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Abstract—Mobile communication networks alone consume 0.5
percent of the global energy today. Rapidly growing demand
for capacity will further increase the energy consumption. Thus,
improving energy efficiency has recently gained great interest
within the research community not only for environmental
awareness but also to lower the operational cost of network
operators. Base station deployment strategy is one of the key
challenges to be addressed for fulfilling the future capacity
demand with energy efficiency. In this paper, we investigate
the relationship between energy efficiency and densification
with regard to an area capacity requirement. To this end, we
refine the base station power consumption model such that the
parameters are determined by the maximum transmit power and
develop a simple analytical framework to derive the optimum
transmit power that maximizes energy efficiency for a certain
capacity target. Our framework takes into account interference,
noise and backhaul power consumption. Numerical results show
that deployment of smaller cells significantly reduces the base
station transmit power, and thus shifts the key elements of
energy consumption to idling and backhauling power. Network
densification can only be justified when capacity expansion is
anticipated.

Index Terms—Energy Efficiency, Backhaul, Densification, Area
Capacity, Power Consumption.

I. INTRODUCTION

The cellular networks of today provide good coverage and
services in many countries, in both urban and rural areas.
The key challenge for the industry is the rapid proliferation
of smartphones, laptops, and tablet PCs with built-in cellular
access that is rapidly driving the demand for capacity increase.
This exponentially growing data traffic will require the deploy-
ment of several orders of magnitude more base stations (BSs)
which will significantly increase the energy consumption, apart
from infrastructure investment and acquisition of spectrum [1],
[2]. Currently, wireless access networks alone consume 0.5%
of the global energy consumption and the cost of energy con-
stitutes almost 50% of the operational expenditures (OPEX)
of mobile operators in some countries [3], [4]. With the
increasing rate of BS deployment and soaring energy prices,
we foresee that energy will be the main design criteria for the
next generation wireless access networks [3].

Motivated by these factors, main operators and their equip-
ment suppliers started to address the arising concern of ex-
cessive energy consumption by making efforts to improve
the state-of-the-art wireless broadband networks. An overview
of the different proposed methods to increase the energy

efficiency on all levels of the network, including hardware
design, network management, network deployment, and re-
source allocation, is given in [5]. From network deployment
perspective, the use of small BSs is believed to reduce the BS
energy consumption because the BS closer to mobile users
can lower the required transmit power due to advantageous
path loss conditions [6]. However, this comes with an increase
in the number of BSs, which demands more energy for
running the BSs. This tradeoff has been investigated in the
literature and the effect of cell size on energy efficiency
is shown in [7]–[10]. Area power consumption of different
deployment scenarios are evaluated in [7] for a minimum
received power target at the cell edge considering different
idle power consumption figures and it is stated that large cell
deployments are more energy efficient due to the high idle
power of existing BSs. On the contrary, in [8]–[10] small-cell
based mobile communication systems are claimed to be an
effective solution to accommodate high data rates with low
energy consumption.

The main reasons of having contradictory conclusions are
due to the differences in power consumption model (i.e., only
considering radio transmit power, total power consumption),
selected network performance metric (i.e., coverage, network
capacity, cell capacity) and considered energy efficiency met-
ric (i.e., bit/joule, W/km2). Besides, neither the impact of
interference level nor the dependency of power consumption
parameters on cell size has been taken into account in previous
studies. The increase in system throughput via deployment of
short-range BSs has also been ignored.

We believe that to be able to answer the question of ”which
type of network deployment is more energy efficient” both
network performance metrics, coverage and capacity, should
be considered and kept independent of the selected cell size for
the deployment. With this in mind, this paper investigates the
relation between energy efficiency, area capacity and cell size
by considering the impact of both interference and noise, cell
size dependent idle power consumption and backhaul power
consumption which is often ignored in the literature. We target
to answer the following questions:

• What is the effect of network densification on energy
efficiency?

• How shall the operators deploy their network to cope with
expected capacity demand from the energy efficiency
point of view?



