ sup
ω
|Ĝ(ω)| = max

ω
|1− 2λ+ 2λ cos ∆xω| ≤ 1, (6.7)

which requires

λ =
∆t

∆x2
≤ 1

2
. (6.8)

The L2-stability condition (6.7) is called the von Neuman stability condition.

(iv) Convergence follows by the estimates (6.6), (6.7) and ‖Ĥ‖L∞ ≤ 1

2π‖ un − u(n∆t) ‖2L2 = ‖ (Ĝn − Ĥn)û0 ‖2L2

= ‖ (Ĝn−1 + Ĝn−2Ĥ + ...+ Ĥn−1)(Ĝ− Ĥ)û0 ‖2L2

≤ ‖ Ĝn−1 + Ĝn−2Ĥ + ...+ Ĥn−1‖2L∞‖(Ĝ− Ĥ)û0 ‖2L2

≤ (Kn(∆t)2)2 ≤ (KT∆t)2,

and consequently the convergence rate is O(∆t).
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Let us study the relations between the operators G and H for the simple model
problem

u′ + λu = 0

u(0) = 1

with an approximate solution un+1 = r(x)un (where x = λ∆t):

(1) the exact solution satisfies

r(x) = e−λ∆t = e−x,

(2) the forward Euler method

un+1 − un
∆t

+ λun = 0 ⇒ r(x) = 1− x,

(3) the backward Euler method

un+1 − un
∆t

+ λun+1 = 0 ⇒ r(x) = (1 + x)−1,

(4) the trapezoidal method

un+1 − un
∆t

+
λ

2
(un + un+1) = 0 ⇒ r(x) =

(
1 +

x

2

)−1 (
1− x

2

)
,

and

(5) the Lax-Wendroff method

un+1 = un −∆tλun +
1

2
∆t2λ2un ⇒ r(x) = 1− x+

1

2
x2.

The consistence |e−λ∆t − r(λ∆t)| = O(∆tp+1) holds with p = 1 in case 2 and 3, and
p = 2 in case 4 and 5. The following stability relations hold:

(1) |r(x)| ≤ 1 for x ≥ 0 in case 1, 3 and 4.

(2) r(x)→ 0 as x→∞ in case 1 and 3.

(3) r(x)→ 1 as x→∞ in case 4.

Property (1) shows that for λ > 0 case 3 and 4 are unconditionally stable. However
Property (2) and (3) refine this statement and imply that only case 3 has the same
damping behavior for large λ as the exact solution. Although the damping Property (2) is
not necessary to prove convergence it is advantegous to have for proplems with many time
scales, e.g. for a system of equations (6.3) where A has eigenvalues λi ≤ 1, i = 1, . . . , N
and some λj � −1, ( why?).

The unconditionally stable methods, e.g. case 3 and 4, are in general more efficient
to solve parabolic problems, such as the Black-Scholes equation (6.2), since they require
for the same accuracy fewer time steps than the explicit methods, e.g. case 2 and 5.
Although the work in each time step for the unconditionally stable methods may be
larger than for the explicit methods.
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Exercise 6.7. Show by an example that ‖un‖2L2 →∞ if for some ω there holds |Ĝ(ω)| >
1, in Example 6.6, i.e. the von Neumann stability condition does not hold.
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Chapter 7

The Finite Element Method and
Lax-Milgram’s Theorem

This section presents the finite element method, including adaptive approximation and
error estimates, together with the basic theory for elliptic partial differential equations.
The motivation to introduce finite element methods is the computational simplicity and
efficiency for construction of stable higher order discretizations for elliptic and parabolic
differential equations, such as the Black and Scholes equation, including general boundary
conditions and domains. Finite element methods require somewhat more work per degree
of freedom as compared to finite difference methods on a uniform mesh. On the other
hand, construction of higher order finite difference approximations including general
boundary conditions or general domains is troublesome.

In one space dimension such an elliptic problem can, for given functions a, f, r :
(0, 1)→ R, take the form of the following equation for u : [0, 1]→ R,

(−au′)′ + ru = f on (0, 1)
u(x) = 0 for x = 0, x = 1,

(7.1)

where a > 0 and r ≥ 0. The basic existence and uniqueness result for general elliptic
differential equations is based on Lax-Milgram’s Theorem, which we will describe in
section 7.3. We shall see that its stability properties, based on so called energy estimates,
is automatically satisfied for finite element methods in contrast to finite difference
methods.

Our goal, for a given tolerence TOL, is to find an approximation uh of (7.1) satisfying

‖u− uh‖ ≤ TOL,

using few degrees of freedom by adaptive finite element approximation. Adaptive methods
are based on:

(1) an automatic mesh generator,

(2) a numerical method ( e.g. the finite element method),
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(3) a refinement criteria (e.g. a posteriori error estimation), and

(4) a solution algorithm ( e.g. the multigrid method).

7.1 The Finite Element Method

A derivation of the finite element method can be divided into:

(1) variational formulation in an infinite dimensional space V ,

(2) variational formulation in a finite dimensional subspace, Vh ⊂ V ,

(3) choice of a basis for Vh, and

(4) solution of the discrete system of equations.

Step 1. Variational formulation in an infinite dimensional space, V .

Consider the following Hilbert space,

V =

{
v : (0, 1)→ R :

∫ 1

0

(
v2(x) + (v′(x))2

)
dx <∞, v(0) = v(1) = 0

}
.

Multiply equation (7.1) by v ∈ V and integrate by parts to get∫ 1

0
fv dx =

∫ 1

0
((−au′)′ + ru)v dx

=
[
−au′v

]1
0

+

∫ 1

0
(au′v′ + ruv) dx (7.2)

=

∫ 1

0
(au′v′ + ruv) dx.

Therefore the variational formulation of (7.1) is to find u ∈ V such that

A(u, v) = L(v) ∀v ∈ V, (7.3)

where

A(u, v) =

∫ 1

0
(au′v′ + ruv) dx,

L(v) =

∫ 1

0
fv dx.

Remark 7.1. The integration by parts in (7.2) shows that a smooth solution of equa-
tion (7.1) satisfies the variational formulation (7.3). For a solution of the variational
formulation (7.3) to also be a solution of the equation (7.1), we need additional conditions
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on the regularity of the functions a, r and f so that u′′ is continuous. Then the following
integration by parts yields, as in (7.2),

0 =

∫ 1

0
(au′v′ + ruv − fv) dx =

∫ 1

0
(−(au′)′ + ru− f)v dx.

Since this holds for all v ∈ V , it implies that

−(au′)′ + ru− f = 0,

provided −(au′)′ + ru− f is continuous.

Step 2. Variational formulation in the finite dimensional subspace, Vh.

First divide the interval (0, 1) into 0 = x0 < x2 < ... < xN+1 = 1, i.e. generate the mesh.
Then define the space of continuous piecewise linear functions on the mesh with zero
boundary conditions

Vh = {v ∈ V : v(x) |(xi,xi+1)= cix+ di, i.e. v is linear on (xi, xi+1), i = 0, · · · , N
and v is continuous on (0, 1)}.

The variational formulation in the finite dimensional subspace is to find uh ∈ Vh such
that

A(uh, v) = L(v) ∀v ∈ Vh. (7.4)

The function uh is a finite element solution of the equation (7.1). Other finite element
solutions are obtained from alternative finite dimensional subspaces, e.g. based on
piecewise quadratic approximation.

Step 3. Choose a basis for Vh.

Let us introduce the basis functions φi ∈ Vh, for i = 1, ..., N , defined by

φi(xj) =

{
1 if i = j
0 if i 6= j.

(7.5)

A function v ∈ Vh has the representation

v(x) =
N∑
i=1

viφi(x),

where vi = v(xi), i.e. each v ∈ Vh can be written in a unique way as a linear combination
of the basis functions φi.

Step 4. Solve the discrete problem (7.4).

Using the basis functions φi, for i = 1, ..., N from Step 3, we have

uh(x) =

N∑
i=1

ξiφi(x),
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where ξ = (ξ1, ..., ξN )T ∈ RN , and choosing v = φj in (7.4), we obtain

L(φj) = A(uh, φj)

= A(
∑
i

φiξi, φj) =
∑
i

ξiA(φi, φj),

so that ξ ∈ RN solves the linear system

Ãξ = L̃, (7.6)

where

Ãji = A(φi, φj),

L̃j = L(φj).

The N ×N matrix Ã is called the stiffness matrix and the vector L̃ ∈ RN is called the
load vector.

Example 7.2. Consider the following two dimensional problem,

−div(k∇u) + ru = f in Ω ⊂ R2 (7.7)

u = g1 on Γ1

∂u

∂n
= g2 on Γ2,

where ∂Ω = Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. The variational formulation has the following
form.

(i) Variational formulation in the infinite dimensional space.

Let

Vg =

{
v(x) :

∫
Ω

(v2(x) + |∇v(x)|2) dx <∞, v|Γ1 = g

}
.

Take a function v ∈ V0, i.e. v = 0 on Γ1, then by (7.7)∫
Ω
fv dx = −

∫
Ω
div(k∇u)v dx+

∫
Ω
ruv dx

=

∫
Ω
k∇u · ∇v dx−

∫
Γ1

k
∂u

∂n
v ds−

∫
Γ2

k
∂u

∂n
v ds+

∫
Ω
ruv dx

=

∫
Ω
k∇u · ∇v dx−

∫
Γ2

kg2v ds+

∫
Ω
ruv dx.

The variational formulation for the model problem (7.7) is to find u ∈ Vg1 such
that

A(u, v) = L(v) ∀v ∈ V0, (7.8)
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where

A(u, v) =

∫
Ω

(k∇u · ∇v + ruv) dx,

L(v) =

∫
Ω
fv dx+

∫
Γ2

kg2vds.

(ii) Variational formulation in the finite dimensional space.

Assume for simplicity that Ω is a polygonal domain which can be divided into a
triangular mesh Th = {K1, ...KN} of non overlapping triangles Ki and let
h = maxi(length of longest side of Ki). Assume also that the boundary function
g1 is continuous and that its restriction to each edge Ki ∩ Γ1 is a linear function.
Define

V h
0 = {v ∈ V0 : v|Ki is linear ∀Ki ∈ Th, v is continuous on Ω},

V h
g1

= {v ∈ Vg1 : v|Ki is linear ∀Ki ∈ Th, v is continuous on Ω},

and the finite element method is to find uh ∈ V h
g1

such that

A(uh, v) = L(v), ∀v ∈ V h
0 . (7.9)

(iii) Choose a basis for V h
0 .

As in the one dimensional problem, choose the basis φj ∈ V h
0 such that

φj(xi) =

{
1 i = j
0 i 6= j j = 1, 2, ..., N,

where xi, i = 1, . . . , N , are the vertices of the triangulation.

(iv) Solve the discrete system.

Let

uh(x) =
N∑
i=1

ξiφi(x), and ξi = uh(xi).

Then (7.9) can be written in matrix form,

Ãξ = L̃, where Ãji = A(φi, φj) and L̃j = L(φj).
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7.2 Error Estimates and Adaptivity

We shall now study a priori and a posteriori error estimates for finite element methods,
where

‖u− uh‖ ≤ E1(h, u, f) is an a priori error estimate,

‖u− uh‖ ≤ E2(h, uh, f) is an a posteriori error estimate.

Before we start, let us study the following theorem, which we will prove later,

Theorem 7.3 (Lax-Milgram). Let V be a Hilbert space with norm ‖ · ‖V and scalar
product (·, ·)V and assume that A is a bilinear functional and L is a linear functional
that satisfy:

(1) A is symmetric, i.e. A(v, w) = A(w, v) ∀v, w ∈ V ;

(2) A is V-elliptic, i.e. ∃ α > 0 such that A(v, v) ≥ α‖v‖2V ∀v ∈ V ;

(3) A is continuous, i.e. ∃ C ∈ R such that |A(v, w)| ≤ C‖v‖V ‖w‖V ; and

(4) L is continuous, i.e. ∃ Λ ∈ R such that |L(v)| ≤ Λ‖v‖V ∀v ∈ V.

Then there is a unique function u ∈ V such that A(u, v) = L(v) ∀v ∈ V, and the
stability estimate ‖u‖V ≤ Λ/α holds.

7.2.1 An A Priori Error Estimate

The approximation property of the space Vh can be characterized by

Lemma 7.4. Suppose Vh is the piecewise linear finite element space (7.4), which dis-
cretizes the functions in V , defined on (0, 1), with the interpolant π : V → Vh defined
by

πv(x) =
N∑
i=1

v(xi)φi(x), (7.10)

where {φi} is the basis (7.5) of Vh. Then

‖(v − πv)′‖L2(0,1) ≤

√∫ 1

0
h2v′′(x)2 dx ≤ Ch, (7.11)

‖v − πv‖L2(0,1) ≤

√∫ 1

0
h4v′′(x)2 dx ≤ Ch2,

where h = maxi (xi+1 − xi).
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Proof. Take v ∈ V and consider first (7.11) on an interval (xi, xi+1). By the mean value
theorem, there is for each x ∈ (xi, xi+1) a ξ ∈ (xi, xi+1) such that v′(ξ) = (πv)′(x).
Therefore

v′(x)− (πv)′(x) = v′(x)− v′(ξ) =

∫ x

ξ
v′′(s)ds,

so that ∫ xi+1

xi

|v′(x)− (πv)′(x)|2dx =

∫ xi+1

xi

(

∫ x

ξ
v′′(s)ds)2dx

≤
∫ xi+1

xi

|x− ξ|
∫ x

ξ
(v′′(s))2dsdx

≤ h2

∫ xi+1

xi

(v′′(s))2ds, (7.12)

which after summation of the intervals proves (7.11).
Next, we have

v(x)− πv(x) =

∫ x

xi

(v − πv)′(s)ds,

so by (7.12)∫ xi+1

xi

|v(x)− πv(x)|2dx =

∫ xi+1

xi

(

∫ x

xi

(v − πv)′(s)ds)2dx

≤
∫ xi+1

xi

|x− xi|
∫ x

xi

((v − πv)′)2(s)dsdx

≤ h4

∫ xi+1

xi

(v′′(s))2ds,

which after summation of the intervals proves the lemma.

Our derivation of the a priori error estimate

‖u− uh‖V ≤ Ch,

where u and uh satisfy (7.3) and (7.4), respectivly, uses Lemma 7.4 and a combination
of the following four steps:

(1) error representation based on the ellipticity

α

∫
Ω

(v2(x) + (v′(x))2) dx ≤ A(v, v) =

∫
Ω

(a(v′)2 + rv2) dx,

where α = infx∈(0,1)(a(x), r(x)) > 0,

(2) the orthogonality
A(u− uh, v) = 0 ∀v ∈ Vh,

obtained by Vh ⊂ V and subtraction of the two equations

A(u, v) = L(v) ∀v ∈ V by (7.3),

A(uh, v) = L(v) ∀v ∈ Vh by (7.4),
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(3) the continuity
|A(v, w)| ≤ C‖v‖V ‖w‖V ∀v, w ∈ V,

where C ≤ supx∈(0,1)(a(x), r(x)), and

(4) the interpolation estimates

‖(v − πv)′‖L2 ≤ Ch, (7.13)

‖v − πv‖L2 ≤ Ch2,

where h = max (xi+1 − xi).

To start the proof of an a priori estimate let e ≡ u− uh. Then by Cauchy’s inequality

A(e, e) = A(e, u− πu+ πu− uh)

= A(e, u− πu) +A(e, πu− uh)
Step2

= A(e, u− πu)

≤
√
A(e, e)

√
A(u− πu, u− πu),

so that by division of
√
A(e, e),√

A(e, e) ≤
√
A(u− πu, u− πu)

Step3
= C‖u− πu‖V

≡ C
√
‖u− πu‖2

L2 + ‖(u− πu)′‖2
L2

Step4
≤ Ch.

Therefore, by Step 1
α‖e‖2V ≤ A(e, e) ≤ Ch2,

which implies the a priori estimate

‖e‖V ≤ Ch,

where C = K(u).

7.2.2 An A Posteriori Error Estimate

Example 7.5. Consider the model problem (7.1), namely,{
−(au′)′ + ru = f in (0, 1),
u(0) = u(1) = 0.

Then √
A(u− uh, u− uh) ≤ C ‖a−

1
2 (f − ruh + a′u′h)h‖L2

≡ E(h, uh, f). (7.14)
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Proof. Let e = u− uh and let πe ∈ Vh be the nodal interpolant of e. We have

A(e, e) = A(e, e− πe) (by orthogonality)

= A(u, e− πe)−A(uh, e− πe).

Using the notation (f, v) ≡
∫ 1

0 fv dx, we obtain by integration by parts

A(e, e) = (f, e− πe)−
N∑
i=1

∫ xi+1

xi

(au′h(e− πe)′ + ruh(e− πe)) dx

= (f − ruh, e− πe)−
N∑
i=1

{
[au′h(e− πe)]xi+1

xi −
∫ xi+1

xi

(au′h)′(e− πe) dx
}

= (f − ruh + a′u′h, e− πe) ( since u′′h|(xi,xi+1) = 0, (e− πe)(xi) = 0)

≤ ‖a−
1
2h(f − ruh + a′u′h)‖L2‖a

1
2h−1(e− πe)‖L2 .

Lemma 7.6 implies √
A(e, e) ≤ C‖a−

1
2h(f − ruh + a′u′h)‖L2 ,

which also shows that
‖e‖V ≤ Ch,

where C = K ′(uh).

Lemma 7.6. There is a constant C, independent of u and uh, such that,

‖a
1
2h−1(e− πe)‖L2 ≤ C

√∫ 1

0
ae′e′ dx ≤ C

√
A(e, e)

Exercise 7.7. Use the interpolation estimates in Lemma 7.4 to prove Lemma 7.6.

7.2.3 An Adaptive Algorithm

We formulate an adaptive algorithm based on the a posteriori error estimate (7.14) as
follows:

(1) Choose an initial coarse mesh Th0 with mesh size h0.

(2) Compute the corresponding FEM solution uhi in Vhi .

(3) Given a computed solution uhi in Vhi , with the mesh size hi,

stop if E(hi, uhi , f) ≤ TOL
go to step 4 if E(hi, uhi , f) > TOL.
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(4) Determine a new mesh Thi+1
with mesh size hi+1 such that

E(hi+1, uhi , f) ∼= TOL,

by letting the error contribution for all elements be approximately constant, i.e.

‖a−
1
2h(f − ruh − a′u′h)‖L2(xi,xi+1)

∼= C, i = 1, . . . , N,

then go to Step 2.

7.3 Lax-Milgram’s Theorem

Theorem 7.8. Suppose A is symmetric, i.e. A(u, v) = A(v, u) ∀u, v ∈ V, then (Varia-
tional problem) ⇐⇒ (Minimization problem) with

(Var) Find u ∈ V such that A(u, v) = L(v) ∀v ∈ V,
(Min) Find u ∈ V such that F (u) ≤ F (v) ∀v ∈ V,

where

F (w) ≡ 1

2
A(w,w)− L(w) ∀w ∈ V.

Proof. Take ε ∈ R. Then

(⇒) F (u + εw) =
1

2
A(u+ εw, u+ εw)− L(u+ εw)

=

(
1

2
A(u, u)− L(u)

)
+ εA(u,w)− εL(w) +

1

2
ε2A(w,w)

≥
(

1

2
A(u, u)− L(u)

) (
since

1

2
ε2A(w,w) ≥ 0 and A(u,w) = L(w)

)
= F (u).

(⇐) Let g(ε) = F (u+ εw), where g : R→ R. Then

0 = g′(0) = 0 ·A(w,w) +A(u,w)− L(w) = A(u,w)− L(w).

Therefore
A(u,w) = L(w) ∀w ∈ V.

Theorem 7.9 (Lax-Milgram). Let V be a Hilbert space with norm ‖ · ‖V and scalar
product (·, ·)V and assume that A is a bilinear functional and L is a linear functional
that satisfy:

(1) A is symmetric, i.e. A(v, w) = A(w, v) ∀v, w ∈ V ;

(2) A is V-elliptic, i.e. ∃ α > 0 such that A(v, v) ≥ α‖v‖2V ∀v ∈ V ;
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(3) A is continuous, i.e. ∃ C ∈ R such that |A(v, w)| ≤ C‖v‖V ‖w‖V ; and

(4) L is continuous, i.e. ∃ Λ ∈ R such that |L(v)| ≤ Λ‖v‖V ∀v ∈ V.

Then there is a unique function u ∈ V such that A(u, v) = L(v) ∀v ∈ V, and the
stability estimate ‖u‖V ≤ Λ/α holds.

Proof. The goal is to construct u ∈ V solving the minimization problem F (u) ≤ F (v) for
all v ∈ V , which by the previous theorem is equivalent to the variational problem. The
energy norm, ‖v‖2 ≡ A(v, v), is equivalent to the norm of V, since by Condition 2 and 3,

α‖v‖2V ≤ A(v, v) = ‖v‖2 ≤ C‖v‖2V .

Let

β = infv∈V F (v). (7.15)

Then β ∈ R, since

F (v) =
1

2
‖v‖2 − L(v) ≥ 1

2
‖v‖2 − Λ‖v‖ ≥ −Λ2

2
.

We want to find a solution to the minimization problem minv∈V F (v). It is therefore
natural to study a minimizing sequence vi, such that

F (vi)→ β = inf
v∈V

F (v). (7.16)

The next step is to conclude that the vi infact converge to a limit:∥∥∥∥vi − vj2

∥∥∥∥2

=
1

2
‖vi‖2 +

1

2
‖vj‖2 −

∥∥∥∥vi + vj
2

∥∥∥∥2

( by the parallelogram law )

=
1

2
‖vi‖2 − L(vi) +

1

2
‖vj‖2 − L(vj)

−

(∥∥∥∥vi + vj
2

∥∥∥∥2

− 2L(
vi + vj

2
)

)

= F (vi) + F (vj)− 2F

(
vi + vj

2

)
≤ F (vi) + F (vj)− 2β ( by (7.15) )

→ 0, ( by (7.16) ).

Hence {vi} is a Cauchy sequence in V and since V is a Hilbert space ( in particular V is
a complete space) we have vi → u ∈ V.
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Finally F (u) = β, since

|F (vi)− F (u)| = |1
2

(‖vi‖2 − ‖u‖2)− L(vi − u)|

= |1
2
A(vi − u, vi + u)− L(vi − u)|

≤ (
C

2
‖vi + u‖V + Λ)‖vi − u‖V

→ 0.

Therefore there exists a unique (why?) function u ∈ V such that F (u) ≤ F (v) ∀v ∈ V.
To verify the stability estimate, take v = u in (Var) and use the ellipticity (1) and
continuity (3) to obtain

α‖u‖2V ≤ A(u, u) = L(u) ≤ Λ‖u‖V

so that

‖u‖V ≤
Λ

α
.

The uniqueness of u can also be verified from the stability estimate. If u1, u2 are two
solutions of the variational problem we have A(u1 − u2, v) = 0 for all v ∈ V . Therefore
the stability estimate implies ‖u1 − u2‖V = 0, i.e. u1 = u2 and consequently the solution
is unique.

Example 7.10. Determine conditions for the functions k, r and f : Ω→ R such that the
assumptions in the Lax-Milgram theorem are satisfied for the following elliptic partial
differential equation in Ω ⊂ R2

−div(k∇u) + ru = f in Ω

u = 0 on ∂Ω.

Solution. This problem satisfies (Var) with

V = {v :

∫
Ω

(v2(x) + |∇v(x)|2) dx <∞, and v|∂Ω = 0},

A(u, v) =

∫
Ω

(k∇u∇v + ruv) dx,

L(v) =

∫
Ω
fv dx,

‖v‖2V =

∫
Ω

(v2(x) + |∇v|2) dx.

Consequently V is a Hilbert space and A is symmetric and continuous provided k and r
are uniformly bounded.
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The ellipticity follows by

A(v, v) =

∫
Ω

(k|∇v|2 + rv2) dx

≥ α

∫
Ω

(v2(x) + |∇v|2) dx

= α‖v‖2H1 ,

provided α = infx∈Ω(k(x), r(x)) > 0.
The continuity of A is a consequence of

A(v, w) ≤ max(‖k‖L∞ , ‖r‖L∞)

∫
Ω

(|∇v||∇w|+ |v||w|)dx

≤ max(‖k‖L∞ , ‖r‖L∞)‖v‖H1‖w‖H1 ,

provided max(‖k‖L∞ , ‖r‖L∞) = C <∞.
Finally, the functional L is continuous, since

|L(v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖V ,

which means that we may take Λ = ‖f‖L2 provided we assume that f ∈ L2(Ω). Therefore
the problem satisfies the Lax-Milgram theorem.

Example 7.11. Verify that the assumption of the Lax-Milgram theorem are satisfied
for the following problem,

−∆u = f in Ω,

u = 0 on ∂Ω.

Solution. This problem satisfies (Var) with

V = H1
0 = {v ∈ H1 : v|∂Ω = 0},

H1 = {v :

∫
Ω

(v2(x) + |∇v(x)|2) dx <∞},

A(u, v) =

∫
Ω
∇u∇v dx,

L(v) =

∫
Ω
fv dx.

To verify the V-ellipticity, we use the Poincaré inequality, i.e. there is a constant C such
that

v ∈ H1
0 ⇒

∫
Ω
v2 dx ≤ C

∫
Ω
|∇u|2 dx. (7.17)
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In one dimension and Ω = (0, 1), the inequality (7.17) takes the form∫ 1

0
v2(x) dx ≤

∫ 1

0
(v′(x))2 dx, (7.18)

provided v(0) = 0. Since

v(x) = v(0) +

∫ x

0
v′(s) ds =

∫ x

0
v′(s) ds,

and by Cauchy’s inequality

v2(x) =

(∫ x

0
v′(s) ds

)2

≤ x

∫ x

0
v′(s)2 ds

≤
∫ 1

0
v′(s)2 ds since x ∈ (0, 1).

The V-ellipticity of A follows by (7.18) and

A(v, v) =

∫ 1

0
v′(x)2 dx =

1

2

∫ 1

0

(
(v′(x))2 dx+

1

2
(v′(x))2

)
dx

≥ 1

2

∫ 1

0
(v′(x)2 + v(x)2) dx

=
1

2
‖v‖2H1

0
∀v ∈ H1

0 .

The other conditions can be proved similarly as in the previous example. Therefore this
problem satisfies the Lax-Milgram theorem.
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Chapter 8

Optimal Control and Inverse
Problems

The purpose of Optimal Control is to influence the behavior of a dynamical system
in order to achieve a desired goal. Optimal control has a large variety of applications
where the dynamics can be controlled optimally, such as aerospace, aeronautics, chemical
plants, mechanical systems, finance and economics, but also to solve inverse problems
where the goal is to determine input data in an equation from its solution values. An
important application we will study in several settings is to determine the ”data” in
differential equations models using optimally controlled reconstructions of measured
”solution” values.

Inverse problems are typically harder to solve numerically than forward problems
since they are often ill-posed (in contrast to forward problems), where ill-posed is the
opposite of well-posed and a problem is defined to be well-posed if the following three
properties holds

(1) there is a solution,

(2) the solution is unique, and

(3) the solution depends continuously on the data.

It is clear that a solution that does not depend continuously on its data is difficult to
approximate accurately, since a tiny perturbation of the data (either as measurement
error and/or as numerical approximation error) may give a large change in the solution.
Therefore, the ill-posedness of inverse and optimal control problems means that they need
to be somewhat modified to be solved: we call this to regularize the problem. Optimal
control theory is suited to handle many inverse problems for differential equations, since
we may formulate the objective – for instance to optimally reconstruct measured data or
to find an optimal design – with the differential equation as a constraint. This chapter
explains:

• the reason to regularize inverse problems in an optimal control setting,
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• a method how to regularize the control problem, and

• in what sense the regularized problem approximates the original problem.

To give some intuition on optimal control and to introduce some basic concepts let us
consider a hydro-power generator in a river. Suppose that we are the owners of such
a generator, and that our goal is to maximise our profit by selling electricity in some
local electricity market. This market will offer us buying prices at different hours, so one
decision we have to make is when and how much electricity to generate. To make this
decision may not be a trivial task, since besides economic considerations, we also have to
meet technical constraints. For instance, the power generated is related to the amount
of water in the reservoir, the turbined flow and other variables. Moreover, if we want a
plan for a period longer than just a few days the water inflow to the lake may not be
precisely known, making the problem stochastic.

We can state our problem in optimal control terms as the maximization of an objective
function, the expected profit from selling electricity power during a given period, with
respect to control functions, like the hourly turbined flow. Observe that the turbined
flow is positive and smaller than a given maximum value, so it is natural to have a set of
feasible controls, namely the set of those controls we can use in practice. In addition, our
dynamical system evolves according to a given law, also called the dynamics, which here
comes from a mass balance in the dam’s lake. This law tells us how the state variable,
the amount of water in the lake, evolves with time according to the control we give. Since
the volume in the lake cannot be negative, there exist additional constraints, known as
state constraints, that have to be fulfilled in the optimal control problem.

After introducing the formulation of an optimal control problem the next step is to
find its solution. As we shall see, the optimal control is closely related with the solution of
a nonlinear partial differential equation, known as the Hamilton-Jacobi-Bellman equation.
To derive the Hamilton-Jacobi-Bellman equation we shall use the dynamic programming
principle, which relates the solution of a given optimal control problem with solutions to
simpler problems.

8.1 The Determinstic Optimal Control Setting

A mathematical setting for optimally controlling the solution to a deterministic ordinary
differential equation

Ẋs = f(Xs, αs) t < s < T

Xt = x
(8.1)

is to minimize

inf
α∈A

(∫ T

t
h(Xs, αs) ds+ g(XT )

)
(8.2)

for given cost functions h : Rd × [t, T ] → R and g : Rd → R and a given set of control
functions A = {α : [t, T ] → A} and flux f : Rd × A → Rd. Here A is a given compact
subset of some Rm.
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8.1.1 Examples of Optimal Control

Example 8.1 (Optimal control of spacecraft). To steer a spacecraft with minimal fuel
consumption to an astronomical body may use the gravitational force from other bodies.
The dynamics is determined by the classical Newton’s laws with forces depending on the
gravity on the spacecraft and its rocket forces, which is the control cf. [28].

Example 8.2 (Inverse problem: Parameter reconstruction). The option values
can be used to detemine the volatility function implicitly. The objective in the optimal
control formulation is then to find a volatility function that yields option prices that
deviate as little as possible from the measured option prices. The dynamics is the Black-
Scholes equation with the volatility function to be determined, that is the dynamics
is a determinstic partial differential equation and the volatility is the control function,
see Section 8.2.1.1. This is a typical inverse problem: it is called inverse because in the
standard view of the Black-Scholes equation relating the option values and the volaility,
the option price is the unknown and the volatility is the data; while here the formulation
is reversed with option prices as data and volatility as unknown in the same Black-Scholes
equation.

