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Abstract—In this paper, we investigate the impact of network
densification on the performance in terms of downlink signal-
to-interference (SIR) coverage probability and network area
spectral efficiency (ASE). A sophisticated bounded dual-slope
path loss model and practical user equipment (UE) densities
are incorporated in the analysis, which have never been jointly
considered before. By using stochastic geometry, we derive an
integral expression along with closed-form bounds of the coverage
probability and ASE, validated by simulation results. Through
these, we provide the asymptotic behavior of ultra-densification.
The coverage probability and ASE have non-zero convergence in
asymptotic regions unless UE density goes to infinity (full load).
Meanwhile, the effect of UE density on the coverage probability
is analyzed. The coverage probability will reveal an U-shape for
large UE densities due to interference fall into the near-field, but
it will keep increasing for low UE densites. Furthermore, our
results indicate that the performance is overestimated without
applying the bounded dual-slope path loss model. The derived
expressions and results in this work pave the way for future
network provisioning.

Keywords—Network densification, bounded path loss model,
dual-slope path loss model, stochastic geometry

I. INTRODUCTION

Network densification is considered as a key enabler to
cope with the upcoming 5G data tsunami [1] [2]. Deploying
more base stations (BSs) can rapidly increase the network
capacity by shortening the BS and user equipment (UE)
association distance as well as by reducing per-cell traffic
load. As densification goes on, BS density may easily exceed
UE density, forming an ultra dense network (UDN) [3]. Its
simplest example can be off-peak traffic hours under dense
BS deployment. Peak hours can also be suitable cases since
average BS load in practice is only 20% due to network
stability [4]. In the UDN, a large number of UE-void BSs
within their coverages emerge, and the overall network transits
from being fully loaded to partially loaded in which not all
BSs are active (i.e., transmitting signals to serve the UEs
within their cells). Such a UDN may evaporate the advantage
of densification since there is less than one UE per cell on
average. Therefore, it is crucial to understand the asymptotic
behavior of ultra densification for the purpose of network
deployment.

The pioneering work [5] provides a comprehensive under-
standing on the impact of BS density in a fully loaded down-
link cellular network with a simple single-slope unbounded
path loss model. Illustrated in Fig. 1 as a baseline, it concludes

S
IR

 C
ov

er
ag

e 
P

ro
b

ab
ili

ty

BS Density

1

0
Zero convergence

Unity convergence

Unity-zero interval saturation

(a) Bounded path loss [7]

(b) Dual-slope path loss [8], [9]

(c) Partial load (inactive BS) 
     [10], [11]

Baseline

(b) + (c) [6]

(a) + (b) + (c)

Fig. 1: Impacts of (a) bounded path loss, (b) dual-slope path
loss, and (c) partial load models on asymptotic SIR coverage
probability as BS density increases.1

that BS densification does not change the signal-to-interference
ratio (SIR) of an individual UE, but linearly improves the area
spectral efficiency (ASE) defined as sum rate per unit area. As
BS density grows, the desired signal and interference growths
cancel each other, leading to such result. However, it is difficult
to apply this conclusion to UDNs due to its simplified signal
propagation and load models [6] [7].

In a UDN where BS-UE distance d shrinks, a simple
unbounded path loss model d−α for the path loss exponent
α > 2 may amplify the received signals when d < 1,
which is unrealistic. In addition, a large amount of signals
in a UDN are transmitted from the near-field of a receiver,
and these signals experience less attenuation owing to sparse
shadowing, i.e. near-field path loss exponent αc < α. A
simple single-slope path loss model cannot capture such a
distinction. Furthermore, a full load model forces BSs to
always transmit signals despite non-negligible portion of UE-
void BSs, overestimating interference. It is thus important to
incorporate such propagation and load characteristics in detail
so as to examine the impact of ultra densification. For this end

1Minor modification is applied for [8] that considers signal-to-interference-
plus-noise ratio instead of SIR.



our system model considers the tri-fold aspect: (a) bounded
path loss, (b) dual-slope path loss and (c) partial load models,
as illustrated in Figs. 1 and 2.