For this purpose, we develop a simple analytical model
to derive the optimum transmission power which maximizes
energy efficiency under a network capacity target, for a given
cell range. We proposed a refined power consumption model
where the parameters are determined by the maximum transmit
power of BSs. This allows us to adjust the power consumption
of hypothetical BSs in accordance with the densification level.
We demonstrate how different assumptions about capacity
requirement affect the energy efficiency in different levels of
network densification.

II. DEFINITIONS AND PROBLEM FORMULATION

The focus of this paper is the homogenous network deploy-
ment with short-range and low-power BSs on a given network
area, A. We assume that base stations have omni-directional
antennas, so that each BS covers a single cell.

A. Network Capacity and Energy Efficiency

Energy efficiency (Ψ) is defined as the ratio of the total num-
ber of bits that were correctly delivered in the network during
the observation period (T) over the network energy consump-
tion during the same time where the unit is bits/Joule [11].
Since the network energy consumption is the multiplication of
the power consumption with the observation period, this metric
can equivalently be written as the ratio of the throughput,
(which is equal to network capacity, Cnet for considered fully
loaded system), over the network power consumption, Pnet,
which can be expressed in bps/W as below:

Ψ(Ptx) =
Cnet

Pnet
. (1)

Here, Cnet is defined as the summation of cell capacity
Ccell within the network area, whereas Pnet is the total power
consumption of the network including the sum of power
consumption figures of individual base stations as well as
backhaul network which are introduced in Section V and IV
respectively. Under the assumption that the network is fully
loaded regardless of the cell size, i.e., each base station has at
least one mobile requesting data with all resources allocated,
network capacity is shown below:

Cnet = NBSCcell, (2)

where NBS = A
πR2 is the number of base stations and R is

the cell radius.

B. Problem Formulation

The objective is to find the optimum transmit power, P opt
tx

within the range of maximum allowed RF output power of the
base station, Pmax

tx , which maximizes the energy efficiency
under the constraint that network capacity will stay constant.
Note that both Ψ and Cnet are the functions of cell range.
The optimization problem can be mathematically expressed
as follows:

Maximize
Ptx

Ψ

subject to Cnet = Ctarget,

Ptx ≤ Pmax
tx .

(3)

We aim to see the relationship between Ψ(P opt
tx ), Ctarget,

and R to analyze the impact of network densification.
It should be noted that highly dense deployment scenario

results in low P opt
tx figure. Therefore, there will always be

a transmit power P ∗
tx ≥ P opt

tx which increases the network
capacity with a comparably low increase in total network
consumption and thus improve the energy efficiency. However,
it is doubtful that providing more capacity than required is
meaningful even if it gives higher energy efficiency. Therefore,
we considered equality constraint for the capacity target in (3).

III. SINR MODELING

In downlink direction of wireless communication, the re-
ceived power at distance d from a base station can be modeled
by

Prx(d) =
cGPtx

dα
, (4)

where Ptx is the transmit power, c and α are the path loss
coefficient and exponent respectively, and G is the antenna
gain.

Lets us consider a system with no interference arising from
the serving cell. The downlink SINR denoted by Γ, at a given
distance d can be obtained by

Γ(d) =
Prx(d)∑L

j=1 Ij +N
, (5)

where Ij denotes the received interference power from
the j-th interfering BS, N is the noise power on the total
bandwidth (N0W ) and N0 is the power spectral density of
additive white gaussian noise (AWGN). The derivation of
the probability distribution for received signal, interference,
and SINR for the downlink of a cellular network have been
extensively investigated in the literature [12]–[15]. The pro-
posed semi-analytical [15] and approximate [14] approaches
for SINR characterization obviate the need for time-consuming
simulations and obtain the main characteristics of the network.
Here, we consider the fluid model [14] which is based on the
idea of replacing a given fixed finite number of interfering
base stations by an equivalent continuum of transmitters. The
model assume that mobiles and base stations are uniformly
distributed in the area, thus the network has constant mobile
station (MS) density ρMS and cochannel BS density ρBS .