Example 8.3 (Inverse problem: Weather prediction). The incompressible Navier-Stokes
equations are used to forecast weather. The standard mathematical setting of this
equation is an initial value problem with unknown velocity and pressure to be determined
from the initial data: in weather prediction one can use measured velocity and pressure
not only at a single initial instance but data given over a whole time history. An optimal
control formulation of the weather prediction is to find the first initial data (the control)
matching the time history of measured velocity and pressure with the Navier-Stokes
dynamics as constraint. Such an optimal control setting improves the accuracy and
makes longer forecast possible as compared to the classical initial value problem, see [32],
[?]. This is an inverse problem since the velocity and pressure are used to determine the
”initial data”.

Example 8.4 (Merton’s stochastic portfolio problem). A basic problem in finance is to
choose how much to invest in stocks and in bonds to maximize a final utility function.
The dynamics of the portfolio value is then stochastic and the objective is to maximize
an expected value of a certain (utility) function of the portfolio value, see section 8.3.1.

Example 8.5 (Euler-Lagrange equation). The shape of a soap bubble between a wire
frame can be deterimined as the surface that minimizes the bubble area. For a surface
in R3 described by

{(
x, u(x)

)
: x ∈ Ω ⊂ R2

}
the area is given by∫

Ω

√
1 + |∇u|2dx.

Here the whole surface is the control function, and given a wire
{(
x, g(x)

)
: x ∈ ∂Ω

}
,

the minimal surface solves the Euler-Lagrange equation,

div

(
∇u√

1 + |∇u|2

)
= 0, in Ω,

u = g, on ∂Ω.
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Example 8.6 (Inverse problem: Optimal design). An example of optimal design is to
construct an electrical conductor to minimize the power loss by placing a given amount
of conductor in a given domain, see Section 8.2.1.2. This is an inverse problem since the
conductivity is determined from the electric potential in an equation where the standard
setting is to determine the electric potential from the given conductivity.

8.1.2 Approximation of Optimal Control

Optimal control problems can be solved by the Lagrange principle or dynamic program-
ming. The dynamic programming approach uses the value function, defined by

u(x, t) := inf
α∈A

(∫ T

t
h(Xs, αs) ds+ g(XT )

)
, (8.3)

for the ordinary differential equation (8.1) with Xt ∈ Rd, and leads to solution of a non
linear Hamilton-Jacobi-Bellman partial differential equation

∂tu(x, t) + min
α∈A

(
f(x, α) · ∂xu(x, t) + h(x, α)

)
︸ ︷︷ ︸

H(∂xu(x,t),x)

= 0, t < T,

u(·, T ) = g,

(8.4)

in (x, t) ∈ Rd × R+. The Lagrange principle (which seeks a minimum of the cost with
the dynamics as a constraint) leads to the solution of a Hamiltonian system of ordinary
differential equations, which are the characteristics of the Hamilton-Jacobi-Bellman
equation

X ′t = f(Xt, αt), X0 given,

−λ′ti = ∂xif(Xt, αt) · λt + ∂xih(Xt, αt), λT = g′(XT ),

αt ∈ argmina∈A

(
λt · f(Xt, a) + h(Xt, a)

)
,

(8.5)

based on the Pontryagin Principle. The next sections explain these two methods.
The non linear Hamilton-Jacobi partial differential approach has the theoretical

advantage of well established theory and that a global minimum is found; its fundamental
drawback is that it cannot be used computationally in high dimension d � 1, since
the computational work increases exponentially with the dimension d. The Lagrange
principle has the computational advantage that high dimensional problems, d � 1,
can often be solved and its drawback is that in practice only local minima can be
found computationally, often with some additional error introduced by a regularization
method. Another drawback with the Lagrange principle is that it (so far) has no efficient
implementation in the natural stochastic setting with adapted Markov controls, while
the Hamilton-Jacobi PDE approach directly extends to such stochastic controls, see
Section 8.3; as a consequence computations of stochastic controls is basically limited to
low dimensional problems.
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8.1.3 Motivation of the Lagrange formulation

Let us first review the Lagrange multiplier method to minimize a function subject to a
constraint minx∈A, y=g(x) F (x, y). Assume F : Rd × Rn → R is a differentiable function.
The goal is to find the minimum minx∈A F (x, g(x)) for a given differentiable function
g : Rd → Rn and a compact set A ⊂ Rd. This problem leads to the usual necessary
condition for an interior minimum

d

dx
F
(
x, g(x)

)
= ∂xF

(
x, g(x)

)
+ ∂yF

(
x, g(x)

)
∂xg(x) = 0. (8.6)

An alternative method to find the solution is to introduce the Lagrangian function
L(λ, y, x) := F (x, y) + λ ·

(
y − g(x)

)
with the Lagrange multiplier λ ∈ Rn and choose λ

appropriately to write the necessary condition for an interior minimum

0 = ∂λL(λ, y, x) = y − g(x),

0 = ∂yL(λ, y, x) = ∂yF (x, y) + λ,

0 = ∂xL(λ, y, x) = ∂xF (x, y)− λ · ∂xg(x).

Note that the first equation is precisely the constraint. The second equation determines
the multiplier to be λ = −∂yF (x, y). The third equation yields for this multiplier
∂xL(−∂yF (x, y), y, x) = d

dxF
(
x, g(x)

)
, that is the multiplier is chosen precisely so that

the partial derivative with respect to x of the Lagrangian is the total derivative of
the objective function F

(
x, g(x)

)
to be minimized. This Lagrange principle is often

practical to use when the constraint is given implicitly, e.g. as g(x, y) = 0 with a
differentiable g : Rd × Rn → Rn; then the condition det ∂yg(x, y) 6= 0 in the implicit
function theorem implies that the function y(x) is well defined and satisfies g

(
x, y(x)

)
= 0

and ∂xy = −∂yg(x, y)−1∂xg(x, y), so that the Lagrange multiplier method works.
The Lagrange principle for the optimal control problem (8.1) -(8.2), to minimize the

cost with the dynamics as a constraint, leads to the Lagrangian

L(λ,X, α) := g(XT ) +

∫ T

0
h(Xs, αs) ds+

∫ T

0
λs ·

(
f(Xs, αs)− Ẋ

)
ds (8.7)

with a Lagrange multiplier function λ : [0, T ]→ Rd. Differentiability of the Lagrangian
leads to the necessary conditions for a constrained interior minimum

∂λL(X,λ, α) = 0,

∂XL(X,λ, α) = 0,

∂αL(X,λ, α) = 0.

(8.8)

Our next step is to verify that the two first equations above are the same as the two first
in (8.5) and that the last equation is implied by the stronger Pontryagin principle in the
last equation in (8.5). We will later use the Hamilton-Jacobi equation in the dynamic
programming approach to verify the Pontryagin principle.
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The first equation. Choose a real valued continuous function v : [0, T ] → Rd and
define the function L : R → R by L(ε) := L(X,λ + εv, α). Then the first of the three
equations means precisely that L′(0) = d

dεL(X,λ+ εv, α)|ε=0 = 0, which implies that

0 =

∫ T

0
vs ·

(
f(Xs, αs)− Ẋs

)
ds

for any continuous function v. If we assume that f(Xs, αs)− Ẋs is continuous we obtain
f(Xs, αs)− Ẋs = 0: since if β(s) := f(Xs, αs)− Ẋs 6= 0 for some s there is an interval
where β is either positive or negative; by choosing v to be zero outside this interval we
conclude that β is zero everywhere and we have derived the first equation in (8.5).

The second equation. The next equation d
dεL(X + εv, λ, α)|ε=0 = 0 needs v0 = 0 by

the initial condition on X0 and leads by integration by parts to

0 =

∫ T

0
λs ·

(
∂Xif(Xs, αs)vsi − v̇s

)
+ ∂Xih(Xs, αs)vsi ds+ ∂Xig(XT )vTi

=

∫ T

0
λs · ∂Xif(Xs, αs)vsi + λ̇ · vs + ∂Xih(Xs, αs)vsi ds

+ λ0 · v0︸︷︷︸
=0

−
(
λT − ∂Xg(XT )

)
· vT

=

∫ T

0

(
∂Xf

∗(Xs, αs)λs + λ̇s + ∂Xh(Xs, αs)
)
· vs ds

−
(
λT − ∂Xg(XT )

)
· vT ,

using the summation convention aibi :=
∑

i aibi. Choose now the function v to be zero
outside an interior interval where possibly ∂Xf

∗(Xs, αs)λs+ λ̇s+∂Xh(Xs, αs) is non zero,
so that in particular vT = 0. We see then that in fact ∂Xf

∗(Xs, αs)λs+ λ̇s+∂Xh(Xs, αs)
must be zero (as for the first equation) and we obtain the second equation in (8.5). Since
the integral in the right hand side vanishes, varying vT shows that the final condition for
the Lagrange multiplier λT − ∂Xg(XT ) = 0 also holds.

The third equation. The third equation in (8.8) implies as above that for any function
v(t) compactly supported in A

0 =

∫ T

0
λs · ∂αf(Xs, αs)v + ∂αh(Xs, αs)v ds

which yields
λs · ∂αf(Xs, αs) + ∂αh(Xs, αs) = 0 (8.9)

in the interior α ∈ A − ∂A minimum point (X,λ, α). The last equation in (8.5) is a
stronger condition: it says that α is a minimizer of λs · f(Xs, a) + h(Xs, a) = 0 with
respect to a ∈ A, which clearly implies (8.9) for interior points α ∈ A−∂A. To derive the
Pontryagin principle we will use dynamic programming and the Hamilton-Jacobi-Bellman
equation which is the subject of the next section.
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8.1.4 Dynamic Programming and the Hamilton-Jacobi-Bellman Equa-
tion

The dynamic programming view to solve optimal control problems is based on the idea
to track the optimal solution backwards: at the final time the value function is given
u(x, T ) = g(x) and then, recursively for small time step backwards, find the optimal
control to go from each point (x, t) on the time level t to the time level t+ ∆t with the
value function u(·, t+ ∆t) , see Figure 8.1. Assume for simplicity first that h ≡ 0 then
any path X : [t, t+ ∆t]→ Rd starting in Xt = x will satisfy

u(x, t) = inf
α:[t,t+∆t]→A

u(Xt+∆t, t+ ∆t),

so that if u is differentiable

du(Xt, t) =
(
∂tu(Xt, t) + ∂xu(Xt, t) · f(Xt, αt)

)
dt ≥ 0, (8.10)

since a path from (x, t) with value u(x, t) can lead only to values u(Xt+∆t, t+ ∆t) which
are not smaller than u(x, t). If also the infimum is attained, then an optimal path Xt

∗
exists, with control αt∗, and satisfies

du(Xt
∗, t) =

(
∂tu(Xt

∗, t) + ∂xu(Xt
∗, t) · f(Xt

∗, α
t
∗)
)

dt = 0. (8.11)

The combination of (8.10) and (8.11) implies that

∂tu(x, t) + min
α∈A

(
∂xu(x, t) · f(x, α)

)
= 0 t < T

u(·, T ) = g,

which is the Hamilton-Jacobi-Bellman equation in the special case h ≡ 0.

t

x

t

t + ∆t

t + 2∆t

Figure 8.1: Illustration of dynamics programming.

The case with h non zero follows similarly by noting that now

0 = inf
α:[t,t+∆t]→A

(∫ t+∆t

t
h(Xs, αs) ds+ u(Xt+∆t, t+ ∆t)− u(x, t)

)
, (8.12)
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which for differentiable u implies the Hamilton-Jacobi-Bellman equation (8.4)

0 = inf
α∈A

(
h(x, α) + ∂tu(x, t) + ∂xu(x, t) · f(x, α)

)
= ∂tu(x, t) + min

α∈A

(
∂xu(x, t) · f(x, α) + h(x, α)

)
︸ ︷︷ ︸

=:H
(
∂xu(x,t),x

) t < T,

g = u(·, T ).

Note that this derivation did not assume that an optimal path is attained, but that u is
differentiable which in general is not true. There is fortunately a complete theory for
non differentiable solutions to Hamilton-Jacobi equations, with its basics presented in
Section 8.1.6. First we shall relate the Lagrange multiplier method with the Pontryagin
principle to the Hamilton-Jacobi-Bellman equation using charateristics.

8.1.5 Characteristics and the Pontryagin Principle

The following theorem shows that the characteristics of the Hamilton-Jacobi equation is
a Hamiltonian system.

Theorem 8.7. Assume u ∈ C2, H ∈ C1 and

Ẋt = ∂λH
(
λt, Xt

)
with λt := ∂xu(Xt, t). Then the characteristics (Xt, λt) satisfy the Hamiltonian system

Ẋt = ∂λH(λt, Xt)

λ̇t = −∂XH(λt, Xt).
(8.13)

Proof. The goal is to verify that the construction of Xt implies that λ has the dynamics
(8.13). The definition Ẋt = ∂λH(λt, Xt) implies by x-differentiation of the Hamilton-
Jacobi equation along the path (Xt, t)

0 = ∂xk∂tu(Xt, t) +
∑
j

∂λjH
(
∂xu(Xt, t), Xt

)
∂xk∂xju(Xt, t)︸ ︷︷ ︸

=∂xj ∂xku

+∂xkH
(
∂xu(Xt, t), Xt

)

=
d

dt
∂xku(Xt, t) + ∂xkH

(
∂xu(Xt, t), Xt

)
which by the definition λt := ∂xu(Xt, t) is precisely λ̇t + ∂xH(λt, Xt) = 0.

The next step is to relate the characteristics Xt, λt to the solution of the Lagrange
principle (8.5). But note first that the Hamiltonian H in general is not differentiable,
even if f and h are very regular: for instance Ẋ = f(Xt) and h(x, α) = xα implies
for A = [−1, 1] that the Hamiltonian becomes H(λ, x) = λf(x) − |x| which is only
Lipschitz continuous, that is |H(λ, x)−H(λ, y)| ≤ K|x− y| with the Lipschitz constant
K = 1 +‖λ ·∂xf(·)‖∞ in this case. In fact if f and h are bounded differentiable functions
the Hamiltonian will always be Lipschitz continuous satisfying |H(λ, x) − H(ν, y)| ≤
K(|λ− ν|+ |x− y|) for some constant K, see Exercise ??.
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Theorem 8.8. Assume that f, h are x-differentiable in (x, α∗) and a control α∗ is
optimal for a point (x, λ), i.e.

λ · f(x, α∗) + h(x, α∗) = H(λ, x),

and suppose also that H is differentiable in the point or that α∗ is unique. Then

f(x, α∗) = ∂λH(λ, x),

λ · ∂xif(x, α∗) + ∂xih(x, α∗) = ∂xiH(λ, x).
(8.14)

Proof. We have for any w, v ∈ Rd

H(λ+ w, x+ v)−H(λ, x) ≤ (λ+ w) · f(x+ v, α∗) + h(x+ v, α∗)

− λ · f(x, α∗)− h(x, α∗)

= w · f(x, α∗) +
d∑
i=1

(λ · ∂xif + ∂xih)vi + o(|v|+ |w|)

which implies (8.14) by choosing w and v in all directions.

This Theorem shows that the Hamiltonian system (8.13) is the same as the system
(8.5), given by the Lagrange principle using the optimal control α∗ with the Pontryagin
principle

λ · f(x, α∗) + h(x, α∗) = inf
α∈A

(
λ · f(x, α) + h(x, α)

)
=: H(λ, x).

If α∗ is not unique (i.e not a single point) the proof shows that (8.14) still holds for the
optimal controls, so that ∂λH and ∂xH become set valued. We conclude that non unique
local controls α∗ is the phenomenon that makes the Hamiltonian non differentiable in
certain points. In particular a differentiable Hamiltonian gives unique optimal control
fluxes ∂λH and ∂xH, even if α∗ is not a single point. If the Hamiltonian can be explicitly
formulated, it is therefore often practical to use the Hamiltonain system formulation
with the variables X and λ, avoiding the control variable.

Clearly, the Hamiltonian needs to be differentiable for the Hamiltonian system
to make sense; in fact its flux (∂λH,−∂xH) must be Lipschitz continuous to give well
posedness. On the other hand we shall see that the Hamilton-Jacobi-Bellman formulation,
based on dynamic programming, leads to non differentiable value functions u, so that
classical solutions lack well posedness. The mathematical setting for optimal control
therefore seemed somewhat troublesome both on the Hamilton-Jacobi PDE level and
on the Hamilton ODE level. In the 1980’s the situation changed: Crandall-Lions-
Evans [8] formulated a complete well posedness theory for generalized so called viscosity
solutions to Hamilton-Jacobi partial differential equations, allowing Lipschitz continuous
Hamiltonians. The theory of viscosity solutions for Hamilton-Jacobi-Bellman partial
differential equations provides good theoretical foundation also for non smooth controls.
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In particular this mathematical theory removes one of Pontryagin’s two reasons1, but
not the other, to favor the ODE approach (8.5) and (8.13): the mathematical theory of
viscosity solutions handles elegantly the inherent non smoothness in control problems;
analogous theoretical convergence results for an ODE approach was developed later based
on the so called minmax solutions, see [38]; we will use an alternative ODE method to
solve optimal control problems numerically based on regularized Hamiltonians, where we
approximate the Hamiltonian with a two times differentiable Hamiltonian, see Section
8.2.

Before we formulate the generalized solutions, we show that classical solutions only
exist for short time in general.

Example 8.9. The Hamilton-Jacobi equation

∂tu−
1

2
(∂xu)2 = 0

has the characteristics
Ẋt = −λt

λ̇t = 0,

which implies Ẋt = constant. If the initial data u(·, T ) is a concave function (e.g. a
smooth version of −|x|) characteristics X will collide, see Figure 8.2. We can understand
this precisely by studying blow-up of the derivative w of ∂xu =: v; since v satisfies

∂tv −
1

2
∂x(v2)︸ ︷︷ ︸
v∂xv

= 0

we have by x−differentiation

∂tw − v∂xw︸ ︷︷ ︸
d
dt
w(Xt,t)

−w2 = 0,

which reduces to the ordinary differential equation for zt := w(Xt, t)

d

dt
z(t) = z2(t).

Its separation of variables solution dz/z2 = dt yields −1/zt = t + C. The constant
becomes C = −T − 1/zT , so that zt = 1/(t − T − 1/zT ) blows up to infinity at time
T − t = 1/zT . For instance if zT = −10, the time to blow-up time is 1/10.

1 citation from chapter one in [33] “This equation of Bellman’s yields an approach to the solution of
the optimal control problem which is closely connected with, but different from, the approach described
in this book (see Chapter 9). It is worth mentioning that the assumption regarding the continuous
differentiability of the functional (9.8) [(8.3) here] is not fulfilled in even the simplest cases, so that
Bellman’s arguments yield a good heuristic method rather than a mathematical solution of the problem.
The maximum principle, apart from its sound mathematical basis, also has the advantage that it leads
to a system of ordinary differential equations, whereas Bellman’s approach requires the solution of a
partial differential equation.”

86



8.1.6 Generalized Viscosity Solutions of Hamilton-Jacobi-Bellman Equa-
tions

Example 8.9 shows that Hamilton-Jacobi equations do in general not have global classical
solutions – after finite time the derivative can become infinitely large even with smooth
initial data and a smooth Hamiltonian. Therefore a more general solution concept
is needed. We shall describe the so called viscosity solutions introduced by Crandall
and Lions in [9], which can be characterised by the limit of viscous approximations uε

satisfying for ε > 0

∂tu
ε(x, t) +H

(
∂xu

ε(x, t), x
)

+ ε∂xxu
ε(x, t) = 0 t < T

uε(·, T ) = g.

The function uε is also a value function, now for the stochastic optimal control problem

dXt = f(Xt, αt)dt+
√

2ε dW t t > 0

with the objective to minimize

min
α

E
[
g(XT ) +

∫ T

0
h(Xt, αt)dt

∣∣∣ X0given
]
,

over adapted controls α : [0, T ]→ A, where W : [0,∞)→ Rd is the d-dimensional Wiener
process with independent components. Here adapted controls means that αt does not
use values of W s for s > t. Section 8.3 shows that the value function for this optimal
control problem solves the second order Hamilton-Jacobi equation, that is

uε(x, t) = min
α

E
[
g(XT ) +

∫ T

0
h(Xt, αt) dt

∣∣∣ Xt = x
]
.

Theorem 8.10 (Crandall-Lions). Assume f, h and g are Lipschitz continuous and
bounded, then the limit limε→0+ u

ε exists. This limit is called the viscosity solution of the
Hamilton-Jacobi equation

∂tu(x, t) +H
(
∂xu(x, t), x

)
= 0 t < T

u(·, T ) = g.
(8.15)

x

t

Figure 8.2: Characteristic curves colliding.
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There are several equivalent ways to describe the viscosity solution directly without
using viscous or stochastic approximations. We shall use the one based on sub and
super differentials presented first in [8]. To simplify the notation introduce first the
space-time coordinate y = (x, t), the space-time gradient p = (px, pt) ∈ Rd+1 (related to
(∂xu(y), ∂tu(y))) and write the Hamilton-Jacobi operator F (p, y) := pt +H(px, x). For a
bounded uniformly continuous function v : Rd × [0, T ]→ R define for each space-time
point y its sub differential set

D−v(y) = {p ∈ Rd+1 : lim inf
z→0

|z|−1
(
v(y + z)− v(y)− p · z

)
≥ 0}

and its super differential set

D+v(y) = {p ∈ Rd+1 : lim sup
z→0

|z|−1
(
v(y + z)− v(y)− p · z

)
≤ 0}.

These two sets always exist (one may be empty), see Example 8.11; they degenerate to a
single point, the space-time gradient of v, precisely if v is differentiable, that is when

D−v(y) = D+v(y) = {p} ⇐⇒ v(y + z)− v(y)− p · z = o(z).

Example 8.11. Let u(x) = −|x|, then

D+u(x) = D−u(x) = {−sgn(x)} x 6= 0

D−u(0) = ∅ x = 0

D+u(0) = [−1, 1] x = 0

see Figure 8.3.

x

D+

x

D−

Figure 8.3: Illustration of the super and subdifferential sets for −|x|.

Definition 8.12 (Viscosity solution). A bounded uniformly continuous function u is a
viscosity solution to (8.15) if u(·, T ) = g and for each point y = (x, t)

F (p, y) ≥ 0 for all p ∈ D+u(y)

and
F (p, y) ≤ 0 for all p ∈ D−u(y).
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Theorem 8.13. The first variation of the value function is in the superdifferential.

Proof. Consider an optimal path X∗, starting in ȳ = (x̄, t̄), with control α∗. We define
the first variation, (λt̄, ν t̄) ∈ Rd × R, of the value function along this path, with respect
to perturbations in the initial point ȳ: let Xy be a path starting from a point y = (x, t),
close to ȳ, using the control α∗, the differentiability of the flux f and the cost h implies
that the first variation satisfies

λt̄i = lim
z→0

z−1
( ∫ T

t̄
h(Xt

x̄+zei , α
t
∗)− h(Xt

x̄, α
t
∗) dt+ g(XT

x̄+zei)− g(XT
x̄ )
)

(8.16)

and
−λ̇t = ∂Xf(Xt

∗, α
t
∗)λ

t + ∂Xh(Xt
∗, α

t
∗) t̄ < t < T,

λT = g′(XT
∗ ),

where ei is the ith unit basis vector in Rd. The definition of the value function shows
that

−h(Xt
∗, α

t
∗) =

du

dt
(Xt
∗, t) = λt · f(Xt

∗, α
t
∗) + νt

so that
νt = −λt · f(Xt

∗, α
t
∗)− h(Xt

∗, α
t
∗).

Since the value function is the minimum possible cost, we have by (8.16)

lim sup
s→0+

s−1
(
u
(
ȳ + s(y − ȳ)

)
− u(ȳ)

)
≤ lim sup

s→0+
s−1
(∫ T

t̄
h(Xt

ȳ+s(y−ȳ), α
t
∗) dt+ g(XT

ȳ+s(y−ȳ))

−
∫ T

t̄
h(Xt

ȳ, α
t
∗) dt+ g(XT

ȳ )
)

=
(
λt,−

(
λt · f(Xt

∗, α
t
∗) + h(Xt

∗, α
t
∗)
))
· (y − ȳ),

which means precisely that the first variation is in the superdifferential.

Theorem 8.14. The value function is semi-concave, that is for any point (x, t) either
the value function is differentiable or the sub differential is empty (i.e. D−u(x, t) = ∅
and D+u(x, t) is non empty).

Proof. Assume that the subdifferential D−u(y) has at least two elements p− and p+ (we
will show that this leads to a contradiction). Then u is larger or equal to the wedge like
function

u(y) ≥ u(ȳ) + max
(
p− · (y − ȳ), p+ · (y − ȳ)

)
, (8.17)

see Figure 8.4. The definition of the value function shows that the right derivative
satisfies

lim sup
s→0+

s−1
(
u
(
ȳ + s(y − ȳ)

)
− u(ȳ)

)
≤ (λ, ν) · (y − ȳ) (8.18)
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where (λ, ν) is the first variation (in x and t) of u around the optimal path starting in ȳ.
The wedge bound (8.17) implies

lim sup
s→0+

s−1
(
u
(
ȳ + s(y − ȳ)

)
− u(ȳ)

)
≥ max

(
p− · (y − ȳ), p+ · (y − ȳ)

)
,

but the value function cannot be both below a (λ, ν)-half plane (8.18) and above such
wedge function, see Figure 8.5. Therefore the subdifferential can contain at most one point:
either the subdifferential is empty or there is precisely one point p in the subdifferential
and in this case we see that the the first variation coincides with this point (λ, ν) = p,
that is the value function is differentiable

u,max
(
p− · (y − ȳ), p+ · (y − ȳ)

)

y

u

ȳ

Figure 8.4: Characteristic curves colliding.

u,max
(
p− · (y − ȳ), p+ · (y − ȳ)

)
, (λ, ν)

y
ȳ

u

(λ, ν)

Figure 8.5: Characteristic curves colliding.

Theorem 8.15. The value function is a viscosity solution.
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Proof. We have seen in Section 8.1.4 that for the points where the value function is
differentiable it satisfies the Hamilton-Jacobi-Bellman equation. Theorem 8.14 shows
that the value function u is semi-concave. Therefore, by Definition 8.12, it is enough to
verify that p ∈ D+u(x, t) implies pt +H(px, x) ≥ 0. Assume for simplicity that h ≡ 0.

There is a p ∈ D+u(x, t), which is the first variation of u along an optimal path
(X∗, α∗), such that

pt +H(px, x) = p ·
(
f(x, α), 1

)
≥ lim sup

∆t→0+

u(Xt+∆t, t+ ∆t)− u(Xt, t)

∆t
= 0,

using the definition of the superdifferential and dynamic programming. This means that
any optimal control yields a super differential point p satisfying pt +H(px, x) ≥ 0. To
finish the proof we note that any point in the super differential set can for some s ∈ [0, 1]
be written as a convex combination sp1 + (1− s)p2 of two points p1 and p2 in the super
differential that correspond to (different) optimal controls. Since H is concave in p (see
Exercise 8.19) there holds

sp1
t + (1− s)p2

t +H
(
sp1
x + (1− s)p2

x, x
)

≥ s
(
p1
t +H(p1

x, x)
)

+ (1− s)
(
p2
t +H(p2

x, x)
)

≥ 0

which shows that u is a viscosity solution. The general case with non zero h is similar as
in (8.12).

Theorem 8.16. Bounded uniformly continuous viscosity solutions are unique.

The standard uniqueness proof uses a special somewhat complex doubling of variables
technique, see [16] inspired by Kruzkov. The maximum norm stability of semi-concave
viscosity solutions in Section 8.1.7 also implies uniqueness.

Example 8.17. Consider the function u(x, t) = −|x|. We have from Example 8.11

D+u(x, t) =

{
(−sgn(x), 0) x 6= 0
([−1, 1], 0) x = 0

and

D−u(x, t) =

{
(−sgn(x), 0) x 6= 0

∅ x = 0.

Consequently for H(λ, x) := (1− |λ|2)/2 we obtain

pt +H(px, x) ≥ 0 q ∈ D+u(x, t)

pt +H(px, x) = 0 q ∈ D−u(x, t)

so that −|x| is a viscosity solution to ∂tu + H(∂xu, x) = 0. Similarly the function
u(x, t) = |x| satisfies

D−u(x, t) =

{
(sgn(x), 0) x 6= 0
([−1, 1], 0) x = 0
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and therefore

pt +H(px, 0) > 0 for q ∈ (−1, 1) ⊂ D−u(0, t)

so that |x| is not a viscosity solution to ∂tu+H(∂xu, x) = 0.

8.1.6.1 The Pontryagin Principle for Generalized Solutions

Assume that X∗ and α∗ is an optimal control solution. Let

−λ̇t∗ = ∂Xf(Xt
∗, α

t
∗)λ

t
∗ + ∂Xh(Xt

∗, α
t
∗) t < T,

λT∗ = g′(XT
∗ ).

The proof of Theorem 8.13 shows first that
(
λt∗,−

(
λt∗ · f(Xt

∗, α
t
∗) + h(Xt

∗, α
t
∗)
))

is the

first variation in x and t of the value function at the point (Xt, t) and concludes then
that the first variation is in the superdifferential, that is(

λt∗,−
(
λt∗ · f(Xt

∗, α
t
∗) + h(Xt

∗, α
t
∗)
))
∈ D+u(Xt

∗, t).

Since the value function is a viscosity solution we conclude that

−
(
λt∗ · f(Xt

∗, α
t
∗) + h(Xt

∗, α
t
∗)
)

+ H(λt∗, x)︸ ︷︷ ︸
minα∈A

(
λt∗·f(Xt

∗,α
t
∗)+h(Xt

∗,α
t
∗)
) ≥ 0

which means that α∗ satisfies the Pontryagin principle also in the case of non differentiable
solutions to Hamilton-Jacobi equations.

8.1.6.2 Semiconcave Value Functions

There is an alternative and maybe more illustrative proof of the last theorem in a special
setting: namely when the set of backward optimal paths {(X̄t, t) : t < T}, solving
(8.29) and (8.47), may collide into a codimension one surface Γ in space-time Rd × [0, T ].
Assume the value function is attained by precisely one path for (x, t) ∈ Rd× [0, T ]−Γ and
that the minimum is attained by precisely two paths at (x, t) ∈ Γ. Colliding backward
paths (or characteristics) X in general lead to a discontinuity in the gradient of the value
function, λ = ux, on the surface of collision, which means that the surface is a shock
wave for the multidimensional system of conservation laws

∂tλ
i(x, t) +

d

dxi
H
(
λ(x, t), x

)
= 0 (x, t) ∈ Rd × [0, T ], i = 1, . . . , d.