In preceding works, the impacts of (a) and (b) on SIR
coverage probability, defined as Pr (SIR > t) for a target
threshold t > 0, are respectively investigated by [7] and [9],
[10]. Both models leads to a conclusion that SIR coverage
probability asymptotically converges to 0 (i.e. SIR → 0)
as BS density increases.2 The reason is as follows: as BS
density grows, interference keeps increasing while the desired
signal increase is saturated under (a); the number of near-
field interferer increases under (b), dominating the increase in
the desired signal from ‘a single’ BS. On the other hand, the
impact of (c) is clarified in [11], [12], showing SIR coverage
probability asymptotically converges to 1, i.e. SIR → ∞.
It comes from the fact that UEs’ neighboring BSs under a
nearest association rule are always active while the rest of
BSs become inactive. This results in making interfering BS
density converge to UE density while the desired signal keeps
increasing. A recent work [8] combines both (b) and (c),
and interestingly concludes that SIR coverage probability still
converges to 1 asymptotically since (c) dominates (b).

Motivated by the discussions, we aim to combine (a), (b),
and (c) altogether, and investigate their aggregate impact on
the asymptotic SIR coverage behavior. The main contributions
of this paper are listed below.

• Asymptotic unity-zero interval SIR coverage saturation
is derived, which also leads to the same ASE saturation.
This verifies combining (a) and (b) exactly cancels out
(c) (Prop. 3 and 4).

• Numerically tractable integral-form of coverage proba-
bility under a bounded dual-slope path loss model are
derived (1). Moreover, closed-form bounds of coverage
probability and ASE are provided (Prop. 2 and 5).

• The impact of UE density on coverage probability and
ASE are analyzed (Fig. 3). Meanwhile, the trend of
coverage probability and ASE are interpreted (Fig. 4 and
Fig. 5). The scaling trend of ASE in terms of BS density
is derived (Prop. 5).

II. SYSTEM MODEL

We consider a downlink cellular network where BSs and
UEs are distributed according to two independent homo-
geneous Poisson Point Processes (PPPs) Φb and Φu. The
densities of BS and UE are denoted as λb and λu respectively.
We assume each UE is associated with its closest BS whose
coverage area comprises a Voronoi tessellation as shown in
Fig. 2. Each BS becomes inactive without transmitting any
signal when its coverage area, the Voronoi cell, is empty of
active UEs. Correspondingly, each active BS has at least one
UE in its cell and will randomly choose one of them to serve.
According to [13], the probability that a BS becomes active is
given as

pa ≈ 1−
(
1 +

λu

3.5λb

)−3.5

(1)

2Near-field environment in [10] is confined to αc < α in this article, which
originally considers a general αc > 2.
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Fig. 2: Network layout of traditional fully loaded network (top)
and partially loaded UDN (bottom) as well as illustration of
the bounded dual-slope path loss model (middle).

which allows us to incorporate the partial load model.

Both BS and UE are equipped with a single antenna and
BSs transmit with unit power. Rayleigh fading is used to
model the channel gain, with the fading coefficients h are i.i.d
zero mean unit variance complex normal distributed random
variables. Since we will focus on the asymptotic behavior and
the system is interference-limited in dense networks, we will
neglect the noise power and examine SIR throughout the paper.

We consider that path loss attenuation from a BS to a
UE is distinguished under two different regions, near-field
and far-field at the UE as illustrated in Fig. 2. In a near-
field within radius Rc, a transmitted signal experiences less
absorption and diffraction, so the near-field path loss exponent
αc becomes less than the far-field exponent α > 2. In the
innermost near field, the transmitted signal becomes no longer
attenuated within radius Rb because of the physical volume of
the UE. This dual-slope path loss �(α, αc, d) can be formulated
as a piece-wise function of the propagation distance d, shown
as

�(α, αc, d) =

⎧⎨
⎩

1, 0 ≤ d ≤ Rb;
d−αc , Rb < d ≤ Rc;
τd−α, d > Rc

(2)

where Rb > 0 is the radius of bounded path loss region, i.e.
the path loss in the range of [0, Rb] is assumed constant; τ �
Rc

α−αc ; Rc ≥ Rb is the critical distance to divide the near-
and far-field; and αc and α are the near- and far-field path loss
exponents for 2 < αc < α, respectively.



