
Division of Numerical Analysis, Mathematics Supervisor: Patrick Henning
KTH Royal Institute of Technology

Bachelor thesis project proposal

The computation of stationary states
of rotating Bose-Einstein condensates

Kandidatexjobb

1. Background and general goal

This project is devoted to solving nonlinear Schrödinger equations with an angular mo-
mentum rotation. Such equations occur in the context of rotating superfluids. One
example are rotating Bose-Einstein condensates. Such condensates are formed when a
dilute gas of Bosons is trapped in a magnetic potential and cooled down to ultra-low
temperatures close to absolute zero. It is characterized by the property that the particles
can no longer be separated from each other. They lose their identity and behave like
one single super-atom, which in particular has a superfluid character. Superfluidity is
expressed through a lattice of density singularities (vortices). In this project we aim at
simulating realistic scenarios and to study the number of vortices and the patterns that
they form. This requires to solve nonlinear eigenvalue problems of the following struc-
ture: We seek u : D ⊂ R3 → C that describes the quantum state of the condensate with∫
D |u(x)|2 dx = 1 and a chemical potential (eigenvalue) λ > 0 such that
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4u+ V u+ iΩ · (x×∇)u+ β|u|2u = λu in D,

u = 0 on ∂D,

where we denote x = (x, y, z) ∈ R3. Here, V characterizes the magnetic trapping
potential that confines the system (by adjusting V to some trap frequencies) and the
nonlinear term β|u|2u describes the species of the bosons and how they interact with
each other. In particular, β depends on the number of bosons, their individual mass
and their scattering length. The term iΩ · (x×∇)u characterizes the angular rota-
tion of the condensate, where Ω ∈ R3 defines the angular velocity. The operator
L = (Lx,Ly,Lz) := −i (x×∇) = x×P describes the angular momentum, with P = −i∇
denoting the momentum operator.

2. Tasks

The following list is preliminary and can change upon the students personal interests and
preferences.

• Description of the model and its physical background.



• Working out a setup of physical relevance (i.e. scaling and possible choices / pa-
rameter constellations for V , β and Ω).

• Stating possible numerical schemes for solving the eigenvalue problem.

• Implementing one (or more) of the numerical methods.

• Studying (i.e. simulating) the vortex formation and the arising patterns depending
on the chosen parameter configurations in the equation.

Figure 1: Simulated ground-state state density |u|2 of a rotating Bose-Einstein conden-
sate. The black holes are density singularities.
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