Denote the jump, for fixed t, of a function w at Γ by [w]. To have two colliding paths
at a point on Γ requires that λ has a jump [λ] 6= 0 there, since [λ] = 0 yields only one
path. The implicit function theorem shows that for fixed t any compact subset of the set
Γ(t) ≡ Γ∩ (Rd×{t}) is a C1 surface: the surface Γ(t) is defined by the value functions, u1
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and u2 for the two paths colliding on Γ, being equal on Γ and there are directions n̂ ∈ Rd
so that the Jacobian determinant n̂ · ∇(u1− u2) = n̂ · [λ] 6= 0. Therefore compact subsets
of the surface Γ(t) has a well defined unit normal n. We assume that Γ(t) has a normal
everywhere and we will prove that [λ] · n ≤ 0, which implies that u is semi-concave.

Two optimal backwards paths that collide on (x, t) ∈ Γ must depart in opposite
direction away from Γ, that is n ·Hλ(λ+, x) ≥ 0 and n ·Hλ(λ−, x) ≤ 0, see Figure 8.6,
so that

0 ≤ n · [Hλ(λ, x)] = n ·
∫ 1

0
Hλλ(λ− + s[λ]) ds︸ ︷︷ ︸

=:H̄λλ≤ 0

[λ]. (8.19)

We know that u is continuous also around Γ, therefore the jump of the gradient, [ux],
has to be parallel to the normal, n, of the surface Γ. Lemma 8.28 shows that [ux] = [λ]
and we conclude that this jump [λ] is parallel to n so that [λ] = [λ · n]n, which combined
with (8.19) shows that

0 ≤ [λ · n]H̄λλ n · n.

The λ-concavity of the Hamiltonian, see Exercise 8.19, implies that the matrix Hλλ is
negative semidefinite and consequently

H̄λλ n · n ≤ 0, (8.20)

which proves the claim [λ] · n ≤ 0, if we can exclude equality in (8.20). Equality in (8.20)
means that H̄λλ n = 0 and implies Hλ(λ+(t), x) = Hλ(λ−(t), x) which is not compatible
with two outgoing backward paths. Hence equality in (8.20) is ruled out. This derivation
can be extended to several paths colliding into one point, see Exercise 8.18.

x

t Γ

Figure 8.6: Optimal paths departing away from Γ.

Exercise 8.18.
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Exercise 8.19. Show that the Hamiltonian

H(λ, x) := min
α∈A

(
λ · f(x, α) + h(x, α)

)
is concave in the λ-variable, that is show that for each λ1 and λ2 in Rd and for all
s ∈ [0, 1] there holds

H
(
sλ1 + (1− s)λ2, x

)
≥ sH(λ1, x) + (1− s)H(λ2, x).

8.1.7 Maximum Norm Stability of Viscosity Solutions

An important aspect of the viscosity solution of the Hamilton-Jacobi-Bellman equation
is its maximum norm stability with respect to maximum norm perturbations of the data,
in this case the Hamiltonian and the initial data; that is the value function is stable with
respect to perturbations of the flux f and cost functions h and g.

Assume first for simplicity that the optimal control is attained and that the value
function is differentiable for two different optimal control problems with data f, h, g and
the Hamiltonian H, respectively f̄ , h̄, ḡ and Hamiltonian H̄. The general case with only
superdifferentiable value functions is studied afterwards. We have for the special case
with the same initial data X̄0 = X0 and ḡ = g∫ T

0
h̄(X̄t, ᾱt) dt+ ḡ(X̄T )︸ ︷︷ ︸

ū(X̄0,0)

−
∫ T

0
h(Xt, αt) dt+ g(XT )︸ ︷︷ ︸

u(X0,0)

=

∫ T

0
h̄(X̄t, ᾱt) dt+ u(X̄T , T )− u(X0, 0)︸ ︷︷ ︸

u(X̄0,0)

=

∫ T

0
h̄(X̄t, ᾱt) dt+

∫ T

0
du(X̄t, t)

=

∫ T

0
∂tu(X̄t, t)︸ ︷︷ ︸

=−H
(
∂xu(X̄t,t),X̄t

)+ ∂xu(X̄t, t) · f̄(X̄t, ᾱt) + h̄(X̄t, ᾱt)︸ ︷︷ ︸
≥H̄
(
∂xu(X̄t,t),X̄t

) dt

≥
∫ T

0
(H̄ −H)

(
∂xu(X̄t, t), X̄t

)
dt.

(8.21)

The more general case with ḡ 6= g yields the additional error term

(g − ḡ)(X̄T )

to the right hand side in (8.21).
To find an upper bound, repeat the derivation above, replacing u along X̄t with ū
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along Xt, to obtain∫ T

0
h(Xt, αt) dt+ g(XT )︸ ︷︷ ︸

u(X0,0)

−
∫ T

0
h̄(X̄t, ᾱt) dt+ ḡ(X̄T )︸ ︷︷ ︸

ū(X̄0.0)

=

∫ T

0
h(Xt, αt) dt+ ū(XT , T )− ū(X̄0, 0)︸ ︷︷ ︸

ū(X0,0)

=

∫ T

0
h(Xt, αt) dt+

∫ T

0
dū(Xt, t)

=

∫ T

0
∂tū(Xt, t)︸ ︷︷ ︸

=−H̄
(
∂xū(Xt,t),Xt

)+ ∂xū(Xt, t) · f(Xt, αt) + h(Xt, αt)︸ ︷︷ ︸
≥H
(
∂xū(Xt,t),Xt

) dt

≥
∫ T

0
(H − H̄)

(
∂xū(Xt, t), Xt

)
dt.

The two estimates above yields both an upper and a lower bound∫ T

0
(H − H̄)

(
∂xū(Xt, t), Xt

)
dt ≤ u(X0, 0)− ū(X0, 0)

≤
∫ T

0
(H − H̄)

(
∂xu(X̄t, t), X̄t

)
dt.

(8.22)

Remark 8.20 (No minimizers). If there are no minimizers (α,X) and (ᾱ, X̄), then for
every ε > 0, we can choose controls α, ᾱ with corresponding states X, X̄ such that

Elhs − ε ≤ u(X0, 0)− ū(X0, 0) ≤ Erhs + ε

with Elhs, Erhs being the left and right hand sides of (8.22).

Solutions to Hamilton-Jacobi equations are in general not differentiable as we have
seen in Example 8.9. Let us extend the derivation of (8.22) to a case when u is not
differentiable. If u is a non differentiable semiconcave solution to a Hamilton-Jacobi
equation, Definition 8.12 of the viscosity solution reduces to

pt +H(px, x) = 0 for all (pt, px) ∈ Du(x, t) and all t < T, x ∈ Rd,
pt +H(px, x) ≥ 0 for all (pt, px) ∈ D+u(x, t) and all t < T, x ∈ Rd,
u(·, T ) = g.

Consider now a point (x, t) where the value function is not differentiable. This means
that in (8.21) we can for each t choose a point (pt, px) ∈ D+u(Xt, t) so that∫ T

0
du(X̄t, t) +

∫ T

0
h̄(X̄t, ᾱt) dt =

∫ T

0

(
pt + px · f̄(X̄t, ᾱt) + h̄(X̄t, ᾱt)

)
dt

≥
∫ T

0

(
pt + H̄(px, X̄

t)
)
dt ≥

∫ T

0

(
−H + H̄

)
(px, X̄

t) dt .
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Note that the only difference compared to the differentiable case is the inequality
instead of equality in the last step, which uses that optimal control problems have
semi-concave viscosity solutions. The analogous formulation holds for ū. Consequently
(8.22) holds for some (pt, px) ∈ D+u(X̄t, t) replacing (∂tu(X̄t, t), ∂xu(X̄t, t)) and some
(p̄t, p̄x) ∈ D+ū(Xt, t) replacing

(
∂tū(Xt, t), ∂xū(Xt, t)

)
.

The present analysis is in principle valid even when we replace Rd to be an infinite
dimensional Hilbert space for optimal control of partial differential equations, although
existence and semiconcavity of solutions is not derived in full generality, see [36]

8.2 Numerical Approximation of ODE Constrained Mini-
mization

We consider numerical approximations with the time steps

tn =
n

N
T, n = 0, 1, 2, . . . , N.

The most basic approximation is based on the minimization

min
ᾱ∈BN

(
g(X̄N ) +

N−1∑
n=0

h(X̄n, ᾱn)∆t
)
, (8.23)

where ∆t = tn+1 − tn, X̄0 = X0 and X̄n ≡ X̄(tn), for 1 ≤ n ≤ N , satisfy the forward
Euler constraint

X̄n+1 = X̄n + ∆t f(X̄n, ᾱn). (8.24)

The existence of at least one minimum of (8.23) is clear since it is a minimization of a
continuous function in the compact set BN . The Lagrange principle can be used to solve
such a constrained minimization problem. We will focus on a variant of this method
based on the discrete Pontryagin principle where the control is eliminated

X̄n+1 = X̄n + ∆tHλ

(
λ̄n+1, X̄n

)
, X̄0 = X0,

λ̄n = λ̄n+1 + ∆tHx

(
λ̄n+1, X̄n

)
, λ̄N = gx(X̄N ),

(8.25)

called the symplectic Euler method for the Hamiltonian system (8.13), cf. [20].
A natural question is in what sense the discrete problem (8.25) is an approximation

to the continuous optimal control problem (8.13). In this section we show that the
value function of the discrete problem approximates the continuous value function, using
the theory of viscosity solutions to Hamilton-Jacobi equations to construct and analyse
regularized Hamiltonians.

Our analysis is a kind of backward error analysis. The standard backward error
analysis for Hamiltonian systems uses an analytic Hamiltonian and shows that symplectic
one step schemes generate approximate paths that solve a modified Hamiltonian system,
with the perturbed Hamiltonian given by a series expansion cf. [20]. Our backward error
analysis is different and more related to the standard finite element analysis. We first
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extend the approximate Euler solution to a continuous piecewise linear function in time
and define a discrete value function, ū : Rd × [0, T ] → R. This value function satisfies
a perturbed Hamilton-Jacobi partial differential equation, with a small residual error.
A special case of our analysis shows that if the optimal α in (8.5) is a differentiable
function of x and λ and if the optimal backward paths, X̄(s) for s < T , do not collide,
more about this later, the discrete value functions, ū, for the Pontryagin method (8.25)
satisfies a Hamilton-Jacobi equation:

ūt +H(ūx, ·) = O(∆t), as ∆t→ 0+, (8.26)

where

ū(x, tm) ≡ min
ᾱ∈BN

(
g(X̄N ) +

N−1∑
n=m

h(X̄n, ᾱn)∆t

)
(8.27)

for solutions X̄ to with X̄(tm) ≡ X̄m = x. The minimum in (8.27) is taken over the
solutions to the discrete Pontryagin principle (8.25). The maximum norm stability of
Hamilton–Jacobi PDE solutions and a comparison between the two equations (8.4) and
(8.26) show that

O‖u− ū‖C = O(∆t). (8.28)

However, in general the optimal controls ᾱ and α in (8.24) and (8.1) are discontinuous
functions of x, and λ̄ or ux, respectively, and the backward paths do collide. There are
two different reasons for discontinuous controls:

• The Hamiltonian is in general only Lipschitz continuous, even if f and h are
smooth.

• The optimal backward paths may collide.

The standard error analysis for ordinary differential equations is directly applicable to
control problems when the time derivative of the control function is integrable. But
general control problems with discontinuous controls require alternative analysis, which
will be in two steps. The first step in our error analysis is to construct regularizations of
the functions f and h, based on (8.14) applied to a C2(Rd×Rd) approximate Hamiltonian
Hδ which is λ-concave and satisfies

‖Hδ −H‖C = O(δ), as δ → 0+,

and to introduce the regularized paths

X̄n+1 = X̄n + ∆tHδ
λ

(
λ̄n+1, X̄n

)
, X̄0 = X0,

λ̄n = λ̄n+1 + ∆tHδ
x

(
λ̄n+1, X̄n

)
, λ̄N = gx(X̄N ).

(8.29)

We will sometimes use the notation f δ ≡ Hδ
λ and hδ ≡ Hδ − λHδ

λ.
The second step is to estimate the residual of the discrete value function in the

Hamilton-Jacobi-Bellman equation (8.4). The maximum norm stability of viscosity
solutions and the residual estimate imply then an estimate for the error in the value
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function. An approximation of the form (8.29) may be viewed as a general symplectic
one step method for the Hamiltonian system (8.13), see Section 8.2.7.

There is a second reason to use Hamiltonians with smooth flux: in practice the
nonlinear boundary value problem (8.29) has to be solved by iterations. If the flux is
not continuous it seems difficult to construct a convergent iterative method, in any case
iterations perform better with smoother solutions. When the Hamiltonian can be formed
explicitly, the Pontryagin based method has the advantage that the Newton method can
be applied to solve the discrete nonlinear Hamiltonian system with a sparse Jacobian.

If the optimal discrete backward paths X̄(t) in (8.29) collide on a codimension one
surface Γ in Rd × [0, T ], the dual variable λ̄ = ūx may have a discontinuity at Γ, as a
function of x. Theorems 8.27 and ?? prove, for ū based on the Pontryagin method, that
in the viscosity solution sense

ūt +H(ūx, ·) = O(∆t+ δ +
(∆t)2

δ
), (8.30)

where the discrete value function, ū, in (8.27) has been modified to

ū(x, tm) = min
X̄m=x

(
g(X̄N ) +

N−1∑
n=m

hδ(X̄n, λ̄n+1)∆t
)
. (8.31)

The regularizations make the right hand side in (8.30) a Lipschitz continuous function of(
λ̄(t), X̄(t), t

)
, bounded by C(∆t + δ + (∆t)2

δ ) where C depends only on the Lipschitz
constants of f , h and λ̄. Therefore the maximum norm stability can be used to prove
‖u − ū‖C = O(∆t), for δ = ∆t. Without the regularization, the corresponding error
term to in (8.30) is not well defined, even if ūx is smooth. A similar proof applies to
the minimization method for smooth Hamiltonians, see [36]. It is important to note
that for non smooth control the solution paths X̄ may not converge although the value
function converges as ∆t and δ tend to zero. Therefore our backward error analysis
uses consistency with the Hamilton-Jacobi partial differential equation and not with
the Hamiltonian system. Convergence of the approximate path (X̄, λ̄) typically requires
Lipschitz continuous flux (Hλ, Hx), which we do not assume in this work.

8.2.1 Optimization Examples

We give some examples when the Hamiltonian, H, is not a differentiable function, and
difficulties associated with this.

Example 8.21. Let B = {−1, 1}, f = α, h = x2/2 and g = 0. Here the continuous
minimization problem (8.3) has no minimizer among the measurable functions. A
solution in discrete time using a nonregularized Pontryagin method or discrete dynamic
programming will behave as in Figure 8.7. First the solution approaches the time axis,
and then it oscillates back and forth. As ∆t becomes smaller these oscillations do so
as well. The infimum for the continuous problem corresponds to a solution X(t) that
approaches the time-axis, and then remains on it. However, this corresponds to α = 0,
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x

t
T

Figure 8.7: Example 8.21 where the continuous problem has no minimizer among the
measurable functions.

which is not in B, and hence the infimum is not attained. A cure to always have an
attained minimizing path for the continuous problem is to use controls which are Young
measures, see [41] and [31]. We note that the Hamiltonian, H(λ, x) = −|λ|+ x2/2, in
this example is not differentiable.

Example 8.22. Let B = [−1, 1], f = α, h = x2/2 and g = 0, which is similar to the
previous example but now the set of admissible controls, B, has been changed slightly.
Since 0 ∈ B, the infimum in (8.3) is now obtained. However, the Hamiltonian remains
unchanged compared to the previous example, and a solution to the discrete Pontryagin
principle would still be oscillating as in Figure 8.7.

Example 8.23. Let B = [−1, 1], f = α, h = 0 and g = x2. The Hamiltonian is
nondifferentiable: H = −|λ|. If T = 1 there are infinitely many solutions to the
continuous minimization, the discrete minimization and the unregularized discrete
Pontryagin principle, when X0 ∈ (−1, 1), as depicted in Figure 8.8.

The problems occurring in the previous examples are all cured by regularizing the
Hamiltonian and using the scheme (8.29). That is, the solution to (8.29) in the first two
examples is a smooth curve that obtains a increasingly sharp kink near the time-axis
as the regularizing parameter, δ, decreases, see Figure 8.9. In the last of the previous
examples we, in contrast to the other methods, obtain a unique solution to (8.29).

Another problem that has not to do with nondifferentiability of the Hamiltonian is
shown in the following example:

Example 8.24. Let B = [−1, 1], f = α, h = 0 and g = −|x|. Although H is
discontinuous here, this is not what causes problem. The problem is that optimal paths
collide backwards, see Figure 8.10. When X0 = 0 there are two solutions, one going to
the left, and one to the right. The left solution has λ = 1 and the right solution has
λ = −1, so on the time-axis λ is discontinuous. For these values of λ, the Hamiltonian is
differentiable, therefore the nonsmoothness of the Hamiltonian is not the issue here. It is
rather the global properties of the problem that play a role. This problem is difficult to
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Figure 8.8: Example 8.23 with g(x) = x2 gives infinitely many minimizing paths through
the same starting point.
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Figure 8.9: Solution of the discrete optimization problem (8.29) in Example 8.21 and 8.22
for δ = ∆t = 1/N , X0 = 0.8 and Hδ

λ(λ, x) = − tanh(λ/δ), using the Newton method. To
the left, N = 100, and to the right, N = 1000. The dashed lines shows the solution after
each Newton iteration.
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Figure 8.10: Solution of the optimization problem in Example 8.24, where g(x) = −|x|,
f = α, h = 0 and B = [−1, 1], for four different starting points.

regularize, and it will not be done here. However, we still can show convergence of the
scheme (8.29). This is done in Section ??.

When using (8.29) to solve the minimization problem (8.3) it is assumed that the
Hamiltonian is exactly known. Is this an unrealistic assumption in practice? In the
following two examples we indicate that there exist interesting examples where we know
the Hamiltonian. The first has to do with volatility estimation in finance, and the latter
with optimization of an electric contact.

8.2.1.1 Implied Volatility

Black-Scholes equation for pricing general options uses the volatility of the underlying
asset. This parameter, however, is difficult to estimate. One way of estimation is to
use measured market values of options on the considered asset for standard European
contracts. This way of implicitly determining the volatility is called implied volatility. In
the simplest setting, the formula2 for the option price based on constant interest rate
and volatility is used. Then the result typically gives different values of the volatility for
different stock price – instead of obtaining a constant volatility, the implied volatility
becomes a strictly convex function of the stock price called the volatility smile. Below
we shall fit a model allowing the volatility to be a general function to observed option
prices. That requires solution of a partial differential equation, since an explicit formula
is not available. Another ingredient in our reconstruction is to use the so called Dupire
equation for standard European put and call option prices as a function of the strike
price and strike time. Using an equation of the option value as a function of the strike
price and strike time, for given stock price, is computational more efficient, since the
option data is for different strike price and strike times, with fixed stock price. To use
the standard Black-Scholes equation for the option value as a function of the stock price

2the option price formula is C(s, t;K,T ) = sΦ(d1) −Ke−r(T−t)Φ(d2), where d1 :=
(

ln(s/K) + (r +

σ2/2)(T − t)
)
/
(
σ(T − t)1/2

)
, d2 := d1−σ(T − t)1/2 and Φ is the standard normal cumulative distribution

function.
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would require to solve different equations for each data point, which is also possible but
more computationally expensive.

We assume that the financial asset obeys the following Ito stochastic differential
equation,

dS(t) = µS(t)dt+ σ
(
t, S(t)

)
S(t)dW (t), (8.32)

where S(t) is the price of the asset at time t, µ is a drift term, σ is the volatility and
W : R+ → R is the Wiener process. If the volatility is a sufficiently regular function
of S, t, the strike level K and the maturity date T , the Dupire equation holds for the
option price C(T,K) as a function of T and K, with the present time t = 0 and stock
price S(0) = S fixed,

CT − σ̃CKK = 0, T ∈ (0,∞),K > 0,

C(0,K) = max{S −K, 0} K > 0,
(8.33)

where

σ̃(T,K) ≡ σ2(T,K)K2

2
.

Here the contract is an european call option with payoff function max{S(T )−K, 0}. We
have for simplicity assumed the bank rate to be zero. A derivation of Dupire’s equation
(8.33) is presented in Example 8.25 in the special setting r = 0; the general case is studied
in [10].

The optimization problem now consists of finding σ(T,K) such that∫ T̂

0

∫
R+

(C − Ĉ)2(T,K)w(T,K)dKdT (8.34)

is minimized, where Ĉ are the measured market values on option prices for different
strike prices and strike times and w is a non negative weight function. In practice, Ĉ is
not known everywhere, but for the sake of simplicity, we assume it is and set w ≡ 1, that
is there exists a future time T̂ such that Ĉ is defined in R+ × [0, T̂ ]. If the geometric
Brownian motion would be a perfect model for the evolution of the price of the asset,
the function σ(T,K) would be constant, but as this is not the case, the σ that minimizes
(8.34) (if a minimizer exists) varies with T and K.

It is possible to use (8.13) and (8.25) to perform the minimization of (8.34) over the
solutions to a finite difference discretization of (8.33)

min
σ̃

∫ T̂

0
∆K

∑
i

(C − Ĉ)2
i dT

subject to
∂Ci(T )

∂T
= σ̃D2Ci(T ),

Ci(0) = max(S − i∆K, 0),

(8.35)

where we now let Ci(T ) ≈ C(T, i∆K) denote the discretized prize function, for strike
time T and strike price i∆K, and D2 is the standard three point difference approximation
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of the second order partial derivative in K, that is (D2C)i = (Ci+1 − 2Ci + Ci−1)/∆K2.
In order to have a finite dimensional problem we restrict to a compact interval (0,M∆K)
in K with the boundary conditions

C0 = S, CM = 0.

This formulation will be exactly the same as in (8.13) if ∆K = 1, and otherwise it
requires to use a new scalar product (x, y) := ∆K

∑
i xiyi and let the partial derivative

∂λ be replaced by the following Gateaux derivative, Hλ,

lim
ε→0

ε−1
(
H(λ+ εv, C)−H(λ,C)

)
=:
(
Hλ(λ,C), v

)
,

and similarly for ∂C ; so that the partial derivative is a factor of ∆K smaller than the
Gateaux derivative. This complication with using ∆K 6= 1 is introduced in order to have
a consistent formulation with the infinite dimensional case, where a partial derivative of
a functional becomes zero but the Gateaux derivative is nonzero and meaningful, see the
next example. The reader may avoid this be considering ∆K = 1.

The Hamiltonian for this problem is

H(λ,C) = ∆K min
σ̃

M−1∑
i=1

(
λiσ̃i(D

2C)i + (C − Ĉ)2
i

)
= ∆K

M−1∑
i=1

(
min
σ̃i

λiσ̃i(D
2C)i + (C − Ĉ)2

i

)
where λ is the adjoint associated to the constraint (8.35). We have used that the
components of the flux, f , in this problem is σ̃i(D

2C)i, that the running cost, h, is
∆K

∑
i(C − Ĉ)2

i , and further that each σ̃i minimizes λiσ̃i(D
2C)i separately, so that the

minimum can be moved inside the sum. If we make the simplifying assumption that
0 ≤ σ− ≤ σ̃ ≤ σ+ <∞ we may introduce a function s : R→ R as

s(y) ≡ min
σ̃
y σ̃ =

{
yσ−, y > 0

yσ+, y < 0.

Using s, it is possible to write the Hamiltonian as

H(λ,C) = ∆K

M−1∑
i=1

(
s
(
λi(D

2C)i
)

+
(
C − Ĉ

)2
i

)
.

Since s is nondifferentiable, so is H. However, s may easily be regularized, and it is
possible to obtain the regularization in closed form, e.g. as in Example 1. Using a
regularized version sδ of s, the regularized Hamiltonian becomes

Hδ(λ,C) = ∆K

M−1∑
i=1

(
sδ
(
λi(D

2C)i
)

+
(
C − Ĉ

)2
i

)
,
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which using Gateaux derivatives gives the Hamiltonian system

∂Ci(T )

∂T
= s′δ

(
λi(D

2C)i
)
D2Ci(T ), C0 = S CM = 0,

−∂λi(T )

∂T
= D2

(
s′δ
(
λi(D

2C)i
)
λ
)

+ 2(C − Ĉ)i,

λ0 = λM = 0,

(8.36)

with data
Ci(0) = max(S − i∆K, 0), λ(T̂ ) = 0.

The corresponding Hamilton-Jacobi equation for the value function

u(C, τ) =

∫ T̂

τ

M−1∑
i=1

(C − Ĉ)2
i∆KdT

is
uT +H(uC , C) = 0, T < T̂ ,

u(T̂ , ·) = 0,

where uC is the Gateaux derivative with respect to C in the scalar product (x, y) ≡
∆K

∑
i xi, yi. With this scalar product the Hamiltonian system (8.36) takes the form

(CT , v) = (Hδ
λ, v), ∀v ∈ RM−1

(λT , v) = −(Hδ
C , v), ∀v ∈ RM−1

where Hδ
λ and Hδ

C are the Gateaux derivatives.
A choice of the regularization parameter δ, depending also on data error, can be

obtained e.g. by the discrepancy principle, cf. [39], [12]. The Newton method described
in Section 3 works well to solve the discrete equations for d = 10. The results of one
trial volatility estimation is given in Figure 8.11.

Example 8.25 (Derivation of Dupire’s equation). The Black-Scholes equation for a
general volatility function and interest r = 0 is

∂tf +
σ2(s, t)s2

2
∂ssf = 0 t < T

f(s, T ) = max(K − s, 0)

which defines the option value f(s, t;K,T ). The goal is now to find the equation for
f as a function of K and T . We know from the Kolmogorov backward equation that
f(s, t;K,T ) = E[max(K − ST , 0) | St = s], where dSt = σ(St, t)StdWt. The Kolmogorov
forward equation shows that f(s, t;K,T ) =

∫
R max(K − y, 0)p(y, T ; s, t)dy where

∂T p− ∂yy
(σ2(y, T )y2

2
p
)

= 0 T > t

p(y, t; s, t) = δ(y − s).
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Figure 8.11: Results of a computer experiment where the volatility σ in the picture to
the left is used to obtain the “measured” Ĉ. Uniform noise of amplitude 10−4 is also
added to Ĉ. The error ‖C − Ĉ‖L2 is plotted versus δ in the picture to the right. In the
middle picture the approximate volatility, s′δ is shown for the value of δ (= 3 · 10−6) that
minimizes ‖s′δ − σ‖L2 . In this experiment, M = 9 and N = 100.

We observe that ∂KKf(s, t;K,T ) =
∫
R δ(K − y)p(y, T ; s, t)dy = p(K,T ; s, t) and conse-

quently

∂T∂KKf(s, t;K,T )− ∂KK
(σ2(K,T )K2

2
∂KKf(s, t;K,T )

)
= 0 T > t,

can be integrated to obtain

∂T f(s, t;K,T )−
(σ2(K,T )K2

2
∂KKf(s, t;K,T )

)
= C1 + C2K T > t.

The boundary condition ∂KKf → 0 as K →∞ and ∂T f → 0 as T →∞ concludes that
C1 = C2 = 0.

8.2.1.2 Topology Optimization of Electric Conduction

The problem is to place a given amount of conducting material in a given domain Ω ⊂ Rd
in order to minimize the power loss for a given surface current q, satisfying

∫
∂Ω qds = 0:

let η ∈ R be a given constant, associated to the given amount of material, and find an
optimal conduction distribution σ : Ω→ {σ−, σ+}, where σ± > 0, such that

div
(
σ∇ϕ(x)

)
= 0, x ∈ Ω, σ

∂ϕ

∂n

∣∣∣
∂Ω

= q

min
σ

(

∫
∂Ω
qϕds+ η

∫
Ω
σ dx),

(8.37)

where ∂/∂n denotes the normal derivative and ds is the surface measure on ∂Ω. Note
that (8.37) implies that the power loss satisfies∫

∂Ω
qϕds = −

∫
Ω

div(σ∇ϕ)ϕdx+

∫
∂Ω
σ
∂ϕ

∂n
ϕds

=

∫
Ω
σ∇ϕ · ∇ϕdx.
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The Lagrangian takes the form∫
∂Ω
q(ϕ+ λ) ds+

∫
Ω
σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸

v

dx

and the Hamiltonian becomes

H(λ, ϕ) = min
σ

∫
Ω
σv dx+

∫
∂Ω
q(ϕ+ λ) ds =

∫
Ω

min
σ
σv︸ ︷︷ ︸

s(v)

dx+

∫
∂Ω
q(ϕ+ λ) ds

with the regularization

Hδ(λ, ϕ) =

∫
Ω
sδ(η −∇ϕ · ∇λ) dx+

∫
∂Ω
q(ϕ+ λ) ds,

depending on the concave regularization sδ ∈ C2(R) as in Section 8.2.1.1. The value
function

u(ϕ, τ) =

∫ T

τ
(

∫
∂Ω
qϕds+ η

∫
Ω
σ dx) dt

for the parabolic variant of (8.37), that is

ϕt = div
(
σ∇ϕ(x)

)
,

yields the infinite dimensional Hamilton-Jacobi equation

∂tu+H(∂ϕu, ϕ) = 0 t < T, u(·, T ) = 0,

using the Gateaux derivative ∂ϕu = λ of the functional u(ϕ, t) in L2(Ω). The regularized
Hamiltonian generates the following parabolic Hamiltonian system for ϕ and λ∫

Ω

(
∂tϕw + s′(η −∇ϕ · ∇λ)∇ϕ · ∇w

)
dx =

∫
∂Ω
qw ds∫

Ω

(
− ∂tλv + s′(η −∇ϕ · ∇λ)∇λ · ∇v

)
dx =

∫
∂Ω
qv ds

for all test functions v, w ∈ V ≡ {v ∈ H1(Ω)
∣∣ ∫

Ω vdx = 0}. Time independent solutions
satisfy λ = ϕ by symmetry. Therefore the electric potential satisfies the nonlinear elliptic
partial differential equation

div
(
s′δ(η − |∇ϕ|2)∇ϕ(x)

)
= 0 x ∈ Ω, s′δ

∂ϕ

∂n
|∂Ω = q, (8.38)

which can be formulated as the convex minimization problem: ϕ ∈ V is the unique
minimizer (up to a constant) of

−
(∫

Ω
sδ(η − |∇ϕ(x)|2) dx+ 2

∫
∂Ω
qϕds

)
. (8.39)
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Figure 8.12: Contour plot of s′δ as an approximation of the conductivity σ. As seen,
Ω is in this example a square with two circles cut out. Electrical current enters Ω at
two positions on the top of the square and leaves at one position on the bottom. The
contours represent the levels 0.2, 0.4, 0.6 and 0.8. A piecewise linear FEM was used with
31440 elements, maximum element diameter 0.01, σ− = 0.001, σ+ = 1, η = 0.15 and
δ = 10−5.