For an OFDMA or TDMA like system with universal
frequency reuse where there is no internal interference because
of the perfect orthogonality between users, the sum of the
external interference powers for the mobile at the distance d,
pext,d, is approximated as follows [14]:

pext,d =
2πρBSPtxcG

(α− 2)

[
(2R−d)2−α−(Rarea−d)2−α

]
, (6)



where Rarea is the radius of the network area, and ρBS =
1

πR2 .
Based on the model above, SINR experienced by the user

can be expressed as

Γ(d) =
1

2dα

(α−2)R2

[
(2R− d)2−α − (Rarea − d)2−α

]
+ N0W

cGPtx
dα
.

(7)

IV. POWER CONSUMPTION MODEL

A. Power Consumption Elements

In the literature, the average power consumption of a base
station is modeled as a linear function of average transmit
power and is given by P = aPtx + bradio [16]. Here, P
and Ptx denote the average total power per base station and
the power fed to the antenna, respectively. The coefficient
a accounts for the part of the power consumption that is
proportional to the transmitted power (e.g., radio frequency
(RF) amplifier power including feeder losses), while bradio
denotes the power that is consumed independent of the average
transmit power (e.g., signal processing, site cooling). The total
power consumption of the network is calculated based on the
deployment strategy, i.e. type and the number of base stations
in the network and the backhaul power consumption is usually
ignored in the literature. However, the deployment strategy
will indeed affect the implementation of the backhaul and
consequently its power consumption. We have shown in [17]
that the relative impact of backhaul power consumption is non-
negligible for dense network deployment. Therefore, in order
to obtain consistent and realistic results to assess the the impact
of network densification on energy efficiency, backhaul power
consumption (Pbh) should be incorporated into the analysis.

Total power consumption of the network with NBS number
of base stations including the fiber optic based mobile back-
haul can be written as [17]:

Pnet = NBS [aPtx + bradio] + Pbh. (8)

The backhaul power Pbh includes not only the downlink
and the uplink power consumption (i.e., from a base station
to the aggregation switch(es) and from the switch(es) to
the aggregation network, respectively) but also the power
consumed at the aggregation switch(es), which is proportional
to the total traffic backhauled from the mobile network. A
detailed expression for Pbh is given by

Pbh = NBS

[
bbackhaul+

(1− τ)Pmax
switch

nportsCmax
switch

Agswitch+
τPmax

switch

nports

]
.

(9)
Here bbackhaul represents the power consumed by the

backhaul transceiver, and the uplink interface, Pmax
switch is the

maximum power consumption of the switch, Agswitch is the
aggregate traffic traversing the switch, while τ , Cmax

switch and
nports are percentage of the switch power that is independent
of the network traffic, τ ∈ [0, 1], maximum capacity of a

switch and number of ports of the switch respectively. A more
detailed explanation of these parameters can be found in [17].

It should be noted that in this paper we have considered
two cases to calculate the total power consumption: 1) same
type of BSs with identical power consumption parameters are
chosen for network deployment which are are fixed, regardless
of the cell range. In this case, values of the parameters, a and
bradio are selected for micro type base stations; 2) BS type,
and thus power consumption parameters depend on the cell
range where a and bradio vary with the maximum BS transmit
power which will be explained in the next subsection in detail.

B. Transmit Power Dependent Idle Power Consumption Mod-
eling

The power consumption of different type of base stations
has been modeled in European FP7 project EARTH [11] where
it is stated that while power amplifier power consumption
dominates the total power consumption of Macro BSs, idle
power consumption becomes the main consumer in smaller
BSs like pico and femto as it is shown in Table I.