A. Performance Metrics

In this paper, we will focus on two performance metrics
from both user and network perspectives: SIR coverage prob-
ability of a typical UE and the ASE of the network. We
analyze the performance of a typical user located at the origin
o randomly selected by the BS, which is permissible in a
homogeneous PPP by Slivnyak’s theorem [14]. The SIR of
a typical user denoted as 0 can be expressed as

SIR0 =
|h0,0|2�(d0,0)∑

i∈Φ∗
b\{0}

|hi,0|2�(di,0)
. (3)

where di,j and hi,j denote the distance and channel between
BS i and UE j, |hi,j |2 ∼ exp(1). Φ∗

b represents the set of
active BSs which is not a homogeneous PPP. Nevertheless,
we can assume Φ∗

b as a homogeneous PPP with density λ∗
b =

λbpa, which has been shown to be accurate according to [15]
[16]. Given the downlink SIR of the typical user, the coverage
probability is defined as:

Pc(λb, λu, T ) � P[SIR0 > T ] (4)

where T is the target SIR level.

The network ASE Γ is defined as the sum average spectral
efficiency of all active BSs achieving the target threshold in a
unit area [16] and is given by

Γ(λb, λu, T ) � paλbPc(λb, λu, T ) log2(1 + T ) (5)

where paλbPc can be interpreted as the density of the BSs that
successfully transmit the symbols to their users.

III. COVERAGE PROBABILITY AND ASE ANALYSIS

In this section, we derive the coverage probability and
ASE expressions under a bounded dual-slope path loss model
and provide closed-form bounds of them. Furthermore, we
demonstrate the convergence of them in asymptotic regions
where λb → ∞.

Proposition 1: (Coverage probability expression) In a cel-
lular network with BS active probability pa, the coverage
probability under a bounded dual-slope path loss model is
expressed in (6) at the bottom of this page, where the sup-
plementary equations are listed in (7)-(10) and F (b, z) =

2F1(1, b, 1 + b,−z) with 2F1(a, b, c, z) being the Gauss hy-
pergeometric function.

Proof: See Appendix A.

Despite the complicated form of (6), the first and third
integrals can be calculated into exponential expressions. In this
case, by applying transforms to the second integral, we can
derive closed-form bounds of (6) with only exponential and
hypergeometric functions as shown in the following proposi-
tion.

Proposition 2: (Coverage probability bounds) SIR cover-
age probability’s lower bound P LB

c and upper bound PUB
c are

given as (11) and (12) at the bottom of this page, where
H1 = 1−pa

T
1+T , H2l = 1+paG2(R

2
b), H2u = 1+paG2(R

2
c),

H3 = 1 + paG3(T ).

Proof: See Appendix B.

Applying Proposition 2 in asymptotic regions leads to the
following proposition.

Proposition 3: (Asymptotic SIR coverage probability) As
λb → ∞, SIR coverage probability Pc(λb, λu, T ) converges
to a finite value as follows.

lim
λb→∞

Pc(λb, λu, T ) = e−λuπcT (α,αc,Rc,Rb) (13)

Proof: From (11) and (12) in Proposition 1, we have
limλb→∞ P LB

c = limλb→∞ PUB
c = 1

H1
e−λuπcT (α,αc,Rc,Rb)

since all the other terms tend to 0 as λb → ∞. According to
the Squeeze theorem, limλb→∞ Pc =

1
H1

e−λuπm. Meanwhile,
limλb→∞ H1 = 1 since pa → 0. Thus limλb→∞ Pc =
e−λuπcT (α,αc,Rc,Rb).

Proposition 3 emphasizes the importance of considering
UE density in a UDN. The converged value is a decreasing

Pc(λb, λu, T ) = λbπ

(∫ Rb
2

0

e−λbπr(1+paG1(r,T ))dr +

∫ Rc
2

Rb
2

e−λbπr(1+paG2(r,T ))dr +

∫ ∞

Rc
2

e−λbπr(1+paG3(T ))dr

)
(6)

G1(r, T ) = cT (α, αc, Rc, Rb)r
−1 − T (1 + T )−1 (7)

G2(r, T ) =

[
cT

(
α, αc, Rc,

√
r
)
+Rb

2

(
F

(
2

α
,
1

T

)
− T

1 + T

)]
r−1 − F

(
2

α
, T−1

)
(8)

G3(T ) = T
(αc

2
− 1

)−1

F

(
1− 2

αc
, T

)
(9)

cT (α, αc, Rc, x) := Rc
2F

(
2

α
,
1

T

[
Rc

x

]α)
−Rb

2

[
F

(
2

α
,
1

T

)
− T

1 + T

]
+

2TRb
αRc

2−α

αc − 2
F

(
1− 2

αc
, T

[
x

Rc

]α)
(10)