In [7] we study convergence of

lim
T→∞

u(ϕ, t)− ū(ϕ, t)

T
,

where ū is the value function associated to finite element approximations of the mini-
mization (8.39).

The Newton method in Section 3 works well to solve the finite element version of
(8.38) by successively decreasing δ, also for large d, see [7], where also the corresponding
inverse problem to use measured approximations of ϕ to determine the domain where
σ = σ− and σ = σ+ is studied. A numerical solution to (8.38) can be seen in Figure 8.12.

In this paper we use the standard Euclidean norm in Rd to measure X and λ. Optimal
control of partial differential equations with X and λ belonging to infinite dimensional
function spaces requires a choise of an appropriate norm. In [36] the analysis here is
extended to optimal control of some parabolic partial differential equations, by replacing
the Euclidean Rd norm with the H1

0 Sobolev norm, using also that the theory of viscosity
solutions remains valid with this replacement.

8.2.2 Solution of the Discrete Problem

We assume in the theorems that the Pontryagin minimization (8.29) has been solved
exactly. In practice (8.29) can only be solved approximately by iterations. The simplest
iteration method to solve the boundary value problem (8.29) is the shooting method:
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start with an initial guess of λ̄[0] and compute, for all time steps n, the iterates

X̄n+1 = X̄n + ∆tHδ
λ

(
λ̄n+1[i], X̄n

)
, n = 0, . . . , N − 1, X̄0 = X0

λ̄n[i+ 1] = λ̄n+1[i] + ∆tHδ
x

(
λ̄n+1[i], X̄n

)
, n = N − 1, . . . , 0, λ̄N = gx(X̄N ).

(8.40)

An alternative method, better suited for many boundary value problems, is to use Newton
iterations for the nonlinear system F (X̄, λ̄) = 0 where F : RNd × RNd → R2Nd and

F (X̄, λ̄)2n = X̄n+1 − X̄n −∆tHδ
λ

(
λ̄n+1, X̄n

)
,

F (X̄, λ̄)2n+1 = λ̄n − λ̄n+1 −∆tHδ
x

(
λ̄n+1, X̄n

)
.

(8.41)

An advantage with the Pontryagin based method (8.41) is that the Jacobian of F can
be calculated explicitly and it is sparse. The Newton method can be used to solve the
volatility and topology optimization examples in Section 2, where the parameter δ is
successively decreasing as the nonlinear equation (8.41) is solved more accurately.

Let us use dynamic programming to show that the system (8.29) has a solution in the
case that λ̄ is a Lipschitz continuous function of (x, t), with Lipschitz norm independent
of ∆t, and δ > C∆t. One step

x = y + ∆tHδ
λ

(
λ(x), y

)
(8.42)

for fixed y ∈ Rd has a solution x(y) since the iterations

x[i+ 1] = y + ∆tHδ
λ

(
λ(x[i]), y

)
yield a contraction for the error e[i] = x[i+m]− x[i]

e[i+ 1] = ∆t
(
Hδ
λ

(
λ(x[i+m]), y

)
−Hδ

λ

(
λ(x[i]), y

))
= ∆tHδ

λλλxe[i].

Conversely, for all x ∈ Rd equation (8.42) has a solution y(x) for each step since the
iterations

y[i+ 1] = x−∆tHδ
λ

(
λ(x), y[i]

)
generate a contraction for the error. The dynamic programming principle then shows
that there are unique paths through all points X̄n+1 leading to all X̄n for all n.

Example 8.26. In Example 8.21 and 8.22 the problem was to minimize

min
α∈B

∫ T

0

X(t)2

2
dt,

given the dynamics
X ′(t) = α, X(0) = X0,

and an admissible set of controls B = {−1, 1} (for Example 8.21), or B = [−1, 1] (for
Example 8.22). The Hamiltonian for this problem is H(λ, x) = −|λ|+ x2/2, and for a
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smooth approximation of the λ-derivative, e.g. Hδ
λ(λ, x) = − tanh(λ/δ), the non-linear

system (8.41) becomes

0 = X̄n+1 − X̄n + ∆t tanh
(
λ̄n+1/δ

)
,

0 = λ̄n − λ̄n+1 −∆tX̄n.

Newton’s method starts with an initial guess
(
X̄0
n+1, λ̄

0
n

)
, for all times n = 0, . . . , N − 1,

and updates the solution, for some damping factor γ ∈ (0, 1], according to

X̄i+1
n+1 = X̄i

n+1 − γ∆X̄i
n+1,

λ̄i+1
n = λ̄in − γ∆λ̄in,

where the updates comes from solving the sparse Newton system (N = 3 for illustration)

1 −1
di1∆t 1

1 −∆t −1
−1 di2∆t 1

1 −∆t
−1 1





∆λ̄i0
∆λ̄i1
∆X̄i

1

∆λ̄i2
∆X̄i

2

∆X̄i
3

 =



λ̄i0 − λ̄i1 −∆tX̄i
0

X̄i
1 − X̄i

0 + ∆t tanh
(
λ̄i1/δ

)
λ̄i1 − λ̄i2 −∆tX̄i

1

X̄i
2 − X̄i

1 + ∆t tanh
(
λ̄i2/δ

)
λ̄i2 − λ̄i3 −∆tX̄i

2

X̄i
3 − X̄i

2 + ∆t tanh
(
λ̄i3/δ

)

 ,

and dij := ∂λ tanh
(
λ̄ij/δ

)
= δ−1 cosh−2

(
λ̄ij/δ

)
. A Matlab implementation for the above

Newton method is shown below, and in Figure 8.9 the solution is shown for different
values of N .

% Solving Hamiltonian system with Newton’s method

% for T=1, delta=dt and gamma=1

N=1000; dt=1/N;

J=sparse(2*N,2*N); rhs=sparse(2*N,1);

X=sparse(N+1,1); L=sparse(N+1,1);

X(1)= 0.8; % initial data

tol=1;

while tol>1e-6

% Assemble Newton system row-wise

for n=1:N

rhs(2*n-1)=L(n)-L(n+1)-dt*X(n);

rhs(2*n)=X(n+1)-X(n)+dt*tanh(L(n+1)/dt);

end

J(1,1:2)=[1 -1]; J(2*N,2*N-1:2*N)=[-1 1];

for n=1:N-1

J(2*n,2*n-1:2*n+1)=[-1 1/cosh(L(n+1)/dt)^2 1];

J(2*n+1,2*n:2*n+2)=[1 -dt -1];

end
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J(2,1)=0; J(2*N-1,2*N)=0;

% Solve and update

dXL=J\rhs;

L(1)=L(1)-dXL(1); X(N+1)=X(N+1)-dXL(2*N);

for n=2:N

X(n)=X(n)-dXL(2*n-1); L(n)=L(n)-dXL(2*n-2);

end

tol = norm(rhs) % Error

end

8.2.3 Convergence of Euler Pontryagin Approximations

Theorem 8.27. Assume that the Hamiltonian H, defined in (8.4), is Lipschitz continu-
ous on Rd×Rd and that (8.29) has a solution (X̄, λ̄), where λ̄n+1 has uniformly bounded
first variation with respect to X̄n for all n and all ∆t, that is there is a constant K such
that

|∂X̄n λ̄n+1| ≤ K. (8.43)

Then the optimal solution, (X̄, λ̄), of the Pontryagin method (8.29) satisfies the error
estimate∣∣∣ inf

α∈A

(
g
(
X(T )

)
+

∫ T

0
h
(
X(s), α(s)

)
ds
)
−
(
g(X̄N ) + ∆t

N−1∑
n=0

hδ(X̄n, λ̄n+1)
)∣∣∣

= O(∆t+ δ +
(∆t)2

δ
)

= O(∆t), for δ = ∆t.

(8.44)

The bound O(∆t) in (8.44) depends on the dimension d through the Lipschitz norms
of the Hamiltonian H and the constant K in (8.43).

The work [35] presents a convergence result for the case when backward paths X̄(t)
collide on a C1 codimension one surface in Rd × [0, T ]. The next subsections give a
construction of a regularization Hδ and the proof of Theorem 8.27.

8.2.3.1 Construction of a Regularization

A possible regularization of H is to let Hδ be a standard convolution mollification of H

Hδ(λ, x) =

∫
Rd

∫
Rd
H(z, y)ωδ(z − λ)ωδ(y − x) dz dy, (8.45)

with ωδ : Rd → R+ a C2 function compactly supported in the ball {y ∈ Rd : |y| ≤ δ}
and with integral one

∫
Rd ω

δ(y)dy = 1. This regularization remains concave in λ. Our
analysis is not dependent of this specific regularization, but uses that

‖H −Hδ‖C + δ‖Hδ‖C1 + δ2‖Hδ‖C2 = O(δ),

and that Hδ remains a concave function of λ.
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8.2.3.2 Convergence without Shocks and Colliding Paths

The proof of the theorem is based on four lemmas. In all of those we suppose that the
assumptions of Theorem 8.27 are valid.

Lemma 8.28. The discrete dual function is the gradient of the value function, that is

ūx(X̄n, t̄n) = λ̄n. (8.46)

Proof. The relation (8.46) holds for tn = T . Use the induction assumption that (8.46)
holds true for
tN ≡ T , tN−1, . . . , tn+1. Then the definitions of f δ and hδ imply

∂ū

∂X̄n
(X̄n, tn) = ∂X̄n

(
ū(X̄n+1, tn+1) + ∆thδ(λ̄n+1, X̄n)

)
= ∂X̄nX̄n+1

∂ū

∂X̄n+1
(X̄n+1, tn+1) + ∆t∂X̄nh

δ(λ̄n+1, X̄n)

=
(
I + ∆t∂X̄nH

δ
λ(λ̄n+1, X̄n)

)
λ̄n+1 + ∆t∂X̄nh

δ(λ̄n+1, X̄n)

= λ̄n+1 + ∆t∂X̄n(Hδ
λλ+ hδ)(λ̄n+1, X̄n)

−∆tHδ
λ(λ̄n+1, X̄n)∂X̄n λ̄n+1

= λ̄n+1 + ∆tHδ
x(λ̄n+1, X̄n)

= λ̄n.

Section 8.2.7 shows that (8.46) holds precisely for symplectic methods.
We now extend ū to be a function defined for all t. First extend the solution X̄ to

all time as a continuous piecewise linear function

X̄(t) =
tn+1 − t

∆t
X̄n +

t− tn
∆t

X̄n+1, for tn ≤ t < tn+1, (8.47)

so that

X̄ ′(t) = Hδ
λ(λ̄n+1, X̄n). (8.48)

The following lemma shows that two different solutions can not collide for suitable small
∆t.

Lemma 8.29. There is a positive constant c such that if ∆t ≤ cδ two different solutions
(X̄1, λ̄1) and (X̄2, λ̄2) of (8.29) do not intersect.

Proof. Assume there exist two optimal paths (X̄1, λ̄1) and (X̄2, λ̄2) that intersect at
time t, where t̄n < t ≤ t̄n+1, then

X̄1
n + (t− t̄n)Hδ

λ(λ̄1
n+1, X̄

1
n) = X̄2

n + (t− t̄n)Hδ
λ(λ̄2

n+1, X̄
2
n)

which can be written

X̄1
n − X̄2

n = (t− tn)
(
Hδ
λ(λ̄2

n+1, X̄
2
n)−Hδ

λ(λ̄1
n+1, X̄

1
n)
)
. (8.49)
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To obtain an estimate of the size of the right hand side in (8.49) integrate along the line

X̄(s) = X̄1
n + s(X̄2

n − X̄1
n),

with λ̄in+1 a function of X̄i
n. The difference in the right hand side of (8.49) is

Hδ
λ(λ̄2

n+1, X̄
2
n)−Hδ

λ(λ̄1
n+1, X̄

1
n) =

∫ 1

0

dHδ
λ

ds
ds

=

∫ 1

0

(
Hδ
λx +Hδ

λλ∂X̄n λ̄n+1

)
ds(X̄2

n − X̄1
n).

By assumption it holds that ‖Hδ
λx+Hδ

λλ∂X̄n λ̄n+1‖C = O
(
Cλ(1 +K)/δ

)
. Hence the norm

of the right hand side in (8.49) is O(δ−1∆t)O
∥∥X̄1

n − X̄2
n

∥∥. Therefore there is a positive
constant c such that if ∆t < cδ, the equation (8.49) has only the solution X̄1

n = X̄2
n.

Since the optimal paths X̄ do not collide, for suitable small ∆t, the value function ū
is uniquely defined along the optimal paths, by (8.31) and

ū
(
X̄(t), t

)
= ū(X̄n+1, tn+1) + (tn+1 − t)hδ(X̄n, λ̄n+1), tn < t < tn+1 (8.50)

and we are ready for the main lemma

Lemma 8.30. The value function for the Pontryagin method satisfies a Hamilton-Jacobi
equation close to (8.4), more precisely there holds

ūt +H(ūx, ·) = O(δ + ∆t+
(∆t)2

δ
) in Rd × (0, T ),

ū = g on Rd.
(8.51)

The error term O(δ+ ∆t+ (∆t)2

δ ) in (8.51) is a Lipschitz continuous function of ūx(x, t),
x and t satisfying

|O(δ + ∆t+
(∆t)2

δ
)| ≤ CCλ

(
δ + Cx∆t+ CxCλ(1 +K)

(∆t)2

δ

)
,

where Cx and Cλ are the Lipschitz constants of H in the x and λ variable, respectively,
and C ∼ 1 does not depend on the data.

Proof. The proof starts with the observation

0 =
d

dt
ū(X̄(t), t) + hδ(λ̄n+1, X̄n)

= ūt(X̄(t), t) + ūx(X̄(t), t) · f δ(λ̄n+1, X̄n) + hδ(λ̄n+1, X̄n).
(8.52)

The idea is now to use that the dual function λ̄ is the gradient of ū at the time levels tn,
by Lemma 8.28, (and a good approximation at times in between) and that the modified
discrete Pontryagin method shows that the right hand side in (8.52) is consistent with
the correct Hamiltonian H.
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We will first derive an estimate of |ūx(X̄(t), t) − λ̄n+1| for tn < t < tn+1. We have
that

ū(X̄(t), t) = ū(X̄n+1, t̄n+1) + (t̄n+1 − t)hδ(λ̄n+1, X̄n)

Therefore ūx(X̄(t), t) can be written as

ūx(X̄(t), t) =
∂X̄n

∂X̄t

(∂X̄n+1

∂X̄n
ūx(X̄n+1, tn+1) + (tn+1 − t)∂X̄nh

δ(λ̄n+1, X̄n)
)

=
∂X̄n

∂X̄t

(∂X̄n+1

∂X̄n
λ̄n+1 + (tn+1 − t)∂X̄nh

δ(λ̄n+1, X̄n)
)
.

Introduce the notation

A ≡ ∂X̄nH
δ
λ(λ̄n+1, X̄n) = Hδ

λx(λ̄n+1, X̄n) +Hδ
λλ(λ̄n+1, X̄n)∂X̄n λ̄n+1

= O
(
Cλ(1 +K)/δ

)
.

(8.53)

We have

∂X̄n+1

∂X̄n
= I + ∆tA = I + (t− tn)A+ (tn+1 − t)A

∂X̄n

∂X̄t
=
(
I + (t− tn)A

)−1

therefore as in Lemma 8.28

ūx(X̄(t), t)

= λ̄n+1 + (tn+1 − t)
(
I + (t− tn)A

)−1(
Aλ̄n+1 + ∂X̄nh

δ(λ̄n+1, X̄n)
)

= λ̄n+1 + (tn+1 − t)
(
I + (t− tn)A

)−1
Hδ
x(λ̄n+1, X̄n)

= λ̄n+1 +O
(
Cx∆t+ CxCλ(K + 1)(∆t)2/δ

)
.

(8.54)

Introduce the notation λ̃ ≡ ūx(X̄(t), t) and split the Hamiltonian term in (8.52) into
three error parts:

r(λ̃, X̄(t), t) ≡ λ̃f δ(λ̄n+1, X̄n) + hδ(λ̄n+1, X̄n)−H
(
λ̃, X̄(t)

)
= λ̃f δ(λ̄n+1, X̄n) + hδ(λ̄n+1, X̄n)−Hδ(λ̃, X̄n)

+Hδ(λ̃, X̄n)−Hδ
(
λ̃, X̄(t)

)
+Hδ

(
λ̃, X̄(t)

)
−H

(
λ̃, X̄(t)

)
≡ I + II + III.

(8.55)

Taylor expansion of Hδ to second order and (8.54) show

|I| = |Hδ(λ̄n+1, X̄n) + (λ̃− λ̄n+1)Hδ
λ(λ̄n+1, X̄n)−Hδ(λ̃, X̄n)|

≤ min
(
2Cλ|λ̃− λ̄n+1|, |(λ̃− λ̄n+1)Hδ

λλ(ξ, X̄n)(λ̃− λ̄n+1)|/2
)

≤ CCλ
(
Cx∆t+ CxCλ(K + 1)(∆t)2/δ

)
;
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the Lipschitz continuity of Hδ implies

|II| ≤ |Hδ
x||X̄(t)− X̄n| ≤ |Hδ

x||Hδ
λ|∆t;

and the approximation Hδ satisfies

|III| ≤ CCλδ.

The combination of these three estimates proves (8.51).
To finish the proof of the lemma we show that the error function r can be extended

to a Lipschitz function in Rd × Rd × [0, T ]. We note that by (8.43), (8.47) and (8.54) λ̃
is a Lipschitz function of Xt and t, and r(λ̃(Xt, t), Xt, t) is Lipschitz in Xt and t. By

r(λ,X, t) ≡ r(λ̃(X, t), X, t)

we obtain a Lipschitz function r in Rd × Rd × [0, T ].

The results in these lemmas finishes the proof of Theorem 8.27: the combination of
the residual estimates in Lemma 8.30 and the C-stability estimate of viscosity solutions
in Lemma 8.31 proves the theorem.

The approximation result can be extended to the case when the set of backward
optimal paths {(X̄(t), t) : t < T}, solving (8.29) and (8.47) , may collide into a
codimension one surface Γ in space-time Rd × [0, T ], see [35].

8.2.3.3 Maximum Norm Stability for Hamilton-Jacobi Equations

The seminal construction of viscosity solutions by Crandall and Lions [9] also includes
C stability results formulated in a general setting. We restate a variant adapted to the
convergence results in this paper.

Lemma 8.31. Suppose H : Rd×Rd → R is a Lipschitz continuous Hamiltonian satisfying
for a constant C and for all x, x̂, λ, λ̂ ∈ Rd

|H(λ, x)−H(λ, x̂)| ≤ Cx|x− x̂|(1 + |λ|),
|H(λ, x)−H(λ̂, x)| ≤ Cλ|λ− λ̂|.

Suppose also that e : Rd × [0, T ] → R and g : Rd → R are Lipschitz continuous. Then,
the bounded uniformly continuous viscosity solutions u and û of the Hamilton-Jacobi
equations

ut +H(ux, ·) = 0 in Rd × (0, T ), u|Rd×{T} = g, (8.56)

ût +H(ûx, ·) = e in Rd × (0, T ), û|Rd×{T} = g, (8.57)

satisfy the C-stability estimate

O‖u− û‖C(Rd×[0,T ]) ≤ TO‖e‖C(Rd×[0,T ]) . (8.58)

This follows from the maximum norm stability (8.22), but other proofs based on the
maximum principle or the comparison principle are also possible, see [35].
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8.2.4 How to obtain the Controls

The optimal control for the exact problem (8.4) is determined by the value function
through the Pontryagin principle

α(x, t) ∈ argmin
a∈B

(
ux(x, t) · f(x, a) + h(x, a)

)
.

Assume we have solved a discrete approximating optimal control problem and obtained
the approximations X̄, λ̄ and ū. Can they be used to determine an approximation of
the control α? Even in the case that the optimal control S(λ, x) ≡ argmina

(
λ · f(x, a) +

h(x, a)
)

is a function, it is in general not continuous as function of x and λ but only
piecewise Lipschitz continuous. Therefore the approximate control S(λ̄(t), x) cannot be
accurate in maximum norm. However, weaker measures of the control can converge; for
instance the value function is accurately approximated in Theorems 8.27 and ??. At
the points where S is Lipschitz continuous the error in the control is proportional to
the error |λ̄(x, t) − ux(x, t)|, for fixed x. If we assume that the error ū(·, t) − u(·, t) is
bounded by ε in a

√
ε-neighborhood of x and that ūxx and uxx also are bounded there,

we obtain, for difference quotients ∆u/∆x and |∆x| =
√
ε, the error estimate

λ̄− ux = λ̄− ∆ū

∆x
+

∆ū

∆x
− ∆u

∆x
+

∆u

∆x
− ux = O(∆x+ ε/∆x) = O(

√
ε).

Convergence of the approximate path (X̄, λ̄) typically requires Lipschitz continuous flux
(Hλ, Hx), which we do not assume in this work.

8.2.5 Inverse Problems and Tikhonov Regularization

One way to introduce regularization of ill-posed inverse problems is to study a simple
example such as u′ = f : the forward problem to determine u from f in this case becomes
a well-posed integral u(x) = u(0)+

∫ x
0 f(s)ds and the inverse problem is then to determine

f from u by the derivative f = u′. Note that a small error in the data can be amplified
when differentiated; for instance a small perturbation maximum-norm ε sin(ωx) in u
leads to the f -perturbation εω cos(ωx) which is large (in maximum-norm) if ωε� 1 even
if ε� 1, while a small maximum-norm perturbation of f leads to a small perturbation
of u (in maximum norm). This is the reason that, to determine u from f is well posed
(in maximum norm), while the inverse problem to determine f from u is ill posed.

The simplest method to regularize the problem f = u′ is to replace the derivative
with a difference quotient with suitable step size h. If we assume that our measured
values u∗ of u ∈ C2 are polluted with an error η of size ε in maximum norm so that
u∗ = u+ η, we have

f = (u∗ − η)′.
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To avoid differentiating η we use the difference quotient

f(x) = u′(x)

=
u(x+ h)− u(x)

h
+O(h)

=
u∗(x+ h)− u∗(x)

h
+O(εh−1 + h).

The error term is minimal if we choose h2 ' ε, that is the optimal step size, h '
√
ε,

yields the error O(ε1/2) to compute f by the difference quotient. This difference quotient
converges to u′ as ε tends to zero. If we take too small step size (e.g. h = ε), the
estimation error does not tend to zero as the measurement error tends to zero.

We can write the inverse problem u′ = f as the optimal control problem

Ẋt = αt,

min
α:(0,1)→[−M,M ]

2−1

∫ 1

0
|Xt −Xt

∗|2 dt,

where we changed notation to t := x, X = u, X∗ = u∗, α := f and put the constraint to
seek α in the bounded set [−M,M ] for some positive M . The Hamiltonian becomes

H(λ, x, t) = min
α∈[−M,M ]

(
λ · α+ 2−1|x−Xt

∗|2
)

= −M |λ|+ 2−1|x−Xt
∗|2

which is not differentiable and leads to the system

Ẋt = −Msgn(λ)

λ̇t = −(Xt −Xt
∗).

A regularization of this is to replace sgnλ by tanhλ/δ in the flux, which yields the
regularized Hamiltonian

Hδ(λ, x, t) = −Mδ log(cosh
λ

δ
) + 2−1|x−Xt

∗|2. (8.59)

A standard alternative and related regularization is to add a penalty function de-
pending on the control to the Lagrangian

Lδ(λ, x, α) :=

∫ 1

0
λt(αt − Ẋt) + 2−1|Xt −Xt

∗|2 + δα2 dt

for some δ > 0, which generates the Hamiltonian system

Ẋt = −Msgnδ(λ)

λ̇t = −(Xt −Xt
∗),

where sgnδ is the piecewise linear approximation to sgn with slope −1/(2δ), see Figure
8.13. The corresponding Hamiltonian is C1 and has the following parabolic approximation
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of −M |λ| 
−λM + δM2 if λ > 2δM

−λ2

4δ if − 2δM ≤ λ ≤ 2δM
λM + δM2 if λ ≤ 2δM,

which in some sense is the simplest regularization giving a differentiable Hamiltonian.
Such a regularization obtained by adding a penalty function, depending on the control,
to the Lagranian is called a Tikhonov regularization. Any smooth modification of the
Hamiltonian can be interpreted as adding such a Tikhonov penalty function, see Section
8.2.5. The fundamental property we desire of a regularization is that the Hamiltonian
becomes differentiable. It is somewhat difficult to directly see how to choose a penalty
yielding differentiable Hamiltonian, therefore we propose instead to directly regularize
the Hamiltonian, e.g. by a mollification as in (8.45) (instead of finding appropriate
penalty functions):

• choose a suitable set of controls and its range,

• determine the Hamiltonian,

• mollify the Hamiltonian with a parameter δ > 0 as in (8.45).

Another example of a forward problem is to determine the solution u, representing
e.g. temperature, in the boundary value problem(

a(x)u′(x)
)′

= f(x) 0 < x < 1

u(0) = u′(1) = 0
(8.60)

for a given source function f : (0, 1)→ (c,∞) and a given conductivity a : (0, 1)→ (c,∞)
with c > 0. This is a well posed problem with the solution

u(x) =

∫ x

0

F (s)− F (1)

a(s)
ds,

λ

−M |λ|

λ

−Msgnδ,−Msgn

M

−2δM

2δM

Figure 8.13: Graph of the functions −M |λ|, −sgnδ and −sgn.
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where F (s) =
∫ s

0 f(t) dt is a primitive function of f . The inverse problem to find the
conductivity a from given temperature u and source f leads to

a(x) =
F (x)− F (1)

u′(x)
, (8.61)

which depends on the derivative u′, as in the previous example, so that it is ill posed (in
maximum norm) by the same reason.

Example 8.32 (Numerical regularization). Instead of the exact inversion formula (8.61)
we can formulate the optimal control problem

min
a:[0,1]→R

1

2

∫ 1

0
(u− u∗)2 + δa2dx,

where a and x satisfies (8.60), δ > 0, and u∗ denotes given data corresponding to a
diffusion coefficient a∗. From the Lagrangian

L(u, λ, a) :=
1

2

∫ 1

0
(u− u∗)2 + δa2 + (au′)′λ− fλdx =

=
1

2

∫ 1

0
(u− u∗)2 + δa2 − au′λ′ − fλdx,

the Lagrange principle gives that a necessary condition for an optimum is that u, λ and
a satisfies Equation (8.60), the dual equation

(a(x)λ′)′ = u∗ − u, 0 < x < 1, λ(0) = λ′(1) = 0, (8.62)

and
u′λ′ + δa = 0, 0 < x < 1. (8.63)

In this case the Lagrange principle gives the same result as the Pontryagin principle since
the Lagrangian is convex in a, and since it is smooth in a no regularization is needed.
For δ = 0, the Pontryagin principle does not give an explicit Hamiltonian unless we
impose some bounds on a, while the Lagrange principle still is useful numerically, as we
shall see.

The simplest way to solve system (8.60), (8.62) and (8.63) is to use the gradient
method: given a starting guess ai, solve (8.60) to get u, and (8.62) to get λ, and finally
update a by taking a step of length θ in the negative gradient direction, i.e.

ai+1 = ai − θ
dL
(
u(ai), λ(ai), ai

)
dai

= ai − θ
(∂L
∂u

du

dai
+
∂L
∂λ

dλ

dai
+
∂L
∂ai

)
=

=
{∂L
∂u

=
∂L
∂λ

= 0
}

= ai − θ(u′λ′ + δai), 0 < x < 1.

Consider the test problem where the measurement u∗ is generated by solving (8.60)
with the finite element method for a reference coefficient a∗(x) := 1 + 0.5 sin(2πx) and a
source term f = 1. To the measurements we add some noise, see Figure 8.14.
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Figure 8.14: Measurements with added noise.

We will now compare different types of regularization: Tikhonov regularization and
regularization by discretization or by iteration. In Figure 8.15 the exact inversion (8.61)
is shown. A zero misfit error u − u∗ here gives an highly oscillating inversion and is
thus infeasible for practical use. The only way to use this method is to introduce a
numerical regularization from choosing a sufficiently large discretization. In the right
part of Figure 8.15 a 100 times coarser mesh is used for the inversion. It is here possible
to see something that vaguely resembles the sought coefficient a∗.
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Figure 8.15: Reconstructed coefficient from exact inversion using different meshes.

From the gradient method, for which we choose θ = 10, we can in Figure 8.16 see
the result for the case with no noise and δ = 0. Although the absence of noise will
theoretically give an exact fit to data, the method will take a long time to converge,
and even for a fast method like Newton’s method, a small misfit error may still imply a
substantial error in the coefficient.

To test the gradient method for the case with measurement noise we start by letting
δ = 0. In Figure 8.17 we can see that the gradient method initially finds a smooth
function that fits σ∗ quite good, but eventually the noise will give a randomly oscillating
coefficient as the misfit error decreases. To interrupt the iteration process prematurely is
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Figure 8.16: Reconstructed coefficient from the gradient method with no noise in
measurements and δ = 0.

here a sort of regularization called Landweber iteration [39]. In Figure 8.18 the error in
data and coefficients is shown; it is evident that the optimal stopping criterion occurs
when the ‖σ−σ∗‖ reaches its minimum. Unfortunately, since σ∗ is unknown this criterion
cannot be fulfilled in practice.
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Figure 8.17: Reconstructed coefficient from the gradient method with noisy measurements
and δ = 0. Left: 100 iterations. Right: 1000 iterations.

In Figure 8.19 the result for the gradient method with a small regularization δ = 5·10−4

is shown. Although the error in the coefficient is higher than for the case with δ = 0,
in Figure 8.18, this error is bounded and we can thus continue the iterations until the
desired tolerance of the gradient norm is met.
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Figure 8.18: Iteration errors from the gradient method. The solid lines depict ‖σ − σ∗‖2
and the dashed lines show ‖u− u∗‖2. Left: No noise in data. Right: Noisy data. Note
that after a certain number of iterations, ‖σ − σ∗‖2 will get larger as ‖u − u∗‖2 gets
smaller.

Exercise 8.33. Consider the the following inverse problems:

(i) Estimate a given the solution u to(
a(x)u′(x)

)′
= 1 0 < x < 1

u(0) = u(1) = 0.

(ii) Estimate a given the boundary solution u(1) to(
a(x)u′(x)

)′
= 0 0 < x < 1

u(0) = 0,

u′(1) = 1.

What can we say about the estimation of a for each problem?