TABLE I
POWER CONSUMPTION PARAMETERS FOR BASE STATION [6], [11]

Base Station Type Pmax[W ] a bradio[W ]

Micro 6.3 3,1 53
Pico 0.13 4.2 6.8

Femto 0.05 7.5 4.8

The significant effect of power consumption parameters on
area power consumption has been assessed in [1] which shows
that completely contradictory conclusions can be drawn about
the cell size impact if we consider different ratios between
load dependent power consumption, aPtx and the idle power
consumption, bradio. Therefore, we propose to write these
parameters as a function of maximum transmit power of
the hypothetical BSs to fairly asses the impact of network
densification. We have created an approximating functions that
capture important patterns in the data in Table I as below:

a = µ− η log2 (Pmax), (10)

bradio = κPmax + ψ. (11)

Then, we have used nonlinear regression [18] which is a
procedure for fitting data to any selected equation and define
the the best set of parameters which gives the least squares
solution, which are µ = 4.15, η = 0.5, κ = 7.6 and ψ = 5.1.

It should be noted that each combination of a and bradio
represents a hypothetical BS customized to Pmax.

V. ENERGY EFFICIENCY OPTIMIZATION

In this section, we derive the closed form expression of
optimum transmit power that maximizes energy efficiency
under the constraint that network capacity in the considered
area is guaranteed. To this end, interference model in the
previous section is used for the worst case scenario where the



Ψ =

R2
area

R2 W log2

(
1 + 1

2
(α−2)

[
1−(Rarea

R −1)2−α

]
+

N0W
cGPtx

Rα

)

R2
area

R2

[
aPtx + bradio + bbackhaul +

(1−τ)Pmax
switch

nportsCmax
switch

Agswitch +
τPmax

switch

nports

] . (12)

user stands at the cell edge. Then, we have calculated network
power consumption based on our proposed model where
backhaul power consumption is incorporated by considering
fixed and variable BS power consumption parameters.

Cell capacity in the worst case scenario can be evaluated
using Shannon’s formula, such as Ccell =W log2(1 + Γ(R))
where Γ(R) is the SINR of the cell edge user. Inserting d = R
in (7) and using the definition in (1), we can rewrite energy
efficiency as in (12). Under a minimum achievable network
throughput target Ctarget, required transmit power, PC

tx can
be calculated as below:

PC
tx =

N0WRα/cG[
1

2

(
R

Rarea

)2 Ctarget
W

−1

]
− 2

(α−2)

(
1− (Rarea

R − 1)2−α

) .
(13)

By considering the fact that network capacity is a non-
decreasing function of transmit power, the solution of the
optimization problem given in (3) is calculated as P opt

tx = PC
tx.

VI. NUMERICAL RESULTS

In this section, numerical results are presented to demon-
strate the relationships between area network capacity, energy
efficiency and cell size for fixed (Case 1) and variable (Case
2) BS power consumption parameters.

We consider an area with a radius of Rarea=10 km covered
by small base stations where the cell range varies between
50-500m. Base stations are assumed to be equipped with one
omni-directional antenna. It should be noted that for Case 1,
micro type base stations are considered for the network power
consumption calculation where a = 3.1 and bradio = 53 [6],
[11]. System and backhaul power consumption parameters are
listed in Table II.

Fig. 1 shows the energy efficiency figures as a function of
cell range, R, for different area capacity requirements under
the assumption that BS power consumption parameters a and
bradio are fixed regardless of Ptx. We can clearly observe
that energy efficiency is maximized by the deployment of the
largest feasible cell size which can satisfy the given network
performance requirement Ctarget. This simply results from the
fact that dense deployment of the smaller cells reduces the
transmit power and thus shifts the key problem of the energy
consumption from the transmit power to idle power which
constitutes more than 60% of the total power consumption.
Therefore, reduced transmit power can not compensate the
additional required idle power consumption, leading to lower
energy efficiency.

TABLE II
EXPERIMENTAL PARAMETERS

System and Path Loss Parameters Value

Frequency (f ) 2GHz
Bandwidth (W ) 5 MHz
Path loss constant (c) 10−3

Antenna Gain (G) 2 dBi
Path Loss exponent (α) 4
Thermal Noise (N0) -174 dBm/Hz
Noise figure 10 dB

Backhaul Power Consumption Parameters Value
bbackhaul 3W
Pmax
switch 300W

τ 0.8
Cmax

switch 10 Gb/s
nports 24
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Fig. 1. Energy efficiency as a function of cell range for fixed power
consumption parameter (a, bradio).