P LB
c =

1

H1

(
e−λbpaπcT (α,αc,Rc,Rb) − e−λbπ(Rb

2H1+pacT (α,αc,Rc,Rb))
)
+

1

H2l

(
e−λbπRb

2H2l − e−λbπRc
2H2l

)
+

1

H3

(
e−λbπRc

2H3

)
(11)

PUB
c =

1

H1

(
e−λbpaπcT (α,αc,Rc,Rb) − e−λbπ(Rb

2H1+pacT (α,αc,Rc,Rb))
)
+

1

H2u

(
e−λbπRb

2H2u − e−λbπRc
2H2u

)
+

1

H3

(
e−λbπRc

2H3

)
(12)



function of λu and it tends to 0 when λu → ∞, i.e., in
a fully loaded network. Thus, deploying infinite number of
BSs will not bring the UE performance to a unprecedented
level. In contrast, extreme densification will put the coverage
probability into the danger of decreasing to 0, as shown in Fig.
3 in the next section. The converged result also depends on
environmental parameters (α, αc, Rc, Rb). It will increase as
both path loss exponents grow since the coverage probability
is a increasing function of path loss exponents [9]. A larger
Rb or Rc will decline the performance since it either reduce
the signal power or amplify the interference in the near-field.

We now turn to the network perspective and study the
asymptotic behavior of the ASE. Combining the definition
in (5) with Proposition 3, we can easily obtain the following
proposition.

Proposition 4: (Asymptotic ASE) As λb → ∞, ASE Γ
converges to a finite value as follows.

lim
λb→∞

Γ (λb, λu, T ) = λue
−λuπcT (α,αc,Rc,Rb) log2(1 + T ) (14)

Proposition 4 shows that the asymptotic ASE will increase
with λu when λu is small and tends to 0 as λu → ∞.
Unlike the coverage probability, the asymptotic ASE will be
beneficial from ultra-desification to some extent and but still
highly depends on the UE density.

Returning from the asymptotic regions, we demonstrate
how the ASE scales with BS density in the next proposition.

Proposition 5: (ASE scaling) The ASE scales with
λbpae

−λbpaπcT (α,αc,Rc,Rb) and is bounded by

ΓLB = λbpaP
LB
c log2(1 + T ) (15)

ΓUB = λbpaP
UB
c log2(1 + T ). (16)

Proof: See Appendix C.

Similar with its asymptotic behavior, the ASE will increase
with BS density when λb is small and finally converge to
λue

−λuπcT log2(1 + T ) as shown in Proposition 4.

IV. NUMERICAL RESULTS

In this section, we present the numerical results to study
the performance of network densification and validate our
theoretical analysis. We assume Rb = 1m, Rc = 70m,
αc = 2.5, α = 4 and set the SIR threshold T = 10dB in all
of our results. To calculate or simulate ‘fully loaded network’,
we set λu = 2 × 108/km2 which is a sufficiently large value
so that pa ≈ 1.

A. Effect of UE density

Fig. 3 shows the effect of UE density on coverage prob-
ability. An exact match between simulation and analysis is
observed. Meanwhile, we find that coverage probabilities show
completely different trends among different UE densities.

In full load model, the diminishing of coverage probability
starts when interfering BSs fall into the near-field of the
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Fig. 3: Effect of λu on coverage probability under bounded
dual-slope model.

typical UE and keeps decreasing since interference will con-
tinue increasing. When λu is finite, the interferer coordinates
converge to UE coordinates in a UDN regime [11]. Thus the
distance from the typical UE to its closest interferer can be
approximated as the distance to the its closest neighbor UE
, which has an expected value of 1

2
√
λu

. When UE density
is low (e.g. λu = 20), the expected value is larger than the
critical distance, which means the probability of no interferer
inside the near-field of the typical UE is very high. Hence,
the coverage probability is a non-decreasing function of λb as
in a single-slope model. In contrast, higher UE density (e.g.
λu = 200 or 2000) leads to more potential interferers within
critical distance. Thus coverage probability will decrease for
the same reason as in fully loaded network. Nevertheless, when
all the UEs in the near-field get service, coverage probability
will start increasing again since the interference are saturated
and no longer increase. Therefore, it is important to estimate
the active UE density for efficient network deployment or
operation in order to avoid the decreasing region of coverage
probability.