Example 8.34. Condition number, matrices, tomography

8.2.6 Smoothed Hamiltonian as a Tikhonov Regularization

The C2 regularization of the Hamiltonian can also be viewed as a special Tikhonov
regularization, using the Legendre transformation: a preliminary idea is to find the
Tikhonov penalty function T (x, α) : Rd ×A→ R such that

min
α∈A

(
λ · f(x, α) + T (x, α)

)
= Hδ(λ, x).

In general this can only hold if the set A is dense enough, e.g. if A would consist of only
two elements the function Hδ would not be smooth. Therefore we replace A seeking the
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Figure 8.19: Left:Reconstructed coefficient from the gradient method with noisy mea-
surements and δ = 5 · 10−4. Right: Errors as in Figure 8.18 but also including the value
function ‖u− u∗‖2 + δ‖σ − σ∗‖2 (dash-dotted line).

minimum in the convex closure

f̂(x,A) := {sf1 + (1− s)f2 | s ∈ [0, 1], and f1, f2 ∈ f(x,A)}

and we instead want to find Tx(f) : Rd × f̂(x,A)→ R such that

min
φ∈f̂(x,A)

(
λ · φ+ Tx(φ)

)
= Hδ(λ, x) for all λ ∈ Rd. (8.64)

To find the Tikhonov penalty, the first step is to observe that by Theorem ?? there is
for each λ, where ∂λH(·, x) is defined, an α such that ∂λH(λ, x) = f(x, α); therefore the

regularization Hδ(λ, x) =
∫
Rd H(λ−y)η(y)dy, as in (??), satisfies ∂λHδ(Rd, x) ⊂ f̂(x,A),

since H is Lipschitz continuous and hence differentiable almost everywhere.
Define the Legendre transformation

T̃x(φ) := sup
λ∈Rd

(
− λ · φ+Hδ(λ, x)

)
for all φ ∈ Rd. (8.65)

Figure 8.20 illustrates the value of the Legendre transform

T (φ) = sup
λ∈R

(
− λ · φ+H(λ)

)
of a concave differentiable function H : R→ R, i.e. find the tangent to the curve{(

λ,H(λ)
)
| λ ∈ R

}
with the slope φ, then its intersection with the y-axis is T (φ); in multi dimension, d ≥ 1,
find the tangent plane of the graph of H with normal (φ,−1), then the point (0, T (φ)) is
in the plane. If the range of ∂λH(·, x) is only a subset S of Rd, we see that T (φ) = +∞
for φ ∈ Rd − S.
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Theorem 8.35. By defining Tx(φ) := T̃x(φ), the relation (8.64) holds.

Proof. Fix a point x ∈ Rd. The definition (8.65) of the Legendre transform implies that
for any φ and all λ ∈ Rd we have

λ · φ+ T̃x(φ) ≥ Hδ(λ, x). (8.66)

It remains to show that for any λ we can have equality here by choosing φ precisely.
Since the HamiltonianHδ(·, x) is concave and differentiable, with ∂λH

δ(·, x) ∈ f̂(x,A),
the maximum in the Legendre transform is, for φ in the interior of f̂(x,A), attained at a
point λ∗ (depending on φ) satisfying

T̃x(φ) = sup
λ∈Rd

(
− λ · φ+Hδ(λ, x)

)
= −λ∗ · φ+Hδ(λ∗, x)

and φ = ∂λH
δ(λ∗, x), so that the choise φ = ∂λH

δ(λ, x) gives equality in (8.66). The
fact that T̃x is lower semicontinuous shows that

inf
φ∈ interiorf̂(x,A)

(
λ · φ+ T̃x(φ)

)
= min

φ∈f̂(x,A)

(
λ · φ+ T̃x(φ)

)
.

Exercise 8.36. Show that Tikhonov penalty for the regularized Hamiltonian (8.59) in
the u′ = f problem is

δM2

2

(
(1 +

α

M
) log((1 +

α

M
) + (1− α

M
) log(1− α

M
)
)

+
1

2
|x−Xt

∗|2.

8.2.7 General Approximations

The essential property of the symplectic Euler method we have used is that ūx(X̄n, tn) =
λ̄n. This relation holds precisely for symplectic approximations (cf. Remark 8.38):

Theorem 8.37. Consider a general one step method

X̄n+1 = A(λ̄n+1, X̄n)

λ̄n = C(λ̄n+1, X̄n)
(8.67)

with

ū(X̄n, tn) = g(X̄N ) +
N−1∑
m=n

B(λ̄n+1, X̄n)∆t.

Then ūx(X̄n, tn) = λ̄n, for all n, implies that the mapping φ : (X̄n, λ̄n) 7→ (X̄n+1, λ̄n+1) is
symplectic. If φ is symplectic it is possible to choose the function B so that ūx(X̄n, tn) =
λ̄n, for all n.
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Proof. As in Lemma 8.28 we have

ūx(X̄n, tn) =
dA
(
X̄n, λ̄n+1(X̄n)

)
dX̄n

ūx(X̄n+1, tn+1) +
dB
(
X̄n, λ̄n+1(X̄n)

)
dX̄n

.

Therefore the relation
ūx(X̄n, tn) = λ̄n

holds if and only if λAλ + Bλ = 0 and λAx + Bx = C. Let S ≡ λA + B. Then
λAλ + Bλ = 0 is equivalent to Sλ = A, but Sλ = A implies B = S − λSλ so that
λAx + Bx = Sx. Therefore λAλ + Bλ = 0 and λAx + Bx = C is equivalent to A = Sλ
and C = Sx.

Let S ≡ λ̄n+1 ·X̄n+∆tH̃(λ̄n+1, X̄n). Then (8.67), with A = Sλ and C = Sx, becomes

X̄n+1 = X̄n + ∆tH̃λ(X̄n, λ̄n+1)

λ̄n = λ̄n+1 + ∆tH̃x(X̄n, λ̄n+1),
(8.68)

which by Remark 8.38 is equivalent to symplecticity of the mapping (X̄n, λ̄n) 7→
(X̄n+1, λ̄n+1).

Remark 8.38. A one step method (8.67), interpreted as

(X̄n, λ̄n) 7→ (X̄n+1, λ̄n+1),

is called symplectic if there exists a function H̃(λ̄n+1, X̄n) such that (8.68) holds, see
Theorem 5.1, Lemma 5.2 and (5.5) in Chapter VI of [20], where a thorough study on
symplectic methods can be found.

To generalize the error estimate of Theorems 8.27 and ?? to general symplectic one
step approximations (8.68), e.g. the second order symplectic Runge-Kutta method

H̃ =
1

2

(
H(λ̄n+1, X̄n) +H

(
λ̄n+1 + ∆tHx(λ̄n+1, X̄n), X̄n + ∆tHλ(λ̄n+1, X̄n)

))
requires first an extension of X̄n and ū to all time, by approximations (f̄ , h̄) of (f δ, hδ)
with

dX̄

dt
= f̄ and

dū

dt
= −h̄,

and then an estimate of the residual error r as in (8.55). In practice we need more
regularity of Hδ to take advantage of higher order methods. Since we only have Lip-
schitz bounds of H the estimate of r is not smaller than the error hδ − h̄, which is
O(‖Hδ‖Cp)(∆t)p = O((∆t)p/δp−1) for a pth order accurate method. Consequently the
residual error is not smaller than O(δ + (∆t)p/δp−1) = O(∆t) for δ ' ∆t, so that our
error estimate does not improve for higher order schemes, without additional assumptions.
On the other hand by extending X̄ as a piecewise linear function, as before, the only
change of the analysis in Sections 8.2.3.2 and ?? to other symplectic methods (8.68) is
to replace Hδ(λ̄n+1, X̄n) by H̃(λ̄n+1, X̄n) and since

‖Hδ − H̃‖C + δ‖Hδ − H̃‖C1 + δ2‖Hδ − H̃‖C2 = O(∆t)
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the estimate (8.51) holds for all symplectic methods which are at least first order accurate.
Similarly, by considering (X̄n+1, λ̄n), instead of (X̄n, λ̄n+1), as independent variables

the scheme
X̄n = A(X̄n+1, λ̄n)

λ̄n+1 = C(X̄n+1, λ̄n),

is symplectic if and only if

X̄n = X̄n+1 −∆tĤλ(X̄n+1, λ̄n)

λ̄n+1 = λ̄n −∆tĤx(X̄n+1, λ̄n),
(8.69)

and the error analysis of the methods (8.68) applies with

H̃(X̄n, λ̄n+1) = (X̄n+1 − X̄n) · (λ̄n+1 − λ̄n) + Ĥ(X̄n+1, λ̄n).

An example of a method (8.69) is the Euler method Ĥ = H, which is backward Euler for
X̄ forwards in time and backward Euler for λ̄ backwards in time, in contrast to (8.29)
which is forward Euler for X̄ forwards in time and forward Euler for λ̄ backwards in
time.

8.3 Optimal Control of Stochastic Differential Equations

In this section we study optimal control of the solution X(t) to the stochastic differential
equation{

dXi = ai(X(s), α(s,X(s)))dt+ bij(X(s), α(s,X(s)))dWj , t < s < T
X(t) = x

(8.70)

where T is a fixed terminal time and x ∈ Rn is a given initial point. Assume that
ai, bij : Rn ×A→ R are smooth bounded functions, where A is a given compact subset
of Rm. The function α : [0, T ]× Rn → A is a control and let A be the set of admissible
Markov control functions t→ α(t,X(t)). The Markov control functions use the current
value X(s) to affect the dynamics of X by adjusting the drift and the diffusion coefficients.
Let us for these admissible controls α ∈ A define the cost

Ct,x(α) = E[

∫ T

t
h(X(s), α(s))ds+ g(X(T ))]

where X solves the stochastic differential equation (8.70) with control α and

h : Rn ×A→ R, g : Rn → R

are given smooth bounded functions. We call h the running cost and g the terminal cost.
Our goal is to find an optimal control α∗ which minimizes the expected cost, Ct,x(α).

Let us define the value function

u(t, x) ≡ inf
α∈A

Ct,x(α). (8.71)
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The plan is to show that u solves a certain Hamilton-Jacobi equation and that the
optimal control can be reconstructed from u. We first assume for simplicity that the
optimal control is attained, i.e

u(t, x) = min
α∈A

Ct,x(α) = Ct,x(α∗).

The generalization of the proofs without this assumption is discussed in Exercise 8.45.

8.3.1 An Optimal Portfolio

Example 8.39. Assume that the value of a portfolio, X(t), consists of risky stocks,
S(t) = α(t)X(t), and risk less bonds, B(t) = (1− α(t))X(t), where α(t) ∈ [0, 1] and

dS = aSdt+ cSdW, (8.72)

dB = bBdt, (8.73)

with 0 ≤ b < a. Define for a given function g the cost function

Ct,x(α) = E[g(X(T ))|X(t) = x].

Then our goal is to determine the Markov control function α(t,X(t)), with α : [0, T ]×R→
[0, 1] that maximizes the cost function. The solution will be based on the function

u(t, x) ≡ max
α

Ct,x(α),

and we will show that u(t, x) satisfies the following Hamilton-Jacobi equation,

ut + max
α∈[0,1]

{
(aα+ b(1− α))xux +

c2α2

2
x2uxx

}
= 0, (8.74)

u(T, x) = g(x),

that is
ut +H(x, ux, uxx) = 0

for

H(x, p, w) ≡ max
v∈[0,1]

(av + b(1− v)xp+
c2v2

2
x2w).

Example 8.40. Assume that uxx < 0 in the equation (8.74). Determine the optimal
control function α∗.

Solution. By differentiating f(α) = (aα + b(1 − α))xux + c2α2

2 x2uxx in (8.74) with
respect to α and using df/dα = 0, we obtain

α̂ = −(a− b)ux
c2xuxx

.
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Then the optimal control α∗ is given by

α∗ =


0, if α̂ < 0
α̂, if α̂ ∈ [0, 1]
1 if 1 < α̂

The optimal value yields in (8.74) the Hamilton-Jacobi equation

ut +H(x, ux, uxx) = 0,

where

H(x, ux, uxx) =



bxux, if α̂ < 0

bxux −
(a− b)2u2

x

2c2uxx
, if α̂ ∈ [0, 1]

axux +
c2x2uxx

2
if 1 < α̂

(8.75)

Example 8.41. What is the optimal control function α = α∗ for g(x) = xr, 0 < r < 1 ?

Solution. We have dX = d(αX + (1 − α)X) = dS + dB = (aS + bB)dt + cSdW =
(aαX + b(1− α)X)dt+ cαXdW , so that the Itô formula yields

dg(X) = dXr = rXr−1dX +
r(r − 1)

2
Xr−2(dX)2

= rXr(aα+ b(1− α))dt+ rXrαcdW +
1

2
α2c2r(r − 1)Xrdt.

Taking the expectation value in the above,

E[Xr(T )] = Xr(0) + E

[∫ T

0
rXr

(
aα+ b(1− α) +

1

2
α2c2(r − 1)

)
dt

]
.

Finally, perturb the above equation with respect to ε ∈ R+ provided α = α∗ + εv for
some feasible function v, that is α∗+ εv ∈ [0, 1] for sufficiently small ε. Then the optimal
control, α∗, should satisfy E[Xr

α∗+εv(T )]−E[Xr
α∗(T )] ≤ 0 ∀v. If we make the assumption

α∗ ∈ (0, 1), then we obtain

E[

∫ T

0
rXrv(a− b+ α∗c2(r − 1))dt] = 0, ∀v

which implies

α∗ =
a− b

c2(1− r)
.

Exercise 8.42. What is the optimal control in (8.74) for g(x) = log x ?
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8.3.2 Dynamic Programming and Hamilton-Jacobi Equations

Lemma 8.43. Assume that the assumptions in section 8.3.1 hold. Then, the function u
satisfies, for all δ > 0, the dynamic programming relation

u(t, x) = min
α:[t,t+δ]→A

E[

∫ t+δ

t
h(X(s), α(s,X(s)))ds+ u(t+ δ,X(t+ δ))]. (8.76)

Proof. The proof has two steps: to use the optimal control to verify

u(t, x) ≥ min
α∈A

E[

∫ t+δ

t
h(X(s), α(s))ds+ u(t+ δ,X(t+ δ))],

and then to show that an arbitrary control yields

u(t, x) ≤ min
α∈A

E[

∫ t+δ

t
h(X(s), α(s))ds+ u(t+ δ,X(t+ δ))],

which together imply Lemma 8.43.
Step 1: Choose the optimal control α∗, from t to T , to obtain

u(t, x) = min
α∈A

E

[∫ T

t
h(X(s), α(s,X(s)))ds+ g(X(T ))

]
= E[

∫ t+δ

t
h(X(s), α∗(s))ds] + E[

∫ T

t+δ
h(X(s), α∗(s))ds+ g(X(T ))]

= E[

∫ t+δ

t
h(X(s), α∗(s))ds]

+E

[
E[

∫ T

t+δ
h(X(s), α∗(s))ds+ g(X(T ))| X(t+ δ)]

]
≥ E[

∫ t+δ

t
h(X(s), α∗(s))ds] + E[u(X(t+ δ), t+ δ)]

≥ min
α∈A

E

[∫ t+δ

t
h(X(s), α(s,X(s))ds+ u(X(t+ δ), t+ δ)

]
.

Step 2: Choose the control α+ to be arbitrary from t to t+ δ and then, given the value
X(t+ δ), choose the optimal α∗ from t+ δ to T . Denote this control by α′ = (α+, α∗).
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Definition (8.71) shows

u(t, x) ≤ Ct,x(α′)

= E[

∫ T

t
h(X(s), α′(s))ds+ g(X(T ))]

= E[

∫ t+δ

t
h(X(s), α+(s))ds] + E[

∫ T

t+δ
h(X(s), α∗(s))ds+ g(X(T ))]

= E[

∫ t+δ

t
h(X(s), α+(s))ds]

+E

[
E[

∫ T

t+δ
h(X(s), α∗(s))ds+ g(X(T ))| X(t+ δ)]

]
= E[

∫ t+δ

t
h(X(s), α+(s))ds] + E[u(X(t+ δ), t+ δ)].

Taking the minimum over all controls α+ yields

u(t, x) ≤ min
α+∈A

E

[∫ t+δ

t
h(X(s), α+(s))ds+ u(X(t+ δ), t+ δ)

]
.

Theorem 8.44. Assume that X solves (8.70) with a Markov control function α and
that the function u defined by (8.71) is bounded and smooth. Then u satisfies the
Hamilton-Jacobi equation

ut +H(t, x,Du,D2u) = 0,

u(T, x) = g(x),

with the Hamiltonian function

H(t, x,Du,D2u) ≡ min
α∈A

[
ai(x, α)∂xiu(t, x) +

bik(x, α)bjk(x, α)

2
∂xixju(t, x) + h(x, α)

]
Proof. The proof has two steps: to show that the optimal control α = α∗ yields

ut + a∗i ∂xiu+
b∗ikb

∗
jk

2
∂xixju+ h∗ = 0, (8.77)

where a∗(x) = a(x, α∗(t, x)), b∗(x) = b(x, α∗(t, x)) and h∗(t, x) = h(t, x, α∗(t, x)), and
then that an arbitrary control α+ implies

ut + a+
i ∂xiu+

b+ikb
+
jk

2
∂xixju+ h+ ≥ 0, (8.78)

where a+(x) = a(x, α+(t, x)), b+(x) = b(x, α+(t, x)) and h+(t, x) = h(t, x, α+(t, x)). The
two equations (8.77) and (8.78) together imply Theorem 8.44.
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Step 1 : Choose α = α∗ to be the optimal control in (8.70). Then by the dynamic
programming principle of Lemma 8.71

u(X(t), t) = E[

∫ t+δ

t
h(X(s), α∗(s,X(s)))ds+ u(X(t+ δ), t+ δ)],

so that Itô ’s formula implies

−h(t, x, α∗(t, x))dt = E[du(X(t), t)| X(t) = x] (8.79)

= (ut + a∗i ∂xiu+
b∗ikb

∗
jk

2
∂xixju)(t, x)dt.

Definition (8.71) shows
u(T, x) = g(x),

which together with (8.79) prove (8.77).
Step 2 : Choose the control function in (8.70) to be arbitrary from time t to t+ δ

and denote this choice by α = α+. The function u then satisfies by Lemma 8.71

u(t, x) ≤ E[

∫ t+δ

t
h(X(s), α+(s))ds] + E[u(X(t+ δ), t+ δ)].

Hence E[du] ≥ −h(x, α+)dt. We know that for any given α+, by Itô ’s formula,

E[du(t,X(t))] = E

[
ut + a+

i ∂xiu+
b+ikb

+
jk

2
∂xixju

]
dt.

Therefore, for any control α+,

ut + a+
i ∂xiu+

b+ikb
+
jk

2
∂xixju+ h(x, α+) ≥ 0,

which proves (8.78)

Exercise 8.45. Use a minimizing sequence αi of controls, satisfying

u(t, x) = lim
i→∞

Ct,x(αi),

to prove Lemma 8.71 and Theorem 8.44 without the assumption that the minimum
control is attained.

Exercise 8.46. Let A+ be the set of all adapted controls {α : [0, T ] × C[0, T ] → A}
where α(s,X) may depend on {X(τ) : τ ≤ s}. Show that the minimum over all adapted
controls in A+ is in fact the same as the minimum over all Markov controls, that is

inf
α∈A+

Ct,x(α) = inf
α∈A

Ct,x(α),

e.g. by proving the dynamic programming relation (8.76) for adapted controls and
motivate why this is sufficient.
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8.3.3 Relation of Hamilton-Jacobi Equations and Conservation Laws

In this section we will analyze qualitative behavior of Hamilton-Jacobi equations, in
particular we will study the limit corresponding to vanishing noise in control of stochastic
differential equations. The study uses the relation between the Hamilton-Jacobi equation
for V : [0, T ]× R→ R

Vt +H(Vx) = 0, V (0, x) = V0(x), (H − J)

and the conservation law for U : [0, T ]× R→ R

Ut +H(U)x = 0, U(0, x) = U0(x). (C − L)

Observe that the substitution V (t, x) =
∫ x
−∞ U(t, y)dy, so that U = Vx, and integration

in x from −∞ to x in (C-L) shows

Vt +H(Vx) = H(U(t,−∞)). (8.80)

Combined with the assumptions U(t, x)→ 0 as |x| → ∞ and H(0) = 0 we conclude that
V solves (H-J), if U solves (C-L).

The next step is to understand the nature of the solutions of (C-L). Consider the
special Burger’s conservation law

0 = Ut + U Ux = Ut + (
U2

2
)x, U(0, x) = U0(x). (8.81)

Let us define a characteristic path X : [0, T ]× R→ R by

dX

dt
(t) = U(t,X(t)), X(0) = x0. (8.82)

Thus, if ψ(t) ≡ U(t,X(t)) then dψ
dt (t) = 0 by virtue of (8.81). This means that the value

of U is constant along a characteristic path. If the characteristics do not collide into
each other we may expect to find a solution using the initial data U0(x) and the set
of characteristics. Unfortunately, this is not what happens in general, and collisions
between characteristics do exist and give birth to discontinuities known as shocks. For
example, this is the case when U0(x) = − arctan(x) and t ≥ 1.

Exercise 8.47. Show that w(t) = Ux(X(t), t) satisfies w(t) = w(0)/(1 + w(0)t), t < 1,
for Burger’s equation (8.81) with initial data U(x, 0) = − arctan(x). Hence, w(1) =∞,
for X(0) = 0.

Since the method of characteristics does not work globally we have to find an
alternative way to explain what happens with the solution U(t, x) near a shock. It is not
enough with the concept of strong or classical solution, since the solution U(t, x) is not
differentiable in general. For this purpose, we define the notion of weak solution. Let V
be the set of test functions {ϕ : (0,+∞)× R→ R} which are differentiable and take the
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value zero outside some compact set. Then an integrable function U is a weak solution
of (8.81) if it satisfies∫ +∞

0

∫ +∞

−∞

(
U(t, x)ϕt(t, x) +

U2(t, x)

2
ϕx(t, x)

)
dx dt = 0, ∀ϕ ∈ V (8.83)

and ∫ +∞

−∞
|U(t, x)− U0(x)|dx→ 0, as t→ 0 (8.84)

Example 8.48. The shock wave

U(t, x) =

{
1 x < t

2 ,

0 otherwise.

is a weak solution satisfying (8.83) and (8.84). Observe that for s ≡ 1/2

∂t

∫ b

a
U dx =

U2(t, a)− U2(t, b)

2
= −

[
U2

2

]
,

and

∂t

∫ b

a
U dx = ∂t

(
(s t− a)U−] + (b− s t)U+

)
= −s(U+ − U−),

where
[w(x0)] ≡ w+(x0)− w−(x0) ≡ lim

y→0+
w(x0 + y)− w(x0 − y)

is the jump at the point x0. Consequently, the speed s of a shock can be determined by
the so called Rankine Hugoniot condition

s[U ] =

[
U2

2

]
. (8.85)

Exercise 8.49. Verify that the shock wave solution

UI(t, x) =

{
0 x > − t

2 ,

−1 otherwise

and the rarefaction wave solution

UII(t, x) =


0 x ≥ 0,
x
t −t < x < 0,

−1 otherwise

are both weak solutions of Ut + U Ux = 0 with the same initial condition.
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λ

H

T (φ)

Figure 8.20: Illustration of the Legendre transform. If H decreases sufficiently fast as
|λ| → ∞, then ∂λH can attain all values in R and the range of T is [0,∞), since T (0) = 0
here. If, on the other hand, the slope of H is in an interval I, then T (I) = [0, T+) for
some upper bound T+, and T (R− I) = {+∞}.

Figure 8.21: Left: Initial condition. Right: Colliding characteristics and a shock.

Figure 8.22: Shock velocity and Rankine Hugoniot condition

Figure 8.23: UI(t, x)

Figure 8.24: UII(t, x)
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The last exercise shows that we pay a price to work with weak solutions: the lack of
uniqueness. Therefore, we need some additional physical information to determine a
unique weak solution. This leads us to the concept of viscosity limit or viscosity solution:
briefly, it says that the weak solution U we seek is the limit U = limε→0+ U

ε of the
solution of the regularized equation

U εt + U ε U εx = εU εxx, ε > 0. (8.86)

This regularized equation has continuous and smooth solutions for ε > 0. With reference
to the previous example, the weak solution UII satisfies UII = limε→0+ U ε, but UI 6=
limε→0+ U

ε. Since a solution of the conservation law can be seen as the derivative of the
solution of a Hamilton-Jacobi equation, the same technique of viscosity solutions can be
applied to

V ε
t +

(V ε
x )2

2
= εV ε

xx, ε > 0. (8.87)

The functions VI(x, t) = −
∫∞
x UI(y, t)dy, and VII(x, t) = −

∫∞
x UII(y, t)dy have the

same initial data and they are both candidates of solutions to the Hamilton-Jacobi
equation

Vt +
(Vx)2

2
= 0.

The shock waves for conservation laws corresponds to solutions with discontinuities in
the derivative for Hamilton-Jacobi solutions. Only the function VII satisfies

VII = lim
ε→0+

V ε, (8.88)

but VI 6= limε→0+ V
ε. It can be shown that the condition (8.88) implies uniqueness for

Hamilton-Jacobi equations. Note that (8.88) corresponds to the limit of vanishing noise
in control of stochastic differential equations.

8.3.4 Numerical Approximations of Conservation Laws and Hamilton-
Jacobi Equations

We have seen that the viscous problem

∂tu
ε + ∂xH(uε) = εuεxx for (x, t) ∈ R× (0,+∞), (8.89)

uε(x, 0) = u0(x) for x ∈ R,

can be used to construct unique solutions to the conservation law

∂tu+ ∂xH(u) = 0 for (x, t) ∈ R× (0,+∞), (8.90)

u(x, 0) = u0(x) for x ∈ R.

In this section we will develop numerical approximations to the conservation law (8.90)
and the related Hamilton-Jacobi equation

∂tv +H(∂xv) = 0,
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based on viscous approximations. We will also see that too little viscosity may give
unstable approximations.

To show the difficulties to solve numerically a problem like (8.90) and (8.89) we
consider a related steady-state problem (i.e. a problem that has no dependence on t)

∂xw(x)− ε ∂2
xw(x) = 0 for x < 0, (8.91)

lim
x→−∞

w(x) = 1, w(0) = 0,

where ε ≥ 0 is fixed. It is easy to verify that the exact solution is w(x) = 1 − exp(xε ),
for x ≤ 0. Now, we construct a uniform partition of (−∞, 0] with nodes xj = j∆x for
j = 0,−1,−2, . . ., where ∆x > 0 is a given mesh size. Denoting by Wj the approximation
of w(xj), the use of a second order accurate finite element method or finite difference
scheme method leads to the scheme

Wj+1 −Wj−1

2∆x
− ε Wj+1 − 2Wj +Wj−1

(∆x)2
= 0, j = −N + 1, . . . ,−1,

W0 = 0, (8.92)

W−N = 1.

Assume that N is odd. If ε� ∆x, the solution of (8.92) is approximated by

Wj+1 −Wj−1

2∆x
= 0,

which yields the oscillatory solution W2i = 0 and W2i+1 = 1 that does not approximate w,
instead ‖w−W‖L2 = O(1). One way to overcome this difficulty is to replace, in (8.92), the
physical diffusion ε by the artificial diffusion ε̂ = max{ε, ∆x

2 }. For the general problem
β · ∇u− ε∆u = f take ε̂ = max{ε, |β|∆x2 }. Now, when ε� ∆x, we have ε̂ = ∆x

2 and the
method (8.92), with ε replaced by ε̂, yields Wj = Wj−1 for j = −N + 1, . . . ,−1, that is
Wj = 1 for j = −N, . . . ,−1, which is an acceptable solution with ‖w−W‖L2 = O(

√
∆x).

Another way to cure the problem is to resolve by choosing ∆x small enough, so that
ε̂ = ε.

The Lax-Friedrich method for the problem (8.90), is given by

Un+1
j = Unj −∆t

[
H(Unj+1)−H(Unj−1)

2∆x
− (∆x)2

2∆t
D+D−U

n
j

]
, (8.93)

with

D+Vj =
Vj+1 − Vj

∆x
, D−Vj =

Vj − Vj−1

∆x
and D+D−Vj =

Vj+1 − 2Vj + Vj−1

(∆x)2
·

The stability condition for the method (8.93) is

λ ≡ ∆x

∆t
> max

u
|H ′(u)|· (8.94)
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We want to approximate the viscosity solution of the one-dimensional Hamilton-Jacobi
equation

∂tv +H(∂xv) = 0, (8.95)

where v = limε→0+ vε and

∂tv
ε +H(∂xv

ε) = ε ∂2
xv
ε. (8.96)

Setting u = ∂xv and taking derivatives in (8.95), we obtain a conservation law for u, that
is

∂tu+ ∂xH(u) = 0. (8.97)

To solve (8.95) numerically, a basic idea is to apply (8.93) on (8.97) with Uni = (V n
i+1 −

V n
i−1)/(2∆x) and then use summation over i to approximate the integration in (8.80).

We get

V n+1
j+1 − V

n+1
j−1

2∆x
=
V n
j+1 − V n

j−1

2∆x

−∆t

[
H
(
V nj+2−V nj

2∆x

)
−H

(
V nj −V nj−2

2∆x

)
2∆x

− (∆x)2

2∆t
D+D−

V n
j+1 − V n

j−1

2∆x

]
·

Summing over j and using that V m
−∞ = 0 and H(0) = 0, it follows that

V n+1
j = V n

j −∆t

[
H
(V n

j+1 − V n
j−1

2∆x

)
− (∆x)2

2∆t
D+D−V

n
j

]
, (8.98)

which is the Lax-Friedrich method for (8.95). Note that (8.98) is a second order accurate
central difference approximation of the equation

∂tv +H(∂xv) =
(∆x)2

2∆t

(
1− (

∆t

∆x
H ′)2

)
∂2
xv,

which is (8.96) with artificial diffusion ∆x(λ2 − (H ′)2))/(2λ).
In the two-dimensional case a first order Hamilton-Jacobi equation has the form

∂tv +H(∂x1v, ∂x2v) = 0. (8.99)

The analogous scheme to (8.98) for that equation is

V n+1
j,k = V n

j,k −∆t

[
H
(V n

j+1,k − V n
j−1,k

2∆x1
,
V n
j,k+1 − V n

j,k−1

2∆x2

)
−(∆x1)2

4∆t

V n
j+1,k − 2V n

j,k + V n
j−1,k

(∆x1)2

−(∆x2)2

4∆t

V n
j,k+1 − 2V n

j,k + V n
j,k−1

(∆x2)2

]
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which for ∆x1 = ∆x2 = h and λ = h/∆t corresponds to a second order approximation
of the equation

∂tv
h +H(∂x1v

h, ∂x2v
h) =

∆x2

4∆t

∑
i

∂xixiv −
∑
i,j

∆t

2
∂xiH∂xjH∂xixjv.
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Chapter 9

Rare Events and Reactions in
SDE

Transition between stable equilibrium solutions are used to model for instance reaction
paths and reaction rates in chemistry and nucleation phenomena in phase transitions
exited by thermal fluctuations. An example of such nucleation in an under cooled liquid
is the formation of the initial crystal that starts to grow to a whole solid, taking place
every year in the first cold calm winter night in Swedish lakes. Deterministic differential
equations cannot model such transitions between equilibrium states, since a deterministic
solution never escapes from a stable equilibrium. This section shows how stochastic
differential equations are used to model reaction paths and its rates, using large deviation
theory from an optimal control perspective.