When we consider variable power consumption parameters
as in (10) and (11), the optimal energy efficiency is achieved
before the cells reach the largest feasible size as it is illustrated
in Fig. 2(a). It is due to the fact that impact of load dependent
power consumption (aPtx) becomes dominant for large cell
size deployment because of the increase in both optimum
transmit power, P opt

tx , and the coefficient a which accounts
for the part of the power consumption that is proportional to
the transmitted power as it is shown in (10). This generates
an optimal cell size that maximizes the energy efficiency for
all considered area capacity targets. It may come no surprise
that higher area capacity requirement lowers the optimum cell
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Fig. 2. Relationship between energy efficiency, area capacity and network
densification for variable BS power consumption parameters (a, bradio).

range and favors for smaller cell size which is shown more
clearly in Fig. 2(b). We observe that, even though energy
efficiency is maximized by the deployment of larger cell size
in low capacity demand region, it quickly loses its efficiency,
and even becomes infeasible to fulfill the capacity demand.

Fig. 3 depicts the trend of optimum cell range as a function
of area capacity demand, Ctarget. The impact of backhaul
power consumption on the optimum network deployment is
clearly noticeable in the figure. For the cases where small
low power base stations are deployed, the relative impact of
backhaul gets more influential which indicates the trade-off
between the power saved using low power base stations and the
excess power that spent for backhaul. This situation gives rise
to larger optimum cell size to maximize the energy efficiency
compared to the case where the total power consumption of the
network is restricted to the sum of the all base stations. Hence,
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power consumption parameters (a, bradio).

10
1

10
2

0

500

1000

1500

Area Capacity (Mbps/km2)

M
in

im
um

 a
re

a 
po

w
er

 c
on

su
m

pt
io

n 
(W

/k
m

2 )

 

 
variable BS paramaters
fixed BS paramaters

Fig. 4. Minimum area power consumption vs. required area capacity;
backhaul power consumption is considered.

when assessing the benefits of a deployment strategies, the
backhaul power consumption should not be simply ignored.

Finally, the minimum achievable area power consumption
when the network is deployed with optimal cell size is
shown in Fig. 4, for fixed (Case 1) and variable (Case 2)
BS power consumption parameters. It is observed that area
power consumption is lower for all area capacity targets when
we consider variable BS parameters. This is because Case 2
considers that fact that idle power consumption will depend
on cell size and thus it will be lower for the dense deployment,
thanks to its lower transmission power requirement. Therefore,
a proper choice of BS type significantly improves the energy
efficiency particularly when the capacity demand is high.

VII. CONCLUSION

In this paper, we investigated the relation between energy
efficiency, area capacity and cell size by considering the



impact of the interference, noise, backhaul and cell size
dependent idle power consumption. We demonstrated how
different assumptions about capacity requirement and base
stations types affect the energy efficiency in different levels of
network densification. To this end, we proposed a refine base
power consumption model where the parameters are deter-
mined by the maximum transmit power and developed a sim-
ple analytical framework to derive the optimum transmission
power which maximizes energy efficiency under the constraint
that network capacity in the considered area is guaranteed.
Numerical results show that deployment of smaller cells
significantly reduces the transmit power and thus shifts the key
elements of the energy consumption from the transmit power
to idling and backhauling power. Therefore, energy efficiency
is maximized by the largest feasible cell size that can satisfy
the given network capacity target. However, considering the
doubling capacity demand every year, we observe that larger
cell deployment quickly loses its efficiency, and even becomes
infeasible to fulfill the capacity requirement. Consequently,
careful prediction of capacity demand has been identified as a
key challenge for the energy efficient deployment of wireless
networks.

It should be noted that the presented results are based on
the assumption that the network is fully loaded regardless of
the cell size. However, in reality the traffic in cellular mobile
networks is typically unbalanced and dynamic both in the
time and spatial domains. Thus, adapting the BS deployment
and operation to the spatial and temporal heterogeneity of
the traffic demand will play an important role for the energy
efficiency. Its impact will be investigated as a future work.
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