B. Coverage probability analysis

In Fig. 4, we compare the coverage probability under our
model with the previous models. We observe that the perfor-
mance is overestimated with unbounded or single-slope models
in highly densified regions. The reason is that those models
either exaggerate the received power inside the bounded region
or underestimate the interference in the near-field.

The inaccuracy of path loss models may mislead the
prediction of asymptotic behavior. For instance, the coverage
probability will converge to 1 with unbounded models but to
e−λuπcT (α,αc,Rc,Rb) which is smaller than 1 (assume λu > 0)
when applying a bounded model. Consistent with the result in
Proposition 3, the converged value will decrease as UE density
grows and finally falls to zero in the full load case as shown
in Fig. 3. This is because the signal is limited by the bound
effect and the overall performance will be dominated by the
interference which depends on UE density.
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Fig. 4: Coverage probability bounds and comparison with
previous models

C. ASE analysis

Figure 5 depicts the scaling of ASE with regard to BS
density. Aligning with proposition 5, the ASE first increase
with BS density and then converge to a constant. The constant
is larger than 0 in partially loaded network and decreases to
0 when the network is full load (λu → ∞) as proved in
Proposition 4.

By comparing Fig. 5 with Fig. 4, we can observe a trade-off
between UE and network performance during BS densification.
In full load case, there exists an BS density threshold around
λb = 104. Before the threshold, although individual perfor-
mance gets worse, densification is still beneficial from the
network perspective. For partially loaded network, the trade-off
appears approximately between λb = 101.5 to λb = 103. The
phenomenon further demonstrates the necessity of applying a
dual-slope model because the coverage probability is a non-
decreasing function of BS density in a single-slope model.

Our bounds in Proposition 2 and 5 are compared with the
integral expression and shown in Fig. 4 and 5. The figures
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Fig. 5: ASE bounds and comparison with previous models.

verify the asymptotic tightness of the bounds for λ → ∞. The
upper bound is tighter in small UE density scenarios while the
lower bound fits better for large UE densities. This is because
the upper bound is close to single-slope model which is similar
with small UE density scenario. The bounds can be used as
approximations in large BS density regions.

V. CONCLUSION

In this paper, we investigate the asymptotic behavior of
ultra-densification of base stations. To our best knowledge,
this is the first work incorporating two key aspects of UDN
modeling: a partially loaded network due to a finite active UE
density and a dual-slope path loss model with a bounded loss
within a unit distance. With such models, we find that the
asymptotic behavior of ultra-dense base station deployment is
different from what was known with simpler assumptions, e.g.
unit or zero convergence of coverage probability. Depending
on the UE density, both UE coverage probability and ASE
converge to either zero or a constant value. Even before the
asymptotic regions, our results suggest that the densification



cannot always improve the individual UE performance or boost
the network throughput as well. The increment are prevented
by introducing extra interference in the near-field until all the
UEs in the near-field are served. Our work provides insights
into the scaling of the network densification, and thus gives a
guideline for the network deployment.

APPENDIX A
PROOF OF PROPOSITION 1

We start from the coverage probability expression under
general path loss model and then plug in with our bounded
dual-slope model. According to the definition, the coverage
probability can be expressed as:

P l
c = P[SIR > T ] = P

[ |h|2�(r)
I

> T

]

(a)
=

∫
r>0

P

[
|h|2 >

TI

�(r)
|r
]
fr(r)dr

(b)
=

∫
r>0

LI

(
T

�(r)

)
fr(r)dr

(17)

where (a) follows from BS distribution and (b) is due to the
fact that |h|2 ∼ exp(1), LI(s) is the Laplace transform of
interference which can be derived as

LI(s) = EI [e
−sI ] = EΦ∗

b ,gi
[exp(−s(

∑
x∈Φ∗

b

gi�(di)))]

(a)
= EΦ∗

b

⎡
⎣ ∏
x∈Φ∗

b

1

1 + s�(di)

⎤
⎦

(b)
= exp

(
−2πλ∗

b

∫ ∞

r

(
1− 1

1 + s�(v)

)
dv

)
(18)

where (a) is because g ∼ exp(1) and (b) follows the probability
generating functional (PGFL) of the PPP. Plugging in s =(

T
�(r)

)
and employing a change of variables v =

√
tr results

in

LI

(
T

�(r)

)
= exp

⎛
⎝−2πλbPa

∫ ∞

1

⎛
⎝ T

T + �(r)

�(
√
tr)

⎞
⎠ dt

⎞
⎠ .