Let us start with a determinstic model

Ẋt = −V ′(Xt) t > 0,

where the potential V : R→ R is a scalar double well function, see Figure 9.2, with two
stable equilibrium points x+ and x−, and one unstable equilbrium point x0 in between.
We see from the phase portrait Figure ?? that

lim
t→∞

Xt =


x− if X0 < x0

x+ if X0 > x0

x0 if X0 = x0,
(9.1)

which means that a path from one stable equilibrium point to another stable equilibrium
point is not possible in this deterministic setting.

The stochastic setting

dXt = −V ′(Xt)dt+
√

2εdW t (9.2)

can model transitions between x− and x+. In this section we focus on the case when
the positive parameter ε (which measures the temperature in the chemistry model) is
small, that is we study a small stochastic perturbation of the deterministic case. By
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Figure 9.1: Illustration of a double well with two local minima points at x− and x+ and
one local maximum point atx0.
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Figure 9.2: Four paths Xt from a double well potential with two local minima points at
x− and x+ and one local maximum point at x0.
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introducing noise in the model, we may ask what is the probability to jump from one
well to the other; since ε is small these transitions will be rare events. More precisely we
shall for the model (9.2) determine:

• the invariant probability distribution and convergence towards it as time tends to
infinity,

• the asymptotic behaviour of jumps from one well to another, i.e. reaction rates
and reaction paths.

9.1 Invariant Measures and Ergodicity

Consider now a stochastic differential equation

dXt = −V ′(Xt)dt+
√

2εdW t (9.3)

with a potential V : Rd → R that is smooth and satisfies
∫
Rd e

−V (x)/εdx < ∞, which
implies that V (x) → ∞ as |x| → ∞. We also assume a global Lipschitz bound on V ′

to have a well defined solution X, but the global Lipschitz bound can be relaxed. The
probability density for an SDE solves the Fokker-Planck equation 4.9. Sometimes this has
a time independent solution - the corresponding probability measure is called an invariant
measure. It is called invariant because if we start with this probability measure as initial
probability distribution, the probability distribution obtained from the Fokker-Plank
equation for later time remains unchanged, i.e. this probability distribution is time
invariant. In the case of an SDE with additive noise and a drift that is the gradient of a
potential function, as in (9.3), the invariant measure can be explicitly computed:

Theorem 9.1. The SDE-model (9.3) has the invariant measure

( ∫
Rd
e−V (x)/εdx

)−1
e−V (x)/εdx.

Proof. The Fokker-Planck equation corresponding to the dynamics (9.3) takes the form

∂tp− ∂x
(
V ′(x)p(x)

)
− ε∂xxp = 0. (9.4)

The condition to have an invariant solution means that it is time independent, i.e.
∂tp = 0, and the Fokker-Planck equation can be solved explicitly

εp′ + V ′p = c,

for a contant c. The density p should be integrable, and consequently p(x) and p′(x)
must tend to zero as |x| tends to infinity. Therefore we have c = 0, which implies∫

dp

p
= −

∫
V ′

ε
dx,
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with the solution

log p(x) = C ′ − V (x)

ε
for a constant C ′,

so that for another constant C

p(x) = Ce−V (x)/ε.

The requirement that
∫
Rd p(x)dx = 1 determines the constant to be C =

( ∫
Rd e

−V (x)/εdx
)−1

.

�
A Monte-Carlo method to compute expected values

∫
Rd g(y)p0(y)dy in an equilibrium

environment (with invariant density p0) is typically based on approximations of the

integral T−1
∫ T

0 g(Xt)dt for large T ; therefore it is important to understand some basic
conditions and properties of such approximations, which is the purpose if the next two
theorems.

Theorem 9.2. If one starts with any initial probability densitity and the density converges
time asymptotically to the invariant density p0, i.e. for any τ > 0 the pointwise limit

lim
t→∞

τ−1

∫ t+τ

t
psds = p0

is satisfied, then for any continuous bounded function g : Rd → R there holds in the weak
sense

lim
T→∞

T−1

∫ T

0
g(Xt)dt =

∫
Rd
g(y)p0(y)dy. (9.5)

We say that the stochastic process X is ergodic and that the invariant measure, p0,
is ergodic if (9.5) holds for all bounded continuous g.

Proof. The proof has two steps - to verify that the expected value converges and then
estimate the deviation from this limit.

Step 1. By the assumption of the converging density we have

lim
T→∞

E[T−1

∫ T

0
g(Xt)dt] = lim

T→∞
E
[
T−1

( ∫ T 1/2

0
g(Xt)dt+

∫ T

T 1/2

g(Xt)dt
)]

= lim
T→∞

E
[
T−1

∫ T 1/2

0
g(Xt)dt+ T−1

T−1∑
n=T 1/2

∫ n+1

n
g(Xt)dt

]
=

∫
Rd
g(y)p0(y)dy︸ ︷︷ ︸

=:E0[g]

,

where the first integral tends to zero, since g is bounded and T 1/2/T → 0, and the
T − T 1/2 integrals in the sum converge by the assumption, as explained in Example 9.4.
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Step 2. Let T = Mτ for some large τ,M and write the integral as a sum over M
terms

T−1

∫ T

0
g(Xt)dt = M−1

M∑
n=1

τ−1

∫ (n+1)τ

nτ
g(Xt)dt.

If these terms were independent, the law of large numbers would show that the sum
converges almost surely, as M tends to infinity. Since the terms are only asymptotically
independent as τ →∞, we need some other method: we shall use Chebyshevs inequality

to prove convergence in probability. Let ξn := τ−1
∫ (n+1)τ
nτ

(
g(Xt)− E0[g]

)
dt, we want to

verify that for any γ > 0

lim
M,τ→∞

P
( |∑M

n=1 ξn|
M

> γ
)

= 0. (9.6)

Chebeshevs inequality implies

P (|
M∑
n=1

ξn/M | > γ)

≤ γ−2E[
∑
n

∑
m

ξnξm/M
2]

= γ−2M−2
∑
n

∑
m

τ−2E
[ ∫

n

(
g(Xt)− E0[g]

)
dt

∫
m

(
g(Xs)− E0[g]

)
ds
]

= 2γ−2M−2
∑
n>m

τ−2

∫
n

∫
m
E
[
E
[(
g(Xt)− E0[g]

)(
g(Xs)− E0[g]

)
| Xs

]]
dtds

+ γ−2M−2
∑
n

(
τ−1

∫
n
E
[
g(Xt)− E0[g]

]
dt
)2

=: I

and since the density pt converges we can for each δ > 0 chose τ sufficiently large so that

I = 2γ−2M−2
∑
n>m

τ−2

∫
n

∫
m
E
[ ∫

Rd
g(y)

(
pt(y)− p0(y)

)
dy
(
g(Xs)− E0[g]

)]
dtds

+ γ−2M−2
∑
n

(
τ−1

∫
n
E[g(Xt)− E0[g]]dt

)2

≤ γ−2δ + Cγ−2M−1

which proves (9.6).

�

Theorem 9.3. The process X generated by (9.3) is ergodic for positive ε.
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Proof. Theorem 9.2 tells us that it remains to verify that the probability density converges
time asymptotically to the invariant density. Let p0 be the invariant solution and define
the entropy

Et :=

∫
Rd
p log

p

p0
dx.

We know from Corollary 4.9 that p is non negative. The proof has three steps: to show
that the entropy decays, that the entropy is non negative, and that the decaying entropy
implies convergence of the density to the invariant density.

Step 1. Show that Ėt = −ε−1
∫
|εp′ + V ′p|2p−1dx. Differentiation, the Fokker-Planck

equation (9.4), and integration by parts1 imply

Ėt =

∫
Rd
∂tp log

p

p0
+ ∂tp

p

p
dx

=

∫
Rd

∂tp︸︷︷︸
=(V ′p)′+εp′′

(log
p

p0
+ 1)dx

=

∫
Rd

(
(V ′p)′ + εp′′

)
(log

p

p0
+ 1)dx

= −
∫
Rd

(
V ′p+ εp′

)
· (p
′

p
− p′0

p0︸︷︷︸
−V ′/ε

)dx

= −ε−1

∫
Rd
|V ′p+ εp′|2p−1dx.

Step 2. Show that Et ≥ 0 using that p and p0 have the same mass and that log x is
concave. We have

Et =

∫
Rd
p log

p

p0
dx =

∫
Rd
p(− log

p0

p
+
p0

p
− 1)dx

and the concavity of the logarithm implies log x ≤ x− 1, which establishes Et ≥ 0.
Step 3. Time integration of Step 1 gives

ET + ε−1

∫ T

0

∫
Rd
|εp′ + V ′p|2p−1dxdt = E0, (9.7)

and since ET is non negative and E0 is assumed to be bounded, we see that the integral∫ T
0

∫
|εp′+V ′p|2p−1dxdt also is bounded uniformly in T . Therefore we have, for any τ > 0,

that τ−1
∫ t+τ
t εp′s + V ′psds→ 0 in L2(Rd) as t→∞, which gives τ−1

∫ t+τ
t psds→ p0 as

follows: integration of
εp′t + V ′pt =: f t

shows that

p(x, t) = e−V (x)/ε
(
C +

∫ x

0
f(y, t)eV (y)/εdy

)
1A better way, in the sense of requiring less assumptions, is to directly study the Fokker-Planck

equation in its weak form; then the integration by parts is not needed and (9.7) is obtained directly.

143



so that τ−1
∫ t+τ
t psds→ p0 as t→∞, since τ−1

∫ t+τ
t fsds→ 0 in L2(Rd).

�

Example 9.4 (No mass escapes to infinity). The aim here is to verify that the pointwise
limit limτ→∞

∫ τ+1
τ ptdt = p0 implies the weak limit

lim
τ→∞

∫ τ+1

τ

∫
Rd
gptdxdt =

∫
Rd
gp0dx, (9.8)

for any bounded continuous function g.
Let p̄τ :=

∫ τ+1
τ ptdt and define φ : (0,∞)→ R by φ(x) = x log x/p0. The function φ

is convex and Jensen’s inequality implies together with (9.7)

E0 ≥
∫
Rd

∫ τ+1

τ
pt log

pt

p0
dtdx

=

∫
Rd

∫ τ+1

τ
φ(pt)dtdx

≥
∫
Rd
φ
(∫ τ+1

τ
ptdt

)
dx

=

∫
Rd
φ(p̄τ )dx.

Therefore we have for any positive number n∫
Rd
p̄τ1{p̄τ>np0}dx ≤

E0

log n
. (9.9)

We can split our integral into two∫
Rd

∫ τ+1

τ
gptdtdx =

∫
Rd
gp̄τdx =

∫
Rd
gp̄τ1{p̄τ>np0}dx+

∫
Rd
gp̄τ1{p̄τ≤np0}dx,

where dominated convergence yields

lim
τ→∞

∫
Rd
gp̄τ1{p̄τ≤np0}dx =

∫
Rd
gp0dx

and (9.9) shows that the other integral is negligible small∫
Rd
gp̄τ1{p̄τ>np0}dx ≤ C/ log n

as n→∞, which proves the limit (9.8).

Exercise 9.5 (Invariant measure for Ornstein-Uhlenbeck). Show that the invariant
measure for the Ornstein-Uhlenbeck process is a normal distribution.
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Exercise 9.6 (Vanishing noise density is not the deterministic density). Prove that for
a smooth function V on a bounded set A

lim
ε→0+

ε log

∫
A
e−V (y)/εdy = − inf

y∈A
V (y).

Such a limit was first studied by Laplace.

Exercise 9.7. Show that for a smooth function V on a bounded set A with a unique

global minimum point y+, the probabilty density e−V (y)/ε∫
A e
−V (y)/εdy

has the limit expected

value

lim
ε→0+

∫
A e
−V (y)/εφ(y)dy∫
A e
−V (y)/εdy

= φ(y+),

Compare this limit with the time-asymptotic ”probability” density for the determinstic
ε = 0 case (9.1) and show they are different. What can be concluded about the limits
t→∞ and ε→ 0+ of the probability density?

Example 9.8 (Simulated Annealing). The stochastic differential equation (9.3) can also
be used to find minima of functions V : Rd → Rd: we know that its invariant measure

has the density
∫
A e
−V (y)/εφ(y)dy∫
A e
−V (y)/εdy

, which by Exercise 9.7 concentrates at x ∈ argmin V .

Therefore, by simulating the stochastic differential equation for very long time with
decreasing ε one expect to have the path X most of the time in the global minimum;
more precisely choose ε = ε1 for t ∈ [0, T1], . . . , ε = εn for t ∈ [Tn−1, Tn], with εn ↘ 0+
and Tn ↗∞ as n→∞. This method is called simulated annealing and it can be proven
to work for a precise choice of εn and Tn, see [?]. The advantage with the method is that
a global minimum is found and the main question is to find a good combination of εn
and Tn suitable for the particular V studied.

9.2 Reaction Rates

The invariant ergodic measure for X shows that there is a finite probability to reach
all states from any point when ε > 0, in contrast to the determinstic case ε = 0; the
invariant measure also shows that these probabilites are exponentially small, proportional
to e−V/ε. It is practical to relate reaction rates to exit times from domains: define for X
solving (9.3) and a given domain A ∈ Rd the exit time

τ(X) = inf{t : Xt /∈ A}.

We want to understand the exit probability

P (τ < T ) = E[1τ<T ] =: qτ as ε→ 0+.

The Kolmogorov-backward equation shows that

∂tqτ − V ′ · ∂xqτ + ε∂xxqτ = 0 in A× (0, T )

qτ (x, ·) = 1 on ∂A× (0, T )

qτ (·, T ) = 0 on A× {T}.
(9.10)
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Remark 9.9 (A useless solution). A naive try could be to remove the diffusion part
ε∂xxqτ in (9.4); that leads to the hyperbolic equation

∂tqτ − V ′ · ∂xqτ = 0 in A× (0, T )

qτ = 1 on ∂A× (0, T )

qτ (·, T ) = 0 on A× {T}
(9.11)

which can be solved by the characteristics ẏt = −V ′(yt):

d

dt
qτ (yt, t) = ∂tqτ +

dyt

dt
· ∂xqτ = ∂tqτ − V ′ · ∂xqτ = 0.

Since the equilibrium points are stable, it turns out that all characteristics leave the
domain on the upper part t = T see Figure 9.3, where qτ = 0, so that the solution of
(9.11) becomes qτ = 0, and that is a useless solution.
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t)

Figure 9.3: Four paths Xt starting with X0 < x0 in the domain of the global attractor
x−

The limit in Remark 9.9 needs to be refined to give something useful. The invariant
measure with probabilities proportional to e−V/ε suggests a change of variables qτ (x, t) =
ewε(x,t)/ε. The right way to study qτ as ε→ 0+ is to use the limit

lim
ε→0+

ε log qτ = lim
ε→0+

wε =: w

which we believe has a bounded non positive limit, using the invariant measure. Since qτ
is a probability we know that wε ≤ 0 and (9.10) implies that wε solves the second order
Hamilton-Jacobi equation

∂twε − V ′ · ∂xwε + ∂xwε · ∂xwε + ε∂xxwε = 0 in A× (0, T )

wε(x, ·) = 0 on ∂A× (0, T )

wε(·, T ) = −∞ on A× {T}.
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A good way to understand this Hamilton-Jacobi equation is to view it as an optimal
control problem. In the limit as ε tends to zero, the optimal control problem becomes
determinstic, see Theorem 8.10; assume that limε→0+wε =: w to obtain the first order
Hamilton-Jacobi equation

∂tw−V ′ · ∂xw + ∂xw · ∂xw︸ ︷︷ ︸
=:H
(
w(x),x

) = 0 in A× (0, T )

w(x, ·) = 0 on ∂A× (0, T )

w(·, T ) = −∞ on A× {T}.

Following Section 8.1.4, a useful optimal control formulation for this Hamilton-Jacobi
equation is

Ẏ t = −V ′(Y t) + 2αt

max
α:(0,T )→Rd

−
∫ τ

0
|αt|2dt+ g(Y τ , τ)

which has the right Hamiltonian

sup
α∈Rd

(
λ ·
(
− V ′(y) + 2α

)
− |α|2

)
= H(λ, y) = −V ′(y) · λ+ |λ|2.

Here the final cost is zero, if the exit is on the boundary ∂A× (0, T ), and minus infinity
if the exit is on A× {T} (i.e. the path did not exit from A):

g(x, t) =

{
0 on ∂A× (0, T )
−∞ on A× {T}.

Theorem 8.10 shows that the limit limε→0+ ε log qτ = limε→0+wε = w satisfies

w(x, t) = sup
α:(t,τ)→Rd

−
∫ τ

t
|α|2dt+ g(Y τ , τ)

= sup
α
−1

4

∫ τ

t
|Ẏ t + V ′(Y t)|2dt+ g(Y τ , τ).

When T tends to infinity and X0 is an equilibrium point, this limit w has a simple
explicit solution showing that reaction rates are determined from local minima and saddle
points of V , cf. Figure 9.4:

Theorem 9.10. Assume that y+ is a global attractive equilibrium in A. Let X0 = y+,
then

lim
T→∞

lim
ε→0+

ε log qτ = V (y+)− inf
y∈∂A

V (y). (9.12)
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Proof. It is clear the optimal control paths starting in y+ need to exit through ∂A, so
g(Y τ ) = 0. The integral cost can be rewritten as

sup
α
−1

4

∫ τ

0
|Ẏ t + V ′(Y t)|2dt

= sup
α

(
− 1

4

∫ τ

0
|Ẏ t − V ′(Y t)|2︸ ︷︷ ︸

≥0

dt−
∫ τ

0
Ẏ t · V ′(Y t)dt︸ ︷︷ ︸
V (Y τ )−V (y+)

)
. (9.13)

Here the last integral is minimal if Y τ exits through a point on ∂A where V is minimal,
which is a saddle point if we have chose A to be the largest domain where y+ is a global
attractor. It remains to show that such an exit is compatible with having the first integral
equal to zero; the first integral equals zero means that Ẏ t = V ′(Y t), which implies that
Y moves orthogonal to the level lines of the V -potential. Such a path is possible by
taking α = V ′(Y t) and requires T to be sufficiently large so that the time to reach the
boundary on the optimal path Ẏ t = V (Y t) is shorter, when X0 tends to y+ this time
tends to infinity.

�
We see that the probability to exit from an equilibrium is exponentially tiny, pro-

portional to e−(infy∈∂A V (y)−V (y+))/ε as ε tends to zero, and therefore such exits are rare
events. In the next section we show that the most probable path, the so called reaction
paths, that gives such rare events are those where the stochastic paths X closely follow
the optimal control paths Y . Since ε is small and the control α is not, the Brownian
motion must some time be large of order ε−1/2. Therefore the rare events of exits depend
on the rare events of such large deviation in the Brownian motion.

The Theorem relates to the basis of reaction theory in chemistry and statistical
physics, where the probability to go from one state with energy V1 to another with energy
V2 > V1 is proportional to Boltzmanns rate e−(V2−V1)/(kBT ); here kB is Boltzmanns
constant and T is the temperature. We see that, with ε = kBT and V the energy, the
simple model (9.3) can describe reactions and physical transition phenomena. A simple
way to see that the reaction rate is qτ is to take N independent particles starting in y+.
After very long time Nqτ of them have exited from the domain and the reaction rate
becomes the quotient Nqτ/N = qτ .

Exercise 9.11. Show that the mean exit time uε(x, t) := E[τ − t | Xt = x] satisfies

lim
ε→0+

ε log uε(y+, t) = inf
y∈∂A

V (y)− V (y+).

Exercise 9.12. Does
lim
ε→0+

ε log qτ = V (X0)− inf
y∈∂A

V (y)

hold when X0 starts from a different point than the global attractor in A? Answer:
sometimes but not in general depending on X0 - how?
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Exercise 9.11 shows that the product of the limits of the mean exit time and the
probability to exit is equal to one, that is the mean exit time is exponentially large,
roughly e(infy∈∂A V (y)−V (y+))/ε.

9.3 Reaction Paths

This section motivates why the most probable exit paths X closely follow the optimal
control paths Y . We saw in Theorem 9.10 that in the case T tending to infinity and
Y 0 = y+, the optimal path Y is orthogonal to the level sets of the potential V and
the path starts from the minimum point y+ (where V (y+) = miny∈A V (y)) and moves
towards the minimum on the boundary argminy∈∂AV (y), see Figure 9.4. For bounded T
the situation may change and the time to reach the boundary with the control α = V ′

may be larger than T , so that the first integral in (9.13) does not vanish and the optimal
control becomes different; therefore also the exit probability is different and (9.12) is
invalid; clearly such early time exit probabilities are also interesting when a rare event
is unwanted, e.g. for hard-disc and power-plant failures. These most probable paths
following the optimal control paths are called the reaction paths. Since the exit probability
is small and the most probable exit path makes a large deviation from the equilibrium
on a time span of order one, which is small compared to the expected exit time of order
eC/ε (for some positive C), the exit process can on long time spans be considered as a
Poisson process with the rate 1/E[τ − t] ' qτ .

To verify that the most probable exit paths follow the optimal control paths, we want
to in some sense relate the stochastic increments

√
2ε dW t with the control increments

αtdt. Our first step in this direction is to find a probability measure on whole paths
X, and then to see how probable the X-paths close to the optimal control paths Y∗ are
compared to the X-paths away from Y∗. It is clear that the probability to find X = Y∗
is zero, so we need to modify this argument somewhat. An informal way to understand
the probability of whole paths is to consider Euler discretizations of (9.3)

(∆X

∆t
+ V ′(Xi)

)
∆t =

√
2ε∆W

with the probability density

P (∆W = yi) = e−
|yi|

2

2∆t
dyi

(2π∆t)d/2

= e−|
∆X
∆t

+V ′(Xi)|2∆t/(4ε) dyi

(2π∆t)d/2
.

Therefore the probability measure for a whole path is

Πn
i=1e

− |yi|
2

2∆t
dyi

(2π∆t)d/2
= Πn

i=1e
−|∆X

∆t
+V ′(Xi)|2∆t/(4ε) dyi

(2π∆t)d/2

= e−
∑n
i=1 |

∆X
∆t

+V ′(Xi)|2∆t/(4ε) dy1

(2π∆t)d/2
. . .

dyn

(2π∆t)d/2
.
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The most probable path is the one that maximises the probability density

e−
∑n
i=1 |

∆X
∆t

+V ′(Xi)|2∆t/(4ε) ,

this is called the maximum likelihood method . In the previous section we saw that the
optimal control problem does precisely this maximisation. Therefore the optimal control
paths generate the most probable stochastic paths. If the density in the maximum
likelihood method is almost uniform, the result is doubtful. Here the situation is the
opposite - when ε tends to zero, the density concentrates on the most probable event,
see Exercise 9.13.

If we consider W or α as perturbations, we see that the solution we have obtained is
the solution of the least-squares problems

min
W

∫ τ

0
|Ẋt + V ′(Xt)|2dt = min

α

∫ τ

0
|Ẏ t + V ′(Y t)|2dt,

where Ẋt + V ′(Xt) and Ẏ t + V ′(Y t) are the residuals, that is the error in the equation.

Exercise 9.13. In the limit as ε tends to zero, we saw in Exercise 9.6 that if
∫
A e
−V (y)dy

is bounded, then

lim
ε→0+

ε log

∫
A
e−V (y)/εdy = − inf

y∈A
V (y).

Show that for a smooth function f on a bounded set A with a unique maximum point

y+, the probabilty density ef(y)/ε∫
A e

f(y)/εdy
has the limit expected value

lim
ε→0+

∫
A e

f(y)/εφ(y)dy∫
A e

f(y)/εdy
= φ(y+),

which means that in the limit the most probable event almost surely happens and nothing
else.
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Figure 9.4: The optimal reaction path starting in the attractor y+ moving to the
sadlepoint y0 = argminy∈∂A(V (y), inside the domain A to the left of the dashed line.
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Chapter 10

Machine Learning

A central problem in machine learning is to find a neural network approximation that
approximates the data well. The standard method to find such an approximation is based
on a minimization problem, which is solved approximately by an iterative method called
the stochastic gradient descent method. The stochastic gradient descent method is closely
related numerical methods for stochastic differential equations, as we shall see in Section
10.2, in the sense that the iterations can be viewed as Euler steps of a stochastic differential
equation. The convergence towards the minimum involves approximation related to
time steps, as in Section 5, and time asymptotic convergence towards the equilibrium
density and the rare events studied in Section 9. The approximation properties of the
minimization problem is studied in Section 10.1 and the convergence of the stochastic
gradient descent method in Section 10.2

10.1 Approximation with a neural network

Given a set of data points {(xn, yn) : n = 1, . . . , N}, where (xn, yn) ∈ Rd × R are
independent samples from an unknown probability measure, ν, on Rd × R, we study in
this section the learning problem to determine the best neural network function α ∈ NK ,
defined by parameters θ ∈ RK(d+2), that minimizes the expected value

min
α∈NK

E[g
(
y, α(x, ·)

)
] (10.1)

for a given loss function g : R× R→ R that is convex in the second variable, α. We use
the loss function

g
(
y, α(x, θ)

)
:= |y − α(x, θ)|2 (10.2)

and neural network functions with one hidden layer

NK :=
{
α : α(x, θ) =

{ ∑K
k=1 θ

1
kσ(θ2

k · x+ θ3
k) =: ᾱ(x, θ), x ∈ Rd , for |θ| ≤ RK(

1− η(|θ|2)
)
ᾱ(x, θ) + η(|θ|2)|θ| , for |θ| > RK

}
.

(10.3)
Here we study the activation function σ : R → R given by σ(v) = sin(v). Other
commonly used activation functions are e.g. σ(v) = 1/(1 + e−v) and σ(v) = max(v, 0).
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The parameters θ = (θ1
k, θ

2
k, θ

3
k)
K
k=1 are chosen as θ1

k ∈ R, θ2
k ∈ Rd, θ3

k ∈ R and the non
negative cut-off function η ∈ C∞(R), which satisfies

η(v) =

{
0, v < R2

K ,
1, v > 2R2

K ,
(10.4)

is introduced to make the loss function, g, coercive, namely

g
(
y, α(x, θ)

)
=

{
|y − ᾱ(x, θ)|2 for |θ| < RK
|y − θ|2 for |θ| >

√
2RK ,

which also implies that ∇θg
(
y, α(x, θ)

)
is globally Lipschitz continuous as a function

of θ with a smooth transition in the range RK ≤ |θ| ≤
√

2RK . Here and below
|v| := (

∑n
j=1 v

2
n)1/2 denotes the Euclidian norm of v = (v1, . . . , vn) ∈ Rn, for some n ∈ N.

The positive number RK is chosen sufficiently large later, so that the approximation
property in NK is not changed substantially, see (10.16).

We may consider the data as yn = f(xn) + noise, for some function f : Rd → R and
let

dν̄(·) :=

∫
R

dν(·, y) (10.5)

be the marginal distribution of the data {xn}Nn=1. The aim of this chapter is to study
two properties of the loss function

G(θ) :=

∫
Rd
|f(x)− α(x, θ)|2dν̄(x) (10.6)

namely how well a neural network NK can approximate f and how deep the local
minima of the loss landscape are. We prove in Theorem 10.1 an error estimate for the
minimum of G and discuss in Section 10.1.4 the depth of local minima. This depth
in loss landscape, which we here call elevation gain, m, as precisely defined in (10.18),
effects the convergence properties for the commonly used stochastic gradient descent
method to determine neural network parameters θ̄[n] ∈ R(d+2)K defined by

θ̄[n+ 1] = θ̄[n]−∇θg
(
yn, α(xn, θ̄[n])

)
∆s , n = 0, 1, 2, . . . (10.7)

based on the learning rate ∆s > 0 and a given initial random guess θ̄[0]. The method
uses new independent samples (xn, yn) in each step (i.e. independent of each other)
thereby forming an approximation to minα∈NK E[g

(
y, α(x, ·)

)
], as we shall see in Section

10.2.

10.1.1 An error estimate for neural network approximation

Assume that the Fourier transform

f̂(ω) =
1

(2π)d/2

∫
Rd
f(x)e−iω·xdx
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of f : Rd → R has bounded L1(Rd) norm. The classical universal approximation result
by Barron in [1] proves

min
α∈NK

∫
|x|≤r

|f(x)− α(x, ·)|2dν̄(x) ≤
(2r‖|ω|f̂(ω)‖L1(Rd))

2

(2π)dK
,

based on bounded measurable activation functions σ : R→ R that satisfy limv→∞ σ(v) =
1 and limv→−∞ σ(v) = 0. We use the Monte Carlo method to show in Theorem 10.1
that this approximation rate, now based on the activation function σ(v) = sin(v), can be
improved to

min
α∈NK

∫
Rd
|f(x)− α(x, ·)|2dν̄(x) ≤

‖f̂‖2
L1(Rd)

(2π)dK
. (10.8)

10.1.1.1 A Monte Carlo method

1. Formulation of the Monte Carlo method. The Fourier inversion theorem implies that
for any h : Rd → R in the Schwartz class, we have

h(x) =
1

(2π)d/2

∫
Rd
ĥ(ω)eiω·xdω ,

where the Fourier transform ĥ(ω) = 1
(2π)d/2

∫
Rd h(x)e−iω·xdx also is in the Schwartz class.

Since f̂ ∈ L1(Rd) we have a representation of f = α ∈ N∞ based on the activation
function σ(y) = sin(y):

f(x) =
1

(2π)d/2

∫
Rd

Re
(
f̂(ω)eiω·x)dω

=
1

(2π)d/2

∫
Rd
|f̂(ω)| cos

(
ω · x+ arg f̂(ω)

)
dω

=
1

(2π)d/2

∫
Rd
|f̂(ω)| sin

(
ω · x+ arg f̂(ω) +

π

2

)
dω .