(19)

Plugging (19) into (17) with z → r2 gives the coverage
probability under a general path loss fucntion in (20) as:

P l
c(λb, λu, T ) = λbπ

∫ ∞

0
exp

⎛
⎝−λbπz

⎡
⎣1 + pa

∫ ∞

1

1

1 +
�(
√

z)

T�(
√

tz)

dt

⎤
⎦
⎞
⎠ dz

(20)

Based on (20), we can substitute our bounded dual-slope
model (2) into it and get the expression in (6).

APPENDIX B
PROOF OF PROPOSITION 2

According to the expression of (7) and (9), rG1(r, T ) and
rG3(T ) are linear functions of r. Thus we can rewrite the first
and third integral in (6) as follows:∫ Rb

2

0

e−λbπr(1+paG1(r))dr =
1

H1

(
e−λbpaπcT − e−λbπ(Rb

2H1+pacT )
)

(21)

∫ ∞

Rc
2

e−λbπr(1+paG3(r))dr =
1

H3

(
e−λbπRc

2H3

)
. (22)

In the second integral, from G′
2(r) < 0 we can get G2(Rb

2) ≥
G(r) ≥ G2(Rc

2). With the inequality, we can provide bounds
for the second integral as:∫ Rc

2

Rb
2

e−λbπr(1+paG2(r))dr ≤
∫ Rc

2

Rb
2

e−λbπr(1+paG2(Rb
2))dr

=
1

H2u
(e−λbπH2uRb

2 − e−λbπH2uRc
2

)

(23)

∫ Rc
2

Rb
2

e−λbπr(1+paG2(r))dr ≥
∫ Rc

2

Rb
2

e−λbπr(1+paG2(Rc
2))dr

=
1

H2l
(e−λbπH2lRb

2 − e−λbπH2lRc
2

).

(24)

Replacing the integrals in (6) with the exponential expressions
above completes the proof.

APPENDIX C
PROOF OF PROPOSITION 3

Notation: Let f and g be two functions defined on some
subset of the real numbers. One writes f(x) = O(g(x)) if
and only if there exists a positive real number M and a real
number x0 such that f(x) ≤ Mg(x) for all x ≥ x0.

We omit the proof of the bounds since they come di-
rectly from Proposition 2. To prove the ASE scales with
λ∗
be

−λ∗
bπcT is equivalent with showing ΓUB = O(λ∗

be
−λ∗

bπcT )
and λ∗

be
−λ∗

bπcT = O(ΓLB). Denote log2(1+T ) as τ and from
(12) we have:

ΓUB ≤ λ∗
b(

1

H1
e−λbpaπcT +

1

H2u
e−λbπH2uRb

2

+
1

H3
e−λbπH3Rc

2

)τ.

(25)

Then we can show ∃λ1 > 0, ∀λb > λ1,
1
H1

e−λbpaπcT >
1

H2u
e−λbπH2uRb

2

and 1
H1

e−λbpaπcT > 1
H3

e−λbπH3Rc
2

since
1
H1

e−λbpaπcT → 1
H1

e−λuπcT and the other two parts →
0 as λb → ∞. Thus ∃λ1 > 0, ∀λb > λ1,Γ

UB ≤
3
H1

λ∗
be

−λ∗
bπcT =⇒ ΓUB = O(λ∗

be
−λ∗

bπcT ).

For ΓLB, from (11) we have

ΓLB ≥ 1

k1
λ∗
b

(
e−λbpaπcT − e−λbπ(H1Rb

2+pacT )
)
τ, (26)

which can be rephrased as:

λ∗
be

−λbpaπcT ≤ H1

(1− e−λbπH1Rb
2
)τ

ΓLB. (27)

Thus, ∃λ2 > 0, k > 0, ∀λb > λ2, e
−λbπH1Rb

2

< k thus
λ∗
be

−λbpaπcT ≤ H1

(1−k)τ Γ
LB. Therefore λ∗

be
−λ∗

bπcT = O(ΓLB)
and we complete the proof.
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