(10.9)

This integral can be sampled by the Monte Carlo method and the probability density
function that minimizes the variance of the approximation error is |f̂(ω)|/

∫
Rd |f̂(ω)|dω,

as verified in (10.14) and Step 4. The Monte Carlo method becomes

1

(2π)d/2
Re

∫
Rd
f̂(ω)eiω·xdω '

K∑
k=1

Re
(
f̂(ω̄k)eiω̄k·x)

K(2π)d/2p(ω̄k)

=

K∑
k=1

|f̂(ω̄k)| cos
(
ω̄k · x+ arg f̂(ω̄k)

)
K(2π)d/2p(ω̄k)

=: α̃(x, ω̄)

(10.10)
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where ω̄k ∈ Rd, k = 1, 2, 3, . . .K, are independent samples with a probability density p
on Rd and the neural network parameter in (10.3) is

θ =
( |f̂(ω̄k)|
K(2π)d/2p(ω̄k)

, ω̄k,
π

2
+ arg f̂(ω̄k)

)K
k=1

. (10.11)

We note that ᾱ(·, θ) ∈ NK where the parameters θ1
k are amplitudes, θ2

k frequencies, and
θ3
k phase shifts. We will use the notation α̃ ∈ NK(p) for functions α̃ ∈ NK defined

by (10.10) where the frequencies ω̄k = θ2
k are sampled from the probability density

p : Rd → [0,∞).

10.1.2 A property of the loss landscape

Let m be the highest elevation gain for a path from a local minimum to the global
minimum in the θ loss landscape generated by the objective function G : Rd → R, defined
in (10.6). The stochastic differential equation

dθs = −∇G(θs)ds+
√

2εdWs , s > 0 ,

based on the standard Wiener process W : [0,∞) × Ω → RK(d+2), is related to the
stochastic gradient descent method (10.7), see [27]. Here Ω is the set of outcomes of the
Wiener process and ε is a positive parameter. Under some assumptions on G, related to
coercivity, the probability density for θs will, as s→∞, converge to its invariant density

qε(θ) :=
e−G(θ)/ε∫

R(d+2)K e−G(θ′)/εdθ′

with an exponential rate e−γs, satisfying limε→0+(ε log γ) = −m, see [3]. When G has
a unique minimum, Laplace principle then yields

∫
R(d+2)K G(θ)qε(θ)dθ → minθG(θ), as

ε→ 0+. It is therefore useful to determine the elevation gain m for neural networks. The
elevation gain m for a certain neural network NK , with K parameters, for a supervised
learning problem in dimension d is in [17] shown to decay as m = O(K−1/d).

10.1.3 Theorem 10.1: Estimation of the neural network minimum

Here follows first an elementary proof of (10.8), We use that the approximation in N∞
can be characterised by probability distributions of the θ2

k parameters, which generate a
Monte Carlo method. In the case of a finite penalty paramater, RK < ∞, we use the
definition

H(f,K,RK) :=
(
E[|f(x)|2] +

‖f̂ ‖2
L1(Rd)

(2π)dK
+Kπ2 +

K‖|ω|2f̂ ‖L1(Rd)

‖f̂ ‖L1(Rd)

)
×

×
K‖|ω|2f̂ ‖L1(Rd)

‖f̂ ‖L1(Rd)(R
2
K −Kπ2 − (

∫
Rd |f̂(ω)|dω)2

K(2π)d
)

+
K2‖|ω|4f̂ ‖L1(Rd)

‖f̂ ‖L1(Rd)(R
2
K −Kπ2 − (

∫
Rd |f̂(ω)|dω)2

K(2π)d
)
.

(10.12)
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Theorem 10.1. Assume the activation function is σ(v) = sin(v) and ‖f̂ ‖L1(Rd) <∞ ,
then in the case RK =∞

min
α∈NK

G ≤ min
{p : α̃∈NK(p)}

E[g
(
f(x), α(x, ·)

)
] ≤
‖f̂ ‖2

L1(Rd)

(2π)dK
. (10.13)

and in the case RK <∞, if also ‖|ω|4f̂ ‖L1(Rd) <∞,

min
α∈NK

G ≤ min
{p : α̃∈NK(p)}

E[g
(
f(x), α(x, ·)

)
] ≤
‖f̂ ‖2

L1(Rd)

(2π)dK
+H(f,K,RK) ,

where H(f,K,RK) defined in (10.12) satisfies H(f,K,RK) = O( K2

R2
K−20K

).

Proof. The proof has four steps: to formulate a Monte Carlo approximation of f based
on the Fourier inversion given in Section 10.1.1.1, to determine its variance, to study the
effect of the penalty RK and to determine the optimal distribution for the Monte Carlo
method.

2.The variance of the Monte Carlo method. The expected squared error, with respect
to the samples ω̄k, that has the probability density p, and the data x, is precisely the
loss function, in the case RK =∞ excluding the penalty (10.4),

E[g
(
f(x), ᾱ(x, θ)

)
] = E

[
|f(x)−

K∑
k=1

Re
(
f̂(ω̄k)eiω̄k·x)

K(2π)d/2p(ω̄k)
|2
]

= E
[∣∣ K∑
k=1

1

K

(Re
(
f̂(ω̄k)eiω̄k·x)

(2π)d/2p(ω̄k)
− f(x)

)∣∣2]
=

1

K
E
[∣∣Re

(
f̂(ω̄k)eiω̄k·x)

(2π)d/2p(ω̄k)
− f(x)

∣∣2]
=

1

K

( 1

(2π)d

∫
Rd

|Re
(
f̂(ω)eiω·x)|2
p(ω)

dω − E
[
|f(x)|2

])
≤ 1

K

( 1

(2π)d

∫
Rd

|f̂(ω)eiω·x|2

p(ω)
dω − E

[
|f(x)|2

])
=

1

K

( 1

(2π)d

∫
Rd

|f̂(ω)|2

p(ω)
dω − E

[
|f(x)|2

])
.

(10.14)

The minimum of the right hand side with respect to probability densities p is obtained
for p(ω) = |f̂(ω)|/‖f̂‖L1(Rd), as verified in Step 4, which yields

E[g
(
f(x), ᾱ(x, θ)

)
] ≤ 1

K

( 1

(2π)d
( ∫

Rd
|f̂(ω)|dω

)2 − E
[
|f(x)|2

])
(10.15)

with the convergence rate O(K−1), provided ‖f̂‖L1(Rd) is bounded. We also have

minα∈NK G ≤ E[g
(
f(x), ᾱ(x, ω̄)

)
], since the minimum is less or equal to the mean and

we use that ‖f‖L∞(Rd) is bounded since ‖f̂ ‖L1(Rd) is bounded.
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3. The case including penalty RK <∞. In the case including the penalty we have

f(x)− α(x, θ) =
(
1− η(|θ|2)

)(
f(x)− ᾱ(x, θ)

)
+ η(|θ|2)

(
f(x)− |θ|

)
which implies

E[g
(
f(x), ᾱ(x, θ̄)

)
] = E

[∣∣η(|θ|2)
(
f(x)− |θ|

)
+
(
1− η(|θ|2)

)(
f(x)−

K∑
k=1

Re
(
f̂(ω̄k)eiω̄k·x)

K(2π)d/2p(ω̄k)

)∣∣2]
≤ 2

K

(( 1

(2π)d/2

∫
Rd
|f̂(ω)|dω

)2 − E[|f(x)|2]
)

+ 4E[(|θ|2 + |f(x)|2)1|θ|>RK ] .

Definition (10.11) implies

|θ|2 =
(
∫
Rd |f̂(ω)|dω)2

K(2π)d
+

K∑
k=1

|ω̄k|2 +

K∑
k=1

(π
2

+ arg f̂(ω̄k)
)2

︸ ︷︷ ︸
=:γK

therefore

E[(|θ|2 + |f(x)|2)1|θ|>RK ] = E[(|θ|2 + |f(x)|2)1∑K
k=1 |ω̄k|2>R2

K−γK−
(
∫
Rd |f̂(ω)|dω)2

K(2π)d

]

= E[(|θ|2 + |f(x)|2)1 ∑K
k=1

|ω̄k|2

R2
K
−γK−

(
∫
Rd |f̂(ω)|dω)2

K(2π)d

>1
]

≤ E[(|θ|2 + |f(x)|2)

∑K
k=1 |ω̄k|2

R2
K −Kπ2 − (

∫
Rd |f̂(ω)|dω)2

K(2π)d

]

which can be written

E[(|θ|2 + |f(x)|2)1|θ|>RK ]

≤ E[
(
|f(x)|2 +

‖f̂ ‖2
L1(Rd)

(2π)dK
+Kπ2 +

K∑
k=1

|ω̄k|2
) ∑K

k=1 |ω̄k|2

R2
K −Kπ2 − (

∫
Rd |f̂(ω)|dω)2

K(2π)d

]

=
(
E[|f(x)|2] +

‖f̂ ‖2
L1(Rd)

(2π)dK
+Kπ2 +

K‖|ω|2f̂ ‖L1(Rd)

‖f̂ ‖L1(Rd)

) K‖|ω|2f̂ ‖L1(Rd)

‖f̂ ‖L1(Rd)(R
2
K −Kπ2 − (

∫
Rd |f̂(ω)|dω)2

K(2π)d
)

+
K‖|ω|4f̂ ‖L1(Rd)

‖f̂ ‖L1(Rd)(R
2
K −Kπ2 − (

∫
Rd |f̂(ω)|dω)2

K(2π)d
)

= O(
K2E[|ω|2]2 +KE[|ω|4]

R2
K − 20K

) .

We see that the penalty yields negligible contribution to the approximation error provided
RK is chosen sufficiently large, namely so that

K2E[|ω|2]2 +KE[|ω|4]

R2
K − 20K

= o(K−1) . (10.16)
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Step 4. Optimal Monte Carlo sampling. The optimal density p is determined by
minimizing the variance in (10.14)

E[g
(
f(x), ᾱ(x, θ)

)
] ≤ 1

K

( 1

(2π)d

∫
Rd

|f̂(ω)|2

p(ω)
dω − E

[
|f(x)|2

])
under the constraint ∫

Rd
p(ω)dω = 1 . (10.17)

The change of variables p(ω) = q(ω)/
∫
Rd q(ω)dω implies (10.17) for any q : Rd → [0,∞).

Define for any v : Rd → R

H(ε) :=

∫
Rd

|f̂(ω)|2

q(ω) + εv(ω)
dω

∫
Rd
q(ω) + εv(ω)dω .

At the optimum we have

0 = H ′(0) =

∫
Rd

|f̂(ω)|2v(ω)

−q2(ω)
dω

∫
Rd
q(ω′)dω′︸ ︷︷ ︸
=:c1

+

∫
Rd

|f̂(ω′)|2

q(ω′)
dω′︸ ︷︷ ︸

=:c2

∫
Rd
v(ω)dω

=

∫
Rd

(
c2 − c1

|f̂(ω)|2

q2(ω)

)
v(ω)dω

which implies q(ω) = c1
c2
|f̂(ω)| and consequently the optimal density becomes

p(ω) =
|f̂(ω)|∫

Rd |f̂(ω′)|dω′
.

10.1.4 Properties of the loss landscape

Here we study a property of the loss landscape G and we let the maximum elevation
gain in the deepest valley for any continuous path γk : [0, 1] → R(d+2)K from a local
minimum point θk to the global minimum point θ∗ be denoted by

m := sup
θk

inf
{γk : γk(0)=θk & γk(1)=θ∗}

max
s∈[0,1]

(
G(γk(s))−G(θk)

)
=: G(θ12)−G(θ1) (10.18)

where G(θ12) is the highest saddle point and G(θ1) the local minimum (i.e. not the
global minimum) in the deepest valley, which is assumed to be unique.
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10.2 The stochastic gradient Langevin method

The purpose of this section is to show that the learning problem (10.1) for the parameter
θ = (θ1

k, θ
2
k, θ

3
k)
K
k=1 ∈ RK(d+2) can be approximated by the stochastic gradient Langevin

method

θ̄n+1 = θ̄n −∇θg
(
yn, α(xn, θ̄n)

)
∆s+

√
2ε∆Wn , n = 0, 1, 2, . . . (10.19)

based on the standard Wiener process W : [0,∞) × Ω → RK(d+2) with increments
∆Wn := W

(
(n + 1)∆s

)
−W (n∆s) and time steps (i.e. learning rate) ∆s > 0. The

method uses new independent samples (xn, yn) in each step (i.e. independent of each
other and of W ) and we will verify that these iterations yields an approximation to
minα∈NK E[g

(
y, α(x, ·)

)
] as n → ∞ and ε → 0+. The stochastic gradient Langevin

method is the stochastic gradient descent with additional noise, corresponding to ε > 0
and for the case ε = 0 it is the stochastic gradient descent method (10.7). Here Ω is the
set of outcomes of the Wiener process. More precisely we show in this section that the
stochastic gradient Langevin method is consistent in the sense that we can approximate
the expected value (10.1) with an error that tends to zero as the learning rate ∆s tends to
zero and the number of neural network nodes K tends to infinity, provided the diffusion
is chosen as ε ' K−1 and the simulation time is large enough M∆s & K−2. As an
introductory step we formulate the following simple example.
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Exercise 10.2 (A simple model). The following example of a minimization problem
to find a parameter θ ∈ R uses similar similar iterations as (10.7). Assume we seek the
minimal expected value

min
θ∈R

E[f(θ, Y )] (10.20)

where Y is the stochastic variable with standard normal distribution (with mean zero
and variance one) and f(θ, y) := |θ − y|2 for θ ∈ R and y ∈ R.

a. Consider the iterations

θ0 = 1

θn+1 = θn −∆t
∂f

∂θ
(θn, Yn) , n = 0, 1, 2, . . . ,

(10.21)

and show that there is a constant C such that E[|θn|2] ≤ C, n = 0, 1, 2, . . . for a suitable
choice of ∆t ∈ R. Determine these ∆t. Here, Yn, n = 0, 1, 2, . . . are independent
stochastic variables which all are standard normal distributed and E[|θn|2] denotes the
expected value of |θn|2. Determine also θ∗ where

E[f(θ∗, Y )] = min
θ∈R

E[f(θ, Y )]

and establish the convergence rate of limn→∞ E[|θn − θ∗|2].

b. Write a program that performs the iterations in problem 1a and plots θn, n =
0, 1, 2, . . . N .

c. Show that the stochastic gradient descent iterations (10.21) are in fact forward Euler
steps for an Ornstein-Uhlenbeck process. Formulate also the gradient descent method,
based on computing the expected value exactly, to solve the minimization problem
(10.20), determine its convergence rate and compare with the result in problem 1a.

10.2.1 Convergence of the stochastic gradient Langevin method

The convergence proof of stochastic gradient descent is based on consistency analysis of
the discrete stochastic gradient Langevin method (10.19), with respect to the Kolmogorov
backward equation for the process θ : [0,∞) × Ω → RK(d+2) defined by the gradient
Langevin dynamics

dθs = −∇θE[g
(
y, α(x, θs)

)
| θs]ds+

√
2εdWs , (10.22)

where the expected value is with respect to the data (x, y) only. Here we use the same
initial data θ0 = θ̄0 and the same Wiener process as in (10.19). We introduce, for later
use, the notation G : RK(d+2) → R for this expected value

G(θ) := E[g
(
y, α(x, θ)

)
| θ] =

∫
Rd×R

g
(
y, α(x, θ)

)
dν(x, y) .
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The following three steps are the basic ideas to obtain the convergence rate and prove
Theorem 10.3.

(a) We observe that the parameter γ, for the convergence rate e−εγs towards the
invariant measure for process θ, is related to the loss landscape of the neural
network approximation: large deviation theory, related to Theorem 9.10 and
further described in [18], shows that limε→0+ ε log γ = −m, where m is the highest
elevation gain for a path from a local minimum to the global minimum in the θ
loss landscape generated by the objective function E[g

(
y, α(x, θ)

)
].

(b) The elevation gain m for a certain neural network NK , with K parameters, for
a supervised learning problem in dimension d is in [17] shown to decay as m =
O(K−1/d).

min
α∈NK

E[g
(
f(x), α(x, ·)

)
]− min

α∈N∞
E[g
(
f(x), α(x, ·)

)
] = O(K−1)

holds when the Fourier transform of f : Rd → R is bounded in L1(Rd). The set
N∞ denotes the network functions in (10.3) given by a combination of possibly
infinitely many translations and dilatations of the activation function σ.

We have the following consistency result

Theorem 10.3 (Stochastic gradient Langevin convergence rate). Assume the activation
function is σ(y) = sin y, the initial parameters |θ̄0| ≤ RK are bounded, and the data
is given by y = f(x), where f : Rd → R and its Fourier transform f̂ has bounded
‖(1 + |ω|4)f̂(ω)‖L1(Rd) norm, the function G : RK(d+2) → R has non degenerate unique
local minima and saddle points, then there are positive constants Cτ , c, c̄ and C such
that for sufficiently many M = τ/∆s steps with the stochastic gradient Langevin method
(10.19) the expected error satisfies∣∣E[g

(
f(x), α(x, θ̄M )

)
]− min

α∈N∞
E[g
(
f(x), α(x, ·)

)
]
∣∣ ≤ Cτ∆s+C(ε+K−1+e−cεγτ ) , (10.23)

where the expected values are over the data x, the Wiener process W and the initial data of

the parameters θ̄0 for the neural network NK . The constants depend on ‖ ̂α(·, θ̄M )‖L1(Rd).

We note that the constant Cτ depends on the simulation time τ . In these notes we
can only conclude an exponential bound of this constant with respect to τ . It remains a
challenge to obtain sharper estimates of Cτ and better estimates of γ, so that the result
could be practically useful.

The convergence proof has four main steps:

(1) to verify that the stochastic gradient Langevin method samples ∇θG(θ̄n) , i.e.
the expected value of the gradient, asymptotically as n → ∞, by estimating for
M = τ/∆s ∣∣E[g

(
y, α(x, θ̄M )

)
− g
(
y, α(x, θM∆s)

)
]
∣∣ ≤ Cτ∆s ,

a poor estimate Cτ < ecτ is provided in Section 10.2.5 for completeness,
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(2) to first show that for any ε the expected value of G(θτ ) is well approximated by
the corresponding expected value based on the Gibbs probability density

dµ := e−G(θ)/εdθ/

∫
RK(d+2)

e−G(θ)/εdθ ,

using geometric ergodicity provided by Gibbs-weighted energy estimates, i.e.

E[g
(
y, α(x, θM∆s)

)
]−
∫
RK(d+2)

G(θ)dµ(θ) = O(e−εγτ+c/ε) ,

which is a refinement of the ergodic result of Theorem 9.3 in the sense that it
provides a convergence rate, and then prove that the Gibbs expected value tends
to the minimum, minα∈NK G, i.e.∫

RK(d+2)

G(θ)dµ(θ)− min
α∈NK

G = O(ε) ,

as the temperature parameter ε→ 0+;

(3) to estimate the neural network minimum:

min
α∈NK

G− min
α∈N∞

G = O(K−1) .

The sum of the estimates in steps (1)-(3) yields the conclusion (10.23) in Theorem 10.3,
while Theorem 10.1 considers step (3). Step (1) and (2) are presented in the following
sections.

The analysis here assumes that the function G has non degenerate local minima and
saddle points, in order to use the large deviation theory. It would be interesting to avoid
this non degeneracy assumption, since experiments show that the Hessian of the loss
function is often degenerate, see [34].

We will first analyze the stochastic gradient Langevin method. Define for s ≤ τ the
expected value of the approximate cost function

v(θ′, s) := E[g
(
y, α(x, θτ )

)
| θs = θ′] , (10.24)

where the expected value is with respect to both the data (x, y) and the Wiener process
W in (10.19) and the process θ : [0,∞)× Ω→ RK(d+2) solves the gradient descent Ito
differential equation (10.22). The extension of the discrete stochastic gradient Langevin
method to continuous time given by

θ̄s = θ̄n + (s− n∆s)∇θg
(
yn, α(xn, θ̄n)

)
+
√

2ε(Ws −Wn∆s) , n∆s ≤ s < (n+ 1)∆s,

implies that it solves the Ito differential equation with piecewise constant drift

dθ̄s = −∇θg
(
yn, α(xn, θ̄n)

)
ds+

√
2εdWs , n∆s ≤ s < (n+ 1)∆s . (10.25)
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These definitions establishes by Ito’s formula and the same initial condition θ0 = θ̄0

the error representation

E[g
(
y, α(x, θ̄τ )

)
]− E[g

(
y, α(x, θτ )

)
] = E[v(θ̄τ , τ)− v(θ̄0, 0)]

= E[

∫ τ

0
dv(θ̄s, s)]

= E[

∫ τ

0

(
∂sv(θ̄s, s)−∇θg(yns , α(xns , θ̄ns)

)
· ∇v(θ̄s, s) + ε∆v(θ̄s, s)

)
ds]

+ E[

∫ τ

0

√
2ε∇v(θ̄s, s) · dWs]︸ ︷︷ ︸

=0

,

where for any s ∈ [0,∞) the notation ns ∈ N is defined by ns∆s ≤ s < (ns + 1)∆s. The
function v satisfies the Kolmogorov backward equation

∂sv(θ, s) = ∇θG(θ) · ∇v(θ, s)− ε∆v(θ, s) , s < τ , θ ∈ RKd ,
v(θ, τ) = G(θ) , θ ∈ RKd ,

where we use the notation Kd := K(d+ 2). We can write

θ̄s = θ̄n −∇θg
(
yn, α(xn, θ̄n)

)
(s− n∆s) +

√
2ε(Ws −Wn∆s) =: θ̄n + ∆ξs

which implies

E[g
(
y, α(x, θ̄τ )

)
]− E[g

(
y, α(x, θτ )

)
]

= E
[ ∫ τ

0
∇v(θ̄s, s) ·

(
∇θG(θ̄s)−∇θg

(
yns , α(xns , θ̄ns)

))
ds
]

=

∫ τ

0
E[
(
∇v(θ̄s, s)−∇v(θ̄ns , s)

)
·
(
∇θG(θ̄s)−∇θg

(
yns , α(xns , θ̄ns)

))
]ds

+

∫ τ

0
E[∇v(θ̄ns , s) ·

(
∇θG(θ̄ns + ∆ξs)−∇θg

(
yns , α(xns , θ̄ns)

))
]ds .

(10.26)

By using the same technique as to prove weak convergence of Eulers method in Theorem
5.8, the last term in (10.26) is by the a priori estimates in Lemma 10.4 in Section 10.2.5
of order one in ∆s,

|
∫ τ

0
E[∇v(θ̄ns , s) ·

(
∇G(θ̄ns + ∆ξs)−∇g(yns , α(xns , θ̄ns)

))
]ds| ≤ Cτ∆s, (10.27)

since the integrand is zero for s = n∆s and it has a bounded derivative with respect
to s in the interval n∆s ≤ s < (n+ 1)∆s, using the expected value to cancel the dW
contribution from the time derivative, as shown in detail by Lemma 10.5 in Section
10.2.6. Similarly the integrand

E[
(
∇v(θ̄s, s)−∇v(θ̄ns , s)

)
·
(
∇G(θ̄s)−∇θg

(
yns , α(xns , θ̄ns)

))
]
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also vanishes for s = n∆s and has a bounded derivative with respect to s. Therefore,
the first term in the right hand side of (10.26) is also bounded by O(∆s), provided
the second derivatives of g and v and the third derivative of εv with respect to θ are
bounded. The poor exponential bound Cτ ≤ ecτ provided in Section 10.2.6 excludes
more precise computational complexity studies with respect to the number of stochastic
gradient descent steps M .

10.2.2 Convergence to the minimum

This section shows that

|E[g
(
y, α(x, θτ )

)
]− min

θ∈RKd
G(θ)| = O(ε+ e−c

′τ+c′′/ε) ,

for positive constant c′, c′′. The study is split into two steps. The first step, presented in
Subsection 10.2.3, relates the Gibbs measure

e−G(θ)/ε∫
RKd e

−G(θ′)/εdθ′
,

which is the invariant probability density for the process (10.22), to its minimum by
deriving ∫

RKd
G(θ)

e−G(θ)/ε∫
RKd e

−G(θ′)/εdθ′
dθ − min

θ∈RKd
G(θ) = O(ε) .

The second step, presented in Subsection 10.2.4, shows that the process θτ is geometrically
ergodic by proving∣∣∣E[g

(
y, α(x, θτ )

)
]−
∫
RKd

G(θ)
e−G(θ)/ε∫

RKd e
−G(θ′)/εdθ′

dθ
∣∣∣ = O(e−εγτ/2+c/ε)

where γ and c are positive constants.

10.2.3 The Gibbs measure

To analyze the invariant probability density for the Kolmogorov forward equation
applied to the process (10.22) we introduce the notation G(θ∗) := minθ∈RKd G(θ) and
E(θ) := G(θ)−G(θ∗). Dominated convergence implies

lim
ε→0+

∫
RKd

G(θ)
e−G(θ)/ε∫

RKd e
−G(θ′)/εdθ′

dθ = G(θ∗) + lim
ε→0+

∫
RKd
E(θ)

e−E(θ)/ε∫
RKd e

−E(θ′)/εdθ′
dθ = G(θ∗) .

To prove the convergence rate∫
RKd
E(θ)

e−E(θ)/ε∫
RKd e

−E(θ′)/εdθ′
dθ = O(ε) (10.28)
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we write E(θ) = (θ − θ∗) · Ḡ′′(θ − θ∗, θ∗)(θ − θ∗) where

Ḡ′′(θ − θ∗, θ∗) :=

∫ 1

0

∫ 1

0
G′′
(
θ∗ + st(θ − θ∗)

)
tdtds .

The change of variables θ′ := (θ − θ∗)/
√
ε implies∫

RKd
E(θ)

e−E(θ)/ε∫
RKd e

−E(θ′)/εdθ′
dθ = ε

∫
RKd θ

′ · Ḡ′′(ε1/2θ′, θ∗)θ′e−θ′·Ḡ′′(ε1/2θ′,θ∗)θ′dθ′∫
RKd e

−θ′·Ḡ′′(ε1/2θ′,θ∗)θ′dθ′
= O(ε) ,

(10.29)
since the combination of dominated convergence and the assumption that the Hessian
G′′(θ∗) is positive definite (uniformly in K) show that the integrals in the right hand
side have finite positive limits as ε→ 0+.

10.2.4 Geometric ergodicity

The approximate minimization property (10.28) of the stochastic gradient Langevin
method obtained for small ε is important for our error analysis of the learning problem
(10.1). In practice, we cannot use a limit parameter limτ→∞ θτ =: θ∞ (or θ̄∞) since
we only have a finite number of stochastic gradient descent iterations. To study the
asymptotics of the dynamics (10.19) as τ → ∞, we will present well known weighted
energy estimates based on the Kolmogorov backward equation for the expected value
v̂(θ, t) := E[g

(
y, α(x, θt)

)
| θ0 = θ], obtained by letting t = τ − s in (10.24),

∂tv̂(θ, t) +∇G(θ) · ∇v̂(θ, t)− ε∆v̂(θ, t) = 0 , t > 0 , θ ∈ RKd

v̂(θ, 0) = G(θ) , θ ∈ RKd .
(10.30)

The same partial differential equation holds for v̄ = v̂ − c, where c is any constant.
Assume that the conditions (10.39) for G holds, then the equilibrium measure dµ :=
e−G/εdθ/

∫
RKd e

−G/εdθ exists. We have

eG/ε∇ · (e−G/εε∇v) = −∇G · ∇v + ε∆v := Lv .

Therefore the operator L is symmetric in the weighted Sobolev space H1(dµ) and we
obtain the variational equation: find v̄ ∈ L2(R+;H1(dµ)) with ∂tv̄ ∈ L2(R+;H−1(dµ))
such that∫

RKd
∂tv̄(θ, t)w(θ)dµ(θ) + ε

∫
RKd
∇v̄(θ, t) · ∇w(θ)dµ(θ) = 0 , for all w ∈ H1(dµ) .

(10.31)
In particular taking w = 1 shows that the mean

¯̄v :=

∫
RKd

v̂(θ, t)dµ(θ) =

∫
RKd

Gdµ (10.32)

is constant in time.
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We will use a Poincare inequality, i.e. that there is a positive constant γ such that

0 < γ := inf
{w∈H1(dµ):

∫
wdµ=0}

∫
RKd |∇w(θ)|2dµ∫
RKd w

2(θ)dµ
(10.33)

holds, see [3]. The energy estimate obtained by taking w = v̄ in (10.31) and c = ¯̄v implies
that y(t) :=

∫
RKd |v̄(θ, t)|2dµ/2 satisfies

y′(t) + εγy(t) ≤ 0 . (10.34)

Therefore we have an exponential convergence rate towards the ergodic limit∫
RKd

(v̂(θ, t)− ¯̄v)2dµ ≤ e−εγt
∫
RKd

(v̂(θ, 0)− ¯̄v)2dµ , (10.35)

provided γ > 0 (which is implied by assumption (10.39)) and dominated convergence
implies the pointwise convergence limt→∞ v̂ − ¯̄v = 0 so that (10.32) yields

lim
t→∞

E[g
(
y, α(x, θt)

)
] =

∫
RKd

Gdµ . (10.36)

We are interested in the asymptotic limit of the Poincare constant γ as ε→ 0+. Such
Poincare inequalities have been proved by large deviation theory in [18] and potential
theory in [3], which is closely related to the rare event result of Theorem 9.10. To
describe these results, assume that G has isolated critical points and let the maximum
elevation gain in the deepest valley for any continuous path ωk : [0, 1] → RKd from a
local minimum point θk to the global minimum point θ∗ be denoted by

m := sup
θk

inf
{ωk :ωk(0)=θk &ωk(1)=θ∗}

max
s∈[0,1]

(
G(ωk(s))−G(θk)

)
=: G(θ12)−G(θ1) (10.37)

where G(θ12) is the highest saddle point and G(θ1) the local minimum (i.e. not the
global minimum) in the deepest valley, which is assumed to be unique. The work [18]
shows that

− lim
ε→+0

ε log γ = m. (10.38)

This result has been refined to include the G dependent prefactor CG to the exponential
γ ' CGe−m/ε, see [3], provided that

G ∈ C3(RKd)
lim inf
|θ|→∞

|∇G(θ)| =∞ ,

lim inf
|θ|→∞

(
|∇G(θ)| − 2∆G(θ)

)
=∞ ,

m and θ∗ are unique ,

and that at the local minima and saddle points the Hessian of G is non degenerate.

(10.39)
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Since α ∈ NK we have G ∈ C∞(RKd) and as the cost function for large |θ| > 2RK is
coercive also the other conditions in (10.39) hold. The small noise limit (10.37) shows
that the lowest eigenvalue 0 of L is related to the global minimum point θ∗ and the next
eigenvalue γ is related to the minimum point θ1 with the maximal elevation gain m.
The rate γ implies that the number of stochastic gradient iterations n to approximate
the minimum minθG(θ) with error δ becomes n ∼ (εγ∆s)−1 log δ−1, which would be
exponentially large with respect to ε ∼ δ, unless m would decrease as K → ∞. In
fact the neural network approximation has this property: the work [17] proves that
m = O(K−1/d) for a half rectified network.

Let ρ be the initial probability density of θ0. It is not the weighted L2(dµ) norm that
is of primary interest but the error∣∣E[g

(
y, α(x, θτ )

)
]−
∫
RKd

Gdµ
∣∣ =

∣∣E[g
(
y, α(x, θτ )

)
]− lim

τ→∞
E[g
(
y, α(x, θτ )

)
]
∣∣

=
∣∣ ∫

RKd
v̄(θ, τ)ρdθ

∣∣ ≤ (

∫
RKd

v̄2(θ, τ)e−G/εdθ)1/2(

∫
RKd

eG/ερ2dθ)1/2 ≤ O(e−εγτ/2+c/ε) .

(10.40)

Here we have used (10.36), (10.35), Cauchy’s inequality and the assumption that ρ has
compact support. Convergence based on this estimate requires τ � em/ε/ε2, which also
would grow exponentially with ε, unless m is small.

10.2.5 A priori bounds on E[|θ̄n|2] and E[|θt|2]

In the domain |θ| >
√

2RK , where RK is the parameter in the penalty (10.4), we have

∇θg
(
y, α(x, θ)

)
= 2(θ − θ y

|θ|) and ∇G(θ) = 2θ(1− E[y]
|θ| ) which we use below to show

Lemma 10.4. Assume that |θ̄0| ≤ RK and |θ0| ≤ RK , then there is a constant C,
depending on RK and K, such that for any n ∈ N and t ∈ [0,∞)

E[|θ̄n|2] ≤ E[|θ̄0|2] + Cn∆s ,

E[|θt|2] ≤ E[|θ0|2] + Ct ,
(10.41)

and a constant Cτ such that for |α| ≤ 3

E
[∣∣∣∂αθ̄ E[g

(
y, α(x, θτ )

)
| θt = θ̄]

∣∣∣] ≤ Cτ .
Proof. We have for ∆s sufficiently small

E[|θ̄n+1|2] = E[|θ̄n −∇θg
(
y, α(x, θ)

)
∆s+

√
2ε∆Wn|2] = E[|θ̄n|2

+ ∆sE
[
(1|θn|>

√
2RK

+ 1|θn|≤
√

2RK
)
(
− 2θ̄n · ∇g

(
y, α(x, θ̄n)

)
+ |∇g

(
y, α(x, θ̄n)

)
|2∆s

)]
+ E[2ε|∆Wn|2]− 2

√
2εE[∆Wn · ∇g

(
y, α(x, θ̄n)

)
∆s] + 2

√
2εE[θ̄n ·∆Wn]

≤ E[|θ̄n|2] + ∆sC − 2(E[|θn|2]− E[|θn|]E[|y|])∆s+ (∆s)2E[|θn|2 − 2y|θn|+ y2]

≤ E[|θ̄n|2] + ∆sC
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and its evolution implies that for any j ∈ N and |θ̄0| ≤ RK and ∆sC ≤ 1

E[|θ̄j |2] ≤ 2R2
K + Cj∆s .

Similarly we have by Ito’s formula for |θt| >
√

2RK that

d|θt|2 = −2θt · ∇θG(θt)dt+ 2
√

2εθt · dWt + 2εK(d+ 2)dt (10.42)

so that if |θ0| ≤ RK
E[|θt|2] ≤ 2R2

K + Ct . (10.43)

The combination of (10.42) and (10.43) shows that there is a constant C ′ such that

|E
[
E[g
(
y, α(x, θτ )

)
| θt = θ̄t]

]
| ≤ C(1 + E

[
E[|θτ |2 | θt = θ̄t]

]
) ≤ C ′(1 + ετ) .

To estimate derivatives of the function v(θ, t) = E[g
(
y, α(x, θτ )

)
| θt = θ] we use stochastic

flows, i.e. derivatives of the process θt with respect to changes in θs for s < t. Let
θ′ij(t, s) := ∂θi(t)

∂θj(s)
be the first variation. Differentiation of (10.22) yields

dθ′(t, s) = −G′′(θt)θ′(t, s)dt

and similarly for the higher variations θ′′(t, s) := ∂2θt
∂θ2
s

dθ′′··k(t, s) = −G′′(θt)θ′′··k(t, s)dt−
∑
j

G′′′··jθ
′
··(t, s)θ

′
jk(t, s) ,

dθ′′′··k`(t, s) = −G′′(θt)θ′′′··k`(t, s)dt−
∑
j

G′′′··jθ
′
··(t, s)θ

′′
jk`(t, s)

−
∑
j

G′′′··jθ
′′
··`(t, s)θ

′
jk(t, s)−

∑
jj′

G′′′′··jj′θ
′
··(t, s)θ

′
jk(t, s)θ

′
j′`(t, s) .

(10.44)

The definition z(t, s) = (θ′(t, s), θ′′(t, s), θ′′′(t, s)) makes it possible to write the dynamics
(10.44) as dzt = U(zt, θt)dt. We have

∂θkv(θ, t) =
∑
j

E[∂θjg
(
y, α(x, θτ )

)
θ′jk(τ, t) | θt = θ]

with similar expressions based on z for the higher derivatives. Since g(y, α(x, ·)) and
U are Lipschitz continuous we obtain by (10.41) that E[|∇θv(θ̄t, t)|] is bounded by a
constant depending on τ . Analogously also the expected value of the second and third
derivatives of v are bounded.

10.2.6 The O(∆s) estimate

Lemma 10.5. Write (10.25) as dθ̄s = ā(s, θ̄)ds + b̄dWs and assume that there is a
constant C such that for |α| ≤ 2 the functions c : [0,∞)×RKd → R and u : [0,∞)×RKd →
R satisfy

E[|∂αc(s, θ̄s)|2 + |∂αu(s, θ̄s)|2] + min(E[|āu(s, θ̄s)|2,E[|ā∇c(s, θ̄s)|2) ≤ C ,
min(E[|ā(s, θ̄s)(c(s, θ̄s)− c̄(s, θ̄s))|2],E[|ā(s, θ̄s)∇u(s, θ̄s)|2] ≤ C ,
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and let

sn := n∆s ,

sn ≤ s < sn+1 ,

for any function c : [0,∞)× RK → R denote c̄(s, θ̄) := c(sn, θ̄n) ,

then there holds

h(s) := E
[(
c̄(s, θ̄)− c

(
s, θ̄(s)

))
u
(
s, θ̄(s)

)]
= O(∆s) .

Proof. Since c̄(s, θ̄) = c(sn, θ̄(sn)), we have

h(sn) = E[
(
c̄(sn, θ̄)− c(sn, θ̄(sn))

)
u(sn, θ̄(sn))] = 0. (10.45)

Provided |h′(s)| ≤ C, the initial condition (10.45) implies that h(s) = O(∆s), for

sn ≤ s < sn+1. Therefore, it remains to show that |h′(s)| ≤ C. Let β(s, x) := −
(
c(s, x)−

c
(
sn, θ̄(sn)

))
u(s, x), so that h(s) = E[β(s, θ̄(s))]. Then by Ito’s formula

dh

ds
=

d

ds
E
[
β(s, θ̄(s))

]
= E

[
dβ(s, θ̄(s))

]
/ds

= E
[(
β′s + ā∇θβ + trace(

b̄b̄T

2
β′′)

)
ds+∇θβ · b̄dWs

]
/ds

= E
[
β′s + ā∇θβ + trace(

b̄b̄T

2
β′′)

]
= O(1).

Therefore there exists a constant C such that |h′(s)| ≤ C, for sn < s < sn+1, and
consequently

h(s) = E[
(
c̄(s, θ̄)− c(s, θ̄(s))

)
u(s, θ̄s)] = O(∆s), for sn ≤ s < sn+1.
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Chapter 11

Appendices

11.1 Tomography Exercise

Tomographic imaging is used in medicine to determine the shape/image of a bone or
interior organ. One procedure for doing this is by projecting X-rays from many different
angles through the body (see figure 1), measure the strength of the X-rays that has gone
through the image, and compute how the image has to be to comply with the X-ray
output. Reconstructing an image this way is called tomographic reconstruction, and it is
the problem we look at in this project.

In our case we first superimpose a grid over the image we wish to perform tomographic
imaging on to an n× n pixel image represented with image values as vector (fi)

n2

i=1. The
image values are assumed to be constant within each cell of the grid. An n = 3 case
with vertical and horizontal projections serves the purpose of further explaining the
problem: In figure 2 we have superimposed a 3 × 3 square grid on the image f(x, y).
The rays are the lines running through the x− y plane (we disregard the width of the
lines here assuming they are all of the same width and very thin). The projections are
given the representation pi, we say that pi is the ray sum measured with the ith ray. The
relationship between the fj ’s and the pi’s may be expressed as the set of linear equations

n2∑
j=1

Aijfj = pi, i = 1, . . . , n. (11.1)

For example, the first equation in the 3 × 3 case only goes through f1, f4 and f7

yielding the equation
A11f1 +A14f4 +A17f7 = p1,

The linear system of equations created by the horizontal and vertical projections in figure
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Figure 11.1: Illustration of tomographic imaging. The image on the unit square represents
our unknown image which we send rays through to determine.

2 written on the form An = p is



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1





f1

f2

f3

f4

f5

f6

f7

f8

f9


=



p1

p2

p3

p4

p5

p6

 (11.2)

In this case, A ∈ R6×9. The problem is underdetermined so the least squares way of
solving this problem:

f = (ATA)−1AT p, (11.3)

fails because ATA is singular. One way to deal with the singular matrix is to instead
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Figure 11.2: Illustration of horizontal and vertical projections on a 3× 3 image.

solve
f = (ATA+ δIn2)−1AT p,

where δ is a small number.

Exercise 1.

Download the image “ImageEx1.jpg” and the matlab program “rayItHorVert.m”. This
image is our unknown image (we only have the solution to compare). Create an image
matrix by the command

image = imread(’ImageEx1.tif’)

Create a projection vector of the image by calling

p=rayItHorVert(f)

Write a matlab program that takes as input a vector p ∈ R6×1, creates the matrix
A ∈ R6×9 given in (11.2) (for n = 3) and finds the tomographically reconstructed image
f by the computation (11.3). Use

f=reshape(f,n,n)
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to reshape the vector f into an n× n matrix and plot by the commands

colormap(gray)

imagesc(f)

Also plot the matrix “image” and compare results. As a reference, the result should look
like figure 3:

Figure 11.3: Illustration of the image “ImageEx1.jpg” (left) and the tomographic recon-
struction (right).

Hint: The matrix A can be created quite easily with the Kronecker product ⊗ which
is defined as follows:

B ⊗ C =


BC11 BC12 . . . BC1n

BC21 BC22 . . . BC1n
...

...
. . .

...
BCm1 BCm2 . . . BCmn

 (11.4)

where C ∈ Rm×n and B is an arbitrary matrix. In matlab the operation B⊗C is written

kron(B,C)

Exercise 2.

Use the hint in exercise 1. to generalize the matlab program to work for any n value.
That is, write a program that takes as input an n-value and a vector p ∈ R2n×1, and
creates a matrix A ∈ R2n×n2

with similar structure as the one in (11.2).

(a)

Download the image “Ball.tif” and solve the problem as in exercise one. One might
improve the reconstructed image quality by filtering the image. Implement a scheme
which removes values below a certain threshold in the matrix f and plot the result.
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Figure 11.4: Illustration of horizontal, vertical and diagonal projections on a 3× 3 image.

(b)

Assume that you have X-rayed a square shaped suitcase containing a circular shaped
bomb. The file “pVector.mat” consists of the projection vector which you read by the
command

load(’pVector.mat’)

What is approximately the position of the bomb? (Assume unit square coordinates).

(c)

Download the image “TwoBalls.tif” and solve the problem as in exercise one. Why does
the reconstructed image differ so strongly from the real one?

The scheme implemented in exercise 3 improves the reconstructed image.

Exercise 3. - Week project exercise

The next step is to add more projections to our tomographic imaging. As illustrateted
in figure 4, we use horizontal, vertical and diagonal projections. For the n = 3 case the
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linear set of equations Af = p is

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1





f1

f2

f3

f4

f5

f6

f7

f8

f9


=



p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16



(11.5)

Write a program that takes as input an n-value and a vector p ∈ R(6n−2)×1, and
creates a matrix A ∈ R(6n−2)×n2

with similar structure to the one in (11.5). Download
the image “TwoBalls.tif” and the program “rayItHorVertDiag.m” which you use to create
the projection vector by the command

p=rayItHorVertDiag(f)

Solve this image problem as in exercise 2 (c). Implement the filtering technique here as
well. Compare this reconstruction to the one in 2 (c).

Exercise 4. - Week project exercise

The reason we are looking at low resolution images above is that for an n× n image the
matrix A ∈ R(6n−2)×n2

. This means that ATA ∈ Rn2×n2
which is so huge, that even for

relatively small n that we can not solve the problem (11.3) in Matlab the way we have
done in the exercises above. The paper “Algebraic reconstruction algorithms” describes
an iterative algorithm solving the tomographic reconstruction problem which works for
higher resolution images (see page 278). Read the first pages of this paper and implement
this algorithm using horizontal, vertical and diagonal projections as in exercise 3. Try
your algorithm on the picture “Pear.tif”

11.2 Molecular Dynamics

Here some discussion about the MD code will appear.

#include <math.h>

#include <stdio.h>
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#include <stdlib.h>

#include <iostream>

#include <iomanip>

#include <fstream>

#include <sstream>

#include <string>

//

// Compile with g++ -O2 -o main main.cpp

//

using namespace std;

// ---------- Definitions ----------

typedef double real;

real sqr(real n){return n*n;}

enum BoundaryCond {periodic, flow};

// ---------- Cell and particle structures ----------

struct Parameters

{

real sigma, epsilon, cutoff, dt, T, temp, size[3];

int cells[3], cellsTot;

BoundaryCond bc;

};

struct Particle

{

real m;

real x[3];

real v[3];

real F[3];

real Fold[3];

int flag;

};

struct ParticleList

{

Particle p;

ParticleList *next;

};

typedef ParticleList* Cell;
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void insertListElement(ParticleList **root, ParticleList *pl)

{

pl->next = *root;

*root = pl;

}

void deleteListElement(ParticleList **pl)

{

*pl = (*pl)->next;

}

int index(int *i, int *cells)

{

return i[0] + cells[0]*(i[1] + cells[1]*i[2]);

}

// ---------- Function definitions ----------

void inputParameters(Parameters&);

void initData(Cell*, Parameters&);

void integrate(real, Cell*, Parameters&);

void compF(Cell*, Parameters&);

void compX(Cell*, Parameters&);

void compV(Cell*, Parameters&);

real compE(Cell*, Parameters&);

void updateX(Particle*, real);

void updateV(Particle*, real);

void forceLJ(Particle*, Particle*, real, real);

void sortParticles(Cell*, Parameters&);

void saveParticles(Cell*, real, Parameters&);

void boltzmann(Particle*, real);

real gaussDeviate();

// ---------- Program and functions ----------

int main(int argc, char **argv)

{

int s = system("rm -rf ./data/*.txt");

Parameters p;

inputParameters(p);

Cell *grid = new Cell[p.cellsTot];

//for (int i=0; i<p.cellsTot; ++i)

// grid[i] = NULL;

initData(grid, p);

177



saveParticles(grid, 0, p);

integrate(0, grid, p);

return s;

}

void inputParameters(Parameters &p)

{

// Lennard-Jones parameters

p.sigma = 3.4;

p.epsilon = 120;

// Box size

for (int d=0; d<3; ++d)

p.size[d] = 150*p.sigma;

// Cells

p.cutoff = 2.5*p.sigma;

for (int d=0; d<3; ++d)

p.cells[d] = (int) floor(p.size[d] / p.cutoff);

p.cellsTot = 1;

for (int d=0; d<3; ++d)

p.cellsTot *= p.cells[d];

// Timescale

p.T = 20;

p.dt = 1e-2;

// Boundary condition

p.bc = flow;

// Save to file

FILE *file = fopen("./data/parameters.txt", "w");

fprintf(file, "%f %f %f %f %f ", p.sigma, p.epsilon, p.cutoff, p.T, p.dt);

for (int d=0; d<3; ++d)

fprintf(file, "%f ", p.size[d]);

for (int d=0; d<3; ++d)

fprintf(file, "%d ", p.cells[d]);

fclose(file);

}

void initData(Cell *grid, Parameters &p)

{

// Box 1

real mass = 39.95;

int n1 = 10, n2 = 10, n3 = 10;

grid[0] = NULL;

ParticleList **root = &grid[0];
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for (int i=0; i<=2*n1; ++i)

for (int j=0; j<=2*n2; ++j)

for (int k=0; k<=2*n3; ++k)

{

// Face centered cubic

if ( !((i+j+k)%2) )

{

ParticleList *pl = new ParticleList;

pl->p.m = mass;

pl->p.x[0] = 0.5*p.size[0] + (i-n1)*pow(2, 1.0/6.0)*p.sigma;

pl->p.x[1] = 0.5*p.size[1] + (j-n2)*pow(2, 1.0/6.0)*p.sigma;

pl->p.x[2] = 0.6*p.size[2] + (k-n3)*pow(2, 1.0/6.0)*p.sigma;

pl->p.v[0] = 0;

pl->p.v[1] = 0;

pl->p.v[2] = -20.4;

pl->p.flag = 0;

insertListElement(root, pl);

}

}

// Box 2

n1 = 30, n2 = 30, n3 = 10;

for (int i=0; i<=2*n1; ++i)

for (int j=0; j<=2*n2; ++j)

for (int k=0; k<=2*n3; ++k)

{

// Face centered cubic

if ( !((i+j+k)%2) )

{

ParticleList *pl = new ParticleList;

pl->p.m = mass;

pl->p.x[0] = 0.5*p.size[0] + (i-n1)*pow(2, 1.0/6.0)*p.sigma;

pl->p.x[1] = 0.5*p.size[1] + (j-n2)*pow(2, 1.0/6.0)*p.sigma;

pl->p.x[2] = 0.4*p.size[2] + (k-n3)*pow(2, 1.0/6.0)*p.sigma;

pl->p.v[0] = 0;

pl->p.v[1] = 0;

pl->p.v[2] = 0;

pl->p.flag = 1;

insertListElement(root, pl);

}

}

// Noise

for (ParticleList *pl=grid[0]; pl!=NULL; pl=pl->next)
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boltzmann(&pl->p, 1.0);

sortParticles(grid, p);

}

void boltzmann(Particle *p, real factor)

{

for (int d=0; d<3; ++d)

p->v[d] += factor * gaussDeviate();

}

real gaussDeviate()

{

real a1, a2, s, r, b1;

static int iset = 0;

static real b2;

if (!iset)

{

do {

a1 = 2.0 * rand() / (RAND_MAX + 1.0) - 1.0;

a2 = 2.0 * rand() / (RAND_MAX + 1.0) - 1.0;

r = a1 * a1 + a2 * a2;

} while (r>=1.0);

s = sqrt(-2.0 * log(r) / r);

b1 = a1 * s;

b2 = a2 * s;

iset = 1;

return b1;

}

else

{

iset = 0;

return b2;

}

}

void integrate(real t, Cell *grid, Parameters &p)

{

compF(grid, p);

while (t < p.T-1e-9)

{

t += p.dt;

compX(grid, p);

compF(grid, p);

compV(grid, p);

saveParticles(grid, t, p);
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cout << scientific <<

"t = " << t << " E = " << compE(grid, p) << endl;

}

}

void compF(Cell *grid, Parameters &p)

{

int* cells = p.cells;

int i[3], j[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<cells[0]; i[0]++)

for (i[1]=0; i[1]<cells[1]; i[1]++)

for (i[2]=0; i[2]<cells[2]; i[2]++)

// Loop over particles in each cell

for (ParticleList *pl1=grid[index(i,cells)]; pl1!=NULL; pl1=pl1->next)

{

for (int d=0; d<3; ++d)

pl1->p.F[d] = 0;

// Loop over neighbours in each dimension

for (j[0]=i[0]-1; j[0]<=i[0]+1; j[0]++)

for (j[1]=i[1]-1; j[1]<=i[1]+1; j[1]++)

for (j[2]=i[2]-1; j[2]<=i[2]+1; j[2]++)

{

bool outside = false;

int tmp[3];

if (p.bc==periodic)

{

// Periodic boundary

for (int d=0; d<3; ++d)

tmp[d] = j[d];

for (int d=0; d<3; ++d)

if (j[d]<0)

j[d] = cells[d]-1;

else if (j[d]>=cells[d])

j[d] = 0;

}

else if (p.bc==flow)

{

// Flow boundary

for (int d=0; d<3; ++d)

if (j[d]<0 || j[d]>=cells[d])

outside = true;

}

if (!outside)
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{

// Check distance from particle pl1 to neighbour cell j

real dist = 0;

for (int d=0; d<3; ++d)

dist +=

sqr( min( pl1->p.x[d] - j[d] * 1.0 / cells[d],

pl1->p.x[d] - (j[d] + 1) * 1.0 / cells[d] ) );

// Loop over particles in each neighbour cell

//if (dist<=p.cutoff)

for (ParticleList *pl2=grid[index(j,cells)]; pl2!=NULL; pl2=pl2->next)

if (pl1!=pl2)

{

real r = 0;

for (int d=0; d<3; ++d)

r += sqr(pl2->p.x[d] - pl1->p.x[d]);

if (r<=sqr(p.cutoff))

forceLJ(&pl1->p, &pl2->p, p.sigma, p.epsilon);

}

}

if (p.bc==periodic)

{

// Copy back

for (int d=0; d<3; ++d)

j[d] = tmp[d];

}

}

}

}

void forceLJ(Particle *i, Particle *j, real sigma, real epsilon)

{

real r = 0.0;

for (int d=0; d<3; ++d)

r += sqr(j->x[d] - i->x[d]);

real s = sqr(sigma) / r;

s = sqr(s) * s;

real f = 24 * epsilon * s / r * (1 - 2 * s);

for (int d=0; d<3; ++d)

i->F[d] += f * (j->x[d] - i->x[d]);

}

void compX(Cell *grid, Parameters &p)

{

int i[3];
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// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

// Loop over particles in each cell

for (ParticleList *pl=grid[index(i,p.cells)]; pl!=NULL; pl=pl->next)

updateX(&pl->p, p.dt);

// Update cells according to new positions

sortParticles(grid, p);

}

void updateX(Particle *p, real dt)

{

real a = dt * 0.5 / p->m;

for (int d=0; d<3; ++d)

{

p->x[d] += dt * (p->v[d] + a * p->F[d]);

p->Fold[d] = p->F[d];

}

}

void compV(Cell *grid, Parameters &p)

{

int i[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

// Loop over particles in each cell

for (ParticleList *pl=grid[index(i,p.cells)]; pl!=NULL; pl=pl->next)

updateV(&pl->p, p.dt);

}

void updateV(Particle *p, real dt)

{

real a = dt * 0.5 / p->m;

for (int d=0; d<3; ++d)

{

p->v[d] += a * (p->F[d] + p->Fold[d]);

}

}

void sortParticles(Cell *grid, Parameters &p)
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{

int i[3], j[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

{

// Pointers to particle list in cell i

ParticleList **pl1 = &grid[index(i,p.cells)];

ParticleList *pl2 = *pl1;

// Traverse list in cell i

while (pl2!=NULL)

{

bool outside = false;

// Cell that particle belongs to

for (int d=0; d<3; ++d)

{

j[d] = (int) floor(pl2->p.x[d] * p.cells[d] / p.size[d]);

if (p.bc==periodic)

{

// Periodic boundary

if (j[d]<0)

j[d] = p.cells[d] - j[d] % p.cells[d];

else if (j[d]>=p.cells[d])

j[d] = j[d] % p.cells[d];

}

else if (p.bc==flow)

{

// Outflow boundary

if (j[d]<0 || j[d]>=p.cells[d])

outside = true;

}

}

// If not same cell

if ( (i[0]!=j[0]) || (i[1]!=j[1])

|| (i[2]!=j[2]) )

{

// Delete particle from list

deleteListElement(pl1);

// Add to list in cell j

if (!outside)

insertListElement(&grid[index(j,p.cells)], pl2);

}

else
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pl1 = &pl2->next;

pl2 = *pl1;

}

}

}

real compE(Cell* grid, Parameters &p)

{

real e = 0;

int i[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

// Loop over particles in each cell

for (ParticleList *pl=grid[index(i,p.cells)]; pl!=NULL; pl=pl->next)

{

real v = 0;

for (int d=0; d<3; ++d)

v += sqr(pl->p.v[d]);

e += 0.5 * pl->p.m * v;

}

return e;

}

void saveParticles(Cell* grid, real t, Parameters &p)

{

stringstream ss;

ss.str(""); ss << fixed << setprecision(6) << t/p.T;

string fname("./data/" + ss.str() + ".txt");

FILE *file = fopen(fname.c_str(), "w");

int i[3];

// Loop over cells in each dimension

for (i[0]=0; i[0]<p.cells[0]; i[0]++)

for (i[1]=0; i[1]<p.cells[1]; i[1]++)

for (i[2]=0; i[2]<p.cells[2]; i[2]++)

{

// Loop over particles in each cell

for (ParticleList *pl=grid[index(i,p.cells)]; pl!=NULL; pl=pl->next)

{

for (int d=0; d<3; ++d)

fprintf(file, "%f ", pl->p.x[d]);

for (int d=0; d<3; ++d)
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fprintf(file, "%f ", pl->p.v[d]);

fprintf(file, "%d \n", pl->p.flag);

}

}

fclose(file);

}
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Chapter 12

Recommended Reading

The following references have been useful for preparing these notes and are recommended
for further studies.

Stochastic Differential Equations

• Online material: [15]

• Numerics for SDE: [25, 29]

• SDE: [30]

• Advanced SDE: [24]

Probability

[11]

Mathematical Finance

• Basic stochastics for finance: [2]

• Finance in practice: [21]

• Finance with numerics: [40]

Partial Differential Equations

• Advanced PDE: [16]

• Online introduction: [14]

• FEM: [23]

• Advanced FEM: [4]

• Introductory DE and PDE: [13] and [37]
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Variance Reduction for Monte Carlo Methods

[5]

Molecular Dynamics

[26], [6], [19]

Machine Learning

[22]
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[34] Levent Sagun, Léon Bottou, and Yann LeCun. Singularity of the hessian in deep
learning. arXiv, abs/1611.07476, 2016.

[35] M. Sandberg and A. Szepessy. Convergence rates of symplectic Pontryagin
approximations in optimal control theory. M2AN, 40(1), 2006.

[36] Mattias Sandberg. Convergence rates for an optimally controlled ginzburg-landau
equation, 2008.

[37] Gilbert Strang. Introduction to applied mathematics. Wellesley-Cambridge Press,
Wellesley, MA, 1986.
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Foundations & Applications. Birkhäuser Boston Inc., Boston, MA, 1995. The
dynamical optimization perspective, Translated from the Russian.

[39] Curtis R. Vogel. Computational methods for inverse problems, volume 23 of
Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2002. With a foreword by H. T. Banks.

[40] Sam Wilmott, Pauland Howison and Jeff Dewynne. The mathematics of financial
derivatives : a student introduction. Cambridge Univ. Press, Cambridge, 1995.

191



[41] L. C. Young. Lectures on the calculus of variations and optimal control theory.
Foreword by Wendell H. Fleming. W. B. Saunders Co., Philadelphia, 1969.

192


	1 Introduction to Mathematical Models and their Analysis
	1.1 Noisy Evolution of Stock Values
	1.2 Molecular Dynamics
	1.3 Optimal Control of Investments
	1.4 Calibration of the Volatility
	1.5 The Coarse-graining and Discretization Analysis
	1.6 Machine Learning

	2 Stochastic Integrals
	2.1 Probability Background
	2.2 Brownian Motion
	2.3 Approximation and Definition of Stochastic Integrals

	3 Stochastic Differential Equations
	3.1 Approximation and Definition of SDE
	3.2 Itô's Formula
	3.3 Stratonovich Integrals
	3.4 Systems of SDE

	4 The Feynman-Kac Formula and the Black-Scholes Equation
	4.1 The Feynman-Kac Formula
	4.2 Black-Scholes Equation

	5 The Monte-Carlo Method
	5.1 Statistical Error
	5.2 Time Discretization Error

	6 Finite Difference Methods
	6.1 American Options
	6.2 Lax Equivalence Theorem

	7 The Finite Element Method and Lax-Milgram's Theorem
	7.1 The Finite Element Method
	7.2 Error Estimates and Adaptivity
	7.2.1 An A Priori Error Estimate
	7.2.2 An A Posteriori Error Estimate
	7.2.3 An Adaptive Algorithm

	7.3 Lax-Milgram's Theorem

	8 Optimal Control and Inverse Problems
	8.1 The Determinstic Optimal Control Setting
	8.1.1 Examples of Optimal Control
	8.1.2 Approximation of Optimal Control
	8.1.3 Motivation of the Lagrange formulation
	8.1.4 Dynamic Programming and the HJB Equation
	8.1.5 Characteristics and the Pontryagin Principle
	8.1.6 Generalized Viscosity Solutions of HJB Equations
	8.1.7 Maximum Norm Stability of Viscosity Solutions

	8.2 Numerical Approximation of ODE Constrained Minimization
	8.2.1 Optimization Examples
	8.2.2 Solution of the Discrete Problem
	8.2.3 Convergence of Euler Pontryagin Approximations
	8.2.4 How to obtain the Controls
	8.2.5 Inverse Problems and Tikhonov Regularization
	8.2.6 Smoothed Hamiltonian as a Tikhonov Regularization
	8.2.7 General Approximations

	8.3 Optimal Control of Stochastic Differential Equations
	8.3.1 An Optimal Portfolio
	8.3.2 Dynamic Programming and HJB Equations
	8.3.3 Relation of Hamilton-Jacobi Equations and Conservation Laws
	8.3.4 Numerical Approximations of Conservation Laws and Hamilton-Jacobi Equations


	9 Rare Events and Reactions in SDE
	9.1 Invariant Measures and Ergodicity
	9.2 Reaction Rates
	9.3 Reaction Paths

	10 Machine Learning
	10.1 Approximation with a neural network
	10.1.1 An error estimate for neural network approximation
	10.1.2 A property of the loss landscape
	10.1.3 Theorem 10.1: Estimation of the neural network minimum
	10.1.4 Properties of the loss landscape

	10.2 The stochastic gradient Langevin method
	10.2.1 Convergence of the stochastic gradient Langevin method
	10.2.2 Convergence to the minimum
	10.2.3 The Gibbs measure
	10.2.4 Geometric ergodicity
	10.2.5 A priori bounds on E[|n|2] and E[|t|2]
	10.2.6 The O(s) estimate


	11 Appendices
	11.1 Tomography Exercise
	11.2 Molecular Dynamics

	12 Recommended Reading

